Science.gov

Sample records for age-related neurodegenerative diseases

  1. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases

    PubMed Central

    Suksuphew, Sarawut; Noisa, Parinya

    2015-01-01

    Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found in specific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of age-related neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients. PMID:25815135

  2. Young systemic factors as a medicine for age-related neurodegenerative diseases

    PubMed Central

    Katsimpardi, Lida; Rubin, Lee L

    2015-01-01

    It is widely known that neurogenesis, brain function and cognition decline with aging. Increasing evidence suggests that cerebrovascular dysfunction is a major cause of cognitive impairment in the elderly but is also involved in age-related neurodegenerative diseases. Finding ways and molecules that reverse this process and ameliorate age- and disease-related cognitive impairment by targeting vascular and neurogenic deterioration would be of great therapeutic value. In Katsimpardi et al. we reported that young blood has a dual beneficial effect in the aged brain by restoring age-related decline in neurogenesis as well as inducing a striking remodeling of the aged vasculature and restoring blood flow to youthful levels. Additionally, we identified a youthful systemic factor, GDF11 that recapitulates these beneficial effects of young blood. We believe that the identification of young systemic factors that can rejuvenate the aged brain opens new roads to therapeutic intervention for neurodegenerative diseases by targeting both neural stem cells and neurogenesis as well as at the vasculature.

  3. Niemann-Pick C disease gene mutations and age-related neurodegenerative disorders.

    PubMed

    Zech, Michael; Nübling, Georg; Castrop, Florian; Jochim, Angela; Schulte, Eva C; Mollenhauer, Brit; Lichtner, Peter; Peters, Annette; Gieger, Christian; Marquardt, Thorsten; Vanier, Marie T; Latour, Philippe; Klünemann, Hans; Trenkwalder, Claudia; Diehl-Schmid, Janine; Perneczky, Robert; Meitinger, Thomas; Oexle, Konrad; Haslinger, Bernhard; Lorenzl, Stefan; Winkelmann, Juliane

    2013-01-01

    Niemann-Pick type C (NPC) disease is a rare autosomal-recessively inherited lysosomal storage disorder caused by mutations in NPC1 (95%) or NPC2. Given the highly variable phenotype, diagnosis is challenging and particularly late-onset forms with predominantly neuropsychiatric presentations are likely underdiagnosed. Pathophysiologically, genetic alterations compromising the endosomal/lysosomal system are linked with age-related neurodegenerative disorders. We sought to examine a possible association of rare sequence variants in NPC1 and NPC2 with Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD) and progressive supranuclear palsy (PSP), and to genetically determine the proportion of potentially misdiagnosed NPC patients in these neurodegenerative conditions. By means of high-resolution melting, we screened the coding regions of NPC1 and NPC2 for rare genetic variation in a homogenous German sample of patients clinically diagnosed with PD (n = 563), FTLD (n = 133) and PSP (n = 94), and 846 population-based controls. The frequencies of rare sequence variants in NPC1/2 did not differ significantly between patients and controls. Disease-associated NPC1/2 mutations were found in six PD patients (1.1%) and seven control subjects (0.8%), but not in FTLD or PSP. All rare variation was detected in the heterozygous state and no compound heterozygotes were observed. Our data do not support the hypothesis that rare NPC1/2 variants confer susceptibility for PD, FTLD, or PSP in the German population. Misdiagnosed NPC patients were not present in our samples. However, further assessment of NPC disease genes in age-related neurodegeneration is warranted. PMID:24386122

  4. Niemann-Pick C Disease Gene Mutations and Age-Related Neurodegenerative Disorders

    PubMed Central

    Zech, Michael; Nübling, Georg; Castrop, Florian; Jochim, Angela; Schulte, Eva C.; Mollenhauer, Brit; Lichtner, Peter; Peters, Annette; Gieger, Christian; Marquardt, Thorsten; Vanier, Marie T.; Latour, Philippe; Klünemann, Hans; Trenkwalder, Claudia; Diehl-Schmid, Janine; Perneczky, Robert; Meitinger, Thomas; Oexle, Konrad; Haslinger, Bernhard; Lorenzl, Stefan; Winkelmann, Juliane

    2013-01-01

    Niemann-Pick type C (NPC) disease is a rare autosomal-recessively inherited lysosomal storage disorder caused by mutations in NPC1 (95%) or NPC2. Given the highly variable phenotype, diagnosis is challenging and particularly late-onset forms with predominantly neuropsychiatric presentations are likely underdiagnosed. Pathophysiologically, genetic alterations compromising the endosomal/lysosomal system are linked with age-related neurodegenerative disorders. We sought to examine a possible association of rare sequence variants in NPC1 and NPC2 with Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD) and progressive supranuclear palsy (PSP), and to genetically determine the proportion of potentially misdiagnosed NPC patients in these neurodegenerative conditions. By means of high-resolution melting, we screened the coding regions of NPC1 and NPC2 for rare genetic variation in a homogenous German sample of patients clinically diagnosed with PD (n = 563), FTLD (n = 133) and PSP (n = 94), and 846 population-based controls. The frequencies of rare sequence variants in NPC1/2 did not differ significantly between patients and controls. Disease-associated NPC1/2 mutations were found in six PD patients (1.1%) and seven control subjects (0.8%), but not in FTLD or PSP. All rare variation was detected in the heterozygous state and no compound heterozygotes were observed. Our data do not support the hypothesis that rare NPC1/2 variants confer susceptibility for PD, FTLD, or PSP in the German population. Misdiagnosed NPC patients were not present in our samples. However, further assessment of NPC disease genes in age-related neurodegeneration is warranted. PMID:24386122

  5. What's on TV? Detecting age-related neurodegenerative eye disease using eye movement scanpaths

    PubMed Central

    Crabb, David P.; Smith, Nicholas D.; Zhu, Haogang

    2014-01-01

    Purpose: We test the hypothesis that age-related neurodegenerative eye disease can be detected by examining patterns of eye movement recorded whilst a person naturally watches a movie. Methods: Thirty-two elderly people with healthy vision (median age: 70, interquartile range [IQR] 64–75 years) and 44 patients with a clinical diagnosis of glaucoma (median age: 69, IQR 63–77 years) had standard vision examinations including automated perimetry. Disease severity was measured using a standard clinical measure (visual field mean deviation; MD). All study participants viewed three unmodified TV and film clips on a computer set up incorporating the Eyelink 1000 eyetracker (SR Research, Ontario, Canada). Eye movement scanpaths were plotted using novel methods that first filtered the data and then generated saccade density maps. Maps were then subjected to a feature extraction analysis using kernel principal component analysis (KPCA). Features from the KPCA were then classified using a standard machine based classifier trained and tested by a 10-fold cross validation which was repeated 100 times to estimate the confidence interval (CI) of classification sensitivity and specificity. Results: Patients had a range of disease severity from early to advanced (median [IQR] right eye and left eye MD was −7 [−13 to −5] dB and −9 [−15 to −4] dB, respectively). Average sensitivity for correctly identifying a glaucoma patient at a fixed specificity of 90% was 79% (95% CI: 58–86%). The area under the Receiver Operating Characteristic curve was 0.84 (95% CI: 0.82–0.87). Conclusions: Huge data from scanpaths of eye movements recorded whilst people freely watch TV type films can be processed into maps that contain a signature of vision loss. In this proof of principle study we have demonstrated that a group of patients with age-related neurodegenerative eye disease can be reasonably well separated from a group of healthy peers by considering these eye movement

  6. Oxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: a role of NADPH oxidase 2

    PubMed Central

    Cahill-Smith, Sarah; Li, Jian-Mei

    2014-01-01

    Chronic oxidative stress and oxidative damage of the cerebral microvasculature and brain cells has become one of the most convincing theories in neurodegenerative pathology. Controlled oxidative metabolism and redox signalling in the central nervous system are crucial for maintaining brain function; however, excessive production of reactive oxygen species and enhanced redox signalling damage neurons. While several enzymes and metabolic processes can generate intracellular reactive oxygen species in the brain, recently an O2−-generating enzyme, NADPH oxidase 2 (Nox2), has emerged as a major source of oxidative stress in ageing-related vascular endothelial dysfunction and neurodegenerative diseases. The currently available inhibitors of Nox2 are not specific, and general antioxidant therapy is not effective in the clinic; therefore, insights into the mechanism of Nox2 activation and its signalling pathways are needed for the discovery of novel drug targets to prevent or treat these neurodegenerative diseases. This review summarizes the recent developments in understanding the mechanisms of Nox2 activation and redox-sensitive signalling pathways and biomarkers involved in the pathophysiology of the most common neurodegenerative diseases, such as ageing-related mild cognitive impairment, Alzheimer’s disease and Parkinson’s disease. PMID:25279404

  7. NF-κB in Innate Neuroprotection and Age-Related Neurodegenerative Diseases

    PubMed Central

    Lanzillotta, Annamaria; Porrini, Vanessa; Bellucci, Arianna; Benarese, Marina; Branca, Caterina; Parrella, Edoardo; Spano, Pier Franco; Pizzi, Marina

    2015-01-01

    NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programing of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models, the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes. Conversely, aberrant activation of NF-κB/RelA showing reduced level of total acetylation, but site-specific acetylation on lysine 310, triggers the expression of pro-apoptotic genes. Constitutive knockout of c-Rel shatters the resilience of substantia nigra (SN) dopaminergic (DA) neurons to aging and induces a parkinsonian like pathology in mice. c-rel−/− mice show increased level of aberrantly acetylated RelA in the basal ganglia, neuroinflammation, accumulation of alpha-synuclein, and iron. Moreover, they develop motor deficits responsive to l-DOPA treatment and associated with loss of DA neurons in the SN. Here, we discuss the effect of unbalanced activation of RelA and c-Rel during aging and propose novel challenges for the development of therapeutic strategies in neurodegenerative diseases. PMID:26042083

  8. β-amyloidopathy in the Pathogenesis of Age-Related Macular Degeneration in Correlation with Neurodegenerative Diseases.

    PubMed

    Ermilov, Victor V; Nesterova, Alla A

    2016-01-01

    Involvement of new biotechnology and genetic engineering methods to the study of the aging organism allowed to select a group of neurodegenerative diseases (NDD) which have a similar mechanism of pathogenesis including pathological processes of protein aggregation and its deposition in the structures of nerve tissue. The development of eye and brain from one embryonic germ layer, community of ethiopathogenetic and morphological manifestations of age-related macular degeneration (AMD) and Alzheimer's disease (AD), a common pathway of β-amyloid precursor protein (APP) are associated with the pathological aggregation of fibrillar β-amyloid (Aβ) protein and the development of β-amyloidopathy in structural elements of the eye and the brain. The review demonstrates the keynote of AMD and AD pathogenesis is β-amyloidopathy that is a manifestation of proteinopathy leading to cytotoxicity, neurodegeneration and the development of pathological apoptosis activated by the formation of intracellular Aβ. This view on the problem predetermines the development of new strategies for the creating of ophthalmogeriatric and neuroprotective drugs affecting the pathogenesis and including all stages of Aβ formation and pathological aggregation. PMID:26427402

  9. Review: Axon pathology in age-related neurodegenerative disorders.

    PubMed

    Adalbert, R; Coleman, M P

    2013-02-01

    'Dying back' axon degeneration is a prominent feature of many age-related neurodegenerative disorders and is widespread in normal ageing. Although the mechanisms of disease- and age-related losses may differ, both contribute to symptoms. Here, we review recent advances in understanding axon pathology in age-related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. In particular, we highlight the importance of axonal transport, autophagy, traumatic brain injury and mitochondrial quality control. We then place these disease mechanisms in the context of changes to axons and dendrites that occur during normal ageing. We discuss what makes ageing such an important risk factor for many neurodegenerative disorders and conclude that the processes of normal ageing and disease combine at the molecular, cellular or systems levels in a range of disorders to produce symptoms. Pathology identical to disease also occurs at the cellular level in most elderly individuals. Thus, normal ageing and age-related disease are inextricably linked and the term 'healthy ageing' downplays the important contributions of cellular pathology. For a full understanding of normal ageing or age-related disease we must study both processes. PMID:23046254

  10. Paleoneurology: neurodegenerative diseases are age-related diseases of specific brain regions recently developed by Homo sapiens.

    PubMed

    Ghika, J

    2008-11-01

    Bipedal locomotion and fine motility of hand and larynx of humans introduced musculoskeletal adaptations, new pyramidal, corticostriatal, corticobulbar, nigrostriatal, and cerebellar pathways and expansions of prefrontal, cingular, parieto-temporal and occipital cortices with derived new brain capabilities. All selectively degenerate in aged homo sapiens following 16 syndromic presentations: (1) Parkinsonism: nigrostriatal control for fast automatic movements of hand, larynx, bipedal posture and gait ("simian gait and hand"). (2) Frontal (highest level) gait disorders (lower body parkinsonism, gait apraxia, retropulsion): prefrontostriatal executive control of bipedal locomotion. (3) ataxia: new synergistic coordination of bipedal gait and fine motility. (4) Dyskinesias (chorea, dystonia, tremor...): intrusions of simian basal ganglia motor subroutines. (5) motoneuron diseases: new proximo-distal and bulbar motoneurones, preserving older ones (oculomotor, abdominal...). (6) Archaic reflexes: prefrontal disinhibition of old mother/tree-climbing-oriented reflexes (sucking, grasping, Babinski/triple retraction, gegenhalten), group alarms (laughter, crying, yawning, grunting...) or grooming (tremor=scratching). (7) Dysautonomia: contextual regulation (orthostatism...). (8) REM sleep disorders of new cortical functions. (9) Corticobasal syndrome: melokinetic control of hand prehension-manipulation and language (retrocession to simian patterns). (10) Frontal/temporal lobe degeneration: medial-orbitofrontal behavioural variant: self monitoring of internal needs and social context: apathy, loss of personal hygiene, stereotypia, disinhibition, loss of concern for consequences of acts, social rules, danger and empathy; dorsolateral executive variant: inadequacy to the context of action (goal, environmental changes...); progressive non-fluent aphasia: executive and praxic processing of speech; temporal variant: abstract concepts for speech, gestures and vision (semantic

  11. The effect of time-dependent macromolecular crowding on the kinetics of protein aggregation: a simple model for the onset of age-related neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Minton, Allen

    2014-08-01

    A linear increase in the concentration of "inert" macromolecules with time is incorporated into simple excluded volume models for protein condensation or fibrillation. Such models predict a long latent period during which no significant amount of protein aggregates, followed by a steep increase in the total amount of aggregate. The elapsed time at which these models predict half-conversion of model protein to aggregate varies by less than a factor of two when the intrinsic rate constant for condensation or fibril growth of the protein is varied over many orders of magnitude. It is suggested that this concept can explain why the symptoms of neurodegenerative diseases associated with the aggregation of very different proteins and peptides appear at approximately the same advanced age in humans.

  12. Optogenetics for neurodegenerative diseases

    PubMed Central

    Vann, Kiara T; Xiong, Zhi-Gang

    2016-01-01

    Neurodegenerative diseases are devastating conditions that lead to progressive degeneration of neurons. Neurodegeneration may result in ataxia, dementia, and muscle atrophies, etc. Despite enormous research efforts that have been made, there is lack of effective therapeutic interventions for most of these diseases. Optogenetics is a recently developed novel technique that combines optics and genetics to modulate the activity of specific neurons. Optogenetics has been implemented in various studies including neuropsychiatric disorders and neurodegenerative diseases. This review focuses on the recent advance in using this technique for the studies of common neurodegenerative diseases. PMID:27186317

  13. Driving and neurodegenerative diseases.

    PubMed

    Uc, Ergun Y; Rizzo, Matthew

    2008-09-01

    The proportion of elderly people in the general population is rising, resulting in greater numbers of drivers with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. These neurodegenerative disorders impair cognition, visual perception, and motor function, leading to reduced driver fitness and greater crash risk. Yet neither medical diagnosis nor age alone is reliable enough to predict driver safety or crashes or to revoke the driving privileges of these individuals. Driving research utilizes tools such as questionnaires about driving habits and history, driving simulators, standardized road tests utilizing instrumented vehicles, and state driving records. Research challenges include outlining the evolution of driving safety, understanding the mechanisms of driving impairment, and developing a reliable and efficient standardized test battery for prediction of driver safety in neurodegenerative disorders. This information will enable healthcare providers to advise their patients with neurodegenerative disorders with more certainty, affect policy, and help develop rehabilitative measures for driving. PMID:18713573

  14. Sleep in Neurodegenerative Diseases.

    PubMed

    Iranzo, Alex

    2016-03-01

    Disorders of sleep are an integral part of neurodegenerative diseases and include insomnia, sleep-wake cycle disruption, excessive daytime sleepiness that may be manifested as persistent somnolence or sudden onset of sleep episodes, obstructive and central sleep apnea, rapid eye movement sleep behavior disorder, and restless legs syndrome. The origin of these sleep disorders is multifactorial including degeneration of the brain areas that modulate sleep, the symptoms of the disease, and the effect of medications. Treatment of sleep disorders in patients with neurodegenerative diseases should be individualized and includes behavioral therapy, sleep hygiene, bright light therapy, melatonin, hypnotics, waking-promoting agents, and continuous positive airway pressure. PMID:26972029

  15. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  16. Glycoproteomics in Neurodegenerative Diseases

    PubMed Central

    Hwang, Hyejin; Zhang, Jianpeng; Chung, Kathryn A.; Leverenz, James B.; Zabetian, Cyrus P.; Peskind, Elaine R.; Jankovic, Joseph; Su, Zhen; Hancock, Aneeka M.; Pan, Catherine; Montine, Thomas J.; Pan, Sheng; Nutt, John; Albin, Roger; Gearing, Marla; Beyer, Richard P.; Shi, Min; Zhang, Jing

    2009-01-01

    Protein glycosylation regulates protein function and cellular distribution. Additionally, aberrant protein glycosylations have been recognized to play major roles in human disorders, including neurodegenerative diseases. Glycoproteomics, a branch of proteomics that catalogs and quantifies glycoproteins, provides a powerful means to systematically profile the glycopeptides or glycoproteins of a complex mixture that are highly enriched in body fluids, and therefore, carry great potential to be diagnostic and/or prognostic markers. Application of this mass spectrometry-based technology to the study of neurodegenerative disorders (e.g., Alzheimer's disease and Parkinson's disease) is relatively new, and is expected to provide insight into the biochemical pathogenesis of neurodegeneration, as well as biomarker discovery. In this review, we have summarized the current understanding of glycoproteins in biology and neurodegenerative disease, and have discussed existing proteomic technologies that are utilized to characterize glycoproteins. Some of the ongoing studies, where glycoproteins isolated from cerebrospinal fluid and human brain are being characterized in Parkinson's disease at different stages versus controls, are presented, along with future applications of targeted validation of brain specific glycoproteins in body fluids. PMID:19358229

  17. Inflammation in neurodegenerative diseases

    PubMed Central

    Amor, Sandra; Puentes, Fabiola; Baker, David; van der Valk, Paul

    2010-01-01

    Neurodegeneration, the slow and progressive dysfunction and loss of neurons and axons in the central nervous system, is the primary pathological feature of acute and chronic neurodegenerative conditions such as Alzheimer’s disease and Parkinson’s disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury and multiple sclerosis. Despite different triggering events, a common feature is chronic immune activation, in particular of microglia, the resident macrophages of the central nervous system. Apart from the pathogenic role of immune responses, emerging evidence indicates that immune responses are also critical for neuroregeneration. Here, we review the impact of innate and adaptive immune responses on the central nervous system in autoimmune, viral and other neurodegenerative disorders, and discuss their contribution to either damage or repair. We also discuss potential therapies aimed at the immune responses within the central nervous system. A better understanding of the interaction between the immune and nervous systems will be crucial to either target pathogenic responses, or augment the beneficial effects of immune responses as a strategy to intervene in chronic neurodegenerative diseases. PMID:20561356

  18. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  19. Targeting autophagy in neurodegenerative diseases.

    PubMed

    Vidal, René L; Matus, Soledad; Bargsted, Leslie; Hetz, Claudio

    2014-11-01

    The most prevalent neurodegenerative disorders involve protein misfolding and the aggregation of specific proteins. Autophagy is becoming an attractive target to treat neurodegenerative disorders through the selective degradation of abnormally folded proteins by the lysosomal pathway. However, accumulating evidence indicates that autophagy impairment at different regulatory steps may contribute to the neurodegenerative process. Thus, a complex scenario is emerging where autophagy may play a dual role in neurodegenerative diseases by causing the downstream effect of promoting the degradation of misfolded proteins and an upstream effect where its deregulation perturbs global proteostasis, contributing to disease progression. Challenges in the future development of therapeutic strategies to target the autophagy pathway are discussed. PMID:25270767

  20. Oxidative Stress in Neurodegenerative Diseases.

    PubMed

    Niedzielska, Ewa; Smaga, Irena; Gawlik, Maciej; Moniczewski, Andrzej; Stankowicz, Piotr; Pera, Joanna; Filip, Małgorzata

    2016-08-01

    The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction. PMID:26198567

  1. DNA damage in neurodegenerative diseases.

    PubMed

    Coppedè, Fabio; Migliore, Lucia

    2015-06-01

    Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans. PMID:26255941

  2. Amyloidosis in Retinal Neurodegenerative Diseases.

    PubMed

    Masuzzo, Ambra; Dinet, Virginie; Cavanagh, Chelsea; Mascarelli, Frederic; Krantic, Slavica

    2016-01-01

    As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer's disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer's patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer's patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a "window" to the brain. PMID:27551275

  3. Amyloidosis in Retinal Neurodegenerative Diseases

    PubMed Central

    Masuzzo, Ambra; Dinet, Virginie; Cavanagh, Chelsea; Mascarelli, Frederic; Krantic, Slavica

    2016-01-01

    As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer’s disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer’s patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer’s patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a “window” to the brain. PMID:27551275

  4. Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Johri, Ashu

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Here, we provide a concise overview of the major findings in recent years highlighting the importance of healthy mitochondria for a healthy neuron. PMID:22700435

  5. Translational strategies in aging and age-related disease.

    PubMed

    Armanios, Mary; de Cabo, Rafael; Mannick, Joan; Partridge, Linda; van Deursen, Jan; Villeda, Saul

    2015-12-01

    Aging is a risk factor for several of the world's most prevalent diseases, including neurodegenerative disorders, cancer, cardiovascular disease and metabolic disease. Although our understanding of the molecular pathways that contribute to the aging process and age-related disease is progressing through the use of model organisms, how to apply this knowledge in the clinic is less clear. In September, Nature Medicine, in collaboration with the Volkswagen Foundation, hosted a conference at the beautiful Herrenhausen Palace in Hannover, Germany with the goal of broadening our understanding of the aging process and its meaning as a 'risk factor' in disease. Here, several of the speakers at that conference answer questions posed by Nature Medicine. PMID:26646495

  6. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases.

    PubMed

    Sharma, Meenakshi; Tiwari, Manisha; Tiwari, Rakesh Kumar

    2015-11-01

    Neurodegenerative diseases are the diseases of the central nervous system with various aetiology and symptoms. Dementia, Alzheimer's disease (AD), Parkinson's disease (PD) and autism are some examples of neurodegenerative diseases. Hyperhomocysteinemia (Hhcy) is considered to be an independent risk factor for numerous pathological conditions under neurodegenerative diseases. Along with genetic factors that are the prime cause of homocysteine (Hcy) imbalance, the nutritional and hormonal factors are also contributing to high Hcy levels in the body. Numerous clinical and epidemiological data confirm the direct correlation of Hcy levels in the body and generation of different types of central nervous system disorders, cardiovascular diseases, cancer and others. Till now, it is difficult to say whether homocysteine is the cause of the disease or whether it is one of the impacts of the diseases. However, Hhcy is a surrogate marker of vitamin B deficiency and is a neurotoxic agent. This Mini Review will give an overview of how far research has gone into understanding the homocysteine imbalance with prognostic, causative and preventive measures in treating neurodegenerative diseases. PMID:26036286

  7. Depressive symptoms in neurodegenerative diseases

    PubMed Central

    Baquero, Miquel; Martín, Nuria

    2015-01-01

    Depressive symptoms are very common in chronic conditions. This is true so for neurodegenerative diseases. A number of patients with cognitive decline and dementia due to Alzheimer’s disease and related conditions like Parkinson’s disease, Lewy body disease, vascular dementia, frontotemporal degeneration amongst other entities, experience depressive symptoms in greater or lesser grade at some point during the course of the illness. Depressive symptoms have a particular significance in neurological disorders, specially in neurodegenerative diseases, because brain, mind, behavior and mood relationship. A number of patients may develop depressive symptoms in early stages of the neurologic disease, occurring without clear presence of cognitive decline with only mild cognitive deterioration. Classically, depression constitutes a reliable diagnostic challenge in this setting. However, actually we can recognize and evaluate depressive, cognitive or motor symptoms of neurodegenerative disease in order to establish their clinical significance and to plan some therapeutic strategies. Depressive symptoms can appear also lately, when the neurodegenerative disease is fully developed. The presence of depression and other neuropsychiatric symptoms have a negative impact on the quality-of-life of patients and caregivers. Besides, patients with depressive symptoms also tend to further decrease function and reduce cognitive abilities and also uses to present more affected clinical status, compared with patients without depression. Depressive symptoms are treatable. Early detection of depressive symptoms is very important in patients with neurodegenerative disorders, in order to initiate the most adequate treatment. We review in this paper the main neurodegenerative diseases, focusing in depressive symptoms of each other entities and current recommendations of management and treatment. PMID:26301229

  8. Depressive symptoms in neurodegenerative diseases.

    PubMed

    Baquero, Miquel; Martín, Nuria

    2015-08-16

    Depressive symptoms are very common in chronic conditions. This is true so for neurodegenerative diseases. A number of patients with cognitive decline and dementia due to Alzheimer's disease and related conditions like Parkinson's disease, Lewy body disease, vascular dementia, frontotemporal degeneration amongst other entities, experience depressive symptoms in greater or lesser grade at some point during the course of the illness. Depressive symptoms have a particular significance in neurological disorders, specially in neurodegenerative diseases, because brain, mind, behavior and mood relationship. A number of patients may develop depressive symptoms in early stages of the neurologic disease, occurring without clear presence of cognitive decline with only mild cognitive deterioration. Classically, depression constitutes a reliable diagnostic challenge in this setting. However, actually we can recognize and evaluate depressive, cognitive or motor symptoms of neurodegenerative disease in order to establish their clinical significance and to plan some therapeutic strategies. Depressive symptoms can appear also lately, when the neurodegenerative disease is fully developed. The presence of depression and other neuropsychiatric symptoms have a negative impact on the quality-of-life of patients and caregivers. Besides, patients with depressive symptoms also tend to further decrease function and reduce cognitive abilities and also uses to present more affected clinical status, compared with patients without depression. Depressive symptoms are treatable. Early detection of depressive symptoms is very important in patients with neurodegenerative disorders, in order to initiate the most adequate treatment. We review in this paper the main neurodegenerative diseases, focusing in depressive symptoms of each other entities and current recommendations of management and treatment. PMID:26301229

  9. Age-related eye disease and gender.

    PubMed

    Zetterberg, Madeleine

    2016-01-01

    Worldwide, the prevalence of moderate to severe visual impairment and blindness is 285 millions, with 65% of visually impaired and 82% of all blind people being 50 years and older. Meta-analyses have shown that two out of three blind people are women, a gender discrepancy that holds true for both developed and developing countries. Cataract accounts for more than half of all blindness globally and gender inequity in access to cataract surgery is the major cause of the higher prevalence of blindness in women. In addition to gender differences in cataract surgical coverage, population-based studies on the prevalence of lens opacities indicate that women have a higher risk of developing cataract. Laboratory as well as epidemiologic studies suggest that estrogen may confer antioxidative protection against cataractogenesis, but the withdrawal effect of estrogen in menopause leads to increased risk of cataract in women. For the other major age-related eye diseases; glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy, data are inconclusive. Due to anatomic factors, angle closure glaucoma is more common in women, whereas the dominating glaucoma type; primary open-angle glaucoma (POAG), is more prevalent in men. Diabetic retinopathy also has a male predominance and vascular/circulatory factors have been implied both in diabetic retinopathy and in POAG. For AMD, data on gender differences are conflicting although some studies indicate increased prevalence of drusen and neovascular AMD in women. To conclude, both biologic and socioeconomic factors must be considered when investigating causes of gender differences in the prevalence of age-related eye disease. PMID:26508081

  10. Medical bioremediation of age-related diseases

    PubMed Central

    Mathieu, Jacques M; Schloendorn, John; Rittmann, Bruce E; Alvarez, Pedro JJ

    2009-01-01

    Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods. PMID:19358742

  11. Omental transplantation for neurodegenerative diseases

    PubMed Central

    Rafael, Hernando

    2014-01-01

    Up to date, almost all researchers consider that there is still no effective therapy for neurodegenerative diseases (NDDs) and therefore, these diseases are incurable. However, since May 1998, we know that a progressive ischemia in the medial temporal lobes and subcommissural regions can cause Alzheimer’s disease; because, in contrast to this, its revascularization by means of omental tissue can cure or improve this disease. Likewise we observed that the aging process, Huntington’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis; all of them are of ischemic origin caused by cerebral atherosclerosis, associated with vascular anomalies and/or environmental chemicals. On the contrary, an omental transplantation on the affected zone can stop and improve these diseases. For these reasons, I believe that NDDs, are wrongly classified as neurodegenerative disorders. PMID:25232510

  12. Metal imaging in neurodegenerative diseases

    PubMed Central

    Bourassa, Megan W.

    2014-01-01

    Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques. PMID:22797194

  13. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

    PubMed Central

    Bhullar, Khushwant S.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders. PMID:23840922

  14. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments

  15. Transglutaminase activation in neurodegenerative diseases

    PubMed Central

    Jeitner, Thomas M; Muma, Nancy A; Battaile, Kevin P; Cooper, Arthur JL

    2009-01-01

    The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds. PMID:20161049

  16. Biology of Mitochondria in Neurodegenerative Diseases

    PubMed Central

    Martin, Lee J.

    2012-01-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal degeneration in these familial diseases, and in the more common idiopathic (sporadic) diseases, are unresolved. Genetic, biochemical, and morphological analyses of human AD, PD, and ALS, as well as their cell and animal models, reveal that mitochondria could have roles in this neurodegeneration. The varied functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and the overlying genetic variations. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial programmed cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This chapter reviews several aspects of mitochondrial biology and how mitochondrial pathobiology might contribute to the mechanisms of neurodegeneration in AD, PD, and ALS. PMID:22482456

  17. Ubiquitin pathways in neurodegenerative disease

    PubMed Central

    Atkin, Graham; Paulson, Henry

    2014-01-01

    Control of proper protein synthesis, function, and turnover is essential for the health of all cells. In neurons these demands take on the additional importance of supporting and regulating the highly dynamic connections between neurons that are necessary for cognitive function, learning, and memory. Regulating multiple unique synaptic protein environments within a single neuron while maintaining cell health requires the highly regulated processes of ubiquitination and degradation of ubiquitinated proteins through the proteasome. In this review, we examine the effects of dysregulated ubiquitination and protein clearance on the handling of disease-associated proteins and neuronal health in the most common neurodegenerative diseases. PMID:25071440

  18. Spectrin Breakdown Products (SBDPs) as Potential Biomarkers for Neurodegenerative Diseases

    PubMed Central

    Yan, Xiao-Xin; Jeromin, Andreas; Jeromin, A.

    2013-01-01

    The world’s human population ages rapidly thanks to the great advance in modern medicine. While more and more body system diseases become treatable and curable, age-related neurodegenerative diseases remain poorly understood mechanistically, and are desperately in need of preventive and therapeutic interventions. Biomarker development consists of a key part of concerted effort in combating neurodegenerative diseases. In many chronic neurodegenerative conditions, neuronal damage/death occurs long before the onset of disease symptoms, and abnormal proteolysis may either play an active role or be a companying event of neuronal injury. Increased spectrin cleavage yielding elevated spectrin breakdown products (SBDPs) by calcium-sensitive proteases such as calpain and caspases has been established in conditions associated with acute neuronal damage such as traumatic brain injury (TBI). Here we review literature regarding spectrin expression and metabolism in the brain, and propose a potential use of SBDPs as biomarkers for neurodegenerative diseases such as Alzheimer’s diseases. PMID:23710421

  19. Tau imaging in neurodegenerative diseases.

    PubMed

    Dani, M; Brooks, D J; Edison, P

    2016-06-01

    Aggregated tau protein is a major neuropathological substrate central to the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and chronic traumatic encephalopathy. In AD, it has been shown that the density of hyperphosphorylated tau tangles correlates closely with neuronal dysfunction and cell death, unlike β-amyloid. Until now, diagnostic and pathologic information about tau deposition has only been available from invasive techniques such as brain biopsy or autopsy. The recent development of selective in-vivo tau PET imaging ligands including [(18)F]THK523, [(18)F]THK5117, [(18)F]THK5105 and [(18)F]THK5351, [(18)F]AV1451(T807) and [(11)C]PBB3 has provided information about the role of tau in the early phases of neurodegenerative diseases, and provided support for diagnosis, prognosis, and imaging biomarkers to track disease progression. Moreover, the spatial and longitudinal relationship of tau distribution compared with β - amyloid and other pathologies in these diseases can be mapped. In this review, we discuss the role of aggregated tau in tauopathies, the challenges posed in developing selective tau ligands as biomarkers, the state of development in tau tracers, and the new clinical information that has been uncovered, as well as the opportunities for improving diagnosis and designing clinical trials in the future. PMID:26572762

  20. Essential Tremor: A Neurodegenerative Disease?

    PubMed Central

    Benito-León, Julián

    2014-01-01

    Background Essential tremor (ET) is one of the most common neurological disorders among adults, and is the most common of the many tremor disorders. It has classically been viewed as a benign monosymptomatic condition, yet over the past decade, a growing body of evidence indicates that ET is a progressive condition that is clinically heterogeneous, as it may be associated with a spectrum of clinical features, with both motor and non-motor elements. In this review, I will describe the most significant emerging milestones in research which, when taken together, suggest that ET is a neurodegenerative condition. Methods A PubMed search conducted in June 2014 crossing the terms “essential tremor” (ET) and “neurodegenerative” yielded 122 entries, 20 of which included the term “neurodegenerative” in the article title. This was supplemented by articles in the author's files that pertained to this topic. Results/Discussion There is an open and active dialogue in the medical community as to whether ET is a neurodegenerative disease, with considerable evidence in favor of this. Specifically, ET is a progressive disorder of aging associated with neuronal loss (reduction in Purkinje cells) as well as other post-mortem changes that occur in traditional neurodegenerative disorders. Along with this, advanced neuroimaging techniques are now demonstrating distinct structural changes, several of which are consistent with neuronal loss, in patients with ET. However, further longitudinal clinical and neuroimaging longitudinal studies to assess progression are required. PMID:25120943

  1. Emotional dysfunctions in neurodegenerative diseases.

    PubMed

    Löffler, Leonie A K; Radke, Sina; Morawetz, Carmen; Derntl, Birgit

    2016-06-01

    Neurodegenerative diseases are characterized primarily by motor signs but are also accompanied by emotional disturbances. Because of the limited knowledge about these dysfunctions, this Review provides an overview of emotional competencies in Huntington's disease (HD), Parkinson's disease (PD), and multiple sclerosis (MS), with a focus on emotion recognition, emotion regulation, and depression. Most studies indicate facial emotion recognition deficits in HD and PD, whereas data for MS are inconsistent. On a neural level, dysfunctions of amygdala and striatum, among others, have been linked to these impairments. These dysfunctions also tap brain regions that are part of the emotion regulation network, suggesting problems in this competency, too. Research points to dysfunctional emotion regulation in MS, whereas findings for PD and HD are missing. The high prevalence of depression in all three disorders emphasizes the need for effective therapies. Research on emotional disturbances might improve treatment, thereby increasing patients' and caregivers' well-being. PMID:26011035

  2. Peptide aggregation in neurodegenerative disease.

    PubMed

    Murphy, Regina M

    2002-01-01

    In the not-so-distant past, insoluble aggregated protein was considered as uninteresting and bothersome as yesterday's trash. More recently, protein aggregates have enjoyed considerable scientific interest, as it has become clear that these aggregates play key roles in many diseases. In this review, we focus attention on three polypeptides: beta-amyloid, prion, and huntingtin, which are linked to three feared neurodegenerative diseases: Alzheimer's, "mad cow," and Huntington's disease, respectively. These proteins lack any significant primary sequence homology, yet their aggregates possess very similar features, specifically, high beta-sheet content, fibrillar morphology, relative insolubility, and protease resistance. Because the aggregates are noncrystalline, secrets of their structure at nanometer resolution are only slowly yielding to X-ray diffraction, solid-state NMR, and other techniques. Besides structure, the aggregates may possess similar pathways of assembly. Two alternative assembly pathways have been proposed: the nucleation-elongation and the template-assisted mode. These two modes may be complementary, not mutually exclusive. Strategies for interfering with aggregation, which may provide novel therapeutic approaches, are under development. The structural similarities between protein aggregates of dissimilar origin suggest that therapeutic strategies successful against one disease may have broad utility in others. PMID:12117755

  3. Proinflammatory cytokines, aging, and age-related diseases.

    PubMed

    Michaud, Martin; Balardy, Laurent; Moulis, Guillaume; Gaudin, Clement; Peyrot, Caroline; Vellas, Bruno; Cesari, Matteo; Nourhashemi, Fati

    2013-12-01

    Inflammation is a physiological process that repairs tissues in response to endogenous or exogenous aggressions. Nevertheless, a chronic state of inflammation may have detrimental consequences. Aging is associated with increased levels of circulating cytokines and proinflammatory markers. Aged-related changes in the immune system, known as immunosenescence, and increased secretion of cytokines by adipose tissue, represent the major causes of chronic inflammation. This phenomenon is known as "inflamm-aging." High levels of interleukin (IL)-6, IL-1, tumor necrosis factor-α, and C-reactive protein are associated in the older subject with increased risk of morbidity and mortality. In particular, cohort studies have indicated TNF-α and IL-6 levels as markers of frailty. The low-grade inflammation characterizing the aging process notably concurs at the pathophysiological mechanisms underlying sarcopenia. In addition, proinflammatory cytokines (through a variety of mechanisms, such as platelet activation and endothelial activation) may play a major role in the risk of cardiovascular events. Dysregulation of the inflammatory pathway may also affect the central nervous system and be involved in the pathophysiological mechanisms of neurodegenerative disorders (eg, Alzheimer disease).The aim of the present review was to summarize different targets of the activity of proinflammatory cytokines implicated in the risk of pathological aging. PMID:23792036

  4. Neuroprotective effects of berry fruits on neurodegenerative diseases

    PubMed Central

    Subash, Selvaraju; Essa, Musthafa Mohamed; Al-Adawi, Samir; Memon, Mushtaq A.; Manivasagam, Thamilarasan; Akbar, Mohammed

    2014-01-01

    Recent clinical research has demonstrated that berry fruits can prevent age-related neurodegenerative diseases and improve motor and cognitive functions. The berry fruits are also capable of modulating signaling pathways involved in inflammation, cell survival, neurotransmission and enhancing neuroplasticity. The neuroprotective effects of berry fruits on neurodegenerative diseases are related to phytochemicals such as anthocyanin, caffeic acid, catechin, quercetin, kaempferol and tannin. In this review, we made an attempt to clearly describe the beneficial effects of various types of berries as promising neuroprotective agents. PMID:25317174

  5. The Potential of Chitosan and Its Derivatives in Prevention and Treatment of Age-Related Diseases

    PubMed Central

    Kerch, Garry

    2015-01-01

    Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed. PMID:25871293

  6. Alzheimer's disease and age-related memory decline (preclinical).

    PubMed

    Terry, Alvin V; Callahan, Patrick M; Hall, Brandon; Webster, Scott J

    2011-08-01

    An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer's disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as "Mild Cognitive Impairment" (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD and MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy and adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory

  7. Neuroimaging Biomarkers of Neurodegenerative Diseases and Dementia

    PubMed Central

    Risacher, Shannon L.; Saykin, Andrew J.

    2014-01-01

    Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer’s disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson’s disease with and without dementia, dementia with Lewy bodies, Huntington’s disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders. PMID:24234359

  8. Oxidative stress, mitochondrial damage and neurodegenerative diseases

    PubMed Central

    Guo, Chunyan; Sun, Li; Chen, Xueping; Zhang, Danshen

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases. PMID:25206509

  9. [Microglial Phagocytosis in the Neurodegenerative Diseases].

    PubMed

    Cao, Sheng-nan; Bao, Xiu-qi; Sun, Hua; Zhang, Dan

    2016-04-01

    Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates, they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition, microglia can phagocyte brain-specific cargo, such as myelin debris and abnormal protein aggregation. However, recent studies have shown that microglia can also phagocyte stressed-but-viable neurons, causing loss of neurons in the brain. Thus, whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases, with an attempt to provide new insights in the treatment of neurodegenerative diseases. PMID:27181903

  10. Role of iron in neurodegenerative diseases.

    PubMed

    Li, Kai; Reichmann, Heinz

    2016-04-01

    Currently, we still lack effective measures to modify disease progression in neurodegenerative diseases. Iron-containing proteins play an essential role in many fundamental biological processes in the central nervous system. In addition, iron is a redox-active ion and can induce oxidative stress in the cell. Although the causes and pathology hallmarks of different neurodegenerative diseases vary, iron dyshomeostasis, oxidative stress and mitochondrial injury constitute a common pathway to cell death in several neurodegenerative diseases. MRI is capable of depicting iron content in the brain, and serves as a potential biomarker for early and differential diagnosis, tracking disease progression and evaluating the effectiveness of neuroprotective therapy. Iron chelators have shown their efficacy against neurodegeneration in a series of animal models, and been applied in several clinical trials. In this review, we summarize recent developments on iron dyshomeostasis in Parkinson's disease, Alzheimer's disease, Friedreich ataxia, and Huntington's disease. PMID:26794939

  11. Pathophysiology of ageing, longevity and age related diseases

    PubMed Central

    Bürkle, Alexander; Caselli, Graziella; Franceschi, Claudio; Mariani, Erminia; Sansoni, Paolo; Santoni, Angela; Vecchio, Giancarlo; Witkowski, Jacek M; Caruso, Calogero

    2007-01-01

    On April 18, 2007 an international meeting on Pathophysiology of Ageing, Longevity and Age-Related Diseases was held in Palermo, Italy. Several interesting topics on Cancer, Immunosenescence, Age-related inflammatory diseases and longevity were discussed. In this report we summarize the most important issues. However, ageing must be considered an unavoidable end point of the life history of each individual, nevertheless the increasing knowledge on ageing mechanisms, allows envisaging many different strategies to cope with, and delay it. So, a better understanding of pathophysiology of ageing and age-related disease is essential for giving everybody a reasonable chance for living a long and enjoyable final part of the life. PMID:17683521

  12. Abnormal Mitochondrial Dynamics and Neurodegenerative Diseases

    PubMed Central

    Su, Bo; Wang, Xinglong; Zheng, Ling; Perry, George; Smith, Mark A.; Zhu, Xiongwei

    2009-01-01

    Mitochondrial dysfunction is a prominent feature of various neurodegenerative diseases. A deeper understanding of the remarkably dynamic nature of mitochondria, characterized by a delicate balance of fission and fusion, has helped to fertilize a recent wave of new studies demonstrating abnormal mitochondrial dynamics in neurodegenerative diseases. This review highlights mitochondrial dysfunction and abnormal mitochondrial dynamics in Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease and discusses how these abnormal mitochondrial dynamics may contribute to mitochondrial and neuronal dysfunction. We propose that abnormal mitochondrial dynamics represents a key common pathway that mediates or amplifies mitochondrial dysfunction and neuronal dysfunction during the course of neurodegeneration. PMID:19799998

  13. Neurodegenerative disease: a different view of diagnosis.

    PubMed

    Hardy, J; Gwinn-Hardy, K

    1999-12-01

    Neurodegenerative diseases have traditionally been defined as clinicopathological entities. Although this has been a productive paradigm in terms of the development of treatment strategies, molecular genetic approaches have revealed that there is overlap between different entities in pathogenic mechanisms. In this article, it is argued that neurodegenerative disease should also be thought of as the consequences of sequential biochemical processes, and that some parts of these processes appear to operate in more than one disease entity. Defining these pathways and, in particular, developing an appreciation of the commonalities between different diseases, should aid in the development of therapies that are effective in several diseases. PMID:10562716

  14. Unraveling a Multifactorial Late-Onset Disease: From Genetic Susceptibility to Disease Mechanisms for Age-Related Macular Degeneration

    PubMed Central

    Swaroop, Anand; Chew, Emily Y.; Rickman, Catherine Bowes; Abecasis, Gonçalo R.

    2012-01-01

    Aging-associated neurodegenerative diseases significantly influence the quality of life of affected individuals. Genetic approaches, combined with genomic technology, have provided powerful insights into common late-onset diseases, such as age-related macular degeneration (AMD). Here, we discuss current findings on the genetics of AMD to highlight areas of rapid progress and new challenges. We also attempt to integrate available genetic and biochemical data with cellular pathways involved in aging to formulate an integrated model of AMD pathogenesis. PMID:19405847

  15. Dietary Approaches that Delay Age-Related Diseases

    PubMed Central

    Everitt, Arthur V; Hilmer, Sarah N; Brand-Miller, Jennie C; Jamieson, Hamish A; Truswell, A Stewart; Sharma, Anita P; Mason, Rebecca S; Morris, Brian J; Le Couteur, David G

    2006-01-01

    Reducing food intake in lower animals such as the rat decreases body weight, retards many aging processes, delays the onset of most diseases of old age, and prolongs life. A number of clinical trials of food restriction in healthy adult human subjects running over 2–15 years show significant reductions in body weight, blood cholesterol, blood glucose, and blood pressure, which are risk factors for the development of cardiovascular disease and diabetes. Lifestyle interventions that lower energy balance by reducing body weight such as physical exercise can also delay the development of diabetes and cardiovascular disease. In general, clinical trials are suggesting that diets high in calories or fat along with overweight are associated with increased risk for cardiovascular disease, type 2 diabetes, some cancers, and dementia. There is a growing literature indicating that specific dietary constituents are able to influence the development of age-related diseases, including certain fats (trans fatty acids, saturated, and polyunsaturated fats) and cholesterol for cardiovascular disease, glycemic index and fiber for diabetes, fruits and vegetables for cardiovascular disease, and calcium and vitamin D for osteoporosis and bone fracture. In addition, there are dietary compounds from different functional foods, herbs, and neutraceuticals such as ginseng, nuts, grains, and polyphenols that may affect the development of age-related diseases. Long-term prospective clinical trials will be needed to confirm these diet—disease relationships. On the basis of current research, the best diet to delay age-related disease onset is one low in calories and saturated fat and high in wholegrain cereals, legumes, fruits and vegetables, and which maintains a lean body weight. Such a diet should become a key component of healthy aging, delaying age-related diseases and perhaps intervening in the aging process itself. Furthermore, there are studies suggesting that nutrition in childhood

  16. Dietary approaches that delay age-related diseases.

    PubMed

    Everitt, Arthur V; Hilmer, Sarah N; Brand-Miller, Jennie C; Jamieson, Hamish A; Truswell, A Stewart; Sharma, Anita P; Mason, Rebecca S; Morris, Brian J; Le Couteur, David G

    2006-01-01

    Reducing food intake in lower animals such as the rat decreases body weight, retards many aging processes, delays the onset of most diseases of old age, and prolongs life. A number of clinical trials of food restriction in healthy adult human subjects running over 2-15 years show significant reductions in body weight, blood cholesterol, blood glucose, and blood pressure, which are risk factors for the development of cardiovascular disease and diabetes. Lifestyle interventions that lower energy balance by reducing body weight such as physical exercise can also delay the development of diabetes and cardiovascular disease. In general, clinical trials are suggesting that diets high in calories or fat along with overweight are associated with increased risk for cardiovascular disease, type 2 diabetes, some cancers, and dementia. There is a growing literature indicating that specific dietary constituents are able to influence the development of age-related diseases, including certain fats (trans fatty acids, saturated, and polyunsaturated fats) and cholesterol for cardiovascular disease, glycemic index and fiber for diabetes, fruits and vegetables for cardiovascular disease, and calcium and vitamin D for osteoporosis and bone fracture. In addition, there are dietary compounds from different functional foods, herbs, and neutraceuticals such as ginseng, nuts, grains, and polyphenols that may affect the development of age-related diseases. Long-term prospective clinical trials will be needed to confirm these diet-disease relationships. On the basis of current research, the best diet to delay age-related disease onset is one low in calories and saturated fat and high in wholegrain cereals, legumes, fruits and vegetables, and which maintains a lean body weight. Such a diet should become a key component of healthy aging, delaying age-related diseases and perhaps intervening in the aging process itself. Furthermore, there are studies suggesting that nutrition in childhood and

  17. Oligonucleotide-based therapy for neurodegenerative diseases.

    PubMed

    Magen, Iddo; Hornstein, Eran

    2014-10-10

    Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity. PMID:24727531

  18. Walking the tightrope: proteostasis and neurodegenerative disease.

    PubMed

    Yerbury, Justin J; Ooi, Lezanne; Dillin, Andrew; Saunders, Darren N; Hatters, Danny M; Beart, Philip M; Cashman, Neil R; Wilson, Mark R; Ecroyd, Heath

    2016-05-01

    A characteristic of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is the aggregation of specific proteins into protein inclusions and/or plaques in degenerating brains. While much of the aggregated protein consists of disease specific proteins, such as amyloid-β, α-synuclein, or superoxide dismutase1 (SOD1), many other proteins are known to aggregate in these disorders. Although the role of protein aggregates in the pathogenesis of neurodegenerative diseases remains unknown, the ubiquitous association of misfolded and aggregated proteins indicates that significant dysfunction in protein homeostasis (proteostasis) occurs in these diseases. Proteostasis is the concept that the integrity of the proteome is in fine balance and requires proteins in a specific conformation, concentration, and location to be functional. In this review, we discuss the role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation. A characteristic of many neurodegenerative diseases is the aggregation of specific proteins, which alone provides strong evidence that protein homeostasis is disrupted in these disease states. Proteostasis is the maintenance of the proteome in the correct conformation, concentration, and location by functional pathways such as molecular chaperones and protein degradation machinery. Here, we discuss the potential roles of quality control pathways, both inside and outside cells, in the loss of proteostasis during aging and disease. PMID:26872075

  19. Nutritional influences on epigenetics and age-related disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  20. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease

    PubMed Central

    Crosson, Bruce; McGregor, Keith M.; Nocera, Joe R.; Drucker, Jonathan H.; Tran, Stella M.; Butler, Andrew J.

    2015-01-01

    The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered. PMID:26074807

  1. DNA methylation, a hand behind neurodegenerative diseases

    PubMed Central

    Lu, Haoyang; Liu, Xinzhou; Deng, Yulin; Qing, Hong

    2013-01-01

    Epigenetic alterations represent a sort of functional modifications related to the genome that are not responsible for changes in the nucleotide sequence. DNA methylation is one of such epigenetic modifications that have been studied intensively for the past several decades. The transfer of a methyl group to the 5 position of a cytosine is the key feature of DNA methylation. A simple change as such can be caused by a variety of factors, which can be the cause of many serious diseases including several neurodegenerative diseases. In this review, we have reviewed and summarized recent progress regarding DNA methylation in four major neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The studies of these four major neurodegenerative diseases conclude the strong suggestion of the important role DNA methylation plays in these diseases. However, each of these diseases has not yet been understood completely as details in some areas remain unclear, and will be investigated in future studies. We hope this review can provide new insights into the understanding of neurodegenerative diseases from the epigenetic perspective. PMID:24367332

  2. Visual Spatial Cognition in Neurodegenerative Disease

    PubMed Central

    Possin, Katherine L.

    2011-01-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up / top-down processing, dorsal / ventral stream processing, and egocentric / allocentric frames of reference. PMID:20526954

  3. Endocytic membrane trafficking and neurodegenerative disease.

    PubMed

    Schreij, Andrea M A; Fon, Edward A; McPherson, Peter S

    2016-04-01

    Neurodegenerative diseases are amongst the most devastating of human disorders. New technologies have led to a rapid increase in the identification of disease-related genes with an enhanced appreciation of the key roles played by genetics in the etiology of these disorders. Importantly, pinpointing the normal function of disease gene proteins leads to new understanding of the cellular machineries and pathways that are altered in the disease process. One such emerging pathway is membrane trafficking in the endosomal system. This key cellular process controls the localization and levels of a myriad of proteins and is thus critical for normal cell function. In this review we will focus on three neurodegenerative diseases; Parkinson disease, amyotrophic lateral sclerosis, and hereditary spastic paraplegias, for which a large number of newly discovered disease genes encode proteins that function in endosomal membrane trafficking. We will describe how alterations in these proteins affect endosomal function and speculate on the contributions of these disruptions to disease pathophysiology. PMID:26721251

  4. Dendritic Spine Pathology in Neurodegenerative Diseases.

    PubMed

    Herms, Jochen; Dorostkar, Mario M

    2016-05-23

    Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models. PMID:26907528

  5. Genetic and Environmental Underpinnings to Age-Related Ocular Diseases

    PubMed Central

    Seddon, Johanna M.

    2013-01-01

    Age-related macular degeneration (AMD), cataract, glaucoma and diabetic retinopathy are common causes of visual loss. Both environmental and genetic factors contribute to the development of these diseases. The modifiable factors related to some of these age-related and visually threatening diseases are smoking, obesity, and dietary factors, and a cardiovascular risk profile. Many common and a few rare genetic factors are associated with AMD. The role of genetic variants for the other diseases are less clear. Interactions between environmental, therapeutic, and genetic factors are being explored. Knowledge of genetic risk and environmental factors, especially for AMD, has grown markedly over the past 2.5 decades and has led to some sight-saving approaches in preventive management. PMID:24335064

  6. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases

    PubMed Central

    Johnson, William M.; Wilson-Delfosse, Amy L.; Mieyal, John. J.

    2012-01-01

    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated. PMID:23201762

  7. Role of neuroinflammation in neurodegenerative diseases (Review).

    PubMed

    Chen, Wei-Wei; Zhang, Xia; Huang, Wen-Juan

    2016-04-01

    Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro‑inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro‑inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases. PMID:26935478

  8. Role of neuroinflammation in neurodegenerative diseases (Review)

    PubMed Central

    CHEN, WEI-WEI; ZHANG, XIA; HUANG, WEN-JUAN

    2016-01-01

    Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro-inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro-inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases. PMID:26935478

  9. Epigenetic regulation in neurodevelopment and neurodegenerative diseases.

    PubMed

    Gapp, K; Woldemichael, B T; Bohacek, J; Mansuy, I M

    2014-04-01

    From fertilization throughout development and until death, cellular programs in individual cells are dynamically regulated to fulfill multiple functions ranging from cell lineage specification to adaptation to internal and external stimuli. Such regulation is of major importance in brain cells, because the brain continues to develop long after birth and incorporates information from the environment across life. When compromised, these regulatory mechanisms can have detrimental consequences on neurodevelopment and lead to severe brain pathologies and neurodegenerative diseases in the adult individual. Elucidating these processes is essential to better understand their implication in disease etiology. Because they are strongly influenced by environmental factors, they have been postulated to depend on epigenetic mechanisms. This review describes recent studies that have identified epigenetic dysfunctions in the pathophysiology of several neurodevelopmental and neurodegenerative diseases. It discusses currently known pathways and molecular targets implicated in pathologies including imprinting disorders, Rett syndrome, and Alzheimer's, Parkinson's and Hungtinton's disease, and their relevance to these diseases. PMID:23256926

  10. Long noncoding RNAs in aging and age-related diseases.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-03-01

    Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process. PMID:26655093

  11. Mechanisms of protein seeding in neurodegenerative diseases.

    PubMed

    Walker, Lary C; Diamond, Marc I; Duff, Karen E; Hyman, Bradley T

    2013-03-01

    Most age-associated neurodegenerative diseases involve the aggregation of specific proteins within the nervous system. In Alzheimer disease, the insidious pathogenic process begins many years before the symptoms emerge, and the lesions that characterize the disease—senile plaques and neurofibrillary tangles—ramify systematically through the brain. We review evidence that the -amyloid and tau proteins, which aggregate to form senile plaques and neurofibrillary tangles, respectively, are induced to misfold and self-assemble by a process of templated conformational change that amplifies a toxic species. Recent data also indicate that the spread of these lesions from one site to another is mediated by the cellular uptake, transport, and release of endogenous seeds formed by the cognate proteins. This simple pathogenic principle suggests that the formation, trafficking, and metabolism of pathogenic protein seeds are promising therapeutic targets for Alzheimer disease and other neurodegenerative disorders. PMID:23599928

  12. Resveratrol: A Focus on Several Neurodegenerative Diseases.

    PubMed

    Tellone, Ester; Galtieri, Antonio; Russo, Annamaria; Giardina, Bruno; Ficarra, Silvana

    2015-01-01

    Molecules of the plant world are proving their effectiveness in countering, slowing down, and regressing many diseases. The resveratrol for its intrinsic properties related to its stilbene structure has been proven to be a universal panacea, especially for a wide range of neurodegenerative diseases. This paper evaluates (in vivo and in vitro) the various molecular targets of this peculiar polyphenol and its ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. What emerges is that, in the deep heterogeneity of the pathologies evaluated, resveratrol through a convergence on the protein targets is able to give therapeutic responses in neuronal cells deeply diversified not only in morphological structure but especially in their function performed in the anatomical district to which they belong. PMID:26180587

  13. Resveratrol: A Focus on Several Neurodegenerative Diseases

    PubMed Central

    Tellone, Ester; Galtieri, Antonio; Russo, Annamaria; Giardina, Bruno; Ficarra, Silvana

    2015-01-01

    Molecules of the plant world are proving their effectiveness in countering, slowing down, and regressing many diseases. The resveratrol for its intrinsic properties related to its stilbene structure has been proven to be a universal panacea, especially for a wide range of neurodegenerative diseases. This paper evaluates (in vivo and in vitro) the various molecular targets of this peculiar polyphenol and its ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. What emerges is that, in the deep heterogeneity of the pathologies evaluated, resveratrol through a convergence on the protein targets is able to give therapeutic responses in neuronal cells deeply diversified not only in morphological structure but especially in their function performed in the anatomical district to which they belong. PMID:26180587

  14. Inflammatory networks in ageing, age-related diseases and longevity.

    PubMed

    Vasto, Sonya; Candore, Giuseppina; Balistreri, Carmela Rita; Caruso, Marco; Colonna-Romano, Giuseppina; Grimaldi, Maria Paola; Listi, Florinda; Nuzzo, Domenico; Lio, Domenico; Caruso, Calogero

    2007-01-01

    Inflammation is considered a response set by the tissues in response to injury elicited by trauma or infection. It is a complex network of molecular and cellular interactions that facilitates a return to physiological homeostasis and tissue repair. The individual response against infection and trauma is also determined by gene variability. Ageing is accompanied by chronic low-grade inflammation state clearly showed by 2-4-fold increase in serum levels of inflammatory mediators. A wide range of factors has been claimed to contribute to this state; however, the most important role seems to be played by the chronic antigenic stress, which affects immune system thorough out life with a progressive activation of macrophages and related cells. This pro-inflammatory status, interacting with the genetic background, potentially triggers the onset of age-related inflammatory diseases as atherosclerosis. Thus, the analysis of polymorphisms of the genes that are key nodes of the natural immunity response might clarify the patho-physiology of age-related inflammatory diseases as atherosclerosis. On the other hand, centenarians are characterized by marked delay or escape from age-associated diseases that, on average, cause mortality at earlier ages. In addition, centenarian offspring have increased likelihood of surviving to 100 years and show a reduced prevalence of age-associated diseases, as cardiovascular disease (CVD) and less prevalence of cardiovascular risk factors. So, genes involved in CVD may play an opposite role in human longevity. Thus, the model of centenarians can be used to understand the role of these genes in successful and unsuccessful ageing. Accordingly, we report the results of several studies in which the frequencies of pro-inflammatory alleles were significantly higher in patients affected by infarction and lower in centenarians whereas age-related controls displayed intermediate values. These findings point to a strong relationship between the genetics

  15. The kynurenine pathway and neurodegenerative disease.

    PubMed

    Maddison, Daniel C; Giorgini, Flaviano

    2015-04-01

    Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been closely linked to the pathogenesis of several neurodegenerative diseases. Tryptophan is an essential amino acid required for protein synthesis, and in higher eukaryotes is also converted into the key neurotransmitters serotonin and tryptamine. However, in mammals >95% of tryptophan is metabolized through the KP, ultimately leading to the production of nicotinamide adenosine dinucleotide (NAD(+)). A number of the pathway metabolites are neuroactive; e.g. can modulate activity of several glutamate receptors and generate/scavenge free radicals. Imbalances in absolute and relative levels of KP metabolites have been strongly associated with neurodegenerative disorders including Huntington's, Alzheimer's, and Parkinson's diseases. The KP has also been implicated in the pathogenesis of other brain disorders (e.g. schizophrenia, bipolar disorder), as well as several cancers and autoimmune disorders such as HIV. Pharmacological and genetic manipulation of the KP has been shown to ameliorate neurodegenerative phenotypes in a number of model organisms, suggesting that it could prove to be a viable target for the treatment of such diseases. Here, we provide an overview of the KP, its role in neurodegeneration and the current strategies for therapeutic targeting of the pathway. PMID:25773161

  16. Nitric Oxide Homeostasis in Neurodegenerative Diseases.

    PubMed

    Hannibal, Luciana

    2016-01-01

    The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases. PMID:26391043

  17. The Role of Uric Acid and Methyl Derivatives in the Prevention of Age-Related Neurodegenerative Disorders.

    PubMed

    Cutler, Roy G; Camandola, Simonetta; Malott, Kelli F; Edelhauser, Maria A; Mattson, Mark P

    2015-01-01

    High uric acid (UA levels have been correlated with a reduced risk of many neurodegenerative diseases through mechanisms involving chelating Fenton reaction transitional metals, antioxidant quenching of superoxide and hydroxyl free radicals, and as an electron donor that increases antioxidant enzyme activity (e.g. SOD. However, the clinical usefulness of UA is limited by its' low water solubility and propensity to form inflammatory crystals at hyperuricemic levels. This review focuses on the role of UA in neuroprotection, as well as potential strategies aimed at increasing UA levels in the soluble range, and the potential therapeutic use of more water-soluble methyl-UA derivatives from the natural catabolic end-products of dietary caffeine, theophylline, and theobromine. PMID:26059354

  18. Implications of glial nitric oxide in neurodegenerative diseases

    PubMed Central

    Yuste, Jose Enrique; Tarragon, Ernesto; Campuzano, Carmen María; Ros-Bernal, Francisco

    2015-01-01

    Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases. PMID:26347610

  19. The 'golden age' of DNA methylation in neurodegenerative diseases.

    PubMed

    Fuso, Andrea

    2013-03-01

    DNA methylation reactions are regulated, in the first instance, by enzymes and the intermediates that constitute the 'so called' one-carbon metabolism. This is a complex biochemical pathway, also known as the homocysteine cycle, regulated by the presence of B vitamins (folate, B6, B12) and choline, among other metabolites. One of the intermediates of this metabolism is S-adenosylmethionine, which represent the methyl donor in all the DNA methyltransferase reactions in eukaryotes. The one-carbon metabolism therefore produces the substrate necessary for the transferring of a methyl group on the cytosine residues of DNA; S-adenosylmethionine also regulates the activity of the enzymes that catalyze this reaction, namely the DNA methyltransferases (DNMTs). Alterations of this metabolic cycle can therefore be responsible for aberrant DNA methylation processes possibly leading to several human diseases. As a matter of fact, increasing evidences indicate that a number of human diseases with multifactorial origin may have an epigenetic basis. This is also due to the great technical advances in the field of epigenetic research. Among the human diseases associated with epigenetic factors, aging-related and neurodegenerative diseases are probably the object of most intense research. This review will present the main evidences linking several human diseases to DNA methylation, with particular focus on neurodegenerative diseases, together with a short description of the state-of-the-art of methylation assays. PMID:23183753

  20. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression

    PubMed Central

    Gao, Hui-Ming; Hong, Jau-Shyong

    2016-01-01

    Neurodegenerative diseases are a group of chronic, progressive disorders characterized by the gradual loss of neurons in discrete areas of the central nervous system (CNS). The mechanism(s) underlying their progressive nature remains unknown but a timely and well-controlled inflammatory reaction is essential for the integrity and proper function of the CNS. Substantial evidence has documented a common inflammatory mechanism in various neurodegenerative diseases. We hypothesize that in the diseased CNS, interactions between damaged neurons and dysregulated, overactivated microglia create a vicious self-propagating cycle causing uncontrolled, prolonged inflammation that drives the chronic progression of neurodegenerative diseases. We further propose that dynamic modulation of this inflammatory reaction by interrupting the vicious cycle might become a disease-modifying therapeutic strategy for neurodegenerative diseases. PMID:18599350

  1. Age-related Cardiac Disease Model of Drosophila

    PubMed Central

    Ocorr, Karen; Akasaka, Takeshi; Bodmer, Rolf

    2007-01-01

    We have begun to study the genetic basis of deterioration of cardiac function in the fruit fly Drosophila melanogaster as an age-related cardiac disease model. For this purpose we have developed heart function assays in Drosophila and found that the fly's cardiac performance, as that of the human heart, deteriorates with age: aging fruit flies exhibit a progressive increase in electrical pacing-induced heart failure as well as in arrhythmias. The insulin receptor and associated pathways have a dramatic and heart-autonomous influence on age-related cardiac performance in flies, suggestive of potentially similar mechanisms in regulating cardiac aging in vertebrates. Compromised KCNQ and KATP ion channel functions also seem to contribute to the decline in heart performance in aging flies, suggesting that the corresponding vertebrate gene functions may similarly decline with age, in addition to their conserved role in protecting against arrhythmias and hypoxia/ischemia, respectively. The fly heart is thus emerging as a promising genetic model for studying the age-dependent decline in organ function. PMID:17125816

  2. [The role of thiamine in neurodegenerative diseases].

    PubMed

    Bubko, Irena; Gruber, Beata M; Anuszewska, Elżbieta L

    2015-01-01

    Vitamin B1 (thiamine) plays an important role in metabolism. It is indispensable for normal growth and development of the organism. Thiamine has a favourable impact on a number of systems, including the digestive, cardiovascular and nervous systems. It also stimulates the brain and improves the psycho-emotional state. Hence it is often called the vitamin of "reassurance of the spirit". Thiamine is a water-soluble vitamin. It can be present in the free form as thiamine or as its phosphate esters: mono-, di- or triphosphate. The main source of thiamine as an exogenous vitamin is certain foodstuffs, but trace amounts can be synthesised by microorganisms of the large intestine. The recommended daily intake of thiamine is about 2.0 mg. Since vitamin B1 has no ability to accumulate in the organism, manifestations of its deficiency begin to appear very quickly. The chronic state of thiamine deficiency, to a large extent, because of its function, contributes to the development of neurodegenerative diseases. It was proved that supporting vitamin B1 therapy not only constitutes neuroprotection but can also have a favourable impact on advanced neurodegenerative diseases. This article presents the current state of knowledge as regards the effects of thiamine exerted through this vitamin in a number of diseases such as Parkinson's disease, Alzheimer's disease, Wernicke's encephalopathy or Wernicke-Korsakoff syndrome and Huntington's disease. PMID:26400895

  3. Flavonoids and Age Related Disease: Risk, benefits and critical windows

    PubMed Central

    Prasain, JK; Carlson, SH; Wyss, JM

    2010-01-01

    Plant derived products are consumed by a large percentage of the population to prevent, delay and ameliorate disease burden; however, relatively little is known about the efficacy, safety and underlying mechanisms of these traditional health products, especially when taken in concert with pharmaceutical agents. The flavonoids are a group of plant metabolites that are common in the diet and appear to provide some health benefits. While flavonoids are primarily derived from soy, many are found in fruits, nuts and more exotic sources, e.g., kudzu. Perhaps the strongest evidence for the benefits of flavonoids in diseases of aging relates to their effect on components of the metabolic syndrome. Flavonoids from soy, grape seed, kudzu and other sources all lower arterial pressure in hypertensive animal models and in a limited number of tests in humans. They also decrease the plasma concentration of lipids and buffer plasma glucose. The underlying mechanisms appear to include antioxidant actions, central nervous system effects, gut transport alterations, fatty acid sequestration and processing, PPAR activation and increases in insulin sensitivity. In animal models of disease, dietary flavonoids also demonstrate a protective effect against cognitive decline, cancer and metabolic disease. However, research also indicates that the flavonoids can be detrimental in some settings and, therefore, are not universally safe. Thus, as the population ages, it is important to determine the impact of these agents on prevention/attenuation of disease, including optimal exposure (intake, timing/duration) and potential contraindications. PMID:20181448

  4. Parabiosis for the study of age-related chronic disease

    PubMed Central

    Eggel, Alexander; Wyss-Coray, Tony

    2014-01-01

    Summary Modern medicine wields the power to treat large numbers of diseases and injuries most of us would have died from just a hundred years ago. In view of this tremendous achievement, it can seem as if progress has slowed, and we have been unable to impact the most devastating diseases of our time. Chronic diseases of age such as cardiovascular disease, diabetes, osteoarthritis, or Alzheimer’s disease turn out to be of a complexity that may require transformative ideas and paradigms to understand and treat them. Parabiosis, which mimics aspects of the naturally occurring shared blood supply in conjoined twins in humans and certain animals, may just have the power to be such a transformative experimental paradigm. Forgotten and now shunned in many countries, it has contributed to major breakthroughs in tumor biology, endocrinology, and transplantation research in the past century, and a set of new studies in the US and Britain report stunning advances in stem cell biology and tissue regeneration using parabiosis between young and old mice. We review here briefly the history of parabiosis and discuss its utility to study physiological and pathophysiological processes. We argue that parabiosis is a technique that should enjoy wider acceptance and application, and that policies should be revisited especially if one is to study complex age-related, chronic disorders. PMID:24496774

  5. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    PubMed Central

    Martin, Lee J.

    2010-01-01

    Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy. PMID:21258649

  6. Therapeutic potential of berberine against neurodegenerative diseases.

    PubMed

    Jiang, WenXiao; Li, ShiHua; Li, XiaoJiang

    2015-06-01

    Berberine (BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness became quickly apparent as seen in its ability to combat bacterial diarrhea, type 2 diabetes, hypercholesterolemia, inflammation, heart diseases, and more. However, BBR's effects on neurodegenerative diseases remained relatively unexplored until its ability to stunt Alzheimer's disease (AD) progression was characterized. In this review, we will delve into the multi-faceted defensive capabilities and bio-molecular pathways of BBR against AD, Parkinson's disease (PD), and trauma-induced neurodegeneration. The multiple effects of BBR, some of which enhance neuro-protective factors/pathways and others counteract targets that induce neurodegeneration, suggest that there are many more branches to the diverse capabilities of BBR that have yet to be uncovered. The promising results seen provide a convincing and substantial basis to support further scientific exploration and development of the therapeutic potential of BBR against neurodegenerative diseases. PMID:25749423

  7. Modulation of cell death in age-related diseases.

    PubMed

    Tezil, Tugsan; Basaga, Huveyda

    2014-01-01

    Aging is a stage of life of all living organisms. According to the free-radical theory, aging cells gradually become unable to maintain cellular homeostasis due to the adverse effects of reactive oxygen species (ROS). ROS can cause irreversible DNA mutations, protein and lipid damage which are increasingly accumulated in the course of time if cells could not overcome these effects by the antioxidant defence system. Accrued damaged molecules in cells may either induce cellular death or contribute to develop various pathologies. Hence, programmed cell death mechanisms, apoptosis and autophagy, play a vital role in the aging process. Although they are strictly controlled by various interconnected signalling pathways, alterations in their regulations may contribute to severe pathologies including cancer, Alzheimer's and Parkinson's diseases. In this review, we summarized our current understanding and hypotheses regarding oxidative stress and age-related dysregulation of cell death signalling pathways. PMID:24079770

  8. Quantitative interaction proteomics of neurodegenerative disease proteins.

    PubMed

    Hosp, Fabian; Vossfeldt, Hannes; Heinig, Matthias; Vasiljevic, Djordje; Arumughan, Anup; Wyler, Emanuel; Landthaler, Markus; Hubner, Norbert; Wanker, Erich E; Lannfelt, Lars; Ingelsson, Martin; Lalowski, Maciej; Voigt, Aaron; Selbach, Matthias

    2015-05-19

    Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer's disease (AD), Huntingtin (HTT) for Huntington's disease, Parkin (PARK2) for Parkinson's disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD. PMID:25959826

  9. Nitroxide pharmaceutical development for age-related degeneration and disease

    PubMed Central

    Zarling, Jacob A.; Brunt, Vienna E.; Vallerga, Anne K.; Li, Weixing; Tao, Albert; Zarling, David A.; Minson, Christopher T.

    2015-01-01

    Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed. PMID:26594225

  10. Dietary compound score and risk of age-related macular degeneration in the Age-Related Eye Disease Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Because foods provide many nutrients, which may interact with each other to modify risk for multifactorial diseases such as age-related macular degeneration (AMD), we sought to develop a composite scoring system to summarize the combined effect of multiple dietary nutrients on AMD risk. Th...

  11. Systemic Redox Biomarkers in Neurodegenerative Diseases.

    PubMed

    Pastore, Anna; Petrillo, Sara; Piermarini, Emanuela; Piemonte, Fiorella

    2015-01-01

    Neurodegenerative diseases are characterized by a gradual and selective loss of neurons. ROS overload has been proved to occur early in this heterogeneous group of disorders, indicating oxidative stress as a primer factor underlying their pathogenesis. Given the importance of a better knowledge of the cause/effect of oxidative stress in the pathogenesis and evolution of neurodegeneration, recent efforts have been focused on the identification and determination of stable markers that may reflect systemic oxidative stress. This review provides an overview of these systemic redox biomarkers and their responsiveness to antioxidant therapies. Redox biomarkers can be classified as molecules that are modified by interactions with ROS in the microenvironment and antioxidant molecules that change in response to increased oxidative stress. DNA, lipids (including phospholipids), proteins and carbohydrates are examples of molecules that can be modified by excessive ROS in vivo. Some modifications have direct effects on molecule functions (e.g. to inhibit enzyme function), but others merely reflect the degree of oxidative stress in the local environment. Testing of redox biomarkers in neurodegenerative diseases has 3 important goals: 1) to confirm the presence or absence of systemic oxidative stress; 2) to identify possible underlying (and potentially reversible) causes of neurodegeneration; and 3) to estimate the severity of the disease and the risk of progression. Reflecting pathological processes occurring in the whole body, redox biomarkers may pinpoint novel therapeutic targets and lead to diagnose diseases before they are clinically evident. PMID:26152129

  12. Overcoming obstacles to repurposing for neurodegenerative disease

    PubMed Central

    Shineman, Diana W; Alam, John; Anderson, Margaret; Black, Sandra E; Carman, Aaron J; Cummings, Jeffrey L; Dacks, Penny A; Dudley, Joel T; Frail, Donald E; Green, Allan; Lane, Rachel F; Lappin, Debra; Simuni, Tanya; Stefanacci, Richard G; Sherer, Todd; Fillit, Howard M

    2014-01-01

    Repurposing Food and Drug Administration (FDA)-approved drugs for a new indication may offer an accelerated pathway for new treatments to patients but is also fraught with significant commercial, regulatory, and reimbursement challenges. The Alzheimer’s Drug Discovery Foundation (ADDF) and the Michael J. Fox Foundation for Parkinson’s Research (MJFF) convened an advisory panel in October 2013 to understand stakeholder perspectives related to repurposing FDA-approved drugs for neurodegenerative diseases. Here, we present opportunities on how philanthropy, industry, and government can begin to address these challenges, promote policy changes, and develop targeted funding strategies to accelerate the potential of FDA-approved repurposed drugs. PMID:25356422

  13. Overcoming obstacles to repurposing for neurodegenerative disease.

    PubMed

    Shineman, Diana W; Alam, John; Anderson, Margaret; Black, Sandra E; Carman, Aaron J; Cummings, Jeffrey L; Dacks, Penny A; Dudley, Joel T; Frail, Donald E; Green, Allan; Lane, Rachel F; Lappin, Debra; Simuni, Tanya; Stefanacci, Richard G; Sherer, Todd; Fillit, Howard M

    2014-07-01

    Repurposing Food and Drug Administration (FDA)-approved drugs for a new indication may offer an accelerated pathway for new treatments to patients but is also fraught with significant commercial, regulatory, and reimbursement challenges. The Alzheimer's Drug Discovery Foundation (ADDF) and the Michael J. Fox Foundation for Parkinson's Research (MJFF) convened an advisory panel in October 2013 to understand stakeholder perspectives related to repurposing FDA-approved drugs for neurodegenerative diseases. Here, we present opportunities on how philanthropy, industry, and government can begin to address these challenges, promote policy changes, and develop targeted funding strategies to accelerate the potential of FDA-approved repurposed drugs. PMID:25356422

  14. Diagnosis of Neurodegenerative Diseases: The Clinical Approach.

    PubMed

    Gómez-Río, Manuel; Caballero, Manuel Moreno; Górriz Sáez, Juan Manuel; Mínguez-Castellanos, Adolfo

    2016-01-01

    There are a number of clinical questions for which there are no easy answers, even for well-trained doctors. The diagnostic tool commonly used to assess cognitive impairment in neurodegenerative diseases is based on established clinical criteria. However, the differential diagnosis between disorders can be difficult, especially in early phases or atypical variants. This takes on particular importance when it is still possible to use an appropriate treatment. To solve this problem, physicians need to have access to an arsenal of diagnostic tests, such as neurofunctional imaging, that allow higher specificity in clinical assessment. However, the reliability of diagnostic tests may vary from one to the next, so the diagnostic validity of a given investigation must be estimated by comparing the results obtained from "true" criteria to the "gold standard" or reference test. While pathological analysis is considered to be the gold standard in a wide spectrum of diseases, it cannot be applied to neurological processes. Other approaches could provide solutions, including clinical patient follow-up, creation of a data bank or use of computer-aided diagnostic algorithms. In this article, we discuss the development of different methodological procedures related to analysis of diagnostic validity and present an example from our own experience based on the use of I-123-ioflupane-SPECT in the study of patients with movement disorders. The aim of this chapter is to approach the problem of diagnosis from the point of view of the clinician, taking into account specific aspects of neurodegenerative disease. PMID:26567736

  15. Engineering enhanced protein disaggregases for neurodegenerative disease.

    PubMed

    Jackrel, Meredith E; Shorter, James

    2015-01-01

    Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones. PMID:25738979

  16. Engineering enhanced protein disaggregases for neurodegenerative disease

    PubMed Central

    Jackrel, Meredith E; Shorter, James

    2015-01-01

    Abstract Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones. PMID:25738979

  17. Peripheral arterial endothelial dysfunction of neurodegenerative diseases.

    PubMed

    Fukui, Yusuke; Hishikawa, Nozomi; Shang, Jingwei; Sato, Kota; Nakano, Yumiko; Morihara, Ryuta; Ohta, Yasuyuki; Yamashita, Toru; Abe, Koji

    2016-07-15

    This study evaluates endothelial functions of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and spinocerebellar ataxia (SCA). The reactive hyperemia index (RHI) of peripheral arterial tonometry and serological data were compared between age- and gender-matched normal controls (n=302) and five disease groups (ALS; n=75, PD; n=180, PSP; n=30, MSA; n=35, SCA; n=53). Correlation analyses were performed in ALS with functional rating scale-revised (FRS-R), and in PD with the Hehn-Yahr scale (H-Y) and a heart to mediastinum ratio using (123)I-MIBG scintigraphy (MIBG). The RHI of ALS and PD, but not of PSP, MSA or SCA, were significantly lower than normal controls (p<0.01). ALS showed a negative correlation of RHI with serum triglycerides (TG) and immunoreactive insulin (IRI) levels, but not with disease severity (FRS-R) or rates of disease progression (∆FRS-R). On the other hand, PD showed a negative correlation of RHI with a progressive disease severity (H-Y) and a positive correlation of RHI with early/delayed MIBG scintigraphy, but not with serological data. The present study demonstrated significant declines of peripheral arterial endothelial functions in ALS and PD. The RHI of ALS was more correlated with disease duration and serum parameters while the RHI of PD was more correlated with disease severity and MIBG, suggesting different mechanisms of endothelial dysfunction. PMID:27288784

  18. A Potential Alternative against Neurodegenerative Diseases: Phytodrugs.

    PubMed

    Pérez-Hernández, Jesús; Zaldívar-Machorro, Víctor Javier; Villanueva-Porras, David; Vega-Ávila, Elisa; Chavarría, Anahí

    2016-01-01

    Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability. PMID:26881043

  19. A Potential Alternative against Neurodegenerative Diseases: Phytodrugs

    PubMed Central

    Pérez-Hernández, Jesús; Zaldívar-Machorro, Víctor Javier; Villanueva-Porras, David; Vega-Ávila, Elisa; Chavarría, Anahí

    2016-01-01

    Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability. PMID:26881043

  20. Epigenetic mechanisms in neurodevelopmental and neurodegenerative disease

    PubMed Central

    Jakovcevski, Mira; Akbarian, Schahram

    2013-01-01

    The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of normal neural development, neurological disease and aging. Traditionally, chromatin defects in brain were considered static lesions of early development that occurred in the context of rare genetic syndromes but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum, including adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, as well as how they could influence the development of future therapies for these conditions. PMID:22869198

  1. Neurodegenerative Diseases: Neurotoxins as Sufficient Etiologic Agents?

    PubMed Central

    Shaw, Christopher A.; Höglinger, Günter U.

    2008-01-01

    A dominant paradigm in neurological disease research is that the primary etiological factors for diseases such as Alzheimer’s (AD), Parkinson’s (PD), and amyotrophic lateral sclerosis (ALS) are genetic. Opposed to this perspective are the clear observations from epidemiology that purely genetic casual factors account for a relatively small fraction of all cases. Many who support a genetic etiology for neurological disease take the view that while the percentages may be relatively small, these numbers will rise in the future with the inevitable discoveries of additional genetic mutations. The follow up argument is that even if the last is not true, the events triggered by the aberrant genes identified so far will be shown to impact the same neuronal cell death pathways as those activated by environmental factors that trigger most sporadic disease cases. In this article we present a countervailing view that environmental neurotoxins may be the sole sufficient factor in at least three neurological disease clusters. For each, neurotoxins have been isolated and characterized that, at least in animal models, faithfully reproduce each disorder without the need for genetic co-factors. Based on these data, we will propose a set of principles that would enable any potential toxin to be evaluated as an etiological factor in a given neurodegenerative disease. Finally, we will attempt to put environmental toxins into the context of possible genetically-determined susceptibility. PMID:17985252

  2. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors.

    PubMed

    Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio

    2016-06-01

    Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials. PMID:27086703

  3. Role of apolipoprotein E in neurodegenerative diseases

    PubMed Central

    Giau, Vo Van; Bagyinszky, Eva; An, Seong Soo A; Kim, Sang Yun

    2015-01-01

    Apolipoprotein E (APOE) is a lipid-transport protein abundantly expressed in most neurons in the central nervous system. APOE-dependent alterations of the endocytic pathway can affect different functions. APOE binds to cell-surface receptors to deliver lipids and to the hydrophobic amyloid-β peptide, regulating amyloid-β aggregations and clearances in the brain. Several APOE isoforms with major structural differences were discovered and shown to influence the brain lipid transport, glucose metabolism, neuronal signaling, neuroinflammation, and mitochondrial function. This review will summarize the updated research progress on APOE functions and its role in Alzheimer’s disease, Parkinson’s disease, cardiovascular diseases, multiple sclerosis, type 2 diabetes mellitus, Type III hyperlipoproteinemia, vascular dementia, and ischemic stroke. Understanding the mutations in APOE, their structural properties, and their isoforms is important to determine its role in various diseases and to advance the development of therapeutic strategies. Targeting APOE may be a potential approach for diagnosis, risk assessment, prevention, and treatment of various neurodegenerative and cardiovascular diseases in humans. PMID:26213471

  4. The Role of Copper in Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Rose, Francis M.

    My research concerns the fundamental atomistic mechanisms of neurodegenerative diseases and the methodologies by which they may be discerned. This thesis consists of three primary parts. The introductory material is the raison d'etre for this work and a critical overview of the specific physics, mathematics and algorithms used in this research. The methods are presented along with specific details in order to facilitate future replication and enhancement. With the groundwork of mechanisms and methods out of the way, we then explore a nouveau atomistic mechanism describing the onset of Parkinson's disease, a disease that has been closely linked to misfolded metalloproteins. Further exploration of neurodegeneration takes place in the following chapter, where a remedial approach to Alzheimer's disease via a simulated chelation of a metalloprotein is undertaken. Altogether, the methods and techniques applied here allow for simulated exploration of both the atomistic mechanisms of neurodegeneration and their potential remediation strategies. The beginning portion of the research efforts explore protein misfolding dynamics in the presence a copper ion. Misfolding of the human alpha-synuclein (aS) protein has been implicated as a central constituent in neurodegenerative disease. In Parkinson's disease (PD) in particular, aS is thought to be the causative participant when found concentrated into neuritic plaques. Here we propose a scenario involving the metal ion Cu2+ as the protein misfolding initiator of fibrillized aS, the chief component of neuritic plaques. From experimental results we know these misfolded proteins have a rich beta--sheet signature, a marker that we reproduce with our simulated model. This model identifies a process of structural modifications to a natively unfolded alpha-synuclein resulting in a partially folded intermediate with a well defined nucleation site. It serves as a precursor to the fully misfolded protein. Understanding the nucleation

  5. Neurodegenerative disease. Genetic discrimination in Huntington disease.

    PubMed

    Pulst, Stefan M

    2009-10-01

    A survey conducted in Canada examined the prevalence of perceived genetic discrimination against patients with Huntington disease. The respondents reported discrimination not only by insurance or mortgage companies, but also in family and social contexts. Discrimination was more frequently attributed to family history than to genetic test results. PMID:19794509

  6. PATHOLOGIES OF AXONAL TRANSPORT IN NEURODEGENERATIVE DISEASES

    PubMed Central

    Liu, Xin-An; Rizzo, Valerio; Puthanveettil, Sathyanarayanan V.

    2013-01-01

    Gene products such as organelles, proteins and RNAs are actively transported to synaptic terminals for the remodeling of pre-existing neuronal connections and formation of new ones. Proteins described as molecular motors mediate this transport and utilize specialized cytoskeletal proteins that function as molecular tracks for the motor based transport of cargos. Molecular motors such as kinesins and dynein's move along microtubule tracks formed by tubulins whereas myosin motors utilize tracks formed by actin. Deficits in active transport of gene products have been implicated in a number of neurological disorders. We describe such disorders collectively as “transportopathies”. Here we review current knowledge of critical components of active transport and their relevance to neurodegenerative diseases. PMID:23750323

  7. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease.

    PubMed

    Rastogi, Neelesh; Smith, R Theodore

    2016-01-01

    Age-related macular degeneration is the leading cause of adult blindness in the developed world. Thus, major endeavors to understand the risk factors and pathogenesis of this disease have been undertaken. Reticular macular disease is a proposed subtype of age-related macular degeneration correlating histologically with subretinal drusenoid deposits located between the retinal pigment epithelium and the inner segment ellipsoid zone. Reticular lesions are more prevalent in females and in older age groups and are associated with a higher mortality rate. Risk factors for developing age-related macular degeneration include hypertension, smoking, and angina. Several genes related to increased risk for age-related macular degeneration and reticular macular disease are also associated with cardiovascular disease. Better understanding of the clinical and genetic risk factors for age-related macular degeneration and reticular macular disease has led to the hypothesis that these eye diseases are systemic. A systemic origin may help to explain why reticular disease is diagnosed more frequently in females as males suffer cardiovascular mortality at an earlier age, before the age of diagnosis of reticular macular disease and age-related macular degeneration. PMID:26518628

  8. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases.

    PubMed

    Yamazaki, Hiromi; Tanji, Kunikazu; Wakabayashi, Koichi; Matsuura, Shin; Itoh, Ken

    2015-05-01

    As the elderly population increases, a growing number of individuals suffer from age-associated neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Oxidative stress is considered to play a crucial role in the pathogenesis of age-related diseases. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is activated by oxidative stress and regulates the expression of a variety of antioxidant enzymes and proteins that exert cytoprotective effects against oxidative stress. Numerous studies have addressed the role of Nrf2 in age-related diseases, including neurodegenerative diseases, using animal or in vitro cell culture models. Here, we introduce the role of oxidative stress in the pathogenesis of neurodegenerative diseases and critically examine the recent findings concerning the role for Nrf2 in the amelioration of AD and PD. Nrf2 not only regulates antioxidant proteins but also regulates the genes associated with autophagy and nerve growth factor signaling. Current research unequivocally demonstrates that the activation of the Nrf2 pathway is a promising novel strategy for the prevention and modification of neurodegenerative diseases. PMID:25707882

  9. The Role of Oxidative Stress in Neurodegenerative Diseases

    PubMed Central

    Kim, Geon Ha; Kim, Jieun E.; Rhie, Sandy Jeong

    2015-01-01

    Oxidative stress is induced by an imbalanced redox states, involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system. The brain is one of organs especially vulnerable to the effects of ROS because of its high oxygen demand and its abundance of peroxidation-susceptible lipid cells. Previous studies have demonstrated that oxidative stress plays a central role in a common pathophysiology of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases, although the results with regard to their efficacy of treating neurodegenerative disease have been inconsistent. In this review, we will discuss the role of oxidative stress in the pathophysiology of neurodegenerative diseases and in vivo measurement of an index of damage by oxidative stress. Moreover, the present knowledge on antioxidant in the treatment of neurodegenerative diseases and future directions will be outlined. PMID:26713080

  10. Mutational Analysis of TARDBP in Neurodegenerative Diseases

    PubMed Central

    Ticozzi, Nicola; LeClerc, Ashley Lyn; Van-Blitterswijk, Marka; Keagle, Pamela; McKenna-Yasek, Diane M.; Sapp, Peter C.; Silani, Vincenzo; Wills, Anne-Marie; Brown, Robert H.; Landers, John E.

    2010-01-01

    Neurodegenerative diseases are often characterized by the presence of aggregates of misfolded proteins. TDP-43 is a major component of these aggregates in Amyotrophic Lateral Sclerosis (ALS), but has also been observed in Alzheimer's (AD) and Parkinson's Diseases (PD). In addition, mutations in the TARDBP gene, encoding TDP-43, have been found to be a significant cause of familial ALS (FALS). All mutations, except for one, have been found in exon 6. To confirm this observation in ALS and to investigate whether TARDBP may play a role in the pathogenesis of AD and PD, we screened for mutations in exon 6 of the TARDBP gene in three cohorts composed of 376 AD, 463 PD (18% familial PD) and 376 ALS patients (50% FALS). We found mutations in ∼7% of FALS and ∼0.5% of sporadic ALS (SALS) patients, including two novel mutations, p.N352T and p.G384R. In contrast, we did not find TARDBP mutations in our cohort of AD and PD patients. These results suggest that mutations in TARDBP are not a significant cause of AD and PD. PMID:20031275

  11. Neurodegenerative diseases: From available treatments to prospective herbal therapy.

    PubMed

    Solanki, Isha; Parihar, Priyanka; Parihar, Mordhwaj Singh

    2016-05-01

    Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and many others represent a relevant health problem with age worldwide. Efforts have been made in recent years to discover the mechanism of neurodegenerative diseases and prospective therapy that can help to slow down the effects of the aging and prevent these diseases. Since pathogenesis of these diseases involves multiple factors therefore the important task for neuroscientists is to identify such multiple factors and prevent age-associated neurodegenerative diseases. For these neurodegenerative diseases yet we have only palliative therapies and none of them significantly capable to slow down or halt the underlying pathology. Polyphenolic compounds such as flavonoids present in vegetables and fruits are believed to have anti-aging properties and reduce the risk of neurodegenerative diseases. Despite their abundance, investigations into the benefits of these polyphenolic compounds in human health have only recently begun. Preclinical and clinical studies have demonstrated the potential beneficial effects of flavonoids in neurons. Although clinical trials on the effectiveness of dietary flavonoids to treat human diseases are limited but various animal models and cell culture studies have shown a great promise in developing these compounds as suitable therapeutic targets. In this review, we elaborate the neuroprotective properties of flavonoids especially their applications in prevention and intervention of different neurodegenerative diseases. Their multi-target properties may allow them to be potential dietary supplement in prevention and treatment of the age-associated neurodegenerative diseases. PMID:26550708

  12. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns.

    PubMed

    Sanchez-Mut, J V; Heyn, H; Vidal, E; Moran, S; Sayols, S; Delgado-Morales, R; Schultz, M D; Ansoleaga, B; Garcia-Esparcia, P; Pons-Espinal, M; de Lagran, M M; Dopazo, J; Rabano, A; Avila, J; Dierssen, M; Lott, I; Ferrer, I; Ecker, J R; Esteller, M

    2016-01-01

    Different neurodegenerative disorders often show similar lesions, such as the presence of amyloid plaques, TAU-neurotangles and synuclein inclusions. The genetically inherited forms are rare, so we wondered whether shared epigenetic aberrations, such as those affecting DNA methylation, might also exist. The studied samples were gray matter samples from the prefrontal cortex of control and neurodegenerative disease-associated cases. We performed the DNA methylation analyses of Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Alzheimer-like neurodegenerative profile associated with Down's syndrome samples. The DNA methylation landscapes obtained show that neurodegenerative diseases share similar aberrant CpG methylation shifts targeting a defined gene set. Our findings suggest that neurodegenerative disorders might have similar pathogenetic mechanisms that subsequently evolve into different clinical entities. The identified aberrant DNA methylation changes can be used as biomarkers of the disorders and as potential new targets for the development of new therapies. PMID:26784972

  13. A review of creatine supplementation in age-related diseases: more than a supplement for athletes.

    PubMed

    Smith, Rachel N; Agharkar, Amruta S; Gonzales, Eric B

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases. PMID:25664170

  14. A review of creatine supplementation in age-related diseases: more than a supplement for athletes

    PubMed Central

    Smith, Rachel N.; Agharkar, Amruta S.; Gonzales, Eric B.

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement’s usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer’s disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases. PMID:25664170

  15. A network approach to clinical intervention in neurodegenerative diseases.

    PubMed

    Santiago, Jose A; Potashkin, Judith A

    2014-12-01

    Network biology has become a powerful tool to dissect the molecular mechanisms triggering neurodegeneration. Recent developments in network biology have led to the discovery of disease-causing genes, diagnostic biomarkers, and therapeutic targets for several neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases. Network-based approaches have provided the molecular rationale for the relationship among cancer, diabetes, and neurodegenerative diseases, and have uncovered unexpected links between apparently unrelated diseases. Here, we summarize the recent advances in network biology to untangle the molecular underpinnings giving rise to the most prevalent neurodegenerative diseases. We propose that network analysis provides a feasible and practical tool for identifying biologically meaningful biomarkers and potential therapeutic targets for clinical intervention in neurodegenerative diseases. PMID:25455073

  16. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases.

    PubMed

    Park, Mi Hee; Jo, MiRan; Kim, Yu Ri; Lee, Chong-Kil; Hong, Jin Tae

    2016-07-01

    Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs. PMID:27130805

  17. Mechanistically linking age-related diseases and dietary carbohydrate via autophagy and the ubiquitin proteolytic systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiological data indicate that consuming diets that deliver sugar to the blood rapidly (called high glycemic index, GI) is associated with enhanced risk for age-related diseases such as cardiovascular disease, type 2 diabetes, cataract and age-related macular degeneration (AMD). These debilities...

  18. PENN neurodegenerative disease research - in the spirit of Benjamin Franklin.

    PubMed

    Trojanowski, John Q

    2008-01-01

    Benjamin Franklin (1706-1790) was entrepreneur, statesman, supporter of the public good as well as inventor, and his most significant invention was the University of Pennsylvania (PENN). Franklin outlined his plans for a college providing practical and classical instruction to prepare youth for real-world pursuits in his 'Proposals Relating to the Education of Youth in Pensilvania' (1749), and Franklin's spirit of learning to serve society guides PENN to the present day. This is evidenced by the series of articles in this special issue of Neurosignals, describing research conducted by seasoned and newly recruited PENN faculty, addressing consequences of the longevity revolution which defines our epoch at the dawn of this millennium. While aging affects all organ systems, the nervous system is most critical to successful aging. Thus, the articles in this special issue of Neurosignals focus on research at PENN that is designed to prevent or ameliorate aging-related neurodegenerative disorders such as Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. This research could enhance our chances of aging successfully in the continuing longevity revolution, and the essay here provides context and background on this research. PMID:18097154

  19. Role of homocysteine in age-related vascular and non-vascular diseases.

    PubMed

    Parnetti, L; Bottiglieri, T; Lowenthal, D

    1997-08-01

    Homocysteine (Hcy) may represent a metabolic link in the pathogenesis of atherosclerotic vascular diseases and old-age dementias. Hyperhomocysteinemia is an independent risk factor for coronary artery disease and peripheral vascular disease, and is also associated with cerebrovascular disease; specifically, the risk of extracranial carotid atherosclerosis significantly increases in relation to Hcy levels. Hcy is a reliable marker of vitamin B12 deficiency, a common condition in the elderly which is known to induce neurological deficits including cognitive impairment; a high prevalence of folate deficiency has been reported in psychogeriatric patients suffering from depression and dementia. Both these vitamins occupy a key position in the remethylation and synthesis of S-adenosylmethionine (SAMe), a major methyl donor in CNS; therefore, deficiencies in either of these vitamins lead to a decrease in SAMe and increase in Hcy, which can be critical in the aging brain. Another pathogenetic mechanism linking high Hcy levels to reduced cognitive performances in the elderly might be represented by excitotoxicity, since hyperhomocysteinemia may lead to an excessive production of homocysteic acid and cysteine sulphinic acid, which act as endogenous agonists of NMDA receptors. Considering the reasonably high prevalence in the general population of a genetic predisposition to a thermolabile form of the enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR), hyperhomocysteinemia can be seen as the result of multiple genetic and environmental factors leading to vascular and/or neurodegenerative disorders where age-related involutive phenomena represent a common pathogenetic ground. Systematic studies in different psychogeriatric conditions monitoring Hcy levels and clinical features before and after vitamin supplementation are therefore highly recommended. PMID:9359935

  20. Glycoconjugate changes in aging and age-related diseases.

    PubMed

    Ando, Susumu

    2014-01-01

    The significance of glycosphingolipids and glycoproteins is discussed in their relation to normal aging and pathological aging, aging with diseases. Healthy myelin that looks stable is found to be gradually degraded and reconstructed throughout life for remodeling. An exciting finding is that myelin P0 protein is located in neurons and glycosylated in aging brains. In pathological aging, the roles of glycosphingolipids and glycoproteins as risk factors or protective agents for Alzheimer's and Parkinson's diseases are discussed. Intensive studies have been performed aiming to remove the risks from and to restore the functional deficits of the brain. Some of them are expected to be translated to therapeutic means. PMID:25151390

  1. Evaluation of Traditional Medicines for Neurodegenerative Diseases Using Drosophila Models

    PubMed Central

    Lee, Soojin; Bang, Se Min; Lee, Joon Woo; Cho, Kyoung Sang

    2014-01-01

    Drosophila is one of the oldest and most powerful genetic models and has led to novel insights into a variety of biological processes. Recently, Drosophila has emerged as a model system to study human diseases, including several important neurodegenerative diseases. Because of the genomic similarity between Drosophila and humans, Drosophila neurodegenerative disease models exhibit a variety of human-disease-like phenotypes, facilitating fast and cost-effective in vivo genetic modifier screening and drug evaluation. Using these models, many disease-associated genetic factors have been identified, leading to the identification of compelling drug candidates. Recently, the safety and efficacy of traditional medicines for human diseases have been evaluated in various animal disease models. Despite the advantages of the Drosophila model, its usage in the evaluation of traditional medicines is only nascent. Here, we introduce the Drosophila model for neurodegenerative diseases and some examples demonstrating the successful application of Drosophila models in the evaluation of traditional medicines. PMID:24790636

  2. Growth factors, aging and age-related diseases.

    PubMed

    Balasubramanian, Priya; Longo, Valter D

    2016-06-01

    Simple organisms including yeast and flies with mutations in the IGF-1 and Tor-S6K pathways are dwarfs, are highly protected from toxins, and survive up to 3 times longer. Similarly, dwarf mice with deficiencies in the growth hormone-IGF-I axis are also long lived and protected from diseases. We recently reported that humans with Growth Hormone Receptor Deficiency (GHRD) rarely develop cancer or diabetes. These findings are in agreement with the effect of defects in the Tor-S6K pathways in causing dwarfism and protection of DNA. Because protein restriction reduces both GHR-IGF-1 axis and Tor-S6K activity, we examined links between protein intake, disease, and mortality in over 6000 US subjects in the NHANES CDC database. Respondents aged 50-65 reporting a high protein intake displayed an increase in IGF-I levels, a 75% increased risk of overall mortality and a 3-4 fold increased risk of cancer mortality in agreement with findings in mouse experiments. These studies point to a conserved link between proteins and amino acids, GHR-IGF-1/insulin, Tor-S6k signaling, aging, and diseases. PMID:26883276

  3. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies

    PubMed Central

    Valera, Elvira; Masliah, Eliezer

    2013-01-01

    Immunotherapy is currently being intensively explored as much-needed disease-modifying treatment for neurodegenerative diseases. While Alzheimer’s disease (AD) has been the focus of numerous immunotherapeutic studies, less attention has been paid to Parkinson’s disease (PD) and other neurodegenerative disorders. The reason for this difference is that the amyloid beta (Aβ) protein in AD is a secreted molecule that circulates in blood and is readably recognized by antibodies. In contrast, α-synuclein (α-syn), tau, huntingtin and other proteins involved in neurodegenerative diseases have been considered to be exclusively of intracellular nature. However, the recent discovery that toxic oligomeric versions of α-syn and tau accumulate in the membrane and can be excreted to the extracellular environment has provided a rationale for the development of immunotherapeutic approaches for PD, dementia with Lewy bodies, frontotemporal dementia, and other neurodegenerative disorders characterized by the abnormal accumulation of these proteins. Active immunization, passive immunization, and T cell-mediated cellular immunotherapeutic approaches have been developed targeting Aβ, α-syn and tau. Most advanced studies, including results from phase III clinical trials for passive immunization in AD, have been recently reported. Results suggest that immunotherapy might be a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and propagation of toxic protein aggregates. In this manuscript we provide an overview on immunotherapeutic advances for neurodegenerative disorders, with special emphasis on α-synucleinopathies. PMID:23384597

  4. Application of Low Dose Radiation Adaptive Response to Control Aging-Related Disease

    SciTech Connect

    Doss, Mohan

    2013-11-01

    Oxidative damage has been implicated in the pathogenesis of most aging-related diseases including neurodegenerative diseases. Antioxidant supplementation has been found to be ineffective in reducing such diseases, but increased endogenous production of antioxidants from the adaptive response due to physical and cognitive exercises (which increase oxidative metabolism and oxidative stress) has been effective in reducing some of the diseases. Low dose radiation (LDR), which increases oxidative stress and results in adaptive response of increased antioxidants, may provide an alternative method of controlling the aging-related diseases. We have studied the effect of LDR on the induction of adaptive response in rat brains and the effectiveness of the LDR in reducing the oxidative damage caused by subsequent high dose radiation. We have also investigated the effect of LDR on apomorphine-induced rotations in the 6-hydroxydopamine (6-OHDA) unilaterally-lesioned rat model of Parkinson?s disease (PD). LDR was observed to initiate an adaptive response in the brain, and reduce the oxidative damage from subsequent high dose radiation exposure, confirming the effectiveness of LDR adaptive response in reducing the oxidative damage from the free radicals due to high dose radiation. LDR resulted in a slight improvement in Tyrosine hydroxylase expression on the lesioned side of substantia nigra (indicative of its protective effect on the dopaminergic neurons), and reduced the behavioral symptoms in the 6-OHDA rat model of PD. Translation of this concept to humans, if found to be applicable, may be a possible approach for controlling the progression of PD and other neurodegenerative diseases. Since any translation of the concept to humans would be hindered by the currently prevalent carcinogenic concerns regarding LDR based on the linear no-threshold (LNT) model, we have also studied the justifications for the use of the LNT model. One of the shortcomings of the LNT model is that it

  5. Glial cell inclusions and the pathogenesis of neurodegenerative diseases

    PubMed Central

    Miller, David W.; Cookson, Mark R.; Dickson, Dennis W.

    2006-01-01

    In this review, we discuss examples that show how glial-cell pathology is increasingly recognized in several neurodegenerative diseases. We also discuss the more provocative idea that some of the disorders that are currently considered to be neurodegenerative diseases might, in fact, be due to primary abnormalities in glia. Although the mechanism of glial pathology (i.e. modulating glutamate excitotoxicity) might be better established for amyotrophic lateral sclerosis (ALS), a role for neuronal–glial interactions in the pathogenesis of most neurodegenerative diseases is plausible. This burgeoning area of neuroscience will receive much attention in the future and it is expected that further understanding of basic neuronal–glial interactions will have a significant impact on the understanding of the fundamental nature of human neurodegenerative disorders. PMID:16614753

  6. Does eating particular diets alter risk of age-related macular degeneration in users of the Age-Related Eye Disease Study supplements?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Recent information suggests that the Age-Related Eye Disease Study (AREDS) supplement, enhanced intake of omega-3 fatty acids, and diminishing dietary glycemic index (dGI) are protective against advanced age-related macular degeneration (AMD). Methods: Dietary information was collected a...

  7. The Role of Environmental Exposures in Neurodegeneration and Neurodegenerative Diseases

    PubMed Central

    Cannon, Jason R.; Greenamyre, J. Timothy

    2011-01-01

    Neurodegeneration describes the loss of neuronal structure and function. Numerous neurodegenerative diseases are associated with neurodegeneration. Many are rare and stem from purely genetic causes. However, the prevalence of major neurodegenerative diseases is increasing with improvements in treating major diseases such as cancers and cardiovascular diseases, resulting in an aging population. The neurological consequences of neurodegeneration in patients can have devastating effects on mental and physical functioning. The causes of most cases of prevalent neurodegenerative diseases are unknown. The role of neurotoxicant exposures in neurodegenerative disease has long been suspected, with much effort devoted to identifying causative agents. However, causative factors for a significant number of cases have yet to be identified. In this review, the role of environmental neurotoxicant exposures on neurodegeneration in selected major neurodegenerative diseases is discussed. Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis were chosen because of available data on environmental influences. The special sensitivity the nervous system exhibits to toxicant exposure and unifying mechanisms of neurodegeneration are explored. PMID:21914720

  8. Endogenous Retroelements in Cellular Senescence and Related Pathogenic Processes: Promising Drug Targets in Age-Related Diseases.

    PubMed

    Cardelli, Maurizio; Giacconi, Robertina; Malavolta, Marco; Provinciali, Mauro

    2016-01-01

    Endogenous retroelements (ERs) represent nearly half of the human genome. Considered up to recent years as "functionless" DNA sequences, they are now known to be involved in important cellular functions such as stress response and generation of non coding regulatory RNAs. Moreover, an increasing amount of data supports the idea of ERs as key players in cellular senescence and in different senescence-related pathogenic cellular processes, including those leading to inflammation, cancer and major age-related multifactorial diseases. The involvement of ERs in these biological mechanisms can suggest new therapeutic strategies in neoplasms, inflammatory/autoimmune diseases and in different age-related pathologies, such as macular degeneration, diabetes, cardiovascular diseases and major age-related neurodegenerative disorders. The therapeutic approaches which can be suggested range from a set of well-known, common drugs that have been shown to modulate ERs activity, to immune therapy against ER-derived tumor antigens, to more challenging strategies such as those based on anti-ERs RNA interference. PMID:25981608

  9. Genetic variants associated with neurodegenerative Alzheimer disease in natural models.

    PubMed

    Salazar, Claudia; Valdivia, Gonzalo; Ardiles, Álvaro O; Ewer, John; Palacios, Adrián G

    2016-01-01

    The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans. PMID:26919851

  10. Redox Imbalance and Viral Infections in Neurodegenerative Diseases.

    PubMed

    Limongi, Dolores; Baldelli, Sara

    2016-01-01

    Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). PMID:27110325

  11. Redox Imbalance and Viral Infections in Neurodegenerative Diseases

    PubMed Central

    Limongi, Dolores

    2016-01-01

    Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). PMID:27110325

  12. Developmental neuroplasticity and the origin of neurodegenerative diseases.

    PubMed

    Schaefers, Andrea T U; Teuchert-Noodt, Gertraud

    2013-05-24

    Objectives. Neurodegenerative diseases like Alzheimer's and Parkinson's Disease, marked by characteristic protein aggregations, are more and more accepted to be synaptic disorders and to arise from a combination of genetic and environmental factors. In this review we propose our concept that neuroplasticity might constitute a link between early life challenges and neurodegeneration. Methods. After introducing the general principles of neuroplasticity, we show how adverse environmental stimuli during development impact adult neuroplasticity and might lead to neurodegenerative processes. Results. There are significant overlaps between neurodevelopmental and neurodegenerative processes. Proteins that represent hallmarks of neurodegeneration are involved in plastic processes under physiological conditions. Brain regions - particularly the hippocampus - that retain life-long plastic capacities are the key targets of neurodegeneration. Neuroplasticity is highest in young age making the brain more susceptible to external influences than later in life. Impacts during critical periods have life-long consequences on neuroplasticity and structural self-organization and are known to be common risk factors for neurodegenerative diseases. Conclusions. Several lines of evidence support a link between developmental neuroplasticity and neurodegenerative processes later in life. A deeper insight into these processes is necessary to design strategies to mitigate or even prevent neurodegenerative pathologies. PMID:23705632

  13. Unbiased approaches to biomarker discovery in neurodegenerative diseases

    PubMed Central

    Chen-Plotkin, Alice S.

    2014-01-01

    Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia have several important features in common. They are progressive, they affect a relatively inaccessible organ, and we have no disease-modifying therapies for them. For these brain-based diseases, current diagnosis and evaluation of disease severity rely almost entirely on clinical examination, which may only be a rough approximation of disease state. Thus, the development of biomarkers – objective, relatively easily measured and precise indicators of pathogenic processes – could improve patient care and accelerate therapeutic discovery. Yet existing, rigorously tested neurodegenerative disease biomarkers are few, and even fewer biomarkers have translated into clinical use. To find new biomarkers for these diseases, an unbiased, high-throughput screening approach may be needed. In this review, I will describe the potential utility of such an approach to biomarker discovery, using Parkinson’s disease as a case example. PMID:25442938

  14. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    PubMed

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine. PMID:21422516

  15. The Blood Brain Barrier in Neurodegenerative Disease: A Rhetorical Perspective

    PubMed Central

    Carvey, Paul M; Hendey, Bill; Monahan, Angela J.

    2009-01-01

    Recent studies suggest that the function of the blood brain barrier (BBB) is not static under normal physiological conditions and is likely altered in neurodegenerative disease. Prevailing thinking about CNS function, and neurodegenerative disease in particular, is neurocentric excluding the impact of factors outside of the CNS. This review challenges this perspective and discusses recent reports suggesting the involvement of peripheral factors including toxins and elements of adaptive immunity that may not only play a role in pathogenesis, but also progression of neurodegenerative diseases. Central to this view is neuroinflammation. Several studies indicate that the neuroinflammatory changes that accompany neurodegeneration affect the BBB or its function by altering transport systems, enhancing immune cell entry, or influencing the BBB’s role as a signaling interface. Such changes impair the BBB’s normal homeostatic function and affect neural activity. Moreover, recent studies reveal that alterations in BBB and its transporters affect the entry of drugs used to treat neurodegenerative diseases. Incorporating BBB compromise and dysfunction into our view of neurodegenerative disease leads to inclusion of peripheral mediators in its pathogenesis and progression. In addition, this changing view of the BBB raises interesting new therapeutic possibilities for drug delivery as well as treatment strategies designed to reinstate normal barrier function. PMID:19659460

  16. Alzheimer’s Disease and Age-Related Memory Decline (Preclinical)

    PubMed Central

    Terry, Alvin V.; Callahan, Patrick M.; Hall, Brandon; Webster, Scott J.

    2011-01-01

    An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer’s disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as “Mild Cognitive Impairment” (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD, MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy, adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory

  17. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression.

    PubMed

    Ntsapi, C; Loos, B

    2016-10-01

    Caloric restriction (CR) is known to extend lifespan in most organisms, indicating that nutrient and energy regulatory mechanisms impact aging. The greatest risk factor for neurodegeneration is age; thus, the antiaging effects of CR might attenuate progressive cell death and avert the aggregation of abnormal proteins associated with neurodegenerative diseases. CR is a potent inducer of autophagy, a tightly regulated intracellular process that facilitates recycling of abnormal protein aggregates and damaged organelles into bioenergetic and biosynthetic materials to maintain homeostasis. Thus, dysregulated autophagy can lead to cellular dysfunction, abnormal protein accumulation, proteotoxicity and subsequently the onset of several neurodegenerative diseases. Therefore, the targeted and precision-controlled activation of autophagy represents a promising therapeutic strategy. Non-pharmacological therapeutic interventions that delay aging by modulating specific stages of autophagy might be beneficial against premature aging, neurodegeneration and its associated ailments. However, the dynamic and often compensatory cross-talk that exists between the protein degradation pathways makes clinical translational approaches challenging. Here we review the primary autophagy pathways in the context of age-related neurodegenerative diseases, focusing on compensatory mechanisms and pathway failure. By critically assessing each underlying molecular machinery, we reveal their impact on aging and unmask the role of caloric restriction in changing cellular fate by delayed aging through stimulation of autophagy. This may point towards novel and better targeted interventions that exploit the autophagic machinery in the treatment of neurodegenerative diseases. PMID:27473756

  18. Molecular Chaperone Dysfunction in Neurodegenerative Diseases and Effects of Curcumin

    PubMed Central

    Frautschy, Sally

    2014-01-01

    The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer's disease, tauopathies, and Huntington's diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell. PMID:25386560

  19. Melatonin for Sleep Disorders in Patients with Neurodegenerative Diseases.

    PubMed

    Trotti, Lynn Marie; Karroum, Elias G

    2016-07-01

    In patients with neurodegenerative diseases, sleep disorders are common; they impair the quality of life for patients and caregivers and are associated with poorer clinical outcomes. Melatonin has circadian, hypnotic, and free radical-scavenging effects, and preclinical data suggest benefits of melatonin on neurodegeneration. However, randomized, controlled trials of melatonin in patients with neurodegenerative diseases have not shown strong effects. Trials in Alzheimer's patients demonstrate a lack of benefit on sleep quantity. Subjective measures of sleep quality are mixed, with possible symptomatic improvements seen only on some measures or at some time points. Benefits on cognition have not been observed across several studies. In Parkinson's patients, there may be minimal benefit on objective sleep measures, but a suggestion of subjective benefit in few, small studies. Effective treatments for the sleep disorders associated with neurodegenerative diseases are urgently needed, but current data are insufficient to establish melatonin as such a treatment. PMID:27180068

  20. Oligodendroglia and Myelin in Neurodegenerative Diseases: More Than Just Bystanders?

    PubMed

    Ettle, Benjamin; Schlachetzki, Johannes C M; Winkler, Jürgen

    2016-07-01

    Oligodendrocytes, the myelinating cells of the central nervous system, mediate rapid action potential conduction and provide trophic support for axonal as well as neuronal maintenance. Their progenitor cell population is widely distributed in the adult brain and represents a permanent cellular reservoir for oligodendrocyte replacement and myelin plasticity. The recognition of oligodendrocytes, their progeny, and myelin as contributing factors for the pathogenesis and the progression of neurodegenerative disease has recently evolved shaping our understanding of these disorders. In the present review, we aim to highlight studies on oligodendrocytes and their progenitors in neurodegenerative diseases. We dissect oligodendroglial biology and illustrate evolutionary aspects in regard to their importance for neuronal functionality and maintenance of neuronal circuitries. After covering recent studies on oligodendroglia in different neurodegenerative diseases mainly in view of their function as myelinating cells, we focus on the alpha-synucleinopathy multiple system atrophy, a prototypical disorder with a well-defined oligodendroglial pathology. PMID:25966971

  1. Traumatic brain injury: a risk factor for neurodegenerative diseases.

    PubMed

    Gupta, Rajaneesh; Sen, Nilkantha

    2016-01-01

    Traumatic brain injury (TBI), a major global health and socioeconomic problem, is now established as a chronic disease process with a broad spectrum of pathophysiological symptoms followed by long-term disabilities. It triggers multiple and multidirectional biochemical events that lead to neurodegeneration and cognitive impairment. Recent studies have presented strong evidence that patients with TBI history have a tendency to develop proteinopathy, which is the pathophysiological feature of neurodegenerative disorders such as Alzheimer disease (AD), chronic traumatic encephalopathy (CTE), and amyotrophic lateral sclerosis (ALS). This review mainly focuses on mechanisms related to AD, CTE, and ALS that are induced after TBI and their relevance to the advancement of these neurodegenerative diseases. This review encompasses acute effects and chronic neurodegenerative consequences after TBI for a better understanding of TBI-induced neuronal death and to design therapies that will effectively treat patients in the primary or secondary progressive stages. PMID:26352199

  2. RNA processing-associated molecular mechanisms of neurodegenerative diseases.

    PubMed

    Tang, Anna Y

    2016-08-01

    Dysfunctions of RNA processing and mutations of RNA binding proteins (RBPs) play a fundamental role in the pathogenesis of many neurodegenerative diseases. To elucidate the function of RNA processing and RBPs mutations in neuronal cells and to increase our understanding on the pathogenic mechanisms of neurodegeneration, I have reviewed recent advances on RNA processing-associated molecular mechanisms of neurodegenerative diseases, including RBPs-mediated dysfunction of RNA processing, dysfunctional microRNA (miRNA)-based regulation of gene expression, and oxidative RNA modification. I have focused on neurodegeneration induced by RBPs mutations, by dysfunction of miRNA regulation, and by the oxidized RNAs within neurons, and discuss how these dysfunctions have pathologically contributed to neurodegenerative diseases. The advances overviewed above will be valuable to basic investigation and clinical application of target diagnostic tests and therapies. PMID:26634851

  3. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics.

    PubMed

    Calabrese, V; Dattilo, S; Petralia, A; Parenti, R; Pennisi, M; Koverech, G; Calabrese, V; Graziano, A; Monte, I; Maiolino, L; Ferreri, T; Calabrese, E J

    2015-05-01

    Basal levels of oxidants are indispensible for redox signaling to produce adaptive cellular responses such as vitagenes linked to cell survival; however, at higher levels, they are detrimental to cells, contributing to aging and to the pathogenesis of numerous age-related diseases. Aging is a complex systemic process and the major gap in aging research reminds the insufficient knowledge about pathways shifting from normal "healthy" aging to disease-associated pathological aging. The major complication of normal "healthy" aging is in fact the increasing risk of age-related diseases such as cardiovascular diseases, diabetes mellitus, and neurodegenerative pathologies that can adversely affect the quality of life in general, with enhanced incidences of comorbidities and mortality. In this context, global "omics" approaches may help to dissect and fully study the cellular and molecular mechanisms of aging and age-associated processes. The proteome, being more close to the phenotype than the transcriptome and more stable than the metabolome, represents the most promising "omics" field in aging research. In the present study, we exploit recent advances in the redox biology of aging and discuss the potential of proteomics approaches as innovative tools for monitoring at the proteome level the extent of protein oxidative insult and related modifications with the identification of targeted proteins. PMID:25824967

  4. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases.

    PubMed

    Yeo, Woon-Seok; Kim, Young Jun; Kabir, Mohammad Humayun; Kang, Jeong Won; Ahsan-Ul-Bari, Md; Kim, Kwang Pyo

    2015-01-01

    This review highlights the significance of protein tyrosine nitration (PTN) in signal transduction pathways, the progress achieved in analytical methods, and the implication of nitration in the cellular pathophysiology of aging and age-related neurodegenerative diseases. Although mass spectrometry of nitrated peptides has become a powerful tool for the characterization of nitrated peptides, the low stoichiometry of this modification clearly necessitates the use of affinity chromatography to enrich modified peptides. Analysis of nitropeptides involves identification of endogenous, intact modification as well as chemical conversion of the nitro group to a chemically reactive amine group and further modifications that enable affinity capture and enhance detectability by altering molecular properties. In this review, we focus on the recent progress in chemical derivatization of nitropeptides for enrichment and mass analysis, and for detection and quantification using various analytical tools. PTN participates in physiological processes, such as aging and neurodegenerative diseases. Accumulation of 3-nitrotyrosine has been found to occur during the aging process; this was identified through mass spectrometry. Further, there are several studies implicating the presence of nitrated tyrosine in age-related diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. PMID:24889964

  5. Pharmacotherapy for Neurodegenerative Diseases: Are We Approaching the Tipping Point?

    PubMed

    Honig, P K

    2015-11-01

    Neurodegenerative diseases continue to represent major unmet medical and public health needs and will increasingly strain the healthcare system as people live longer due to medical advances in other diseases. Hopefully the emergence of increased understanding of the biology of these conditions coupled with novel clinical pharmacology tools, clinical trial designs, and regulatory innovation will allow the emergence of highly effective symptomatic and disease modifying pharmacotherapies. PMID:26478996

  6. Sign Language Aphasia from a Neurodegenerative Disease

    PubMed Central

    Falchook, Adam D.; Mayberry, Rachel I.; Poizner, Howard; Burtis, David Brandon; Doty, Leilani; Heilman, Kenneth M.

    2012-01-01

    While Alois Alzheimer recognized the effects of the disease he described on speech and language in his original description of the disease in 1907, the effects of Alzheimer disease on language in deaf signers has not previously been reported. We evaluated a 55 year old right handed congenitally deaf woman with a two year history of progressive memory loss and a deterioration of her ability to communicate in American Sign Language, which she learned at the age of eight. Examination revealed that she had impaired episodic memory as well as marked impairments in the production and comprehension of fingerspelling and grammatically complex sentences. She also had signs of anomia as well as an ideomotor apraxia and visual-spatial dysfunction. This report illustrates the challenges in evaluation of a patient for the presence of degenerative dementia when the person is deaf from birth, uses sign language, and has a late age of primary language acquisition. Although our patient could neither speak nor hear, in many respects her cognitive disorders mirror those of patients with Alzheimer disease who had normally learned to speak. PMID:22823942

  7. Anthropogenic pollutants may increase the incidence of neurodegenerative disease in an aging population.

    PubMed

    Bondy, Stephen C

    2016-02-01

    The current world population contains an ever-increasing increased proportion of the elderly. This is due to global improvements in medical care and access to such care. Thus, a growing incidence of age-related neurodegenerative disorders is to be expected. Increased longevity also allows more time for interaction with adverse environmental factors that have the potential exert a gradual pressure, facilitating the onset of organismic aging. Nearly all neurodegenerative disorders have a relatively minor genetic element and a larger idiopathic component. It is likely that some of the unknown factors promoting neurological disease involve the appearance of some deleterious aspects of senescence, elicited prematurely by low but pervasive levels of toxic materials present in the environment. This review considers the nature of such possible toxicants and how they may hasten neurosenescence. An enhanced rate of emergence of normal age-related changes in the brain can lead to increased incidence of those specific neurological disorders where aging is an essential requirement. In addition, some xenobiotic agents appear to have the capability of engendering specific neurodegenerative disorders and some of these are also considered. PMID:26812399

  8. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    PubMed

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what׳s wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to

  9. Alzheimer's disease: An acquired neurodegenerative laminopathy

    PubMed Central

    Frost, Bess

    2016-01-01

    ABSTRACT The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a “nucleoplasmic reticulum,” into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination. PMID:27167528

  10. Chronic sleep disturbance and neural injury: links to neurodegenerative disease

    PubMed Central

    Abbott, Sabra M; Videnovic, Aleksandar

    2016-01-01

    Sleep–wake disruption is frequently observed and often one of the earliest reported symptoms of many neurodegenerative disorders. This provides insight into the underlying pathophysiology of these disorders, as sleep–wake abnormalities are often accompanied by neurodegenerative or neurotransmitter changes. However, in addition to being a symptom of the underlying neurodegenerative condition, there is also emerging evidence that sleep disturbance itself may contribute to the development and facilitate the progression of several of these disorders. Due to its impact both as an early symptom and as a potential factor contributing to ongoing neurodegeneration, the sleep–wake cycle is an ideal target for further study for potential interventions not only to lessen the burden of these diseases but also to slow their progression. In this review, we will highlight the sleep phenotypes associated with some of the major neurodegenerative disorders, focusing on the circadian disruption associated with Alzheimer’s disease, the rapid eye movement behavior disorder and sleep fragmentation associated with Parkinson’s disease, and the insomnia and circadian dysregulation associated with Huntington’s disease. PMID:26869817

  11. Les Liaisons Dangereuses: Cancer-Related Genes and Neurodegenerative Diseases

    NASA Astrophysics Data System (ADS)

    Ghetti, Bernardino; Buonaguro, Franco M.

    2014-07-01

    The following sections are included: * INTRODUCTION * MUTATIONS IN THE CSF1R GENE ASSOCIATED WITH DIFFUSE LEUKOENCEPHALOPATHY WITH SPHEROIDS AND HUMAN CANCERS. * A SPECIAL LINK HAS BEEN SHOWN BETWEEN PTEN AND AD. * ACETYLCHOLINE DEFICIENCY AND PATHOGENESIS OF AD. * MIRNAS AND COMMON PATHWAYS IN CANCER AND NEURODEGENERATIVE DISEASE. * SUMMARY * REFERENCES

  12. Adverse Childhood Experiences and Adult Risk Factors for Age-Related Disease

    PubMed Central

    Danese, Andrea; Moffitt, Terrie E.; Harrington, HonaLee; Milne, Barry J.; Polanczyk, Guilherme; Pariante, Carmine M.; Poulton, Richie; Caspi, Avshalom

    2013-01-01

    Objective To understand why children exposed to adverse psychosocial experiences are at elevated risk for age-related disease, such as cardiovascular disease, by testing whether adverse childhood experiences predict enduring abnormalities in stress-sensitive biological systems, namely, the nervous, immune, and endocrine/metabolic systems. Design A 32-year prospective longitudinal study of a representative birth cohort. Setting New Zealand. Participants A total of 1037 members of the Dunedin Multidisciplinary Health and Development Study. Main Exposures During their first decade of life, study members were assessed for exposure to 3 adverse psychosocial experiences: socioeconomic disadvantage, maltreatment, and social isolation. Main Outcome Measures At age 32 years, study members were assessed for the presence of 3 age-related-disease risks: major depression, high inflammation levels (high-sensitivity C-reactive protein level >3 mg/L), and the clustering of metabolic risk biomarkers (overweight, high blood pressure, high total cholesterol, low high-density lipoprotein cholesterol, high glycated hemoglobin, and low maximum oxygen consumption levels. Results Children exposed to adverse psychosocial experiences were at elevated risk of depression, high inflammation levels, and clustering of metabolic risk markers. Children who had experienced socioeconomic disadvantage (incidence rate ratio, 1.89; 95% confidence interval, 1.36–2.62), maltreatment (1.81; 1.38–2.38), or social isolation (1.87; 1.38–2.51) had elevated age-related-disease risks in adulthood. The effects of adverse childhood experiences on age-related-disease risks in adulthood were nonredundant, cumulative, and independent of the influence of established developmental and concurrent risk factors. Conclusions Children exposed to adverse psychosocial experiences have enduring emotional, immune, and metabolic abnormalities that contribute to explaining their elevated risk for age-related disease. The

  13. Epigenetic mechanisms in neurological and neurodegenerative diseases

    PubMed Central

    Landgrave-Gómez, Jorge; Mercado-Gómez, Octavio; Guevara-Guzmán, Rosalinda

    2015-01-01

    The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS) and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS’s regulation and neurological disorders are mediated via modulation of chromatin structure. “Epigenetics”, introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA), nicotinamide adenine dinucleotide (NAD+) and beta hydroxybutyrate (β-HB), regulates some of these epigenetic modifications, linking in a precise way environment with gene expression. This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of epigenetics

  14. Epigenetic mechanisms in neurological and neurodegenerative diseases.

    PubMed

    Landgrave-Gómez, Jorge; Mercado-Gómez, Octavio; Guevara-Guzmán, Rosalinda

    2015-01-01

    The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS) and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS's regulation and neurological disorders are mediated via modulation of chromatin structure. "Epigenetics", introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA), nicotinamide adenine dinucleotide (NAD(+)) and beta hydroxybutyrate (β-HB), regulates some of these epigenetic modifications, linking in a precise way environment with gene expression. This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of epigenetics and

  15. ETHICAL AND GENETIC ASPECTS REGARDING PRESYMPTOMATIC TESTING FOR NEURODEGENERATIVE DISEASES.

    PubMed

    Cozaru, Georgeta Camelial; Aşchie, Mariana; Mitroi, Anca Florentina; Poinăreanu, I; Gorduza, E V

    2016-01-01

    Neurodegenerative diseases, such as Alzheimer's dementia, Huntington's chorea, Parkinson's disease or spinocerebellar ataxia, manifests into adulthood with an insidious onset, slowly of progressive symptoms. All of these diseases are characterized by presimptomatic stages that preceded with many years of clinical debut. In Parkinson's disease, more than half of the dopaminergic neurons of the black substance are lost before the advent of motor characteristic manifestations. In Huntington's chorea, the progressive neurodegenerative disease could be diagnose prenatal and presymptomatic by analyse of the number of CAG repeats in exon 1 of the huntingtin gene. A similar mechanism represented by expansion of trinucleotide repeats during hereditary transmission from parents to children was identified in fragile X syndrome, spinocerebellar ataxia, spinal muscular and bulbar atrophy, or myotonic dystrophy. Presymptomatic diagnosis in all these progressive diseases raise many ethical issues, due to the psychological impact that can cause the prediction of a disease for which there is currently no curative treatment. Therefore, a positive result can produce serious psychological trauma and major changes in the lifestyle of the individual, instead, a negative result can bring joy and tranquillity. But the problem arises if presymptomatic testing in these neurodegenerative diseases brings greater benefits compared to the possible psychological damage, which can add the risk of stigmatization or discrimination. PMID:27125067

  16. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  17. Genetics of neurodegenerative diseases: insights from high-throughput resequencing

    PubMed Central

    Tsuji, Shoji

    2010-01-01

    During the past three decades, we have witnessed remarkable advances in our understanding of the molecular etiologies of hereditary neurodegenerative diseases, which have been accomplished by ‘positional cloning’ strategies. The discoveries of the causative genes for hereditary neurodegenerative diseases accelerated not only the studies on the pathophysiologic mechanisms of diseases, but also the studies for the development of disease-modifying therapies. Genome-wide association studies (GWAS) based on the ‘common disease–common variants hypothesis’ are currently undertaken to elucidate disease-relevant alleles. Although GWAS have successfully revealed numerous susceptibility genes for neurodegenerative diseases, odds ratios associated with risk alleles are generally low and account for only a small proportion of estimated heritability. Recent studies have revealed that the effect sizes of the disease-relevant alleles that are identified based on comprehensive resequencing of large data sets of Parkinson disease are substantially larger than those identified by GWAS. These findings strongly argue for the role of the ‘common disease–multiple rare variants hypothesis’ in sporadic neurodegenerative diseases. Given the rapidly improving technologies of next-generation sequencing next-generation sequencing (NGS), we expect that NGS will eventually enable us to identify all the variants in an individual's personal genome, in particular, clinically relevant alleles. Beyond this, whole genome resequencing is expected to bring a paradigm shift in clinical practice, where clinical practice including diagnosis and decision-making for appropriate therapeutic procedures is based on the ‘personal genome’. The personal genome era is expected to be realized in the near future, and society needs to prepare for this new era. PMID:20413655

  18. PET/SPECT imaging agents for neurodegenerative diseases

    PubMed Central

    Zhu, Lin; Ploessl, Karl; Kung, Hank F.

    2014-01-01

    Single photon emission computed tomography (SPECT) or positron emission computed tomography (PET) imaging agents for neurodegenerative disease have a significant impact on clinical diagnosis and patient care. The examples of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD) imaging agents described in this paper provide a general view on how imaging agents, ie radioactive drugs, are selected, chemically prepared and applied in humans. Imaging the living human brain can provide unique information on the pathology and progression of neurodegenerative diseases, such as AD and PD. The imaging method will also facilitate preclinical and clinical trials of new drugs offering specific information related to drug binding sites in the brain. In the future, chemists will continue to play important roles in identifying specific targets, synthesizing target-specific probes for screening and ultimately testing them by in vitro and in vivo assays. PMID:24676152

  19. Brain CHIP: removing the culprits in neurodegenerative disease.

    PubMed

    Dickey, Chad A; Patterson, Cam; Dickson, Dennis; Petrucelli, Leonard

    2007-01-01

    A factor that is common to the most-frequent neurodegenerative diseases is the accumulation of abnormal proteins that are associated with cellular dysfunction. Contrary to years of speculation, recent evidence suggests that soluble intermediates--not the visible pathological aggregates associated with disease--are the cause of neurotoxicity. These findings suggest that aggregate formation might be an adaptive stress response that is facilitated by neuronal protein triage molecules. In particular, the molecular co-chaperone CHIP (C terminus of HSC70-interacting protein) has been linked to several of these disorders, serving as a crucial catalyst for the ubiquitination of several heat shock protein (HSP)70 client proteins that are involved in neurodegenerative disease. Therefore, understanding the mechanisms that are involved in CHIP-mediated protein trafficking might provide invaluable clues to neuronal function, both in normal and diseased conditions. PMID:17127096

  20. Olfaction in Neurologic and Neurodegenerative Diseases: A Literature Review

    PubMed Central

    Godoy, Maria Dantas Costa Lima; Voegels, Richard Louis; Pinna, Fábio de Rezende; Imamura, Rui; Farfel, José Marcelo

    2014-01-01

    Introduction Loss of smell is involved in various neurologic and neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. However, the olfactory test is usually neglected by physicians at large. Objective The aim of this study was to review the current literature about the relationship between olfactory dysfunction and neurologic and neurodegenerative diseases. Data Synthesis Twenty-seven studies were selected for analysis, and the olfactory system, olfaction, and the association between the olfactory dysfunction and dementias were reviewed. Furthermore, is described an up to date in olfaction. Conclusion Otolaryngologist should remember the importance of olfaction evaluation in daily practice. Furthermore, neurologists and physicians in general should include olfactory tests in the screening of those at higher risk of dementia. PMID:25992176

  1. Extracting regional brain patterns for classification of neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Pulido, Andrea; Rueda, Andrea; Romero, Eduardo

    2013-11-01

    In structural Magnetic Resonance Imaging (MRI), neurodegenerative diseases generally present complex brain patterns that can be correlated with di erent clinical onsets of this pathologies. An objective method that aims to determine both global and local changes is not usually available in clinical practice, thus the interpretation of these images is strongly dependent on the radiologist's skills. In this paper, we propose a strategy which interprets the brain structure using a framework that highlights discriminant brain patterns for neurodegenerative diseases. This is accomplished by combining a probabilistic learning technique, which identi es and groups regions with similar visual features, with a visual saliency method that exposes relevant information within each region. The association of such patterns with a speci c disease is herein evaluated in a classi cation task, using a dataset including 80 Alzheimer's disease (AD) patients and 76 healthy subjects (NC). Preliminary results show that the proposed method reaches a maximum classi cation accuracy of 81.39%.

  2. Polyphenols and Polyunsaturate Fatty Acids: The Pollyanna's of Age-Related Cognitive Decline, Neurodegenerative Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As children, there are very few of us who have not heard Mom's familiar refrain: "Eat your fruits and vegetables. They're good for you"! Little did we realize until later in life how much Mom knew about what we should eat to stay healthy. Now, it seems as though Mom's prophetic statement appears da...

  3. Age-related axonal swellings precede other neuropathological hallmarks in a knock-in mouse model of Huntington's disease.

    PubMed

    Marangoni, Martina; Adalbert, Robert; Janeckova, Lucie; Patrick, Jane; Kohli, Jaskaren; Coleman, Michael P; Conforti, Laura

    2014-10-01

    Axon degeneration precedes cell body death in many age-related neurodegenerative disorders, often determining symptom onset and progression. A sensitive method for revealing axon pathology could indicate whether this is the case also in Huntington's disease (HD), a fatal, devastating neurodegenerative disorder causing progressive deterioration of both physical and mental abilities, and which brain region is affected first. We studied the spatio-temporal relationship between axon pathology, neuronal loss, and mutant Huntingtin aggregate formation in HD mouse models by crossing R6/2 transgenic and HdhQ140 knock-in mice with YFP-H mice expressing the yellow fluorescent protein in a subset of neurons. We found large axonal swellings developing age-dependently first in stria terminalis and then in corticostriatal axons of HdhQ140 mice, whereas alterations of other neuronal compartments could not be detected. Although mutant Huntingtin accumulated with age in several brain areas, inclusions in the soma did not correlate with swelling of the corresponding axons. Axon abnormalities were not a prominent feature of the rapid progressive pathology of R6/2 mice. Our findings in mice genetically similar to HD patients suggest that axon pathology is an early event in HD and indicate the importance of further studies of stria terminalis axons in man. PMID:24906892

  4. Cerebral correlates of psychotic syndromes in neurodegenerative diseases

    PubMed Central

    Jellinger, Kurt A

    2012-01-01

    Abstract Psychosis has been recognized as a common feature in neurodegenerative diseases and a core feature of dementia that worsens most clinical courses. It includes hallucinations, delusions including paranoia, aggressive behaviour, apathy and other psychotic phenomena that occur in a wide range of degenerative disorders including Alzheimer’s disease, synucleinopathies (Parkinson’s disease, dementia with Lewy bodies), Huntington’s disease, frontotemporal degenerations, motoneuron and prion diseases. Many of these psychiatric manifestations may be early expressions of cognitive impairment, but often there is a dissociation between psychotic/behavioural symptoms and the rather linear decline in cognitive function, suggesting independent pathophysiological mechanisms. Strictly neuropathological explanations are likely to be insufficient to explain them, and a large group of heterogeneous factors (environmental, neurochemical changes, genetic factors, etc.) may influence their pathogenesis. Clinico-pathological evaluation of behavioural and psychotic symptoms (PS) in the setting of neurodegenerative and dementing disorders presents a significant challenge for modern neurosciences. Recognition and understanding of these manifestations may lead to the development of more effective preventive and therapeutic options that can serve to delay long-term progression of these devastating disorders and improve the patients’ quality of life. A better understanding of the pathophysiology and distinctive pathological features underlying the development of PS in neurodegenerative diseases may provide important insights into psychotic processes in general. PMID:21418522

  5. Multimodality Imaging of Alzheimer Disease and Other Neurodegenerative Dementias

    PubMed Central

    Nasrallah, Ilya M.; Wolk, David A.

    2015-01-01

    Neurodegenerative diseases, such as Alzheimer’s disease, result in cognitive decline and dementia and are a leading cause of mortality in the growing elderly population. These progressive diseases typically have insidious onset, with overlapping clinical features early in disease course that makes diagnosis challenging. Neurodegenerative diseases are associated with characteristic, although not completely understood, changes in the brain: abnormal protein deposition, synaptic dysfunction, neuronal injury and neuronal death. Neuroimaging biomarkers – principally regional atrophy on structural MRI, patterns of hypometabolism on 18F-fluorodeoxyglucose (FDG) PET, and detection of cerebral amyloid plaque on amyloid PET – are able to evaluate the patterns of these abnormalities in the brain to assist and improve early diagnosis of these conditions as well as to help predict disease course in the future. There are unique strengths of these techniques as well as synergies in multimodality evaluation of the patient with cognitive decline or dementia. This review will discuss the key imaging biomarkers from MRI, 18F-FDG PET, and amyloid PET, the imaging features of the most common neurodegenerative dementias, the role of various neuroimaging studies in differential diagnosis and prognosis, and introduce some promising imaging techniques currently under development. PMID:25413136

  6. Pain in Neurodegenerative Disease: Current Knowledge and Future Perspectives

    PubMed Central

    de Tommaso, Marina; Arendt-Nielsen, Lars; Defrin, Ruth; Kunz, Miriam; Pickering, Gisele; Valeriani, Massimiliano

    2016-01-01

    Neurodegenerative diseases are going to increase as the life expectancy is getting longer. The management of neurodegenerative diseases such as Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD) and PD related disorders, motor neuron diseases (MND), Huntington's disease (HD), spinocerebellar ataxia (SCA), and spinal muscular atrophy (SMA), is mainly addressed to motor and cognitive impairment, with special care to vital functions as breathing and feeding. Many of these patients complain of painful symptoms though their origin is variable, and their presence is frequently not considered in the treatment guidelines, leaving their management to the decision of the clinicians alone. However, studies focusing on pain frequency in such disorders suggest a high prevalence of pain in selected populations from 38 to 75% in AD, 40% to 86% in PD, and 19 to 85% in MND. The methods of pain assessment vary between studies so the type of pain has been rarely reported. However, a prevalent nonneuropathic origin of pain emerged for MND and PD. In AD, no data on pain features are available. No controlled therapeutic trials and guidelines are currently available. Given the relevance of pain in neurodegenerative disorders, the comprehensive understanding of mechanisms and predisposing factors, the application and validation of specific scales, and new specific therapeutic trials are needed. PMID:27313396

  7. PREFACE: Physics and biology of neurodegenerative diseases Physics and biology of neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Pastore, Annalisa

    2012-06-01

    , about 15 years after the original reports, it is clear that amyloids are special structures that occur in nature under several different guises, some good, some evil [3]. The number of diseases associated with misfolding and fibrillogenesis has steadily increased. Examples of fairly common pathologies associated with fibre formation include Alzheimer's disease (currently one of the major threats for human health in our increasingly aging world), Parkinson's disease and several rare, but not less severe, pathologies. On the other hand, it is also clear that amyloid formation is a convenient mechanism for storing peptides and/or proteins in a compact and resistant way. The number of organisms/tissues in which amyloid deposits are found is thus increasing. It is also not too far-fetched to expect that the mechanical properties of amyloids could be used in biotechnology to design new materials. Because of the importance of this topic in so many scientific fields, we have dedicated this special issue of Journal of Physics: Condensed Matter to the topic of protein aggregation and disease. In the following pages we have collected two reviews and five articles that explore new and interesting developments in the field. References [1] Olby R 1994 The Path of the Double Helix: The Discovery of DNA (New York: Dover) [2] Dobson C M 2004 Principles of protein folding, misfolding and aggregation Semin. Cell Dev. Biol. 15 3-16 [3] Hammer N D, Wang X, McGuffie B A, Chapman M R 2008 Amyloids: friend or foe? J. Alzheimers Dis. 13 407-19 Physics and biology of neurodegenerative diseases contents Protein aggregation and misfolding: good or evil?Annalisa Pastore and Pierandrea Temussi Alzheimer's disease: biological aspects, therapeutic perspectives and diagnostic toolsM Di Carlo, D Giacomazza and P L San Biagio Entrapment of Aβ1-40 peptide in unstructured aggregatesC Corsale, R Carrotta, M R Mangione, S Vilasi, A Provenzano, G Cavallaro, D Bulone and P L San Biagio Elemental micro

  8. Liposomes for Targeted Delivery of Active Agents against Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease)

    PubMed Central

    Spuch, Carlos; Navarro, Carmen

    2011-01-01

    Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease represent a huge unmet medical need. The prevalence of both diseases is increasing, but the efficacy of treatment is still very limited due to various factors including the blood brain barrier (BBB). Drug delivery to the brain remains the major challenge for the treatment of all neurodegenerative diseases because of the numerous protective barriers surrounding the central nervous system. New therapeutic drugs that cross the BBB are critically needed for treatment of many brain diseases. One of the significant factors on neurotherapeutics is the constraint of the blood brain barrier and the drug release kinetics that cause peripheral serious side effects. Contrary to common belief, neurodegenerative and neurological diseases may be multisystemic in nature, and this presents numerous difficulties for their potential treatment. Overall, the aim of this paper is to summarize the last findings and news related to liposome technology in the treatment of neurodegenerative diseases and demonstrate the potential of this technology for the development of novel therapeutics and the possible applications of liposomes in the two most widespread neurodegenerative diseases, Alzheimer's disease and Parkinson's disease. PMID:22203906

  9. PET/MR in dementia and other neurodegenerative diseases.

    PubMed

    Barthel, Henryk; Schroeter, Matthias L; Hoffmann, Karl-Titus; Sabri, Osama

    2015-05-01

    The spectrum of neurodegenerative diseases covers the dementias, parkinsonian syndromes, Huntington disease, amyotrophic lateral sclerosis, and prion diseases. In these entities, brain MRI is often used in clinical routine to exclude other pathologies and to demonstrate specific atrophy patterns. [18F]FDG PET delivers early and sensitive readouts of neural tissue loss, and more specific PET tracers currently in use clinically target β-amyloid plaques or dopaminergic deficiency. The recent integration of PET into MR technology offers a new chance to improve early and differential diagnosis of many neurodegenerative diseases. Initial evidence in the literature is available to support this notion. New emerging PET tracers, such as tracers that bind to tau or α-synuclein aggregates, as well as MR techniques, like diffusion-tensor imaging, resting-state functional MRI, and arterial spin labeling, have the potential to broaden the diagnostic capabilities of combined PET/MRI to image dementias, Parkinson disease, and other neurodegenerative diseases. The ultimate goal is to establish combined PET/MRI as a first-line imaging technique to provide, in a one-stop-shop fashion with improved patient comfort, all biomarker information required to increase diagnostic confidence toward specific diagnoses. The technical challenge of accurate PET data attenuation correction within PET/MRI systems needs yet to be solved. Apart from the projected clinical routine applications, future research would need to answer the questions of whether combined brain PET/MRI is able to improve basic research of neurodegenerative diseases and antineurodegeneration drug testing. PMID:25841277

  10. Aberrant Protein S-Nitrosylation in Neurodegenerative Diseases

    PubMed Central

    Nakamura, Tomohiro; Tu, Shichun; Akhtar, Mohd Waseem; Sunico, Carmen R.; Okamoto, Shu-ichi; Lipton, Stuart A.

    2013-01-01

    S-Nitrosylation is a redox-mediated posttranslational modification that regulates protein function via covalent reaction of nitric oxide (NO)-related species with a cysteine thiol group on the target protein. Under physiological conditions, S-nitrosylation can be an important modulator of signal transduction pathways, akin to phosphorylation. However, with aging or environmental toxins that generate excessive NO, aberrant S-nitrosylation reactions can occur and affect protein misfolding, mitochondrial fragmentation, synaptic function, apoptosis or autophagy. Here, we discuss how aberrantly S-nitrosylated proteins (SNO-proteins) play a crucial role in the pathogenesis of neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Insight into the pathophysiological role of aberrant S-nitrosylation pathways will enhance our understanding of molecular mechanisms leading to neurodegenerative diseases and point to potential therapeutic interventions. PMID:23719160

  11. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases

    PubMed Central

    Bento, Carla F.

    2015-01-01

    Autophagy is a conserved process that uses double-membrane vesicles to deliver cytoplasmic contents to lysosomes for degradation. Although autophagy may impact many facets of human biology and disease, in this review we focus on the ability of autophagy to protect against certain neurodegenerative and infectious diseases. Autophagy enhances the clearance of toxic, cytoplasmic, aggregate-prone proteins and infectious agents. The beneficial roles of autophagy can now be extended to supporting cell survival and regulating inflammation. Autophagic control of inflammation is one area where autophagy may have similar benefits for both infectious and neurodegenerative diseases beyond direct removal of the pathogenic agents. Preclinical data supporting the potential therapeutic utility of autophagy modulation in such conditions is accumulating. PMID:26101267

  12. TRPM7 and its role in neurodegenerative diseases

    PubMed Central

    Sun, Yuyang; Sukumaran, Pramod; Schaar, Anne; Singh, Brij B

    2015-01-01

    Calcium (Ca2+) and magnesium (Mg2+) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca2+ and Mg2+ homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca2+ and Mg2+; however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases. PMID:26218331

  13. Epidemiology of mild traumatic brain injury and neurodegenerative disease

    PubMed Central

    Gardner, Raquel C.; Yaffe, Kristine

    2015-01-01

    Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repetitive MTBI and repetitive sub-concussive head trauma has been linked to increased risk for a variety of neurodegenerative diseases including chronic traumatic encephalopathy (CTE). CTE is a unique neurodegenerative tauopathy first described in boxers but more recently described in a variety of contact sport athletes, military veterans, and civilians exposed to repetitive MTBI. Studies of repetitive MTBI and CTE have been limited by referral bias, lack of consensus clinical criteria for CTE, challenges of quantifying MTBI exposure, and potential for confounding. The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. PMID:25748121

  14. Potential application of lithium in Parkinson's and other neurodegenerative diseases

    PubMed Central

    Lazzara, Carol A.; Kim, Yong-Hwan

    2015-01-01

    Lithium, the long-standing hallmark treatment for bipolar disorder, has recently been identified as a potential neuroprotective agent in neurodegeneration. Here we focus on introducing numerous in vitro and in vivo studies that have shown lithium treatment to be efficacious in reducing oxidative stress and inflammation, increasing autophagy, inhibiting apoptosis, and decreasing the accumulation of α-synulcein, with an emphasis on Parkinson's disease. A number of biological pathways have been shown to be involved in causing these neuroprotective effects. The inhibition of GSK-3β has been the mechanism most studied; however, other modes of action include the regulation of apoptotic proteins and glutamate excitotoxicity as well as down-regulation of calpain. This review provides a framework of the neuroprotective effects of lithium in neurodegenerative diseases and the putative mechanisms by which lithium provides the protection. Lithium-only treatment may not be a suitable therapeutic option for neurodegenerative diseases due to inconsistent efficacy and potential side-effects, however, the use of low dose lithium in combination with other potential or existing therapeutic compounds may be a promising approach to reduce symptoms and disease progression in neurodegenerative diseases. PMID:26578864

  15. Dysphagia in stroke, neurodegenerative disease, and advanced dementia.

    PubMed

    Altman, Kenneth W; Richards, Amanda; Goldberg, Leanne; Frucht, Steven; McCabe, Daniel J

    2013-12-01

    Aspiration risk from dysphagia increases with central and peripheral neurologic disease. Stroke, microvascular ischemic disease, a spectrum of neurodegenerative diseases, and advancing dementia all have unique aspects. However, there are distinct commonalities in this population. Increasing nutritional requirements to stave off oropharyngeal muscular atrophy and a sedentary lifestyle further tax the patient's abilities to safely swallow. This article reviews stroke, muscular dystrophy, myasthenia gravis, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and advanced dementia. Approaches to screening and evaluation, recognizing sentinel indicators of decline that increase aspiration risk, and options for managing global laryngeal dysfunction are also presented. PMID:24262965

  16. Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases

    PubMed Central

    Reinisalo, Mika; Kårlund, Anna; Koskela, Ali; Kaarniranta, Kai; Karjalainen, Reijo O.

    2015-01-01

    Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer's disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed. PMID:26180583

  17. Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases.

    PubMed

    Reinisalo, Mika; Kårlund, Anna; Koskela, Ali; Kaarniranta, Kai; Karjalainen, Reijo O

    2015-01-01

    Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer's disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed. PMID:26180583

  18. Role of Redox Signaling in Neuroinflammation and Neurodegenerative Diseases

    PubMed Central

    Hsieh, Hsi-Lung; Yang, Chuen-Mao

    2013-01-01

    Reactive oxygen species (ROS), a redox signal, are produced by various enzymatic reactions and chemical processes, which are essential for many physiological functions and act as second messengers. However, accumulating evidence has implicated the pathogenesis of several human diseases including neurodegenerative disorders related to increased oxidative stress. Under pathological conditions, increasing ROS production can regulate the expression of diverse inflammatory mediators during brain injury. Elevated levels of several proinflammatory factors including cytokines, peptides, pathogenic structures, and peroxidants in the central nervous system (CNS) have been detected in patients with neurodegenerative diseases such as Alzheimer's disease (AD). These proinflammatory factors act as potent stimuli in brain inflammation through upregulation of diverse inflammatory genes, including matrix metalloproteinases (MMPs), cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and adhesion molecules. To date, the intracellular signaling mechanisms underlying the expression of target proteins regulated by these factors are elusive. In this review, we discuss the mechanisms underlying the intracellular signaling pathways, especially ROS, involved in the expression of several inflammatory proteins induced by proinflammatory factors in brain resident cells. Understanding redox signaling transduction mechanisms involved in the expression of target proteins and genes may provide useful therapeutic strategies for brain injury, inflammation, and neurodegenerative diseases. PMID:24455696

  19. Neuronal expression of GalNAc transferase is sufficient to prevent the age-related neurodegenerative phenotype of complex ganglioside-deficient mice.

    PubMed

    Yao, Denggao; McGonigal, Rhona; Barrie, Jennifer A; Cappell, Joanna; Cunningham, Madeleine E; Meehan, Gavin R; Fewou, Simon N; Edgar, Julia M; Rowan, Edward; Ohmi, Yuhsuke; Furukawa, Keiko; Furukawa, Koichi; Brophy, Peter J; Willison, Hugh J

    2014-01-15

    NAcT(-/-)-Tg(glial) mice. These results indicate that neuronal rather than glial gangliosides are critical to the age-related maintenance of nervous system integrity. PMID:24431446

  20. What determines age-related disease: do we know all the right questions?

    PubMed Central

    2009-01-01

    The average human lifespan has increased throughout the last century due to the mitigation of many infectious diseases. More people now die of age-related diseases than ever before, but these diseases have been resistant to elimination. Progress has been made in treatments and preventative measures to delay the onsets of these diseases, but most cancers and vascular diseases are still with us and they kill about the same fraction of the population year after year. For example, US Caucasian female deaths from breast plus genital cancers have remained a fairly constant ~7% of the age-related disease deaths from 1938 to 1998 and have been consistently ~2-fold greater than female colon plus rectal cancer deaths over that span. This type of stability pattern pervades the age-related diseases and suggests that intrinsic properties within populations determine these fractions. Recognizing this pattern and deciphering its origin will be necessary for the complete understanding of these major causes of death. It would appear that more than the random processes of aging drive this effect. The question is how to meaningfully approach this problem. This commentary discusses the epidemiological and aging perspectives and their current limitations in providing an explanation. The age of bioinformatics offers hope, but only if creative systems approaches are forthcoming. PMID:19904627

  1. What determines age-related disease: do we know all the right questions?

    PubMed

    Juckett, David A

    2010-06-01

    The average human lifespan has increased throughout the last century due to the mitigation of many infectious diseases. More people now die of age-related diseases than ever before, but these diseases have been resistant to elimination. Progress has been made in treatments and preventative measures to delay the onsets of these diseases, but most cancers and vascular diseases are still with us and they kill about the same fraction of the population year after year. For example, US Caucasian female deaths from breast plus genital cancers have remained a fairly constant approximately 7% of the age-related disease deaths from 1938 to 1998 and have been consistently approximately 2-fold greater than female colon plus rectal cancer deaths over that span. This type of stability pattern pervades the age-related diseases and suggests that intrinsic properties within populations determine these fractions. Recognizing this pattern and deciphering its origin will be necessary for the complete understanding of these major causes of death. It would appear that more than the random processes of aging drive this effect. The question is how to meaningfully approach this problem. This commentary discusses the epidemiological and aging perspectives and their current limitations in providing an explanation. The age of bioinformatics offers hope, but only if creative systems approaches are forthcoming. PMID:19904627

  2. Neurodegenerative diseases and widespread aggregation are associated with supersaturated proteins

    PubMed Central

    Ciryam, Prajwal; Tartaglia, Gian Gaetano; Morimoto, Richard I.; Dobson, Christopher M.; Vendruscolo, Michele

    2013-01-01

    Summary The maintenance of protein solubility is a fundamental aspect of protein homeostasis, as aggregation is associated with cytotoxicity and a variety of human diseases. Numerous proteins unrelated in sequence and structure, however, can misfold and aggregate, and widespread aggregation can occur in living systems under stress or ageing. A crucial question in this context is why only certain proteins aggregate in vivo while others do not. We identify here the proteins most vulnerable to aggregation as those whose cellular concentrations are high relative to their solubilities. These supersaturated proteins represent a metastable sub-proteome involved in pathological aggregation during stress and ageing, and are overrepresented in biochemical processes associated with neurodegenerative disorders. Consequently, such cellular processes become dysfunctional when the ability to keep intrinsically supersaturated proteins soluble is compromised. Thus, the simultaneous analysis of abundance and solubility can rationalize the diverse cellular pathologies linked to neurodegenerative diseases and aging. PMID:24183671

  3. Nutraceuticals and amyloid neurodegenerative diseases: a focus on natural phenols.

    PubMed

    Rigacci, Stefania; Stefani, Massimo

    2015-01-01

    A common molecular feature of amyloid neurodegenerative diseases is the unfolding/misfolding of specific proteins/peptides which consequently become prone to aggregate into toxic assemblies and deposits that are the key histopathological trait of these pathologies. Apart from the rare early-onset familiar forms, these neurodegenerative diseases are age-associated disorders whose symptoms appear in aged people after long incubation periods. This makes the therapeutic approach particularly compelling and boosts the search for both early diagnostic tools and preventive approaches. In this last respect, natural compounds commonly present in foods and beverages are considered promising molecules, at least on the bench side. The so-called 'nutraceutical approach' suggests life-long healthy diets, particularly focusing on food molecules that are candidates to enter clinical trials as such or following a targeted molecular engineering. Natural phenols abundant in 'healthy' foods such as extra virgin olive oil, red wine, green tea, red berries and spices, appear particularly promising. PMID:25418871

  4. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases

    PubMed Central

    Bär, Christian; Blasco, Maria A.

    2016-01-01

    Telomeres, the protective ends of linear chromosomes, shorten throughout an individual’s lifetime. Telomere shortening is a hallmark of molecular aging and is associated with premature appearance of diseases associated with aging. Here, we discuss the role of telomere shortening as a direct cause for aging and age-related diseases. In particular, we draw attention to the fact that telomere length influences longevity. Furthermore, we discuss intrinsic and environmental factors that can impact on human telomere erosion. Finally, we highlight recent advances in telomerase-based therapeutic strategies for the treatment of diseases associated with extremely short telomeres owing to mutations in telomerase, as well as age-related diseases, and ultimately aging itself. PMID:27081482

  5. Structural disorder and the loss of RNA homeostasis in aging and neurodegenerative disease

    PubMed Central

    Gray, Douglas A.; Woulfe, John

    2013-01-01

    Whereas many cases of neurodegenerative disease feature the abnormal accumulation of protein, an abundance of recent literature highlights loss of RNA homeostasis as a ubiquitous and central feature of pathological states. In some diseases expanded repeats have been identified in non-coding regions of disease-associated transcripts, calling into question the relevance of protein in the disease mechanism. We review the literature in support of a hypothesis that intrinsically disordered proteins (proteins that lack a stable three dimensional conformation) are particularly sensitive to an age-related decline in maintenance of protein homeostasis. The potential consequences for structurally disordered RNA-binding proteins are explored, including their aggregation into complexes that could be transmitted through a prion-like mechanism. We propose that the spread of ribonucleoprotein complexes through the nervous system could propagate a neuronal error catastrophe at the level of RNA metabolism. PMID:23967011

  6. Anatomic Alterations in Aging and Age-Related Diseases of the Eye

    PubMed Central

    Grossniklaus, Hans E.; Nickerson, John M.; Edelhauser, Henry F.; Bergman, Louise A. M. K.; Berglin, Lennart

    2013-01-01

    Purpose. We described anatomic age-related changes in the human eye to determine potential areas of investigation that may lead to identifying eyes at risk for age-related disease. Methods. A descriptive review of anatomic changes in the eye related to aging was performed in the context of current areas of investigation. The review was performed specifically for differing anatomic ocular structures, including cornea, trabecular meshwork, lens, uveal tract, Bruch's membrane, retina, RPE, vitreous, sclera, and optic nerve. Results. Age-related changes occur in all ocular tissues. The cornea flattens and there is an attrition of endothelial cells. The shape of the trabecular meshwork changes and there is a loss of trabecular endothelium. The lens grows and becomes cataractous. The ciliary body becomes collagenized, there are choroidal vascular changes, and Bruch's membrane thickens. Retinal vessels become hyalinized and there is a loss of rods before cones in the macula. RPE morphometric changes occur with aging. The vitreous becomes liquefied and there is a loss of vitreous compartmentalization. The sclera becomes rigid and may become calcified. The optic nerve exhibits structural changes with age. Conclusions. There are numerous anatomic age-related changes in the human eye. Current areas of investigation related to these changes include adaptive optics scanning laser ophthalmoscopy imaging of the RPE mosaic in the context of aging, and drug delivery devices that overcome age-related alterations to retinal and macular perfusion. PMID:24335063

  7. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  8. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  9. Clinical neurogenetics: behavioral management of inherited neurodegenerative disease.

    PubMed

    Wexler, Eric

    2013-11-01

    Psychiatric symptoms often manifest years before overt neurologic signs in patients with inherited neurodegenerative disease. The most frequently cited example of this phenomenon is the early onset of personality changes in "presymptomatic" Huntington patients. In some cases the changes in mood and cognition are even more debilitating than their neurologic symptoms. The goal of this article is to provide the neurologist with a concise primer that can be applied in a busy clinic or private practice. PMID:24176427

  10. The role of macropinocytosis in the propagation of protein aggregation associated with neurodegenerative diseases

    PubMed Central

    Zeineddine, Rafaa; Yerbury, Justin J.

    2015-01-01

    With the onset of the rapidly aging population, the impact of age related neurodegenerative diseases is becoming a predominant health and economic concern. Neurodegenerative diseases such as Alzheimer's disease, Creutzfeldt-Jakob disease (CJD), Parkinson's disease, Huntington's disease, frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS) result from the loss of a specific subsets of neurons, which is closely associated with accumulation and deposition of specific protein aggregates. Protein aggregation, or fibril formation, is a well-studied phenomenon that occurs in a nucleation-dependent growth reaction. Recently, there has been a swell of literature implicating protein aggregation and its ability to propagate cell-to-cell in the rapid progression of these diseases. In order for protein aggregation to be kindled in recipient cells it is a requisite that aggregates must be able to be released from one cell and then taken up by others. In this article we will explore the relationship between protein aggregates, their propagation and the role of macropinocytosis in their uptake. We highlight the ability of neurons to undergo stimulated macropinocytosis and identify potential therapeutic targets. PMID:26528186

  11. Stem cells for the treatment of neurodegenerative diseases

    PubMed Central

    2010-01-01

    Stem cells offer an enormous pool of resources for the understanding of the human body. One proposed use of stem cells has been as an autologous therapy. The use of stem cells for neurodegenerative diseases has become of interest. Clinical applications of stem cells for Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis will increase in the coming years, and although great care will need to be taken when moving forward with prospective treatments, the application of stem cells is highly promising. PMID:21144012

  12. Neural substrates of spontaneous narrative production in focal neurodegenerative disease.

    PubMed

    Gola, Kelly A; Thorne, Avril; Veldhuisen, Lisa D; Felix, Cordula M; Hankinson, Sarah; Pham, Julie; Shany-Ur, Tal; Schauer, Guido P; Stanley, Christine M; Glenn, Shenly; Miller, Bruce L; Rankin, Katherine P

    2015-12-01

    Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups. Storytelling patterns may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls (NC)) were analyzed for storytelling frequency and characteristics, and videos of the interactions were rated for patients' level of social attentiveness. Compared to controls, svPPAs told more stories and autobiographical stories, and perseverated on aspects of self during the interaction, whereas ADs told fewer autobiographical stories than NCs. svPPAs and bvFTDs were rated as less attentive to social cues. Aspects of storytelling were related to diverse cognitive and socio-emotional functions, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, narrative evaluations patterns, and social attentiveness correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention. PMID:26485159

  13. Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases

    PubMed Central

    Haun, Florian; Nakamura, Tomohiro; Lipton, Stuart A

    2013-01-01

    Mitochondrial dysfunction occurs in neurodegenerative diseases, however molecular mechanisms underlying this process remain elusive. Emerging evidence suggests that nitrosative stress, mediated by reactive nitrogen species (RNS), may play a role in mitochondrial pathology. Here, we review findings that highlight the abnormal mitochondrial morphology observed in many neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s diseases. One mechanism whereby RNS can affect mitochondrial function and thus neuronal survival occurs via protein S-nitrosylation, representing chemical reaction of a nitric oxide (NO) group with a critical cysteine thiol. In this review, we focus on the signaling pathway whereby S-nitrosylation of the mitochondrial fission protein Drp1 (dynamin-related protein 1; forming S-nitrosothiol (SNO)-Drp1) precipitates excessive mitochondrial fission or fragmentation and consequent bioenergetic compromise. Subsequently, the formation of SNO-Drp1 leads to synaptic damage and neuronal death. Thus, intervention in the SNO-Drp1 pathway may provide therapeutic benefit in neurodegenerative diseases. PMID:24587691

  14. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    PubMed Central

    Ansari, Nadeem A.; Moinuddin; Ali, Rashid

    2011-01-01

    Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs). This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related diseases. Antigenic characteristics of glycated lysine residues in proteins together with the presence of serum autoantibodies to the glycated lysine products and lysine-rich proteins in diabetes and arthritis patients indicates that these modified lysine residues may be a novel biomarker for protein glycation in aging and age-related diseases. PMID:21725160

  15. Cellular senescence in aging and age-related disease: from mechanisms to therapy

    PubMed Central

    Childs, Bennett G; Durik, Matej; Baker, Darren J; van Deursen, Jan M

    2016-01-01

    Cellular senescence, a process that imposes permanent proliferative arrest on cells in response to various stressors, has emerged as a potentially important contributor to aging and age-related disease, and it is an attractive target for therapeutic exploitation. A wealth of information about senescence in cultured cells has been acquired over the past half century; however, senescence in living organisms is poorly understood, largely because of technical limitations relating to the identification and characterization of senescent cells in tissues and organs. Furthermore, newly recognized beneficial signaling functions of senescence suggest that indiscriminately targeting senescent cells or modulating their secretome for anti-aging therapy may have negative consequences. Here we discuss current progress and challenges in understanding the stressors that induce senescence in vivo, the cell types that are prone to senesce, and the autocrine and paracrine properties of senescent cells in the contexts of aging and age-related diseases as well as disease therapy. PMID:26646499

  16. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases

    PubMed Central

    Alexander, Adanna G.; Marfil, Vanessa; Li, Chris

    2014-01-01

    Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model. PMID:25250042

  17. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration.

    PubMed

    Bondy, Stephen C

    2016-01-01

    Aluminum (Al) is a very common component of the earth's mineral composition. It is not essential element for life and is a constituent of rather inert minerals. Therefore, it has often been regarded as not presenting a significant health hazard. As a result, aluminum-containing agents been used in the preparation of many foodstuffs processing steps and also in elimination of particulate organic matter from water. More recently, the reduced pH of bodies of water resulting from acid rain has led to mobilization of aluminum-containing minerals into a more soluble form, and these have thus entered residential drinking water resources. By this means, the body burden of aluminum in humans has increased. Epidemiological and experimental findings indicate that aluminum is not as harmless as was previously thought, and that aluminum may contribute to the inception and advancement of Alzheimer's disease. Epidemiological data is reinforced by indications that aluminum exposure can result in excess inflammatory activity within the brain. Activation of the immune system not initiated by an infectious agent, typifies the aging brain and is even more augmented in several neurodegenerative diseases. The origin of most age-related neurological disorders is generally not known but as they are largely not of genetic derivation, their development is likely triggered by unknown environmental factors. There is a growing and consistent body of evidence that points to aluminum as being one such significant influence. Evidence is presented that reinforces the likelihood that aluminum is a factor speeding the rate of brain aging. Such acceleration would inevitably enlarge the incidence of age-related neurological diseases. PMID:26687397

  18. Estimation of Heterogeneity in Diagnostic Parameters of Age-related Diseases.

    PubMed

    Blokh, David; Stambler, Ilia

    2014-08-01

    The heterogeneity of parameters is a ubiquitous biological phenomenon, with critical implications for biological systems functioning in normal and diseased states. We developed a method to estimate the level of objects set heterogeneity with reference to particular parameters and applied it to type II diabetes and heart disease, as examples of age-related systemic dysfunctions. The Friedman test was used to establish the existence of heterogeneity. The Newman-Keuls multiple comparison method was used to determine clusters. The normalized Shannon entropy was used to provide the quantitative evaluation of heterogeneity. There was obtained an estimate for the heterogeneity of the diagnostic parameters in healthy subjects, as well as in heart disease and type II diabetes patients, which was strongly related to their age. With aging, as with the diseases, the level of heterogeneity (entropy) was reduced, indicating a formal analogy between these phenomena. The similarity of the patterns in aging and disease suggested a kind of "early aging" of the diseased subjects, or alternatively a "disease-like" aging process, with reference to these particular parameters. The proposed method and its validation on the chronic age-related disease samples may support a way toward a formal mathematical relation between aging and chronic diseases and a formal definition of aging and disease, as determined by particular heterogeneity (entropy) changes. PMID:25110613

  19. Redox Processes in Neurodegenerative Disease Involving Reactive Oxygen Species

    PubMed Central

    Kovacic, Peter; Somanathan, Ratnasamy

    2012-01-01

    Much attention has been devoted to neurodegenerative diseases involving redox processes. This review comprises an update involving redox processes reported in the considerable literature in recent years. The mechanism involves reactive oxygen species and oxidative stress, usually in the brain. There are many examples including Parkinson’s, Huntington’s, Alzheimer’s, prions, Down’s syndrome, ataxia, multiple sclerosis, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis, schizophrenia, and Tardive Dyskinesia. Evidence indicates a protective role for antioxidants, which may have clinical implications. A multifaceted approach to mode of action appears reasonable. PMID:23730253

  20. Inflammation in neurodegenerative diseases – an update

    PubMed Central

    Amor, Sandra; Peferoen, Laura A N; Vogel, Daphne Y S; Breur, Marjolein; Valk, Paul; Baker, David; Noort, Johannes M

    2014-01-01

    Neurodegeneration, the progressive dysfunction and loss of neurons in the central nervous system (CNS), is the major cause of cognitive and motor dysfunction. While neuronal degeneration is well-known in Alzheimer's and Parkinson's diseases, it is also observed in neurotrophic infections, traumatic brain and spinal cord injury, stroke, neoplastic disorders, prion diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as neuropsychiatric disorders and genetic disorders. A common link between these diseases is chronic activation of innate immune responses including those mediated by microglia, the resident CNS macrophages. Such activation can trigger neurotoxic pathways leading to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory processes, and repair and regeneration. The adaptive immune response is implicated in neurodegenerative diseases contributing to tissue damage, but also plays important roles in resolving inflammation and mediating neuroprotection and repair. The growing awareness that the immune system is inextricably involved in mediating damage as well as regeneration and repair in neurodegenerative disorders, has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Additional factors in humans include ageing and exposure to environmental factors such as systemic infections that provide additional clues that may be human specific and therefore difficult to translate from animal models. Nevertheless, a better understanding of how immune responses are involved in neuronal damage and regeneration, as reviewed here, will be essential to develop effective therapies to improve quality of life, and mitigate the personal, economic and social impact of these diseases. PMID:24329535

  1. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases

    PubMed Central

    Fan, Hueng-Chuen; Chi, Ching-Shiang; Cheng, Shin-Nan; Lee, Hsiu-Fen; Tsai, Jeng-Dau; Lin, Shinn-Zong; Harn, Horng-Jyh

    2015-01-01

    Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD), Huntington’s disease (HD), and Alzheimer’s disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases. PMID:26712747

  2. Age-Related Loss of Calcium Buffering and Selective Neuronal Vulnerability in Alzheimer’s Disease

    PubMed Central

    Riascos, David; de Leon, Dianne; Baker-Nigh, Alaina; Nicholas, Alexander; Yukhananov, Rustam; Bu, Jing; Wu, Chuang-Kuo; Geula, Changiz

    2011-01-01

    The reasons for the selective vulnerability of distinct neuronal populations in neurodegenerative disorders are unknown. The cholinergic neurons of the basal forebrain are vulnerable to pathology and loss early in Alzheimer’s disease and in a number of other neurodegenerative disorders of the elderly. In the primate, including man, these neurons are rich in the calcium buffer calbindin-D28K. Here we confirm that these neurons undergo a substantial loss of calbindin in the course of normal aging and report a further loss of calbindin in Alzheimer’s disease both at the level of RNA and protein. Significantly, cholinergic neurons that had lost their calbindin in the course of normal aging were those that selectively degenerated in Alzheimer’s disease. Furthermore, calbindin containing neurons were virtually resistant to the process of tangle formation, a hallmark of the disease. We conclude that the loss of calcium buffering capacity in these neurons and the resultant pathological increase in intracellular calcium are permissive to tangle formation and degeneration. PMID:21874328

  3. The Endocannabinoid System: A Putative Role in Neurodegenerative Diseases

    PubMed Central

    Di Iorio, Giuseppe; Lupi, Matteo; Sarchione, Fabiola; Matarazzo, Ilaria; Santacroce, Rita; Petruccelli, Filippo; Martinotti, Giovanni; Di Giannantonio, Massimo

    2013-01-01

    Background: Following the characterization of the chemical structure of D9-tetrahydrocannabinol (THC), the main psychoactive constituent of marijuana, researchers have moved on with scientific valuable explorations. Objectives: The aim of this review is to highlight the role of endocannabinoid system in neurodegenerative diseases. Materials and Methods: The article is a critical analysis of the most recent data currently present in scientific literature on the subject; a qualitative synthesis of only the most significant articles has been performed. Results: In central nervous system, endocannabinoids show a neuromodulatory function, often of retrograde type. This way, they play an important role in synaptic plasticity and in cognitive, motor, sensory and affective processes. In addition, in some acute or chronic pathologies of central nervous system, such as neurodegenerative and neuroinflammatory diseases, endocannabinoids can perform a pro-homeostatic and neuroprotective function, through the activation of CB1 and CB2 receptors. Scientific evidence shows that an hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases. Conclusions: The important role played by endocannabinoid system promises interesting developments, in particular to evaluate the effectiveness of new drugs in both psychiatry and neurology. PMID:24971285

  4. Creatine for neuroprotection in neurodegenerative disease: end of story?

    PubMed

    Bender, Andreas; Klopstock, Thomas

    2016-08-01

    Creatine (Cr) is a natural compound that plays an important role in cellular energy homeostasis. In addition, it ameliorates oxidative stress, glutamatergic excitotoxicity, and apoptosis in vitro as well as in vivo. Since these pathomechanisms are implicated to play a role in several neurodegenerative diseases, Cr supplementation as a neuroprotective strategy has received a lot of attention with several positive animal studies in models of Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). This has led to a number of randomized clinical trials (RCT) with oral Cr supplementation, with durations up to 5 years. In this paper, we review the evidence and consequences stemming from these trials. In the case of PD, the initial phase II RCT was promising and led to a large and well-designed phase III trial, which, however, turned out to be negative for all outcome measures. None of the RCTs that have examined effects of Cr in ALS patients showed any clinical benefit. In HD, Cr in high doses (up to 30 g/day) was shown to slow down brain atrophy in premanifest Huntingtin mutation carriers. In spite of this, proof is still lacking that Cr can also have beneficial clinical effects in this group of patients, who will go on to develop HD symptoms. Taken together, the use of Cr supplementation has so far proved disappointing in clinical studies with a number of symptomatic neurodegenerative diseases. PMID:26748651

  5. Genetic determinants at the interface of cancer and neurodegenerative disease.

    PubMed

    Morris, L G T; Veeriah, S; Chan, T A

    2010-06-17

    It has been hypothesized that oncogenesis and neurodegeneration may share common mechanistic foundations. Recent evidence now reveals a number of genes in which alteration leads to either carcinogenesis or neurodegeneration, depending on cellular context. Pathways that have emerged as having critical roles in both cancer and neurodegenerative disease include those involving genes such as PARK2, ATM, PTEN, PTPRD, and mTOR. A number of mechanisms have been implicated, and commonly affected cellular processes include cell cycle regulation, DNA repair, and response to oxidative stress. For example, we have recently shown that the E3 ubiquitin ligase PARK2 is mutated or deleted in many different human malignancies and helps drive loss on chromosome 6q25.2-27, a genomic region frequently deleted in cancers. Mutation in PARK2 is also the most common cause of juvenile Parkinson's disease. Mutations in PARK2 result in an upregulation of its substrate cyclin E, resulting in dysregulated entry into the cell cycle. In neurons, this process results in cell death, but in cycling cells, the result is a growth advantage. Thus, depending on whether the cell affected is a dividing cell or a post-mitotic neuron, responses to these alterations may differ, ultimately leading to varying disease phenotypes. Here, we review the substantial data implicating specific genes in both cancer and neurodegenerative disease. PMID:20418918

  6. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases?

    PubMed Central

    Ortuno, Daniel; Carlisle, Holly J.; Miller, Silke

    2016-01-01

    A common pathological hallmark of age-related neurodegenerative diseases is the intracellular accumulation of protein aggregates such as α-synuclein in Parkinson’s disease, TDP-43 in ALS, and tau in Alzheimer’s disease. Enhancing intracellular clearance of aggregation-prone proteins is a plausible strategy for slowing progression of neurodegenerative diseases and there is great interest in identifying molecular targets that control protein turnover. One of the main routes for protein degradation is through the proteasome, a multisubunit protease that degrades proteins that have been tagged with a polyubiquitin chain by ubiquitin activating and conjugating enzymes. Published data from cellular models indicate that Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), slows the degradation of tau and TDP-43 by the proteasome and that an inhibitor of USP14 increases the degradation of these substrates. We conducted similar experiments designed to evaluate tau, TDP-43, or α-synuclein levels in cells after overexpressing USP14 or knocking down endogenous expression by siRNA. PMID:26998235

  7. Common cell biologic and biochemical changes in aging and age-related diseases of the eye: Toward new therapeutic approaches to age-related ocular diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reviews of information about age related macular degeneration (AMD), cataract, and glaucoma make it apparent that while each eye tissue has its own characteristic metabolism, structure and function, there are common perturbations to homeostasis that are associated with age-related dysfunction. The c...

  8. Innate immunity and inflammation in ageing: a key for understanding age-related diseases

    PubMed Central

    Licastro, Federico; Candore, Giuseppina; Lio, Domenico; Porcellini, Elisa; Colonna-Romano, Giuseppina; Franceschi, Claudio; Caruso, Calogero

    2005-01-01

    The process of maintaining life for the individual is a constant struggle to preserve his/her integrity. This can come at a price when immunity is involved, namely systemic inflammation. Inflammation is not per se a negative phenomenon: it is the response of the immune system to the invasion of viruses or bacteria and other pathogens. During evolution the human organism was set to live 40 or 50 years; today, however, the immune system must remain active for much a longer time. This very long activity leads to a chronic inflammation that slowly but inexorably damages one or several organs: this is a typical phenomenon linked to ageing and it is considered the major risk factor for age-related chronic diseases. Alzheimer's disease, atherosclerosis, diabetes and even sarcopenia and cancer, just to mention a few – have an important inflammatory component, though disease progression seems also dependent on the genetic background of individuals. Emerging evidence suggests that pro-inflammatory genotypes are related to unsuccessful ageing, and, reciprocally, controlling inflammatory status may allow a better chance of successful ageing. In other words, age-related diseases are "the price we pay" for a life-long active immune system: this system has also the potential to harm us later, as its fine tuning becomes compromised. Our immune system has evolved to control pathogens, so pro-inflammatory responses are likely to be evolutionarily programmed to resist fatal infections with pathogens aggressively. Thus, inflammatory genotypes are an important and necessary part of the normal host responses to pathogens in early life, but the overproduction of inflammatory molecules might also cause immune-related inflammatory diseases and eventually death later. Therefore, low responder genotypes involved in regulation of innate defence mechanisms, might better control inflammatory responses and age-related disease development, resulting in an increased chance of long life survival

  9. Discover the network mechanisms underlying the connections between aging and age-related diseases

    PubMed Central

    Yang, Jialiang; Huang, Tao; Song, Won-min; Petralia, Francesca; Mobbs, Charles V.; Zhang, Bin; Zhao, Yong; Schadt, Eric E.; Zhu, Jun; Tu, Zhidong

    2016-01-01

    Although our knowledge of aging has greatly expanded in the past decades, it remains elusive why and how aging contributes to the development of age-related diseases (ARDs). In particular, a global mechanistic understanding of the connections between aging and ARDs is yet to be established. We rely on a network modelling named “GeroNet” to study the connections between aging and more than a hundred diseases. By evaluating topological connections between aging genes and disease genes in over three thousand subnetworks corresponding to various biological processes, we show that aging has stronger connections with ARD genes compared to non-ARD genes in subnetworks corresponding to “response to decreased oxygen levels”, “insulin signalling pathway”, “cell cycle”, etc. Based on subnetwork connectivity, we can correctly “predict” if a disease is age-related and prioritize the biological processes that are involved in connecting to multiple ARDs. Using Alzheimer’s disease (AD) as an example, GeroNet identifies meaningful genes that may play key roles in connecting aging and ARDs. The top modules identified by GeroNet in AD significantly overlap with modules identified from a large scale AD brain gene expression experiment, supporting that GeroNet indeed reveals the underlying biological processes involved in the disease. PMID:27582315

  10. Discover the network mechanisms underlying the connections between aging and age-related diseases.

    PubMed

    Yang, Jialiang; Huang, Tao; Song, Won-Min; Petralia, Francesca; Mobbs, Charles V; Zhang, Bin; Zhao, Yong; Schadt, Eric E; Zhu, Jun; Tu, Zhidong

    2016-01-01

    Although our knowledge of aging has greatly expanded in the past decades, it remains elusive why and how aging contributes to the development of age-related diseases (ARDs). In particular, a global mechanistic understanding of the connections between aging and ARDs is yet to be established. We rely on a network modelling named "GeroNet" to study the connections between aging and more than a hundred diseases. By evaluating topological connections between aging genes and disease genes in over three thousand subnetworks corresponding to various biological processes, we show that aging has stronger connections with ARD genes compared to non-ARD genes in subnetworks corresponding to "response to decreased oxygen levels", "insulin signalling pathway", "cell cycle", etc. Based on subnetwork connectivity, we can correctly "predict" if a disease is age-related and prioritize the biological processes that are involved in connecting to multiple ARDs. Using Alzheimer's disease (AD) as an example, GeroNet identifies meaningful genes that may play key roles in connecting aging and ARDs. The top modules identified by GeroNet in AD significantly overlap with modules identified from a large scale AD brain gene expression experiment, supporting that GeroNet indeed reveals the underlying biological processes involved in the disease. PMID:27582315

  11. Physiological Antioxidative Network of the Bilirubin System in Aging and Age-Related Diseases

    PubMed Central

    Kim, Sung Young; Park, Sang Chul

    2012-01-01

    Oxidative stress is detrimental to life process and is particularly responsible for aging and age-related diseases. Thus, most organisms are well equipped with a spectrum of biological defense mechanisms against oxidative stress. The major efficient antioxidative mechanism is the glutathione system, operating a redox cycling mechanism for glutathione utilization, which consists of glutathione and its peroxidase and reductase. However, this system is mainly effective for hydrophilic oxidants, while lipophilic oxidants require another scavenging system. Since many age-related pathological conditions are related to lipid peroxidation, especially in association with the aging process, the physiological role of the scavenging system for lipophilic oxidants should be considered. In this regard, the biliverdin to bilirubin conversion pathway, via biliverdin reductase (BVR), is suggested to be another major protective mechanism that scavenges lipophilic oxidants because of the lipophilic nature of bilirubin. The efficiency of this bilirubin system might be potentiated by operation of the intertwined bicyclic systems of the suggested redox metabolic cycle of biliverdin and bilirubin and the interactive control cycle of BVR and heme oxygenase. In order to combat oxidative stress, both antioxidative systems against hydrophilic and lipophilic oxidants are required to work cooperatively. In this regard, the roles of the bilirubin system in aging and age-related diseases are reassessed in this review, and their interacting networks are evaluated. PMID:22457648

  12. The Age-Related Eye Disease Study (AREDS): Design Implications AREDS Report No. 1

    PubMed Central

    2006-01-01

    The Age-Related Eye Disease Study (AREDS) was initially conceived as a long-term multicenter, prospective study of the clinical course of age-related macular degeneration (AMD) and age-related cataract. Data on progression rates and risk factors from the study will increase understanding of the clinical course of both conditions, generate hypotheses about etiology, and aid in the design of clinical trials of potential interventions. In addition to collecting natural history data, AREDS includes a clinical trial of high-dose vitamin and mineral supplements for AMD and a clinical trial of high-dose vitamin supplements for cataract. The clinical trials were initiated largely because of the widespread public use in the United States of commercially available pharmacologic doses of vitamins and minerals to treat these two eye conditions and the absence of definitive studies on the safety and efficacy of their use. Important design issues for the clinical trials include: defining cataract and AMD, estimating event rates, determining the type and dosage of vitamins and minerals to be tested for each condition, and identifying the parameters necessary for monitoring safety and efficacy. This paper describes the AREDS design, including the study rationale and operational structure, and the approach adopted to combine, for two diseases, clinical trials with a natural history study. PMID:10588299

  13. Corruption and Spread of Pathogenic Proteins in Neurodegenerative Diseases*

    PubMed Central

    Walker, Lary C.; LeVine, Harry

    2012-01-01

    With advancing age, the brain becomes increasingly susceptible to neurodegenerative diseases, most of which are characterized by the misfolding and errant aggregation of certain proteins. The induction of aggregation involves a crystallization-like seeding mechanism by which a specific protein is structurally corrupted by its misfolded conformer. The latest research indicates that, once formed, proteopathic seeds can spread from one locale to another via cellular uptake, transport, and release. Impeding this process could represent a unified therapeutic strategy for slowing the progression of a wide range of currently intractable disorders. PMID:22879600

  14. Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease.

    PubMed

    Sepe, Sara; Milanese, Chiara; Gabriels, Sylvia; Derks, Kasper W J; Payan-Gomez, Cesar; van IJcken, Wilfred F J; Rijksen, Yvonne M A; Nigg, Alex L; Moreno, Sandra; Cerri, Silvia; Blandini, Fabio; Hoeijmakers, Jan H J; Mastroberardino, Pier G

    2016-05-31

    The underlying relation between Parkinson's disease (PD) etiopathology and its major risk factor, aging, is largely unknown. In light of the causative link between genome stability and aging, we investigate a possible nexus between DNA damage accumulation, aging, and PD by assessing aging-related DNA repair pathways in laboratory animal models and humans. We demonstrate that dermal fibroblasts from PD patients display flawed nucleotide excision repair (NER) capacity and that Ercc1 mutant mice with mildly compromised NER exhibit typical PD-like pathological alterations, including decreased striatal dopaminergic innervation, increased phospho-synuclein levels, and defects in mitochondrial respiration. Ercc1 mouse mutants are also more sensitive to the prototypical PD toxin MPTP, and their transcriptomic landscape shares important similarities with that of PD patients. Our results demonstrate that specific defects in DNA repair impact the dopaminergic system and are associated with human PD pathology and might therefore constitute an age-related risk factor for PD. PMID:27210754

  15. The Broad Impact of TOM40 on Neurodegenerative Diseases in Aging

    PubMed Central

    Gottschalk, William K.; Lutz, Michael W.; He, Yu Ting; Saunders, Ann M.; Burns, Daniel K.; Roses, Allen D.; Chiba-Falek, Ornit

    2015-01-01

    Mitochondrial dysfunction is an important factor in the pathogenesis of age-related diseases, including neurodegenerative diseases like Alzheimer’s and Parkinson’s spectrum disorders. A polymorphism in Translocase of the Outer Mitochondrial Membrane – 40 kD (TOMM40) is associated with risk and age-of onset of late-onset AD, and is the only nuclear- encoded gene identified in genetic studies to date that presumably contributes to LOAD-related mitochondria dysfunction. In this review, we describe the TOM40-mediated mitochondrial protein import mechanism, and discuss the evidence linking TOM40 with Alzheimer’s (AD) and Parkinson’s (PD) diseases. All but 36 of the >~1,500 mitochondrial proteins are encoded by the nucleus and are synthesized on cytoplasmic ribosomes, and most of these are imported into mitochondria through the TOM complex, of which TOM40 is the central pore, mediating communication between the cytoplasm and the mitochondrial interior. APP enters and obstructs the TOM40 pore, inhibiting import of OXPHOS-related proteins and disrupting the mitochondrial redox balance. Other pathogenic proteins, such as Aβ and alpha-synuclein, readily pass through the pore and cause toxic effects by directly inhibiting mitochondrial enzymes. Healthy mitochondria normally import and degrade the PD-related protein Pink1, but Pink1 exits mitochondria if the membrane potential collapses and initiates Parkin-mediated mitophagy. Under normal circumstances, this process helps clear dysfunctional mitochondria and contributes to cellular health, but PINK1 mutations associated with PD exit mitochondria with intact membrane potentials, disrupting mitochondrial dynamics, leading to pathology. Thus, TOM40 plays a central role in the mitochondrial dysfunction that underlies age-related neurodegenerative diseases. Learning about the factors that control TOM40 levels and activity, and how TOM40, specifically, and the TOM complex, generally, interacts with potentially pathogenic

  16. Corpora Amylacea in Neurodegenerative Diseases: Cause or Effect?

    PubMed Central

    Rohn, Troy T.

    2015-01-01

    The presence of corpora amylacea (CA) in the CNS is associated with both normal aging and neurodegenerative conditions including Alzheimer’s disease (AD) and vascular dementia (VaD). CA are spherical bodies ranging in diameter (10–50 μm) and whose origin has been documented to be derived from both neural and glial sources. CA are reported to be primarily composed of glucose polymers, but approximately 4% of the total weight of CA is consistently composed of protein. CA are typically localized in the subpial, periventricular and perivascular regions within the CNS. The presence of CA in VaD has recently been documented and of interest was the localization of CA within the hippocampus proper. Despite numerous efforts, the precise role of CA in normal aging or disease is not known. The purpose of this mini review is to highlight the potential function of CA in various neurodegenerative disorders with an emphasis on the potential role if any these structures may play in the etiology of these diseases. PMID:26550607

  17. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    SciTech Connect

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  18. Advances in Epigenetics and Epigenomics for Neurodegenerative Diseases

    PubMed Central

    Qureshi, Irfan A.

    2015-01-01

    In the post-genomic era, epigenetic factors—literally those that are “over” or “above” genetic ones and responsible for controlling the expression and function of genes—have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer’s and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders. PMID:21671162

  19. Morbidity risks among older adults with pre-existing age-related diseases.

    PubMed

    Akushevich, Igor; Kravchenko, Julia; Ukraintseva, Svetlana; Arbeev, Konstantin; Kulminski, Alexander; Yashin, Anatoliy I

    2013-12-01

    Multi-morbidity is common among older adults; however, for many aging-related diseases there is no information for U.S. elderly population on how earlier-manifested disease affects the risk of another disease manifested later during patient's lifetime. Quantitative evaluation of risks of cancer and non-cancer diseases for older adults with pre-existing conditions is performed using the Surveillance, Epidemiology, and End Results (SEER) Registry data linked to the Medicare Files of Service Use (MFSU). Using the SEER-Medicare data containing individual records for 2,154,598 individuals, we empirically evaluated age patterns of incidence of age-associated diseases diagnosed after the onset of earlier manifested disease and compared these patterns with those in general population. Individual medical histories were reconstructed using information on diagnoses coded in MFSU, dates of medical services/procedures, and Medicare enrollment/disenrollment. More than threefold increase of subsequent diseases risk was observed for 15 disease pairs, majority of them were i) diseases of the same organ and/or system (e.g., Parkinson disease for patients with Alzheimer disease, HR=3.77, kidney cancer for patients with renal failure, HR=3.28) or ii) disease pairs with primary diseases being fast-progressive cancers (i.e., lung, kidney, and pancreas), e.g., ulcer (HR=4.68) and melanoma (HR=4.15) for patients with pancreatic cancer. Lower risk of subsequent disease was registered for 20 disease pairs, mostly among patients with Alzheimer's or Parkinson's disease, e.g., decreased lung cancer risk among patients with Alzheimer's (HR=0.64) and Parkinson's (HR=0.60) disease. Synergistic and antagonistic dependences in geriatric disease risks were observed among US elderly confirming known and detecting new associations of wide spectrum of age-associated diseases. The results can be used in optimization of screening, prevention and treatment strategies of chronic diseases among U.S. elderly

  20. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases.

    PubMed

    Cuenca, Nicolás; Fernández-Sánchez, Laura; Campello, Laura; Maneu, Victoria; De la Villa, Pedro; Lax, Pedro; Pinilla, Isabel

    2014-11-01

    Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies. PMID:25038518

  1. Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases

    PubMed Central

    Martin, Antonio; De Vivo, Giulia; Gentile, Vittorio

    2011-01-01

    Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Parkinson's disease, supranuclear palsy, Huntington's disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This paper focuses on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity. PMID:21350675

  2. A simulation system for biomarker evolution in neurodegenerative disease.

    PubMed

    Young, Alexandra L; Oxtoby, Neil P; Ourselin, Sebastien; Schott, Jonathan M; Alexander, Daniel C

    2015-12-01

    We present a framework for simulating cross-sectional or longitudinal biomarker data sets from neurodegenerative disease cohorts that reflect the temporal evolution of the disease and population diversity. The simulation system provides a mechanism for evaluating the performance of data-driven models of disease progression, which bring together biomarker measurements from large cross-sectional (or short term longitudinal) cohorts to recover the average population-wide dynamics. We demonstrate the use of the simulation framework in two different ways. First, to evaluate the performance of the Event Based Model (EBM) for recovering biomarker abnormality orderings from cross-sectional datasets. Second, to evaluate the performance of a differential equation model (DEM) for recovering biomarker abnormality trajectories from short-term longitudinal datasets. Results highlight several important considerations when applying data-driven models to sporadic disease datasets as well as key areas for future work. The system reveals several important insights into the behaviour of each model. For example, the EBM is robust to noise on the underlying biomarker trajectory parameters, under-sampling of the underlying disease time course and outliers who follow alternative event sequences. However, the EBM is sensitive to accurate estimation of the distribution of normal and abnormal biomarker measurements. In contrast, we find that the DEM is sensitive to noise on the biomarker trajectory parameters, resulting in an over estimation of the time taken for biomarker trajectories to go from normal to abnormal. This over estimate is approximately twice as long as the actual transition time of the trajectory for the expected noise level in neurodegenerative disease datasets. This simulation framework is equally applicable to a range of other models and longitudinal analysis techniques. PMID:26356148

  3. Age-related changes and diseases of the ocular surface and cornea.

    PubMed

    Gipson, Ilene K

    2013-12-01

    Aging of the ocular surface and corneal tissues, major components of the visual system, causes major eye disease and results in substantial cost in medical and social terms. These diseases include the highly prevalent dry eye disease that affects the ocular surface and its glands, leading to tear film alterations, discomfort, and decreased vision. Studies show that 14.4% of the population in the United States older than 50 years have dry eye disease and demonstrate that it is particularly prevalent among women. Annual medical costs per patient with dry eye in the United States are estimated at $783 per year, with an overall medical cost adjusted to prevalence of $3.84 billion per year. Societal costs, which include loss of productivity, are estimated per patient at $11,302 per year, with overall costs adjusted to prevalence of $55.4 billion per year. Because there are few effective treatments for the disease, more research on its etiology and mechanisms is warranted and needed. Increased public education about risk factors for the disease is also required. Another major age-related eye disease of the cornea that leads to vision impairment and potentially blindness if left untreated is Fuchs' endothelial corneal dystrophy. This disease leads to loss of the endothelial cells on the internal side of the cornea that are responsible for keeping the cornea in the proper hydration state to ensure its transparency to light. The mechanism of cell loss is unknown, and the only treatment available to date is surgical transplantation of the cornea or inner part of the cornea. These medically costly procedures require donor corneas, eye banking, and medical follow-up, with accrued costs. Fuchs' endothelial corneal dystrophy is a major cause of corneal transplantation in the United States; therefore, research support is needed to determine the mechanism of this age-related disease, to develop medical, nonsurgical methods for treatment. PMID:24335068

  4. Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity

    PubMed Central

    Fortney, Kristen; Dobriban, Edgar; Garagnani, Paolo; Pirazzini, Chiara; Monti, Daniela; Mari, Daniela; Atzmon, Gil; Barzilai, Nir; Franceschi, Claudio; Owen, Art B.; Kim, Stuart K.

    2015-01-01

    We developed a new statistical framework to find genetic variants associated with extreme longevity. The method, informed GWAS (iGWAS), takes advantage of knowledge from large studies of age-related disease in order to narrow the search for SNPs associated with longevity. To gain support for our approach, we first show there is an overlap between loci involved in disease and loci associated with extreme longevity. These results indicate that several disease variants may be depleted in centenarians versus the general population. Next, we used iGWAS to harness information from 14 meta-analyses of disease and trait GWAS to identify longevity loci in two studies of long-lived humans. In a standard GWAS analysis, only one locus in these studies is significant (APOE/TOMM40) when controlling the false discovery rate (FDR) at 10%. With iGWAS, we identify eight genetic loci to associate significantly with exceptional human longevity at FDR < 10%. We followed up the eight lead SNPs in independent cohorts, and found replication evidence of four loci and suggestive evidence for one more with exceptional longevity. The loci that replicated (FDR < 5%) included APOE/TOMM40 (associated with Alzheimer’s disease), CDKN2B/ANRIL (implicated in the regulation of cellular senescence), ABO (tags the O blood group), and SH2B3/ATXN2 (a signaling gene that extends lifespan in Drosophila and a gene involved in neurological disease). Our results implicate new loci in longevity and reveal a genetic overlap between longevity and age-related diseases and traits, including coronary artery disease and Alzheimer’s disease. iGWAS provides a new analytical strategy for uncovering SNPs that influence extreme longevity, and can be applied more broadly to boost power in other studies of complex phenotypes. PMID:26677855

  5. Virtual imaging laboratories for marker discovery in neurodegenerative diseases.

    PubMed

    Frisoni, Giovanni B; Redolfi, Alberto; Manset, David; Rousseau, Marc-Étienne; Toga, Arthur; Evans, Alan C

    2011-08-01

    The unprecedented growth, availability and accessibility of imaging data from people with neurodegenerative conditions has led to the development of computational infrastructures, which offer scientists access to large image databases and e-Science services such as sophisticated image analysis algorithm pipelines and powerful computational resources, as well as three-dimensional visualization and statistical tools. Scientific e-infrastructures have been and are being developed in Europe and North America that offer a suite of services for computational neuroscientists. The convergence of these initiatives represents a worldwide infrastructure that will constitute a global virtual imaging laboratory. This will provide computational neuroscientists with a virtual space that is accessible through an ordinary web browser, where image data sets and related clinical variables, algorithm pipelines, computational resources, and statistical and visualization tools will be transparently accessible to users irrespective of their physical location. Such an experimental environment will be instrumental to the success of ambitious scientific initiatives with high societal impact, such as the prevention of Alzheimer disease. In this article, we provide an overview of the currently available e-infrastructures and consider how computational neuroscience in neurodegenerative disease might evolve in the future. PMID:21727938

  6. Role of the Retromer Complex in Neurodegenerative Diseases

    PubMed Central

    Li, Chaosi; Shah, Syed Zahid Ali; Zhao, Deming; Yang, Lifeng

    2016-01-01

    The retromer complex is a protein complex that plays a central role in endosomal trafficking. Retromer dysfunction has been linked to a growing number of neurological disorders. The process of intracellular trafficking and recycling is crucial for maintaining normal intracellular homeostasis, which is partly achieved through the activity of the retromer complex. The retromer complex plays a primary role in sorting endosomal cargo back to the cell surface for reuse, to the trans-Golgi network (TGN), or alternatively to specialized endomembrane compartments, in which the cargo is not subjected to lysosomal-mediated degradation. In most cases, the retromer acts as a core that interacts with associated proteins, including sorting nexin family member 27 (SNX27), members of the vacuolar protein sorting 10 (VPS10) receptor family, the major endosomal actin polymerization-promoting complex known as Wiskott-Aldrich syndrome protein and scar homolog (WASH), and other proteins. Some of the molecules carried by the retromer complex are risk factors for neurodegenerative diseases. Defects such as haplo-insufficiency or mutations in one or several units of the retromer complex lead to various pathologies. Here, we summarize the molecular architecture of the retromer complex and the roles of this system in intracellular trafficking related the pathogenesis of neurodegenerative diseases. PMID:26973516

  7. Role of macrophage migration inhibitory factor in age-related lung disease.

    PubMed

    Sauler, Maor; Bucala, Richard; Lee, Patty J

    2015-07-01

    The prevalence of many common respiratory disorders, including pneumonia, chronic obstructive lung disease, pulmonary fibrosis, and lung cancer, increases with age. Little is known of the host factors that may predispose individuals to such diseases. Macrophage migration inhibitory factor (MIF) is a potent upstream regulator of the immune system. MIF is encoded by variant alleles that occur commonly in the population. In addition to its role as a proinflammatory cytokine, a growing body of literature demonstrates that MIF influences diverse molecular processes important for the maintenance of cellular homeostasis and may influence the incidence or clinical manifestations of a variety of chronic lung diseases. This review highlights the biological properties of MIF and its implication in age-related lung disease. PMID:25957294

  8. Genetic susceptibility testing for neurodegenerative diseases: Ethical and practice issues

    PubMed Central

    Roberts, J. Scott; Uhlmann, Wendy R.

    2013-01-01

    As the genetics of neurodegenerative disease become better understood, opportunities for genetic susceptibility testing for at-risk individuals will increase. Such testing raises important ethical and practice issues related to test access, informed consent, risk estimation and communication, return of results, and policies to prevent genetic discrimination. The advent of direct-to-consumer genetic susceptibility testing for various neurodegenerative disorders (including Alzheimer’s disease, Parkinson’s disease, and certain prion diseases) means that ethical and practical challenges must be faced not only in traditional research and clinical settings, but also in broader society. This review addresses several topics relevant to the development and implementation of genetic susceptibility tests across research, clinical, and consumer settings; these include appropriate indications for testing, the implications of different methods for disclosing test results, clinical versus personal utility of risk information, psychological and behavioral responses to test results, testing of minors, genetic discrimination, and ethical dilemmas posed by whole-genome sequencing. We also identify future areas of likely growth in the field, including pharmacogenomics and genetic screening for individuals considering or engaged in activities that pose elevated risk of brain injury (e.g., football players, military personnel). APOE gene testing for risk of Alzheimer’s disease is used throughout as an instructive case example, drawing upon the authors’ experience as investigators in a series of multisite randomized clinical trials that have examined the impact of disclosing APOE genotype status to interested individuals (e.g., first-degree relatives, persons with mild cognitive impairment). PMID:23583530

  9. Perspective: A Critical Look at the Ancillary Age-Related Eye Disease Study 2: Nutrition and Cognitive Function Results in Older Individuals with Age-Related Macular Degeneration.

    PubMed

    Hammond, Billy R; Renzi-Hammond, Lisa M

    2016-05-01

    A large body of literature suggests that the dietary carotenoids lutein and zeaxanthin and long-chain polyunsaturated fatty acids such as docosahexaenoic acid are related to improved cognitive function across the life span. A recent report by the Age-Related Eye Disease Study (AREDS) group appears to contradict the general findings of others in the field. In this review, we look critically at the methods, study designs, and analysis techniques used in the larger body of literature and compare them with the recent AREDS reports. PMID:27184270

  10. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases.

    PubMed

    Bacioglu, Mehtap; Maia, Luis F; Preische, Oliver; Schelle, Juliane; Apel, Anja; Kaeser, Stephan A; Schweighauser, Manuel; Eninger, Timo; Lambert, Marius; Pilotto, Andrea; Shimshek, Derya R; Neumann, Ulf; Kahle, Philipp J; Staufenbiel, Matthias; Neumann, Manuela; Maetzler, Walter; Kuhle, Jens; Jucker, Mathias

    2016-07-01

    A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases. PMID:27292537

  11. Revisiting Metal Toxicity in Neurodegenerative Diseases and Stroke: Therapeutic Potential

    PubMed Central

    Mitra, Joy; Vasquez, Velmarini; Hegde, Pavana M; Boldogh, Istvan; Mitra, Sankar; Kent, Thomas A; Rao, Kosagi S; Hegde, Muralidhar L

    2015-01-01

    Excessive accumulation of pro-oxidant metals, observed in affected brain regions, has consistently been implicated as a contributor to the brain pathology including neurodegenerative diseases and acute injuries such as stroke. Furthermore, the potential interactions between metal toxicity and other commonly associated etiological factors, such as misfolding/aggregation of amyloidogenic proteins or genomic damage, are poorly understood. Decades of research provide compelling evidence implicating metal overload in neurological diseases and stroke. However, the utility of metal toxicity as a therapeutic target is controversial, possibly due to a lack of comprehensive understanding of metal dyshomeostasis-mediated neuronal pathology. In this article, we discuss the current understanding of metal toxicity and the challenges associated with metal-targeted therapies. PMID:25717476

  12. Neurodegenerative diseases: quantitative predictions of protein-RNA interactions.

    PubMed

    Cirillo, Davide; Agostini, Federico; Klus, Petr; Marchese, Domenica; Rodriguez, Silvia; Bolognesi, Benedetta; Tartaglia, Gian Gaetano

    2013-02-01

    Increasing evidence indicates that RNA plays an active role in a number of neurodegenerative diseases. We recently introduced a theoretical framework, catRAPID, to predict the binding ability of protein and RNA molecules. Here, we use catRAPID to investigate ribonucleoprotein interactions linked to inherited intellectual disability, amyotrophic lateral sclerosis, Creutzfeuld-Jakob, Alzheimer's, and Parkinson's diseases. We specifically focus on (1) RNA interactions with fragile X mental retardation protein FMRP; (2) protein sequestration caused by CGG repeats; (3) noncoding transcripts regulated by TAR DNA-binding protein 43 TDP-43; (4) autogenous regulation of TDP-43 and FMRP; (5) iron-mediated expression of amyloid precursor protein APP and α-synuclein; (6) interactions between prions and RNA aptamers. Our results are in striking agreement with experimental evidence and provide new insights in processes associated with neuronal function and misfunction. PMID:23264567

  13. Neurodegenerative diseases: Quantitative predictions of protein–RNA interactions

    PubMed Central

    Cirillo, Davide; Agostini, Federico; Klus, Petr; Marchese, Domenica; Rodriguez, Silvia; Bolognesi, Benedetta; Tartaglia, Gian Gaetano

    2013-01-01

    Increasing evidence indicates that RNA plays an active role in a number of neurodegenerative diseases. We recently introduced a theoretical framework, catRAPID, to predict the binding ability of protein and RNA molecules. Here, we use catRAPID to investigate ribonucleoprotein interactions linked to inherited intellectual disability, amyotrophic lateral sclerosis, Creutzfeuld-Jakob, Alzheimer’s, and Parkinson’s diseases. We specifically focus on (1) RNA interactions with fragile X mental retardation protein FMRP; (2) protein sequestration caused by CGG repeats; (3) noncoding transcripts regulated by TAR DNA-binding protein 43 TDP-43; (4) autogenous regulation of TDP-43 and FMRP; (5) iron-mediated expression of amyloid precursor protein APP and α-synuclein; (6) interactions between prions and RNA aptamers. Our results are in striking agreement with experimental evidence and provide new insights in processes associated with neuronal function and misfunction. PMID:23264567

  14. Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases.

    PubMed

    Goldstein, David S

    2012-07-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities,treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple,interacting effectors regulated by homeostatic comparators—"homeostats". Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. "Allostatic load" refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states).Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion,and time, eventually leading to engine breakdown,allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholaminesin the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions,environmental exposures, repeated stress-related catecholamine release, and time. PMID:22297542

  15. Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases.

    PubMed

    Goldstein, D S

    2011-04-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple interacting effectors regulated by homeostatic comparators-"homeostats." Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. "Allostatic load" refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholamines in the neuronal cytoplasm are autotoxic and that catecholamines from storage visicles leak into the cytoplasm continuously during life. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:21615193

  16. Stress, Allostatic Load, Catecholamines, and Other Neurotransmitters in Neurodegenerative Diseases

    PubMed Central

    2016-01-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators—“homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholamines in the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:22297542

  17. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders.

    PubMed

    Mahley, Robert W

    2016-07-01

    Apolipoprotein (apo) E was initially described as a lipid transport protein and major ligand for low density lipoprotein (LDL) receptors with a role in cholesterol metabolism and cardiovascular disease. It has since emerged as a major risk factor (causative gene) for Alzheimer's disease and other neurodegenerative disorders. Detailed understanding of the structural features of the three isoforms (apoE2, apoE3, and apoE4), which differ by only a single amino acid interchange, has elucidated their unique functions. ApoE2 and apoE4 increase the risk for heart disease: apoE2 increases atherogenic lipoprotein levels (it binds poorly to LDL receptors), and apoE4 increases LDL levels (it binds preferentially to triglyceride-rich, very low density lipoproteins, leading to downregulation of LDL receptors). ApoE4 also increases the risk for neurodegenerative diseases, decreases their age of onset, or alters their progression. ApoE4 likely causes neurodegeneration secondary to its abnormal structure, caused by an interaction between its carboxyl- and amino-terminal domains, called domain interaction. When neurons are stressed or injured, they synthesize apoE to redistribute cholesterol for neuronal repair or remodeling. However, because of its altered structure, neuronal apoE4 undergoes neuron-specific proteolysis, generating neurotoxic fragments (12-29 kDa) that escape the secretory pathway and cause mitochondrial dysfunction and cytoskeletal alterations, including tau phosphorylation. ApoE4-associated pathology can be prevented by small-molecule structure correctors that block domain interaction by converting apoE4 to a molecule that resembles apoE3 both structurally and functionally. Structure correctors are a potential therapeutic approach to reduce apoE4 pathology in both cardiovascular and neurological disorders. PMID:27277824

  18. Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases.

    PubMed

    Calabrese, Vittorio; Cornelius, Carolin; Mancuso, Cesare; Barone, Eugenio; Calafato, Stella; Bates, Timothy; Rizzarelli, Enrico; Kostova, Albena T Dinkova

    2009-01-01

    The ability of a cell to counteract stressful conditions, known as cellular stress response, requires the activation of pro-survival pathways and the production of molecules with anti-oxidant, anti-apoptotic or pro-apoptotic activities. Among the cellular pathways conferring protection against oxidative stress, a key role is played by vitagenes, which include heat shock proteins (Hsps) heme oxygenase-1 and Hsp70, as well as the thioredoxin/thioredoxin reductase system. Heat shock response contributes to establish a cytoprotective state in a wide variety of human diseases, including inflammation, cancer, aging and neurodegenerative disorders. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Dietary antioxidants, such as curcumin, L-carnitine/acetyl-L-carnitine and carnosine have recently been demonstrated in vitro to be neuroprotective through the activation of hormetic pathways, including vitagenes. In the present review we discuss the importance of vitagenes in the cellular stress response and analyse, from a pharmacological point of view, the potential use of dietary antioxidants in the treatment of neurodegenerative disorders in humans. PMID:19273073

  19. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases.

    PubMed

    Irwin, Michael H; Moos, Walter H; Faller, Douglas V; Steliou, Kosta; Pinkert, Carl A

    2016-05-01

    Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc. PMID:26899010

  20. TAR DNA-binding protein 43 in neurodegenerative disease

    PubMed Central

    Chen-Plotkin, Alice S.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2010-01-01

    In 2006, TAR DNA-binding protein 43 (TDP-43), a highly conserved nuclear protein, was identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and in the most common variant of frontotemporal lobar degeneration (FTLD), FTLD-U, which is characterized by cytoplasmic inclusions that stain positive for ubiquitin but negative for tau and α-synuclein. Since then, rapid advances have been made in our understanding of the physiological function of TDP-43 and the role of this protein in neurodegeneration. These advances link ALS and FTLD-U (now designated FTLD-TDP) to a shared mechanism of disease. In this Review, we summarize the current evidence regarding the normal function of TDP-43 and the TDP-43 pathology observed in FTLD-TDP, ALS, and other neurodegenerative diseases wherein TDP-43 pathology co-occurs with other disease-specific lesions (for example, with amyloid plaques and neurofibrillary tangles in Alzheimer disease). Moreover, we discuss the accumulating data that support our view that FTLD-TDP and ALS represent two ends of a spectrum of primary TDP-43 proteinopathies. Finally, we comment on the importance of recent advances in TDP-43-related research to neurological practice, including the new opportunities to develop better diagnostics and disease-modifying therapies for ALS, FTLD-TDP, and related disorders exhibiting TDP-43 pathology. PMID:20234357

  1. Natural Compounds Preventing Neurodegenerative Diseases Through Autophagic Activation.

    PubMed

    Huang, Zhe; Adachi, Hiroaki

    2016-06-01

    Neurodegenerative diseases (NDDs) are a group of intractable diseases that significantly affect human health. To date, the pathogenesis of NDDs is still poorly understood and effective disease-modifying therapies for NDDs have not been established. NDDs share the common morphological characteristic of the deposition of abnormal proteins in the nervous system, including neurons. Autophagy is one of the major processes by which damaged organelles and abnormal proteins are removed from cells. Impairment of autophagy has been found to be involved in the pathogenesis of NDDs, and the regulation of autophagy may become a therapeutic strategy for NDDs. In recent years, some active compounds from plants have been found to regulate autophagy and exert neuroprotection against NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia 3, and amyotrophic lateral sclerosis, via activating autophagy. In this paper, we review recent advances in the use of active ingredients from plants for the regulation of autophagy and treatment of NDDs. PMID:27302727

  2. Strategies for molecular imaging dementia and neurodegenerative diseases

    PubMed Central

    Schaller, Bernhard J

    2008-01-01

    Dementia represents a heterogeneous term that has evolved to describe the behavioral syndromes associated with a variety of clinical and neuropathological changes during continuing degenerative disease of the brain. As such, there lacks a clear consensus regarding the neuropsychological and other constituent characteristics associated with various cerebrovascular changes in this disease process. But increasing this knowledge has given more insights into memory deterioration in patients suffering from Alzheimer’s disease and other subtypes of dementia. The author reviews current knowledge of the physiological coupling between cerebral blood flow and metabolism in the light of state-of-the-art-imaging methods and its changes in dementia with special reference to Alzheimer’s disease. Different imaging techniques are discussed with respect to their visualizing effect of biochemical, cellular, and/or structural changes in dementia. The pathophysiology of dementia in advanced age is becoming increasingly understood by revealing the underlying basis of neuropsychological changes with current imaging techniques, genetic and pathological features, which suggests that alterations of (neuro) vascular regulatory mechanisms may lead to brain dysfunction and disease. The current view is that cerebrovascular deregulation is seen as a contributor to cerebrovascular pathologies, such as stroke, but also to neurodegenerative conditions, such as Alzheimer’s disease. The better understanding of these (patho) physiological mechanisms may open an approach to new interventional strategies in dementia to enhance neurovascular repair and to protect neurovascular coupling. PMID:18830391

  3. Neural Basis of Interpersonal Traits in Neurodegenerative Diseases

    PubMed Central

    Sollberger, Marc; Stanley, Christine M.; Wilson, Stephen M.; Gyurak, Anett; Beckman, Victoria; Growdon, Matthew; Jang, Jung; Weiner, Michael W.; Miller, Bruce L.; Rankin, Katherine P.

    2009-01-01

    Several functional and structural imaging studies have investigated the neural basis of personality in healthy adults, but human lesions studies are scarce. Personality changes are a common symptom in patients with neurodegenerative diseases like frontotemporal dementia (FTD) and semantic dementia (SD), allowing a unique window into the neural basis of personality. In this study, we used the Interpersonal Adjective Scales to investigate the structural basis of eight interpersonal traits (dominance, arrogance, coldness, introversion, submissiveness, ingenuousness, warmth, and extraversion) in 257 subjects: 214 patients with neurodegenerative diseases such as FTD, SD, progressive non-fluent aphasia, Alzheimer’s disease, amnestic mild cognitive impairment, corticobasal degeneration, and progressive supranuclear palsy and 43 healthy elderly people. Measures of interpersonal traits were correlated with regional atrophy pattern using voxel-based morphometry (VBM) analysis of structural MR images. Interpersonal traits mapped onto distinct brain regions depending on the degree to which they involved agency and affiliation. Interpersonal traits high in agency related to left dorsolateral prefrontal and left lateral frontopolar regions, whereas interpersonal traits high in affiliation related to right ventromedial prefrontal and right anteromedial temporal regions. Consistent with the existing literature on neural networks underlying social cognition, these results indicate that brain regions related to externally-focused, executive control-related processes underlie agentic interpersonal traits such as dominance, whereas brain regions related to internally-focused, emotion- and reward-related processes underlie affiliative interpersonal traits such as warmth. In addition, these findings indicate that interpersonal traits are subserved by complex neural networks rather than discrete anatomic areas. PMID:19540253

  4. Aging Is Not a Disease: Distinguishing Age-Related Macular Degeneration from Aging

    PubMed Central

    Ardeljan, Daniel; Chan, Chi-Chao

    2013-01-01

    Age-related macular degeneration (AMD) is a disease of the outer retina, characterized most significantly by atrophy of photoreceptors and retinal pigment epithelium accompanied with or without choroidal neovascularization. Development of AMD has been recognized as contingent on environmental and genetic risk factors, the strongest being advanced age. In this review, we highlight pathogenic changes that destabilize ocular homeostasis and promote AMD development. With normal aging, photoreceptors are steadily lost, Bruch's membrane thickens, the choroid thins, and hard drusen may form in the periphery. In AMD, many of these changes are exacerbated in addition to the development of disease-specific factors such as soft macular drusen. Para-inflammation, which can be thought of as an intermediate between basal and robust levels of inflammation, develops within the retina in an attempt to maintain ocular homeostasis, reflected by increased expression of the anti-inflammatory cytokine IL-10 coupled with shifts in macrophage plasticity from the pro-inflammatory M1 to the anti-inflammatory M2 polarization. In AMD, imbalances in the M1 and M2 populations together with activation of retinal microglia are observed and potentially contribute to tissue degeneration. Nonetheless, the retina persists in a state of chronic inflammation and increased expression of certain cytokines and inflammasomes is observed. Since not everyone develops AMD, the vital question to ask is how the body establishes a balance between normal age-related changes and the pathological phenotypes in AMD. PMID:23933169

  5. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases?

    PubMed Central

    Sahoo, Sanghamitra; Meijles, Daniel N.; Pagano, Patrick J.

    2016-01-01

    Reactive oxygen species (ROS) and oxidative stress have long been linked to aging and diseases prominent in the elderly such as hypertension, atherosclerosis, diabetes and atrial fibrillation (AF). NADPH oxidases (Nox) are a major source of ROS in the vasculature and are key players in mediating redox signalling under physiological and pathophysiological conditions. In this review, we focus on the Nox-mediated ROS signalling pathways involved in the regulation of ‘longevity genes’ and recapitulate their role in age-associated vascular changes and in the development of age-related cardiovascular diseases (CVDs). This review is predicated on burgeoning knowledge that Nox-derived ROS propagate tightly regulated yet varied signalling pathways, which, at the cellular level, may lead to diminished repair, the aging process and predisposition to CVDs. In addition, we briefly describe emerging Nox therapies and their potential in improving the health of the elderly population. PMID:26814203

  6. Possible role of ABO system in age-related diseases and longevity: a narrative review

    PubMed Central

    2014-01-01

    ABO blood group antigens are expressed either on the surface of red blood cells either on a variety of other cells. Based on the available knowledge of the genes involved in their biosynthesis and their tissue distribution, their polymorphism has been suggested to provide intraspecies diversity allowing to cope with diverse and rapidly evolving pathogens. Accordingly, the different prevalence of ABO group genotypes among the populations has been demonstrated to be driven by malaria selection. In the similar manner, a particular ABO blood group may contribute to favour life-extension via biological mechanisms important for surviving or eluding serious disease. In this review, we will suggest the possible association of ABO group with age-related diseases and longevity taking into account the biological role of the ABO glycosyltransferases on some inflammatory mediators as adhesion molecules. PMID:25512760

  7. Epidemiology of neurodegenerative diseases in sub-Saharan Africa: a systematic review

    PubMed Central

    2014-01-01

    Background Sub-Saharan African (SSA) countries are experiencing rapid transitions with increased life expectancy. As a result the burden of age-related conditions such as neurodegenerative diseases might be increasing. We conducted a systematic review of published studies on common neurodegenerative diseases, and HIV-related neurocognitive impairment in SSA, in order to identify research gaps and inform prevention and control solutions. Methods We searched MEDLINE via PubMed, ‘Banque de Données de Santé Publique’ and the database of the ‘Institut d’Epidemiologie Neurologique et de Neurologie Tropicale’ from inception to February 2013 for published original studies from SSA on neurodegenerative diseases and HIV-related neurocognitive impairment. Screening and data extraction were conducted by two investigators. Bibliographies and citations of eligible studies were investigated. Results In all 144 publications reporting on dementia (n = 49 publications, mainly Alzheimer disease), Parkinsonism (PD, n = 20), HIV-related neurocognitive impairment (n = 47), Huntington disease (HD, n = 19), amyotrophic lateral sclerosis (ALS, n = 15), cerebellar degeneration (n = 4) and Lewy body dementia (n = 1). Of these studies, largely based on prevalent cases from retrospective data on urban populations, half originated from Nigeria and South Africa. The prevalence of dementia (Alzheimer disease) varied between <1% and 10.1% (0.7% and 5.6%) in population-based studies and from <1% to 47.8% in hospital-based studies. Incidence of dementia (Alzheimer disease) ranged from 8.7 to 21.8/1000/year (9.5 to 11.1), and major risk factors were advanced age and female sex. HIV-related neurocognitive impairment’s prevalence (all from hospital-based studies) ranged from <1% to 80%. Population-based prevalence of PD and ALS varied from 10 to 235/100,000, and from 5 to 15/100,000 respectively while that for Huntington disease was 3.5/100,000. Equivalent

  8. Age-Related Changes in Immunological Factors and Their Relevance in Allergic Disease Development During Childhood

    PubMed Central

    Chang, Woo-Sung; Kim, Eun-Jin; Lim, Yeon-Mi; Yoon, Dankyu; Son, Jo-Young; Park, Jung-Won; Hong, Soo-Jong; Cho, Sang-Heon

    2016-01-01

    Purpose Allergic diseases are triggered by Th2-mediated immune reactions to allergens and orchestrated by various immunological factors, including immune cells and cytokines. Although many reports have suggested that childhood is the critical period in the onset of allergic diseases and aging leads to alter the susceptibility of an individual to allergic diseases, age-related changes in various immunological factors in healthy individuals as well as their difference between healthy and allergic children have not yet been established. Methods We investigated the ratio of Th1/Th2 cells and the levels of 22 allergy-related cytokines across all age groups in individuals who were classified as clinically non-atopic and healthy. We also examined their differences between healthy and allergic children to evaluate immunological changes induced by the development of allergic diseases during childhood. Results The Th1/Th2 ratio rose gradually during the growth period including childhood, reaching peak values in the twenties-thirties age group. Th1/Th2 ratios were significantly lower in allergic children than in healthy controls, whereas 14 of 22 cytokines were significantly higher in allergic children than in healthy controls. On the other hand, there were no differences in Th1/Th2 ratios and cytokines between healthy and allergic adolescents. Conclusions In this study, age-related changes in Th1/Th2 ratios were found in normal controls across all age groups, and decreases in Th1/Th2 ratio were observed with increasing of 14 cytokines in allergic children. The results of this study may be helpful as reference values for both monitoring immunological changes according to aging in healthy individuals and distinguishing between normal and allergic subjects in terms of immune cells and soluble factors. PMID:27126727

  9. European survey on the opinion and use of micronutrition in age-related macular degeneration: 10 years on from the Age-Related Eye Disease Study

    PubMed Central

    Aslam, Tariq; Delcourt, Cécile; Holz, Frank; García-Layana, Alfredo; Leys, Anita; Silva, Rufino M; Souied, Eric

    2014-01-01

    Purpose To evaluate ophthalmologists’ opinion of, and use of, micronutritional dietary supplements 10 years after publication of the first Age-Related Eye Disease Study (AREDS) study. Methods Participation was solicited from 4,000 European ophthalmologists. Responding physicians were screened, and those treating at least 40 patients with age-related macular degeneration (AMD) per month and prescribing nutrition supplements at least 4 times per month were admitted and completed a 40-item questionnaire. Results The surveyed sample included 112 general ophthalmologists and 104 retinal specialists. Most nutritional supplements (46%) were initiated when early/intermediate AMD was confirmed, although 18% were initiated on confirmation of neovascular AMD. Clinical studies were well known: 90% were aware of AREDS, with 88% aware of AREDS1 and 36% aware of the, as-yet-unpublished, AREDS2 studies. Respondents considered lutein, zeaxanthin, zinc, omega-3, and vitamins to be the most important components of nutritional supplements, with the results of AREDS2 already having been taken into consideration by many. Ophthalmologists anticipate more scientific studies as well as improved product quality but identify cost as a barrier to wider uptake. Conclusion Micronutrition is now part of the routine management of AMD for many ophthalmologists. Ophthalmologists choosing to use nutritional supplements are well-informed regarding current scientific studies. PMID:25336904

  10. Differential diagnosis of neurodegenerative diseases using structural MRI data

    PubMed Central

    Koikkalainen, Juha; Rhodius-Meester, Hanneke; Tolonen, Antti; Barkhof, Frederik; Tijms, Betty; Lemstra, Afina W.; Tong, Tong; Guerrero, Ricardo; Schuh, Andreas; Ledig, Christian; Rueckert, Daniel; Soininen, Hilkka; Remes, Anne M.; Waldemar, Gunhild; Hasselbalch, Steen; Mecocci, Patrizia; van der Flier, Wiesje; Lötjönen, Jyrki

    2016-01-01

    Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by

  11. Differential diagnosis of neurodegenerative diseases using structural MRI data.

    PubMed

    Koikkalainen, Juha; Rhodius-Meester, Hanneke; Tolonen, Antti; Barkhof, Frederik; Tijms, Betty; Lemstra, Afina W; Tong, Tong; Guerrero, Ricardo; Schuh, Andreas; Ledig, Christian; Rueckert, Daniel; Soininen, Hilkka; Remes, Anne M; Waldemar, Gunhild; Hasselbalch, Steen; Mecocci, Patrizia; van der Flier, Wiesje; Lötjönen, Jyrki

    2016-01-01

    Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by

  12. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence

    PubMed Central

    Kolodkin, Alexey; Simeonidis, Evangelos; Balling, Rudi; Westerhoff, Hans V.

    2012-01-01

    Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction) is also an emergent property, emerging from a perturbation of the network. On the one hand, the biomolecular network of every individual is unique and this is evident when similar disease-producing agents cause different individual pathologies. Consequently, a personalized model and approach for every patient may be required for therapies to become effective across mankind. On the other hand, diverse combinations of internal and external perturbation factors may cause a similar shift in network functioning. We offer this as an explanation for the multi-factorial nature of most diseases: they are “systems biology diseases,” or “network diseases.” Here we use neurodegenerative diseases, like Parkinson's disease (PD), as an example to show that due to the inherent complexity of these networks, it is difficult to understand multi-factorial diseases with simply our “naked brain.” When describing interactions between biomolecules through mathematical equations and integrating those equations into a mathematical model, we try to reconstruct the emergent properties of the system in silico. The reconstruction of emergence from interactions between huge numbers of macromolecules is one of the aims of systems biology. Systems biology approaches enable us to break through the limitation of the human brain to perceive the extraordinarily large number of interactions, but this also means that we delegate the understanding of reality to the computer. We no longer recognize all those essences in the system's design crucial for important physiological behavior (the so-called “design principles” of the system). In this paper we review evidence that by using more abstract approaches and by experimenting in silico, one may still be able to discover and understand the design principles that

  13. Circulating inflamma-miRs in aging and age-related diseases

    PubMed Central

    Olivieri, Fabiola; Rippo, Maria R.; Procopio, Antonio D.; Fazioli, Francesca

    2013-01-01

    Evidence on circulating microRNAs (miRNAs) is indisputably opening a new era in systemic and tissue-specific biomarker research, highlighting new inter-cellular and inter-organ communication mechanisms. Circulating miRNAs might be active messengers eliciting a systemic response as well as non-specific “by-products” of cell activity and even of cell death; in either case they have the potential to be clinically relevant biomarkers for a number of physiopathological processes, including inflammatory responses and inflammation-related conditions. A large amount of evidence indicates that miRNAs can exert two opposite roles, activating as well as inhibiting inflammatory pathways. The inhibitory action probably relates to the need for activating anti-inflammatory mechanisms to counter potent proinflammatory signals, like the nuclear factor kappaB (NF-κB) pathway, to prevent cell and tissue destruction. MiRNA-based anti-inflammatory mechanisms may acquire a crucial role during aging, where a chronic, low-level proinflammatory status is likely sustained by the cell senescence secretome and by progressive activation of immune cells over time. This process entails age-related changes, especially in extremely old age, in those circulating miRNAs that are capable of modulating the inflammatory status (inflamma-miRs). Interestingly, a number of such circulating miRNAs seem to be promising biomarkers for the major age-related diseases that share a common chronic, low-level proinflammatory status, such as cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), Alzheimer Disease (AD), rheumatoid arthritis (RA), and cancers. PMID:23805154

  14. Multi-rule quality control for the age-related eye disease study.

    PubMed

    Caudill, Samuel P; Schleicher, Rosemary L; Pirkle, James L

    2008-09-10

    The Age-Related Eye Disease Study (AREDS), sponsored by the National Eye Institute, was designed to study the natural history and risk factors of age-related macular degeneration (AMD) and cataract, and to evaluate the effect of high doses of antioxidants and zinc on eye disease progression. AMD and cataract are leading causes of visual impairment and blindness in the U.S., with frequency of both diseases increasing dramatically after age 65. Participants were randomly chosen to receive antioxidant or placebo tablets. Blood was drawn annually from a subset of patients, and serum concentrations of 17 different nutritional indicators were measured. Because of the complexity of the analytical methods, and possibility of instrument error due to failure of any one of many component parts, several different instruments were used for most analytes. In addition, to assure that the measurement systems were performing adequately across a wide range of concentrations, multiple control pools were monitored with analyte concentrations at low, medium, and high concentrations. We report here the multi-rule quality control system (MRQCS) used during the later part of the trial (AREDS Phase III). This system was designed to monitor systematic error and random within- and among-run error for analytical runs using 1-3 different quality control pools per run and 1-2 measurements of each pool per run. We demonstrate the features of the MRQCS using quality control (QC) data associated with vitamin C measurements. We also provide operating characteristics to demonstrate how the MRQCS responds to increases in systematic and/or random error. PMID:18344178

  15. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases

    PubMed Central

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-01-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  16. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases.

    PubMed

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-03-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  17. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

    PubMed Central

    Davalli, Pierpaola; Mitic, Tijana; Caporali, Andrea; Lauriola, Angela; D'Arca, Domenico

    2016-01-01

    The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging. PMID:27247702

  18. The involvement of microRNAs in neurodegenerative diseases

    PubMed Central

    Maciotta, Simona; Meregalli, Mirella; Torrente, Yvan

    2013-01-01

    Neurodegenerative diseases (NDDs) originate from a loss of neurons in the central nervous system and are severely debilitating. The incidence of NDDs increases with age, and they are expected to become more common due to extended life expectancy. Because no cure is available, these diseases have become a major challenge in neurobiology. The increasing relevance of microRNAs (miRNAs) in biology has prompted investigation into their possible involvement in neurodegeneration in order to identify new therapeutic targets. The idea of using miRNAs as therapeutic targets is not far from realization, but important issues need to be addressed before moving into the clinics. Here, we review what is known about the involvement of miRNAs in the pathogenesis of NDDs. We also report the miRNA expression levels in peripheral tissues of patients affected by NDDs in order to evaluate their application as biomarkers of disease. Finally, discrepancies, innovations, and the effectiveness of collected data will be elucidated and discussed. PMID:24391543

  19. Association between environmental exposure to pesticides and neurodegenerative diseases

    SciTech Connect

    Parron, Tesifon; Requena, Mar; Hernandez, Antonio F.; Alarcon, Raquel

    2011-11-15

    Preliminary studies have shown associations between chronic pesticide exposure in occupational settings and neurological disorders. However, data on the effects of long-term non-occupational exposures are too sparse to allow any conclusions. This study examines the influence of environmental pesticide exposure on a number of neuropsychiatric conditions and discusses their underlying pathologic mechanisms. An ecological study was conducted using averaged prevalence rates of Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral degeneration, polyneuropathies, affective psychosis and suicide attempts in selected Andalusian health districts categorized into areas of high and low environmental pesticide exposure based on the number of hectares devoted to intensive agriculture and pesticide sales per capita. A total of 17,429 cases were collected from computerized hospital records (minimum dataset) between 1998 and 2005. Prevalence rates and the risk of having Alzheimer's disease, Parkinson's disease, multiple sclerosis and suicide were significantly higher in districts with greater pesticide use as compared to those with lower pesticide use. The multivariate analyses showed that the population living in areas with high pesticide use had an increased risk for Alzheimer's disease and suicide attempts and that males living in these areas had increased risks for polyneuropathies, affective disorders and suicide attempts. In conclusion, this study supports and extends previous findings and provides an indication that environmental exposure to pesticides may affect the human health by increasing the incidence of certain neurological disorders at the level of the general population. -- Highlights: Black-Right-Pointing-Pointer Environmental exposure to pesticides and neurodegenerative-psychiatric disorders. Black-Right-Pointing-Pointer Increased risk for Alzheimer's disease and suicide attempts in high exposure areas. Black-Right-Pointing-Pointer Males from

  20. Circulating miRNAs in Ageing and Ageing-Related Diseases

    PubMed Central

    Jung, Hwa Jin; Suh, Yousin

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. They are involved in important biological processes including development, homeostasis, and ageing. Recently, extracellular miRNAs have been discovered in the bloodstream and bodily fluids. These miRNAs are shown to be secreted and circulating in microvesicles (MVs), or in complex with other factors such as RNA-binding proteins and high-density lipoprotein (HDL) particles. These cell-free, circulating miRNAs can be taken into and function as negative regulators of target genes in recipient cells. Here we review the biogenesis and uptake of circulating miRNAs as well as their profiles in ageing and ageing-related diseases. We discuss the emerging role of circulating miRNAs as biomarkers and therapeutic targets. PMID:25269672

  1. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine

    PubMed Central

    Kovacs, Gabor G.

    2016-01-01

    Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials. PMID:26848654

  2. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine.

    PubMed

    Kovacs, Gabor G

    2016-01-01

    Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials. PMID:26848654

  3. Elusive roles for reactive astrocytes in neurodegenerative diseases

    PubMed Central

    Ben Haim, Lucile; Carrillo-de Sauvage, Maria-Angeles; Ceyzériat, Kelly; Escartin, Carole

    2015-01-01

    Astrocytes play crucial roles in the brain and are involved in the neuroinflammatory response. They become reactive in response to virtually all pathological situations in the brain such as axotomy, ischemia, infection, and neurodegenerative diseases (ND). Astrocyte reactivity was originally characterized by morphological changes (hypertrophy, remodeling of processes) and the overexpression of the intermediate filament glial fibrillary acidic protein (GFAP). However, it is unclear how the normal supportive functions of astrocytes are altered by their reactive state. In ND, in which neuronal dysfunction and astrocyte reactivity take place over several years or decades, the issue is even more complex and highly debated, with several conflicting reports published recently. In this review, we discuss studies addressing the contribution of reactive astrocytes to ND. We describe the molecular triggers leading to astrocyte reactivity during ND, examine how some key astrocyte functions may be enhanced or altered during the disease process, and discuss how astrocyte reactivity may globally affect ND progression. Finally we will consider the anticipated developments in this important field. With this review, we aim to show that the detailed study of reactive astrocytes may open new perspectives for ND. PMID:26283915

  4. [Effects of resveratrol-induced cellular autophagy in control of neurodegenerative diseases].

    PubMed

    Dong, Wen; Wang, Rong

    2016-01-01

    Cellular autophagy is a major degradative pathway for clearance of aggregate-prone proteins and damaged organelles. It plays an important role in regulating cellular homeostasis, cell growth and development, and disease development. Dysfunctional autophagy contributes to the pathology of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, in which specific pathological protein accumulation occurs. A growing body of evidence suggests that resveratrol plays a significantly role in the regulation of autophagy and clearance of pathological proteins. Resveratrol is a potential drug for neurodegenerative diseases therapy. This review focuses on the effects of resveratrol on cellular autophagy and clinical application in the control of neurodegenerative diseases. PMID:27405156

  5. Genetic Evidence for Role of Carotenoids in Age-Related Macular Degeneration in the Carotenoids in Age-Related Eye Disease Study (CAREDS)

    PubMed Central

    Meyers, Kristin J.; Mares, Julie A.; Igo, Robert P.; Truitt, Barbara; Liu, Zhe; Millen, Amy E.; Klein, Michael; Johnson, Elizabeth J.; Engelman, Corinne D.; Karki, Chitra K.; Blodi, Barbara; Gehrs, Karen; Tinker, Lesley; Wallace, Robert; Robinson, Jennifer; LeBlanc, Erin S.; Sarto, Gloria; Bernstein, Paul S.; SanGiovanni, John Paul; Iyengar, Sudha K.

    2014-01-01

    Purpose. We tested variants in genes related to lutein and zeaxanthin status for association with age-related macular degeneration (AMD) in the Carotenoids in Age-Related Eye Disease Study (CAREDS). Methods. Of 2005 CAREDS participants, 1663 were graded for AMD from fundus photography and genotyped for 424 single nucleotide polymorphisms (SNPs) from 24 candidate genes for carotenoid status. Of 337 AMD cases 91% had early or intermediate AMD. The SNPs were tested individually for association with AMD using logistic regression. A carotenoid-related genetic risk model was built using backward selection and compared to existing AMD risk factors using the area under the receiver operating characteristic curve (AUC). Results. A total of 24 variants from five genes (BCMO1, BCO2, NPCL1L1, ABCG8, and FADS2) not previously related to AMD and four genes related to AMD in previous studies (SCARB1, ABCA1, APOE, and ALDH3A2) were associated independently with AMD, after adjusting for age and ancestry. Variants in all genes (not always the identical SNPs) were associated with lutein and zeaxanthin in serum and/or macula, in this or other samples, except for BCO2 and FADS2. A genetic risk score including nine variants significantly (P = 0.002) discriminated between AMD cases and controls beyond age, smoking, CFH Y402H, and ARMS2 A69S. The odds ratio (95% confidence interval) for AMD among women in the highest versus lowest quintile for the risk score was 3.1 (2.0–4.9). Conclusions. Variants in genes related to lutein and zeaxanthin status were associated with AMD in CAREDS, adding to the body of evidence supporting a protective role of lutein and zeaxanthin in risk of AMD. PMID:24346170

  6. The pathogenic role of the inflammasome in neurodegenerative diseases.

    PubMed

    Freeman, Leslie C; Ting, Jenny P-Y

    2016-01-01

    The inflammasome is a large macromolecular complex that contains multiple copies of a receptor or sensor of pathogen-derived or damage-derived molecular patterns, pro-caspase-1, and an adaptor called ASC (apoptotic speck containing protein with a CARD), which results in caspase-1 maturation. Caspase-1 then mediates the release of pro-inflammatory cytokines such as IL-1β and IL-18. These cytokines play critical roles in mediating immune responses during inflammation and innate immunity. Broader studies of the inflammasome over the years have implicated their roles in the pathogenesis of a variety of inflammatory diseases. Recently, studies have shown that the inflammasome modulates neuroinflammatory cells and the initial stages of neuroinflammation. A secondary cascade of events associated with neuroinflammation (such as oxidative stress) has been shown to activate the inflammasome, making the inflammasome a promising therapeutic target in the modulation of neurodegenerative diseases. This review will focus on the pathogenic role that inflammasomes play in neurologic diseases such as Alzheimer's disease, traumatic brain injury, and multiple sclerosis. We here review the role of the inflammasome in the pathogenesis of traumatic brain injury (TBI). TBI is initiated by physical force exerted to head, resulting in neuronal injury and death. Primary insult is followed by a secondary cascade of events following neuroinflammation such as mitochondrial dysfunction, production of reactive oxygen species, potassium effluxes, and release of circulating DNA. These events can potentially trigger the activation of NLRP3, NLRP1, and AIM2 during TBI but have yet to be confirmed (dashed lines). NLRP3, NLRP1, and AIM2 associate with the adaptor protein ASC, which initiates the cleavage of pro-caspase-1 to the mature form of caspase-1 which cleaves pro-IL-1β and pro-IL-18 into their mature forms of IL-1β and IL-18. PMID:26119245

  7. Alzheimer's Disease and Glaucoma: Imaging the Biomarkers of Neurodegenerative Disease

    PubMed Central

    Valenti, Denise A.

    2010-01-01

    Imaging through the visual system in Alzheimer's disease, with the technology currently in widespread use for the diagnosis and management of eye disease such as glaucoma and macular degeneration, is proving to be promising. In vivo cross-section imaging during an annual comprehensive eye exam has been available for a decade for glaucoma and macular degeneration, and this same imaging, using Optical Coherence Tomography, has been demonstrated to show deficits specific to AD and mild cognitive impairment. These deficits are in the form of nerve fiber layer tissue drop out in the retina and optic nerve. The retrograde loss of nerve fiber layer tissue in the retina and optic nerve may be an early biomarker of AD, and these deficits in the nerve fiber layer of the retina and optic nerve may be the earliest sign of AD, even prior to damage to the hippocampal region that impacts memory. PMID:21253485

  8. Oxidative Stress and Its Significant Roles in Neurodegenerative Diseases and Cancer

    PubMed Central

    Thanan, Raynoo; Oikawa, Shinji; Hiraku, Yusuke; Ohnishi, Shiho; Ma, Ning; Pinlaor, Somchai; Yongvanit, Puangrat; Kawanishi, Shosuke; Murata, Mariko

    2014-01-01

    Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing carbonylated proteins reveal oxidative damage to heat shock proteins in neurodegenerative disease models and inflammation-related cancer, suggesting dysfunction in their antioxidative properties. In neurodegenerative diseases, DNA damage may not only play a role in the induction of apoptosis, but also may inhibit cellular division via telomere shortening. Immunohistochemical analyses showed co-localization of oxidative/nitrative DNA lesions and stemness markers in the cells of inflammation-related cancers. Here, we review oxidative stress and its significant roles in neurodegenerative diseases and cancer. PMID:25547488

  9. ADF/cofilin-actin rods in neurodegenerative diseases

    PubMed Central

    Bamburg, J.R.; Bernstein, B.W.; Davis, R.C.; Flynn, K.C.; Goldsbury, C.; Jensen, J.R.; Maloney, M.T.; Marsden, I.T.; Minamide, L.S.; Pak, C.W.; Shaw, A.E.; Whiteman, I.; Wiggan, O.

    2015-01-01

    Dephosphorylation (activation) of cofilin, an actin binding protein, is stimulated by initiators of neuronal dysfunction and degeneration including oxidative stress, excitotoxic glutamate, ischemia, and soluble forms of β-amyloid peptide (Aβ). Hyperactive cofilin forms rod-shaped cofilin-saturated actin filament bundles (rods). Other proteins are recruited to rods but are not necessary for rod formation. Neuronal cytoplasmic rods accumulate within neurites where they disrupt synaptic function and are a likely cause of synaptic loss without neuronal loss, as occurs early in dementias. Different rod-inducing stimuli target distinct neuronal populations within the hippocampus. Rods form rapidly, often in tandem arrays, in response to stress. They accumulate phosphorylated tau that immunostains for epitopes present in “striated neuropil threads,” characteristic of tau pathology in Alzheimer disease (AD) brain. Thus, rods might aid in further tau modifications or assembly into paired helical filaments, the major component of neurofibrillary tangles (NFTs). Rods can occlude neurites and block vesicle transport. Some rod-inducing treatments cause an increase in secreted Aβ. Thus rods may mediate the loss of synapses, production of excess Aβ, and formation of NFTs, all of the pathological hallmarks of AD. Cofilin-actin rods also form within the nucleus of heat-shocked neurons and are cleared from cells expressing wild type huntingtin protein but not in cells expressing mutant or silenced huntingtin, suggesting a role for nuclear rods in Huntington disease (HD). As an early event in the neurodegenerative cascade, rod formation is an ideal target for therapeutic intervention that might be useful in treatment of many different neurological diseases. PMID:20088812

  10. The role of telomeres and vitamin D in cellular aging and age-related diseases.

    PubMed

    Pusceddu, Irene; Farrell, Christopher-John L; Di Pierro, Angela Maria; Jani, Erika; Herrmann, Wolfgang; Herrmann, Markus

    2015-10-01

    Aging is a complex biological process characterized by a progressive decline of organ functions leading to an increased risk of age-associated diseases and death. Decades of intensive research have identified a range of molecular and biochemical pathways contributing to aging. However, many aspects regarding the regulation and interplay of these pathways are insufficiently understood. Telomere dysfunction and genomic instability appear to be of critical importance for aging at a cellular level. For example, age-related diseases and premature aging syndromes are frequently associated with telomere shortening. Telomeres are repetitive nucleotide sequences that together with the associated sheltrin complex protect the ends of chromosomes and maintain genomic stability. Recent studies suggest that micronutrients, such as vitamin D, folate and vitamin B12, are involved in telomere biology and cellular aging. In particular, vitamin D is important for a range of vital cellular processes including cellular differentiation, proliferation and apoptosis. As a result of the multiple functions of vitamin D it has been speculated that vitamin D might play a role in telomere biology and genomic stability. Here we review existing knowledge about the link between telomere biology and cellular aging with a focus on the role of vitamin D. We searched the literature up to November 2014 for human studies, animal models and in vitro experiments that addressed this topic. PMID:25803084

  11. Mapping Brain Metals to Evaluate Therapies for Neurodegenerative Disease

    PubMed Central

    Popescu, Bogdan Florin Gh; Nichol, Helen

    2013-01-01

    The brain is rich in metals and has a high metabolic rate, making it acutely vulnerable to the toxic effects of endogenously produced free radicals. The abundant metals, iron and copper, transfer single electrons as they cycle between their reduced (Fe2+, Cu1+) and oxidized (Fe3+, Cu2+) states making them powerful catalysts of reactive oxygen species (ROS) production. Even redox inert zinc, if present in excess, can trigger ROS production indirectly by altering mitochondrial function. While metal chelators seem to improve the clinical outcome of several neurodegenerative diseases, their mechanisms of action remain obscure and the effects of long-term use are largely unknown. Most chelators are not specific to a single metal and could alter the distribution of multiple metals in the brain, leading to unexpected consequences over the long-term. We show here how X-ray fluorescence will be a valuable tool to examine the effect of chelators on the distribution and amount of metals in the brain. PMID:20553312

  12. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions.

    PubMed

    Delplace, Vianney; Payne, Samantha; Shoichet, Molly

    2015-12-10

    Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery. PMID:26435454

  13. Molecular links between cellular senescence, longevity and age-related diseases - a systems biology perspective.

    PubMed

    Tacutu, Robi; Budovsky, Arie; Yanai, Hagai; Fraifeld, Vadim E

    2011-12-01

    The role of cellular senescence (CS) in age-related diseases (ARDs) is a quickly emerging topic in aging research. Our comprehensive data mining revealed over 250 genes tightly associated with CS. Using systems biology tools, we found that CS is closely interconnected with aging, longevity and ARDs, either by sharing common genes and regulators or by protein-protein interactions and eventually by common signaling pathways. The most enriched pathways across CS, ARDs and aging-associated conditions (oxidative stress and chronic inflammation) are growth-promoting pathways and the pathways responsible for cell-extracellular matrix interactions and stress response. Of note, the patterns of evolutionary conservation of CS and cancer genes showed a high degree of similarity, suggesting the co-evolution of these two phenomena. Moreover, cancer genes and microRNAs seem to stand at the crossroad between CS and ARDs. Our analysis also provides the basis for new predictions: the genes common to both cancer and other ARD(s) are highly likely candidates to be involved in CS and vice versa. Altogether, this study shows that there are multiple links between CS, aging, longevity and ARDs, suggesting a common molecular basis for all these conditions. Modulating CS may represent a potential pro-longevity and anti-ARDs therapeutic strategy. PMID:22184282

  14. Search for age-related macular degeneration risk variants in Alzheimer disease genes and pathways.

    PubMed

    Logue, Mark W; Schu, Matthew; Vardarajan, Badri N; Farrell, John; Lunetta, Kathryn L; Jun, Gyungah; Baldwin, Clinton T; Deangelis, Margaret M; Farrer, Lindsay A

    2014-06-01

    Several lines of inquiry point to overlapping molecular mechanisms between late-onset Alzheimer disease (AD) and age-related macular degeneration (AMD). We evaluated summarized results from large genome-wide association studies for AD and AMD to test the hypothesis that AD susceptibility loci are also associated with AMD. We observed association of both disorders with genes in a region of chromosome 7, including PILRA and ZCWPW1 (peak AMD SNP rs7792525, minor allele frequency [MAF] = 19%, odds ratio [OR] = 1.14, p = 2.34 × 10(-6)), and with ABCA7 (peak AMD SNP rs3752228, MAF = 0.054, OR = 1.22, p = 0.00012). Next, we evaluated association of AMD with genes in AD-related pathways identified by canonical pathway analysis of AD-associated genes. Significant associations were observed with multiple previously identified AMD risk loci and 2 novel genes: HGS (peak SNP rs8070488, MAF = 0.23, OR = 0.91, p = 7.52 × 10(-5)), which plays a role in the clathrin-mediated endocytosis signaling pathway, and TNF (peak SNP rs2071590, MAF = 0.34, OR = 0.89, p = 1.17 × 10(-5)), which is a member of the atherosclerosis signaling and the LXR/RXR activation pathways. Our results suggest that AMD and AD share genetic mechanisms. PMID:24439028

  15. Nutraceutical properties of extra-virgin olive oil: a natural remedy for age-related disease?

    PubMed

    Virruso, Claudia; Accardi, Giulia; Colonna-Romano, Giuseppina; Candore, Giuseppina; Vasto, Sonya; Caruso, Calogero

    2014-04-01

    The health benefits of the Mediterranean diet can be largely ascribed to the nutraceutical properties of extra-virgin olive oil (EVOO). Mono-unsaturated fatty acids and various phenolic compounds, such as oleocanthal, oleuropein, hydroxytyrosol, and tyrosol, are the main nutraceutical substances of EVOO. These substances have been suggested to have the ability to modulate aging-associated processes. In experimental models, it has been shown that EVOO with high concentrations of polyphenols has anti-inflammatory and anti-oxidant properties. Indeed, it was observed that hydroxytyrosol and oleocanthal inhibit the cyclooxygenases (COX-1 and -2) responsible for prostaglandin production; oleuropein is a radical scavenger that blocks the oxidation of low-density lipoproteins. Due to the relevance of olive oil in the economy of Sicily, our group has been funded to assess the nutraceutical properties of different kinds of olive oil. Indeed, the aim of the study is to evaluate effects of EVOOs, with low and high polyphenols content, on immuno-inflammatory and oxidative stress responses in young and old people. A further objective of our group is to evaluate effects of EVOO, with low and high polyphenol content, on the expression of genes encoding proteins that take part in the insulin/insulin-like growth factor-1 signaling pathway involved in longevity. The results of the study will be useful for producing olive oil enriched in nutraceutical properties that may be likely helpful in the prevention of age-related diseases. PMID:24219356

  16. Strength training in the elderly: effects on risk factors for age-related diseases.

    PubMed

    Hurley, B F; Roth, S M

    2000-10-01

    Strength training (ST) is considered a promising intervention for reversing the loss of muscle function and the deterioration of muscle structure that is associated with advanced age. This reversal is thought to result in improvements in functional abilities and health status in the elderly by increasing muscle mass, strength and power and by increasing bone mineral density (BMD). In the past couple of decades, many studies have examined the effects of ST on risk factors for age-related diseases or disabilities. Collectively, these studies indicate that ST in the elderly: (i) is an effective intervention against sarcopenia because it produces substantial increases in the strength, mass, power and quality of skeletal muscle; (ii) can increase endurance performance; (iii) normalises blood pressure in those with high normal values; (iv) reduces insulin resistance; (v) decreases both total and intra-abdominal fat; (vi) increases resting metabolic rate in older men; (vii) prevents the loss of BMD with age; (viii) reduces risk factors for falls; and (ix) may reduce pain and improve function in those with osteoarthritis in the knee region. However, contrary to popular belief, ST does not increase maximal oxygen uptake beyond normal variations, improve lipoprotein or lipid profiles, or improve flexibility in the elderly. PMID:11048773

  17. Therapeutic Targeting of Redox Signaling in Myofibroblast Differentiation and Age-Related Fibrotic Disease

    PubMed Central

    Sampson, Natalie; Berger, Peter; Zenzmaier, Christoph

    2012-01-01

    Myofibroblast activation plays a central role during normal wound healing. Whereas insufficient myofibroblast activation impairs wound healing, excessive myofibroblast activation promotes fibrosis in diverse tissues (including benign prostatic hyperplasia, BPH) leading to organ dysfunction and also promotes a stromal response that supports tumor progression. The incidence of impaired wound healing, tissue fibrosis, BPH, and certain cancers strongly increases with age. This paper summarizes findings from in vitro fibroblast-to-myofibroblast differentiation systems that serve as cellular models to study fibrogenesis of diverse tissues. Supported by substantial in vivo data, a large body of evidence indicates that myofibroblast differentiation induced by the profibrotic cytokine transforming growth factor beta is driven by a prooxidant shift in redox homeostasis due to elevated production of NADPH oxidase 4 (NOX4)-derived hydrogen peroxide and supported by concomitant decreases in nitric oxide/cGMP signaling and reactive oxygen species (ROS) scavenging enzymes. Fibroblast-to-myofibroblast differentiation can be inhibited and reversed by restoring redox homeostasis using antioxidants or NOX4 inactivation as well as enhancing nitric oxide/cGMP signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases. Current evidence indicates the therapeutic potential of targeting the prooxidant shift in redox homeostasis for the treatment of age-related diseases associated with myofibroblast dysregulation. PMID:23150749

  18. Flavonoid-Based Therapies in the Early Management of Neurodegenerative Diseases12

    PubMed Central

    Solanki, Isha; Parihar, Priyanka; Mansuri, Mohammad Lukman; Parihar, Mordhwaj S

    2015-01-01

    During the past several years, there has been enormous progress in the understanding of the causative factors that initiate neuronal damage in various neurodegenerative diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. Preventing neuronal damage and neuronal death will have a huge clinical benefit. However, despite major advances in causative factors that trigger these neurodegenerative diseases, to date there have been no therapies available that benefit patients who suffer from these diseases. Because most neurodegenerative diseases are late-onset and remain asymptomatic for most of the phases, the therapies initiated in advanced stages of the disease have limited value to patients. It may be possible to prevent or halt the disease progression to a great extent if therapies start at the initial stage of the disease. Such therapies may restore neuronal function by reducing or even eliminating the primary stressor. Flavonoids are key compounds for the development of a new generation of therapeutic agents that are clinically effective in treating neurodegenerative diseases. Regular consumption of flavonoids has been associated with a reduced risk of neurodegenerative diseases. In addition to their antioxidant properties, these polyphenolic compounds exhibit neuroprotective properties by their interaction with cellular signaling pathways followed by transcription and translation that mediate cell function under both normal and pathologic conditions. This review focuses on human intervention studies as well as animal studies on the role of various flavonoids in the prevention of neurodegenerative diseases. PMID:25593144

  19. Flavonoid-based therapies in the early management of neurodegenerative diseases.

    PubMed

    Solanki, Isha; Parihar, Priyanka; Mansuri, Mohammad Lukman; Parihar, Mordhwaj S

    2015-01-01

    During the past several years, there has been enormous progress in the understanding of the causative factors that initiate neuronal damage in various neurodegenerative diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. Preventing neuronal damage and neuronal death will have a huge clinical benefit. However, despite major advances in causative factors that trigger these neurodegenerative diseases, to date there have been no therapies available that benefit patients who suffer from these diseases. Because most neurodegenerative diseases are late-onset and remain asymptomatic for most of the phases, the therapies initiated in advanced stages of the disease have limited value to patients. It may be possible to prevent or halt the disease progression to a great extent if therapies start at the initial stage of the disease. Such therapies may restore neuronal function by reducing or even eliminating the primary stressor. Flavonoids are key compounds for the development of a new generation of therapeutic agents that are clinically effective in treating neurodegenerative diseases. Regular consumption of flavonoids has been associated with a reduced risk of neurodegenerative diseases. In addition to their antioxidant properties, these polyphenolic compounds exhibit neuroprotective properties by their interaction with cellular signaling pathways followed by transcription and translation that mediate cell function under both normal and pathologic conditions. This review focuses on human intervention studies as well as animal studies on the role of various flavonoids in the prevention of neurodegenerative diseases. PMID:25593144

  20. Neurodegenerative Diseases of the Retina and Potential for Protection and Recovery

    PubMed Central

    Schmidt, K.-G; Bergert, H; Funk, R.H.W

    2008-01-01

    Recent advances in our understanding of the mechanisms in the cascade of events resulting in retinal cell death in ocular pathologies like glaucoma, diabetic retinopathy and age-related macular degeneration led to the common descriptive term of neurodegenerative diseases of the retina. The final common pathophysiologic pathway of these diseases includes a particular form of metabolic stress, resulting in an insufficient supply of nutrients to the respective target structures (optic nerve head, retina). During metabolic stress, glutamate is released initiating the death of neurones containing ionotropic glutamate (N-methyl-D-aspartat, NMDA) receptors present on ganglion cells and a specific type of amacrine cells. Experimental studies demonstrate that several drugs reduce or prevent the death of retinal neurones deficient of nutrients. These agents generally block NMDA receptors to prevent the action of glutamate or halt the subsequent pathophysiologic cycle resulting in cell death. The major causes for cell death following activation of NMDA receptors are the influx of calcium and sodium into cells, the generation of free radicals linked to the formation of advanced glycation endproducts (AGEs) and/or advanced lipoxidation endproducts (ALEs) as well as defects in the mitochondrial respiratory chain. Substances preventing these cytotoxic events are considered to be potentially neuroprotective. PMID:19305795

  1. Neighborhood Deprivation and Risk of Age-Related Eye Diseases: A Follow-up Study in Sweden

    PubMed Central

    Hamano, Tsuyoshi; Li, Xinjun; Tanito, Masaki; Nabika, Toru; Shiwaku, Kuninori; Sundquist, Jan; Sundquist, Kristina

    2016-01-01

    Purpose To examine whether there is an association between neighborhood deprivation and age-related eye diseases, particularly macular degeneration, cataract, diabetes-related eye complications, and glaucoma. Methods The study population comprised a nationwide sample of 2,060,887 men and 2,250,851 women aged 40 years or older living in Sweden who were followed from 1 January 2000 until the first hospitalization/outpatient registration for age-related eye disease during the study period, death, emigration, or the end of the study period on 31 December 2010. Multilevel logistic regression was used to estimate the association between neighborhood deprivation and age-related eye diseases. Results In men, the odds ratio (OR) for age-related eye diseases for those living in high-deprivation neighborhoods compared to those living in low-deprivation neighborhoods remained significant after adjustment for potential confounding factors (macular degeneration, OR 1.08, 95% confidence interval, CI, 1.03–1.12; cataract, OR 1.31, 95% CI 1.26–1.35; diabetes-related eye complications, OR 1.36, 95% CI 1.30–1.43; glaucoma, OR 1.11, 95% CI 1.06–1.15). In women, similar patterns were observed (macular degeneration, OR 1.11, 95% CI 1.07–1.15; cataract, OR 1.36, 95% CI 1.31–1.40; diabetes-related eye complications, OR 1.50, 95% CI 1.42–1.59; glaucoma, OR 1.12, 95% CI 1.08–1.17). Conclusion Our results suggest that neighborhood deprivation is associated with age-related eye diseases in both men and women. These results implicate that individual- as well as neighborhood-level factors are important for preventing age-related eye diseases. PMID:26395658

  2. Neurodegenerative mutants in Drosophila: a means to identify genes and mechanisms involved in human diseases?

    PubMed

    Kretzschmar, Doris

    2005-11-01

    There are 50 ways to leave your lover (Simon 1987) but many more to kill your brain cells. Several neurodegenerative diseases in humans, like Alzheimer's disease, have been intensely studied but the underlying cellular and molecular mechanisms are still unknown for most of them. For those syndromes where associated gene products have been identified their biochemistry and physiological as well as pathogenic function is often still under debate. This is in part due to the inherent limitations of genetic analyses in humans and other mammals and therefore experimentally accessible invertebrate in vivo models, such as Caenorhabditis elegans and Drosophila melanogaster, have recently been introduced to investigate neurodegenerative syndromes. Several laboratories have used transgenic approaches in Drosophila to study the human genes associated with neurodegenerative diseases. This has added substantially to our understanding of the mechanisms leading to neurodegenerative diseases in humans. The isolation and characterization of Drosophila mutants, which display a variety of neurodegenerative phenotypes, also provide valuable insights into genes, pathways, and mechanisms causing neurodegeneration. So far only about two dozen such mutants have been described but already their characterization reveals an involvement of various cellular functions in neurodegeneration, ranging from preventing oxidative stress to RNA editing. Some of the isolated genes can already be associated with human neurodegenerative diseases and hopefully the isolation and characterization of more of these mutants, together with an analysis of homologous genes in vertebrate models, will provide insights into the genetic and molecular basis of human neurodegenerative diseases. PMID:16187075

  3. Role of Astroglial Hemichannels and Pannexons in Memory and Neurodegenerative Diseases

    PubMed Central

    Orellana, Juan A.; Retamal, Mauricio A.; Moraga-Amaro, Rodrigo; Stehberg, Jimmy

    2016-01-01

    Under physiological conditions, astroglial hemichannels and pannexons allow the release of gliotransmitters from astrocytes. These gliotransmitters are critical in modulating synaptic transmission, plasticity and memory. However, recent evidence suggests that under pathological conditions, they may be central in the development of various neurodegenerative diseases. Here we review current literature on the role of astroglial hemichannels and pannexons in memory, stress and the development of neurodegenerative diseases, and propose that they are not only crucial for normal brain function, including memory, but also a potential target for the treatment of neurodegenerative diseases. PMID:27489539

  4. A Systematic Investigation into Aging Related Genes in Brain and Their Relationship with Alzheimer’s Disease

    PubMed Central

    Meng, Guofeng; Zhong, Xiaoyan; Mei, Hongkang

    2016-01-01

    Aging, as a complex biological process, is accompanied by the accumulation of functional loses at different levels, which makes age to be the biggest risk factor to many neurological diseases. Even following decades of investigation, the process of aging is still far from being fully understood, especially at a systematic level. In this study, we identified aging related genes in brain by collecting the ones with sustained and consistent gene expression or DNA methylation changes in the aging process. Functional analysis with Gene Ontology to these genes suggested transcriptional regulators to be the most affected genes in the aging process. Transcription regulation analysis found some transcription factors, especially Specificity Protein 1 (SP1), to play important roles in regulating aging related gene expression. Module-based functional analysis indicated these genes to be associated with many well-known aging related pathways, supporting the validity of our approach to select aging related genes. Finally, we investigated the roles of aging related genes on Alzheimer’s Disease (AD). We found that aging and AD related genes both involved some common pathways, which provided a possible explanation why aging made the brain more vulnerable to Alzheimer’s Disease. PMID:26937969

  5. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases

    PubMed Central

    Jansen, Anne H. P.; Reits, Eric A. J.; Hol, Elly M.

    2014-01-01

    The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s disease, leading to the hypothesis that proteasomal impairment is contributing to these diseases. So far, most research related to the UPS in neurodegenerative diseases has been focused on neurons, while glial cells have been largely disregarded in this respect. However, glial cells are essential for proper neuronal function and adopt a reactive phenotype in neurodegenerative diseases, thereby contributing to an inflammatory response. This process is called reactive gliosis, which in turn affects UPS function in glial cells. In many neurodegenerative diseases, mostly neurons show accumulation and aggregation of ubiquitinated proteins, suggesting that glial cells may be better equipped to maintain proper protein homeostasis. During an inflammatory reaction, the immunoproteasome is induced in glia, which may contribute to a more efficient degradation of disease-related proteins. Here we review the role of the UPS in glial cells in various neurodegenerative diseases, and we discuss how studying glial cell function might provide essential information in unraveling mechanisms of neurodegenerative diseases. PMID:25152710

  6. Is age-related failure of metabolic reprogramming a principal mediator in idiopathic Parkinson's disease? Implications for treatment and inverse cancer risk.

    PubMed

    Engel, Peter A

    2016-08-01

    Idiopathic Parkinson's disease (IPD) is a neurodegenerative disorder characterized by selective degeneration of the substantia nigra pars compacta (SNc), dorsal motor nucleus of the vagus and other vulnerable nervous system regions characterized by extensive axonal arborization and intense energy requirements. Systemic age-related depression of mitochondrial function, oxidative phosphorylation (OXPHOS) and depressed expression of genes supporting energy homeostasis is more severe in IPD than normal aging such that energy supply may exceed regional demand. In IPD, the overall risk of malignancy is reduced. Cancer is a collection of proliferative diseases marked by malignant transformation, dysregulated mitosis, invasion and metastasis. Many cancers demonstrate normal mitochondrial function, preserved OXPHOS, competent mechanisms of energy homeostasis, and metabolic reprogramming capacities that are lacking in IPD. Metabolic reprogramming adjusts OXPHOS and glycolytic pathways in response to changing metabolic needs. These opposite metabolic features form the basis of a two component hypothesis. First, that depressed mitochondrial function, OXPHOS deficiency and impaired metabolic reprogramming contribute to focal energy failure, neurodegeneration and disease expression in IPD. Second, that the same systemic metabolic deficits inhibit development and proliferation of malignancies in IPD. Studies of mitochondrial aging, familial PD (FPD), the lysosomal storage disorder, Gaucher's disease, Parkinson's disease cybrids, the mitochondrial cytopathies, and disease-related metabolic reprogramming both in IPD and cancer provide support for this model. PMID:27372878

  7. MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases

    PubMed Central

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of mi- RNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly onto center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress. PMID:22194706

  8. DIETARY CARBOHYDRATE AND PROGRESSION OF AGE-RELATED MACULAR DEGENERATION, A PROSPECTIVE STUDY FROM THE AGE-RELATED EYE DISEASE STUDY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Cross-sectional studies indicate that diets that provide a higher dietary glycemic index (dGI) are associated with increased risk of age-related macular degeneration (AMD). No prospective studies have addressed this issue. Methods dGI was calculated as the weighted average of GIs from foo...

  9. The Prevalence of Age-Related Eye Diseases and Visual Impairment in Aging: Current Estimates

    PubMed Central

    Klein, Ronald; Klein, Barbara E. K.

    2013-01-01

    Purpose. To examine prevalence of five age-related eye conditions (age-related cataract, AMD, open-angle glaucoma, diabetic retinopathy [DR], and visual impairment) in the United States. Methods. Review of published scientific articles and unpublished research findings. Results. Cataract, AMD, open-angle glaucoma, DR, and visual impairment prevalences are high in four different studies of these conditions, especially in people over 75 years of age. There are disparities among racial/ethnic groups with higher age-specific prevalence of DR, open-angle glaucoma, and visual impairment in Hispanics and blacks compared with whites, higher prevalence of age-related cataract in whites compared with blacks, and higher prevalence of late AMD in whites compared with Hispanics and blacks. The estimates are based on old data and do not reflect recent changes in the distribution of age and race/ethnicity in the United States population. There are no epidemiologic estimates of prevalence for many visually-impairing conditions. Conclusions. Ongoing prevalence surveys designed to provide reliable estimates of visual impairment, AMD, age-related cataract, open-angle glaucoma, and DR are needed. It is important to collect objective data on these and other conditions that affect vision and quality of life in order to plan for health care needs and identify areas for further research. PMID:24335069

  10. Emotional and behavioral symptoms in neurodegenerative disease: A model for studying the neural bases of psychopathology

    PubMed Central

    Levenson, Robert W.; Sturm, Virginia E.; Haase, Claudia M.

    2014-01-01

    Disruptions in emotional, cognitive, and social behavior are common in neurodegenerative disease and many forms of psychopathology. Because neurodegenerative diseases have much clearer patterns of brain atrophy, they may provide a window into the neural bases of these common symptoms. We discuss five common symptoms that occur in both neurodegenerative disease and psychopathology (i.e., anxiety, dysphoric mood, apathy, disinhibition, and euphoric mood) and their associated neural circuitry. We focus on two neurodegenerative diseases (i.e., Alzheimer’s disease and frontotemporal dementia) that are common and well-characterized in terms of emotion, cognition, and social behavior and in patterns of associated neuropathology. Neurodegenerative diseases provide a powerful model system for studying the neural correlates of psychopathological symptoms; this is supported by evidence indicating convergence with psychiatric syndromes (e.g., symptoms of disinhibition associated with dysfunction in orbitofrontal cortex and inferior frontal gyrus in both frontotemporal dementia and bipolar disorder). We conclude that neurodegenerative diseases can play an important role in future approaches to the assessment, prevention, and treatment of mental illness. PMID:24437433

  11. [Non-pharmacologic therapy of age-related macular degeneration, based on the etiopathogenesis of the disease].

    PubMed

    Fischer, Tamás

    2015-07-12

    It has a great therapeutic significance that the disorder of the vascular endothelium, which supplies the affected ocular structures, plays a major role in the development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfuncition and age-related macular degeneration is accompanied by a general inflammatory response. The vascular wall including those in chorioids may be activated by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic and genetic factors causing a protracted host defence response with a consequent vascular damage, which leads to age-related macular degeneration. Based on this concept, age-related macular degeneration is a local manifestation of the systemic vascular disease. This recognition should have therapeutic implications because restoration of endothelial dysfunction can stabilize the condition of chronic vascular disease including age-related macular degeneration, as well. Restoration of endothelial dysfunction by non-pharmacological or pharmacological interventions may prevent the development or improve endothelial dysfunction resulting in prevention or improvement of age-related macular degeneration. Non-pharmacological interventions which may have beneficial effect in endothelial dysfunction include (1) smoking cessation; (2) reduction of increased body weight; (3) adequate physical activity; (4) appropriate diet (a) proper dose of flavonoids, polyphenols and kurcumin; (b) omega-3 long-chain polyunsaturated fatty acids: docosahexaenoic acid and eicosapentaenoic acid; (c) carotenoids, lutein and zeaxanthins), (d) management of dietary glycemic index, (e) caloric restriction, and (5) elimination of stressful lifestyle. Non-pharmacological interventions should be preferable even if medicaments are also used for the treatment of endothelial dysfunction. PMID:26149505

  12. Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: A systematic bioinformatics-based critique of preclinical models.

    PubMed

    Burns, Terry C; Li, Matthew D; Mehta, Swapnil; Awad, Ahmed J; Morgan, Alexander A

    2015-07-15

    Translational research for neurodegenerative disease depends intimately upon animal models. Unfortunately, promising therapies developed using mouse models mostly fail in clinical trials, highlighting uncertainty about how well mouse models mimic human neurodegenerative disease at the molecular level. We compared the transcriptional signature of neurodegeneration in mouse models of Alzheimer׳s disease (AD), Parkinson׳s disease (PD), Huntington׳s disease (HD) and amyotrophic lateral sclerosis (ALS) to human disease. In contrast to aging, which demonstrated a conserved transcriptome between humans and mice, only 3 of 19 animal models showed significant enrichment for gene sets comprising the most dysregulated up- and down-regulated human genes. Spearman׳s correlation analysis revealed even healthy human aging to be more closely related to human neurodegeneration than any mouse model of AD, PD, ALS or HD. Remarkably, mouse models frequently upregulated stress response genes that were consistently downregulated in human diseases. Among potential alternate models of neurodegeneration, mouse prion disease outperformed all other disease-specific models. Even among the best available animal models, conserved differences between mouse and human transcriptomes were found across multiple animal model versus human disease comparisons, surprisingly, even including aging. Relative to mouse models, mouse disease signatures demonstrated consistent trends toward preserved mitochondrial function protein catabolism, DNA repair responses, and chromatin maintenance. These findings suggest a more complex and multifactorial pathophysiology in human neurodegeneration than is captured through standard animal models, and suggest that even among conserved physiological processes such as aging, mice are less prone to exhibit neurodegeneration-like changes. This work may help explain the poor track record of mouse-based translational therapies for neurodegeneration and provides a path

  13. Pathology of the Aging Brain in Domestic and Laboratory Animals, and Animal Models of Human Neurodegenerative Diseases.

    PubMed

    Youssef, S A; Capucchio, M T; Rofina, J E; Chambers, J K; Uchida, K; Nakayama, H; Head, E

    2016-03-01

    According to the WHO, the proportion of people over 60 years is increasing and expected to reach 22% of total world's population in 2050. In parallel, recent animal demographic studies have shown that the life expectancy of pet dogs and cats is increasing. Brain aging is associated not only with molecular and morphological changes but also leads to different degrees of behavioral and cognitive dysfunction. Common age-related brain lesions in humans include brain atrophy, neuronal loss, amyloid plaques, cerebrovascular amyloid angiopathy, vascular mineralization, neurofibrillary tangles, meningeal osseous metaplasia, and accumulation of lipofuscin. In aging humans, the most common neurodegenerative disorder is Alzheimer's disease (AD), which progressively impairs cognition, behavior, and quality of life. Pathologic changes comparable to the lesions of AD are described in several other animal species, although their clinical significance and effect on cognitive function are poorly documented. This review describes the commonly reported age-associated neurologic lesions in domestic and laboratory animals and the relationship of these lesions to cognitive dysfunction. Also described are the comparative interspecies similarities and differences to AD and other human neurodegenerative diseases including Parkinson's disease and progressive supranuclear palsy, and the spontaneous and transgenic animal models of these diseases. PMID:26869150

  14. Neurodegenerative diseases: occupational occurrence and potential risk factors, 1982 through 1991.

    PubMed Central

    Schulte, P A; Burnett, C A; Boeniger, M F; Johnson, J

    1996-01-01

    OBJECTIVES: To identify potential occupational risk factors, this study examined the occupational occurrence of various neurodegenerative diseases. METHODS: Death certificates from 27 states in the National Occupational Mortality Surveillance System were evaluated for 1982 to 1991. Proportionate mortality ratios were calculated by occupation for presenile dementia, Alzheimer's disease, Parkinson's disease, and motor neuron disease. RESULTS: Excess mortality was observed for all four categories in the following occupational categories: teachers; medical personnel; machinists and machine operators; scientists; writers/designers/entertainers; and support and clerical workers. Clusters of three neurodegenerative diseases were also found in occupations involving pesticides, solvents, and electromagnetic fields and in legal, library, social, and religious work. Early death from motor neuron disease was found for firefighters, janitors, military personnel, teachers, excavation machine operators, and veterinarians, among others. CONCLUSIONS: Neurodegenerative disease occurs more frequently in some occupations than in others, and this distribution, which may indicate occupational risk factors, should be further investigated. PMID:8806381

  15. A Review of Quality of Life after Predictive Testing for and Earlier Identification of Neurodegenerative Diseases

    PubMed Central

    Paulsen, Jane S.; Nance, Martha; Kim, Ji-In; Carlozzi, Noelle E.; Panegyres, Peter K.; Erwin, Cheryl; Goh, Anita; McCusker, Elizabeth; Williams, Janet K.

    2013-01-01

    The past decade has witnessed an explosion of evidence suggesting that many neurodegenerative diseases can be detected years, if not decades, earlier than previously thought. To date, these scientific advances have not provoked any parallel translational or clinical improvements. There is an urgency to capitalize on this momentum so earlier detection of disease can be more readily translated into improved health-related quality of life for families at risk for, or suffering with, neurodegenerative diseases. In this review, we discuss health-related quality of life (HRQOL) measurement in neurodegenerative diseases and the importance of these “patient reported outcomes” for all clinical research. Next, we address HRQOL following early identification or predictive genetic testing in some neurodegenerative diseases: Huntington disease, Alzheimer's disease, Parkinson's disease, Dementia with Lewy bodies, frontotemporal dementia, amyotrophic lateral sclerosis, prion diseases, hereditary ataxias, Dentatorubral-pallidoluysian atrophy and Wilson's disease. After a brief report of available direct-to-consumer genetic tests, we address the juxtaposition of earlier disease identification with assumed reluctance towards predictive genetic testing. Forty-one studies examining health related outcomes following predictive genetic testing for neurodegenerative disease suggested that (a) extreme or catastrophic outcomes are rare; (b) consequences commonly include transiently increased anxiety and/or depression; (c) most participants report no regret; (d) many persons report extensive benefits to receiving genetic information; and (e) stigmatization and discrimination for genetic diseases are poorly understood and policy and laws are needed. Caution is appropriate for earlier identification of neurodegenerative diseases but findings suggest further progress is safe, feasible and likely to advance clinical care. PMID:24036231

  16. There's Something Wrong with my MAM; the ER–Mitochondria Axis and Neurodegenerative Diseases

    PubMed Central

    Paillusson, Sebastien; Stoica, Radu; Gomez-Suaga, Patricia; Lau, Dawn H.W.; Mueller, Sarah; Miller, Tanya; Miller, Christopher C.J.

    2016-01-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or ‘MAM’). Moreover, several recent studies have shown that disturbances to ER–mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings. PMID:26899735

  17. Aging, Neurodegenerative Disease, and Traumatic Brain Injury: The Role of Neuroimaging

    PubMed Central

    Levine, Brian

    2015-01-01

    Abstract Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. This issue has recently garnered a great deal of attention due to publicity surrounding chronic traumatic encephalopathy (CTE) in professional athletes, although CTE is but one of several neurodegenerative disorders associated with a history of TBI. Here, we review the literative on neurodegenerative disorders linked to remote TBI. We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease. PMID:25192426

  18. The Influence of Na+, K+-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence

    PubMed Central

    Kinoshita, Paula F.; Leite, Jacqueline A.; Orellana, Ana Maria M.; Vasconcelos, Andrea R.; Quintas, Luis E. M.; Kawamoto, Elisa M.; Scavone, Cristoforo

    2016-01-01

    Decreased Na+, K+-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1−4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging. PMID:27313535

  19. Catastrophic cliffs: a partial suggestion for selective vulnerability in neurodegenerative diseases.

    PubMed

    Hardy, John

    2016-04-15

    For each of the neurodegenerative syndromes, we now know many pathogenic and/or causative genetic risk loci. Here, I suggest that this wealth of knowledge now allows us to start to understand what are the specific vulnerabilities of different neuronal types and to suggest that each neuronal type is closer to different modes of catastrophic failure. I suggest that this is part of the basis for selective vulnerability in neurodegenerative disease. PMID:27068985

  20. Nanoparticles and Colloids as Contributing Factors in Neurodegenerative Disease

    PubMed Central

    Bondy, Stephen C.

    2011-01-01

    This review explores the processes underlying the deleterious effects of the presence of insoluble or colloidal depositions within the central nervous system. These materials are chemically unreactive and can have a prolonged residence in the brain. They can be composed of mineral or proteinaceous materials of intrinsic or exogenous origin. Such nanoparticulates and colloids are associated with a range of slow-progressing neurodegenerative states. The potential common basis of toxicity of these materials is discussed. A shared feature of these disorders involves the appearance of deleterious inflammatory changes in the CNS. This may be due to extended and ineffective immune responses. Another aspect is the presence of excess levels of reactive oxygen species within the brain. In addition with their induction by inflammatory events, these may be further heightened by the presence of redox active transition metals to the large surface area afforded by nanoparticles and amphipathic micelles. PMID:21776226

  1. Age-Related Declines and Disease-Associated Variation in Immune Cell Telomere Length in a Wild Mammal

    PubMed Central

    Beirne, Christopher; Delahay, Richard; Hares, Michelle; Young, Andrew

    2014-01-01

    Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes (‘immune cells’), stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles). Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations. PMID:25268841

  2. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer's Disease

    PubMed Central

    Thomas, J.; Thomas, C. J.; Radcliffe, J.; Itsiopoulos, C.

    2015-01-01

    Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD) and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA) levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia. PMID:26301243

  3. The emerging role of Notch pathway in ageing: Focus on the related mechanisms in age-related diseases.

    PubMed

    Balistreri, Carmela Rita; Madonna, Rosalinda; Melino, Gerry; Caruso, Calogero

    2016-08-01

    Notch signaling is an evolutionarily conserved pathway, which is fundamental for the development of all tissues, organs and systems of human body. Recently, a considerable and still growing number of studies have highlighted the contribution of Notch signaling in various pathological processes of the adult life, such as age-related diseases. In particular, the Notch pathway has emerged as major player in the maintenance of tissue specific homeostasis, through the control of proliferation, migration, phenotypes and functions of tissue cells, as well as in the cross-talk between inflammatory cells and the innate immune system, and in onset of inflammatory age-related diseases. However, until now there is a confounding evidence about the related mechanisms. Here, we discuss mechanisms through which Notch signaling acts in a very complex network of pathways, where it seems to have the crucial role of hub. Thus, we stress the possibility to use Notch pathway, the related molecules and pathways constituting this network, both as innovative (predictive, diagnostic and prognostic) biomarkers and targets for personalised treatments for age-related diseases. PMID:27328278

  4. Age-related Macular Degeneration: Genetic and Environmental Factors of Disease

    PubMed Central

    Chen, Yuhong; Bedell, Matthew; Zhang, Kang

    2010-01-01

    Age-related macular degeneration (AMD) is the most common cause of visual impairment among the elderly in developed countries, and its prevalence is thus increasing as the population ages; however, treatment options remain limited because the etiology and pathogenesis of AMD are incompletely defined. Recently, much progress has been made in gene discovery and mechanistic studies, which clearly indicate that AMD involves the interaction of multiple genetic and environmental factors. The identification of genes that have a substantial impact on the risk for AMD is not only facilitating the diagnosis and screening of populations at risk but is also elucidating key molecular pathways of pathogenesis. Pharmacogenetic studies of treatment responsiveness among patients with the “wet” form of AMD are increasingly proving to be clinically relevant; pharmacogenetic approaches hold great promise for both identifying patients with the best chance for vision recovery as well as tailoring individualized therapies. PMID:21045241

  5. Rejuvenation of senescent cells-the road to postponing human aging and age-related disease?

    PubMed

    Sikora, Ewa

    2013-07-01

    Cellular senescence is the state of permanent inhibition of cell proliferation. Replicative senescence occurs due to the end replication problem and shortening telomeres with each cell division leading to DNA damage response (DDR). The number of short telomeres increases with age and age-related pathologies. Stress induced senescence, although not accompanied by attrition of telomeres, is also attributed to the DDR induced by irreparable DNA lesions in telomeric DNA. Senescent cells characterized by the presence of γH2AX, the common marker of double DNA strand breaks, and other senescence markers including activity of SA-β-gal, accumulate in tissues of aged animals and humans as well as at sites of pathology. It is believed that cellular senescence evolved as a cancer barrier since non-proliferating senescent cells cannot be transformed to neoplastic cells. On the other hand senescent cells favor cancer development, just like other age-related pathologies, by creating a low grade inflammatory state due to senescence associated secretory phenotype (SASP). Reversal/inhibition of cellular senescence could prolong healthy life span, thus many attempts have been undertaken to influence cellular senescence. The two main approaches are genetic and pharmacological/nutritional modifications of cell fate. The first one concerns cell reprogramming by induced pluripotent stem cells (iPSCs), which in vitro is effective even in cells undergoing senescence, or derived from very old or progeroid patients. The second approach concerns modification of senescence signaling pathways just like TOR-induced by pharmacological or with natural agents. However, knowing that aging is unavoidable we cannot expect its elimination, but prolonging healthy life span is a goal worth serious consideration. PMID:23064316

  6. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases

    PubMed Central

    Joshi, Gururaj; Johnson, Jeffrey A.

    2013-01-01

    Modulation of NF-E2 related factor 2 (Nrf2) has been shown in several neurodegenerative disorders. The overexpression of Nrf2 has become a potential therapeutic avenue for various neurodegenerative disorders such as Parkinson, Amyotrophic lateral sclerosis, and Alzheimer’s disease. The expression of phase II detoxification enzymes is governed by the cis-acting regulatory element known as antioxidant response element (ARE). The transcription factor Nrf2 binds to ARE thereby transcribing multitude of antioxidant genes. Keap1, a culin 3-based E3 ligase that targets Nrf2 for degradation, sequesters Nrf2 in cytoplasm. Disruption of Keap1-Nrf2 interaction or genetic overexpression of Nrf2 can increase the endogenous antioxidant capacity of the brain thereby rendering protection against oxidative stress in neurodegenerative disorders. This review primarily focuses on targeted Nrf2 overexpression as a promising therapeutic strategy for the treatment of neurodegenerative disorders. PMID:22742419

  7. Neurodegenerative Models in Drosophila: Polyglutamine Disorders, Parkinson Disease, and Amyotrophic Lateral Sclerosis

    PubMed Central

    Ambegaokar, Surendra S.; Roy, Bidisha; Jackson, George R.

    2010-01-01

    Neurodegenerative diseases encompass a large group of neurological disorders. Clinical symptoms can include memory loss, cognitive impairment, loss of movement or loss of control of movement, and loss of sensation. Symptoms are typically adult onset (although severe cases can occur in adolescents) and are reflective of neuronal and glial cell loss in the central nervous system. Neurodegenerative diseases also are considered progressive, with increased severity of symptoms over time, also reflective of increased neuronal cell death. However, various neurodegenerative diseases differentially affect certain brain regions or neuronal or glial cell types. As an example, Alzheimer disease (AD) primarily affects the temporal lobe, whereas neuronal loss in Parkinson disease (PD) is largely (although not exclusively) confined to the nigrostriatal system. Neuronal loss is almost invariably accompanied by abnormal insoluble aggregates, either intra- or extracellular. Thus, neurodegenerative diseases are categorized by (a) the composite of clinical symptoms, (b) the brain regions or types of brain cells primarily affected, and (c) the types of protein aggregates found in the brain. Here we review the methods by which Drosophila melanogaster has been used to model aspects of polyglutamine diseases, Parkinson disease, and amyotrophic lateral sclerosis and key insights into that have been gained from these models; Alzheimer disease and the tauopathies are covered elsewhere in this special issue. PMID:20561920

  8. Subventricular Zone Neural Progenitors from Rapid Brain Autopsies of Elderly Subjects with and without Neurodegenerative Disease

    PubMed Central

    Leonard, Brian W.; Mastroeni, Diego; Grover, Andrew; Liu, Qiang; Yang, Kechun; Gao, Ming; Wu, Jie; Pootrakul, David; van den Berge, Simone A.; Hol, Elly M.; Rogers, Joseph

    2009-01-01

    In mice and young adult humans, the subventricular zone (SVZ) contains multipotent, dividing astrocytes, some of which, when cultured, produce neurospheres that differentiate into neurons and glia. It is unknown whether the SVZ of very old humans has this capacity. Here, we report that neural stem/progenitor cells can also be cultured from rapid autopsy samples of SVZ from elderly human subjects, including patients with age-related neurologic disorders. Histological sections of SVZ from these cases showed a GFAP-positive ribbon of astrocytes similar to the astrocyte ribbon in human periventricular white matter biopsies that is reported to be a rich source of neural progenitors. Cultures of the SVZ contained (1) neurospheres with a core of Musashi-1-, nestin-, and nucleostemin-immunopositive cells, as well as more differentiated GFAP-positive astrocytes; (2) SMI-311-, MAP2a/b-, and β-tubulin (III)-positive neurons; and (3) galactocerebroside-positive oligodendrocytes. Neurospheres continued to generate differentiated progeny for months after primary culturing, in some cases nearly two years post initial plating. Patch clamp studies of differentiated SVZ cells expressing neuron-specific antigens revealed voltage-dependent, tetrodotoxin-sensitive, inward Na+ currents and voltage-dependent, delayed, slowly inactivating K+ currents, electrophysiologic characteristics of neurons. A subpopulation of these cells also exhibited responses consistent with the kinetics and pharmacology of the h current. However, while these cells displayed some aspects of neuronal function, they remained immature, as they did not fire action potentials. These studies suggest that human neural progenitor activity may remain viable throughout much of the life span, even in the face of severe neurodegenerative disease. PMID:19425077

  9. Evaluation of the Best disease gene in patients with age-related macular degeneration and other maculopathies.

    PubMed

    Allikmets, R; Seddon, J M; Bernstein, P S; Hutchinson, A; Atkinson, A; Sharma, S; Gerrard, B; Li, W; Metzker, M L; Wadelius, C; Caskey, C T; Dean, M; Petrukhin, K

    1999-06-01

    Vitelliform macular dystrophy (VMD2, Best disease, MIM153700) is an early onset, autosomal, dominant macular degeneration characterized by the deposition of lipofuscin-like material within and below the retinal pigment epithelium (RPE); it is associated with degeneration of the RPE and overlying photoreceptors. Recently, we cloned the gene bestrophin, which is responsible for the disease, and identified a number of causative mutations in families with VMD2. Here, we report that the analysis of bestrophin in a collection of 259 age-related macular degeneration (AMD) patients provides evidence that mutations in the Best disease gene do not play a significant role in the predisposition of individuals to AMD. However, our results suggest that, in addition to Best disease, mutations within the bestrophin gene could be responsible for other forms of maculopathy with phenotypic characteristics similar to Best disease and for other diseases not included in the VMD category. PMID:10453731

  10. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    PubMed Central

    Swerdlow, Russell H.

    2012-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed. PMID:21902672

  11. Age-Related Disease Association of Endogenous γ-H2AX Foci in Mononuclear Cells Derived from Leukapheresis

    PubMed Central

    Schurman, Shepherd H.; Dunn, Christopher A.; Greaves, Rebecca; Yu, Binbing; Ferrucci, Luigi; Croteau, Deborah L.; Seidman, Michael M.; Bohr, Vilhelm A.

    2012-01-01

    The phosphorylated form of histone H2AX (γ-H2AX) forms immunohistochemically detectable foci at DNA double strand breaks. In peripheral blood mononuclear cells (PBMCs) derived from leukapheresis from patients enrolled in the Baltimore Longitudinal Study of Aging, γ-H2AX foci increased in a linear fashion with regards to age, peaking at ∼57 years. The relationship between the frequency of γ-H2AX foci and age-related pathologies was assessed. We found a statistically significant (p = 0.023) 50% increase in foci in PBMCs derived from patients with a known history of vitamin D deficiency. In addition, there were trends toward increased γ-H2AX foci in patients with cataracts (34% increase, p<0.10) and in sleep apnea patients (44%, p<0.10). Among patients ≥57 y/o, we found a significant (p = 0.037) 36% increase in the number of γ-H2AX foci/cell for patients with hypertension compared to non-hypertensive patients. Our results support a role for increased DNA damage in the morbidity of age-related diseases. γ -H2AX may be a biomarker for human morbidity in age-related diseases. PMID:23029205

  12. Interest of active posturography to detect age-related and early Parkinson's disease-related impairments in mediolateral postural control.

    PubMed

    Bonnet, Cédrick T; Delval, Arnaud; Defebvre, Luc

    2014-11-15

    Patients with Parkinson's disease display impairments of postural control most particularly in active, challenging conditions. The objective of the present study was to analyze early signs of disease-related and also age-related impairments in mediolateral body extension and postural control. Fifty-five participants (18 Hoehn and Yahr stage 2 patients in the off-drug condition, 18 healthy elderly control subjects, and 19 young adults) were included in the study. The participants performed a quiet stance task and two active tasks that analyzed the performance in mediolateral body motion: a limit of stability and a rhythmic weight shift task. As expected, the patients displayed significantly lower and slower body displacement (head, neck, lower back, center of pressure) than elderly control subjects when performing the two body excursion tasks. However, the behavioral variability in both tasks was similar between the groups. Under these active conditions, the patients showed significantly lower contribution of the hip postural control mechanisms compared with the elderly control subjects. Overall, the patients seemed to lower their performance in order to prevent a mediolateral postural instability. However, these patients, at an early stage of their disease, were not unstable in quiet stance. Complementarily, elderly control subjects displayed slower body performance than young adults, which therefore showed an additional age-related impairment in mediolateral postural control. Overall, the study illustrated markers of age-related and Parkinson's disease impairments in mediolateral postural control that may constrain everyday activities in elderly adults and even more in patients with Parkinson's disease. PMID:25143549

  13. Functional Genomics Approach for Identification of Molecular Processes Underlying Neurodegenerative Disorders in Prion Diseases

    PubMed Central

    Basu, Urmila; Guan, Le Luo; Moore, Stephen S

    2012-01-01

    Prion diseases or transmissible spongiform encephalopathies (TSEs) are infectious neurodegenerative disorders leading to death. These include Cresutzfeldt-Jakob disease (CJD), familial, sporadic and variant CJD and kuru in humans; and animal TSEs include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) of mule deer and elk, and transmissible mink encephalopathy. All these TSEs share common pathological features such as accumulation of mis-folded prion proteins in the central nervous system leading to cellular dysfunction and cell death. It is important to characterize the molecular pathways and events leading to prion induced neurodegeneration. Here we discuss the impact of the functional genomics approaches including microarrays, subtractive hybridization and microRNA profiling in elucidating transcriptional cascades at different stages of disease. Many of these transcriptional changes have been observed in multiple neurodegenerative diseases which may aid in identification of biomarkers for disease. A comprehensive characterization of expression profiles implicated in neurodegenerative disorders will undoubtedly advance our understanding on neuropathology and dysfunction during prion disease and other neurodegenerative disorders. We also present an outlook on the future work which may focus on analysis of structural genetic variation, genome and transcriptome sequencing using next generation sequencing with an integrated approach on animal and human TSE related studies. PMID:23372423

  14. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases

    PubMed Central

    Brkic, Marjana; Balusu, Sriram; Libert, Claude; Vandenbroucke, Roosmarijn E.

    2015-01-01

    Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS) functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases. PMID:26538832

  15. Tocopherol (vitamin E) in Alzheimer's disease and other neurodegenerative disorders.

    PubMed

    Berman, Karen; Brodaty, Henry

    2004-01-01

    In this article, we review the evidence that tocopherol (vitamin E) may have a role to play in the prevention and treatment of Alzheimer's disease and other neurological diseases. The theoretical rationale for the effectiveness of tocopherol as treatment and/or prevention of Alzheimer's disease is based on its antioxidant properties. Results from animal and in vitro studies provide evidence to support use of tocopherol for prevention and treatment of degenerative neurological diseases. Furthermore, several, but not all, epidemiological, cross-sectional, prospective studies indicate that tocopherol may have protective effects in Alzheimer's disease, although dietary and supplemental forms of the vitamin may differ in their efficacy. Mixed results have been obtained from clinical trials. Evidence of the use of tocopherol as a protective measure or as therapy in neurological diseases other than Alzheimer's disease is less compelling. To date, there are no clear-cut answers as to whether tocopherol is worth prescribing, but current clinical practice favours its use in the treatment of Alzheimer's disease. PMID:15377170

  16. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats

    SciTech Connect

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko; Murat, Dogru; Nakamura, Shigeru; Nakashima, Hideo; Shimmura, Shigeto; Shinmura, Ken; Tsubota, Kazuo

    2010-07-09

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6 months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome.

  17. Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and alpha-synucleinopathies.

    PubMed Central

    Goedert, M

    1999-01-01

    Alzheimer's disease and Parkinson's disease are the most common neurodegenerative diseases. They are characterized by the degeneration of selected populations of nerve cells that develop filamentous inclusions before degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Recent work has shown that the filamentous inclusions of Parkinson's disease are made of the protein alpha-synuclein and that rare, familial forms of Parkinson's disease are caused by missense mutations in the alpha-synuclein gene. Besides Parkinson's disease, the filamentous inclusions of two additional neurodegenerative diseases, namely dementia with Lewy bodies and multiple system atrophy, have also been found to be made of alpha-synuclein. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The recent discovery of mutations in the tau gene in familial forms of frontotemporal dementia has provided a direct link between tau dysfunction and dementing disease. The new work has established that tauopathies and alpha-synucleinopathies account for most late-onset neurodegenerative diseases in man. The formation of intracellular filamentous inclusions might be the gain of toxic function that leads to the demise of affected brain cells. PMID:10434313

  18. Can neurodegenerative disease be defined by four 'primary determinants': anatomy, cells, molecules, and morphology?

    PubMed

    Armstrong, R A

    2016-01-01

    Traditional methods of describing and classifying neurodegenerative disease are based on the clinico-pathological concept supported by molecular pathological studies and defined by 'consensus criteria'. Disease heterogeneity, overlap between disorders, and the presence of multiple co-pathologies, however, have questioned the validity and status of many traditional disorders. If cases of neurodegenerative disease are not easily classifiable into distinct entities, but more continuously distributed, then a new descriptive framework may be required. This review proposes that there are four key neuropathological features of neurodegenerative disease (the 'primary determinants') that could be used to provide such a framework, viz., the anatomical pathways affected by the disease ('anatomy'), the cell populations affected ('cells'), the molecular pathology of 'signature' pathological lesions ('molecules'), and the morphological types of neurodegeneration ('morphology'). This review first discusses the limitations of existing classificatory systems and second provides evidence that the four primary determinants could be used as axes to define all cases of neurodegenerative disease. To illustrate the methodology, the primary determinants were applied to the study of a group of closely related tauopathy cases and to heterogeneity within frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). PMID:27543767

  19. Drug discovery of neurodegenerative disease through network pharmacology approach in herbs.

    PubMed

    Ke, Zhipeng; Zhang, Xinzhuang; Cao, Zeyu; Ding, Yue; Li, Na; Cao, Liang; Wang, Tuanjie; Zhang, Chenfeng; Ding, Gang; Wang, Zhenzhong; Xu, Xiaojie; Xiao, Wei

    2016-03-01

    Neurodegenerative diseases, referring to as the progressive loss of structure and function of neurons, constitute one of the major challenges of modern medicine. Traditional Chinese herbs have been used as a major preventive and therapeutic strategy against disease for thousands years. The numerous species of medicinal herbs and Traditional Chinese Medicine (TCM) compound formulas in nervous system disease therapy make it a large chemical resource library for drug discovery. In this work, we collected 7362 kinds of herbs and 58,147 Traditional Chinese medicinal compounds (Tcmcs). The predicted active compounds in herbs have good oral bioavailability and central nervous system (CNS) permeability. The molecular docking and network analysis were employed to analyze the effects of herbs on neurodegenerative diseases. In order to evaluate the predicted efficacy of herbs, automated text mining was utilized to exhaustively search in PubMed by some related keywords. After that, receiver operator characteristic (ROC) curves was used to estimate the accuracy of predictions. Our study suggested that most herbs were distributed in family of Asteraceae, Fabaceae, Lamiaceae and Apocynaceae. The predictive model yielded good sensitivity and specificity with the AUC values above 0.800. At last, 504 kinds of herbs were obtained by using the optimal cutoff values in ROC curves. These 504 herbs would be the most potential herb resources for neurodegenerative diseases treatment. This study would give us an opportunity to use these herbs as a chemical resource library for drug discovery of anti-neurodegenerative disease. PMID:26898452

  20. Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease.

    PubMed

    Farid, Marjan; Agrawal, Anshu; Fremgen, Daniel; Tao, Jeremiah; Chuyi, He; Nesburn, Anthony B; BenMohamed, Lbachir

    2016-06-01

    Dry eye disease (DED) is a prevalent public health concern that affects up to 30% of adults and is particularly chronic and severe in the elderly. Two interconnected mechanisms cause DED: (1) an age-related dysfunction of lacrimal and meibomian glands, which leads to decreased tear production and/or an increase in tear evaporation; and (2) an age-related uncontrolled inflammation of the surface of the eye triggered by yet-to-be-determined internal immunopathological mechanisms, independent of tear deficiency and evaporation. In this review we summarize current knowledge on animal models that mimic both the severity and chronicity of inflammatory DED and that have been reliably used to provide insights into the immunopathological mechanisms of DED, and we provide an overview of the opportunities and limitations of the rabbit model in investigating the role of both ocular and nasal mucosal immune systems in the immunopathology of inflammatory DED and in testing novel immunotherapies aimed at delaying or reversing the uncontrolled age-related inflammatory DED. PMID:25535823

  1. Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease

    PubMed Central

    Farid, Marjan; Agrawal, Anshu; Fremgen, Daniel; Tao, Jeremiah; Chuyi, He; Nesburn, Anthony B.; BenMohamed, Lbachir

    2014-01-01

    Dry eye disease (DED) is a prevalent public health concern that affects up to 30% of adults and is particularly chronic and severe in the elderly. Two interconnected mechanisms cause DED: (1) an age-related dysfunction of lacrimal and meibomian glands, which leads to decreased tear production and/or an increase in tear evaporation; and (2) an age-related uncontrolled inflammation of the surface of the eye triggered by yet-to-be-determined internal immunopathological mechanisms, independent of tear deficiency and evaporation. In this review we summarize current knowledge on animal models that mimic both the severity and chronicity of inflammatory DED and that have been reliably used to provide insights into the immunopathological mechanisms of DED, and we provide an overview of the opportunities and limitations of the rabbit model in investigating the role of both ocular and nasal mucosal immune systems in the immunopathology of inflammatory DED and in testing novel immunotherapies aimed at delaying or reversing the uncontrolled age-related inflammatory DED. PMID:25535823

  2. Cause and Consequence: Mitochondrial Dysfunction Initiates and Propagates Neuronal Dysfunction, Neuronal Death and Behavioral Abnormalities in Age Associated Neurodegenerative Diseases

    PubMed Central

    Gibson, Gary E.; Starkov, Anatoly; Blass, John P.; Ratan, Rajiv R.; Beal, M. Flint

    2009-01-01

    SUMMARY Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sub lethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the α-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhance ROS production in Alzheimer’s Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington’s Disease (HD), a movement disorder with cognitive features distinct form AD, complex II + III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a cross linking enzymes that can modulate transcrption, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic

  3. Age-related differences in celiac disease: Specific characteristics of adult presentation

    PubMed Central

    Vivas, Santiago; Vaquero, Luis; Rodríguez-Martín, Laura; Caminero, Alberto

    2015-01-01

    Celiac disease may appear both in early childhood and in elderly subjects. Current knowledge of the disease has revealed some differences associated to the age of presentation. Furthermore, monitoring and prognosis of celiac subjects can vary depending on the pediatric or adult stage. The main objective of this review is to provide guidance for the adult diagnostic and follow-up processes, which must be tailored specifically for adults and be different from pediatric patients. PMID:26558154

  4. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders

    PubMed Central

    2016-01-01

    Brain diseases and disorders such as Alzheimer disease, Parkinson disease, depression, schizophrenia, autism, and addiction lead to reduced quality of daily life through abnormal thoughts, perceptions, emotional states, and behavior. While the underlying mechanisms remain poorly understood, human and animal studies have supported a role of neuroinflammation in the etiology of these diseases. In the central nervous system, an increased inflammatory response is capable of activating microglial cells, leading to the release of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. In turn, the pro-inflammatory cytokines aggravate and propagate neuroinflammation, degenerating healthy neurons and impairing brain functions. Therefore, activated microglia may play a key role in neuroinflammatory processes contributing to the pathogenesis of psychiatric disorders and neurodegeneration. PMID:27230456

  5. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders.

    PubMed

    Hong, Heeok; Kim, Byung Sun; Im, Heh-In

    2016-05-01

    Brain diseases and disorders such as Alzheimer disease, Parkinson disease, depression, schizophrenia, autism, and addiction lead to reduced quality of daily life through abnormal thoughts, perceptions, emotional states, and behavior. While the underlying mechanisms remain poorly understood, human and animal studies have supported a role of neuroinflammation in the etiology of these diseases. In the central nervous system, an increased inflammatory response is capable of activating microglial cells, leading to the release of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. In turn, the pro-inflammatory cytokines aggravate and propagate neuroinflammation, degenerating healthy neurons and impairing brain functions. Therefore, activated microglia may play a key role in neuroinflammatory processes contributing to the pathogenesis of psychiatric disorders and neurodegeneration. PMID:27230456

  6. Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers.

    PubMed

    Trippier, Paul C; Jansen Labby, Kristin; Hawker, Dustin D; Mataka, Jan J; Silverman, Richard B

    2013-04-25

    The development of new therapeutics for the treatment of neurodegenerative pathophysiologies currently stands at a crossroads. This presents an opportunity to transition future drug discovery efforts to target disease modification, an area in which much still remains unknown. In this Perspective we examine recent progress in the areas of neurodegenerative drug discovery, focusing on some of the most common targets and mechanisms: N-methyl-d-aspartic acid (NMDA) receptors, voltage gated calcium channels (VGCCs), neuronal nitric oxide synthase (nNOS), oxidative stress from reactive oxygen species, and protein aggregation. These represent the key players identified in neurodegeneration and are part of a complex, intertwined signaling cascade. The synergistic delivery of two or more compounds directed against these targets, along with the design of small molecules with multiple modes of action, should be explored in pursuit of more effective clinical treatments for neurodegenerative diseases. PMID:23458846

  7. Target- and Mechanism-Based Therapeutics for Neurodegenerative Diseases: Strength in Numbers

    PubMed Central

    Trippier, Paul C.; Labby, Kristin Jansen; Hawker, Dustin D.; Mataka, Jan J.; Silverman, Richard B.

    2013-01-01

    The development of new therapeutics for the treatment of neurodegenerative pathophysiologies currently stands at a crossroads. This presents an opportunity to transition future drug discovery efforts to target disease modification, an area in which much still remains unknown. In this Perspective we examine recent progress in the areas of neurodegenerative drug discovery, focusing on some of the most common targets and mechanisms; N-methyl-d-aspartic acid (NMDA) receptors, voltage gated calcium channels (VGCCs), neuronal nitric oxide synthase (nNOS), oxidative stress from reactive oxygen species, and protein aggregation. These represent the key players identified in neurodegeneration and are part of a complex, intertwined signaling cascade. The synergistic delivery of two or more compounds directed against these targets, along with the design of small molecules with multiple modes of action should be explored in pursuit of more effective clinical treatments for neurodegenerative diseases. PMID:23458846

  8. Lactic acid elevation in extramitochondrial childhood neurodegenerative diseases.

    PubMed

    Kang, P B; Hunter, J V; Kaye, E M

    2001-09-01

    We report three children, each of whom seemed to have a primary mitochondrial disorder at presentation but was eventually diagnosed with an extramitochondrial inherited metabolic disease. The first patient presented at 6 months with developmental delay. Magnetic resonance imaging showed an abnormal signal in the white matter, and magnetic resonance spectroscopy showed elevated lactate peaks. A muscle biopsy showed complex IV deficiency, but leukocyte measurement of galactosylceramide beta-galactosidase activity was markedly diminished, consistent with Krabbe's disease. The second patient presented at birth with seizures and later had developmental delays. There was brain atrophy on neuroimaging. Serum and cerebrospinal fluid lactate levels were elevated. She had persistently elevated urine thiosulfate, which was diagnostic for molybdenum cofactor deficiency. The third child presented at 2 months with seizures and hypotonia. Magnetic resonance imaging showed an abnormal signal in the basal ganglia and surrounding white matter, whereas magnetic resonance spectroscopy showed elevated lactate peaks. A brain biopsy was diagnostic for Alexander's disease. These cases and others in the literature suggest that lactic acid elevation in the central nervous system can be found in a number of extramitochondrial neurologic diseases. Such diseases would constitute a third category of lactic acidosis. PMID:11575606

  9. Cytoplasmic Inclusions of TDP-43 in Neurodegenerative Diseases: A Potential Role for Caspases

    PubMed Central

    Rohn, Troy T.

    2009-01-01

    TAR DNA-binding protein-43 (TDP-43) proteinopathies are classified based upon the extent of modified TDP-43 inclusions and include a growing number of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin immunoreactive, tau negative inclusions (FTLD-U) and FTLD with motor neuron disease (FTLD-MND). In addition, TDP-43 inclusions have also been identified in a number of other neurodegenerative disorders including Alzheimer's disease, corticobasal degeneration, Lewy body related diseases and Pick's disease. Current understanding suggests that in these diseases, TDP-43 is relocated from the nucleus to the cytoplasm and sequestered into inclusions that contain modified TDP-43. Major modifications of TDP-43 have been identified as being hyperphosphorylation and proteolytic cleavage by caspases. In this review a summary of the major findings regarding the proteolytic modification of TDP-43 will be discussed as well as potential toxic-gain mechanisms these fragments may cause including cytoskeletal disruptions. PMID:19554515

  10. Stem cells and neurodegenerative diseases: where is it all going?

    PubMed

    Barker, Roger A

    2012-11-01

    Over the last few years there have been a number of major breakthroughs in the development of stem cells for diseases of the CNS. One of these has been in the ability to reprogram adult somatic cells to a more pluripotent state as well as directly to neurons and, by so doing, use patient-derived cells to study disease. In addition, the capacity to engineer embryonic stem cells to defined neuronal fates in the absence of proliferative contaminant cells is now feasible, which opens up the possibility of using these cells for cell transplantation. In this review, we will discuss how these developments have come about, particularly in the context of Parkinson's disease, and what this means for the future of this whole field over the next few years. PMID:23210808

  11. Viral Vector-Based Modeling of Neurodegenerative Disorders: Parkinson's Disease.

    PubMed

    Fischer, D Luke; Gombash, Sara E; Kemp, Christopher J; Manfredsson, Fredric P; Polinski, Nicole K; Duffy, Megan F; Sortwell, Caryl E

    2016-01-01

    Gene therapy methods are increasingly used to model Parkinson's disease (PD) in animals in an effort to test experimental therapeutics within a more relevant context to disease pathophysiology and neuropathology. We have detailed several criteria that are critical or advantageous to accurately modeling PD in a murine model or in a nonhuman primate. Using these criteria, we then evaluate approaches made to model PD using viral vectors to date, including both adeno-associated viruses and lentiviruses. Lastly, we comment on the consideration of aging as a critical factor for modeling PD. PMID:26611600

  12. Redox chemistry of green tea polyphenols: therapeutic benefits in neurodegenerative diseases.

    PubMed

    Hügel, H M; Jackson, N

    2012-05-01

    Evidence for the medicinal and health benefits of polyphenols in green tea for the prevention of chronic diseases such as heart disease, various types of cancer and neurodegenerative diseases is advancing. Their in vivo effectiveness and molecular mechanisms are difficult to elucidate and remain a challenging task. We review the redox responsiveness and amyloid protein perturbation biophysical properties of the major green tea polyphenol constituent (-)- epigallocatechin-3-gallate [EGCG]. PMID:22303970

  13. Central nervous system endothelium in neuroinflammatory, neuroinfectious, and neurodegenerative disease.

    PubMed

    Andjelkovic, A V; Pachter, J S

    1998-02-15

    Accumulating evidence points toward a significant role for the microvascular endothelium in the pathogenesis of several neurologic conditions. This review highlights those biochemical, anatomical, and physiological features of the endothelium thought to be dysfunctional in these disease states, and elaborates on novel treatment modalities that target the endothelium. PMID:9514196

  14. Menkes Kinky Hair Syndrome: A Rare Neurodegenerative Disease

    PubMed Central

    Gandhi, Rozil; Kakkar, Ritu; Rajan, Sajeev; Bhangale, Rashmi; Desai, Shrinivas

    2012-01-01

    Menkes kinky hair disease is a rare X-linked recessive disease nearly exclusively affecting males who present at 2-3 months of age due to abnormal functioning of copper-dependent enzymes due to deficiency of copper. Here, we describe a completely worked-up case of a 4-month-old male infant with very typical history and radiological features confirmed by biochemical and trichoanalysis. The initially seen asymmetric cortical and subcortical T2 hyperintensities in cerebral and cerebellar hemispheres converted into symmetrical diffuse cerebral and predominantly cerebellar atrophy with uniform loss of both white and grey matter on follow-up MRI. Also, subdural hemorrhages of various sizes and different stages and tortuosity of larger proximal intracranial vessels with distal narrowing were identified. Ours is a completely worked-up proven case of Menkes kinky hair disease (MKHD) with history, electroencephalography, biochemical, trichoanalysis, and MRI findings. This is a good teaching case and shows importance of clinical examination and biochemistry as complimentary to MRI. Tortuous intracranial arteries with blocked major vessels are found only in this disease, thus stressing the value of MR Angiography in these patients. PMID:22919529

  15. Drugs, nutrients, and phytoactive principles improving the health span of rodent models of human age-related diseases.

    PubMed

    Lebel, Michel; Picard, Frédéric; Ferland, Guylaine; Gaudreau, Pierrette

    2012-02-01

    Rodents are often the species of choice to examine the effect of drugs on survival and on the progression of specific diseased tissues. This statement is also true for research laboratories working in the field of nutrition and aging. In addition to diets that can reduce the life expectancy of rodents, such as diabetogenic or high-fat diets, genetically modified rodents exhibiting different accelerated age-associated diseases also provide important biologic tools to decipher the impact of drugs, nutrients, or phytoactive compounds on their health and life span. This review covers some of the chemicals believed to decelerate the appearance of age-related diseases in different rodent models. Such chemicals include antioxidants, anti-inflammatory molecules, modulators of metabolic sensors, calorie restriction mimetics, and vegetal polyphenolic compounds that affect mitochondrial functions, cellular proliferation or differentiation as well as cell functionality. PMID:21393422

  16. [Decline in renal function in old age : Part of physiological aging versus age-related disease].

    PubMed

    Braun, F; Brinkkötter, P T

    2016-08-01

    The incidence and prevalence of chronic renal disease (CKD) in elderly patients are continuously increasing worldwide. Loss of renal function is not only considered to be part of the aging process itself but also reflects the multimorbidity of many geriatric patients. Calculating the glomerular filtration rate using specific algorithms validated for the elderly population and measuring the amount of proteinuria allow an estimation of renal function in elderly patients with high accuracy. Chronic renal failure has many clinical consequences and not only results in a delayed excretion of toxins cleared by the kidneys but also affects hematogenesis, water and electrolyte balance as well as mineral bone metabolism. Furthermore, CKD directly leads to and aggravates geriatric syndromes and in particular the onset of frailty. Therapeutic strategies to halt progression of CKD not only comprise treatment of the underlying disease but also efficient blood pressure and diabetic control and the avoidance of nephrotoxic medications. PMID:27457360

  17. A Comparative Survey of the Topographical Distribution of Signature Molecular Lesions in Major Neurodegenerative Diseases

    PubMed Central

    Arnold, Steven E.; Toledo, Jon B.; Appleby, Dina H.; Xie, Sharon X.; Wang, Li-San; Baek, Young; Wolk, David A.; Lee, Edward B.; Miller, Bruce L.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2013-01-01

    An understanding of the anatomic distributions of major neurodegenerative disease lesions is important to appreciate the differential clinical profiles of these disorders and to serve as neuropathological standards for emerging molecular neuroimaging methods. To address these issues, here we present a comparative survey of the topographical distribution of the defining molecular neuropathological lesions among ten neurodegenerative diseases from a large and uniformly assessed brain collection. Ratings of pathological severity in sixteen brain regions from 671 cases with diverse neurodegenerative diseases were summarized and analyzed. These included: a) amyloid-β and tau lesions in Alzheimer’s disease, b) tau lesions in three other tauopathies including Pick’s disease, progressive supranuclear palsy and corticobasal degeneration, c) α-synuclein inclusion ratings in four synucleinopathies including Parkinson’s disease, Parkinson’s disease with dementia, dementia with Lewy bodies and multiple system atrophy, and d) TDP-43 lesions in two TDP-43 proteinopathies, including frontotemporal lobar degeneration associated with TDP-43 and amyotrophic lateral sclerosis. The data presented graphically and topographically confirm and extend previous pathological anatomic descriptions and statistical comparisons highlight the lesion distributions that either overlap or distinguish the diseases in each molecular disease category. PMID:23881776

  18. An Effective Method to Identify Shared Pathways and Common Factors among Neurodegenerative Diseases

    PubMed Central

    Li, Ping; Nie, Yaling; Yu, Jingkai

    2015-01-01

    Groups of distinct but related diseases often share common symptoms, which suggest likely overlaps in underlying pathogenic mechanisms. Identifying the shared pathways and common factors among those disorders can be expected to deepen our understanding for them and help designing new treatment strategies effected on those diseases. Neurodegeneration diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), were taken as a case study in this research. Reported susceptibility genes for AD, PD and HD were collected and human protein-protein interaction network (hPPIN) was used to identify biological pathways related to neurodegeneration. 81 KEGG pathways were found to be correlated with neurodegenerative disorders. 36 out of the 81 are human disease pathways, and the remaining ones are involved in miscellaneous human functional pathways. Cancers and infectious diseases are two major subclasses within the disease group. Apoptosis is one of the most significant functional pathways. Most of those pathways found here are actually consistent with prior knowledge of neurodegenerative diseases except two cell communication pathways: adherens and tight junctions. Gene expression analysis showed a high probability that the two pathways were related to neurodegenerative diseases. A combination of common susceptibility genes and hPPIN is an effective method to study shared pathways involved in a group of closely related disorders. Common modules, which might play a bridging role in linking neurodegenerative disorders and the enriched pathways, were identified by clustering analysis. The identified shared pathways and common modules can be expected to yield clues for effective target discovery efforts on neurodegeneration. PMID:26575483

  19. Proactive Strategies for Managing the Behavior of Children with Neurodegenerative Diseases and Visual Impairment.

    ERIC Educational Resources Information Center

    Loftin, M. M.; Koehler, W. S.

    1998-01-01

    Presents proactive strategies to help educators deal with challenging behaviors of children with visual impairments and neurodegenerative diseases. Strategies are provided for general noncompliance, difficulty with changed or novel routines, difficulty maintaining physical movement, significant variations in affect, and intense tantrums and other…

  20. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.

    PubMed

    Brehme, Marc; Voisine, Cindy; Rolland, Thomas; Wachi, Shinichiro; Soper, James H; Zhu, Yitan; Orton, Kai; Villella, Adriana; Garza, Dan; Vidal, Marc; Ge, Hui; Morimoto, Richard I

    2014-11-01

    Chaperones are central to the proteostasis network (PN) and safeguard the proteome from misfolding, aggregation, and proteotoxicity. We categorized the human chaperome of 332 genes into network communities using function, localization, interactome, and expression data sets. During human brain aging, expression of 32% of the chaperome, corresponding to ATP-dependent chaperone machines, is repressed, whereas 19.5%, corresponding to ATP-independent chaperones and co-chaperones, are induced. These repression and induction clusters are enhanced in the brains of those with Alzheimer's, Huntington's, or Parkinson's disease. Functional properties of the chaperome were assessed by perturbation in C. elegans and human cell models expressing Aβ, polyglutamine, and Huntingtin. Of 219 C. elegans orthologs, knockdown of 16 enhanced both Aβ and polyQ-associated toxicity. These correspond to 28 human orthologs, of which 52% and 41% are repressed, respectively, in brain aging and disease and 37.5% affected Huntingtin aggregation in human cells. These results identify a critical chaperome subnetwork that functions in aging and disease. PMID:25437566

  1. Content analysis of neurodegenerative and mental diseases social groups.

    PubMed

    Martínez-Pérez, Borja; de la Torre-Díez, Isabel; Bargiela-Flórez, Beatriz; López-Coronado, Miguel; Rodrigues, Joel J P C

    2015-12-01

    This article aims to characterize the different types of Facebook and Twitter groups for different mental diseases, their purposes, and their functions. We focused the search on depressive disorders, dementia, and Alzheimer's and Parkinson's diseases and examined the Facebook (www.facebook.com) and Twitter (www.twitter.com) groups. We used four assessment criteria: (1) purpose, (2) type of creator, (3) telehealth content, and (4) free-text responses in surveys and interviews. We observed a total of 357 Parkinson groups, 325 dementia groups, 853 Alzheimer groups, and 1127 depression groups on Facebook and Twitter. Moreover, we analyze the responses provided by different users. The survey and interview responses showed that many people were interested in using social networks to support and help in the fight against these diseases. The results indicate that social networks are acceptable by users in terms of simplicity and utility. People use them for finding support, information, self-help, advocacy and awareness, and for collecting funds. PMID:24698768

  2. Building An Integrated Neurodegenerative Disease Database At An Academic Health Center

    PubMed Central

    Xie, Sharon X.; Baek, Young; Grossman, Murray; Arnold, Steven E.; Karlawish, Jason; Siderowf, Andrew; Hurtig, Howard; Elman, Lauren; McCluskey, Leo; Van Deerlin, Vivianna; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2010-01-01

    Background It is becoming increasingly important to study common and distinct etiologies, clinical and pathological features, and mechanisms related to neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration (FTLD). These comparative studies rely on powerful database tools to quickly generate data sets which match diverse and complementary criteria set by the studies. Methods In this paper, we present a novel Integrated NeuroDegenerative Disease (INDD) database developed at the University of Pennsylvania (Penn) through a consortium of Penn investigators. Since these investigators work on AD, PD, ALS and FTLD, this allowed us to achieve the goal of developing an INDD database for these major neurodegenerative disorders. We used Microsoft SQL Server as the platform with built-in “backwards” functionality to provide Access as a front-end client to interface with the database. We used PHP hypertext Preprocessor to create the “front end” web interface and then integrated individual neurodegenerative disease databases using a master lookup table. We also present methods of data entry, database security, database backups, and database audit trails for this INDD database. Results We compare the results of a biomarker study using the INDD database to those using an alternative approach by querying individual database separately. Conclusions We have demonstrated that the Penn INDD database has the ability to query multiple database tables from a single console with high accuracy and reliability. The INDD database provides a powerful tool for generating data sets in comparative studies across several neurodegenerative diseases. PMID:21784346

  3. Genome-wide association analyses of genetic, phenotypic, and environmental risks in the age-related eye disease study

    PubMed Central

    Ryu, Euijung; Fridley, Brooke L.; Tosakulwong, Nirubol; Bailey, Kent R.

    2010-01-01

    Purpose To present genome-wide association analyses of genotypic and environmental risks on age-related macular degeneration (AMD) using 593 subjects from the age-related eye disease study (AREDS), after adjusting for population stratification and including questionable controls. Methods Single nucleotide polymorphism (SNP) associations with AMD for the non-Hispanic white population were investigated using a log-additive model after adjusting for population stratification. Replication of possible SNP-disease association was performed by genotyping an independent group of 444 AMD case and 300 control subjects. Logistic regression models were used to assess interaction effects between smoking and SNPs associated with AMD. Independent genetic risk effects among the disease-associated SNPs were also investigated using multiple logistic regression models. Results Population stratification was observed among the individuals having a self-reported race of non-Hispanic white. Risk allele frequencies at established AMD loci demonstrated that questionable control subjects were similar to control subjects in the AREDS, suggesting that they could be used as true controls in the analyses. Genetic loci (complement factor H [CFH], complement factor B [CFB], the age-related maculopathy susceptibility 2 locus containing the hypothetical gene [LOC387715]/the high-temperature requirement A-1 [HTRA1], and complement component 3 [C3]) that were already known to be associated with AMD were identified. An additional 26 novel SNPs potentially associated with AMD were identified, but none were definitely replicated in a second independent group of subjects. Smoking did not interact with known AMD loci, but was associated with late AMD. Statistically independent genetic signals were observed within the Pleckstrin homology domain-containing family A member 1 (PLEKHA1) region near LOC387715/HTRA1 and within a haplotype spanning exon 19 of the C3 gene. Conclusions Population stratification

  4. Role of the Cell Cycle Re-Initiation in DNA Damage Response of Post-Mitotic Cells and Its Implication in the Pathogenesis of Neurodegenerative Diseases.

    PubMed

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2016-04-01

    Neurodegenerative diseases are often associated with both normal and premature aging. Resumption of the cell cycle by neurons induced by DNA damage may lead to their apoptosis, which contributes to the degeneration of neuronal tissue. Cell cycle and DNA replication proteins are frequently found in patients with neurodegenerative diseases. Oxidative stress, which is considered to play an important role in aging and pathogenesis of many neurodegenerative diseases, can induce DNA damage and stimulate cell cycle re-entry by neuronal cells. DNA damage activates ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), breast cancer 1 (BRCA1), E2F transcription factor 1 (E2F1), and other proteins that regulate the cell cycle, DNA damage repair, and apoptosis. Because the E2F complexes associate with histone-modifying enzymes, histone modifications, including histone acetylation and methylation, are required for cell cycle re-entry and may play a regulatory role in DNA repair or apoptosis. Aberrant cell cycle regulation has been shown to play a role in age-related macular degeneration (AMD) in which retinal cells are affected and in inclusion body myositis, which is characterized by muscle cell dysfunction. There is also evidence to suggest that cytostatic chemotherapy could decrease dementia in Alzheimer's disease and multiple myeloma, supporting the use of cell cycle inhibitors in the therapy of degenerative diseases. PMID:26214710

  5. Cell-based therapies of liver diseases: age-related challenges

    PubMed Central

    Yarygin, Konstantin N; Lupatov, Alexei Y; Kholodenko, Irina V

    2015-01-01

    The scope of this review is to revise recent advances of the cell-based therapies of liver diseases with an emphasis on cell donor’s and patient’s age. Regenerative medicine with cell-based technologies as its integral part is focused on the structural and functional restoration of tissues impaired by sickness or aging. Unlike drug-based medicine directed primarily at alleviation of symptoms, regenerative medicine offers a more holistic approach to disease and senescence management aimed to achieve restoration of homeostasis. Hepatocyte transplantation and organ engineering are very probable forthcoming options of liver disease treatment in people of different ages and vigorous research and technological innovations in this area are in progress. Accordingly, availability of sufficient amounts of functional human hepatocytes is crucial. Direct isolation of autologous hepatocytes from liver biopsy is problematic due to related discomfort and difficulties with further expansion of cells, particularly those derived from aging people. Allogeneic primary human hepatocytes meeting quality standards are also in short supply. Alternatively, autologous hepatocytes can be produced by reprogramming of differentiated cells through the stage of induced pluripotent stem cells. In addition, fibroblasts and mesenchymal stromal cells can be directly induced to undergo advanced stage hepatogenic differentiation. Reprogramming of cells derived from elderly people is accompanied by the reversal of age-associated changes at the cellular level manifesting itself by telomere elongation and the U-turn of DNA methylation. Cell reprogramming can provide high quality rejuvenated hepatocytes for cell therapy and liver tissue engineering. Further technological advancements and establishment of national and global registries of induced pluripotent stem cell lines homozygous for HLA haplotypes can allow industry-style production of livers for immunosuppression-free transplantation. PMID

  6. Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases

    PubMed Central

    Wan, Wenbin; Cao, Lan; Kalionis, Bill; Xia, Shijin; Tai, Xiantao

    2015-01-01

    Neurodegeneration is the umbrella term for the progressive loss of structure or function of neurons. Incurable neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) show dramatic rising trends particularly in the advanced age groups. However, the underlying mechanisms are not yet fully elucidated, and to date there are no biomarkers for early detection or effective treatments for the underlying causes of these diseases. Furthermore, due to species variation and differences between animal models (e.g., mouse transgenic and knockout models) of neurodegenerative diseases, substantial debate focuses on whether animal and cell culture disease models can correctly model the condition in human patients. In 2006, Yamanaka of Kyoto University first demonstrated a novel approach for the preparation of induced pluripotent stem cells (iPSCs), which displayed similar pluripotency potential to embryonic stem cells (ESCs). Currently, iPSCs studies are permeating many sectors of disease research. Patient sample-derived iPSCs can be used to construct patient-specific disease models to elucidate the pathogenic mechanisms of disease development and to test new therapeutic strategies. Accordingly, the present review will focus on recent progress in iPSC research in the modeling of neurodegenerative disorders and in the development of novel therapeutic options. PMID:26240571

  7. Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases.

    PubMed

    Wan, Wenbin; Cao, Lan; Kalionis, Bill; Xia, Shijin; Tai, Xiantao

    2015-01-01

    Neurodegeneration is the umbrella term for the progressive loss of structure or function of neurons. Incurable neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) show dramatic rising trends particularly in the advanced age groups. However, the underlying mechanisms are not yet fully elucidated, and to date there are no biomarkers for early detection or effective treatments for the underlying causes of these diseases. Furthermore, due to species variation and differences between animal models (e.g., mouse transgenic and knockout models) of neurodegenerative diseases, substantial debate focuses on whether animal and cell culture disease models can correctly model the condition in human patients. In 2006, Yamanaka of Kyoto University first demonstrated a novel approach for the preparation of induced pluripotent stem cells (iPSCs), which displayed similar pluripotency potential to embryonic stem cells (ESCs). Currently, iPSCs studies are permeating many sectors of disease research. Patient sample-derived iPSCs can be used to construct patient-specific disease models to elucidate the pathogenic mechanisms of disease development and to test new therapeutic strategies. Accordingly, the present review will focus on recent progress in iPSC research in the modeling of neurodegenerative disorders and in the development of novel therapeutic options. PMID:26240571

  8. Oxidative Stress and Epigenetic Regulation in Ageing and Age-Related Diseases

    PubMed Central

    Cencioni, Chiara; Spallotta, Francesco; Martelli, Fabio; Valente, Sergio; Mai, Antonello; Zeiher, Andreas M.; Gaetano, Carlo

    2013-01-01

    Recent statistics indicate that the human population is ageing rapidly. Healthy, but also diseased, elderly people are increasing. This trend is particularly evident in Western countries, where healthier living conditions and better cures are available. To understand the process leading to age-associated alterations is, therefore, of the highest relevance for the development of new treatments for age-associated diseases, such as cancer, diabetes, Alzheimer and cardiovascular accidents. Mechanistically, it is well accepted that the accumulation of intracellular damage determined by reactive oxygen species (ROS) might orchestrate the progressive loss of control over biological homeostasis and the functional impairment typical of aged tissues. Here, we review how epigenetics takes part in the control of stress stimuli and the mechanisms of ageing physiology and physiopathology. Alteration of epigenetic enzyme activity, histone modifications and DNA-methylation is, in fact, typically associated with the ageing process. Specifically, ageing presents peculiar epigenetic markers that, taken altogether, form the still ill-defined “ageing epigenome”. The comprehension of mechanisms and pathways leading to epigenetic modifications associated with ageing may help the development of anti-ageing therapies. PMID:23989608

  9. Multifunctional iron-chelators with protective roles against neurodegenerative diseases.

    PubMed

    Nunes, Andreia; Marques, Sérgio M; Quintanova, Catarina; Silva, Diana F; Cardoso, Sandra M; Chaves, Sílvia; Santos, M Amélia

    2013-05-01

    The multifactorial nature of Alzheimer's disease (AD), and the absence of a disease modifying drug, makes the development of new multifunctional drugs an attractive therapeutic strategy. Taking into account the hallmarks of AD patient brains, such as low levels of acetylcholine, misfolding of proteins and associated beta-amyloid (Aβ) aggregation, oxidative stress and metal dyshomeostasis, we have developed a series of compounds that merge three different approaches: metal attenuation, anti-Aβ aggregation and anti-acetylcholinesterase activity. Therefore, 3-hydroxy-4-pyridinone (3,4-HP) and benzothiazole molecular moieties were selected as starting frameworks due to their well known affinity for iron and Aβ peptides, respectively. The linkers between these two main functional groups were selected on the basis of virtual screening, so that the final molecule could further inhibit the acetylcholinesterase, responsible for the cholinergic losses. We describe herein the design and synthesis of the new hybrid compounds, followed by the assessment of solution properties, namely iron chelation and anti-oxidant capacity. The compounds were bioassayed for their capacity to inhibit AChE, as well as self- and Zn mediated-Aβ(1-42) aggregation. Finally, we assessed their effects on the viability of neuronal cells stressed with Aβ(42). PMID:23487286

  10. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases.

    PubMed

    Reddy, P Hemachandra; Reddy, Tejaswini P; Manczak, Maria; Calkins, Marcus J; Shirendeb, Ulziibat; Mao, Peizhong

    2011-06-24

    The purpose of this article is to review the recent developments of abnormal mitochondrial dynamics, mitochondrial fragmentation, and neuronal damage in neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The GTPase family of proteins, including fission proteins, dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1), and fusion proteins (Mfn1, Mfn2 and Opa1) are essential to maintain mitochondrial fission and fusion balance, and to provide necessary adenosine triphosphate to neurons. Among these, Drp1 is involved in several important aspects of mitochondria, including shape, size, distribution, remodeling, and maintenance of mitochondria in mammalian cells. In addition, recent advancements in molecular, cellular, electron microscopy, and confocal imaging studies revealed that Drp1 is associated with several cellular functions, including mitochondrial and peroxisomal fragmentation, phosphorylation, SUMOylation, ubiquitination, and cell death. In the last two decades, tremendous progress has been made in researching mitochondrial dynamics, in yeast, worms, and mammalian cells; and this research has provided evidence linking Drp1 to neurodegenerative diseases. Researchers in the neurodegenerative disease field are beginning to recognize the possible involvement of Drp1 in causing mitochondrial fragmentation and abnormal mitochondrial dynamics in neurodegenerative diseases. This article summarizes research findings relating Drp1 to mitochondrial fission and fusion, in yeast, worms, and mammals. Based on findings from the Reddy laboratory and others', we propose that mutant proteins of neurodegenerative diseases, including AD, PD, HD, and ALS, interact with Drp1, activate mitochondrial fission machinery, fragment mitochondria excessively, and impair mitochondrial transport and mitochondrial dynamics, ultimately causing mitochondrial dysfunction and neuronal damage. PMID:21145355

  11. Positive Lysosomal Modulation As a Unique Strategy to Treat Age-Related Protein Accumulation Diseases

    PubMed Central

    Wisniewski, Meagan L.; Butler, David

    2012-01-01

    Abstract Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ1–38 peptide corresponded with decreased levels of Aβ1–42, supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders

  12. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders

    PubMed Central

    Hofmann-Apitius, Martin; Ball, Gordon; Gebel, Stephan; Bagewadi, Shweta; de Bono, Bernard; Schneider, Reinhard; Page, Matt; Kodamullil, Alpha Tom; Younesi, Erfan; Ebeling, Christian; Tegnér, Jesper; Canard, Luc

    2015-01-01

    Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies—data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI); which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations (EFPIA) and the European

  13. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders.

    PubMed

    Hofmann-Apitius, Martin; Ball, Gordon; Gebel, Stephan; Bagewadi, Shweta; de Bono, Bernard; Schneider, Reinhard; Page, Matt; Kodamullil, Alpha Tom; Younesi, Erfan; Ebeling, Christian; Tegnér, Jesper; Canard, Luc

    2015-01-01

    Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies-data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI); which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations (EFPIA) and the European

  14. Potential of cystamine and cysteamine in the treatment of neurodegenerative diseases.

    PubMed

    Gibrat, C; Cicchetti, F

    2011-03-30

    Neurodegenerative disorders are a subset of disabling pathologies characterized, in part, by a progressive and specific loss of certain brain cell populations. Current therapeutic approaches for the treatment of these disorders are mainly designed towards symptom management and do not manifestly block their typified neuronal loss. However, research conducted over the past decade has reflected the increasing interest and need to find disease-modifying molecules. Among the several neuroprotective agents emerging from experimental animal work, cystamine, as well as its reduced form cysteamine, have been identified as potential candidate drugs. Given the significant benefits observed in a Huntington's disease (HD) model, cysteamine has recently leaped to clinical trial. Here, we review the beneficial properties of these compounds as reported in animal studies, their mechanistic underpinnings, and their potential implications for the future treatment of patients suffering from neurodegenerative diseases, and more specifically for HD and Parkinson's disease (PD). PMID:21111020

  15. Movement and Other Neurodegenerative Syndromes in Patients with Systemic Rheumatic Diseases

    PubMed Central

    Menezes, Rikitha; Pantelyat, Alexander; Izbudak, Izlem; Birnbaum, Julius

    2015-01-01

    Abstract Patients with rheumatic diseases can present with movement and other neurodegenerative disorders. It may be underappreciated that movement and other neurodegenerative disorders can encompass a wide variety of disease entities. Such disorders are strikingly heterogeneous and lead to a wider spectrum of clinical injury than seen in Parkinson's disease. Therefore, we sought to stringently phenotype movement and other neurodegenerative disorders presenting in a case series of rheumatic disease patients. We integrated our findings with a review of the literature to understand mechanisms which may account for such a ubiquitous pattern of clinical injury. Seven rheumatic disease patients (5 Sjögren's syndrome patients, 2 undifferentiated connective tissue disease patients) were referred and could be misdiagnosed as having Parkinson's disease. However, all of these patients were ultimately diagnosed as having other movement or neurodegenerative disorders. Findings inconsistent with and more expansive than Parkinson's disease included cerebellar degeneration, dystonia with an alien-limb phenomenon, and nonfluent aphasias. A notable finding was that individual patients could be affected by cooccurring movement and other neurodegenerative disorders, each of which could be exceptionally rare (ie, prevalence of ∼1:1000), and therefore with the collective probability that such disorders were merely coincidental and causally unrelated being as low as ∼1-per-billion. Whereas our review of the literature revealed that ubiquitous patterns of clinical injury were frequently associated with magnetic resonance imaging (MRI) findings suggestive of a widespread vasculopathy, our patients did not have such neuroimaging findings. Instead, our patients could have syndromes which phenotypically resembled paraneoplastic and other inflammatory disorders which are known to be associated with antineuronal antibodies. We similarly identified immune-mediated and inflammatory markers

  16. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease in non diabetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiologic studies indicate that the risks for major age-related debilities including coronary heart disease, diabetes, and age-related macular degeneration (AMD) are diminished in people who consume lower glycemic index (GI) diets, but lack of a unifying physiobiochemical mechanism that explains...

  17. Age-related cognitive decline and electroencephalogram slowing in Down's syndrome as a model of Alzheimer's disease.

    PubMed

    Soininen, H; Partanen, J; Jousmäki, V; Helkala, E L; Vanhanen, M; Majuri, S; Kaski, M; Hartikainen, P; Riekkinen, P

    1993-03-01

    We studied quantitative electroencephalogram and neuropsychological performance in an aging series of 31 patients with Down's syndrome and compared the findings with those of 36 patients with probable Alzheimer's disease and age-matched controls. We found an age-related decline of cortical functions and slowing of the electroencephalogram in Down's syndrome patients aged from 20 to 60 years. Slowing of the electroencephalogram, i.e. the decrease of the peak frequency, was significantly related to Mini-Mental status scores, and visual, praxic and speech functions, as well as memory in the Down patients, similar to the Alzheimer patients. Similar correlations were not demonstrated for young or elderly controls. This study provides neuropsychological and electrophysiological data to suggest that studying Down's syndrome patients of different ages can serve as a model for progression of Alzheimer's disease. PMID:8469312

  18. The role of sirtuins in aging and age-related diseases.

    PubMed

    Wątroba, Mateusz; Szukiewicz, Dariusz

    2016-03-01

    Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have much more functions and to be much more abundant in living organisms. Sirtuins gained much attention when they were first acknowledged to be responsible for some beneficial and longevity-promoting effects of calorie restriction in many species of animals - from fruit flies to mammals. In this paper, we discuss some detailed molecular mechanisms of inducing these effects, and wonder if they could be possibly mimicked without actually applying calorie restriction, through induction of sirtuin activity. It is known now that sirtuins, when adjusting the pattern of cellular metabolism to nutrient availability, can regulate many metabolic functions significant from the standpoint of aging research - including DNA repair, genome stability, inflammatory response, apoptosis, cell cycle, and mitochondrial functions. While carrying out these regulations, sirtuins cooperate with many transcription factors, including PGC-1a, NFKB, p53 and FoxO. This paper contains some considerations about possible use of facilitating activity of the sirtuins in prevention of aging, metabolic syndrome, chronic inflammation, and other diseases. PMID:26521204

  19. The basics of preclinical drug development for neurodegenerative disease indications.

    PubMed

    Steinmetz, Karen L; Spack, Edward G

    2009-01-01

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonization. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and

  20. The basics of preclinical drug development for neurodegenerative disease indications

    PubMed Central

    Steinmetz, Karen L; Spack, Edward G

    2009-01-01

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and

  1. Replaceable neurons and neurodegenerative disease share depressed UCHL1 levels

    PubMed Central

    Lombardino, Anthony J.; Li, Xiao-Ching; Hertel, Moritz; Nottebohm, Fernando

    2005-01-01

    Might there be systematic differences in gene expression between neurons that undergo spontaneous replacement in the adult brain and those that do not? We first explored this possibility in the high vocal center (HVC) of male zebra finches by using a combination of neuronal tracers, laser capture microdissection, and RNA profiling. HVC has two kinds of projection neurons, one of which continues to be produced and replaced in adulthood. HVC neurons of the replaceable kind showed a consistent and robust underexpression of the deubiquitination gene ubiquitin carboxyl-terminal hydrolase (UCHL1) that is involved with protein degradation. Singing behavior, known to increase the survival of adult-born HVC neurons in birds, significantly up-regulated the levels of UCHL1 in the replaceable neurons but not in their equally active nonreplaceable counterparts. We then looked in the mouse brain and found relatively low UCHL1 expression in granule neurons of the hippocampus and olfactory bulb, two well characterized types of replaceable neurons in mammals. UCHL1 dysfunction has been associated with neurodegeneration in Parkinson's, Alzheimer's, and Huntington's disease patients. In all these instances, reduced UCHL1 function may jeopardize the survival of CNS neurons. PMID:15911766

  2. [Morphological magnetic resonance imaging: its value for the diagnosis of neurodegenerative diseases].

    PubMed

    Hahn, U; Schwarz, J; Gratz, S; Kaiser, J W; Jarnig, M; Förstl, H

    2008-05-01

    Magnetic resonance imaging (MRI) plays an important role in differentiating idiopathic Parkinson's disease (PD) from its atypical forms. Causes like chronic vascular disease and normal-pressure hydrocephalus are easily visualized. Furthermore, specific atrophy patterns can be found with multi-system atrophies, corticobasal degeneration and progressive supranuclear palsy. In addition the review also deals with specific imaging criteria of other neurodegenerative disorders, such as Wilson's disease, neurodegeneration with iron accumulation in the brain and Huntington's chorea. MRI is of minor importance for differentiating Alzheimer's disease from frontotemporal dementia or dementia with Lewy bodies. However, specific patterns are found in cerebral amyloid angiopathy and prion diseases.. PMID:18437637

  3. Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review.

    PubMed

    Mocchegiani, Eugenio; Costarelli, Laura; Giacconi, Robertina; Malavolta, Marco; Basso, Andrea; Piacenza, Francesco; Ostan, Rita; Cevenini, Elisa; Gonos, Efstathios S; Franceschi, Claudio; Monti, Daniela

    2014-03-01

    Aging is a complex biological phenomenon in which the deficiency of the nutritional state combined with the presence of chronic inflammation and oxidative stress contribute to the development of many age-related diseases. Under this profile, the free radicals produced by the oxidative stress lead to a damage of DNA, lipids and proteins with subsequent altered cellular homeostasis and integrity. In young-adult age, the cell has a complex efficient system to maintain a proper balance between the levels of free radicals and antioxidants ensuring the integrity of cellular components. In contrast, in old age this balance is poorly efficient compromising cellular homeostasis. Supplementation with Vitamin E can restore the balance and protect against the deteriorating effects of oxidative stress, progression of degenerative diseases, and aging. Experiments in cell cultures and in animals have clearly shown that Vitamin E has a pivotal role as antioxidant agent against the lipid peroxidation on cell membranes preserving the tissue cells from the oxidative damage. Such a role has been well documented in immune, endothelial, and brain cells from old animals describing how the Vitamin E works both at cytoplasmatic and nuclear levels with an influence on many genes related to the inflammatory/immune response. All these findings have supported a lot of clinical trials in old humans and in inflammatory age-related diseases with however contradictory and inconsistent results and even indicating a dangerous role of Vitamin E able to affect mortality. Various factors can contribute to all the discrepancies. Among them, the doses and the various isoforms of Vitamin E family (α,β,γ,δ tocopherols and the corresponding tocotrienols) used in different trials. However, the more plausible gap is the poor consideration of the Vitamin E-gene interactions that may open new roadmaps for a correct and personalized Vitamin E supplementation in aging and age-related diseases with

  4. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases.

    PubMed

    Wu, Ping; Zuo, Xialin; Deng, Houliang; Liu, Xiaoxia; Liu, Li; Ji, Aimin

    2013-08-01

    Long noncoding RNAs (lncRNAs) have been attracting immense research interest, while only a handful of lncRNAs have been characterized thoroughly. Their involvement in the fundamental cellular processes including regulate gene expression at epigenetics, transcription, and post-transcription highlighted a central role in cell homeostasis. However, lncRNAs studies are still at a relatively early stage, their definition, conservation, functions, and action mechanisms remain fairly complicated. Here, we give a systematic and comprehensive summary of the existing knowledge of lncRNAs in order to provide a better understanding of this new studying field. lncRNAs play important roles in brain development, neuron function and maintenance, and neurodegenerative diseases are becoming increasingly evident. In this review, we also highlighted recent studies related lncRNAs in central nervous system (CNS) development and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), and elucidated some specific lncRNAs which may be important for understanding the pathophysiology of neurodegenerative diseases, also have the potential as therapeutic targets. PMID:23756188

  5. Role of paraoxonase 1 (PON1) in organophosphate metabolism: Implications in neurodegenerative diseases

    SciTech Connect

    Androutsopoulos, Vasilis P.; Kanavouras, Konstantinos; Tsatsakis, Aristidis M.

    2011-11-15

    Organophosphate pesticides are a class of compounds that are widely used in agricultural and rural areas. Paraoxonase 1 (PON1) is a phase-I enzyme that is involved in the hydrolysis of organophosphate esters. Environmental poisoning by organophosphate compounds has been the main driving force of previous research on PON1 enzymes. Recent discoveries in animal models have revealed the important role of the enzyme in lipid metabolism. However although PON1 function is well established in experimental models, the contribution of PON1 in neurodegenerative diseases remains unclear. In this minireview we summarize the involvement of PON1 genotypes in the occurrence of Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. A brief overview of latest epidemiological studies, regarding the two most important PON1 coding region polymorphisms PON1-L55M and PON1-Q192R is presented. Positive and negative associations of PON1 with disease occurrence are reported. Notably the MM and RR alleles contribute a risk enhancing effect for the development of some neurodegenerative diseases, which may be explained by the reduced lipoprotein free radical scavenging activity that may give rise to neuronal damage, through distinct mechanism. Conflicting findings that fail to support this postulate may represent the human population ethnic heterogeneity, different sample size and environmental parameters affecting PON1 status. We conclude that further epidemiological studies are required in order to address the exact contribution of PON1 genome in combination with organophosphate exposure in populations with neurodegenerative diseases.

  6. Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics

    PubMed Central

    Weinberg, Marc S.; Wood, Matthew J.A.

    2009-01-01

    Genomic studies in model organisms and in humans have shown that complexity in biological systems arises not from the absolute number of genes, but from the differential use of combinations of genetic programmes and the myriad ways in which these are regulated spatially and temporally during development, senescence and in disease. Nowhere is this lesson in biological complexity likely to be more apparent than in the human nervous system. Increasingly, the role of genomic non-protein coding small regulatory RNAs, in particular the microRNAs (miRNAs), in regulating cellular pathways controlling fundamental functions in the nervous system and in neurodegenerative disease is being appreciated. Not only might dysregulated expression of miRNAs serve as potential disease biomarkers but increasingly such short regulatory RNAs are being implicated directly in the pathogenesis of complex, sporadic neurodegenerative disease. Moreover, the targeting and exploitation of short RNA silencing pathways, commonly known as RNA interference, and the development of related tools, offers novel therapeutic approaches to target upstream disease components with the promise of providing future disease modifying therapies for neurodegenerative disorders. PMID:19297399

  7. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia.

    PubMed

    Keiser, Megan S; Kordasiewicz, Holly B; McBride, Jodi L

    2016-04-15

    RNA-targeting approaches are emerging as viable therapeutics that offer an alternative method to modulate traditionally 'undrugable' targets. In the case of dominantly inherited neurodegenerative diseases, gene suppression strategies can target the underlying cause of these intractable disorders. Polyglutamine diseases are caused by CAG expansions in discrete genes, making them ideal candidates for gene suppression therapies. Here, we discuss the current state of gene suppression approaches for Huntington's disease and the spinocerebellar ataxias, including the use of antisense oligonucleotides, short-interfering RNAs, as well as viral vector-mediated delivery of short hairpin RNAs and artificial microRNAs. We focus on lessons learned from preclinical studies investigating gene suppression therapies for these disorders, particularly in rodent models of disease and in non-human primates. In animal models, recent advances in gene suppression technologies have not only prevented disease progression in a number of cases, but have also reversed existing disease, providing evidence that reducing the expression of disease-causing genes may be of benefit in symptomatic patients. Both allele- and non-allele-specific approaches to gene suppression have made great strides over the past decade, showing efficacy and safety in both small and large animal models. Advances in delivery techniques allow for broad and durable suppression of target genes, have been validated in non-human primates and in some cases, are currently being evaluated in human patients. Finally, we discuss the challenges of developing and delivering gene suppression constructs into the CNS and recent advances of potential therapeutics into the clinic. PMID:26503961

  8. Recurrent systemic infections with Streptococcus pneumoniae do not aggravate the course of experimental neurodegenerative diseases.

    PubMed

    Ebert, Sandra; Goos, Miriam; Rollwagen, Lena; Baake, Daniel; Zech, Wolf-Dieter; Esselmann, Hermann; Wiltfang, Jens; Mollenhauer, Brit; Schliebs, Reinhard; Gerber, Joachim; Nau, Roland

    2010-04-01

    Neurological symptoms of patients suffering from neurodegenerative diseases such as Alzheimer's dementia (AD), Parkinson's disease (PD), or amyotrophic lateral sclerosis (ALS) often worsen during infections. We assessed the disease-modulating effects of recurrent systemic infections with the most frequent respiratory pathogen, Streptococcus pneumoniae, on the course of AD, PD, and ALS in mouse models of these neurodegenerative diseases [transgenic Tg2576 mice, (Thy1)-[A30P]alpha SYN mice, and Tg(SOD1-G93A) mice]. Mice were repeatedly challenged intraperitoneally with live S. pneumoniae type 3 and treated with ceftriaxone for 3 days. Infection caused an increase of interleukin-6 concentrations in brain homogenates. The clinical status of (Thy1)-[A30P]alpha SYN mice and Tg(SOD1-G93A) mice was monitored by repeated assessment with a clinical score. Motor performance was controlled by the tightrope test and the rotarod test. In Tg2576 mice, spatial memory and learning deficits were assessed in the Morris water maze. In none of the three mouse models onset or course of the disease as evaluated by the clinical tests was affected by the recurrent systemic infections performed. Levels of alpha-synuclein in brains of (Thy1)-[A30P]alpha SYN mice did not differ between infected animals and control animals. Plaque sizes and concentrations of A beta 1-40 and A beta 1-42 were not significantly different in brains of infected and uninfected Tg2576 mice. In conclusion, onset and course of disease in mouse models of three common neurodegenerative disorders were not influenced by repeated systemic infections with S. pneumoniae, indicating that the effect of moderately severe acute infections on the course of neurodegenerative diseases may be less pronounced than suspected. PMID:19859962

  9. Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease

    PubMed Central

    Moskalev, Alexey; Chernyagina, Elizaveta; de Magalhães, João Pedro; Barardo, Diogo; Thoppil, Harikrishnan; Shaposhnikov, Mikhail; Budovsky, Arie; Fraifeld, Vadim E.; Garazha, Andrew; Tsvetkov, Vasily; Bronovitsky, Evgeny; Bogomolov, Vladislav; Scerbacov, Alexei; Kuryan, Oleg; Gurinovich, Roman; Jellen, Leslie C.; Kennedy, Brian; Mamoshina, Polina; Dobrovolskaya, Evgeniya; Aliper, Alex; Kaminsky, Dmitry; Zhavoronkov, Alex

    2015-01-01

    As the level of interest in aging research increases, there is a growing number of geroprotectors, or therapeutic interventions that aim to extend the healthy lifespan and repair or reduce aging-related damage in model organisms and, eventually, in humans. There is a clear need for a manually-curated database of geroprotectors to compile and index their effects on aging and age-related diseases and link these effects to relevant studies and multiple biochemical and drug databases. Here, we introduce the first such resource, Geroprotectors (http://geroprotectors.org). Geroprotectors is a public, rapidly explorable database that catalogs over 250 experiments involving over 200 known or candidate geroprotectors that extend lifespan in model organisms. Each compound has a comprehensive profile complete with biochemistry, mechanisms, and lifespan effects in various model organisms, along with information ranging from chemical structure, side effects, and toxicity to FDA drug status. These are presented in a visually intuitive, efficient framework fit for casual browsing or in-depth research alike. Data are linked to the source studies or databases, providing quick and convenient access to original data. The Geroprotectors database facilitates cross-study, cross-organism, and cross-discipline analysis and saves countless hours of inefficient literature and web searching. Geroprotectors is a one-stop, knowledge-sharing, time-saving resource for researchers seeking healthy aging solutions. PMID:26342919

  10. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2016-08-16

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  11. The Prevalence of Age-Related Eye Diseases and Cataract Surgery among Older Adults in the City of Lodz, Poland

    PubMed Central

    Nowak, Michal Szymon; Smigielski, Janusz

    2015-01-01

    Purpose. To determine the prevalence of age-related eye diseases and cataract surgery among older adults in the city of Lodz, in central Poland. Material and Methods. The study design was cross-sectional and observational study. A total of 1107 women and men of predominantly Caucasian origin were successfully enumerated and recruited for the study. All selected subjects were interviewed and underwent detailed ophthalmic examinations. Results. Overall 8.04% (95% CI 6.44–9.64) subjects had cataract surgery in either eye. After excluding subjects with bilateral cataract surgery, the prevalence of cataract was 12.10% (95% CI 10.18–14.03). AMD was found in 4.33% (95% CI 3.14–5.54 ) of all subjects. Of them 3.25% (95% CI 2.21–4.30 ) had early AMD and 1.08% (95% CI 0.47–1.69) had late AMD. Various types of glaucoma were diagnosed in 5.51% (95% CI 4.17–6.85) of subjects and 2.62% (95% CI 1.68–3.56) had OHT. The prevalence rates of DR and myopic macular degeneration were 1.72% (95% CI 0.95–2.48) and 0.45% (95% CI 0.06–0.85), respectively. All multiple logistic regression models were only significantly associated with older age. The highest rate of visual impairment was observed among subjects with retinal diseases. Conclusions. The study revealed high prevalence of age-related eye diseases in this older population. PMID:25789169

  12. The Age-Related Eye Disease Study 2 (AREDS2): Study Design and Baseline Characteristics (AREDS2 Report Number 1)

    PubMed Central

    Chew, Emily Y.; Clemons, Traci; SanGiovanni, John Paul; Danis, Ronald; Domalpally, Amitha; McBee, Wendy; Sperduto, Robert; Ferris, Frederick L.

    2012-01-01

    Purpose The Age-Related Eye Disease Study (AREDS) demonstrated beneficial effects of oral supplementation with antioxidant vitamins and minerals on the development of advanced age-related macular degeneration (AMD) in persons with at least intermediate AMD (bilateral large drusen with or without pigment changes). Observational data suggest that other oral nutrient supplements might further reduce the risk of progression to advanced AMD. The primary purpose of Age-Related Eye Disease Study 2 (AREDS2) is to evaluate the efficacy and safety of lutein+zeaxanthin (L+Z) and/or omega-3 long-chain polyunsaturated fatty acid (LCPUFA) supplementation in reducing the risk of developing advanced AMD. The study will also assess the reduction in zinc and the omission of beta-carotene from original AREDS formulation. Design Multicenter phase 3 randomized controlled clinical trial Participants Persons age 50 to 85 with bilateral intermediate AMD or advanced AMD in one eye Methods All participants were randomly assigned to: 1) placebo (n=1012); 2) L+Z (10 mg/2 mg, n=1044); 3) ω-3 LCPUFAs (eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) [650gmg/350 mg] n=1069); or 4) the combination of L+Z and ω -3 LCPUFAs (n=1078). All participants were offered a secondary randomization to 1 of 4 variations of the original AREDS formulation keeping vitamins C (500 mg), E (400 IU), and copper (2 mg) unchanged while varying zinc and beta-carotene as follows: zinc remains at the original level (80mg), lower only zinc to 25mg, omit beta-carotene only, or lower zinc to 25 mg and omit beta-carotene. Main Outcome Measures Progression to advanced AMD determined by centralized grading of annual fundus photographs. Results 4,203 participants were enrolled at 82 clinical centers located in the U.S. Population characteristics at baseline were as follows: mean age 74 years, 57% female, 97% white, 7% current smokers, 19% with prior cardiovascular disease and 44% and 50% taking statin-class cholesterol

  13. Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases

    PubMed Central

    Verdier, Jean-Michel; Acquatella, Isabelle; Lautier, Corinne; Devau, Gina; Trouche, Stéphanie; Lasbleiz, Christelle; Mestre-Francés, Nadine

    2015-01-01

    Animal models are necessary tools for solving the most serious challenges facing medical research. In aging and neurodegenerative disease studies, rodents occupy a place of choice. However, the most challenging questions about longevity, the complexity and functioning of brain networks or social intelligence can almost only be investigated in nonhuman primates. Beside the fact that their brain structure is much closer to that of humans, they develop highly complex cognitive strategies and they are visually-oriented like humans. For these reasons, they deserve consideration, although their management and care are more complicated and the related costs much higher. Despite these caveats, considerable scientific advances have been possible using nonhuman primates. This review concisely summarizes their role in the study of aging and of the mechanisms involved in neurodegenerative disorders associated mainly with cognitive dysfunctions (Alzheimer's and prion diseases) or motor deficits (Parkinson's and related diseases). PMID:25788873

  14. Role of Different Alpha-Synuclein Strains in Synucleinopathies, Similarities with other Neurodegenerative Diseases

    PubMed Central

    Melki, Ronald

    2015-01-01

    Abstract Misfolded protein aggregates are the hallmark of several neurodegenerative diseases in humans. The main protein constituent of these aggregates and the regions within the brain that are affected differ from one neurodegenerative disorder to another. A plethora of reports suggest that distinct diseases have in common the ability of protein aggregates to spread and amplify within the central nervous system. This review summarizes briefly what is known about the nature of the protein aggregates that are infectious and the reason they are toxic to cells. The chameleon property of polypeptides which aggregation into distinct high-molecular weight assemblies is associated to different diseases, in particular, that of alpha-synuclein which aggregation is the hallmark of distinct synucleinopathies, is discussed. Finally, strategies targeting the formation and propagation of structurally distinct alpha-synuclein assemblies associated to different synucleinopathies are presented and their therapeutic and diagnostic potential is discussed. PMID:25757830

  15. Spinocerebellar ataxia type 2 olfactory impairment shows a pattern similar to other major neurodegenerative diseases.

    PubMed

    Velázquez-Pérez, Luis; Fernandez-Ruiz, Juan; Díaz, Rosalinda; González, Ruth Pérez; Ochoa, Nalia Canales; Cruz, Gilberto Sánchez; Mederos, Luis Enrique Almaguer; Góngora, Edilberto Martínez; Hudson, Robyn; Drucker-Colin, René

    2006-09-01

    Olfactory function is affected in different neurodegenerative diseases. Recently, it has been found that some hereditary ataxias are also associated with significant olfactory impairment. However, the initial findings did not examine the nature of the olfactory impairment associated with these ataxias. In the present article the effect of spinocerebellar ataxia type 2 (SCA2) on olfactory function was studied in 53 SCA2 patients and 53 healthy control subjects from Holguín, Cuba. Several tests were applied to evaluate olfactory threshold, description, identification and discrimination. The results show significant impairment in SCA2 patients on all olfactory measurements, and the pattern of olfactory deficits found suggests that they have much in common with those reported for other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. PMID:16609806

  16. Histochemical approaches to assess cell-to-cell transmission of misfolded proteins in neurodegenerative diseases

    PubMed Central

    Natale, G.; Pompili, E.; Biagioni, F.; Paparelli, S.; Lenzi, P.; Fornai, F.

    2013-01-01

    Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-tocell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs); mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs). The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step. PMID:23549464

  17. Hormesis, Cell Death, and Regenerative Medicine for Neurode-Generative Diseases

    PubMed Central

    Wang, Guanghu

    2013-01-01

    Although the adult human brain has a small number of neural stem cells, they are insufficient to repair the damaged brain to achieve significant functional recovery for neurodegenerative diseases and stroke. Stem cell therapy, by either enhancing endogenous neurogenesis, or transplanting stem cells, has been regarded as a promising solution. However, the harsh environment of the diseased brain posts a severe threat to the survival and correct differentiation of those new stem cells. Hormesis (or preconditioning, stress adaptation) is an adaptation mechanism by which cells or organisms are potentiated to survive an otherwise lethal condition, such as the harsh oxidative stress in the stroke brain. Stem cells treated by low levels of chemical, physical, or pharmacological stimuli have been shown to survive better in the neurodegenerative brain. Thus combining hormesis and stem cell therapy might improve the outcome for treatment of these diseases. In addition, since the cell death patterns and their underlying molecular mechanism may vary in different neurodegenerative diseases, even in different progression stages of the same disease, it is essential to design a suitable and optimum hormetic strategy that is tailored to the individual patient. PMID:23930104

  18. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products

    PubMed Central

    Barrera, Giuseppina; Gentile, Fabrizio; Pizzimenti, Stefania; Canuto, Rosa Angela; Daga, Martina; Arcaro, Alessia; Cetrangolo, Giovanni Paolo; Lepore, Alessio; Ferretti, Carlo; Dianzani, Chiara; Muzio, Giuliana

    2016-01-01

    In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS), produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA), which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO) in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP) production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations. PMID:26907355

  19. Epidemiology of Major Neurodegenerative Diseases in Women: Contribution of the Nurses’ Health Study

    PubMed Central

    Munger, Kassandra L.; Ascherio, Alberto; Grodstein, Francine

    2016-01-01

    Objectives. To review the contribution of the Nurses’ Health Study (NHS) to identifying the role of lifestyle, diet, and genetic or biological factors in several neurodegenerative diseases, including cognitive decline, multiple sclerosis, Parkinson’s disease, and amyotrophic lateral sclerosis. Methods. We completed a narrative review of the publications of the NHS and NHS II between 1976 and 2016. Results. In primary findings for cognitive function, higher intake of nuts, moderate alcohol consumption, and higher physical activity levels were associated with better cognitive function. Flavonoids, physical activity, and postmenopausal hormone therapy were related to cognitive decline over 2 to 6 years. The NHS also has been integral in establishing Epstein-Barr virus infection, inadequate vitamin D nutrition, cigarette smoking, and obesity as risk factors for multiple sclerosis and inverse associations between cigarette smoking and caffeine and risk of Parkinson’s disease. Increased risk of amyotrophic lateral sclerosis has been associated with cigarette smoking and decreased risk associated with obesity. Conclusions. The NHS has provided invaluable resources on neurodegenerative diseases and contributed to their etiological understanding. We anticipate that the NHS cohorts will continue to make important contributions to the field of neurodegenerative diseases. PMID:27459462

  20. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases.

    PubMed

    Basak, Indranil; Patil, Ketan S; Alves, Guido; Larsen, Jan Petter; Møller, Simon Geir

    2016-02-01

    The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies. PMID:26608596

  1. Nutrition and Age-Related Eye Diseases: The ALIENOR (Antioxydants, LIpides Essentiels, Nutrition et Maladies OculaiRes) Study

    PubMed Central

    Delcourt, Cécile; Korobelnik, Jean-François; Barberger-Gateau, Pascale; Delyfer, Marie-Noëlle; Marie-Bénédicte, Rougier; Le Goff, Mélanie; Malet, Florence; Joseph, Colin; Dartigues, Jean-François

    2010-01-01

    Background Worldwide, degenerative eye diseases (age-related maculopathy (ARM), cataract, glaucoma) are the main causes of visual impairment and blindness, which contribute to disability in the elderly. Mainly three types of nutritional factors are investigated for their potential protection against eye ageing: antioxidants; lutein and zeaxanthin (carotenoids which accumulate specifically in the eye); omega 3 polyunsaturated fatty acids. Few epidemiological studies have been conducted in this field, particularly in Europe. Objective The Alienor (Antioxydants, Lipides Essentiels, Nutrition et maladies OculaiRes) Study aims at assessing the associations of eye diseases with nutritional factors, determined from plasma measurements and estimation of dietary intakes. Design, setting and participants Subjects were recruited in Bordeaux (France) from the ongoing population-based 3C study. In 2006–2008, 963 subjects from the 3C Study, aged 73 years or more, had an eye examination and will have follow-up eye examinations every 2 years. Measurements Vascular, genetic and nutritional factors were assessed at baseline (1999–2001) and follow-up examinations of the 3C Study. Eye diseases were classified according to international classifications. Results Nutritional status and vascular disease and risk factors were similar between participants and non participants, except for a slight difference in plasma triglycerides and HDL-cholesterol. As expected, the prevalence of eye diseases was high: early and late ARM (28.4 % and 5.6 %, respectively), open-angle glaucoma and treated ocular hypertension (4.8 % and 10.0 %, respectively), cataract extraction (45.2 %), retinopathy (8.4 %), retinal vein occlusion (1.1 %), epiretinal membrane (3.9 %), current use of artificial tears (17.3 %). Conclusions This study confirms the high prevalence of eye diseases in the elderly. Its main strength is the combination of nutritional, vascular and genetic information, collected over a 7 year

  2. The Age-Related Eye Disease Study (AREDS) System for Classifying Cataracts From Photographs: AREDS Report No. 4

    PubMed Central

    2006-01-01

    • PURPOSE: To describe the system for grading cataracts from photographs in the Age-Related Eye Disease Study (AREDS). • METHODS: The system for grading cataracts in AREDS uses photographs taken in a standardized fashion with specially modified cameras at 11 clinical centers. The photographs are evaluated by graders for quality and cataract severity at a central reading center. The area of lens involvement is used to assess the severity of cortical and posterior subcapsular opacities. Optical density of nuclear opacity is graded against a series of seven standard photographs. Contemporaneous variability in grading is evaluated periodically by having a second examiner regrade a subset of the photographs. Temporal variability is assessed by annually regrading a subset of photographs. • RESULTS: Photographs of 925 eyes, most with no or early lens opacities, were regraded to assess intergrader reliability. For cortical opacities, there was an absolute difference of 10% or greater of area involved in 1.9% of the replicate gradings. For posterior subcapsular opacities an absolute difference of 5% of area involved was noted in 2.8% of the regraded photographs. For nuclear opacities, absolute differences of 1.5 or more steps were observed in 0.6% of eyes. There was little evidence of temporal drift in grading any of the three types of opacity during four annual regrades. • CONCLUSIONS: We have demonstrated a high degree of reliability in grading the severity of lens opacities in a large study cohort with mostly early lens changes, the type of cohort most likely to be entered in clinical trials involving cataract prevention. The Age-Related Eye Disease Study System for Classifying Cataracts From Photographs could be useful in studies where there is a need to standardize data collection over time and across different data collection sites. Limitations of the system include the cost of implementation and, currently, the limited amount of data on grading

  3. Transglutaminase inhibition as a possible therapeutical approach to protect cells from death in neurodegenerative diseases.

    PubMed

    Iannaccone, Martina; Serretiello, Enrica; De Vivo, Giulia; Martin, Antonio; Stefanile, Alessandro; Titta, Federica; Gentile, Vittorio

    2013-08-01

    Transglutaminases are ubiquitous enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted /crosslinked adducts) or -OH groups (to form ester linkages). In absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. Recently, "tissue" transglutaminase (transglutaminase 2), a member of the transglutaminase family of enzymes, has been shown to be involved in the molecular mechanisms responsible for some human pathologies, including celiac disease, a very widespread human pathology. Transglutaminase activity has also been hypothesized to be involved in the pathogenetic mechanisms responsible for other several human diseases, including neurodegenerative diseases, often associated to celiac disease. Neurodegenerative diseases, such as Alzheimer's Disease, Parkinson's Disease, supranuclear palsy, Huntington's Disease and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This review focuses on the possible therapeutic effects of selective transglutaminase inhibitors for patients with diseases characterized by aberrant transglutaminase activity and on the strategies to design such transglutaminase inhibitors. In addition, the review also examines available patents that relates to cysteamine and derivatives. PMID:23688272

  4. Spreading of pathology in neurodegenerative diseases: a focus on human studies

    PubMed Central

    Brettschneider, Johannes; Del Tredici, Kelly; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2015-01-01

    The progression of many neurodegenerative diseases is thought to be driven by the template-directed misfolding, seeded aggregation and cell–cell transmission of characteristic disease-related proteins, leading to the sequential dissemination of pathological protein aggregates. Recent evidence strongly suggests that the anatomical connections made by neurons — in addition to the intrinsic characteristics of neurons, such as morphology and gene expression profile — determine whether they are vulnerable to degeneration in these disorders. Notably, this common pathogenic principle opens up opportunities for pursuing novel targets for therapeutic interventions for these neurodegenerative disorders. We review recent evidence that supports the notion of neuron–neuron protein propagation, with a focus on neuropathological and positron emission tomography imaging studies in humans. PMID:25588378

  5. [Functions of carboxyl-terminus of Hsc70 interacting protein and its role in neurodegenerative disease].

    PubMed

    Yan, Wei-qian; Wang, Jun-ling; Tang, Bei-sha

    2012-08-01

    Neurodegenerative diseases are a group of chronic progressive neuronal damage disorders. The cause is unclear, most of them share a same pathological hallmark with misfold proteins accumulating in neurons. Carboxyl-terminus of Hsc70 interacting protein (CHIP) is a dual functional molecule, which has a N terminal tetratrico peptide repeat (TPR) domain that interacts with Hsc/Hsp70 complex and Hsp90 enabling CHIP to modulate the aberrant protein folding; and a C terminal U-box ubiquitin ligase domain that binds to the 26S subunit of the proteasome involved in protein degradation via ubiqutin-proteasome system. CHIP protein mediates interactions between the chaperone system and the ubiquitin-proteasome system, and plays an important role in maintaining the protein homeostasis in cells. This article reviews the molecular characteristics and physiological functions of CHIP, and its role in cellular metabolism and discusses the relationship between CHIP dysfunction and neurodegenerative diseases. PMID:22875499

  6. Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases

    PubMed Central

    Nakamura, Tomohiro; Cho, Dong-Hyung; Lipton, Stuart A.

    2012-01-01

    The loss or injury of neurons associated with oxidative and nitrosative redox stress plays an important role in the onset of various neurodegenerative diseases. Specifically, nitric oxide (NO), can affect neuronal survival through a process called S-nitrosylation, by which the NO group undergoes a redox reaction with specific protein thiols. This in turn can lead to the accumulation of misfolded proteins, which generally form aggregates in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Evidence suggests that S-nitrosylation can also impair mitochondrial function and lead to excessive fission of mitochondria and consequent bioenergetic compromise via effects on the activity of the fission protein dynamin-related protein 1 (Drp1). This insult leads to synaptic dysfunction and loss. Additionally, high levels of NO can S-nitrosylate a number of aberrant targets involved in neuronal survival pathways, including the antiapoptotic protein XIAP, inhibiting its ability to prevent apoptosis. PMID:22771760

  7. Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases

    PubMed Central

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.

    2014-01-01

    Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases. PMID:25257784

  8. Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases?

    PubMed Central

    Yau, Suk-yu; Christie, Brian R.; So, Kwok-fai

    2014-01-01

    Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain. PMID:24818140

  9. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases.

    PubMed

    Rodríguez-Morató, Jose; Xicota, Laura; Fitó, Montse; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

    2015-01-01

    Adherence to the Mediterranean Diet (MD) has been associated with a reduced incidence of neurodegenerative diseases and better cognitive performance. Virgin olive oil, the main source of lipids in the MD, is rich in minor phenolic components, particularly hydroxytyrosol (HT). HT potent antioxidant and anti-inflammatory actions have attracted researchers' attention and may contribute to neuroprotective effects credited to MD. In this review HT bioavailability and pharmacokinetics are presented prior to discussing health beneficial effects. In vitro and in vivo neuroprotective effects together with its multiple mechanisms of action are reviewed. Other microconstituents of olive oil are also considered due to their potential neuroprotective effects (oleocanthal, triterpenic acids). Finally, we discuss the potential role of HT as a therapeutic tool in the prevention of neurodegenerative diseases. PMID:25781069

  10. Glaucoma as a Neurodegenerative Disease: Why We Must 'Look for the Protein'.

    PubMed

    Johnson, Lenworth N

    2016-01-01

    For years, clinicians and scientists interested in glaucoma have focused on the anterior segment of the eye and lowering of the intraocular pressure with respect to glaucoma causes and therapies. Yet glaucoma progresses in many individuals despite lowering the intraocular pressure. Herein, the concept of glaucoma as a neurodegenerative disease is presented. [Full article available at http://rimed.org/rimedicaljournal-2016-06.asp, free with no login]. PMID:27247967

  11. A healthier approach to clinical trials evaluating resveratrol for primary prevention of age-related diseases in healthy populations

    PubMed Central

    Smoliga, James M.; Colombo, E. Sage; Campen, Matthew J.

    2013-01-01

    In recent years, the wealth of basic science research supporting resveratrol's potential to treat, delay, and even prevent age-related chronic diseases has led to a number of human clinical trials. While such translational research has yielded promising results in clinical populations, recently published conflicting results from studies evaluating resveratrol's potential for primary prevention of chronic disease in healthy / asymptomatic individuals have generated considerable controversy and do not initially appear consistent with findings from animal models. We argue that trials targeting healthy humans are often fundamentally flawed owing to inappropriate use of paradigms only applicable to populations with overt clinical disease and the consequent misleading (typically negative) results can severely retard advancement of drug development. To appropriately perform translational research centered on resveratrol as a primary prevention agent in non-clinical populations, it is critical to utilize study designs which can provide adequate information on clinically relevant outcome measures, avoid paradigms and assumptions from interventions which are specific to clinical populations, and maintain realistic expectations compared to interventions which provide the theoretical maximal response (e.g., caloric restriction and aerobic exercise training). PMID:24073437

  12. Stem cells: a new paradigm for disease modeling and developing therapies for age-related macular degeneration

    PubMed Central

    2013-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in people over age 55 in the U.S. and the developed world. This condition leads to the progressive impairment of central visual acuity. There are significant limitations in the understanding of disease progression in AMD as well as a lack of effective methods of treatment. Lately, there has been considerable enthusiasm for application of stem cell biology for both disease modeling and therapeutic application. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) have been used in cell culture assays and in vivo animal models. Recently a clinical trial was approved by FDA to investigate the safety and efficacy of the human embryonic stem cell-derived retinal pigment epithelium (RPE) transplantation in sub-retinal space of patients with dry AMD These studies suggest that stem cell research may provide both insight regarding disease development and progression, as well as direction for therapeutic innovation for the millions of patients afflicted with AMD. PMID:23452406

  13. Is membrane homeostasis the missing link between inflammation and neurodegenerative diseases?

    PubMed

    de Groot, Natalia Sánchez; Burgas, Marc Torrent

    2015-12-01

    Systemic inflammation and infections are associated with neurodegenerative diseases. Unfortunately, the molecular bases of this link are still largely undiscovered. We, therefore, review how inflammatory processes can imbalance membrane homeostasis and theorize how this may have an effect on the aggregation behavior of the proteins implicated in such diseases. Specifically, we describe the processes that generate such imbalances at the molecular level, and try to understand how they affect protein folding and localization. Overall, current knowledge suggests that microglia pro-inflammatory mediators can generate membrane damage, which may have an impact in terms of triggering or accelerating disease manifestation. PMID:26403788

  14. The emerging use of in vivo optical imaging in the study of neurodegenerative diseases.

    PubMed

    Patterson, Aileen P; Booth, Stephanie A; Saba, Reuben

    2014-01-01

    The detection and subsequent quantification of photons emitted from living tissues, using highly sensitive charged-couple device (CCD) cameras, have enabled investigators to noninvasively examine the intricate dynamics of molecular reactions in wide assortment of experimental animals under basal and pathophysiological conditions. Nevertheless, extrapolation of this in vivo optical imaging technology to the study of the mammalian brain and related neurodegenerative conditions is still in its infancy. In this review, we introduce the reader to the emerging use of in vivo optical imaging in the study of neurodegenerative diseases. We highlight the current instrumentation that is available and reporter molecules (fluorescent and bioluminescent) that are commonly used. Moreover, we examine how in vivo optical imaging using transgenic reporter mice has provided new insights into Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Prion disease, and neuronal damage arising from excitotoxicity and inflammation. Furthermore, we also touch upon studies that have utilized these technologies for the development of therapeutic strategies for neurodegenerative conditions that afflict humans. PMID:25147799

  15. The Emerging Use of In Vivo Optical Imaging in the Study of Neurodegenerative Diseases

    PubMed Central

    Booth, Stephanie A.; Saba, Reuben

    2014-01-01

    The detection and subsequent quantification of photons emitted from living tissues, using highly sensitive charged-couple device (CCD) cameras, have enabled investigators to noninvasively examine the intricate dynamics of molecular reactions in wide assortment of experimental animals under basal and pathophysiological conditions. Nevertheless, extrapolation of this in vivo optical imaging technology to the study of the mammalian brain and related neurodegenerative conditions is still in its infancy. In this review, we introduce the reader to the emerging use of in vivo optical imaging in the study of neurodegenerative diseases. We highlight the current instrumentation that is available and reporter molecules (fluorescent and bioluminescent) that are commonly used. Moreover, we examine how in vivo optical imaging using transgenic reporter mice has provided new insights into Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Prion disease, and neuronal damage arising from excitotoxicity and inflammation. Furthermore, we also touch upon studies that have utilized these technologies for the development of therapeutic strategies for neurodegenerative conditions that afflict humans. PMID:25147799

  16. Determination of the olfactory threshold using a piezoelectric microdispenser for neurodegenerative disease diagnostics

    NASA Astrophysics Data System (ADS)

    Wallace, David B.; Taylor, David; Antohe, Bogdan V.; Achiriloaie, Ioan; Comparini, Norman; Stewart, R. Malcolm; Sanghera, Manjit K.

    2006-11-01

    Ink-jet microdispensing technology was used to develop an instrument for the quantitative determination of the olfactory threshold. An electrical pulse applied to the piezoelectric element produces a deformation that is transmitted to the fluid which results in a drop of fluid being ejected through the orifice mounted at one end of a piezoelectric tube. An electronic console actuates the piezoelectric dispensing elements and controls the number of drops that are dispensed and evaporated to create a fragrance cloud. The number of drops that are generated, evaporated and presented to the patient's nose for detection is adjusted according to a preset algorithm until the patient's threshold is discovered. Neurodegenerative disease patients tested with the developed olfactometer showed a significant elevation of their olfactory threshold as compared to normal controls. This result agrees with literature studies that indicate the sense of smell is one of the first affected by neurodegenerative disease. Through its precise control and detection capability, the digital olfactometer described in this paper can be used as an early screening tool for neurodegenerative disease through olfactory threshold determination.

  17. Potentiated Hsp104 variants suppress toxicity of diverse neurodegenerative disease-linked proteins.

    PubMed

    Jackrel, Meredith E; Shorter, James

    2014-10-01

    Protein misfolding is implicated in numerous lethal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD). There are no therapies that reverse these protein-misfolding events. We aim to apply Hsp104, a hexameric AAA+ protein from yeast, to target misfolded conformers for reactivation. Hsp104 solubilizes disordered aggregates and amyloid, but has limited activity against human neurodegenerative disease proteins. Thus, we have previously engineered potentiated Hsp104 variants that suppress aggregation, proteotoxicity and restore proper protein localization of ALS and PD proteins in Saccharomyces cerevisiae, and mitigate neurodegeneration in an animal PD model. Here, we establish that potentiated Hsp104 variants possess broad substrate specificity and, in yeast, suppress toxicity and aggregation induced by wild-type TDP-43, FUS and α-synuclein, as well as missense mutant versions of these proteins that cause neurodegenerative disease. Potentiated Hsp104 variants also rescue toxicity and aggregation of TAF15 but not EWSR1, two RNA-binding proteins with a prion-like domain that are connected with the development of ALS and frontotemporal dementia. Thus, potentiated Hsp104 variants are not entirely non-specific. Indeed, they do not unfold just any natively folded protein. Rather, potentiated Hsp104 variants are finely tuned to unfold proteins bearing short unstructured tracts that are not recognized by wild-type Hsp104. Our studies establish the broad utility of potentiated Hsp104 variants. PMID:25062688

  18. Genistein Improves Neuropathology and Corrects Behaviour in a Mouse Model of Neurodegenerative Metabolic Disease

    PubMed Central

    Langford-Smith, Kia J.; Langford-Smith, Alex; Brown, Jillian R.; Crawford, Brett E.; Vanier, Marie T.; Grynkiewicz, Grzegorz; Wynn, Rob F.; Wraith, J. Ed; Wegrzyn, Grzegorz; Bigger, Brian W.

    2010-01-01

    Background Neurodegenerative metabolic disorders such as mucopolysaccharidosis IIIB (MPSIIIB or Sanfilippo disease) accumulate undegraded substrates in the brain and are often unresponsive to enzyme replacement treatments due to the impermeability of the blood brain barrier to enzyme. MPSIIIB is characterised by behavioural difficulties, cognitive and later motor decline, with death in the second decade of life. Most of these neurodegenerative lysosomal storage diseases lack effective treatments. We recently described significant reductions of accumulated heparan sulphate substrate in liver of a mouse model of MPSIIIB using the tyrosine kinase inhibitor genistein. Methodology/Principal Findings We report here that high doses of genistein aglycone, given continuously over a 9 month period to MPSIIIB mice, significantly reduce lysosomal storage, heparan sulphate substrate and neuroinflammation in the cerebral cortex and hippocampus, resulting in correction of the behavioural defects observed. Improvements in synaptic vesicle protein expression and secondary storage in the cerebral cortex were also observed. Conclusions/Significance Genistein may prove useful as a substrate reduction agent to delay clinical onset of MPSIIIB and, due to its multimodal action, may provide a treatment adjunct for several other neurodegenerative metabolic diseases. PMID:21152017

  19. Visual Hallucinations in the Psychosis Spectrum and Comparative Information From Neurodegenerative Disorders and Eye Disease

    PubMed Central

    Waters, Flavie; Collerton, Daniel; ffytche, Dominic H.; Jardri, Renaud; Pins, Delphine; Dudley, Robert; Blom, Jan Dirk; Mosimann, Urs Peter; Eperjesi, Frank; Ford, Stephen; Larøi, Frank

    2014-01-01

    Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications. PMID:24936084

  20. Head trauma in sport and neurodegenerative disease: an issue whose time has come?

    PubMed

    Pearce, Neil; Gallo, Valentina; McElvenny, Damien

    2015-03-01

    A number of small studies and anecdotal reports have been suggested that sports involving repeated head trauma may have long-term risks of neurodegenerative disease. There are now plausible mechanisms for these effects, and a recognition that these problems do not just occur in former boxers, but in a variety of sports involving repeated concussions, and possibly also in sports in which low-level head trauma is common. These neurodegenerative effects potentially include increased risks of impaired cognitive function and dementia, Parkinson's disease, and amyotrophic lateral sclerosis. Many would argue for taking a precautionary approach and immediately banning or restricting sports such as boxing. However, there are important public health issues in terms of how wide the net should be cast in terms of other sports, and what remedial measures could be taken? This in turn requires a major research effort involving both clinical and basic research to understand the underlying mechanisms, leading from head trauma to neurodegenerative disease and epidemiologic studies to assess the long-term consequences. PMID:25725943

  1. Small-Molecule Theranostic Probes: A Promising Future in Neurodegenerative Diseases

    PubMed Central

    Aulić, Suzana

    2013-01-01

    Prion diseases are fatal neurodegenerative illnesses, which include Creutzfeldt-Jakob disease in humans and scrapie, chronic wasting disease, and bovine spongiform encephalopathy in animals. They are caused by unconventional infectious agents consisting primarily of misfolded, aggregated, β-sheet-rich isoforms, denoted prions, of the physiological cellular prion protein (PrPC). Many lines of evidence suggest that prions (PrPSc) act both as a template for this conversion and as a neurotoxic agent causing neuronal dysfunction and cell death. As such, PrPSc may be considered as both a neuropathological hallmark of the disease and a therapeutic target. Several diagnostic imaging probes have been developed to monitor cerebral amyloid lesions in patients with neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, and prion disease). Examples of these probes are Congo red, thioflavin T, and their derivatives. We synthesized a series of styryl derivatives, denoted theranostics, and studied their therapeutic and/or diagnostic potentials. Here we review the salient traits of these small molecules that are able to detect and modulate aggregated forms of several proteins involved in protein misfolding diseases. We then highlight the importance of further studies for their practical implications in therapy and diagnostics. PMID:24324497

  2. The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease

    PubMed Central

    Richards, Robert I.; Robertson, Sarah A.; O'Keefe, Louise V.; Fornarino, Dani; Scott, Andrew; Lardelli, Michael; Baune, Bernhard T.

    2016-01-01

    Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although, rare (familial) and common (sporadic) forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell's quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an “intelligent system,” in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s) and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to innate

  3. Computational Modelling Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic Analysis

    PubMed Central

    Khanam Irin, Afroza; Tom Kodamullil, Alpha; Gündel, Michaela; Hofmann-Apitius, Martin

    2015-01-01

    Neurodegenerative as well as autoimmune diseases have unclear aetiologies, but an increasing number of evidences report for a combination of genetic and epigenetic alterations that predispose for the development of disease. This review examines the major milestones in epigenetics research in the context of diseases and various computational approaches developed in the last decades to unravel new epigenetic modifications. However, there are limited studies that systematically link genetic and epigenetic alterations of DNA to the aetiology of diseases. In this work, we demonstrate how disease-related epigenetic knowledge can be systematically captured and integrated with heterogeneous information into a functional context using Biological Expression Language (BEL). This novel methodology, based on BEL, enables us to integrate epigenetic modifications such as DNA methylation or acetylation of histones into a specific disease network. As an example, we depict the integration of epigenetic and genetic factors in a functional context specific to Parkinson's disease (PD) and Multiple Sclerosis (MS). PMID:26636108

  4. A knowledge based approach to matching human neurodegenerative disease and animal models

    PubMed Central

    Maynard, Sarah M.; Mungall, Christopher J.; Lewis, Suzanna E.; Imam, Fahim T.; Martone, Maryann E.

    2013-01-01

    Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have explored the use of ontologies to create formal descriptions of structural phenotypes across scales that are machine processable and amenable to logical inference. As proof of concept, we built a Neurodegenerative Disease Phenotype Ontology (NDPO) and an associated Phenotype Knowledge Base (PKB) using an entity-quality model that incorporates descriptions for both human disease phenotypes and those of animal models. Entities are drawn from community ontologies made available through the Neuroscience Information Framework (NIF) and qualities are drawn from the Phenotype and Trait Ontology (PATO). We generated ~1200 structured phenotype statements describing structural alterations at the subcellular, cellular and gross anatomical levels observed in 11 human neurodegenerative conditions and associated animal models. PhenoSim, an open source tool for comparing phenotypes, was used to issue a series of competency questions to compare individual phenotypes among organisms and to determine which animal models recapitulate phenotypic aspects of the human disease in aggregate. Overall, the system was able to use relationships within the ontology to bridge phenotypes across scales, returning non-trivial matches based on common subsumers that were meaningful to a neuroscientist with an advanced knowledge of neuroanatomy. The system can be used both to compare individual phenotypes and also phenotypes in aggregate. This proof of concept suggests that expressing complex phenotypes using formal

  5. Analysis of optical neural stimulation effects on neural networks affected by neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2016-03-01

    The number of people in risk of developing a neurodegenerative disease increases as the life expectancy grows due to medical advances. Multiple techniques have been developed to improve patient's condition, from pharmacological to invasive electrodes approaches, but no definite cure has yet been discovered. In this work Optical Neural Stimulation (ONS) has been studied. ONS stimulates noninvasively the outer regions of the brain, mainly the neocortex. The relationship between the stimulation parameters and the therapeutic response is not totally clear. In order to find optimal ONS parameters to treat a particular neurodegenerative disease, mathematical modeling is necessary. Neural networks models have been employed to study the neural spiking activity change induced by ONS. Healthy and pathological neocortical networks have been considered to study the required stimulation to restore the normal activity. The network consisted of a group of interconnected neurons, which were assigned 2D spatial coordinates. The optical stimulation spatial profile was assumed to be Gaussian. The stimulation effects were modeled as synaptic current increases in the affected neurons, proportional to the stimulation fluence. Pathological networks were defined as the healthy ones with some neurons being inactivated, which presented no synaptic conductance. Neurons' electrical activity was also studied in the frequency domain, focusing specially on the changes of the spectral bands corresponding to brain waves. The complete model could be used to determine the optimal ONS parameters in order to achieve the specific neural spiking patterns or the required local neural activity increase to treat particular neurodegenerative pathologies.

  6. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder

    PubMed Central

    Alexander, Garrett E.

    2004-01-01

    Parkinson's disease (PD) is the second most common movement disorder. The characteristic motor impairments - bradykinesia, rigidity, and resting tremor - result from degenerative loss of midbrain dopamine (DA) neurons in the substantia nigra, and are responsive to symptomatic treatment with dopaminergic medications and functional neurosurgery. PD is also the second most common neurodegenerative disorder. Viewed from this perspective, PD is a disorder of multiple functional systems, not simply the motor system, and of multiple neurotransmitter systems, not merely that of DA. The characteristic pathology - intraneuronal Lewy body inclusions and reduced numbers of surviving neurons - is similar in each of the targeted neuron groups, suggesting a common neurodegenerative process. Pathological and experimental studies indicate that oxidative stress, proteolytic stress, and inflammation figure prominently in the pathogenesis of PD. Yet, whether any of these mechanisms plays a causal role in human PD is unknown, because to date we have no proven neuroprotective therapies that slow or reverse disease progression in patients with PD. We are beginning to understand the pathophysiology of motor dysfunction in PD, but its etiopathogenesis as a neurodegenerative disorder remains poorly understood. PMID:22033559

  7. The Role of MAPT in Neurodegenerative Diseases: Genetics, Mechanisms and Therapy.

    PubMed

    Zhang, Cheng-Cheng; Xing, Ang; Tan, Meng-Shan; Tan, Lan; Yu, Jin-Tai

    2016-09-01

    Microtubule-associated protein tau (MAPT) is a gene responsible for encoding tau protein, which is tightly implicated in keeping the function of microtubules and axonal transport. Hyperphosphorylated tau protein participates in the formation of neurofibrillary tangles (NFTs), which characterize many neurodegenerative disorders termed tauopathies. Genome-wide association studies (GWAS) have demonstrated numerous single nucleotide polymorphisms (SNPs) located in MAPT associated with various neurodegenerative diseases. Thus, it has been presumed that MAPT plays a crucial role in pathogenesis of neurodegeneration via affecting the structure and function of tau. Here, we review the advanced studies to summarize the biochemical properties of MAPT and its encoded protein, as well as the genetics and epigenetics of MAPT in neurodegeneration. Finally, given the potential mechanisms of MAPT to neurodegeneration pathogenesis, targeting MAPT and tau might present significant treatments of MAPT mutation-related neurodegeneration. Affirmatively, the identification of MAPT is extremely beneficial for improving our understanding of the pathogenesis of various neurodegenerative diseases and developing the mechanism-based therapies. PMID:26363795

  8. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress.

    PubMed

    Akbar, Mohammed; Essa, Musthafa Mohamed; Daradkeh, Ghazi; Abdelmegeed, Mohamed A; Choi, Youngshim; Mahmood, Lubna; Song, Byoung-Joon

    2016-04-15

    Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson׳s disease, Huntington׳s disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities. PMID:26883165

  9. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies

    PubMed Central

    Ciechanover, Aaron; Kwon, Yong Tae

    2015-01-01

    Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons. PMID:25766616

  10. Precision Modulation of Neurodegenerative Disease-Related Gene Expression in Human iPSC-Derived Neurons.

    PubMed

    Heman-Ackah, Sabrina Mahalia; Bassett, Andrew Roger; Wood, Matthew John Andrew

    2016-01-01

    The ability to reprogram adult somatic cells into induced pluripotent stem cells (iPSCs) and the subsequent development of protocols for their differentiation into disease-relevant cell types have enabled in-depth molecular analyses of multiple disease states as hitherto impossible. Neurons differentiated from patient-specific iPSCs provide a means to recapitulate molecular phenotypes of neurodegenerative diseases in vitro. However, it remains challenging to conduct precise manipulations of gene expression in iPSC-derived neurons towards modeling complex human neurological diseases. The application of CRISPR/Cas9 to mammalian systems is revolutionizing the utilization of genome editing technologies in the study of molecular contributors to the pathogenesis of numerous diseases. Here, we demonstrate that CRISPRa and CRISPRi can be used to exert precise modulations of endogenous gene expression in fate-committed iPSC-derived neurons. This highlights CRISPRa/i as a major technical advancement in accessible tools for evaluating the specific contributions of critical neurodegenerative disease-related genes to neuropathogenesis. PMID:27341390

  11. Precision Modulation of Neurodegenerative Disease-Related Gene Expression in Human iPSC-Derived Neurons

    PubMed Central

    Heman-Ackah, Sabrina Mahalia; Bassett, Andrew Roger; Wood, Matthew John Andrew

    2016-01-01

    The ability to reprogram adult somatic cells into induced pluripotent stem cells (iPSCs) and the subsequent development of protocols for their differentiation into disease-relevant cell types have enabled in-depth molecular analyses of multiple disease states as hitherto impossible. Neurons differentiated from patient-specific iPSCs provide a means to recapitulate molecular phenotypes of neurodegenerative diseases in vitro. However, it remains challenging to conduct precise manipulations of gene expression in iPSC-derived neurons towards modeling complex human neurological diseases. The application of CRISPR/Cas9 to mammalian systems is revolutionizing the utilization of genome editing technologies in the study of molecular contributors to the pathogenesis of numerous diseases. Here, we demonstrate that CRISPRa and CRISPRi can be used to exert precise modulations of endogenous gene expression in fate-committed iPSC-derived neurons. This highlights CRISPRa/i as a major technical advancement in accessible tools for evaluating the specific contributions of critical neurodegenerative disease-related genes to neuropathogenesis. PMID:27341390

  12. Multi-Channel neurodegenerative pattern analysis and its application in Alzheimer's disease characterization

    PubMed Central

    Liu, Sidong; Cai, Weidong; Wen, Lingfeng; Feng, David Dagan; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J.; Eberl, Stefan; ADNI

    2014-01-01

    Neuroimaging has played an important role in non-invasive diagnosis and differentiation of neurodegenerative disorders, such as Alzheimer's disease and Mild Cognitive Impairment. Various features have been extracted from the neuroimaging data to characterize the disorders, and these features can be roughly divided into global and local features. Recent studies show a tendency of using local features in disease characterization, since they are capable of identifying the subtle disease-specific patterns associated with the effects of the disease on human brain. However, problems arise if the neuroimaging database involved multiple disorders or progressive disorders, as disorders of different types or at different progressive stages might exhibit different degenerative patterns. It is difficult for the researchers to reach consensus on what brain regions could effectively distinguish multiple disorders or multiple progression stages. In this study we proposed a Multi-Channel pattern analysis approach to identify the most discriminative local brain metabolism features for neurodegenerative disorder characterization. We compared our method to global methods and other pattern analysis methods based on clinical expertise or statistics tests. The preliminary results suggested that the proposed Multi-Channel pattern analysis method outperformed other approaches in Alzheimer's disease characterization, and meanwhile provided important insights into the underlying pathology of Alzheimer's disease and Mild Cognitive Impairment. PMID:24933011

  13. [Changes in olfaction during ageing and in certain neurodegenerative diseases: up-to-date].

    PubMed

    Bianchi, A-J; Guépet-Sordet, H; Manckoundia, P

    2015-01-01

    Olfaction is a complex sensory system, and increasing interest is being shown in the link between olfaction and cognition, notably in the elderly. In this literature review, we revisit the specific neurophysiological features of the olfactory system and odorants that lead to a durable olfactory memory and an emotional memory, for which the implicit component produces subconscious olfactory conditioning. Olfaction is known to affect cognitive abilities and mood. We also consider the impairment of olfactory function due to ageing and to neurodegenerative diseases, in particular Alzheimer's disease and Parkinson's disease, through anatomopathological changes in the peripheral and central olfactory structures. The high frequency of these olfactory disorders as well as their early occurrence in Alzheimer disease and Parkinson disease are in favour of their clinical detection in subjects suffering from these two neurodegenerative diseases. Finally, we analyse the impact of olfactory stimulation on cognitive performance and attention. Current observational data from studies in elderly patients with Alzheimer-type dementia are limited to multiple sensory stimulation methods, such as the Snoezelen method, and aromatherapy. These therapies have shown benefits for dementia-related mood and behaviour disorders in the short term, with few side effects. Since olfactory chemosensory stimulation may be beneficial, it may be proposed in patients with dementia, especially Alzheimer-type dementia, as a complementary or even alternative therapy to existing medical strategies. PMID:25304170

  14. Modulation of the Kynurenine Pathway for the Potential Treatment of Neurodegenerative Diseases

    NASA Astrophysics Data System (ADS)

    Courtney, Stephen; Scheel, Andreas

    Modulation of tryptophan metabolism and in particular the kynurenine pathway is of considerable interest in the discovery of potential new treatments for neurodegenerative diseases. A number of small molecule inhibitors of the kynurenine metabolic pathway enzymes have been identified over recent years; a summary of these and their utility has been reviewed in this chapter. In particular, inhibitors of kynurenine monooxygenase represent an opportunity to develop a therapy for Huntington's disease; progress in the optimization of small molecule inhibitors of this enzyme is also described.

  15. Applications of Surface Plasmon Resonance for Characterization of Molecules Important in the Pathogenesis and Treatment of Neurodegenerative Diseases

    PubMed Central

    Wittenberg, Nathan J.; Wootla, Bharath; Jordan, Luke R.; Denic, Aleksandar; Warrington, Arthur E.; Oh, Sang-Hyun; Rodriguez, Moses

    2014-01-01

    Characterization of binding kinetics and affinity between a potential new drug and its receptor are key steps in the development of new drugs. Among the techniques available to determine binding affinities, surface plasmon resonance has emerged as the gold standard because it can measure binding and dissociation rates in real-time in a label-free fashion. Surface plasmon resonance is now finding applications in the characterization of molecules for treatment of neurodegenerative diseases, characterization of molecules associated with pathogenesis of neurodegenerative diseases and detection of neurodegenerative disease biomarkers. In addition it has been used in the characterization of a new class of natural autoantibodies that have therapeutic potential in a number of neurologic diseases. In this review we will introduce surface plasmon resonance and describe some applications of the technique that pertain to neurodegenerative disorders and their treatment. PMID:24625008

  16. Applications of SPR for the characterization of molecules important in the pathogenesis and treatment of neurodegenerative diseases.

    PubMed

    Wittenberg, Nathan J; Wootla, Bharath; Jordan, Luke R; Denic, Aleksandar; Warrington, Arthur E; Oh, Sang-Hyun; Rodriguez, Moses

    2014-04-01

    Characterization of binding kinetics and affinity between a potential drug and its receptor are key steps in the development of new drugs. Among the techniques available to determine binding affinities, surface plasmon resonance has emerged as the gold standard because it can measure binding and dissociation rates in real-time in a label-free fashion. Surface plasmon resonance is now finding applications in the characterization of molecules for treatment of neurodegenerative diseases, characterization of molecules associated with pathogenesis of neurodegenerative diseases and detection of neurodegenerative disease biomarkers. In addition it has been used in the characterization of a new class of natural autoantibodies that have therapeutic potential in a number of neurologic diseases. In this review we will introduce surface plasmon resonance and describe some applications of the technique that pertain to neurodegenerative disorders and their treatment. PMID:24625008

  17. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases.

    PubMed

    Reijs, Babette L R; Teunissen, Charlotte E; Goncharenko, Nikolai; Betsou, Fay; Blennow, Kaj; Baldeiras, Inês; Brosseron, Frederic; Cavedo, Enrica; Fladby, Tormod; Froelich, Lutz; Gabryelewicz, Tomasz; Gurvit, Hakan; Kapaki, Elisabeth; Koson, Peter; Kulic, Luka; Lehmann, Sylvain; Lewczuk, Piotr; Lleó, Alberto; Maetzler, Walter; de Mendonça, Alexandre; Miller, Anne-Marie; Molinuevo, José L; Mollenhauer, Brit; Parnetti, Lucilla; Rot, Uros; Schneider, Anja; Simonsen, Anja Hviid; Tagliavini, Fabrizio; Tsolaki, Magda; Verbeek, Marcel M; Verhey, Frans R J; Zboch, Marzena; Winblad, Bengt; Scheltens, Philip; Zetterberg, Henrik; Visser, Pieter Jelle

    2015-01-01

    Biobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer's and Parkinson's disease (BIOMARKAPD) is a European multicenter study, funded by the EU Joint Programme-Neurodegenerative Disease Research, which aims to improve the clinical use of body fluid markers for the diagnosis and prognosis of Alzheimer's disease (AD) and Parkinson's disease (PD). The objective was to standardize the assessment of existing assays and to validate novel fluid biomarkers for AD and PD. To support the validation of novel biomarkers and assays, a central and a virtual biobank for body fluids and associated data from subjects with neurodegenerative diseases have been established. In the central biobank, cerebrospinal fluid (CSF) and blood samples were collected according to the BIOMARKAPD standardized pre-analytical procedures and stored at Integrated BioBank of Luxembourg. The virtual biobank provides an overview of available CSF, plasma, serum, and DNA samples at each site. Currently, at the central biobank of BIOMARKAPD samples are available from over 400 subjects with normal cognition, mild cognitive impairment (MCI), AD, frontotemporal dementia (FTD), vascular dementia, multiple system atrophy, progressive supranuclear palsy, PD, PD with dementia, and dementia with Lewy bodies. The virtual biobank contains information on over 8,600 subjects with varying diagnoses from 21 local biobanks. A website has been launched to enable sample requests from the central biobank and virtual biobank. PMID:26528237

  18. Recent advances in iPSC technologies involving cardiovascular and neurodegenerative disease modeling.

    PubMed

    Csöbönyeiová, Mária; Danišovič, Ľuboš; Polák, Štefan

    2016-01-01

    Cardiovascular and neurodegenerative diseases are the most common health threats in developed countries. Limited cell derivation and cell number in cardiac tissue makes it difficult to study the cardiovascular disease using the existing cardiac cell model. Regarding the neurodegenerative disorders, the most potential sources of cell therapeutics such as fetal-derived primary neurons and human embryonic stem cells (ESCs) are associated with ethical or technical limitations. The successful derivation of human-induced pluripotent stem cells (iPSCs) by de-differentiation of somatic cells offers significant potential to overcome hurdles in the field of the replacement therapy. Human iPSCs are functionally similar to human embryonic stem cells, and can be derived autologously without the ethical challenges associated with human ESCs. The iPSCs can, in turn, be differentiated into all cell types including neurons, cardiac cells, blood and liver cells, etc. Recently, target tissues derived from human iPSCs such as cardiomyocytes (CMs) or neurons have been used for new disease modeling and regenerative medicine therapies. Diseases models could be advantageous in the development of personalized medicine of various pathological conditions. This paper reviews efforts aimed at both the practical development of iPSCs, differentiation to neural/cardiac lineages, and the further use of these iPSCs-derived cells for disease modeling, as well as drug toxicity testing. PMID:26492069

  19. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases

    PubMed Central

    Martins, Ian James

    2015-01-01

    Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration. PMID:26690419

  20. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases

    PubMed Central

    Reijs, Babette L. R.; Teunissen, Charlotte E.; Goncharenko, Nikolai; Betsou, Fay; Blennow, Kaj; Baldeiras, Inês; Brosseron, Frederic; Cavedo, Enrica; Fladby, Tormod; Froelich, Lutz; Gabryelewicz, Tomasz; Gurvit, Hakan; Kapaki, Elisabeth; Koson, Peter; Kulic, Luka; Lehmann, Sylvain; Lewczuk, Piotr; Lleó, Alberto; Maetzler, Walter; de Mendonça, Alexandre; Miller, Anne-Marie; Molinuevo, José L.; Mollenhauer, Brit; Parnetti, Lucilla; Rot, Uros; Schneider, Anja; Simonsen, Anja Hviid; Tagliavini, Fabrizio; Tsolaki, Magda; Verbeek, Marcel M.; Verhey, Frans R. J.; Zboch, Marzena; Winblad, Bengt; Scheltens, Philip; Zetterberg, Henrik; Visser, Pieter Jelle

    2015-01-01

    Biobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer’s and Parkinson’s disease (BIOMARKAPD) is a European multicenter study, funded by the EU Joint Programme-Neurodegenerative Disease Research, which aims to improve the clinical use of body fluid markers for the diagnosis and prognosis of Alzheimer’s disease (AD) and Parkinson’s disease (PD). The objective was to standardize the assessment of existing assays and to validate novel fluid biomarkers for AD and PD. To support the validation of novel biomarkers and assays, a central and a virtual biobank for body fluids and associated data from subjects with neurodegenerative diseases have been established. In the central biobank, cerebrospinal fluid (CSF) and blood samples were collected according to the BIOMARKAPD standardized pre-analytical procedures and stored at Integrated BioBank of Luxembourg. The virtual biobank provides an overview of available CSF, plasma, serum, and DNA samples at each site. Currently, at the central biobank of BIOMARKAPD samples are available from over 400 subjects with normal cognition, mild cognitive impairment (MCI), AD, frontotemporal dementia (FTD), vascular dementia, multiple system atrophy, progressive supranuclear palsy, PD, PD with dementia, and dementia with Lewy bodies. The virtual biobank contains information on over 8,600 subjects with varying diagnoses from 21 local biobanks. A website has been launched to enable sample requests from the central biobank and virtual biobank. PMID:26528237

  1. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases.

    PubMed

    Martins, Ian James

    2015-01-01

    Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration. PMID:26690419

  2. Light-induced retinal degeneration is prevented by zinc, a component in the age-related eye disease study formulation.

    PubMed

    Organisciak, Daniel; Wong, Paul; Rapp, Christine; Darrow, Ruth; Ziesel, Alison; Rangarajan, Rekha; Lang, John

    2012-01-01

    Mineral supplements are often included in multivitamin preparations because of their beneficial effects on metabolism. In this study, we used an animal model of light-induced retinal degeneration to test for photoreceptor cell protection by the essential trace element zinc. Rats were treated with various doses of zinc oxide and then exposed to intense visible light for as long as 8 h. Zinc treatment effectively prevented retinal light damage as determined by rhodopsin and retinal DNA recovery, histology and electrophoretic analysis of DNA damage and oxidized retinal proteins. Zinc oxide was particularly effective when given before light exposure and at doses two- to four-fold higher than recommended by the age-related eye disease study group. Treated rats exhibited higher serum and retinal pigment epithelial zinc levels and an altered retinal gene expression profile. Using an Ingenuity database, 512 genes with known functional annotations were found to be responsive to zinc supplementation, with 45% of these falling into a network related to cellular growth, proliferation, cell cycle and death. Although these data suggest an integrated and extensive regulatory response, zinc induced changes in gene expression also appear to enhance antioxidative capacity in retina and reduce oxidative damage arising from intense light exposure. PMID:22385127

  3. Mechanism of All-trans-retinal Toxicity with Implications for Stargardt Disease and Age-related Macular Degeneration*

    PubMed Central

    Chen, Yu; Okano, Kiichiro; Maeda, Tadao; Chauhan, Vishal; Golczak, Marcin; Maeda, Akiko; Palczewski, Krzysztof

    2012-01-01

    Compromised clearance of all-trans-retinal (atRAL), a component of the retinoid cycle, increases the susceptibility of mouse retina to acute light-induced photoreceptor degeneration. Abca4−/−Rdh8−/− mice featuring defective atRAL clearance were used to examine the one or more underlying molecular mechanisms, because exposure to intense light causes severe photoreceptor degeneration in these animals. Here we report that bright light exposure of Abca4−/−Rdh8−/− mice increased atRAL levels in the retina that induced rapid NADPH oxidase-mediated overproduction of intracellular reactive oxygen species (ROS). Moreover, such ROS generation was inhibited by blocking phospholipase C and inositol 1,4,5-trisphosphate-induced Ca2+ release, indicating that activation occurs upstream of NADPH oxidase-mediated ROS generation. Because multiple upstream G protein-coupled receptors can activate phospholipase C, we then tested the effects of antagonists of serotonin 2A (5-HT2AR) and M3-muscarinic (M3R) receptors and found they both protected Abca4−/−Rdh8−/− mouse retinas from light-induced degeneration. Thus, a cascade of signaling events appears to mediate the toxicity of atRAL in light-induced photoreceptor degeneration of Abca4−/−Rdh8−/− mice. A similar mechanism may be operative in human Stargardt disease and age-related macular degeneration. PMID:22184108

  4. Age-related changes in the ``complexity'' of cardiovascular dynamics: A potential marker of vulnerability to disease

    NASA Astrophysics Data System (ADS)

    Lewis, D. A. Lipsitz M.

    1995-03-01

    Healthy physiologic control of cardiovascular function is a result of complex interactions between multiple regulatory processes that operate over different time scales. These include the sympathetic and parasympathetic nervous systems which regulate beat-to-beat heart rate (HR) and blood pressure (BP), as well as extravascular volume, body temperature, and sleep which influence HR and BP over the longer term. Interactions between these control systems generate highly variable fluctuations in continuous HR and BP signals. Techniques derived from nonlinear dynamics and chaos theory are now being adapted to quantify the dynamic behavior of physiologic time series and study their changes with age or disease. We have shown significant age-related changes in the 1/fx relationship between the log amplitude and log frequency of the heart rate power spectrum, as well as declines in approximate dimension and approximate entropy of both heart rate and blood pressure time series. These changes in the ``complexity'' of cardiovascular dynamics reflect the breakdown and decoupling of integrated physiologic regulatory systems with aging, and may signal an impairment in cardiovascular ability to adapt to external and internal perturbations. Studies are currently underway to determine whether the complexity of HR or BP time series can distinguish patients with fainting spells due to benign vasovagal reactions from those due to life-threatening cardiac arrhythmias. Thus, measures of the complexity of physiologic variability may provide novel methods to monitor cardiovascular aging and test the efficacy of specific interventions to improve adaptive capacity in old age.

  5. Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance

    PubMed Central

    Maccarrone, M; Bernardi, G; Agrò, A Finazzi; Centonze, D

    2011-01-01

    Type-1 cannabinoid receptor (CB1) is the most abundant G-protein-coupled receptor (GPCR) in the brain. CB1 and its endogenous agonists, the so-called ‘endocannabinoids (eCBs)’, belong to an ancient neurosignalling system that plays important functions in neurodegenerative and neuroinflammatory disorders like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. For this reason, research on the therapeutic potential of drugs modulating the endogenous tone of eCBs is very intense. Several GPCRs reside within subdomains of the plasma membranes that contain high concentrations of cholesterol: the lipid rafts. Here, the hypothesis that changes in membrane fluidity alter function of the endocannabinoid system, as well as progression of particular neurodegenerative diseases, is described. To this end, the impact of membrane cholesterol on membrane properties and hence on neurodegenerative diseases, as well as on CB1 signalling in vitro and on CB1-dependent neurotransmission within the striatum, is discussed. Overall, present evidence points to the membrane environment as a critical regulator of signal transduction triggered by CB1, and calls for further studies aimed at better clarifying the contribution of membrane lipids to eCBs signalling. The results of these investigations might be exploited also for the development of novel therapeutics able to combat disorders associated with abnormal activity of CB1. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21323908

  6. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases

    PubMed Central

    Chin-Chan, Miguel; Navarro-Yepes, Juliana; Quintanilla-Vega, Betzabet

    2015-01-01

    Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action. PMID:25914621

  7. Insight into the Dissociation of Behavior from Histology in Synucleinopathies and in Related Neurodegenerative Diseases.

    PubMed

    Sekiyama, Kazunari; Takamatsu, Yoshiki; Koike, Wakako; Waragai, Masaaki; Takenouchi, Takato; Sugama, Shuei; Hashimoto, Makoto

    2016-03-31

    Recent clinical trials using immunization approaches against Alzheimer's disease (AD) have failed to demonstrate improved cognitive functions in patients, despite potent suppression in the formation of both senile plaques and other amyloid-β deposits in postmortem brains. Similarly, we observed that treatment with ibuprofen, a non-steroidal anti-inflammatory drug, was effective in improving the histopathology, such as reducing both protein aggregation and glial activation, in the brains of transgenic mice expressing dementia with Lewy bodies-linked P123H β-synuclein. In contrast, only a small improvement in cognitive functions was observed in these mice. Collectively, it is predicted that histology does not correlate with behavior that is resilient and resistant to therapeutic stimuli. Notably, such a 'discrepancy between histology and behavior' is reminiscent of AD-like pathologies and incidental Lewy bodies, which are frequently encountered in postmortem brains of the elderly who had been asymptomatic for memory loss and Parkinsonism during their lives. We suggest that 'the discrepancy between histology and behavior' may be a universal feature that is associated with various aspects of neurodegenerative diseases. Furthermore, given that the cognitive reserve is specifically observed in human brains, human behavior may be evolutionally distinct from that in other animals, thus, contributing to the differential efficiency of therapy between human and lower animals, an important issue in the therapy of neurodegenerative diseases. Overall, it is important to better understand 'the discrepancy between histology and behavior' in the mechanism of neurodegeneration for the development of effective therapies against neurodegenerative diseases. PMID:27031478

  8. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases.

    PubMed

    Chin-Chan, Miguel; Navarro-Yepes, Juliana; Quintanilla-Vega, Betzabet

    2015-01-01

    Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action. PMID:25914621

  9. Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes.

    PubMed Central

    Anderson, R. M.; May, R. M.

    1985-01-01

    Mathematical models are developed to aid in the investigation of the implications of heterogeneity in contact with infection within a community, on the design of mass vaccination programmes for the control of childhood viral and bacterial infections in developed countries. Analyses are focused on age-dependency in the rate at which individuals acquire infection, the question of 'who acquires infection from whom', and the implications of genetic variability in susceptibility to infection. Throughout, theoretical predictions are based on parameter estimates obtained from epidemiological studies and are compared with observed temporal trends in disease incidence and age-stratified serological profiles. Analysis of case notification records and serological data suggest that the rate at which individuals acquire many common infections changes from medium to high and then to low levels in the infant, child and teenage plus adult age groups respectively. Such apparent age-dependency in attack rate acts to reduce slightly the predicted levels of herd immunity required for the eradication of infections such as measles, when compared with the predictions of models based on age-independent transmission. The action of maternally derived immunity in prohibiting vaccination in infants, and the broad span of age classes over which vaccination currently takes place in the U.K., however, argue that levels of herd immunity of between 90 and 94% would be required to eliminate measles. Problems surrounding the interpretation of apparent age-related trends in the acquisition of infection and their relevance to the design of vaccination programmes, are discussed in relation to the possible role of genetically based variation in susceptibility to infection and observations on epidemics in 'virgin' populations. Heterogeneous mixing models provide predictions of changes in serology and disease incidence under the impact of mass vaccination which well mirror observed trends in England and

  10. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction.

    PubMed

    Petrov, A M; Kasimov, M R; Zefirov, A L

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body's total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington's, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer's disease, Parkinson's disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  11. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction

    PubMed Central

    Petrov, A. M.; Kasimov, M. R.; Zefirov, A. L.

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body’s total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington’s, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer’s disease, Parkinson’s disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  12. PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders.

    PubMed

    Doorduin, Janine; de Vries, Erik F J; Dierckx, Rudi A; Klein, Hans C

    2008-01-01

    It is important to gain more insight into neurodegenerative diseases, because these debilitating diseases can not be cured. A common characteristic of many neurological diseases is neuroinflammation, which is accompanied by the presence of activated microglia cells. In activated microglia cells, an increase in the expression of peripheral benzodiazepine receptors (PBR) can be found. The PBR was suggested as a target for monitoring disease progression and therapy efficacy with positron emission tomograpy (PET). The PET tracer [(11)C]PK11195 has been widely used for PBR imaging, but the tracer has a high lipophilicity and high non-specific binding which makes it difficult to quantify uptake. Therefore, efforts are being made to develop more sensitive radioligands for the PBR. Animal studies have yielded several promising new tracers for PBR imaging, such as [(11)C]DAA1106, [(18)F]FEDAA1106, [(11)C]PBR28, [(11)C]DPA713 and [(11)C]CLINME. However, the potential of these new PBR ligands is still under investigation and as a consequence [(11)C]PK11195 is used so far to image activated microglia cells in neurological disorders. With [(11)C]PK11195, distinct neuroinflammation was detected in multiple sclerosis, Parkinson's disease, encephalitis and other neurological diseases. Because neuroinflammation plays a central role in the progression of neurodegenerative diseases, anti-inflammatory drugs have been investigated for therapeutic intervention. Especially minocycline and cyclooxygenase inhibitors have shown in vivo anti-inflammatory, hence neuroprotective properties, that could be detected by PET imaging of the PBR with [(11)C]PK11195. The imaging studies published so far showed that the PBR can be an important target for monitoring disease progression, therapy response and determining the optimal drug dose. PMID:19075709

  13. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings.

    PubMed

    Suneja, B; Suneja, E S; Adlakha, V K; Chandna, P

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an recessive X-linked mediated, musculoskeletal disorder that affects only males. It is the most common and severe form of muscular dystrophy where there is failure to manufacture dystrophin. Clinically, it is characterized by progressive muscle wasting eventually leading to premature death. This case report describes the genetic, oral and systemic findings in two cases of DMD in male siblings. How to cite this article: Suneja B, Suneja ES, Adlakha VK, Chandna P. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings. Int J Clin Pediatr Dent 2015;8(2):163-165. PMID:26379389

  14. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings

    PubMed Central

    Suneja, B; Suneja, ES; Chandna, P

    2015-01-01

    ABSTRACT Duchenne muscular dystrophy (DMD) is an recessive X-linked mediated, musculoskeletal disorder that affects only males. It is the most common and severe form of muscular dystrophy where there is failure to manufacture dystrophin. Clinically, it is characterized by progressive muscle wasting eventually leading to premature death. This case report describes the genetic, oral and systemic findings in two cases of DMD in male siblings. How to cite this article: Suneja B, Suneja ES, Adlakha VK, Chandna P. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings. Int J Clin Pediatr Dent 2015;8(2):163-165. PMID:26379389

  15. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease.

    PubMed

    Simon, Matthew J; Iliff, Jeffrey J

    2016-03-01

    Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer's disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the 'glymphatic' system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger. PMID:26499397

  16. A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank.

    PubMed

    Toledo, Jon B; Van Deerlin, Vivianna M; Lee, Edward B; Suh, EunRan; Baek, Young; Robinson, John L; Xie, Sharon X; McBride, Jennifer; Wood, Elisabeth M; Schuck, Theresa; Irwin, David J; Gross, Rachel G; Hurtig, Howard; McCluskey, Leo; Elman, Lauren; Karlawish, Jason; Schellenberg, Gerard; Chen-Plotkin, Alice; Wolk, David; Grossman, Murray; Arnold, Steven E; Shaw, Leslie M; Lee, Virginia M-Y; Trojanowski, John Q

    2014-07-01

    Neurodegenerative diseases (NDs) are defined by the accumulation of abnormal protein deposits in the central nervous system (CNS), and only neuropathological examination enables a definitive diagnosis. Brain banks and their associated scientific programs have shaped the actual knowledge of NDs, identifying and characterizing the CNS deposits that define new diseases, formulating staging schemes, and establishing correlations between neuropathological changes and clinical features. However, brain banks have evolved to accommodate the banking of biofluids as well as DNA and RNA samples. Moreover, the value of biobanks is greatly enhanced if they link all the multidimensional clinical and laboratory information of each case, which is accomplished, optimally, using systematic and standardized operating procedures, and in the framework of multidisciplinary teams with the support of a flexible and user-friendly database system that facilitates the sharing of information of all the teams in the network. We describe a biobanking system that is a platform for discovery research at the Center for Neurodegenerative Disease Research at the University of Pennsylvania. PMID:23978324

  17. Mitochondrial Biogenesis: A Therapeutic Target for Neurodevelopmental Disorders and Neurodegenerative Diseases

    PubMed Central

    Uittenbogaard, Martine; Chiaramello, Anne

    2014-01-01

    In the developing and mature brain, mitochondria act as central hubs for distinct but interwined pathways, necessary for neural development, survival, activity, connectivity and plasticity. In neurons, mitochondria assume diverse functions, such as energy production in the form of ATP, calcium buffering and generation of reactive oxygen species. Mitochondrial dysfunction contributes to a range of neurodevelopmental and neurodegenerative diseases, making mitochondria a potential target for pharmacological-based therapies. Pathogenesis associated with these diseases is accompanied by an increase in mitochondrial mass, a quantitative increase to overcome a qualitative deficiency due to mutated mitochondrial proteins that are either nuclear- or mitochondrial-encoded. This compensatory biological response is maladaptive, as it fails to sufficiently augment the bioenergetically functional mitochondrial mass and correct for the ATP deficit. Since regulation of neuronal mitochondrial biogenesis has been scantily investigated, our current understanding on the network of transcriptional regulators, co-activators and signaling regulators mainly derives from other cellular systems. The purpose of this review is to present the current state of our knowledge and understanding of the transcriptional and signaling cascades controlling neuronal mitochondrial biogenesis and the various therapeutic approaches to enhance the functional mitochondrial mass in the context of neurodevelopmental disorders and adult-onset neurodegenerative diseases. PMID:24606804

  18. A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank

    PubMed Central

    Toledo, Jon B.; Van Deerlin, Vivianna M.; Lee, Edward B.; Suh, EunRan; Baek, Young; Robinson, John L.; Xie, Sharon X.; McBride, Jennifer; Wood, Elisabeth M.; Schuck, Theresa; Irwin, David J.; Gross, Rachel G.; Hurtig, Howard; McCluskey, Leo; Elman, Lauren; Karlawish, Jason; Schellenberg, Gerard; Chen-Plotkin, Alice; Wolk, David; Grossman, Murray; Arnold, Steven E.; Shaw, Leslie M.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2014-01-01

    Neurodegenerative diseases (NDs) are defined by the accumulation of abnormal protein deposits in the central nervous system (CNS), and only neuropathological examination enables a definitive diagnosis. Brain banks and their associated scientific programs have shaped the actual knowledge of NDs, identifying and characterizing the CNS deposits that define new diseases, formulating staging schemes, and establishing correlations between neuropathological changes and clinical features. However, brain banks have evolved to accommodate the banking of biofluids as well as DNA and RNA samples. Moreover, the value of biobanks is greatly enhanced if they link all the multidimensional clinical and laboratory information of each case, which is accomplished, optimally, using systematic and standardized operating procedures, and in the framework of multidisciplinary teams with the support of a flexible and user-friendly database system that facilitates the sharing of information of all the teams in the network. We describe a biobanking system that is a platform for discovery research at the Center for Neurodegenerative Disease Research at the University of Pennsylvania. PMID:23978324

  19. Complement factor H genetic variant and age-related macular degeneration: effect size, modifiers and relationship to disease subtype

    PubMed Central

    Sofat, Reecha; Casas, Juan P; Webster, Andrew R; Bird, Alan C; Mann, Samantha S; Yates, John RW; Moore, Anthony T; Sepp, Tiina; Cipriani, Valentina; Bunce, Catey; Khan, Jane C; Shahid, Humma; Swaroop, Anand; Abecasis, Gonçalo; Branham, Kari E H; Zareparsi, Sepideh; Bergen, Arthur A; Klaver, Caroline CW; Baas, Dominique C; Zhang, Kang; Chen, Yuhong; Gibbs, Daniel; Weber, Bernhard H F; Keilhauer, Claudia N; Fritsche, Lars G; Lotery, Andrew; Cree, Angela J; Griffiths, Helen L; Bhattacharya, Shomi S; Chen, Li L; Jenkins, Sharon A; Peto, Tunde; Lathrop, Mark; Leveillard, Thierry; Gorin, Michael B; Weeks, Daniel E; Ortube, Maria Carolina; Ferrell, Robert E; Jakobsdottir, Johanna; Conley, Yvette P; Rahu, Mati; Seland, Johan H; Soubrane, Gisele; Topouzis, Fotis; Vioque, Jesus; Tomazzoli, Laura; Young, Ian; Whittaker, John; Chakravarthy, Usha; de Jong, Paulus T V M; Smeeth, Liam; Fletcher, Astrid; Hingorani, Aroon D

    2012-01-01

    Background Variation in the complement factor H gene (CFH) is associated with risk of late age-related macular degeneration (AMD). Previous studies have been case–control studies in populations of European ancestry with little differentiation in AMD subtype, and insufficient power to confirm or refute effect modification by smoking. Methods To precisely quantify the association of the single nucleotide polymorphism (SNP rs1061170, ‘Y402H’) with risk of AMD among studies with differing study designs, participant ancestry and AMD grade and to investigate effect modification by smoking, we report two unpublished genetic association studies (n = 2759) combined with data from 24 published studies (26 studies, 26 494 individuals, including 14 174 cases of AMD) of European ancestry, 10 of which provided individual-level data used to test gene–smoking interaction; and 16 published studies from non-European ancestry. Results In individuals of European ancestry, there was a significant association between Y402H and late-AMD with a per-allele odds ratio (OR) of 2.27 [95% confidence interval (CI) 2.10–2.45; P = 1.1 x 10−161]. There was no evidence of effect modification by smoking (P = 0.75). The frequency of Y402H varied by ancestral origin and the association with AMD in non-Europeans was less clear, limited by paucity of studies. Conclusion The Y402H variant confers a 2-fold higher risk of late-AMD per copy in individuals of European descent. This was stable to stratification by study design and AMD classification and not modified by smoking. The lack of association in non-Europeans requires further verification. These findings are of direct relevance for disease prediction. New research is needed to ascertain if differences in circulating levels, expression or activity of factor H protein explain the genetic association. PMID:22253316

  20. Is age-related decline in lean mass and physical function accelerated by Obstructive Lung Disease or smoking?

    PubMed Central

    van den Borst, Bram; Koster, Annemarie; Yu, Binbing; Gosker, Harry R.; Meibohm, Bernd; Bauer, Douglas C.; Kritchevsky, Stephen B.; Liu, Yongmei; Newman, Anne B.; Harris, Tamara B.; Schols, Annemie M.W.J.

    2012-01-01

    Background and aims Cross-sectional studies suggest that Obstructive Lung Disease (OLD) and smoking affect lean mass and mobility. We aimed to investigate whether OLD and smoking accelerate aging-related decline in lean mass and physical functioning. Methods 260 persons with OLD (FEV1 63±18 %predicted), 157 smoking controls (FEV1 95±16 %predicted), 866 formerly smoking controls (FEV1 100±16 %predicted) and 891 never-smoking controls (FEV1 104±17 %predicted) participating in the Health, Aging and Body Composition (ABC) Study were studied. At baseline, the mean age was 74±3 y and participants reported no functional limitations. Baseline and seven-year longitudinal data were investigated of body composition (by Dual-energy X-ray absorptiometry), muscle strength (by hand and leg dynamometry) and Short Physical Performance Battery (SPPB). Results Compared to never-smoking controls, OLD persons and smoking controls had a significantly lower weight, fat mass, lean mass and bone mineral content (BMC) at baseline (p<0.05). While the loss of weight, fat mass, lean mass and strength was comparable between OLD persons and never-smoking controls, the SPPB declined 0.12 points/yr faster in OLD men (p=0.01) and BMC 4 g/yr faster in OLD women (p=0.02). In smoking controls, only lean mass declined 0.1 kg/yr faster in women (p=0.03) and BMC 8 g/yr faster in men (p=0.02) compared to never-smoking controls. Conclusions Initially well-functioning older adults with mild-to-moderate OLD and smokers without OLD have a comparable compromised baseline profile of body composition and physical functioning, while seven-year longitudinal trajectories are to a large extent comparable to those observed in never-smokers without OLD. This suggests a common insult earlier in life related to smoking. 3 PMID:21724748

  1. Role of metabolism in neurodegenerative disorders.

    PubMed

    Procaccini, Claudio; Santopaolo, Marianna; Faicchia, Deriggio; Colamatteo, Alessandra; Formisano, Luigi; de Candia, Paola; Galgani, Mario; De Rosa, Veronica; Matarese, Giuseppe

    2016-09-01

    Along with the increase in life expectancy over the last century, the prevalence of age-related disorders, such as neurodegenerative diseases continues to rise. This is the case of Alzheimer's, Parkinson's, Huntington's diseases and Multiple sclerosis, which are chronic disorders characterized by neuronal loss in motor, sensory or cognitive systems. Accumulating evidence has suggested the presence of a strong correlation between metabolic changes and neurodegeneration. Indeed epidemiologic studies have shown strong associations between obesity, metabolic dysfunction, and neurodegeneration, while animal models have provided insights into the complex relationships between these conditions. In this context, hormones such as leptin, ghrelin, insulin and IGF-1 seem to play a key role in the regulation of neuronal damage, toxic insults and several other neurodegenerative processes. This review aims to presenting the most recent evidence supporting the crosstalk linking energy metabolism and neurodegeneration, and will focus on metabolic manipulation as a possible therapeutic tool in the prevention and treatment of neurodegenerative diseases. PMID:27506744

  2. No Geographic Correlation between Lyme Disease and Death Due to 4 Neurodegenerative Disorders, United States, 2001–2010

    PubMed Central

    Kugeler, Kiersten J.; Perea, Anna E.; Pastula, Daniel M.; Mead, Paul S.

    2015-01-01

    Associations between Lyme disease and certain neurodegenerative diseases have been proposed, but supportive evidence for an association is lacking. Similar geographic distributions would be expected if 2 conditions were etiologically linked. Thus, we compared the distribution of Lyme disease cases in the United States with the distributions of deaths due to Alzheimer disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson disease; no geographic correlations were identified. Lyme disease incidence per US state was not correlated with rates of death due to ALS, MS, or Parkinson disease; however, an inverse correlation was detected between Lyme disease and Alzheimer disease. The absence of a positive correlation between the geographic distribution of Lyme disease and the distribution of deaths due to Alzheimer disease, ALS, MS, and Parkinson disease provides further evidence that Lyme disease is not associated with the development of these neurodegenerative conditions. PMID:26488307

  3. Cognitive effects of repetitive transcranial magnetic stimulation in patients with neurodegenerative diseases - clinician's perspective.

    PubMed

    Anderkova, Lubomira; Rektorova, Irena

    2014-04-15

    Repetitive transcranial magnetic stimulation (rTMS) represents a promising tool for studying and influencing cognition in people with neurodegenerative diseases. This procedure is noninvasive and painless, and it does not require the use of anesthesia or pharmacological substances. In this systematic critical review we report outcomes from research focused on behavioral cognitive effects induced by rTMS in patients with Alzheimer's disease (AD), Parkinson's disease (PD), and mild cognitive impairment (MCI) preceding AD. There are still major limitations to rTMS use, such as a poor understanding of its after-effects and inter-individual variability in their magnitude, discrepancies in stimulation protocols and study designs, varied selection of the specific stimulated areas and control procedures, and neuropsychological methods for assessment of after-effects; hence, the results of the present research can only be considered preliminary. The future directions are discussed. PMID:24530170

  4. Therapeutic Approach of Nanotechnology for Oxidative Stress Induced Ocular Neurodegenerative Diseases.

    PubMed

    Mitra, Rajendra N; Conley, Shannon M; Naash, Muna I

    2016-01-01

    Oxidative stress plays a role in many different forms of neurodegenerative ocular disease. The imbalance between the generation of endogenous reactive oxygen species (ROS) and their corresponding neutralization by endogenous antioxidant defense systems leads to cellular oxidative stress, oxidation of different bio-macromolecules, and eventually retinal disease. As a result, the administration of supplemental endogenous antioxidant materials or exogenous ROS scavengers is an interesting therapeutic approach for the treatment of forms of ocular disease associated with oxidative stress. Thus far, different dietary antioxidant supplements have been proven to be clinically reliable and effective, and different antioxidant gene therapy approaches are under investigation. In addition, various metal oxide nanoparticles were shown to be effective in defending against oxidative stress-associated injury. These benefits are due to free radical scavenging properties of the materials arising from non-stoichiometric crystal defects and oxygen deficiencies. Here we discuss the application of this approach to the protection of the retina. PMID:26427447

  5. CRISPR/Cas9: Implications for Modeling and Therapy of Neurodegenerative Diseases

    PubMed Central

    Yang, Weili; Tu, Zhuchi; Sun, Qiang; Li, Xiao-Jiang

    2016-01-01

    CRISPR/Cas9 is now used widely to genetically modify the genomes of various species. The ability of CRISPR/Cas9 to delete DNA sequences and correct DNA mutations opens up a new avenue to treat genetic diseases that are caused by DNA mutations. In this review, we describe the advantages of using CRISPR/Cas9 to engineer genomic DNAs in animal embryos, as well as in specific regions or cell types in the brain. We also discuss how to apply CRISPR/Cas9 to establish animal models of neurodegenerative diseases, such as Parkinson’s and Huntington’s disease (HD), and to treat these disorders that are caused by genetic mutations. PMID:27199655

  6. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    PubMed

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  7. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases.

    PubMed

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin; Senger, Philipp

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article's supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in

  8. The Critical Need to Promote Research of Aging and Aging-related Diseases to Improve Health and Longevity of the Elderly Population

    PubMed Central

    Jin, Kunlin; Simpkins, James W.; Ji, Xunming; Leis, Miriam; Stambler, Ilia

    2015-01-01

    Due to the aging of the global population and the derivative increase in aging-related non-communicable diseases and their economic burden, there is an urgent need to promote research on aging and aging-related diseases as a way to improve healthy and productive longevity for the elderly population. To accomplish this goal, we advocate the following policies: 1) Increasing funding for research and development specifically directed to ameliorate degenerative aging processes and to extend healthy and productive lifespan for the population; 2) Providing a set of incentives for commercial, academic, public and governmental organizations to foster engagement in such research and development; and 3) Establishing and expanding coordination and consultation structures, programs and institutions involved in aging-related research, development and education in academia, industry, public policy agencies and at governmental and supra-governmental levels. PMID:25657847

  9. Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention.

    PubMed

    Shany-Ur, Tal; Lin, Nancy; Rosen, Howard J; Sollberger, Marc; Miller, Bruce L; Rankin, Katherine P

    2014-08-01

    Accurate self-awareness is essential for adapting one's tasks and goals to one's actual abilities. Patients with neurodegenerative diseases, particularly those with right frontal involvement, often present with poor self-awareness of their functional limitations that may exacerbate their already jeopardized decision-making and behaviour. We studied the structural neuroanatomical basis for impaired self-awareness among patients with neurodegenerative disease and healthy older adults. One hundred and twenty-four participants (78 patients with neurodegenerative diseases including Alzheimer's disease, behavioural variant frontotemporal dementia, right-temporal frontotemporal dementia, semantic variant and non-fluent variant primary progressive aphasia, and 46 healthy controls) described themselves on the Patient Competency Rating Scale, rating observable functioning across four domains (daily living activities, cognitive, emotional control, interpersonal). All participants underwent structural magnetic resonance imaging. Informants also described subjects' functioning on the same scale. Self-awareness was measured by comparing self and informant ratings. Group differences in discrepancy scores were analysed using general linear models, controlling for age, sex and disease severity. Compared with controls, patients with behavioural variant frontotemporal dementia overestimated their functioning in all domains, patients with Alzheimer's disease overestimated cognitive and emotional functioning, patients with right-temporal frontotemporal dementia overestimated interpersonal functioning, and patients with non-fluent aphasia overestimated emotional and interpersonal functioning. Patients with semantic variant aphasia did not overestimate functioning on any domain. To examine the neuroanatomic correlates of impaired self-awareness, discrepancy scores were correlated with brain volume using voxel-based morphometry. To identify the unique neural correlates of overlooking

  10. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases.

    PubMed

    Aznar, Susana; Hervig, Mona El-Sayed

    2016-05-01

    Executive function entails the interplay of a group of cognitive processes enabling the individual to anticipate consequences, attain self-control, and undertake appropriate goal-directed behaviour. Serotonin signalling at serotonin 2A receptors (5-HT2AR) has important effects on these behavioural and cognitive pathways, with the prefrontal cortex (PFC) as the central actor. Indeed, the 5-HT2ARs are highly expressed in PFC, where they modulate cortical activity and local network oscillations (brain waves). Numerous psychiatric and neurodegenerative diseases result in disrupted executive function. Animal and human studies have linked these disorders with alterations in the 5-HT2AR system, making this an important pharmacological target for the treatment of disorders with impaired cognitive function. This review aims to describe the current state of knowledge on the role of 5-HT2AR signalling in components of executive function, and how 5-HT2AR systems may relate to executive dysfunctions occurring in psychiatric and neurodegenerative diseases. We hope thereby to provide insight into how pharmacotherapy targeting the 5-HT2AR may ameliorate (or exacerbate) aspects of these disorders. PMID:26891819

  11. A faulty interaction between SOD1 and hCCS in neurodegenerative disease

    PubMed Central

    Wright, Gareth S. A.; Antonyuk, Svetlana V.; Hasnain, S. Samar

    2016-01-01

    A proportion of Amyotrophic lateral sclerosis (ALS) cases result from impaired mutant superoxide dismutase-1 (SOD1) maturation. The copper chaperone for SOD1 (hCCS) forms a transient complex with SOD1 and catalyses the final stages of its maturation. We find that a neurodegenerative disease-associated hCCS mutation abrogates the interaction with SOD1 by inhibiting hCCS zinc binding. Analogously, SOD1 zinc loss has a detrimental effect on the formation, structure and disassociation of the hCCS-SOD1 heterodimer. This suggests that hCCS functionality is impaired by ALS mutations that reduce SOD1 zinc affinity. Furthermore, stabilization of wild-type SOD1 by chemical modification including cisplatination, inhibits complex formation. We hypothesize that drug molecules designed to stabilize ALS SOD1 mutants that also target the wild-type form will lead to characteristics common in SOD1 knock-outs. Our work demonstrates the applicability of chromatographic SAXS when studying biomolecules predisposed to aggregation or dissociation; attributes frequently reported for complexes involved in neurodegenerative disease. PMID:27282955

  12. A faulty interaction between SOD1 and hCCS in neurodegenerative disease.

    PubMed

    Wright, Gareth S A; Antonyuk, Svetlana V; Hasnain, S Samar

    2016-01-01

    A proportion of Amyotrophic lateral sclerosis (ALS) cases result from impaired mutant superoxide dismutase-1 (SOD1) maturation. The copper chaperone for SOD1 (hCCS) forms a transient complex with SOD1 and catalyses the final stages of its maturation. We find that a neurodegenerative disease-associated hCCS mutation abrogates the interaction with SOD1 by inhibiting hCCS zinc binding. Analogously, SOD1 zinc loss has a detrimental effect on the formation, structure and disassociation of the hCCS-SOD1 heterodimer. This suggests that hCCS functionality is impaired by ALS mutations that reduce SOD1 zinc affinity. Furthermore, stabilization of wild-type SOD1 by chemical modification including cisplatination, inhibits complex formation. We hypothesize that drug molecules designed to stabilize ALS SOD1 mutants that also target the wild-type form will lead to characteristics common in SOD1 knock-outs. Our work demonstrates the applicability of chromatographic SAXS when studying biomolecules predisposed to aggregation or dissociation; attributes frequently reported for complexes involved in neurodegenerative disease. PMID:27282955

  13. Effect of Meditation on Cognitive Functions in Context of Aging and Neurodegenerative Diseases

    PubMed Central

    Marciniak, Rafał; Sheardova, Katerina; Čermáková, Pavla; Hudeček, Daniel; Šumec, Rastislav; Hort, Jakub

    2014-01-01

    Effect of different meditation practices on various aspects of mental and physical health is receiving growing attention. The present paper reviews evidence on the effects of several mediation practices on cognitive functions in the context of aging and neurodegenerative diseases. The effect of meditation in this area is still poorly explored. Seven studies were detected through the databases search, which explores the effect of meditation on attention, memory, executive functions, and other miscellaneous measures of cognition in a sample of older people and people suffering from neurodegenerative diseases. Overall, reviewed studies suggested a positive effect of meditation techniques, particularly in the area of attention, as well as memory, verbal fluency, and cognitive flexibility. These findings are discussed in the context of MRI studies suggesting structural correlates of the effects. Meditation can be a potentially suitable non-pharmacological intervention aimed at the prevention of cognitive decline in the elderly. However, the conclusions of these studies are limited by their methodological flaws and differences of various types of meditation techniques. Further research in this direction could help to verify the validity of the findings and clarify the problematic aspects. PMID:24478663

  14. A randomised controlled trial investigating the effect of nutritional supplementation on visual function in normal, and age-related macular disease affected eyes: design and methodology [ISRCTN78467674

    PubMed Central

    Bartlett, Hannah; Eperjesi, Frank

    2003-01-01

    Background Age-related macular disease is the leading cause of blind registration in the developed world. One aetiological hypothesis involves oxidation, and the intrinsic vulnerability of the retina to damage via this process. This has prompted interest in the role of antioxidants, particularly the carotenoids lutein and zeaxanthin, in the prevention and treatment of this eye disease. Methods The aim of this randomised controlled trial is to determine the effect of a nutritional supplement containing lutein, vitamins A, C and E, zinc, and copper on measures of visual function in people with and without age-related macular disease. Outcome measures are distance and near visual acuity, contrast sensitivity, colour vision, macular visual field, glare recovery, and fundus photography. Randomisation is achieved via a random number generator, and masking achieved by third party coding of the active and placebo containers. Data collection will take place at nine and 18 months, and statistical analysis will employ Student's t test. Discussion A paucity of treatment modalities for age-related macular disease has prompted research into the development of prevention strategies. A positive effect on normals may be indicative of a role of nutritional supplementation in preventing or delaying onset of the condition. An observed benefit in the age-related macular disease group may indicate a potential role of supplementation in prevention of progression, or even a degree reversal of the visual effects caused by this condition. PMID:14594455

  15. VISION PROBLEMS IN THE U.S.-PREVALENCE OF ADULT VISION IMPAIRMENT AND AGE-RELATED EYE DISEASES IN AMERICA

    EPA Science Inventory

    Leading causes of vision impairment and blindness in the United States. Diabetic retinopathy? Age-related macular degeneration (AMD)? Cataract? Glaucoma? The Vision Problems in the U.S. study was the result of a 2001 consensus meeting, convened by the National Eye Institute and ...

  16. Estimating premorbid IQ in the prodromal phase of a neurodegenerative disease.

    PubMed

    Carlozzi, Noelle E; Stout, Julie C; Mills, James A; Duff, Kevin; Beglinger, Leigh J; Aylward, Elizabeth H; Whitlock, Kathryn B; Solomon, Andrea C; Queller, Sarah; Langbehn, Douglas R; Johnson, Shannon A; Paulsen, Jane S

    2011-07-01

    Estimates of premorbid intellect are often used in neuropsychological assessment to make inferences about cognitive decline. To optimize the method of controlling for premorbid intellect in assessments of prodromal neurodegenerative disease, we examined performance on the American National Adult Reading Test (ANART; administered during Years 1 and 3) and the two-subtest version of the Wechsler Abbreviated Scale of Intelligence (WASI; administered in Years 2 and 4) in an ongoing prospective longitudinal study of 371 participants with prodromal Huntington disease and 51 participants with normal CAG repeats. Although both measures performed similarly, the ANART demonstrated slightly lower variability in performance over a 2-year period and had slightly higher test-retest reliability than the WASI. PMID:21660882

  17. KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease.

    PubMed

    Maes, Tamara; Mascaró, Cristina; Ortega, Alberto; Lunardi, Serena; Ciceri, Filippo; Somervaille, Tim C P; Buesa, Carlos

    2015-01-01

    Histone methylation and demethylation are important processes associated with the regulation of gene transcription, and alterations in histone methylation status have been linked to a large number of human diseases. Initially thought to be an irreversible process, histone methylation is now known to be reversed by two families of proteins containing over 30 members that act to remove methyl groups from specific lysine residues present in the tails of histone H3 and histone H4. A rapidly growing number of reports have implicated the FAD-dependent lysine specific demethylase (KDM1) family in cancer, and several small-molecule inhibitors are in development for the treatment of cancer. An additional role has emerged for KDM1 in brain function, offering additional opportunities for the development of novel therapeutic strategies in neurodegenerative disease. A decade after the identification of KDM1A as a histone demethylase, the first selective inhibitors have now reached the clinic. PMID:26111032

  18. Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury

    PubMed Central

    Wang, Miao; Han, Xianlin

    2016-01-01

    Summary Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) is a powerful technology platform among current lipidomics practices due to its high efficiency, sensitivity, and reproducibility, as well as its broad coverage. This platform has been broadly used to determine the altered lipid profiles induced by diseases, injury, genetic manipulations, drug treatments, and aging, among others. Herein, we summarized the principles underlying this platform and presented a protocol for analysis of many of the lipid classes and subclasses covered by MDMS-SL directly from lipid extracts of brain samples. We believe that this protocol could aid the researchers in the field to determine the altered lipid patterns in neurodegenerative diseases and brain injury. PMID:26235081

  19. Method for the systematic reviews on occupational therapy and neurodegenerative diseases.

    PubMed

    Arbesman, Marian; Lieberman, Deborah; Berlanstein, Debra R

    2014-01-01

    Systematic reviews of the literature relevant to neurodegenerative diseases, including Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), are important to the practice of occupational therapy. We describe the four questions that served as the focus for systematic reviews of the effectiveness of occupational therapy interventions for PD, MS, and ALS. We include the background for the reviews; the process followed for addressing each question, including search terms and search strategy; the databases searched; and the methods used to summarize and critically appraise the literature. The final number of articles included in each systematic review; a summary of the themes of the results; the strengths and limitations of the findings; and implications for practice, education, and research are presented. PMID:24367950

  20. Melatonin and Other Tryptophan Metabolites Produced by Yeasts: Implications in Cardiovascular and Neurodegenerative Diseases

    PubMed Central

    Hornedo-Ortega, Ruth; Cerezo, Ana B.; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen; Mas, Albert

    2016-01-01

    Yeast metabolism produces compounds derived from tryptophan, which are found in fermented beverages, such as wine and beer. In particular, melatonin and serotonin, may be relevant due to their bioactivity in humans. Indeed, the former is a neurohormone related to circadian rhythms, which also has a putative protective effect against degenerative diseases. Moreover, serotonin is a neurotransmitter itself, in addition to being a precursor of melatonin synthesis. This paper summarizes data reported on fermented beverages, to evaluate dietary intake. Additionally, the article reviews observed effects of yeast amino acid metabolites on the prevention of neurodegenerative diseases (Alzheimer’s and Parkinson’s) and angiogenesis, focusing on evidence of the molecular mechanism involved and identification of molecular targets. PMID:26834716

  1. Estimating premorbid IQ in the prodromal phase of a neurodegenerative disease

    PubMed Central

    Carlozzi, Noelle E.; Stout, Julie C.; Mills, James A.; Duff, Kevin; Beglinger, Leigh J.; Aylward, Elizabeth H.; Whitlock, Kathryn B.; Solomon, Andrea C.; Queller, Sarah; Langbehn, Douglas R.; Johnson, Shannon A.; Paulsen, Jane S.

    2011-01-01

    Estimates of premorbid intellect are often used in neuropsychological assessment to make inferences about cognitive decline. To optimize the method of controlling for premorbid intellect in assessments of prodromal neurodegenerative disease, we examined performance on the American National Adult Reading Test (ANART; administered during Years 1 and 3) and the two-subtest version of the Wechsler Abbreviated Scale of Intelligence (WASI; administered in Years 2 and 4) in an ongoing prospective longitudinal study of 371 participants with prodromal Huntington disease and 51 participants with normal CAG repeats. Although both measures performed similarly, the ANART demonstrated slightly lower variability in performance over a two-year period and had slightly higher test-retest reliability than the WASI. PMID:21660882

  2. Epigenetic regulation of mitochondrial function in neurodegenerative disease: New insights from advances in genomic technologies.

    PubMed

    Devall, Matthew; Roubroeks, Janou; Mill, Jonathan; Weedon, Michael; Lunnon, Katie

    2016-06-20

    The field of mitochondrial epigenetics has received increased attention in recent years and changes in mitochondrial DNA (mtDNA) methylation has been implicated in a number of diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis. However, current publications have been limited by the use of global or targeted methods of measuring DNA methylation. In this review, we discuss current findings in mitochondrial epigenetics as well as its potential role as a regulator of mitochondria within the brain. Finally, we summarize the current technologies best suited to capturing mtDNA methylation, and how a move towards whole epigenome sequencing of mtDNA may help to advance our current understanding of the field. PMID:26876477

  3. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases.

    PubMed

    Pratt, William B; Gestwicki, Jason E; Osawa, Yoichi; Lieberman, Andrew P

    2015-01-01

    Currently available therapies for adult onset neurodegenerative diseases provide symptomatic relief but do not modify disease progression. Here we explore a new neuroprotective approach based on drugs targeting chaperone-directed protein quality control. Critical target proteins that unfold and aggregate in these diseases, such as the polyglutamine androgen receptor in spinal and bulbar muscular atrophy, huntingtin in Huntington's disease, α-synuclein in Parkinson's disease, and tau in Alzheimer's disease, are client proteins of heat shock protein 90 (Hsp90), and their turnover is regulated by the protein quality control function of the Hsp90/Hsp70-based chaperone machinery. Hsp90 and Hsp70 have opposing effects on client protein stability in protein quality control; Hsp90 stabilizes the clients and inhibits their ubiquitination, whereas Hsp70 promotes ubiquitination dependent on CHIP (C terminus of Hsc70-interacting protein) and proteasomal degradation. We discuss how drugs that modulate proteostasis by inhibiting Hsp90 function or promoting Hsp70 function enhance the degradation of the critical aggregating proteins and ameliorate toxic symptoms in cell and animal disease models. PMID:25292434

  4. 2D gel blood serum biomarkers reveal differential clinical proteomics of the neurodegenerative diseases.

    PubMed

    Sheta, Essam A; Appel, Stanley H; Goldknopf, Ira L

    2006-02-01

    This review addresses the challenges of neuroproteomics and recent progress in biomarkers and tests for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The review will discuss how the application of quantitative 2D gel electrophoresis, combined with appropriate single-variable and multivariate biostatistics, allows for selection of disease-specific serum biomarkers. It will also address how the use of large cohorts of specifically targeted patient blood serum samples and complimentary age-matched controls, in parallel with the use of selected panels of these biomarkers, are being applied to the development of blood tests to specifically address unmet pressing needs in the differential diagnosis of these diseases, and to provide potential avenues for mechanism-based drug targeting and treatment monitoring. While exploring recent findings in this area, the review discusses differences in critical pathways of immune/inflammation and amyloid formation between Parkinson's disease and amyotrophic lateral sclerosis, as well as discernable synergistic relationships between these pathways that are revealed by this approach. The potential for pathway measurement in blood tests for differential diagnosis, disease burden and therapeutic monitoring is also outlined. PMID:16445350

  5. Reasoning over genetic variance information in cause-and-effect models of neurodegenerative diseases

    PubMed Central

    Naz, Mufassra; Kodamullil, Alpha Tom

    2016-01-01

    The work we present here is based on the recent extension of the syntax of the Biological Expression Language (BEL), which now allows for the representation of genetic variation information in cause-and-effect models. In our article, we describe, how genetic variation information can be used to identify candidate disease mechanisms in diseases with complex aetiology such as Alzheimer’s disease and Parkinson’s disease. In those diseases, we have to assume that many genetic variants contribute moderately to the overall dysregulation that in the case of neurodegenerative diseases has such a long incubation time until the first clinical symptoms are detectable. Owing to the multilevel nature of dysregulation events, systems biomedicine modelling approaches need to combine mechanistic information from various levels, including gene expression, microRNA (miRNA) expression, protein–protein interaction, genetic variation and pathway. OpenBEL, the open source version of BEL, has recently been extended to match this requirement, and we demonstrate in our article, how candidate mechanisms for early dysregulation events in Alzheimer’s disease can be identified based on an integrative mining approach that identifies ‘chains of causation’ that include single nucleotide polymorphism information in BEL models. PMID:26249223

  6. Investigating the utility of human embryonic stem cell-derived neurons to model ageing and neurodegenerative disease using whole-genome gene expression and splicing analysis

    PubMed Central

    Patani, Rickie; Lewis, Patrick A; Trabzuni, Daniah; Puddifoot, Clare A; Wyllie, David J A; Walker, Robert; Smith, Colin; Hardingham, Giles E; Weale, Michael; Hardy, John; Chandran, Siddharthan; Ryten, Mina

    2012-01-01

    A major goal in regenerative medicine is the predictable manipulation of human embryonic stem cells (hESCs) to defined cell fates that faithfully represent their somatic counterparts. Directed differentiation of hESCs into neuronal populations has galvanized much interest into their potential application in modelling neurodegenerative disease. However, neurodegenerative diseases are age-related, and therefore establishing the maturational comparability of hESC-derived neural derivatives is critical to generating accurate in vitro model systems. We address this issue by comparing genome-wide, exon-specific expression analyses of pluripotent hESCs, multipotent neural precursor cells and a terminally differentiated enriched neuronal population to expression data from post-mortem foetal and adult human brain samples. We show that hESC-derived neuronal cultures (using a midbrain differentiation protocol as a prototypic example of lineage restriction), while successful in generating physiologically functional neurons, are closer to foetal than adult human brain in terms of molecular maturation. These findings suggest that developmental stage has a more dominant influence on the cellular transcriptome than regional identity. In addition, we demonstrate that developmentally regulated gene splicing is common, and potentially a more sensitive measure of maturational state than gene expression profiling alone. In summary, this study highlights the value of genomic indices in refining and validating optimal cell populations appropriate for modelling ageing and neurodegeneration. PMID:22681703

  7. Quetiapine for Psychosis in Parkinson Disease and Neurodegenerative Parkinsonian Disorders: A Systematic Review.

    PubMed

    Desmarais, Philippe; Massoud, Fadi; Filion, Josée; Nguyen, Quoc Dinh; Bajsarowicz, Paulina

    2016-07-01

    We performed a systematic review of randomized controlled trials to assess the high-level evidence regarding the role of quetiapine in the treatment of psychosis in patients with neurodegenerative parkinsonian disorders. Studies were included in the qualitative review if they (1) enrolled participants with diagnosis of Parkinson disease, Lewy body dementia, or any other neurodegenerative parkinsonian disorders; (2) assessed the efficacy of quetiapine; and (3) evaluated psychotic and motor outcomes using validated tools. Of the 341 manuscripts identified, 7 studies fulfilled our inclusion criteria. The studies' risk of bias was considered low. A total of 241 participants enrolled in these trials. Heterogeneity was high due to inclusion criteria, user definitions, assessment tools, and study design. Although not causing any motor deterioration, quetiapine failed to significantly reduce psychotic symptoms compared to placebo when objectively assessed on the Brief Psychotic Rating Scale, the most frequently reported scale in these studies. High loss to follow-up and dropout rates as well as significant improvement in psychotic symptoms in the placebo groups may have affected measurements of possible positive medication effects. PMID:27056066

  8. Larger aggregates of mutant seipin in Celia's Encephalopathy, a new protein misfolding neurodegenerative disease.

    PubMed

    Ruiz-Riquelme, Alejandro; Sánchez-Iglesias, Sofía; Rábano, Alberto; Guillén-Navarro, Encarna; Domingo-Jiménez, Rosario; Ramos, Adriana; Rosa, Isaac; Senra, Ana; Nilsson, Peter; García, Ángel; Araújo-Vilar, David; Requena, Jesús R

    2015-11-01

    Celia's Encephalopathy (MIM #615924) is a recently discovered fatal neurodegenerative syndrome associated with a new BSCL2 mutation (c.985C>T) that results in an aberrant isoform of seipin (Celia seipin). This mutation is lethal in both homozygosity and compounded heterozygosity with a lipodystrophic BSCL2 mutation, resulting in a progressive encephalopathy with fatal outcomes at ages 6-8. Strikingly, heterozygous carriers are asymptomatic, conflicting with the gain of toxic function attributed to this mutation. Here we report new key insights about the molecular pathogenic mechanism of this new syndrome. Intranuclear inclusions containing mutant seipin were found in brain tissue from a homozygous patient suggesting a pathogenic mechanism similar to other neurodegenerative diseases featuring brain accumulation of aggregated, misfolded proteins. Sucrose gradient distribution showed that mutant seipin forms much larger aggregates as compared with wild type (wt) seipin, indicating an impaired oligomerization. On the other hand, the interaction between wt and Celia seipin confirmed by coimmunoprecipitation (CoIP) assays, together with the identification of mixed oligomers in sucrose gradient fractionation experiments can explain the lack of symptoms in heterozygous carriers. We propose that the increased aggregation and subsequent impaired oligomerization of Celia seipin leads to cell death. In heterozygous carriers, wt seipin might prevent the damage caused by mutant seipin through its sequestration into harmless mixed oligomers. PMID:26282322

  9. Nanocomposites for neurodegenerative diseases: hydrogel-nanoparticle combinations for a challenging drug delivery.

    PubMed

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Rodilossi, Serena; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2011-12-01

    Neurodegenerative disorders are expected to strike social and health care systems of developed countries heavily in the coming decades. Alzheimer's and Parkinson's diseases (AD/PD) are the most prevalent neurodegenerative pathologies, and currently their available therapy is only symptomatic. However, innovative potential drugs are actively under development, though their efficacy is sometimes limited by poor brain bioavailability and/or sustained peripheral degradation. To partly overcome these constraints, the development of drug delivery devices made by biocompatible and easily administrable materials might be a great adjuvant. In particular, materials science can provide a powerful tool to design hydrogels and nanoparticles as basic components of more complex nanocomposites that might ameliorate drug or cell delivery in AD/PD. This kind of approach is particularly promising for intranasal delivery, which might increase brain targeting of neuroprotective molecules or proteins. Here we review these issues, with a focus on nanoparticles as nanocomponents able to carry and tune drug release in the central nervous system, without ignoring warnings concerning their potential toxicity. PMID:22198597

  10. Pathway Analysis of ChIP-Seq-Based NRF1 Target Genes Suggests a Logical Hypothesis of their Involvement in the Pathogenesis of Neurodegenerative Diseases.

    PubMed

    Satoh, Jun-Ichi; Kawana, Natsuki; Yamamoto, Yoji

    2013-01-01