Science.gov

Sample records for age-related oxidative stress

  1. Oxidative stress and age-related neuronal deficits.

    PubMed

    Joseph, J A; Denisova, N; Villalobos-Molina, R; Erat, S; Strain, J

    1996-01-01

    Research from our laboratory has indicated that the loss of sensitivity that occurs in several receptor systems as a function of age may be an index of an increasing inability to respond to oxidative stress (OS). This loss occurs partially as a result of altered signal transduction (ST). Assessments have involved determining the nature of age-related reductions in oxotremorine enhancement of K(+)-evoked dopamine release (K(+)-ERDA) from superfused striatal slices. Using this model, we have found that 1. Reductions can be restored with in vivo administration of the free-radical trapping agent, N-tert-butyl-alpha-phenylnitrone (PBN); 2. Decrements in DA release induced by NO or H2O2 from striatal slices from both young and old animals could be restored with alpha-tocopherol or PBN; 3. ST decrements, such as those seen in aging, could be induced with radiation exposure; and 4. Pre-incubation of the striatal slices with cholesterol decreased subsequent deleterious effects of NO or OH. on DA release. Thus, cholesterol, which increases in neuronal membranes as a function of age, may function as a potent antioxidant and protectant against neuronal damage. These results suggest that therapeutic efforts to restore cognitive deficits in aging and age-related disease might begin with antioxidant reversal of ST decrements. PMID:8871939

  2. Oxidative stress, innate immunity, and age-related macular degeneration

    PubMed Central

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  3. Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases

    PubMed Central

    Reinisalo, Mika; Kårlund, Anna; Koskela, Ali; Kaarniranta, Kai; Karjalainen, Reijo O.

    2015-01-01

    Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer's disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed. PMID:26180583

  4. Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases.

    PubMed

    Reinisalo, Mika; Kårlund, Anna; Koskela, Ali; Kaarniranta, Kai; Karjalainen, Reijo O

    2015-01-01

    Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer's disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed. PMID:26180583

  5. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    PubMed Central

    Chang, Dong; Zhang, Xuefei; Rong, Shengzhong; Sha, Qian; Liu, Peipei; Han, Tao; Pan, Hongzhi

    2013-01-01

    Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and oxidation degradation products of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), conjugated diene (CD), advanced oxidation protein products (AOPP), protein carbonyl (PC), and 8-hydroxydeoxyguanosine (8-OHdG). Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P < 0.05). The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P < 0.05, P < 0.01). Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P < 0.01). And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis. PMID:23781296

  6. Plasma biomarkers of oxidative stress and genetic variants in age-related macular degeneration

    PubMed Central

    Brantley, Milam A.; Osborn, Melissa P.; Sanders, Barton J.; Rezaei, Kasra A.; Lu, Pengcheng; Li, Chun; Milne, Ginger L.; Cai, Jiyang; Sternberg, Paul

    2011-01-01

    Purpose To compare plasma levels of oxidative stress biomarkers in patients with age-related macular degeneration (AMD) and controls and to evaluate a potential relationship between biochemical markers of oxidative stress and AMD susceptibility genotypes. Design Prospective case-control study Methods Plasma levels of oxidative stress biomarkers were determined in 77 AMD patients and 75 controls recruited from a clinical practice. Cysteine (Cys), cystine (CySS), glutathione (GSH), isoprostane (IsoP), and isofuran (IsoF) were measured, and participants were genotyped for polymorphisms in the complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2) genes. Results CySS was elevated in cases compared to controls (p = 0.013). After adjustment for age, gender, and smoking, this association was not significant. In all participants, CySS levels were associated with the CFH polymorphism rs3753394 (p = 0.028) as well as an eight-allele CFH haplotype (p = 0.029) after correction for age, gender, and smoking. None of the other plasma markers was related to AMD status in our cohort. Conclusions Our investigation of the gene/environment interaction involved in AMD revealed a relationship between a plasma biomarker of oxidative stress (CySS) and CFH genotype. These data suggest a potential association between inflammatory regulators and redox status in AMD pathogenesis. PMID:22035603

  7. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction.

    PubMed

    Guan, Lili; Feng, Haiyan; Gong, Dezheng; Zhao, Xu; Cai, Li; Wu, Qiong; Yuan, Bo; Yang, Mei; Zhao, Jie; Zou, Yuan

    2013-12-01

    Insulin resistance (IR) increases with age and plays a key role in the pathogenesis of type 2 diabetes mellitus. Oxidative stress and mitochondrial dysfunction are supposed to be major factors leading to age-related IR. Genipin, an extract from Gardenia jasminoides Ellis fruit, has been reported to stimulate insulin secretion in pancreatic islet cells by regulating mitochondrial function. In this study, we first investigated the effects of genipin on insulin sensitivity and the potential mitochondrial mechanisms in the liver of aging rats. The rats were randomly assigned to receive intraperitoneal injections of either 25mg/kg genipin or vehicle once daily for 12days. The aging rats showed hyperinsulinemia and hyperlipidemia, and insulin resistance as examined by the decreased glucose decay constant rate during insulin tolerance test (kITT). The hepatic tissues showed steatosis and reduced glycogen content. Hepatic malondialdehyde level and mitochondrial reactive oxygen species (ROS) were higher, and levels of mitochondrial membrane potential (MMP) and ATP were lower as compared with the normal control rats. Administration of genipin ameliorated systemic and hepatic insulin resistance, alleviated hyperinsulinemia, hyperglyceridemia and hepatic steatosis, relieved hepatic oxidative stress and mitochondrial dysfunction in aging rats. Furthermore, genipin not only improved insulin sensitivity by promoting insulin-stimulated glucose consumption and glycogen synthesis, inhibited cellular ROS overproduction and alleviated the reduction of levels of MMP and ATP, but also reversed oxidative stress-associated JNK hyperactivation and reduced Akt phosphorylation in palmitate-treated L02 hepatocytes. In conclusion, genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. PMID:24041487

  8. Oxidative Stresses and Mitochondrial Dysfunction in Age-Related Hearing Loss

    PubMed Central

    Fujimoto, Chisato

    2014-01-01

    Age-related hearing loss (ARHL), the progressive loss of hearing associated with aging, is the most common sensory disorder in the elderly population. The pathology of ARHL includes the hair cells of the organ of Corti, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. Many studies have suggested that the accumulation of mitochondrial DNA damage, the production of reactive oxygen species, and decreased antioxidant function are associated with subsequent cochlear senescence in response to aging stress. Mitochondria play a crucial role in the induction of intrinsic apoptosis in cochlear cells. ARHL can be prevented in laboratory animals by certain interventions, such as caloric restriction and supplementation with antioxidants. In this review, we will focus on previous research concerning the role of the oxidative stress and mitochondrial dysfunction in the pathology of ARHL in both animal models and humans and introduce concepts that have recently emerged regarding the mechanisms of the development of ARHL. PMID:25110550

  9. Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction

    PubMed Central

    Mikhed, Yuliya; Daiber, Andreas; Steven, Sebastian

    2015-01-01

    The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan. PMID:26184181

  10. Oxidative Stress and the Nrf2 Anti-Oxidant Transcription Factor in Age-Related Macular Degeneration.

    PubMed

    Lambros, Mandy L; Plafker, Scott M

    2016-01-01

    Age-related macular degeneration (AMD) is the leading cause of acquired and irreversible blindness among elderly Americans. Most AMD patients have the dry form of the disease (dAMD) for which reliable therapies are lacking. A major obstacle to the development of effective treatments is a deficit in our understanding of what triggers dAMD onset. This is particularly the case with respect to the events that cause retinal pigment epithelial (RPE) cells to transition from a state of health and homeostasis to one of dysfunction and atrophy. These cells provide critical support to the photoreceptors and their atrophy often precipitates photoreceptor death in dAMD. Chronic oxidative stress is a primary driver of age-dependent, RPE atrophy. Sources of this stress have been identified (e.g., cigarette smoke, photooxidized bisretinoids), but we still do not understand how these stressors damage RPE constituents or what age-dependent changes undermine the cytoprotective systems in the RPE. This review focuses on Nrf2, the master antioxidant transcription factor, and its role in the RPE during aging and dAMD onset. PMID:26427395

  11. Chronic photo-oxidative stress and subsequent MCP-1 activation as causative factors for age-related macular degeneration.

    PubMed

    Suzuki, Mihoko; Tsujikawa, Motokazu; Itabe, Hiroyuki; Du, Zhao-Jiang; Xie, Ping; Matsumura, Nagakazu; Fu, Xiaoming; Zhang, Renliang; Sonoda, Koh-hei; Egashira, Kensuke; Hazen, Stanley L; Kamei, Motohiro

    2012-05-15

    Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly in developed countries. Although pathogenic factors, such as oxidative stress, inflammation and genetics are thought to contribute to the development of AMD, little is known about the relationships and priorities between these factors. Here, we show that chronic photo-oxidative stress is an environmental factor involved in AMD pathogenesis. We first demonstrated that exposure to light induced phospholipid oxidation in the mouse retina, which was more prominent in aged animals. The induced oxidized phospholipids led to an increase in the expression of monocyte chemoattractant protein-1, which then resulted in macrophage accumulation, an inflammatory process. Antioxidant treatment prevented light-induced phospholipid oxidation and the subsequent increase of monocyte chemoattractant protein-1 (also known as C-C motif chemokine 2; CCL2), which are the beginnings of the light-induced changes. Subretinal application of oxidized phospholipids induced choroidal neovascularization, a characteristic feature of wet-type AMD, which was inhibited by blocking monocyte chemoattractant protein-1. These findings strongly suggest that a sequential cascade from photic stress to inflammatory processes through phospholipid oxidation has an important role in AMD pathogenesis. Finally, we succeeded in mimicking human AMD in mice with low-level, long-term photic stress, in which characteristic pathological changes, including choroidal neovascularization formation, were observed. Therefore, we propose a consecutive pathogenic pathway involving photic stress, oxidation of phospholipids and chronic inflammation, leading to angiogenesis. These findings add to the current understanding of AMD pathology and suggest protection from oxidative stress or suppression of the subsequent inflammation as new potential therapeutic targets for AMD. PMID:22357958

  12. Chronic photo-oxidative stress and subsequent MCP-1 activation as causative factors for age-related macular degeneration

    PubMed Central

    Suzuki, Mihoko; Tsujikawa, Motokazu; Itabe, Hiroyuki; Du, Zhao-Jiang; Xie, Ping; Matsumura, Nagakazu; Fu, Xiaoming; Zhang, Renliang; Sonoda, Koh-hei; Egashira, Kensuke; Hazen, Stanley L.; Kamei, Motohiro

    2012-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly in developed countries. Although pathogenic factors, such as oxidative stress, inflammation and genetics are thought to contribute to the development of AMD, little is known about the relationships and priorities between these factors. Here, we show that chronic photo-oxidative stress is an environmental factor involved in AMD pathogenesis. We first demonstrated that exposure to light induced phospholipid oxidation in the mouse retina, which was more prominent in aged animals. The induced oxidized phospholipids led to an increase in the expression of monocyte chemoattractant protein-1, which then resulted in macrophage accumulation, an inflammatory process. Antioxidant treatment prevented light-induced phospholipid oxidation and the subsequent increase of monocyte chemoattractant protein-1 (also known as C-C motif chemokine 2; CCL2), which are the beginnings of the light-induced changes. Subretinal application of oxidized phospholipids induced choroidal neovascularization, a characteristic feature of wet-type AMD, which was inhibited by blocking monocyte chemoattractant protein-1. These findings strongly suggest that a sequential cascade from photic stress to inflammatory processes through phospholipid oxidation has an important role in AMD pathogenesis. Finally, we succeeded in mimicking human AMD in mice with low-level, long-term photic stress, in which characteristic pathological changes, including choroidal neovascularization formation, were observed. Therefore, we propose a consecutive pathogenic pathway involving photic stress, oxidation of phospholipids and chronic inflammation, leading to angiogenesis. These findings add to the current understanding of AMD pathology and suggest protection from oxidative stress or suppression of the subsequent inflammation as new potential therapeutic targets for AMD. PMID:22357958

  13. Oxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: a role of NADPH oxidase 2

    PubMed Central

    Cahill-Smith, Sarah; Li, Jian-Mei

    2014-01-01

    Chronic oxidative stress and oxidative damage of the cerebral microvasculature and brain cells has become one of the most convincing theories in neurodegenerative pathology. Controlled oxidative metabolism and redox signalling in the central nervous system are crucial for maintaining brain function; however, excessive production of reactive oxygen species and enhanced redox signalling damage neurons. While several enzymes and metabolic processes can generate intracellular reactive oxygen species in the brain, recently an O2−-generating enzyme, NADPH oxidase 2 (Nox2), has emerged as a major source of oxidative stress in ageing-related vascular endothelial dysfunction and neurodegenerative diseases. The currently available inhibitors of Nox2 are not specific, and general antioxidant therapy is not effective in the clinic; therefore, insights into the mechanism of Nox2 activation and its signalling pathways are needed for the discovery of novel drug targets to prevent or treat these neurodegenerative diseases. This review summarizes the recent developments in understanding the mechanisms of Nox2 activation and redox-sensitive signalling pathways and biomarkers involved in the pathophysiology of the most common neurodegenerative diseases, such as ageing-related mild cognitive impairment, Alzheimer’s disease and Parkinson’s disease. PMID:25279404

  14. Age-related loss of the DNA repair response following exposure to oxidative stress.

    PubMed

    Cabelof, Diane C; Raffoul, Julian J; Ge, Yubin; Van Remmen, Holly; Matherly, Larry H; Heydari, Ahmad R

    2006-05-01

    Young (4- to 6-month-old) and aged (24- to 28-month-old) mice were exposed to 2-nitropropane (2-NP), a DNA oxidizing agent, and the ability to induce DNA polymerase beta (beta-pol) and AP endonuclease (APE) was determined. In contrast to the inducibility of these gene products in response to oxidative damage in young mice, aged mice showed a lack of inducibility of beta-pol and APE. APE protein level and endonuclease activity were both reduced 40% (p<.01) in response to 2-NP. Accordingly, the accumulation of DNA repair intermediates in response to 2-NP differed with age. Young animals accumulated 3'OH-containing DNA strand breaks, whereas the aged animals did not. A role for p53 in the difference in DNA damage response with age is suggested by the observation that the accumulation of p53 protein in response to DNA damage in young animals was absent in the aged animals. Our results are consistent with a reduced ability to process DNA damage with age. PMID:16720738

  15. Oxidative Stress and Epigenetic Regulation in Ageing and Age-Related Diseases

    PubMed Central

    Cencioni, Chiara; Spallotta, Francesco; Martelli, Fabio; Valente, Sergio; Mai, Antonello; Zeiher, Andreas M.; Gaetano, Carlo

    2013-01-01

    Recent statistics indicate that the human population is ageing rapidly. Healthy, but also diseased, elderly people are increasing. This trend is particularly evident in Western countries, where healthier living conditions and better cures are available. To understand the process leading to age-associated alterations is, therefore, of the highest relevance for the development of new treatments for age-associated diseases, such as cancer, diabetes, Alzheimer and cardiovascular accidents. Mechanistically, it is well accepted that the accumulation of intracellular damage determined by reactive oxygen species (ROS) might orchestrate the progressive loss of control over biological homeostasis and the functional impairment typical of aged tissues. Here, we review how epigenetics takes part in the control of stress stimuli and the mechanisms of ageing physiology and physiopathology. Alteration of epigenetic enzyme activity, histone modifications and DNA-methylation is, in fact, typically associated with the ageing process. Specifically, ageing presents peculiar epigenetic markers that, taken altogether, form the still ill-defined “ageing epigenome”. The comprehension of mechanisms and pathways leading to epigenetic modifications associated with ageing may help the development of anti-ageing therapies. PMID:23989608

  16. Beyond and behind the fingerprints of oxidative stress in age-related diseases: Secrets of successful aging.

    PubMed

    Polidori, M Cristina; Scholtes, Marlies

    2016-04-01

    Several years after the first publication of the definition of oxidative stress by Helmut Sies, this topic is still focus of a large body of attention and research in the field of aging, neurodegeneration and disease prevention. The conduction of clinical and epidemiological research without a solid biochemical rationale has led to largely frustrating results without being able to disprove the oxidative stress hypothesis. The present work is dedicated to Helmut Sies and describes the successful scientific approach to bench-to-bedside (-to-behavior) oxidative stress clinical research. PMID:27095215

  17. Age-Related Decrease in Heat Shock 70-kDa Protein 8 in Cerebrospinal Fluid Is Associated with Increased Oxidative Stress.

    PubMed

    Loeffler, David A; Klaver, Andrea C; Coffey, Mary P; Aasly, Jan O; LeWitt, Peter A

    2016-01-01

    Age-associated declines in protein homeostasis mechanisms ("proteostasis") are thought to contribute to age-related neurodegenerative disorders. The increased oxidative stress which occurs with aging can activate a key proteostatic process, chaperone-mediated autophagy. This study investigated age-related alteration in cerebrospinal fluid (CSF) concentrations of heat shock 70-kDa protein 8 (HSPA8), a molecular chaperone involved in proteostatic mechanisms including chaperone-mediated autophagy, and its associations with indicators of oxidative stress (8-hydroxy-2'-deoxyguanosine [8-OHdG] and 8-isoprostane) and total anti-oxidant capacity. We examined correlations between age, HSPA8, 8-OHdG, 8-isoprostane, and total antioxidant capacity (TAC) in CSF samples from 34 healthy subjects ranging from 20 to 75 years of age. Age was negatively associated with HSPA8 (ρ = -0.47; p = 0.005). An age-related increase in oxidative stress was indicated by a positive association between age and 8-OHdG (ρ = 0.61; p = 0.0001). HSPA8 was moderately negatively associated with 8-OHdG (ρ = -0.58; p = 0.0004). Age and HSPA8 were weakly associated with 8-isoprostane and TAC (range of ρ values: -0.15 to 0.16). Our findings in this exploratory study suggest that during healthy aging, CSF HSPA8 may decrease, perhaps due in part to an increase in oxidative stress. Our results also suggest that 8-OHdG may be more sensitive than 8-isoprostane for measuring oxidative stress in CSF. Further studies are indicated to determine if our findings can be replicated with a larger cohort, and if the age-related decrease in HSPA8 in CSF is reflected by a similar change in the brain. PMID:27507943

  18. Age-Related Decrease in Heat Shock 70-kDa Protein 8 in Cerebrospinal Fluid Is Associated with Increased Oxidative Stress

    PubMed Central

    Loeffler, David A.; Klaver, Andrea C.; Coffey, Mary P.; Aasly, Jan O.; LeWitt, Peter A.

    2016-01-01

    Age-associated declines in protein homeostasis mechanisms (“proteostasis”) are thought to contribute to age-related neurodegenerative disorders. The increased oxidative stress which occurs with aging can activate a key proteostatic process, chaperone-mediated autophagy. This study investigated age-related alteration in cerebrospinal fluid (CSF) concentrations of heat shock 70-kDa protein 8 (HSPA8), a molecular chaperone involved in proteostatic mechanisms including chaperone-mediated autophagy, and its associations with indicators of oxidative stress (8-hydroxy-2′-deoxyguanosine [8-OHdG] and 8-isoprostane) and total anti-oxidant capacity. We examined correlations between age, HSPA8, 8-OHdG, 8-isoprostane, and total antioxidant capacity (TAC) in CSF samples from 34 healthy subjects ranging from 20 to 75 years of age. Age was negatively associated with HSPA8 (ρ = –0.47; p = 0.005). An age-related increase in oxidative stress was indicated by a positive association between age and 8-OHdG (ρ = 0.61; p = 0.0001). HSPA8 was moderately negatively associated with 8-OHdG (ρ = –0.58; p = 0.0004). Age and HSPA8 were weakly associated with 8-isoprostane and TAC (range of ρ values: –0.15 to 0.16). Our findings in this exploratory study suggest that during healthy aging, CSF HSPA8 may decrease, perhaps due in part to an increase in oxidative stress. Our results also suggest that 8-OHdG may be more sensitive than 8-isoprostane for measuring oxidative stress in CSF. Further studies are indicated to determine if our findings can be replicated with a larger cohort, and if the age-related decrease in HSPA8 in CSF is reflected by a similar change in the brain. PMID:27507943

  19. The Protective Effect of Lipoic Acid on Selected Cardiovascular Diseases Caused by Age-Related Oxidative Stress

    PubMed Central

    Goraca, Anna

    2015-01-01

    Oxidative stress is considered to be the primary cause of many cardiovascular diseases, including endothelial dysfunction in atherosclerosis and ischemic heart disease, hypertension, and heart failure. Oxidative stress increases during the aging process, resulting in either increased reactive oxygen species (ROS) production or decreased antioxidant defense. The increase in the incidence of cardiovascular disease is directly related to age. Aging is also associated with oxidative stress, which in turn leads to accelerated cellular senescence and organ dysfunction. Antioxidants may help lower the incidence of some pathologies of cardiovascular diseases and have antiaging properties. Lipoic acid (LA) is a natural antioxidant which is believed to have a beneficial effect on oxidative stress parameters in relation to diseases of the cardiovascular system. PMID:25949771

  20. Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging?

    PubMed Central

    Ghatreh-Samani, Mahdi; Esmaeili, Nafiseh; Soleimani, Masoud; Asadi-Samani, Majid; Ghatreh-Samani, Keihan

    2016-01-01

    Iron overload in β-thalassemia major occurs mainly due to blood transfusion, an essential treatment for β-thalassemia major patients, which results in oxidative stress. It has been thought that oxidative stress causes elevation of immune system senescent cells. Under this condition, cells normally enhance in aging, which is referred to as premature immunosenescence. Because there is no animal model for immunosenescence, most knowledge on the immunosenescence pattern is based on induction of immunosenescence. In this review, we describe iron overload and oxidative stress in β-thalassemia major patients and how they make these patients a suitable human model for immunosenescence. We also consider oxidative stress in some kinds of chronic virus infections, which induce changes in the immune system similar to β-thalassemia major. In conclusion, a therapeutic approach used to improve the immune system in such chronic virus diseases, may change the immunosenescence state and make life conditions better for β-thalassemia major patients. PMID:27095931

  1. Impaired Transcriptional Activity of Nrf2 in Age-Related Myocardial Oxidative Stress Is Reversible by Moderate Exercise Training

    PubMed Central

    Gounder, Sellamuthu S.; Kannan, Sankaranarayanan; Devadoss, Dinesh; Miller, Corey J.; Whitehead, Kevin S.; Odelberg, Shannon J.; Firpo, Matthew A.; Paine, Robert; Hoidal, John R.; Abel, E. Dale; Rajasekaran, Namakkal S.

    2012-01-01

    Aging promotes accumulation of reactive oxygen/nitrogen species (ROS/RNS) in cardiomyocytes, which leads to contractile dysfunction and cardiac abnormalities. These changes may contribute to increased cardiovascular disease in the elderly. Inducible antioxidant pathways are regulated by nuclear erythroid 2 p45-related factor 2 (Nrf2) through antioxidant response cis-elements (AREs) and are impaired in the aging heart. Whereas acute exercise stress (AES) activates Nrf2 signaling and promotes myocardial antioxidant function in young mice (∼2 months), aging mouse (>23 months) hearts exhibit significant oxidative stress as compared to those of the young. The purpose of this study was to investigate age-dependent regulation of Nrf2-antioxidant mechanisms and redox homeostasis in mouse hearts and the impact of exercise. Old mice were highly susceptible to oxidative stress following high endurance exercise stress (EES), but demonstrated increased adaptive redox homeostasis after moderate exercise training (MET; 10m/min, for 45 min/day) for ∼6 weeks. Following EES, transcription and protein levels for most of the ARE-antioxidants were increased in young mice but their induction was blunted in aging mice. In contrast, 6-weeks of chronic MET promoted nuclear levels of Nrf2 along with its target antioxidants in the aging heart to near normal levels as seen in young mice. These observations suggest that enhancing Nrf2 function and endogenous cytoprotective mechanisms by MET, may combat age-induced ROS/RNS and protect the myocardium from oxidative stress diseases. PMID:23029187

  2. Terrein reduces age-related inflammation induced by oxidative stress through Nrf2/ERK1/2/HO-1 signalling in aged HDF cells.

    PubMed

    Lee, Young-Hee; Lee, Sook-Jeong; Jung, Ji-Eun; Kim, Jeong-Seok; Lee, Nan-Hee; Yi, Ho-Keun

    2015-10-01

    This study investigated whether multiple bioactivity of terrein such as anti-inflammatory and anti-oxidant inhibits age-related inflammation by promoting an antioxidant response in aged human diploid fibroblast (HDF) cells. HDF cells were cultured serially for in vitro replicative senescence. To create the ageing cell phenotype, intermediate stage (PD31) HDF cells were brought to stress-induced premature senescence (SIPS) using hydrogen peroxide (H2 O2). Terrein increased cell viability even with H2O2 stress and reduced inflammatory molecules such as intracellular adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), interleukin-1beta (IL-1β) and tumour necrosis factor-alpha (TNF-α). Terrein reduced also phospho-extracellular kinase receptor1/2 (p-EKR1/2) signalling in aged HDF cells. SIPS cells were attenuated for age-related biological markers including reactive oxygen species (ROS), senescence associated beta-galactosidase (SA β-gal.) and the aforementioned inflammatory molecules. Terrein induced the induction of anti-oxidant molecules, copper/zinc-superoxide defence (Cu/ZnSOD), manganese superoxide dismutase (MnSOD) and heme oxygenase-1 (HO-1) in SIPS cells. Terrein also alleviated reactive oxygen species formation through the Nrf2/HO-1/p-ERK1/2 pathway in aged cells. The results indicate that terrein has an alleviative function of age-related inflammation characterized as an anti-oxidant. Terrein might be a useful nutraceutical compound for anti-ageing. PMID:26416516

  3. Glutamate Cysteine Ligase Modifier Subunit (Gclm) Null Mice Have Increased Ovarian Oxidative Stress and Accelerated Age-Related Ovarian Failure.

    PubMed

    Lim, Jinhwan; Nakamura, Brooke N; Mohar, Isaac; Kavanagh, Terrance J; Luderer, Ulrike

    2015-09-01

    Glutathione (GSH) is the one of the most abundant intracellular antioxidants. Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH. Our prior work showed that GSH plays antiapoptotic roles in ovarian follicles. We hypothesized that Gclm(-/-) mice have accelerated ovarian aging due to ovarian oxidative stress. We found significantly decreased ovarian GSH concentrations and oxidized GSH/oxidized glutathione redox potential in Gclm(-/-) vs Gclm(+/+) ovaries. Prepubertal Gclm(-/-) and Gclm(+/+) mice had similar numbers of ovarian follicles, and as expected, the total number of ovarian follicles declined with age in both genotypes. However, the rate of decline in follicles was significantly more rapid in Gclm(-/-) mice, and this was driven by accelerated declines in primordial follicles, which constitute the ovarian reserve. We found significantly increased 4-hydroxynonenal immunostaining (oxidative lipid damage marker) and significantly increased nitrotyrosine immunostaining (oxidative protein damage marker) in prepubertal and adult Gclm(-/-) ovaries compared with controls. The percentage of small ovarian follicles with increased granulosa cell proliferation was significantly higher in prepubertal and 2-month-old Gclm(-/-) vs Gclm(+/+) ovaries, indicating accelerated recruitment of primordial follicles into the growing pool. The percentages of growing follicles with apoptotic granulosa cells were increased in young adult ovaries. Our results demonstrate increased ovarian oxidative stress and oxidative damage in young Gclm(-/-) mice, associated with an accelerated decline in ovarian follicles that appears to be mediated by increased recruitment of follicles into the growing pool, followed by apoptosis at later stages of follicular development. PMID:26083875

  4. S-allyl cysteine ameliorates the quality of sperm and provides protection from age-related sperm dysfunction and oxidative stress in rats.

    PubMed

    Takemura, Shigekazu; Ichikawa, Hiroshi; Naito, Yuji; Takagi, Tomohisa; Yoshikawa, Toshikazu; Minamiyama, Yukiko

    2014-11-01

    Reactive oxygen species play a central role in the pathophysiology of the age-related decrease in male fertility. It has been reported that the total protein of DJ-1 was decreased in a proteomic analysis of seminal plasma from asthenozoospermia patients and a DJ-1 protein acts as a sensor of cellular redox homeostasis. Therefore, we evaluated the age-related changes in the ratio of the oxidized/reduced forms of the DJ-1 protein in the epididymis. In addition, the protective effects of S-allyl cysteine (SAC), a potent antioxidant, were evaluated against sperm dysfunction. Male rats aged 15-75 weeks were used to assess age-associated sperm function and oxidative stress. Sperm count increased until 25 weeks, but then decreased at 50 and 75 weeks. The rate of sperm movement at 75 weeks was decreased to approximately 60% of the rate observed at 25 weeks. Expression of DJ-1 decreased, but oxidized-DJ-1 increased with age. In addition, 4-hydroxy-2-nonenal modified proteins in the epididymis increased until 50 weeks of age. The total number and DNA synthetic potential of the sperm increased until 25 weeks, and then decreased. In rats 75 weeks of age, SAC (0.45% diet) attenuated the decrease in the number, motility, and DNA synthesis of sperm and inhibited the oxidized proteins. These results suggest that SAC ameliorates the quality of sperm subjected to age-associated oxidative stress. PMID:25411519

  5. Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K+ ATPase and protein kinase C in adult and old rat brain regions.

    PubMed

    Sharma, Deepak; Sethi, Pallavi; Hussain, Ezaj; Singh, Rameshwar

    2009-08-01

    This study investigated the effect of curcumin on aluminium-induced alterations in ageing-related parameters: lipid peroxidation, superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-s-transferase (GST), protein kinase C (PKC), Na(+), K(+)-adenosine triphosphatase (Na(+), K(+)-ATPase) and acetylcholinesterase (AChE) in the cerebral cortex and hippocampus of the brain of 10- and 24-month-old rats. Measurements taken from aluminium-fed rats were compared with those from rats in which curcumin and aluminium were co-administered. In aluminium-treated rats the levels of lipid peroxidation, PKC and AChE were enhanced while the activities of SOD, GPx, GST and Na(+), K(+)-ATPase were significantly decreased in both the brain regions of both age-groups. In animals co-administered with curcumin and aluminium, the levels of lipid peroxidation, activities of PKC and AChE were significantly lowered while the activities of SOD, GPx, GST and Na(+), K(+)-ATPase were significantly enhanced in the two brain regions studied indicating curcumin's protective effects against aluminium toxicity. Though the magnitudes of curcumin-induced alterations varied in young and old animals, the results of the present study also demonstrated that curcumin exerts a protective effect against aluminium-induced elevation of ageing-related changes by modulating the extent of oxidative stress (by upregulating the activities of antioxidant enzymes) and by regulating the activities of Na(+), K(+) ATPase, PKC and AChE. Therefore, it is suggested that curcumin counters aluminium-induced enhancement in ageing-related processes. PMID:19020987

  6. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration

    PubMed Central

    Marazita, Mariela C.; Dugour, Andrea; Marquioni-Ramella, Melisa D.; Figueroa, Juan M.; Suburo, Angela M.

    2015-01-01

    Oxidative stress has a critical role in the pathogenesis of Age-related Macular Degeneration (AMD), a multifactorial disease that includes age, gene variants of complement regulatory proteins and smoking as the main risk factors. Stress-induced premature cellular senescence (SIPS) is postulated to contribute to this condition. In this study, we hypothesized that oxidative damage, promoted by endogenous or exogenous sources, could elicit a senescence response in RPE cells, which would in turn dysregulate the expression of major players in AMD pathogenic mechanisms. We showed that exposure of a human RPE cell line (ARPE-19) to a cigarette smoke concentrate (CSC), not only enhanced Reactive Oxygen Species (ROS) levels, but also induced 8-Hydroxydeoxyguanosine-immunoreactive (8-OHdG) DNA lesions and phosphorylated-Histone 2AX-immunoreactive (p-H2AX) nuclear foci. CSC-nuclear damage was followed by premature senescence as shown by positive senescence associated-β-galactosidase (SA-β-Gal) staining, and p16INK4a and p21Waf-Cip1 protein upregulation. N-acetylcysteine (NAC) treatment, a ROS scavenger, decreased senescence markers, thus supporting the role of oxidative damage in CSC-induced senescence activation. ARPE-19 senescent cultures were also established by exposure to hydrogen peroxide (H2O2), which is an endogenous stress source produced in the retina under photo-oxidation conditions. Senescent cells upregulated the proinflammatory cytokines IL-6 and IL-8, the main markers of the senescence-associated secretory phenotype (SASP). Most important, we show for the first time that senescent ARPE-19 cells upregulated vascular endothelial growth factor (VEGF) and simultaneously downregulated complement factor H (CFH) expression. Since both phenomena are involved in AMD pathogenesis, our results support the hypothesis that SIPS could be a principal player in the induction and progression of AMD. Moreover, they would also explain the striking association of this disease

  7. Specific roles for Group V secretory PLA₂ in retinal iron-induced oxidative stress. Implications for age-related macular degeneration.

    PubMed

    Rodríguez Diez, G; Sánchez Campos, S; Giusto, N M; Salvador, G A

    2013-08-01

    Iron accumulation and oxidative stress are hallmarks of retinas from patients with age-related macular degeneration (AMD). We have previously demonstrated that iron-overloaded retinas are a good in vitro model for the study of retinal degeneration during iron-induced oxidative stress. In this model we have previously characterized the role of cytosolic phospholipase A2 (cPLA2) and calcium-independent isoform (iPLA2). The aim of the present study was to analyze the implications of Group V secretory PLA2 (sPLA2), another member of PLA2 family, in cyclooxygenase (COX)-2 and nuclear factor kappa B (NF-κB) regulation. We found that sPLA2 is localized in cytosolic fraction in an iron concentration-dependent manner. By immunoprecipitation (IP) assays we also demonstrated an increased association between Group V sPLA2 and COX-2 in retinas exposed to iron overload. However, COX-2 activity in IP assays was observed to decrease in spite of the increased protein levels observed. p65 (RelA) NF-κB levels were increased in nuclear fractions from retinas exposed to iron. In the presence of ATK (cPLA2 inhibitor) and YM 26734 (sPLA2 inhibitor), the nuclear localization of both p65 and p50 NF-κB subunits was restored to control levels in retinas exposed to iron-induced oxidative stress. Membrane repair mechanisms were also analyzed by studying the participation of acyltransferases in phospholipid remodeling during retinal oxidation stress. Acidic phospholipids, such as phosphatidylinositol (PI) and phosphatidylserine (PS), were observed to show an inhibited acylation profile in retinas exposed to iron while phosphatidylethanolamine (PE) showed the opposite. The use of PLA2 inhibitors demonstrated that PS is actively deacylated during iron-induced oxidative stress. Results from the present study suggest that Group V sPLA2 has multiple intracellular targets during iron-induced retinal degeneration and that the specific role of sPLA2 could be related to inflammatory responses by its

  8. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain.

    PubMed

    Souza, Leandro Cattelan; Antunes, Michelle Silva; Filho, Carlos Borges; Del Fabbro, Lucian; de Gomes, Marcelo Gomes; Goes, André Tiago Rossito; Donato, Franciele; Prigol, Marina; Boeira, Silvana Peterini; Jesse, Cristiano R

    2015-07-01

    In this study, the effect of Chrysin (5,7-dihydroxyflavone), an important member of the flavonoid family, on memory impairment, oxidative stress and BDNF reduction generated by aging in mice were investigated. Young and aged mice were treated daily per 60days with Chrysin (1 and 10mg/kg; per oral, p.o.) or veichle (10ml/kg; p.o.). Mice were trained and tested in Morris Water Maze task. After the behavioural test, the levels of reactive species (RS), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the activity of Na(+), K(+)-ATPase and the levels of brain-derived neurotrophic factor (BDNF) were determined in the prefrontal cortex (PFC) and hippocampus (HC) of mice. Results demonstrated that the age-related memory decline was partially protected by Chrysin at a dose of 1mg/kg, and normalized at the dose of 10mg/kg (p<0.001). Treatment with Chrysin significantly attenuated the increase of RS levels and the inhibition of SOD, CAT and GPx activities of aged mice. Inhibition of Na(+), K(+)-ATPase activity in PFC and HP of aged mice was also attenuated by Chrysin treatment. Moreover, Chrysin marked mitigated the decrease of BDNF levels in the PFC and HC of aged mice. These results demonstrated that flavonoid Chrysin, an antioxidant compound, was able to prevent age-associated memory probably by their free radical scavenger action and modulation of BDNF production. Thus, this study indicates that Chrysin may represent a new pharmacological approach to alleviate the age-related declines during normal age, acting as an anti-aging agent. PMID:25931267

  9. Markers of Inflammation, Oxidative Stress, and Endothelial Dysfunction and the 20-year Cumulative Incidence of Early Age-related Macular Degeneration: The Beaver Dam Eye Study

    PubMed Central

    Klein, Ronald; Myers, Chelsea E.; Cruickshanks, Karen J.; Gangnon, Ronald E.; Danforth, Lorraine G.; Sivakumaran, Theru A.; Iyengar, Sudha K.; Tsai, Michael Y.; Klein, Barbara E. K.

    2014-01-01

    Importance Modifying levels of factors associated with age-related macular degeneration (AMD) may decrease risk of visual impairment in older persons. Objective To examine the relationships of markers of inflammation, oxidative stress, and endothelial dysfunction to the 20-year cumulative incidence of early AMD. Design Longitudinal population-based cohort study. Setting Beaver Dam, Wisconsin. Participants A random sample of 975 persons in the Beaver Dam Eye Study without signs of AMD who participated in the baseline examination in 1988-1990 and up to four follow-up examinations in 1993-1995, 1998-2000, 2003-2005, and 2008-2010. Exposures Serum markers of inflammation (high sensitivity C-reactive protein [hsCRP], tumor necrosis factor-α receptor 2 [TNF-αR2], interleukin-6 [IL-6], and white blood cell count), oxidative stress (8-isoprostane and total carbonyl content), and endothelial dysfunction (soluble vascular cell adhesion molecule-1 [sVCAM-1] and soluble intercellular adhesion molecule-1) were measured. Interactions with Complement Factor H (rs1061170) and Age-Related Maculopathy Susceptibility 2 (rs10490924), C3 (rs2230199) and C2/CFB (rs4151667) were examined using multiplicative models. AMD was assessed from fundus photographs. Main Outcome Measure Early AMD defined by the presence of any size drusen and the presence of pigmentary abnormalities, or by the presence of large-sized drusen (≥125 μm diameter), in the absence of late AMD. Results The 20-year cumulative incidence of early AMD was 23.0%. Adjusting for age, sex, and other risk factors, hsCRP (odds ratio [OR] comparing 4th to 1st quartile 2.18, P=0.005), TNF-αR2 (1.78, P=0.04), and IL-6 (1.78, P=0.03) were associated with the incidence of early AMD. Increased incidence of early AMD was associated with sVCAM-1 (OR per standard deviation on the log ng/mL scale 1.21, P=0.04). Conclusions and Relevance We found modest evidence of relationships of serum hsCRP, TNF-αR2, and IL-6 and sVCAM-1 to the 20

  10. Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis

    PubMed Central

    Iannaccone, Alessandro; Giorgianni, Francesco; New, David D.; Hollingsworth, T. J.; Umfress, Allison; Alhatem, Albert H.; Neeli, Indira; Lenchik, Nataliya I.; Jennings, Barbara J.; Calzada, Jorge I.; Satterfield, Suzanne; Mathews, Dennis; Diaz, Rocio I.; Harris, Tamara; Johnson, Karen C.; Charles, Steve; Kritchevsky, Stephen B.; Gerling, Ivan C.; Beranova-Giorgianni, Sarka; Radic, Marko Z.

    2015-01-01

    Background We investigated sera from elderly subjects with and without age-related macular degeneration (AMD) for presence of autoantibodies (AAbs) against human macular antigens and characterized their identity. Methods Sera were collected from participants in the Age-Related Maculopathy Ancillary (ARMA) Study, a cross-sectional investigation ancillary to the Health ABC Study, enriched with participants from the general population. The resulting sample (mean age: 79.2±3.9 years old) included subjects with early to advanced AMD (n = 131) and controls (n = 231). Sera were tested by Western blots for immunoreactive bands against human donor macular tissue homogenates. Immunoreactive bands were identified and graded, and odds ratios (OR) calculated. Based on these findings, sera were immunoprecipitated, and subjected to 2D gel electrophoresis (GE). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify the targets recognized by circulating AAbs seen on 2D-GE, followed by ELISAs with recombinant proteins to confirm LC-MS/MS results, and quantify autoreactivities. Results In AMD, 11 immunoreactive bands were significantly more frequent and 13 were significantly stronger than in controls. Nine of the more frequent bands also showed stronger reactivity. OR estimates ranged between 4.06 and 1.93, and all clearly excluded the null value. Following immunoprecipitation, 2D-GE and LC-MS/MS, five of the possible autoreactivity targets were conclusively identified: two members of the heat shock protein 70 (HSP70) family, HSPA8 and HSPA9; another member of the HSP family, HSPB4, also known as alpha-crystallin A chain (CRYAA); Annexin A5 (ANXA5); and Protein S100-A9, also known as calgranulin B that, when complexed with S100A8, forms calprotectin. ELISA testing with recombinant proteins confirmed, on average, significantly higher reactivities against all targets in AMD samples compared to controls. Conclusions Consistent with other evidence supporting the

  11. Age-related oxidative modifications of transthyretin modulate its amyloidogenicity

    PubMed Central

    Zhao, Lei; Buxbaum, Joel N; Reixach, Natàlia

    2013-01-01

    The transthyretin amyloidoses are diseases of protein misfolding characterized by the extracellular deposition of fibrils and other aggregates of the homotetrameric protein transthyretin (TTR) in peripheral nerves, heart and other tissues. Age is the major risk factor for the development of these diseases. We hypothesized that an age-associated increase in protein oxidation could be involved in the onset of the senile forms of the TTR amyloidoses. To test this hypothesis we have produced and characterized relevant age-related oxidative modifications of wild type (WT) and the Val122Ile (V122I) TTR variant, both involved in cardiac TTR deposition in the elderly. Our studies show that methionine/cysteine oxidized TTR and carbonylated TTR either from WT or the V122I variant, are thermodynamically less stable than their non-oxidized counterparts. Moreover, carbonylated WT and carbonylated V122I TTR have a greater propensity to form aggregates and fibrils than WT and V122I TTR, respectively, at physiologically attainable pH. It is well known that TTR tetramer dissociation, the limiting step for aggregation and amyloid fibril formation, can be prevented by small molecules that bind the TTR tetramer interface. Here, we report that carbonylated WT TTR is less amenable to resveratrol-mediated tetramer stabilization than WT TTR. All the oxidized forms of TTR tested are cytotoxic to a human cardiomyocyte cell line known to be a target for cardiac-specific TTR variants. Overall these studies demonstrate that age-related oxidative modifications of TTR can contribute to the onset of the senile forms of the TTR amyloidoses. PMID:23414091

  12. Age-related oxidative modifications of transthyretin modulate its amyloidogenicity.

    PubMed

    Zhao, Lei; Buxbaum, Joel N; Reixach, Natàlia

    2013-03-19

    The transthyretin amyloidoses are diseases of protein misfolding characterized by the extracellular deposition of fibrils and other aggregates of the homotetrameric protein transthyretin (TTR) in peripheral nerves, heart, and other tissues. Age is the major risk factor for the development of these diseases. We hypothesized that an age-associated increase in the level of protein oxidation could be involved in the onset of the senile forms of the TTR amyloidoses. To test this hypothesis, we have produced and characterized relevant age-related oxidative modifications of the wild type (WT) and the Val122Ile (V122I) TTR variant, both involved in cardiac TTR deposition in the elderly. Our studies show that methionine/cysteine-oxidized TTR and carbonylated TTR from either the WT or the V122I variant are thermodynamically less stable than their nonoxidized counterparts. Moreover, carbonylated WT and carbonylated V122I TTR have a stronger propensity to form aggregates and fibrils than WT and V122I TTR, respectively, at physiologically attainable pH values. It is well-known that TTR tetramer dissociation, the limiting step for aggregation and amyloid fibril formation, can be prevented by small molecules that bind the TTR tetramer interface. Here, we report that carbonylated WT TTR is less amenable to resveratrol-mediated tetramer stabilization than WT TTR. All the oxidized forms of TTR tested are cytotoxic to a human cardiomyocyte cell line known to be a target for cardiac-specific TTR variants. Overall, these studies demonstrate that age-related oxidative modifications of TTR can contribute to the onset of the senile forms of the TTR amyloidoses. PMID:23414091

  13. Rapamycin reverses age-related increases in mitochondrial ROS production at complex I, oxidative stress, accumulation of mtDNA fragments inside nuclear DNA, and lipofuscin level, and increases autophagy, in the liver of middle-aged mice.

    PubMed

    Martínez-Cisuelo, V; Gómez, J; García-Junceda, I; Naudí, A; Cabré, R; Mota-Martorell, N; López-Torres, M; González-Sánchez, M; Pamplona, R; Barja, G

    2016-10-01

    Rapamycin consistently increases longevity in mice although the mechanism of action of this drug is unknown. In the present investigation we studied the effect of rapamycin on mitochondrial oxidative stress at the same dose that is known to increase longevity in mice (14mgofrapamycin/kg of diet). Middle aged mice (16months old) showed significant age-related increases in mitochondrial ROS production at complex I, accumulation of mtDNA fragments inside nuclear DNA, mitochondrial protein lipoxidation, and lipofuscin accumulation compared to young animals (4months old) in the liver. After 7weeks of dietary treatment all those increases were totally or partially (lipofuscin) abolished by rapamycin, middle aged rapamycin-treated animals showing similar levels in those parameters to young animals. The decrease in mitochondrial ROS production was due to qualitative instead of quantitative changes in complex I. The decrease in mitochondrial protein lipoxidation was not due to decreases in the amount of highly oxidizable unsaturated fatty acids. Rapamycin also decreased the amount of RAPTOR (of mTOR complex) and increased the amounts of the PGC1-α and ATG13 proteins. The results are consistent with the possibility that rapamycin increases longevity in mice at least in part by lowering mitochondrial ROS production and increasing autophagy, decreasing the derived final forms of damage accumulated with age which are responsible for increased longevity. The decrease in lipofuscin accumulation induced by rapamycin adds to previous information suggesting that the increase in longevity induced by this drug can be due to a decrease in the rate of aging. PMID:27498120

  14. Coenzyme Q addition to an n-6 PUFA-rich diet resembles benefits on age-related mitochondrial DNA deletion and oxidative stress of a MUFA-rich diet in rat heart.

    PubMed

    Quiles, José L; Pamplona, Reinald; Ramirez-Tortosa, M Carmen; Naudí, Alba; Portero-Otin, Manuel; Araujo-Nepomuceno, Eduardo; López-Frías, Magdalena; Battino, Maurizio; Ochoa, Julio J

    2010-01-01

    Age-related changes in cardiomyocytes reduce the capacity to recover from acute injury or to adapt during chronic disease in advanced age. N-6 polyunsaturated fatty acids (n-6PUFA) lead to higher lipid peroxidation during aging than the less oxidizable monounsaturated fatty acids (MUFA); and coenzyme Q (CoQ)-supplemented n-6PUFA lengthens the lifespan and reduces peroxidation in comparison to non-supplemented n-6PUFA. Here, lifelong feeding on MUFA, n-6PUFA, and n-6 PUFA+CoQ was compared regarding age-related alterations in rat heart. Less mitochondrial area and perimeter were reported for aged n-6 PUFA-fed animals while MUFA led to a higher density of mitochondrial cristae. Mitochondrial complexes and cytochrome c oxidase activity decreased with aging (except complex I and cytochrome c oxidase in n-6 PUFA+CoQ), while increased apoptosis-inducing factor was found with aging. MUFA led to lower mitochondrial DNA-deletion frequency. The lowest hydroperoxide levels for aged animals were found for n-6 PUFA+CoQ, which also showed lower concentrations than did n-6 PUFA. For protein oxidation, specific carbonyl compounds were lower in aged animals; meanwhile lipoxidation-derived protein-oxidation markers were higher. The results suggest that MUFA can protect mitochondria from age-related changes, and that CoQ supplementation to n-6 PUFA partially resembles MUFA benefits. Moreover, under our experimental conditions, lipid-derived oxidative damage appears to be more important than the pure protein-derived oxidative damage during aging. PMID:19948181

  15. Long-term dietary extra-virgin olive oil rich in polyphenols reverses age-related dysfunctions in motor coordination and contextual memory in mice: role of oxidative stress.

    PubMed

    Pitozzi, Vanessa; Jacomelli, Michela; Catelan, Dolores; Servili, Maurizio; Taticchi, Agnese; Biggeri, Annibale; Dolara, Piero; Giovannelli, Lisa

    2012-12-01

    The aim of this study was to evaluate the effects of olive oil phenols on brain aging in mice and to verify whether the antioxidant and antiinflammatory activities of these polyphenols were involved. C57Bl/6J mice were fed from middle age to senescence with extra-virgin olive oil (10% wt/wt dry diet) rich in phenols (total polyphenol dose/day, 6 mg/kg). Behavioral tests were employed to assess cognitive, motor, and emotional behavior after 6 or 12 months of treatment. Parameters of oxidative status and inflammation were measured in different brain areas at the same times and evaluated for correlation with behavioral changes. The treatment with olive oil phenols improved contextual memory in the step-down test to levels similar to young animals and prevented the age-related impairment in motor coordination in the rotarod test. This motor effect was correlated with reduced lipid peroxidation in the cerebellum (p<0.05), whereas the memory effect did not correlate with oxidation or inflammation parameters. In conclusion, this work points out that natural polyphenols contained in extra-virgin olive oil can improve some age-related dysfunctions by differentially affecting different brain areas. Such a modulation can be obtained with an olive oil intake that is normal in the Mediterranean area, provided that the oil has a sufficiently high content of polyphenols. PMID:22950431

  16. Stress Constellations and Coping Styles of Older Adults with Age-Related Visual Impairment

    ERIC Educational Resources Information Center

    Lee, Kyoung Othelia; Brennan, Mark

    2006-01-01

    Narrative data from two earlier studies of adaptation to age-related visual impairment were examined for constellations of stressors and coping styles. In the course of previous qualitative analyses, the researchers identified stress and coping codes according to behavioral, psychological, and social domains using a grounded theory approach. In…

  17. Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage

    PubMed Central

    Hui, Wang; Young, David A; Rowan, Andrew D; Xu, Xin; Cawston, Tim E; Proctor, Carole J

    2016-01-01

    Objective To use a computational approach to investigate the cellular and extracellular matrix changes that occur with age in the knee joints of mice. Methods Knee joints from an inbred C57/BL1/6 (ICRFa) mouse colony were harvested at 3–30 months of age. Sections were stained with H&E, Safranin-O, Picro-sirius red and antibodies to matrix metalloproteinase-13 (MMP-13), nitrotyrosine, LC-3B, Bcl-2, and cleaved type II collagen used for immunohistochemistry. Based on this and other data from the literature, a computer simulation model was built using the Systems Biology Markup Language using an iterative approach of data analysis and modelling. Individual parameters were subsequently altered to assess their effect on the model. Results A progressive loss of cartilage matrix occurred with age. Nitrotyrosine, MMP-13 and activin receptor-like kinase-1 (ALK1) staining in cartilage increased with age with a concomitant decrease in LC-3B and Bcl-2. Stochastic simulations from the computational model showed a good agreement with these data, once transforming growth factor-β signalling via ALK1/ALK5 receptors was included. Oxidative stress and the interleukin 1 pathway were identified as key factors in driving the cartilage breakdown associated with ageing. Conclusions A progressive loss of cartilage matrix and cellularity occurs with age. This is accompanied with increased levels of oxidative stress, apoptosis and MMP-13 and a decrease in chondrocyte autophagy. These changes explain the marked predisposition of joints to develop osteoarthritis with age. Computational modelling provides useful insights into the underlying mechanisms involved in age-related changes in musculoskeletal tissues. PMID:25475114

  18. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults

    PubMed Central

    Nita, Małgorzata; Grzybowski, Andrzej

    2016-01-01

    The reactive oxygen species (ROS) form under normal physiological conditions and may have both beneficial and harmful role. We search the literature and current knowledge in the aspect of ROS participation in the pathogenesis of anterior and posterior eye segment diseases in adults. ROS take part in the pathogenesis of keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, stimulating apoptosis of corneal cells. ROS play a role in the pathogenesis of glaucoma stimulating apoptotic and inflammatory pathways on the level of the trabecular meshwork and promoting retinal ganglion cells apoptosis and glial dysfunction in the posterior eye segment. ROS play a role in the pathogenesis of Leber's hereditary optic neuropathy and traumatic optic neuropathy. ROS induce apoptosis of human lens epithelial cells. ROS promote apoptosis of vascular and neuronal cells and stimulate inflammation and pathological angiogenesis in the course of diabetic retinopathy. ROS are associated with the pathophysiological parainflammation and autophagy process in the course of the age-related macular degeneration. PMID:26881021

  19. Reduced clearance of triazolam in old age: relation to antipyrine oxidizing capacity.

    PubMed Central

    Greenblatt, D J; Divoll, M; Abernethy, D R; Moschitto, L J; Smith, R B; Shader, R I

    1983-01-01

    Thirty-three healthy male and female volunteers aged 21 to 87 years received a single 0.5 mg oral dose of triazolam. Plasma triazolam concentrations were measured in multiple samples drawn during 24 h after the dose. Mean triazolam elimination half-life was not significantly different between young and elderly men (3.0 vs 4.6 h), nor between young and elderly women (2.7 vs 3.2 h). However, apparent oral clearance of triazolam was significantly reduced in elderly as compared to young groups of both sexes, leading to higher peak plasma concentrations and increased total area under the curve. Values of half-life and clearance of antipyrine, a low-extraction hepatically oxidized compound, were poorly correlated with those of triazolam (r = 0.34 and 0.44, respectively), suggesting different mechanisms controlling age-related changes in clearance of these two hepatically oxidized drugs. PMID:6133545

  20. Cytochrome P450-2E1 promotes aging-related hepatic steatosis, apoptosis and fibrosis through increased nitroxidative stress.

    PubMed

    Abdelmegeed, Mohamed A; Choi, Youngshim; Ha, Seung-Kwon; Song, Byoung-Joon

    2016-02-01

    The role of ethanol-inducible cytochrome P450-2E1 (CYP2E1) in promoting aging-dependent hepatic disease is unknown and thus was investigated in this study. Young (7 weeks) and aged female (16 months old) wild-type (WT) and Cyp2e1-null mice were used in this study to evaluate age-dependent changes in liver histology, steatosis, apoptosis, fibrosis and many nitroxidative stress parameters. Liver histology showed that aged WT mice exhibited markedly elevated hepatocyte vacuolation, ballooning degeneration, and inflammatory cell infiltration compared to all other groups. These changes were accompanied with significantly higher hepatic triglyceride and serum cholesterol in aged WT mice although serum ALT and insulin resistance were not significantly altered. Aged WT mice showed the highest rates of hepatocyte apoptosis and hepatic fibrosis. Further, the highest levels of hepatic hydrogen peroxide, lipid peroxidation, protein carbonylation, nitration, and oxidative DNA damage were observed in aged WT mice. These increases in the aged WT mice were accompanied by increased levels of mitochondrial nitroxidative stress and alteration of mitochondrial complex III and IV proteins in aged WT mice, although hepatic ATP levels seems to be unchanged. In contrast, the aging-related nitroxidative changes were very low in aged Cyp2e1-null mice. These results suggest that CYP2E1 is important in causing aging-dependent hepatic steatosis, apoptosis and fibrosis possibly through increasing nitroxidative stress and that CYP2E1 could be a potential target for translational research in preventing aging-related liver disease. PMID:26703967

  1. Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity.

    PubMed

    Jeong, Hyeon-Ju; Lee, Hye-Jin; Vuong, Tuan Anh; Choi, Kyu-Sil; Choi, Dahee; Koo, Sung-Hoi; Cho, Sung Chun; Cho, Hana; Kang, Jong-Sun

    2016-07-01

    Maintenance of skeletal muscle function is critical for metabolic health and the disruption of which exacerbates many chronic diseases such as obesity and diabetes. Skeletal muscle responds to exercise or metabolic demands by a fiber-type switch regulated by signaling-transcription networks that remains to be fully defined. Here, we report that protein arginine methyltransferase 7 (Prmt7) is a key regulator for skeletal muscle oxidative metabolism. Prmt7 is expressed at the highest levels in skeletal muscle and decreased in skeletal muscles with age or obesity. Prmt7(-/-) muscles exhibit decreased oxidative metabolism with decreased expression of genes involved in muscle oxidative metabolism, including PGC-1α. Consistently, Prmt7(-/-) mice exhibited significantly reduced endurance exercise capacities. Furthermore, Prmt7(-/-) mice exhibit decreased energy expenditure, which might contribute to the exacerbated age-related obesity of Prmt7(-/-) mice. Similarly to Prmt7(-/-) muscles, Prmt7 depletion in myoblasts also reduces PGC-1α expression and PGC-1α-promoter driven reporter activities. Prmt7 regulates PGC-1α expression through interaction with and activation of p38 mitogen-activated protein kinase (p38MAPK), which in turn activates ATF2, an upstream transcriptional activator for PGC-1α. Taken together, Prmt7 is a novel regulator for muscle oxidative metabolism via activation of p38MAPK/ATF2/PGC-1α. PMID:27207521

  2. Age-related alterations in the expression of genes and synaptic plasticity associated with nitric oxide signaling in the mouse dorsal striatum.

    PubMed

    Chepkova, Aisa N; Schönfeld, Susanne; Sergeeva, Olga A

    2015-01-01

    Age-related alterations in the expression of genes and corticostriatal synaptic plasticity were studied in the dorsal striatum of mice of four age groups from young (2-3 months old) to old (18-24 months of age) animals. A significant decrease in transcripts encoding neuronal nitric oxide (NO) synthase and receptors involved in its activation (NR1 subunit of the glutamate NMDA receptor and D1 dopamine receptor) was found in the striatum of old mice using gene array and real-time RT-PCR analysis. The old striatum showed also a significantly higher number of GFAP-expressing astrocytes and an increased expression of astroglial, inflammatory, and oxidative stress markers. Field potential recordings from striatal slices revealed age-related alterations in the magnitude and dynamics of electrically induced long-term depression (LTD) and significant enhancement of electrically induced long-term potentiation in the middle-aged striatum (6-7 and 12-13 months of age). Corticostriatal NO-dependent LTD induced by pharmacological activation of group I metabotropic glutamate receptors underwent significant reduction with aging and could be restored by inhibition of cGMP hydrolysis indicating that its age-related deficit is caused by an altered NO-cGMP signaling cascade. It is suggested that age-related alterations in corticostriatal synaptic plasticity may result from functional alterations in receptor-activated signaling cascades associated with increasing neuroinflammation and a prooxidant state. PMID:25821602

  3. Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction

    PubMed Central

    Tian, Lei; Lin, Bencheng; Wu, Lei; Li, Kang; Liu, Huanliang; Yan, Jun; Liu, Xiaohua; Xi, Zhuge

    2015-01-01

    This study mainly investigated the neurotoxicity induced by zinc oxide nanoparticle (ZnO NP) in different-aged mice and the interaction between age and ZnO NP exposure. Sixty adult and old male C57BL/6J mice were assigned to four groups based on a two-factor (age and ZnO NP exposure) design. Results showed that ZnO NPs (5.6 mg/kg, intraperitoneal) induced increased production of pro-inflammatory cytokines in the serum and the brain of mice. A synergistic reaction between aging and ZnO NP exposure occurred regarding serum interleukin 1 (IL-1) and interleukin 6 (IL-6). In the brain, increased oxidative stress level, impaired learning and memory abilities, and hippocampal pathological changes were identified, especially in old mice, following ZnO NP exposure. Then, a potential mechanism of cognitive impairment was examined. The contents of hippocampal cAMP response element binding protein (CREB), phosphorylated CREB, synapsin I, and cAMP were decreased in an age-dependent manner, and the most substantial decrease occurred in old mice treated with ZnO NPs. These findings demonstrated for the first time that aging and ZnO NP exposure synergistically influenced systemic inflammation, and indicated old individuals were more susceptible to ZnO NP-induced neurotoxicity. One of the mechanisms might due to the supression of cAMP/CREB signaling. PMID:26527454

  4. Effects of intermittent fasting on age-related changes on Na,K-ATPase activity and oxidative status induced by lipopolysaccharide in rat hippocampus.

    PubMed

    Vasconcelos, Andrea Rodrigues; Kinoshita, Paula Fernanda; Yshii, Lidia Mitiko; Marques Orellana, Ana Maria; Böhmer, Ana Elisa; de Sá Lima, Larissa; Alves, Rosana; Andreotti, Diana Zukas; Marcourakis, Tania; Scavone, Cristoforo; Kawamoto, Elisa Mitiko

    2015-05-01

    Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS. PMID:25818175

  5. Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle.

    PubMed

    Chalil, Sreeda; Pierre, Nicolas; Bakker, Astrid D; Manders, Ralph J; Pletsers, Annelies; Francaux, Marc; Klein-Nulend, Jenneke; Jaspers, Richard T; Deldicque, Louise

    2015-12-25

    Anabolic resistance reflects the inability of skeletal muscle to maintain protein mass by appropriate stimulation of protein synthesis. We hypothesized that endoplasmic reticulum (ER) stress contributes to anabolic resistance in skeletal muscle with aging. Muscles were isolated from adult (8 mo) and old (26 mo) mice and weighed. ER stress markers in each muscle were quantified, and the anabolic response to leucine was assessed by measuring the phosphorylation state of S6K1 in soleus and EDL using an ex vivo muscle model. Aging reduced the muscle-to-body weight ratio in soleus, gastrocnemius, and plantaris, but not in EDL and tibialis anterior. Compared to adult mice, the expression of ER stress markers BiP and IRE1α was higher in EDL, and phospho-eIF2α was higher in soleus and EDL of old mice. S6K1 response to leucine was impaired in soleus, but not in EDL, suggesting that anabolic resistance contributes to soleus weight loss in old mice. Pre-incubation with ER stress inducer tunicamycin before leucine stimulation increased S6K1 phosphorylation beyond the level reached by leucine alone. Since tunicamycin did not impair leucine-induced S6K1 response, and based on the different ER stress marker regulation patterns, ER stress is probably not involved in anabolic resistance in skeletal muscle with aging. PMID:26551463

  6. p66Shc, oxidative stress and aging

    PubMed Central

    Pinton, Paolo; Rizzuto, Rosario

    2009-01-01

    The 66 KDa isoform of Shc and its signalling properties have attracted in the past years major interest in aging research. Here, we summarize p66Shc functions and outline a specific signalling route leading to mitochondrial import, that accounts for its pro-apoptotic activity upon oxidative stress. This model, that could explain the alterations of mitochondrial Ca2+ homeostasis observed after oxidative stress, highlights novel pharmacological targets in age-related disorders. PMID:18235239

  7. PMK-S005 Alleviates Age-Related Gastric Acid Secretion, Inflammation, and Oxidative Status in the Rat Stomach

    PubMed Central

    Choi, Yoon Jeong; Kim, Nayoung; Lee, Ju Yup; Nam, Ryoung Hee; Suh, Ji Hyung; Lee, Sun Min; Ham, Min Hee; Jo, Hyun Jin; Shim, Young Kwang; Park, Yo Han; Lee, Jong-Chan; Choi, Yoon Jin; Lee, Hye Seung; Lee, Dong Ho

    2016-01-01

    Background/Aims The aim of this study was to evaluate the effect of the synthetic S-allyl-l-cysteine (SAC) PMK-S005 on gastric acid secretion, inflammation, and antioxidant enzymes in aging rats. Methods The rats were divided into four groups at 31 weeks of age and were continuously fed a diet containing a vehicle control, PMK-S005 (5 or 10 mg/kg), or lansoprazole (5 mg/kg). Gastric acid secretion and connective tissue thickness of the lamina propria were evaluated at 74 weeks and 2 years of age. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and COX-2 levels were measured by using enzyme-linked immunosorbent assays (ELISAs) or Western blot assays. Levels of antioxidant enzymes, including heme oxyganase 1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO-1), were also measured. Results As the rats aged, gastric acid secretion significantly decreased, and the connective tissue of the lamina propria increased. However, 74-week-old rats in the PMK-S005 group exhibited greater levels of gastric acid secretion than those of the control and lansoprazole groups. The increase of TNF-α, IL-1β, and COX-2 expression in 74-week and 2-year-old control rats were inhibited by PMK-S005. In addition, the decrease in HO-1 and NQO-1 protein expression that occurred with aging was inhibited by PMK-S005 in the 74-week-old rats. Conclusions These results suggest that PMK-S005 has therapeutic potential as an antiaging agent to ameliorate age-related gastric acid secretion, inflammation, and oxidative stress in the stomach. PMID:27172930

  8. An Anthocyanin-Rich Extract of Acai (Euterpe precatoria Mart.) Increases Stress Resistance and Retards Aging-Related Markers in Caenorhabditis elegans.

    PubMed

    Peixoto, Herbenya; Roxo, Mariana; Krstin, Sonja; Röhrig, Teresa; Richling, Elke; Wink, Michael

    2016-02-17

    Acai fruits (Euterpe precatoria) are rich in antioxidant anthocyanins. Acai consumption is believed to have many health benefits; however, relevant detailed scientific investigations are limited. The current study aimed to investigate an anthocyanin-rich extract from E. precatoria fruits (AE) with regard to its antioxidant and antiaging properties using the model organism Caenorhabditis elegans. AE can protect the worms against oxidative stress and can ameliorate accumulation of reactive oxygen species in vivo. The expression of stress-response genes, such as sod-3::GFP, was upregulated while hsp-16::GFP was down-regulated after AE treatment. Studies with DAF-16/FOXO mutants indicated that some of the antioxidant effects are mediated by this transcription factor. AE can modulate the development of age-related markers, such as pharyngeal pumping. Despite the apparent antioxidant activity, no lifespan-prolonging effect was observed. PMID:26809379

  9. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response.

    PubMed

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B; De Giovanni, Laura N; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E; Spear, Linda P; Pautassi, Ricardo Marcos

    2016-03-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking. PMID:26830848

  10. Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function.

    EPA Science Inventory

    OBJECTIVE: Age-related aortic stiffness is an independent risk factor for cardiovascular diseases. Although oxidative stress is implicated in aortic stiffness, the underlying molecular mechanisms remain unelucidated. Here, we examined the source of oxidative stress in aging and i...

  11. AGE-RELATED CHANGES IN HUMAN TRABECULAR BONE: RELATIONSHIP BETWEEN MICROSTRUCTURAL STRESS AND STRAIN AND DAMAGE MORPHOLOGY

    PubMed Central

    O’Neal, Jessica M.; Nagaraja, Srinidhi; Diab, Tamim; Vidakovic, Brani; Guldberg, Robert E.

    2011-01-01

    Accumulation of microdamage in aging and disease can cause skeletal fragility and is one of several factors contributing to osteoporotic fractures. To better understand the role of microdamage in fragility fracture, the mechanisms of bone failure must be elucidated on a tissue-level scale where interactions between bone matrix properties, the local biomechanical environment, and bone architecture are concurrently examined for their contributions to microdamage formation. A technique combining histological damage assessment of individual trabeculae with linear finite element solutions of trabecular von Mises and principal stress and strain was used to compare the damage initiation threshold between pre-menopausal (32–37 years, n=3 donors) and post-menopausal (71–80 years, n=3 donors) femoral cadaveric bone. Strong associations between damage morphology and stress and strain parameters were observed in both groups, and an age-related decrease in undamaged trabecular von Mises stress was detected. In trabeculae from younger donors, the 95% CI for von Mises stress on undamaged regions ranged from 50.7 – 67.9 MPa, whereas in trabeculae from older donors, stresses were significantly lower (38.7 – 50.2, p<0.01). Local microarchitectural analysis indicated that thinner, rod-like trabeculae oriented along the loading axis are more susceptible to severe microdamage formation in older individuals, while only rod-like architecture was associated with severe damage in younger individuals. This study therefore provides insight into how damage initiation and morphology relate to local trabecular microstructure and the associated stresses and strains under loading. Furthermore, by comparison of samples from pre- and post-menopausal women, the results suggest that trabeculae from younger individuals can sustain higher stresses prior to microdamage initiation. PMID:21724189

  12. Peroxisomal metabolism and oxidative stress.

    PubMed

    Nordgren, Marcus; Fransen, Marc

    2014-03-01

    Peroxisomes are ubiquitous and multifunctional organelles that are primarily known for their role in cellular lipid metabolism. As many peroxisomal enzymes catalyze redox reactions as part of their normal function, these organelles are also increasingly recognized as potential regulators of oxidative stress-related signaling pathways. This in turn suggests that peroxisome dysfunction is not only associated with rare inborn errors of peroxisomal metabolism, but also with more common age-related diseases such as neurodegeneration, type 2 diabetes, and cancer. This review intends to provide a comprehensive picture of the complex role of mammalian peroxisomes in cellular redox metabolism. We highlight how peroxisomal metabolism may contribute to the bioavailability of important mediators of oxidative stress, with particular emphasis on reactive oxygen species. In addition, we review the biological properties of peroxisome-derived signaling messengers and discuss how these molecules may mediate various biological responses. Furthermore, we explore the emerging concepts that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. This is particularly relevant to the observed demise of peroxisome function which accompanies cellular senescence, organismal aging, and age-related diseases. PMID:23933092

  13. Metabolic risk factors, coping with stress, and psychological well-being in patients with age-related macular degeneration.

    PubMed

    Cavar, Ivan; Lovrić, Sanjin; Vukojević, Mladenka; Sesar, Irena; Petric-Vicković, Ivanka; Sesar, Antonio

    2014-03-01

    The aim of this study was to determine the relationship between the risk factors (age, obesity, hypertension, hyperlipidemia, smoking, consumption of alchohol and drugs, positive family history, and exposure to sunlight), coping with stress, psychological well-being and age-related macular degeneration (ARMD). Forty patients with ARMD (case group) and 63 presbyopes (control group) participated in the study. Patient data were collected through general information questionnaire including patient habits, the COPE questionnaire that showed the way the patients handling stress, and the GHQ that analyzed the psychological aspects of their quality of life. These questionnaires were administered to the patients during ophthalmologic examination. The study involved 46 (44.66%) men and 57 (55.33%) women. Statistical analysis showed that the major risks for the development of ARMD were elevated cholesterol, triglycerides and LDL cholesterol in plasma. A significantly higher number ofARMD patients had a positive family history when compared with presbyopes. This study showed presbyopes to cope with emotional problems significantly better and to have a lower level of social dysfunction when compared with ARMD patients. However, it is necessary to conduct further studies in a large number of patients to determine more accurately the pathophysiological mechanisms of metabolic factors as well as the impact of the disease on the quality of life in patients with ARMD. PMID:24974669

  14. Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes

    PubMed Central

    Choksi, Kashyap B.; Nuss, Jonathan E.; DeFord, James H.; Papaconstantinou, John

    2010-01-01

    Age-associated mitochondrial dysfunction is a major source of reactive oxygen species (ROS) and oxidative modification to proteins. Mitochondrial electron transport chain (ETC) complexes I and III are the sites of ROS production and we hypothesize that proteins of the ETC complexes are primary targets of ROS-mediated modification which impairs their structure and function. The pectoralis, primarily an aerobic red muscle, and quadriceps, primarily an anaerobic white muscle, have different rates of respiration and oxygen-carrying capacity, and hence, different rates of ROS production. This raises the question of whether these muscles exhibit different levels of oxidative protein modification. Our studies reveal that the pectoralis shows a dramatic age-related decline in almost all complex activities that correlates with increased oxidative modification. Similar complex proteins were modified in the quadriceps, at a significantly lower level with less change in enzyme and ETC coupling function. We postulate that mitochondrial ROS causes damage to specific ETC subunits which increases with age and leads to further mitochondrial dysfunction. We conclude that physiological characteristics of the pectoralis vs quadriceps may play a role in age-associated rate of mitochondrial dysfunction and in the decline in tissue function. PMID:18598756

  15. Update on the oxidative stress theory of aging: Does oxidative stress play a role in aging or healthy aging?

    PubMed Central

    Salmon, Adam B.; Richardson, Arlan; Pérez, Viviana I.

    2010-01-01

    The oxidative stress theory of aging predicts that manipulations that alter oxidative stress/damage will alter aging. The gold standard for determining whether aging is altered is lifespan, i.e., does altering oxidative stress/damage change lifespan? Mice with genetic manipulations in the antioxidant defense system designed to directly address this prediction have, with few exceptions, shown no change in lifespan. However, when these transgenic/knockout mice are tested using models that develop various types of age-related pathology, they show alterations in progression and/or severity of pathology as predicted by the oxidative stress theory; increased oxidative stress accelerates pathology and reduced oxidative stress retards pathology. These contradictory observations might mean a) oxidative stress plays a very limited, if any, role in aging but a major role in healthspan; and/or b) the role that oxidative stress plays in aging depends on environment. In environments with minimal stress, as expected under optimal husbandry, oxidative damage plays little role in aging. However, under chronic stress, including pathological phenotypes that diminish optimal health, oxidative stress/damage plays a major role in aging. Under these conditions, enhanced antioxidant defenses exert an “anti-aging” action, leading to changes in lifespan, age-related pathology, and physiological function as predicted by the oxidative stress theory of aging. PMID:20036736

  16. The impact of oxidative stress on hair.

    PubMed

    Trüeb, R M

    2015-12-01

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health. PMID:26574302

  17. Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior

    PubMed Central

    Larsen, Ryan G.; Callahan, Damien M.; Foulis, Stephen A.; Kent-Braun, Jane A.

    2013-01-01

    There is discrepancy in the literature regarding the degree to which old age affects muscle bioenergetics. These discrepancies are likely influenced by several factors, including variations in physical activity (PA) and differences in the muscle group investigated. To test the hypothesis that age may affect muscles differently, we quantified oxidative capacity of tibialis anterior (TA) and vastus lateralis (VL) muscles in healthy, relatively sedentary younger (8 YW, 8 YM; 21–35 years) and older (8 OW, 8 OM; 65–80 years) adults. To investigate the effect of physical activity on muscle oxidative capacity in older adults, we compared older sedentary women to older women with mild-to-moderate mobility impairment and lower physical activity (OIW, n = 7), and older sedentary men with older active male runners (OAM, n = 6). Oxidative capacity was measured in vivo as the rate constant, kPCr, of postcontraction phosphocreatine recovery, obtained by 31P magnetic resonance spectroscopy following maximal isometric contractions. While kPCr was higher in TA of older than activity-matched younger adults (28%; p = 0.03), older adults had lower kPCr in VL (23%; p = 0.04). In OIW compared with OW, kPCr was lower in VL (~45%; p = 0.01), but not different in TA. In contrast, OAM had higher kPCr than OM (p = 0.03) in both TA (41%) and VL (54%). In older adults, moderate-to-vigorous PA was positively associated with kPCr in VL (r = 0.65, p < 0.001) and TA (r = 0.41, p = 0.03). Collectively, these results indicate that age-related changes in oxidative capacity vary markedly between locomotory muscles, and that altered PA behavior may play a role in these changes. PMID:22236246

  18. Mitochondrial Oxidative Stress in Temporal Lobe Epilepsy

    PubMed Central

    Waldbaum, Simon; Patel, Manisha

    2011-01-01

    Mitochondrial oxidative stress and dysfunction are contributing factors to various neurological disorders. Recently, there has been increasing evidence supporting the association between mitochondrial oxidative stress and epilepsy. Although certain inherited epilepsies are associated with mitochondrial dysfunction, little is known about its role in acquired epilepsies such as temporal lobe epilepsy. Mitochondrial oxidative stress and dysfunction are emerging as key factors that not only result from seizures, but may also contribute to epileptogenesis. The occurrence of epilepsy increases with age, and mitochondrial oxidative stress is a leading mechanism of aging and age-related degenerative disease, suggesting a further involvement of mitochondrial dysfunction in seizure generation. Mitochondria have critical cellular functions that effect neuronal excitability including production of adenosine triphosphate (ATP), fatty acid oxidation, control of apoptosis and necrosis, regulation of amino acid cycling, neurotransmitter biosynthesis, and regulation of cytosolic Ca2+ homeostasis. Mitochondria are the primary site of reactive oxygen species (ROS) production making them uniquely vulnerable to oxidative stress and damage which can further affect cellular macromolecule function, the ability of the electron transport chain to produce ATP, antioxidant defenses, mitochondrial DNA stability, and synaptic glutamate homeostasis. Oxidative damage to one or more of these cellular targets may affect neuronal excitability and increase seizure susceptibility. The specific targeting of mitochondrial oxidative stress, dysfunction, and bioenergetics with pharmacological and non-pharmacological treatments may be a novel avenue for attenuating epileptogenesis and seizure initiation. PMID:19850449

  19. Lipofuscin Redistribution and Loss Accompanied by Cytoskeletal Stress in Retinal Pigment Epithelium of Eyes With Age-Related Macular Degeneration

    PubMed Central

    Ach, Thomas; Tolstik, Elen; Messinger, Jeffrey D.; Zarubina, Anna V.; Heintzmann, Rainer; Curcio, Christine A.

    2015-01-01

    Purpose. Lipofuscin (LF) and melanolipofuscin (MLF) of the retinal pigment epithelium (RPE) are the principal sources of autofluorescence (AF) signals in clinical fundus–AF imaging. Few details about the subcellular distribution of AF organelles in AMD are available. We describe the impact of aging and AMD on RPE morphology revealed by the distribution of AF LF/MLF granules and actin cytoskeleton in human tissues. Methods. Thirty-five RPE-Bruch's membrane flatmounts from 35 donors were prepared (postmortem: ≤4 hours). Ex vivo fundus examination at the time of accession revealed either absence of chorioretinal pathologies (10 tissues; mean age: 83.0 ± 2.6 years) or stages of AMD (25 tissues; 85.0 ± 5.8 years): early AMD, geographic atrophy, and late exudative AMD. Retinal pigment epithelium cytoskeleton was labeled with AlexaFluor647-Phalloidin. Tissues were imaged on a spinning-disk fluorescence microscope and a high-resolution structured illumination microscope. Results. Age-related macular degeneration impacts individual RPE cells by (1) lipofuscin redistribution by (i) degranulation (granule-by-granule loss) and/or (ii) aggregation and apparent shedding into the extracellular space; (2) enlarged RPE cell area and conversion from convex to irregular and sometimes concave polygons; and (3) cytoskeleton derangement including separations and breaks around subretinal deposits, thickening, and stress fibers. Conclusions. We report an extensive and systematic en face analysis of LF/MLF-AF in AMD eyes. Redistribution and loss of AF granules are among the earliest AMD changes and could reduce fundus AF signal attributable to RPE at these locations. Data can enhance the interpretation of clinical fundus–AF and provide a basis for future quantitative studies. PMID:25758814

  20. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions

    PubMed Central

    Larose, Joanie; Boulay, Pierre; Wright-Beatty, Heather E.; Sigal, Ronald J.; Hardcastle, Stephen

    2014-01-01

    This study examined the progression of impairments in heat dissipation as a function of age and environmental conditions. Sixty men (n = 12 per group; 20–30, 40–44, 45–49, 50–54, and 55–70 yr) performed four intermittent exercise/recovery cycles for a duration of 2 h in dry (35°C, 20% relative humidity) and humid (35°C, 60% relative humidity) conditions. Evaporative heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and heat loss during the sessions. Evaporative heat loss was reduced during exercise in the humid vs. dry condition in age groups 20–30 (−17%), 40–44 (−18%), 45–49 (−21%), 50–54 (−25%), and 55–70 yr (−20%). HE fell short of being significantly different between groups in the dry condition, but was greater in age group 20–30 yr (279 ± 10 W) compared with age groups 45–49 (248 ± 8 W), 50–54 (242 ± 6 W), and 55–70 yr (240 ± 7 W) in the humid condition. As a result of a reduced rate of heat dissipation predominantly during exercise, age groups 40–70 yr stored between 60–85 and 13–38% more heat than age group 20–30 yr in the dry and humid conditions, respectively. These age-related differences in heat dissipation and heat storage were not paralleled by significant differences in local sweating and skin blood flow, or by differences in core temperature between groups. From a whole body perspective, combined heat and humidity impeded heat dissipation to a similar extent across age groups, but, more importantly, intermittent exercise in dry and humid heat stress conditions created a greater thermoregulatory challenge for middle-aged and older adults. PMID:24812643

  1. Staphylococcal response to oxidative stress

    PubMed Central

    Gaupp, Rosmarie; Ledala, Nagender; Somerville, Greg A.

    2012-01-01

    Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host. PMID:22919625

  2. Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration

    PubMed Central

    Rodríguez, Ignacio R.; Larrayoz, Ignacio M.

    2010-01-01

    This review will discuss the formation and potential implications of 7-ketocholesterol (7KCh) in the retina. 7KCh is a proinflammatory oxysterol known to be present in high amounts in oxidized LDL deposits associated with atheromatous plaques. 7KCh is generated in situ in these lipoprotein deposits where it can accumulate and reach very high concentrations. In normal primate retina, 7KCh has been found associated with lipoprotein deposits in the choriocapillaris, Bruch's membrane, and the retinal pigment epithelium (RPE). In photodamaged rats, 7KCh has been found in the neural retina in areas of high mitochondrial content, ganglion cells, photoreceptor inner segments and synapses, and the RPE. Intermediates found by LCMS indicate 7KCh is formed via a free radical-mediated mechanism catalyzed by iron. 7KCh seems to activate several kinase signaling pathways that work via nuclear factor κB and cause the induction of vascular endothelial growth factor, interleukin (IL)-6, and IL-8. There seems to be little evidence of 7KCh metabolism in the retina, although some form of efflux mechanism may be active. The chronic mode of formation and the potent inflammatory properties of 7KCh indicate it may be an “age-related” risk factor in aging diseases such as atherosclerosis, Alzheimer's, and age-related macular degeneration. PMID:20567027

  3. T Cells and Macrophages Responding to Oxidative Damage Cooperate in Pathogenesis of a Mouse Model of Age-Related Macular Degeneration

    PubMed Central

    Cruz-Guilloty, Fernando; Saeed, Ali M.; Duffort, Stephanie; Cano, Marisol; Ebrahimi, Katayoon B.; Ballmick, Asha; Tan, Yaohong; Wang, Hua; Laird, James M.; Salomon, Robert G.; Handa, James T.; Perez, Victor L.

    2014-01-01

    Age-related macular degeneration (AMD) is a major disease affecting central vision, but the pathogenic mechanisms are not fully understood. Using a mouse model, we examined the relationship of two factors implicated in AMD development: oxidative stress and the immune system. Carboxyethylpyrrole (CEP) is a lipid peroxidation product associated with AMD in humans and AMD-like pathology in mice. Previously, we demonstrated that CEP immunization leads to retinal infiltration of pro-inflammatory M1 macrophages before overt retinal degeneration. Here, we provide direct and indirect mechanisms for the effect of CEP on macrophages, and show for the first time that antigen-specific T cells play a leading role in AMD pathogenesis. In vitro, CEP directly induced M1 macrophage polarization and production of M1-related factors by retinal pigment epithelial (RPE) cells. In vivo, CEP eye injections in mice induced acute pro-inflammatory gene expression in the retina and human AMD eyes showed distinctively diffuse CEP immunolabeling within RPE cells. Importantly, interferon-gamma (IFN-γ) and interleukin-17 (IL-17)-producing CEP-specific T cells were identified ex vivo after CEP immunization and promoted M1 polarization in co-culture experiments. Finally, T cell immunosuppressive therapy inhibited CEP-mediated pathology. These data indicate that T cells and M1 macrophages activated by oxidative damage cooperate in AMD pathogenesis. PMID:24586307

  4. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts

    PubMed Central

    Palsamy, Periyasamy; Bidasee, Keshore R.; Ayaki, Masahiko; Augusteyn, Robert C.; Chan, Jefferson Y.; Shinohara, Toshimichi

    2015-01-01

    Age-related cataracts are a leading cause of blindness. Previously, we have demonstrated the association of unfolded protein response with various cataractogenic stressors. However, DNA methylation alterations leading to suppression of lenticular antioxidant protection remains unclear. Here, we report the methylglyoxal-mediated sequential events responsible for Keap1 promoter DNA demethylation in human lens epithelial cells, because Keap1 is a negative regulatory protein that regulates the Nrf2 antioxidant protein. Methylglyoxal induces the ER stress and activates the unfolded protein response leading to overproduction of ROS prior to human lens epithelial cells death. Methylglyoxal also suppresses the Nrf2 and DNA methyltransferases but activates the DNA demethylation pathway enzyme, TET1. Bisulfite genomic DNA sequencing confirms the methylglyoxal-mediated Keap1 promoter DNA demethylation leading to over-expression of Keap1 mRNA and protein. Similarly, bisulfite genomic DNA sequencing of human clear lenses (n=15) slowly lose 5-methylcytosine in the Keap1 promoter throughout life, at a rate of 1% per year. By contrast, diabetic cataractous lenses (n=21) lose an average of 90% of the 5-methylcytosine regardless of the age. Over-expressed Keap1 protein is responsible for decreasing the Nrf2 by proteasomal degradation, thereby suppressing the Nrf2 dependent stress protection. This study demonstrates for the first time about the associations of unfolded protein response activation, Nrf2 dependent antioxidant system failure and loss of Keap1 promoter methylation because of altered active and passive DNA demethylation pathway enzymes in human lens epithelial cells by methylglyoxal. As an outcome, cellular redox balance is altered towards lens oxidation and cataract formation. PMID:24746615

  5. Oxidative stress in autism.

    PubMed

    Chauhan, Abha; Chauhan, Ved

    2006-08-01

    Autism is a severe developmental disorder with poorly understood etiology. Oxidative stress in autism has been studied at the membrane level and also by measuring products of lipid peroxidation, detoxifying agents (such as glutathione), and antioxidants involved in the defense system against reactive oxygen species (ROS). Lipid peroxidation markers are elevated in autism, indicating that oxidative stress is increased in this disease. Levels of major antioxidant serum proteins, namely transferrin (iron-binding protein) and ceruloplasmin (copper-binding protein), are decreased in children with autism. There is a positive correlation between reduced levels of these proteins and loss of previously acquired language skills in children with autism. The alterations in ceruloplasmin and transferrin levels may lead to abnormal iron and copper metabolism in autism. The membrane phospholipids, the prime target of ROS, are also altered in autism. The levels of phosphatidylethanolamine (PE) are decreased, and phosphatidylserine (PS) levels are increased in the erythrocyte membrane of children with autism as compared to their unaffected siblings. Several studies have suggested alterations in the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase in autism. Additionally, altered glutathione levels and homocysteine/methionine metabolism, increased inflammation, excitotoxicity, as well as mitochondrial and immune dysfunction have been suggested in autism. Furthermore, environmental and genetic factors may increase vulnerability to oxidative stress in autism. Taken together, these studies suggest increased oxidative stress in autism that may contribute to the development of this disease. A mechanism linking oxidative stress with membrane lipid abnormalities, inflammation, aberrant immune response, impaired energy metabolism and excitotoxicity, leading to clinical symptoms and pathogenesis of autism is proposed. PMID:16766163

  6. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  7. Oxidative Stress and Psychological Disorders

    PubMed Central

    Salim, Samina

    2014-01-01

    Oxidative stress is an imbalance between cellular production of reactive oxygen species and the counteracting antioxidant mechanisms. The brain with its high oxygen consumption and a lipid-rich environment is considered highly susceptible to oxidative stress or redox imbalances. Therefore, the fact that oxidative stress is implicated in several mental disorders including depression, anxiety disorders, schizophrenia and bipolar disorder, is not surprising. Although several elegant studies have established a link between oxidative stress and psychiatric disorders, the causal relationship between oxidative stress and psychiatric diseases is not fully determined. Another critical aspect that needs much attention and effort is our understanding of the association between cellular oxidative stress and emotional stress. This review examines some of the recent discoveries that link oxidative status with anxiety, depression, schizophrenia and bipolar disorder. A discussion of published results and questions that currently exist in the field regarding a causal relationship between oxidative and emotional stress is also provided. PMID:24669208

  8. Transcriptional profiling of the age-related response to genotoxic stress points to differential DNA damage response with age.

    PubMed

    Simon, Kirk; Mukundan, Anju; Dewundara, Samantha; Van Remmen, Holly; Dombkowski, Alan A; Cabelof, Diane C

    2009-09-01

    The p53 DNA damage response attenuated with age and we have evaluated downstream factors in the DNA damage response. In old animals p21 protein accumulates in the whole cell fraction but significantly declines in the nucleus, which may alter cell cycle and apoptotic programs in response to DNA damage. We evaluated the transcriptional response to DNA damage in young and old and find 2692 genes are differentially regulated in old compared to young in response to oxidative stress (p<0.005). As anticipated, the transcriptional profile of young mice is consistent with DNA damage induced cell cycle arrest while the profile of old mice is consistent with cell cycle progression in the presence of DNA damage, suggesting the potential for catastrophic accumulation of DNA damage at the replication fork. Unique sets of DNA repair genes are induced in response to damage in old and young, suggesting the types of damage accumulating differs between young and old. The DNA repair genes upregulated in old animals point to accumulation of replication-dependent DNA double strand breaks (DSB). Expression data is consistent with loss of apoptosis following DNA damage in old animals. These data suggest DNA damage responses differ greatly in young and old animals. PMID:19679149

  9. Cutaneous oxidative stress.

    PubMed

    Polefka, Thomas G; Meyer, Thomas A; Agin, Patricia P; Bianchini, Robert J

    2012-03-01

    The earliest known microfossil records suggest that microorganisms existed on the earth approximately 3.8 billion years ago. Not only did sunlight drive this evolutionary process, but it also allowed photosynthetic organisms to elaborate oxygen and fundamentally change the earth's atmosphere and subsequent evolution. Paradoxically, however, an atmosphere of 20% oxygen offers aerobic organisms both benefits and some key challenges, particularly, to the external integument. This mini-review summarizes almost 40 years of research and provides a "60 000-foot" perspective on cutaneous oxidative stress. Topics reviewed include the following: What are free radicals and reactive oxygen species? Where do they come from? What is their chemistry? What are their roles and/or impact on the skin? What antioxidant defenses are available to mitigate oxidative stress. PMID:22360336

  10. Oxidative Stress in Malaria

    PubMed Central

    Percário, Sandro; Moreira, Danilo R.; Gomes, Bruno A. Q.; Ferreira, Michelli E. S.; Gonçalves, Ana Carolina M.; Laurindo, Paula S. O. C.; Vilhena, Thyago C.; Dolabela, Maria F.; Green, Michael D.

    2012-01-01

    Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy. PMID:23208374

  11. Oxidative Stress in Myopia

    PubMed Central

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  12. Stress Responsiveness of the Hypothalamic–Pituitary–Adrenal Axis: Age-Related Features of the Vasopressinergic Regulation

    PubMed Central

    Goncharova, Nadezhda D.

    2013-01-01

    The hypothalamic–pituitary–adrenal (HPA) axis plays a key role in adaptation to environmental stresses. Parvicellular neurons of the hypothalamic paraventricular nucleus secrete corticotrophin releasing hormone (CRH) and arginine vasopressin (AVP) into pituitary portal system; CRH and AVP stimulate adrenocorticotropic hormone (ACTH) release through specific G-protein-coupled membrane receptors on pituitary corticotrophs, CRHR1 for CRH and V1b for AVP; the adrenal gland cortex secretes glucocorticoids in response to ACTH. The glucocorticoids activate specific receptors in brain and peripheral tissues thereby triggering the necessary metabolic, immune, neuromodulatory, and behavioral changes to resist stress. While importance of CRH, as a key hypothalamic factor of HPA axis regulation in basal and stress conditions in most species, is generally recognized, role of AVP remains to be clarified. This review focuses on the role of AVP in the regulation of stress responsiveness of the HPA axis with emphasis on the effects of aging on vasopressinergic regulation of HPA axis stress responsiveness. Under most of the known stressors, AVP is necessary for acute ACTH secretion but in a context-specific manner. The current data on the AVP role in regulation of HPA responsiveness to chronic stress in adulthood are rather contradictory. The importance of the vasopressinergic regulation of the HPA stress responsiveness is greatest during fetal development, in neonatal period, and in the lactating adult. Aging associated with increased variability in several parameters of HPA function including basal state, responsiveness to stressors, and special testing. Reports on the possible role of the AVP/V1b receptor system in the increase of HPA axis hyperactivity with aging are contradictory and requires further research. Many contradictory results may be due to age and species differences in the HPA function of rodents and primates. PMID:23486926

  13. Oxidative stress by inorganic nanoparticles.

    PubMed

    Tee, Jie Kai; Ong, Choon Nam; Bay, Boon Huat; Ho, Han Kiat; Leong, David Tai

    2016-05-01

    Metallic and metallic oxide nanoparticles (NPs) have been increasingly used for various bio-applications owing to their unique physiochemical properties in terms of conductivity, optical sensitivity, and reactivity. With the extensive usage of NPs, increased human exposure may cause oxidative stress and lead to undesirable health consequences. To date, various endogenous and exogenous sources of oxidants contributing to oxidative stress have been widely reported. Oxidative stress is generally defined as an imbalance between the production of oxidants and the activity of antioxidants, but it is often misrepresented as a single type of cellular stress. At the biological level, NPs can initiate oxidative stress directly or indirectly through various mechanisms, leading to profound effects ranging from the molecular to the disease level. Such effects of oxidative stress have been implicated owing to their small size and high biopersistence. On the other hand, cellular antioxidants help to counteract oxidative stress and protect the cells from further damage. While oxidative stress is commonly known to exert negative biological effects, measured and intentional use of NPs to induce oxidative stress may provide desirable effects to either stimulate cell growth or promote cell death. Hence, NP-induced oxidative stress can be viewed from a wide paradigm. Because oxidative stress is comprised of a wide array of factors, it is also important to use appropriate assays and methods to detect different pro-oxidant and antioxidant species at molecular and disease levels. WIREs Nanomed Nanobiotechnol 2016, 8:414-438. doi: 10.1002/wnan.1374 For further resources related to this article, please visit the WIREs website. PMID:26359790

  14. Age-related variation in the adrenocortical response to stress in nestling white storks (Ciconia ciconia) supports the developmental hypothesis.

    PubMed

    Blas, Julio; Baos, Raquel; Bortolotti, Gary R; Marchant, Tracy A; Hiraldo, Fernando

    2006-09-01

    The post-natal development of the adrenocortical response to stress was investigated in European white storks. Sixty wild nestlings aged 24-59 days old were subjected to a standardized capture and restraint protocol, and the time-course pattern of the response to stress was assessed through determination of circulating corticosterone in blood samples collected at five fixed times during the 45-min period following capture. The time course of the response was best fit to a third-order function of handling time, and showed a strong effect of age. Although age did not affect baseline titers and all birds showed a positive post-capture increase in circulating corticosterone, age had a positive effect on the relative increase from baseline titer, the recorded time to reach maximum level, and the acute concentration after 10 min following capture and restraint. While young nestlings displayed very little response to capture, the response near fledging resembled the typical adrenocortical pattern widely reported in fully developed birds. Our results concur with those found in altricial and semi-altricial species, and suggest that non-precocial birds follow a similar mode of development of the hypothalamic-pituitary-adrenal (HPA) axis. The fact that HPA sensitivity to stress is functional suggests that young storks gradually develop emergency responses of adaptive value and are able to overcome acute perturbations in spite of their parental dependence, at least during the last two-thirds of post-natal development. According to the Developmental Hypothesis, such gradual changes would allow nestlings to respond to perturbations as a function of the specific behavioral and physiological abilities of their age. The potential sources of stress that nestlings have to face during development (i.e., weather conditions, dietary restrictions, and social competition) are discussed according to developmental changes in behavioral and physiological abilities. PMID:16624312

  15. Protein Quality Control Under Oxidative Stress Conditions

    PubMed Central

    Dahl, Jan-Ulrik; Gray, Michael J.; Jakob, Ursula

    2015-01-01

    Accumulation of reactive oxygen and chlorine species (RO/CS) is generally regarded to be a toxic and highly undesirable event, which serves as contributing factor in aging and many age-related diseases. However, it is also put to excellent use during host defense, when high levels of RO/CS are produced to kill invading microorganisms and regulate bacterial colonization. Biochemical and cell biological studies of how bacteria and other microorganisms deal with RO/CS have now provided important new insights into the physiological consequences of oxidative stress, the major targets that need protection, and the cellular strategies employed by organisms to mitigate the damage. This review examines the redox-regulated mechanisms by which cells maintain a functional proteome during oxidative stress. We will discuss the well-characterized redox-regulated chaperone Hsp33, and review recent discoveries demonstrating that oxidative stress-specific activation of chaperone function is a much more widespread phenomenon than previously anticipated. New members of this group include the cytosolic ATPase Get3 in yeast, the E. coli protein RidA, and the mammalian protein α2-macroglobin. We will conclude our review with recent evidence showing that inorganic polyphosphate (polyP), whose accumulation significantly increases bacterial oxidative stress resistance, works by a protein-like chaperone mechanism. Understanding the relationship between oxidative and proteotoxic stresses will improve our understanding of both host-microbe interactions and of how mammalian cells combat the damaging side effects of uncontrolled RO/CS production, a hallmark of inflammation. PMID:25698115

  16. Protein quality control under oxidative stress conditions.

    PubMed

    Dahl, Jan-Ulrik; Gray, Michael J; Jakob, Ursula

    2015-04-10

    Accumulation of reactive oxygen and chlorine species (RO/CS) is generally regarded to be a toxic and highly undesirable event, which serves as contributing factor in aging and many age-related diseases. However, it is also put to excellent use during host defense, when high levels of RO/CS are produced to kill invading microorganisms and regulate bacterial colonization. Biochemical and cell biological studies of how bacteria and other microorganisms deal with RO/CS have now provided important new insights into the physiological consequences of oxidative stress, the major targets that need protection, and the cellular strategies employed by organisms to mitigate the damage. This review examines the redox-regulated mechanisms by which cells maintain a functional proteome during oxidative stress. We will discuss the well-characterized redox-regulated chaperone Hsp33, and we will review recent discoveries demonstrating that oxidative stress-specific activation of chaperone function is a much more widespread phenomenon than previously anticipated. New members of this group include the cytosolic ATPase Get3 in yeast, the Escherichia coli protein RidA, and the mammalian protein α2-macroglobulin. We will conclude our review with recent evidence showing that inorganic polyphosphate (polyP), whose accumulation significantly increases bacterial oxidative stress resistance, works by a protein-like chaperone mechanism. Understanding the relationship between oxidative and proteotoxic stresses will improve our understanding of both host-microbe interactions and how mammalian cells combat the damaging side effects of uncontrolled RO/CS production, a hallmark of inflammation. PMID:25698115

  17. Traumatic stress, oxidative stress and posttraumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis

    PubMed Central

    Miller, Mark W.; Sadeh, Naomi

    2014-01-01

    Posttraumatic stress disorder (PTSD) is associated with elevated risk for a variety of age-related diseases and neurodegeneration. In this paper, we review evidence relevant to the hypothesis that chronic PTSD constitutes a form of persistent life stress that potentiates oxidative stress (OXS) and accelerates cellular aging. We provide an overview of empirical studies that have examined the effects of psychological stress on OXS, discuss the stress-perpetuating characteristics of PTSD, and then identify mechanisms by which PTSD might promote OXS and accelerated aging. We review studies on OXS-related genes and the role that they may play in moderating the effects of PTSD on neural integrity and conclude with a discussion of directions for future research on antioxidant treatments and biomarkers of accelerated aging in PTSD. PMID:25245500

  18. BRCA1 and Oxidative Stress

    PubMed Central

    Yi, Yong Weon; Kang, Hyo Jin; Bae, Insoo

    2014-01-01

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers. PMID:24704793

  19. Macular carotenoids and age-related maculopathy.

    PubMed

    O'Connell, Eamonn; Neelam, Kumari; Nolan, John; Au Eong, Kah-Guan; Beatty, Stephan

    2006-11-01

    Lutein (L) and zeaxanthin (Z) are concentrated at the macula, where they are collectively known as macular pigment (MP), and where they are believed to play a major role in protecting retinal tissues against oxidative stress. Whilst the exact pathogenesis of age-related maculopathy (ARM) remains unknown, the disruption of cellular processes by oxidative stress may play an important role. Manipulation of dietary intake of L and Z has been shown to augment MP, thereby raising hopes that dietary supplementation with these carotenoids might prevent, delay, or modify the course of ARM. This article discusses the scientific rationale supporting the hypothesis that L and Z are protective against ARM, and presents the recent evidence germane to this theory. PMID:17160199

  20. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase.

    PubMed

    Sanchez-Padilla, Javier; Guzman, Jaime N; Ilijic, Ema; Kondapalli, Jyothisri; Galtieri, Daniel J; Yang, Ben; Schieber, Simon; Oertel, Wolfgang; Wokosin, David; Schumacker, Paul T; Surmeier, D James

    2014-06-01

    Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging-related neurodegenerative diseases, such as Parkinson's disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, we studied LC neurons using electrophysiological and optical approaches in ex vivo mouse brain slices. We found that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca(2+) concentration that were attributable to the opening of L-type Ca(2+) channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide increased the spike rate but differentially affected mitochondrial oxidant stress. Oxidant stress was also increased in an animal model of PD. Thus, our results point to activity-dependent Ca(2+) entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons. PMID:24816140

  1. Oxidative stress in Alzheimer disease

    PubMed Central

    Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production. PMID:19372765

  2. Chrononutrition against Oxidative Stress in Aging

    PubMed Central

    Garrido, M.; Terrón, M. P.; Rodríguez, A. B.

    2013-01-01

    Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases. PMID:23861994

  3. Age-related changes in the effects of stress in pregnancy on infant motor development by maternal report: The Queensland Flood Study.

    PubMed

    Simcock, Gabrielle; Kildea, Sue; Elgbeili, Guillaume; Laplante, David P; Stapleton, Helen; Cobham, Vanessa; King, Suzanne

    2016-07-01

    The current study examined the effects of a natural disaster (a sudden onset flood) as a stressor in pregnancy on infant fine and gross motor development at 2, 6, and 16 months of age. Whether the timing of the stressor in pregnancy or sex of the infant moderated the impact of the prenatal maternal stress on motor development was also explored. Mothers' objective experiences of the flood, emotional reactions and distress, and their cognitive appraisal of the event were assessed retrospectively. Infants' fine and gross motor skills were assessed with the Ages and Stages Questionnaire, and results showed age-related changes in the effects of prenatal maternal stress on these domains. At 2 months, higher levels of prenatal maternal stress was positively related to infant motor development, yet at 6 and 16 months of age there was a negative association, particularly if flood exposure occurred later in pregnancy and if mothers had negative cognitive appraisals of the event. Results also showed differential effects of the maternal stress responses to the floods on infants' fine and gross motor development at each age and that infant sex did not buffer these effects. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58: 640-659, 2016. PMID:27004939

  4. Oxidant stress in the vasculature.

    PubMed

    Maytin, M; Leopold, J; Loscalzo, J

    1999-09-01

    Vascular disease and vasomotor responses are largely influenced by oxidant stress. Superoxide is generated via the cellular oxidase systems, xanthine oxidase, and NADH/NADPH oxidases. Once formed, superoxides participate in a number of reactions, yielding various free radicals such as hydrogen peroxide, peroxynitrite, oxidized low-density lipoprotein, or hypochlorous acid. Numerous cellular antioxidant systems exist to defend against oxidant stress; glutathione and the enzymes superoxide dismutase and glutathione peroxidase are critical for maintaining the redox balance of the cell. However, the redox state is disrupted by certain vascular diseases. It appears that oxidant stress both promotes and is induced by diseases such as hypertension, atherosclerosis, and restenosis as well as by certain risk factors for coronary artery disease including hyperlipidemia, diabetes, and cigarette smoking. Once oxidant stress is invoked, characteristic pathophysiologic features ensue, namely adverse vessel reactivity, vascular smooth muscle cell proliferation, macrophage adhesion, platelet activation, and lipid peroxidation. PMID:11122705

  5. Oxidative Stress and Insulin Resistance

    PubMed Central

    Park, Kyong; Gross, Myron; Lee, Duk-Hee; Holvoet, Paul; Himes, John H.; Shikany, James M.; Jacobs, David R.

    2009-01-01

    OBJECTIVE Although cumulative evidence suggests that increased oxidative stress may lead to insulin resistance in vivo or in vitro, community-based studies are scarce. This study examined the longitudinal relationships of oxidative stress biomarkers with the development of insulin resistance and whether these relationships were independent of obesity in nondiabetic young adults. RESEARCH DESIGN AND METHODS Biomarkers of oxidative stress (F2-isoprostanes [F2Isop] and oxidized LDL [oxLDL]), insulin resistance (the homeostasis model assessment of insulin resistance [HOMA-IR]), and various fatness measures (BMI, waist circumference, and estimated percent fat) were obtained in a population-based observational study (Coronary Artery Risk Development in Young Adults) and its ancillary study (Young Adult Longitudinal Trends in Antioxidants) during 2000–2006. RESULTS There were substantial increases in estimated mean HOMA-IR over time. OxLDL and F2Isop showed little association with each other. Mean evolving HOMA-IR increased with increasing levels of oxidative stress markers (P < 0.001 for oxLDL and P = 0.06 for F2Isop), measured in 2000–2001. After additional adjustment for adiposity, a positive association between oxLDL and HOMA-IR was strongly evident, whereas the association between F2Isop and HOMA-IR was not. CONCLUSIONS We observed positive associations between each of two oxidative stress markers and insulin resistance. The association with oxidized LDL was independent of obesity, but that with F2Isop was not. PMID:19389821

  6. p16(INK4A) mediates age-related changes in mesenchymal stem cells derived from human dental pulp through the DNA damage and stress response.

    PubMed

    Feng, Xingmei; Xing, Jing; Feng, Guijuan; Huang, Dan; Lu, Xiaohui; Liu, Suzhe; Tan, Wei; Li, Liren; Gu, Zhifeng

    2014-01-01

    Mesenchymal stem cells derived from human dental pulp (DP-MSCs) are characterized by self-renewal and multi-lineage differentiation, which play important roles in regenerative medicine. Autologous transfers, as non-immunogenic, constitute the safest approach in cellular transplantations. However, their use may be limited by age-related changes. In the study, we compared DP-MSCs isolated from human in five age groups: 5-12 y, 12-20 y, 20-35 y, 35-50 y, and >50 y. We tested the effect of age on proliferation, differentiation, senescence-associated β-galactosidase (SA-β-gal), cell cycle and programmed cell death. DP-MSCs showed characteristics of senescence as a function of age. Meanwhile, the expression of p16(INK4A) and γ-H2A.X significantly increased with age, whereas heat shock protein 60 (HSP60) was decreased in the senescent DP-MSCs. Reactive oxygen species (ROS) staining showed the number of ROS-stained cells and the DCFH fluorescent level were higher in the aged group. Further we examined the senescence of DP-MSCs after modulating p16(INK4A) signaling. The results indicated the dysfunction of DP-MSCs was reversed by p16(INK4A) siRNA. In summary, our study indicated p16(INK4A) pathway may play a critical role in DP-MSCs age-related changes and the DNA damage response (DDR) and stress response may be the main mediators of DP-MSCs senescence induced by excessive activation of p16(INK4A) signaling. PMID:25304494

  7. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes.

    PubMed

    Collins, John A; Wood, Scott T; Nelson, Kimberly J; Rowe, Meredith A; Carlson, Cathy S; Chubinskaya, Susan; Poole, Leslie B; Furdui, Cristina M; Loeser, Richard F

    2016-03-25

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1-3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observedin situin human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130

  8. [Heme metabolism and oxidative stress].

    PubMed

    Kaliman, P A; Barannik, T B

    2001-01-01

    The role of heme metabolism in oxidative stress development and defense reactions formation in mammals under different stress factors are discussed in the article. Heme metabolism is considered as the totality of synthesis, degradation, transport and exchange processes of exogenous heme and heme liberated from erythrocyte hemoglobin under erythrocyte aging and hemolysis. The literature data presented display normal heme metabolism including mammals heme-binding proteins and intracellular free heme pool and heme metabolism alterations under oxidative stress development. The main attention is focused to the prooxidant action of heme, the interaction of heme transport and lipid exchange, and to the heme metabolism key enzymes (delta-aminolevulinate synthase and heme oxygenase), serum heme-binding protein hemopexin and intracellular heme-binding proteins participating in metabolism adaptation under the action of factors, which cause oxidative stress. PMID:11599427

  9. Oxidative Stress Markers in Sputum

    PubMed Central

    Antus, Balazs

    2016-01-01

    Although oxidative stress is thought to play a pivotal role in the pathogenesis of inflammatory airway diseases, its assessment in clinical practice remains elusive. In recent years, it has been conceptualized that oxidative stress markers in sputum should be employed to monitor oxidative processes in patients with asthma, chronic obstructive pulmonary disease (COPD), or cystic fibrosis (CF). In this review, the use of sputum-based oxidative markers was explored and potential clinical applications were considered. Among lipid peroxidation-derived products, 8-isoprostane and malondialdehyde have been the most frequently investigated, while nitrosothiols and nitrotyrosine may serve as markers of nitrosative stress. Several studies have showed higher levels of these products in patients with asthma, COPD, or CF compared to healthy subjects. Marker concentrations could be further increased during exacerbations and decreased along with recovery of these diseases. Measurement of oxidized guanine species and antioxidant enzymes in the sputum could be other approaches for assessing oxidative stress in pulmonary patients. Collectively, even though there are promising findings in this field, further clinical studies using more established detection techniques are needed to clearly show the benefit of these measurements in the follow-up of patients with inflammatory airway diseases. PMID:26885248

  10. Phagocytes and oxidative stress.

    PubMed

    Babior, B M

    2000-07-01

    Neutrophils and other phagocytes manufacture O(2)(-) (superoxide) by the one-electron reduction of oxygen at the expense of NADPH. Most of the O(2)(-) reacts with itself to form H(2)O(2) (hydrogen peroxide). From these agents a large number of highly reactive microbicidal oxidants are formed, including HOCl (hypochlorous acid), which is produced by the myeloperoxidase-catalyzed oxidation of Cl(-) by H(2)O(2); OH(*) (hydroxyl radical), produced by the reduction of H(2)O(2) by Fe(++) or Cu(+); ONOO(-) (peroxynitrite), formed by the reaction between O(2)(-) and NO(*); and many others. These reactive oxidants are manufactured for the purpose of killing invading microorganisms, but they also inflict damage on nearby tissues, and are thought to be of pathogenic significance in a large number of diseases. Included among these are emphysema, acute respiratory distress syndrome, atherosclerosis, reperfusion injury, malignancy and rheumatoid arthritis. PMID:10936476

  11. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis

    PubMed Central

    Baehr, Leslie M.; West, Daniel W.D.; Marcotte, George; Marshall, Andrea G.; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C.

    2016-01-01

    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength. PMID:26826670

  12. Cost-effectiveness of anti-oxidant vitamins plus zinc treatment to prevent the progression of intermediate age-related macular degeneration. A Singapore perspective

    PubMed Central

    Saxena, Nakul; George, Pradeep Paul; Heng, Bee Hoon; Lim, Tock Han; Yong, Shao Onn

    2015-01-01

    Purpose: To determine if providing high dose anti-oxidant vitamins and zinc treatment age-related eye disease study (AREDS formulation) to patients with intermediate age-related macular degeneration (AMD) aged 40–79 years from Singapore is cost-effective in preventing progression to wet AMD. Methods: A hypothetical cohort of category 3 and 4 AMD patients from Singapore was followed for 5 calendar years to determine the number of patients who would progress to wet AMD given the following treatment scenarios: (a) AREDS formulation or placebo followed by ranibizumab (as needed) for wet AMD. (b) AREDS formulation or placebo followed by bevacizumab (monthly) for wet AMD. (c) AREDS formulation or placebo followed by aflibercept (VIEW I and II trial treatment regimen). Costs were estimated for the above scenarios from the providers’ perspective, and cost-effectiveness was measured by cost per disability-adjusted life year (DALY) averted with a disability weight of 0.22 for wet AMD. The costs were discounted at an annual rate of 3%. Results: Over 5400 patients could be prevented from progressing to wet AMD cumulatively if AREDS formulation were prescribed. AREDS formulation followed by ranibizumab was cost-effective compared to placebo-ranibizumab or placebo-aflibercept combinations (cost per DALY averted: SGD$23,662.3 and SGD$21,138.8, respectively). However, bevacizumab (monthly injections) alone was more cost-effective compared to AREDS formulation followed by bevacizumab. Conclusion: Prophylactic treatment with AREDS formulation for intermediate AMD patients followed by ranibizumab or for patients who progressed to wet AMD was found to be cost-effective. These findings have implications for intermediate AMD screening, treatment and healthcare planning in Singapore. PMID:26265643

  13. Oxidative Stress in Atopic Dermatitis

    PubMed Central

    Ji, Hongxiu; Li, Xiao-Kang

    2016-01-01

    Atopic dermatitis (AD) is a chronic pruritic skin disorder affecting many people especially young children. It is a disease caused by the combination of genetic predisposition, immune dysregulation, and skin barrier defect. In recent years, emerging evidence suggests oxidative stress may play an important role in many skin diseases and skin aging, possibly including AD. In this review, we give an update on scientific progress linking oxidative stress to AD and discuss future treatment strategies for better disease control and improved quality of life for AD patients. PMID:27006746

  14. Ethanol and oxidative stress.

    PubMed

    Sun, A Y; Ingelman-Sundberg, M; Neve, E; Matsumoto, H; Nishitani, Y; Minowa, Y; Fukui, Y; Bailey, S M; Patel, V B; Cunningham, C C; Zima, T; Fialova, L; Mikulikova, L; Popov, P; Malbohan, I; Janebova, M; Nespor, K; Sun, G Y

    2001-05-01

    This article represents the proceedings of a workshop at the 2000 ISBRA Meeting in Yokohama, Japan. The chair was Albert Y. Sun. The presentations were (1) Ethanol-inducible cytochrome P-4502E1 in alcoholic liver disease, by Magnus Ingelman-Sundberg and Etienne Neve; (2) Regulation of NF-kappaB by ethanol, by H. Matsumoto, Y. Nishitani, Y. Minowa, and Y. Fukui; (3) Chronic ethanol consumption increases concentration of oxidized proteins in rat liver, by Shannon M. Bailey, Vinood B. Patel, and Carol C. Cunningham; (4) Antiphospholipids antibodies and oxidized modified low-density lipoprotein in chronic alcoholic patients, by Tomas Zima, Lenka Fialova, Ludmila Mikulikova, Ptr Popov, Ivan Malbohan, Marta Janebova, and Karel Nespor; and (5) Amelioration of ethanol-induced damage by polyphenols, by Albert Y. Sun and Grace Y. Sun. PMID:11391077

  15. Hemoglobin oxidative stress

    NASA Astrophysics Data System (ADS)

    Croci, S.; Ortalli, I.; Pedrazzi, G.; Passeri, G.; Piccolo, P.

    2000-07-01

    Venous blood obtained from healthy donors and from patients suffering from breast cancer have been treated with acetylphenylhydrazine (APH) for different time. Mössbauer spectra of the packed red cells have been recorded and compared. The largest difference occurs after 50 min of treatment with APH where the patient samples show a broad spectral pattern indicating an advanced hemoglobin oxidation. These results may have some relevance in early cancer diagnosis.

  16. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  17. Space flight and oxidative stress.

    PubMed

    Stein, T P

    2002-10-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress. PMID:12361781

  18. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  19. Oxidative stress and alopecia areata

    PubMed Central

    Prie, BE; Voiculescu, VM; Ionescu-Bozdog, OB; Petrutescu, B; Iosif, L; Gaman, LE; Clatici, VG; Stoian, I; Giurcaneanu, C

    2015-01-01

    Alopecia areata (AA) is an inflammatory and autoimmune disease presenting with non-scarring hair loss. The aethiopathogenesis of alopecia areata is unclear and many factors including autoimmunity, genetic predisposition, emotional and environmental stress are thought to play important roles in its development. Antioxidant/ oxidant balance perturbation is a common feature in autoimmune, emotional and environmental stress. Therefore, our paper discusses the implications of oxidative stress in alopecia areata. Abbreviations: AA = alopecia areata, ROS = reactive oxygen species, H2O2 = hydrogen peroxide, TBARS = thiobarbituric acid rective substances, MDA = malondialdehyde, TBARS = thiobarbituric acid-reactive substances, SOD = superoxide dismutase, CAT = catalase, GSH-Px = glutathione peroxidase, PON1 = paraoxonase 1, HO-1 = hemoxigenase 1, TrxR = thioredoxin reductase, GSH = glutathione PMID:26361510

  20. PPARα agonist, fenofibrate, ameliorates age-related renal injury.

    PubMed

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Kim, Hyung Wook; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-08-01

    The kidney ages quickly compared with other organs. Expression of senescence markers reflects changes in the energy metabolism in the kidney. Two important issues in aging are mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor α (PPARα) is a member of the ligand-activated nuclear receptor superfamily. PPARα plays a major role as a transcription factor that regulates the expression of genes involved in various processes. In this study, 18-month-old male C57BL/6 mice were divided into two groups, the control group (n=7) and the fenofibrate-treated group (n=7) was fed the normal chow plus fenofibrate for 6months. The PPARα agonist, fenofibrate, improved renal function, proteinuria, histological change (glomerulosclerosis and tubular interstitial fibrosis), inflammation, and apoptosis in aging mice. This protective effect against age-related renal injury occurred through the activation of AMPK and SIRT1 signaling. The activation of AMPK and SIRT1 allowed for the concurrent deacetylation and phosphorylation of their target molecules and decreased the kidney's susceptibility to age-related changes. Activation of the AMPK-FOXO3a and AMPK-PGC-1α signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Our results suggest that activation of PPARα and AMPK-SIRT1 signaling may have protective effects against age-related renal injury. Pharmacological targeting of PPARα and AMPK-SIRT1 signaling molecules may prevent or attenuate age-related pathological changes in the kidney. PMID:27130813

  1. Marine carotenoids and oxidative stress.

    PubMed

    Riccioni, Graziano

    2012-01-01

    Oxidative stress induced by reactive oxygen species plays an important role in the etiology of many diseases. Dietary phytochemical products, such as bioactive food components and marine carotenoids (asthaxantin, lutein, β-carotene, fucoxanthin), have shown an antioxidant effect in reducing oxidative markers stress. Scientific evidence supports the beneficial role of phytochemicals in the prevention of some chronic diseases. Many carotenoids with high antioxidant properties have shown a reduction in disease risk both in epidemiological studies and supplementation human trials. However, controlled clinical trials and dietary intervention studies using well-defined subjects population have not provided clear evidence of these substances in the prevention of diseases. The most important aspects of this special issue will cover the synthesis, biological activities, and clinical applications of marine carotenoids, with particular attention to recent evidence regarding anti-oxidant and anti-inflammatory properties in the prevention of cardiovascular disease. PMID:22363224

  2. Marine Carotenoids and Oxidative Stress

    PubMed Central

    Riccioni, Graziano

    2012-01-01

    Oxidative stress induced by reactive oxygen species plays an important role in the etiology of many diseases. Dietary phytochemical products, such as bioactive food components and marine carotenoids (asthaxantin, lutein, β-carotene, fucoxanthin), have shown an antioxidant effect in reducing oxidative markers stress. Scientific evidence supports the beneficial role of phytochemicals in the prevention of some chronic diseases. Many carotenoids with high antioxidant properties have shown a reduction in disease risk both in epidemiological studies and supplementation human trials. However, controlled clinical trials and dietary intervention studies using well-defined subjects population have not provided clear evidence of these substances in the prevention of diseases. The most important aspects of this special issue will cover the synthesis, biological activities, and clinical applications of marine carotenoids, with particular attention to recent evidence regarding anti-oxidant and anti-inflammatory properties in the prevention of cardiovascular disease. PMID:22363224

  3. Management of multicellular senescence and oxidative stress.

    PubMed

    Haines, David D; Juhasz, Bela; Tosaki, Arpad

    2013-08-01

    Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs' apoptosis, necrosis, autophagy and 'necroapoptophagy'. The concept of 'necroapoptophagy' is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a unique form of

  4. Management of multicellular senescence and oxidative stress

    PubMed Central

    Haines, David D; Juhasz, Bela; Tosaki, Arpad

    2013-01-01

    Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs’ apoptosis, necrosis, autophagy and ‘necroapoptophagy’. The concept of ‘necroapoptophagy’ is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a

  5. [Statins and oxidative stress].

    PubMed

    Filip-Ciubotaru, Florina; Foia, Liliana; Manciuc, Carmen

    2009-01-01

    Statins, as inhibitors of the first regulatory enzyme in cholesterol biosynthesis --HMG-CoA reductase--have a special impact in medical practice. Given their therapeutic efficacy, statins are believed to be the strongest class of agents in the treatment of cardiovascular disorders. Moreover, besides decreasing total cholesterol and C-LDL levels, numerous fundamental and clinical researches suggest that statins also have an antiinflammatory effect. Inflammation is closely related to the production of oxygen-derived reactive species (ROS). The antioxidant effects of statins associated with their ability to block the formation and/or action of ROS may add up their therapeutic efficacy. Within this context, the present paper presents data in literature related to the effect of statins on the expression and activity of NAD(P)H oxidase, activity of the enzymes involved in the antioxidative defence (SOD, GPx, catalase, paraoxonase), and their ability to act as free radical scavengers and oxidized-LDL inhibitors. By their antioxidant properties statins may decrease the atherogenic potential of lipoproteins. PMID:21495335

  6. Age-related hair pigment loss.

    PubMed

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. PMID:26370651

  7. Hypoxia, Oxidative Stress and Fat.

    PubMed

    Netzer, Nikolaus; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Martin; Pramsohler, Stephan; Pesta, Dominik

    2015-01-01

    Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators. PMID:26061760

  8. Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus

    PubMed Central

    Shi, Yun; Pulliam, Daniel A.; Liu, Yuhong; Hamilton, Ryan T.; Jernigan, Amanda L.; Bhattacharya, Arunabh; Sloane, Lauren B.; Qi, Wenbo; Chaudhuri, Asish; Buffenstein, Rochelle; Ungvari, Zoltan; Austad, Steven N.

    2013-01-01

    Comparing biological processes in closely related species with divergent life spans is a powerful approach to study mechanisms of aging. The oxidative stress hypothesis of aging predicts that longer-lived species would have lower reactive oxygen species (ROS) generation and/or an increased antioxidant capacity, resulting in reduced oxidative damage with age than in shorter-lived species. In this study, we measured ROS generation in the young adult animals of the long-lived white-footed mouse, Peromyscus leucopus (maximal life span potential, MLSP = 8 yr) and the common laboratory mouse, Mus musculus (C57BL/6J strain; MLSP = 3.5 yr). Consistent with the hypothesis, our results show that skeletal muscle mitochondria from adult P. leucopus produce less ROS (superoxide and hydrogen peroxide) compared with M. musculus. Additionally, P. leucopus has an increase in the activity of antioxidant enzymes superoxide dismutase 1, catalase, and glutathione peroxidase 1 at young age. P. leucopus compared with M. musculus display low levels of lipid peroxidation (isoprostanes) throughout life; however, P. leucopus although having elevated protein carbonyls at a young age, the accrual of protein oxidation with age is minimal in contrast to the linear increase in M. musculus. Altogether, the results from young animals are in agreement with the predictions of the oxidative stress hypothesis of aging with the exception of protein carbonyls. Nonetheless, the age-dependent increase in protein carbonyls is more pronounced in short-lived M. musculus, which supports enhanced protein homeostasis in long-lived P. leucopus. PMID:23325454

  9. Oxidative stress and adrenocortical insufficiency

    PubMed Central

    Prasad, R; Kowalczyk, J C; Meimaridou, E; Storr, H L; Metherell, L A

    2014-01-01

    Maintenance of redox balance is essential for normal cellular functions. Any perturbation in this balance due to increased reactive oxygen species (ROS) leads to oxidative stress and may lead to cell dysfunction/damage/death. Mitochondria are responsible for the majority of cellular ROS production secondary to electron leakage as a consequence of respiration. Furthermore, electron leakage by the cytochrome P450 enzymes may render steroidogenic tissues acutely vulnerable to redox imbalance. The adrenal cortex, in particular, is well supplied with both enzymatic (glutathione peroxidases and peroxiredoxins) and non-enzymatic (vitamins A, C and E) antioxidants to cope with this increased production of ROS due to steroidogenesis. Nonetheless oxidative stress is implicated in several potentially lethal adrenal disorders including X-linked adrenoleukodystrophy, triple A syndrome and most recently familial glucocorticoid deficiency. The finding of mutations in antioxidant defence genes in the latter two conditions highlights how disturbances in redox homeostasis may have an effect on adrenal steroidogenesis. PMID:24623797

  10. Oxidative stress in prostate cancer.

    PubMed

    Khandrika, Lakshmipathi; Kumar, Binod; Koul, Sweaty; Maroni, Paul; Koul, Hari K

    2009-09-18

    As prostate cancer and aberrant changes in reactive oxygen species (ROS) become more common with aging, ROS signaling may play an important role in the development and progression of this malignancy. Increased ROS, otherwise known as oxidative stress, is a result of either increased ROS generation or a loss of antioxidant defense mechanisms. Oxidative stress is associated with several pathological conditions including inflammation and infection. ROS are products of normal cellular metabolism and play vital roles in stimulation of signaling pathways in response to changing intra- and extracellular environmental conditions. Chronic increases in ROS over time are known to induce somatic mutations and neoplastic transformation. In this review we summarize the causes for increased ROS generation and its potential role in etiology and progression of prostate cancer. PMID:19185987

  11. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD

    PubMed Central

    Mitter, Sayak K; Song, Chunjuan; Qi, Xiaoping; Mao, Haoyu; Rao, Haripriya; Akin, Debra; Lewin, Alfred; Grant, Maria; Dunn, William; Ding, Jindong; Bowes Rickman, Catherine; Boulton, Michael

    2014-01-01

    Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD. PMID:25484094

  12. Oxidative Stress and Major Depression

    PubMed Central

    Verma, Akhilesh Kumar; Srivastava, Mona; Srivastava, Ragini

    2014-01-01

    Background: Major causative factor for major depression is inflammation, autoimmune tissue damage and prolonged psychological stress, which leads to oxidative stress. The aim of this study was to know the association of free radicals and antioxidant status in subjects suffering from major depression. Materials and Methods: Sixty patients diagnosed as a case of unipolar depression as per DSM IV, fulfilling the inclusion and exclusion criteria were compared with 40 healthy age and sex matched controls. The sera of both the groups were collected taking aseptic precautions and were evaluated for the markers of oxidative stress and for the antioxidants. The age group of the sample and the controls was between 18-60 y, both males and females were equally represented in the groups. Results: A significantly high level of malondialdehyde (MDA) was found in the patients with major depression (1.95 ± 1.04 mmol/L) as compared to healthy controls (0.366 ± 0.175 mmol/L) (p < 0.0001). The serum level of nitrite was found to be lower in cases (23.18 ± 12.08 μmol/L) in comparison to controls (26.18 ± 8.68 μmol/L) (p = 0.1789). Similarly the serum level of ascorbic acid and superoxide dismutase (SOD) were significantly below as compared to healthy controls (all p < 0.0001). Ceruloplasmin levels were also depressed in cases (p = 0.3943). Conclusion: The study concluded that in the absence of known oxidative injury causative agents, the lowered levels of antioxidants and higher levels of MDA implicate the high degree of oxidative stress in unipolar depression. PMID:25653939

  13. Muscle Aging and Oxidative Stress in Wild-Caught Shrews

    PubMed Central

    Hindle, Allyson G.; Lawler, John M.; Campbell, Kevin L.; Horning, Markus

    2010-01-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free radical theory of aging in wild mammals, given their short (<18 month) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2× higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  14. Muscle aging and oxidative stress in wild-caught shrews.

    PubMed

    Hindle, Allyson G; Lawler, John M; Campbell, Kevin L; Horning, Markus

    2010-04-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free-radical theory of aging in wild mammals, given their short (<18months) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2x higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  15. Mitochondrial oxidative stress in aging and healthspan

    PubMed Central

    2014-01-01

    The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31. PMID:24860647

  16. Age-Related Macular Degeneration

    MedlinePlus

    ... this page please turn Javascript on. Age-related Macular Degeneration What is AMD? Click for more information Age-related macular degeneration, ... the macula allows you to see fine detail. AMD Blurs Central Vision AMD blurs the sharp central ...

  17. CARBARYL EFFECTS ON OXIDATIVE STRESS IN BRAIN REGIONS OF ADOLESCENT AND SENESCENT BROWN NORWAY RATS

    EPA Science Inventory

    Oxidative stress (OS) plays an important role in susceptibility and disease in old age. Understanding age-related susceptibility is crucial in assessing the human health risks of chemicals. Growing evidence implicates as in carbamate toxicity in addition to cholinesterase-inhibit...

  18. EFFECTS OF TOLUENE ON BRAIN OXIDATIVE STRESS PARAMETERS IN AGING BROWN NORWAY RATS

    EPA Science Inventory

    Aging-related susceptibility to environmental chemicals is poorly understood. Oxidative stress (OS) appears to play an important role in susceptibility and disease in old age. The objectives of this study, therefore, were to test whether OS is a potential toxicity pathway for tol...

  19. Relationship between Oxidative Stress, Circadian Rhythms, and AMD

    PubMed Central

    Fanjul-Moles, María Luisa; López-Riquelme, Germán Octavio

    2016-01-01

    This work reviews concepts regarding oxidative stress and the mechanisms by which endogenous and exogenous factors produce reactive oxygen species (ROS). It also surveys the relationships between oxidative stress, circadian rhythms, and retinal damage in humans, particularly those related to light and photodamage. In the first section, the production of ROS by different cell organelles and biomolecules and the antioxidant mechanisms that antagonize this damage are reviewed. The second section includes a brief review of circadian clocks and their relationship with the cellular redox state. In the third part of this work, the relationship between retinal damage and ROS is described. The last part of this work focuses on retinal degenerative pathology, age-related macular degeneration, and the relationships between this pathology, ROS, and light. Finally, the possible interactions between the retinal pigment epithelium (RPE), circadian rhythms, and this pathology are discussed. PMID:26885250

  20. Climatic Stress during Stand Development Alters the Sign and Magnitude of Age-Related Growth Responses in a Subtropical Mountain Pine

    PubMed Central

    Ruiz-Benito, Paloma; Madrigal-González, Jaime; Young, Sarah; Mercatoris, Pierre; Cavin, Liam; Huang, Tsurng-Juhn; Chen, Jan-Chang; Jump, Alistair S.

    2015-01-01

    The modification of typical age-related growth by environmental changes is poorly understood, In part because there is a lack of consensus at individual tree level regarding age-dependent growth responses to climate warming as stands develop. To increase our current understanding about how multiple drivers of environmental change can modify growth responses as trees age we used tree ring data of a mountain subtropical pine species along an altitudinal gradient covering more than 2,200 m of altitude. We applied mixed-linear models to determine how absolute and relative age-dependent growth varies depending on stand development; and to quantify the relative importance of tree age and climate on individual tree growth responses. Tree age was the most important factor for tree growth in models parameterised using data from all forest developmental stages. Contrastingly, the relationship found between tree age and growth became non-significant in models parameterised using data corresponding to mature stages. These results suggest that although absolute tree growth can continuously increase along tree size when trees reach maturity age had no effect on growth. Tree growth was strongly reduced under increased annual temperature, leading to more constant age-related growth responses. Furthermore, young trees were the most sensitive to reductions in relative growth rates, but absolute growth was strongly reduced under increased temperature in old trees. Our results help to reconcile previous contrasting findings of age-related growth responses at the individual tree level, suggesting that the sign and magnitude of age-related growth responses vary with stand development. The different responses found to climate for absolute and relative growth rates suggest that young trees are particularly vulnerable under warming climate, but reduced absolute growth in old trees could alter the species’ potential as a carbon sink in the future. PMID:25973854

  1. Oxidative Stress in Neurodegenerative Diseases.

    PubMed

    Niedzielska, Ewa; Smaga, Irena; Gawlik, Maciej; Moniczewski, Andrzej; Stankowicz, Piotr; Pera, Joanna; Filip, Małgorzata

    2016-08-01

    The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction. PMID:26198567

  2. Specioside ameliorates oxidative stress and promotes longevity in Caenorhabditis elegans.

    PubMed

    Asthana, Jyotsna; Yadav, A K; Pant, Aakanksha; Pandey, Swapnil; Gupta, M M; Pandey, Rakesh

    2015-03-01

    Specioside (6-O-coumaroylcatalpol) is an iridoid glucoside which possesses multifunctional activities viz. analgesic, antidyspeptic, astringent, liver stimulating and wound healing properties. The present study for the first time delineates stress alleviating and lifespan prolonging action of specioside (SPC), isolated from Stereospermum suaveolens in the free living, multicellular nematode model Caenorhabditis elegans. A strong correlation between lifespan extension and stress modulation in adult worms was established in a dose dependent manner. The dietary intake of this phytomolecule elevated juglone induced oxidative and heat induced thermal stress tolerance in C. elegans. On evaluation, it was found that 25 μM dose of SPC significantly extended lifespan by 15.47% (P≤0.0001) with reduction in stress level. Furthermore, SPC enhanced mean survival in mev-1 mutant suggesting its oxidative stress reducing potential. Furthermore, SPC augmented stress modulatory enzymes superoxide dismutase (SOD) and catalase (CAT) level in C. elegans. Altogether, these findings broaden current perspectives concerning stress alleviating potentials of SPC and have implications in development of therapeutics for curing age related disorders. PMID:25619942

  3. Oxidative stress in cardiovascular disease.

    PubMed

    Csányi, Gábor; Miller, Francis J

    2014-01-01

    In the special issue "Oxidative Stress in Cardiovascular Disease" authors were invited to submit papers that investigate key questions in the field of cardiovascular free radical biology. The original research articles included in this issue provide important information regarding novel aspects of reactive oxygen species (ROS)-mediated signaling, which have important implications in physiological and pathophysiological cardiovascular processes. The issue also included a number of review articles that highlight areas of intense research in the fields of free radical biology and cardiovascular medicine. PMID:24722571

  4. Oxidative Stress in Cardiovascular Disease

    PubMed Central

    Csányi, Gábor; Miller, Francis J.

    2014-01-01

    In the special issue “Oxidative Stress in Cardiovascular Disease” authors were invited to submit papers that investigate key questions in the field of cardiovascular free radical biology. The original research articles included in this issue provide important information regarding novel aspects of reactive oxygen species (ROS)-mediated signaling, which have important implications in physiological and pathophysiological cardiovascular processes. The issue also included a number of review articles that highlight areas of intense research in the fields of free radical biology and cardiovascular medicine. PMID:24722571

  5. Oxidative stress in inherited mitochondrial diseases.

    PubMed

    Hayashi, Genki; Cortopassi, Gino

    2015-11-01

    Mitochondria are a source of reactive oxygen species (ROS). Mitochondrial diseases are the result of inherited defects in mitochondrially expressed genes. One potential pathomechanism for mitochondrial disease is oxidative stress. Oxidative stress can occur as the result of increased ROS production or decreased ROS protection. The role of oxidative stress in the five most common inherited mitochondrial diseases, Friedreich ataxia, LHON, MELAS, MERRF, and Leigh syndrome (LS), is discussed. Published reports of oxidative stress involvement in the pathomechanisms of these five mitochondrial diseases are reviewed. The strongest evidence for an oxidative stress pathomechanism among the five diseases was for Friedreich ataxia. In addition, a meta-analysis was carried out to provide an unbiased evaluation of the role of oxidative stress in the five diseases, by searching for "oxidative stress" citation count frequency for each disease. Of the five most common mitochondrial diseases, the strongest support for oxidative stress is for Friedreich ataxia (6.42%), followed by LHON (2.45%), MELAS (2.18%), MERRF (1.71%), and LS (1.03%). The increased frequency of oxidative stress citations was significant relative to the mean of the total pool of five diseases (p<0.01) and the mean of the four non-Friedreich diseases (p<0.0001). Thus there is support for oxidative stress in all five most common mitochondrial diseases, but the strongest, significant support is for Friedreich ataxia. PMID:26073122

  6. Oxidative stress in oral diseases.

    PubMed

    Kesarwala, A H; Krishna, M C; Mitchell, J B

    2016-01-01

    Oxidative species, including reactive oxygen species (ROS), are components of normal cellular metabolism and are required for intracellular processes as varied as proliferation, signal transduction, and apoptosis. In the situation of chronic oxidative stress, however, ROS contribute to various pathophysiologies and are involved in multiple stages of carcinogenesis. In head and neck cancers specifically, many common risk factors contribute to carcinogenesis via ROS-based mechanisms, including tobacco, areca quid, alcohol, and viruses. Given their widespread influence on the process of carcinogenesis, ROS and their related pathways are attractive targets for intervention. The effects of radiation therapy, a central component of treatment for nearly all head and neck cancers, can also be altered via interfering with oxidative pathways. These pathways are also relevant to the development of many benign oral diseases. In this review, we outline how ROS contribute to pathophysiology with a focus toward head and neck cancers and benign oral diseases, describing potential targets and pathways for intervention that exploit the role of oxidative species in these pathologic processes. PMID:25417961

  7. Hhip haploinsufficiency sensitizes mice to age-related emphysema.

    PubMed

    Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong; Qiu, Weiliang; Guo, Feng; Huang, Chunfang; Mancini, John Dominic; Gupta, Kushagra; Laucho-Contreras, Maria E; Naing, Zun Zar Chi; Zhang, Li; Perrella, Mark A; Owen, Caroline A; Silverman, Edwin K; Zhou, Xiaobo

    2016-08-01

    Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip. PMID:27444019

  8. Analysis of Oxidative Stress in Zebrafish Embryos

    PubMed Central

    Mugoni, Vera; Camporeale, Annalisa; Santoro, Massimo M.

    2014-01-01

    High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer. PMID:25046434

  9. Maillard reaction, mitochondria and oxidative stress: potential role of antioxidants.

    PubMed

    Edeas, M; Attaf, D; Mailfert, A-S; Nasu, M; Joubet, R

    2010-06-01

    Glycation and oxidative stress are two important processes known to play a key role in complications of many disease processes. Oxidative stress, either via increasing reactive oxygen species (ROS), or by depleting the antioxidants may modulate the genesis of early glycated proteins in vivo. Maillard Reactions, occur in vivo as well as in vitro and are associated with the chronic complications of diabetes, aging and age-related diseases. Hyperglycaemia causes the autoxidation of glucose, glycation of proteins, and the activation of polyol metabolism. These changes facilitate the generation of reactive oxygen species and decrease the activity of antioxidant enzymes such as Cu,Zn-superoxide dismutase, resulting in a remarkable increase of oxidative stress. A large body of evidence indicates that mitochondria alteration is involved and plays a central role in various oxidative stress-related diseases. The damaged mitochondria produce more ROS (increase oxidative stress) and less ATP (cellular energy) than normal mitochondria. As they are damaged, they cannot burn or use glucose or lipid and cannot provide cell with ATP. Further, glucose, amino acids and lipid will not be correctly used and will accumulate outside the mitochondria; they will undergo more glycation (as observed in diabetes, obesity, HIV infection and lipodystrophia). The objective of this paper is to discuss how to stop the vicious circle established between oxidative stress, Maillard Reaction and mitochondria. The potential application of some antioxidants to reduce glycation phenomenon and to increase the antioxidant defence system by targeting mitochondria will be discussed. Food and pharmaceutical companies share the same challenge, they must act now, urgently and energetically. PMID:20031340

  10. Etiologies of sperm oxidative stress

    PubMed Central

    Sabeti, Parvin; Pourmasumi, Soheila; Rahiminia, Tahereh; Akyash, Fatemeh; Talebi, Ali Reza

    2016-01-01

    Sperm is particularly susceptible to reactive oxygen species (ROS) during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN) leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions. PMID:27351024

  11. Etiologies of sperm oxidative stress.

    PubMed

    Sabeti, Parvin; Pourmasumi, Soheila; Rahiminia, Tahereh; Akyash, Fatemeh; Talebi, Ali Reza

    2016-04-01

    Sperm is particularly susceptible to reactive oxygen species (ROS) during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN) leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions. PMID:27351024

  12. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    PubMed Central

    Martín, María Ángeles; Ramos, Sonia; Cordero-Herrero, Isabel; Bravo, Laura; Goya, Luis

    2013-01-01

    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE) containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult. PMID:23912326

  13. MECHANISMS FOR COUNTERING OXIDATIVE STRESS AND DAMAGE IN RETINAL PIGMENT EPITHELIUM

    PubMed Central

    Plafker, Scott M.; O’Mealey, Gary B.; Szweda, Luke I.

    2013-01-01

    Clinical and experimental evidence supports that chronic oxidative stress is a primary contributing factor to numerous retinal degenerative diseases, such as age-related macular degeneration (AMD). Eyes obtained postmortem from AMD patients have extensive free radical damage to the proteins, lipids, DNA, and mitochondria of their retinal pigment epithelial (RPE) cells. In addition, several mouse models of chronic oxidative stress develop many of the pathological hallmarks of AMD. However, the extent to which oxidative stress is an etiologic component versus its involvement in disease progression remains a major unanswered question. Further, whether the primary target of oxidative stress and damage is photoreceptors or RPE cells, or both, is still unclear. In this review, we discuss the major functions of RPE cells with an emphasis on the oxidative challenges these cells encounter and the endogenous antioxidant mechanisms employed to neutralize the deleterious effects that such stresses can elicit if left unchecked. PMID:22878106

  14. Inflammation, Oxidative Stress, and Obesity

    PubMed Central

    Fernández-Sánchez, Alba; Madrigal-Santillán, Eduardo; Bautista, Mirandeli; Esquivel-Soto, Jaime; Morales-González, Ángel; Esquivel-Chirino, Cesar; Durante-Montiel, Irene; Sánchez-Rivera, Graciela; Valadez-Vega, Carmen; Morales-González, José A.

    2011-01-01

    Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6); other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS), generating a process known as oxidative stress (OS). Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO), and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease. PMID:21686173

  15. Oxidative Stress in Cystinosis Patients

    PubMed Central

    Vaisbich, Maria Helena; Pache de Faria Guimaraes, Luciana; Shimizu, Maria Heloisa Mazzola; Seguro, Antonio Carlos

    2011-01-01

    Background/Aims Nephropathic cystinosis (NC) is a severe systemic disease and cysteamine improves its prognosis. Lysosomal cystine accumulation is the hallmark of cystinosis and is regarded as the primary defect due to mutations in the CTNS gene. However, there is great evidence that cystine accumulation itself is not responsible for all abnormalities observed in NC. Studies have demonstrated altered ATP metabolism, increased apoptosis, and cell oxidation. An increased number of autophagosomes and autophagic vacuoles have been observed in cystinotic fibroblasts and renal epithelial cells, suggesting that altered autophagy plays a role in NC, leading to increased production of reactive oxygen species. Therefore, cystinosis patients can be more susceptible to oxidative stress (OS) and it can contribute to the progression of the renal disease. Our goal was to evaluate a marker of OS (serum TBARS) in NC children, and to compare the results with those observed in healthy controls and correlated with renal function parameters. Methods The study included patients aged under 18 years, with good adherence to the treatment and out of renal replacement therapy. The following parameters were evaluated: serum creatinine, BUN, creatinine clearance estimated by stature and serum TBARS levels. Results We selected 20 patients aged 8.0 ±3.6 years and observed serum TBARS levels of 4.03 ±1.02 nmol/ml. Serum TBARS levels in the 43 healthy controls, aged 7.4 ±1.1 years, were 1.60 ±0.04 nmol/ml. There was a significant difference between the plasma TBARS levels among the 2 groups (p < 0.0001). We detected no significant correlation between plasma TBARS levels and renal function. Conclusion An increased level of serum TBARS in patients with NC was observed and this abnormality was not correlated with the renal function status degree. This is the first report that shows increased oxidative stress in serum of NC patients. PMID:22470381

  16. The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence.

    PubMed

    Bauer, Moisés Evandro; Fuente, Mónica De la

    2016-09-01

    Immunosenescence involves age-related remodeling changes in the organization of lymphoid organs and functionality of immune cells, which have been associated with increased morbidity and mortality The pace of immunosenescence is modulated, however, by both intrinsic and extrinsic factors. Here, we review the mechanisms by which some factors, like the oxidative stress and certain chronic viral infections, may modulate the ageing immune system. Mounting evidence indicates that human cytomegalovirus (CMV) drives the expansion of late-differentiated T cells with an inflammatory profile. This would add to the "inflammaging" phenomenon, characterized by a low-grade inflammatory state, importantly involved in the etiology of several age-related diseases. We discuss that age-related oxidative stress is associated with chronic inflammation, and the oxidation-inflammation theory of ageing is summarized. According to this theory, the ageing process is a chronic oxidative and inflammatory stress, leading to damage of cell components, including proteins, lipids and DNA, and contributing to the age-related decline of physiological functions. Moreover oxi-inflamm-aging is associated with immunosenescence, which could be involved in the rate of ageing of individuals. PMID:26773975

  17. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    PubMed Central

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  18. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy.

    PubMed

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen; Chen, Gang

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  19. Intake of zinc and antioxidant micronutrients and early age-related maculopathy lesions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macular degeneration, the end stage of age-related maculopathy (ARM), is the leading cause of legal blindness worldwide, and few modifiable risk factors are known. The high concentration of carotenoids in the macula, plus evidence linking oxidative stress to ARM, and carotenoids to antioxidation, ge...

  20. Physiological Antioxidative Network of the Bilirubin System in Aging and Age-Related Diseases

    PubMed Central

    Kim, Sung Young; Park, Sang Chul

    2012-01-01

    Oxidative stress is detrimental to life process and is particularly responsible for aging and age-related diseases. Thus, most organisms are well equipped with a spectrum of biological defense mechanisms against oxidative stress. The major efficient antioxidative mechanism is the glutathione system, operating a redox cycling mechanism for glutathione utilization, which consists of glutathione and its peroxidase and reductase. However, this system is mainly effective for hydrophilic oxidants, while lipophilic oxidants require another scavenging system. Since many age-related pathological conditions are related to lipid peroxidation, especially in association with the aging process, the physiological role of the scavenging system for lipophilic oxidants should be considered. In this regard, the biliverdin to bilirubin conversion pathway, via biliverdin reductase (BVR), is suggested to be another major protective mechanism that scavenges lipophilic oxidants because of the lipophilic nature of bilirubin. The efficiency of this bilirubin system might be potentiated by operation of the intertwined bicyclic systems of the suggested redox metabolic cycle of biliverdin and bilirubin and the interactive control cycle of BVR and heme oxygenase. In order to combat oxidative stress, both antioxidative systems against hydrophilic and lipophilic oxidants are required to work cooperatively. In this regard, the roles of the bilirubin system in aging and age-related diseases are reassessed in this review, and their interacting networks are evaluated. PMID:22457648

  1. The Potential of Chitosan and Its Derivatives in Prevention and Treatment of Age-Related Diseases

    PubMed Central

    Kerch, Garry

    2015-01-01

    Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed. PMID:25871293

  2. Soybean β-Conglycinin Prevents Age-Related Hearing Impairment

    PubMed Central

    Tanigawa, Tohru; Shibata, Rei; Kondo, Kazuhisa; Katahira, Nobuyuki; Kambara, Takahiro; Inoue, Yoko; Nonoyama, Hiroshi; Horibe, Yuichiro; Ueda, Hiromi; Murohara, Toyoaki

    2015-01-01

    Obesity-related complications are associated with the development of age-related hearing impairment. β-Conglycinin (β-CG), one of the main storage proteins in soy, offers multiple health benefits, including anti-obesity and anti-atherosclerotic effects. Here, to elucidate the potential therapeutic application of β-CG, we investigated the effect of β-CG on age-related hearing impairment. Male wild-type mice (age 6 months) were randomly divided into β-CG-fed and control groups. Six months later, the body weight was significantly lower in β-CG-fed mice than in the controls. Consumption of β-CG rescued the hearing impairment observed in control mice. Cochlear blood flow also increased in β-CG-fed mice, as did the expression of eNOS in the stria vascularis (SV), which protects vasculature. β-CG consumption also ameliorated oxidative status as assessed by 4-HNE staining. In the SV, lipofuscin granules of marginal cells and vacuolar degeneration of microvascular pericytes were decreased in β-CG-fed mice, as shown by transmission electron microscopy. β-CG consumption prevented loss of spiral ganglion cells and reduced the frequencies of lipofuscin granules, nuclear invaginations, and myelin vacuolation. Our observations indicate that β-CG ameliorates age-related hearing impairment by preserving cochlear blood flow and suppressing oxidative stress. PMID:26348726

  3. Targeting MAPK Signaling in Age-Related Macular Degeneration

    PubMed Central

    Kyosseva, Svetlana V.

    2016-01-01

    Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease. PMID:27385915

  4. Macular degeneration - age-related

    MedlinePlus

    Age-related macular degeneration (ARMD); AMD ... distorted and wavy. There may be a small dark spot in the center of your vision that ... leafy vegetables, may also decrease your risk of age-related macular degeneration. If you have wet AMD, ...

  5. Flashbulb Memories and Posttraumatic Stress Reactions Across the Life-Span: Age-related effects of the German Occupation of Denmark during WWII

    PubMed Central

    Berntsen, Dorthe; Rubin, David C.

    2014-01-01

    A representative sample of older Danes were interviewed about experiences from the German occupation of Denmark in WWII. The number of participants with flashbulb memories for the German invasion (1940) and capitulation (1945) increased with participants’ age at the time of the events up to age 8. Among participants under 8 years at the time of their most traumatic event, age at the time correlated positively with current level of posttraumatic stress reactions, vividness of stressful memories and their centrality to life-story and identity. These findings were replicated in Study 2 for self-nominated stressful events sampled from the entire life span using a representative sample of Danes born after 1945. The results are discussed in relation to Posttraumatic Stress Disorder (PTSD) and childhood amnesia. PMID:16594798

  6. Flashbulb memories and posttraumatic stress reactions across the life span: age-related effects of the German occupation of Denmark during World War II.

    PubMed

    Berntsen, Dorthe; Rubin, David C

    2006-03-01

    A representative sample of older Danes were interviewed about experiences from the German occupation of Denmark in World War II. The number of participants with flashbulb memories for the German invasion (1940) and capitulation (1945) increased with participants' age at the time of the events up to age 8. Among participants under 8 years at the time of their most traumatic event, age at the time correlated positively with the current level of posttraumatic stress reactions and the vividness of stressful memories and their centrality to life story and identity. These findings were replicated in Study 2 for self-nominated stressful events sampled from the entire life span using a representative sample of Danes born after 1945. The results are discussed in relation to posttraumatic stress disorder and childhood amnesia. PMID:16594798

  7. Induction of Oxidative Stress in Kidney

    PubMed Central

    Ozbek, Emin

    2012-01-01

    Oxidative stress has a critical role in the pathophysiology of several kidney diseases, and many complications of these diseases are mediated by oxidative stress, oxidative stress-related mediators, and inflammation. Several systemic diseases such as hypertension, diabetes mellitus, and hypercholesterolemia; infection; antibiotics, chemotherapeutics, and radiocontrast agents; and environmental toxins, occupational chemicals, radiation, smoking, as well as alcohol consumption induce oxidative stress in kidney. We searched the literature using PubMed, MEDLINE, and Google scholar with “oxidative stress, reactive oxygen species, oxygen free radicals, kidney, renal injury, nephropathy, nephrotoxicity, and induction”. The literature search included only articles written in English language. Letters or case reports were excluded. Scientific relevance, for clinical studies target populations, and study design, for basic science studies full coverage of main topics, are eligibility criteria for articles used in this paper. PMID:22577546

  8. Primary and secondary oxidative stress in Bacillus.

    PubMed

    Mols, Maarten; Abee, Tjakko

    2011-06-01

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This minireview highlights novel insights in the primary oxidative stress response caused by oxidizing compounds including hydrogen peroxide and the secondary oxidative stress responses apparent upon exposure to a range of agents and conditions leading to environmental stresses such as antibiotics, heat and acid. Insights in the pathways and damaging radicals involved have been compiled based among others on transcriptome studies, network analyses and fluorescence techniques for detection of ROS at single cell level. Exploitation of the current knowledge for the control of spoilage and pathogenic bacteria is discussed. PMID:21352461

  9. Role of oxidative stress and nitric oxide in atherothrombosis

    PubMed Central

    Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph

    2008-01-01

    During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590

  10. Clinical Relevance of Biomarkers of Oxidative Stress

    PubMed Central

    Frijhoff, Jeroen; Winyard, Paul G.; Zarkovic, Neven; Davies, Sean S.; Stocker, Roland; Cheng, David; Knight, Annie R.; Taylor, Emma Louise; Oettrich, Jeannette; Ruskovska, Tatjana; Gasparovic, Ana Cipak; Cuadrado, Antonio; Weber, Daniela; Poulsen, Henrik Enghusen; Grune, Tilman; Schmidt, Harald H.H.W.

    2015-01-01

    Abstract Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. Future Directions: Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 23, 1144–1170. PMID:26415143

  11. Cordycepin prevents oxidative stress-induced inhibition of osteogenesis

    PubMed Central

    Wang, Feng; Yin, Peipei; Lu, Ye; Zhou, Zubin; Jiang, Chaolai; Liu, Yingjie; Yu, Xiaowei

    2015-01-01

    Oxidative stress is known to be involved in impairment of osteogenesis and age-related osteoporosis. Cordycepin is one of the major bioactive components of Cordyceps militaris that has been shown to exert antioxidant and anti-inflammatory activities. However, there are few reports available regarding the effects of cordycepin on osteogenesis and the underlying mechanism. In this study, we investigated the potential osteoprotective effects of cordycepin and its mechanism systematically using both in vitro model as well as in vivo mouse models. We discovered that hydrogen peroxide (H2O2) induced inhibition of osteogenesis which was rescued by cordycepin treatment in human bone marrow mesenchymal stem cells (BM-MSCs). Cordycepin exerted its protective effects partially by increasing or decreasing expression of osteogenic and osteoclastogenesis marker genes. Treatment with cordycepin increased Wnt-related genes' expression whereas supplementation of Wnt pathway inhibitor reversed its protective effects. In addition, administration of cordycepin promoted osteogenic differentiation of BM-MSCs by reducing oxidative stress in both ovariectomized and aged animal models. Taken together, these results support the protective effects of cordycepin on oxidative stress induced inhibition of osteogenesis by activation of Wnt pathway. PMID:26462178

  12. Cordycepin prevents oxidative stress-induced inhibition of osteogenesis.

    PubMed

    Wang, Feng; Yin, Peipei; Lu, Ye; Zhou, Zubin; Jiang, Chaolai; Liu, Yingjie; Yu, Xiaowei

    2015-11-01

    Oxidative stress is known to be involved in impairment of osteogenesis and age-related osteoporosis. Cordycepin is one of the major bioactive components of Cordyceps militaris that has been shown to exert antioxidant and anti-inflammatory activities. However, there are few reports available regarding the effects of cordycepin on osteogenesis and the underlying mechanism. In this study, we investigated the potential osteoprotective effects of cordycepin and its mechanism systematically using both in vitro model as well as in vivo mouse models. We discovered that hydrogen peroxide (H2O2)-induced inhibition of osteogenesis which was rescued by cordycepin treatment in human bone marrow mesenchymal stem cells (BM-MSCs). Cordycepin exerted its protective effects partially by increasing or decreasing expression of osteogenic and osteoclastogenesis marker genes. Treatment with cordycepin increased Wnt-related genes' expression whereas supplementation of Wnt pathway inhibitor reversed its protective effects. In addition, administration of cordycepin promoted osteogenic differentiation of BM-MSCs by reducing oxidative stress in both ovariectomized and aged animal models. Taken together, these results support the protective effects of cordycepin on oxidative stress induced inhibition of osteogenesis by activation of Wnt pathway. PMID:26462178

  13. Oxidative Stress Related Diseases in Newborns.

    PubMed

    Ozsurekci, Yasemin; Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  14. Oxidative Stress Related Diseases in Newborns

    PubMed Central

    Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  15. Oxidative Stress, Lens Gap Junctions, and Cataracts

    PubMed Central

    Beyer, Eric C.

    2009-01-01

    Abstract The eye lens is constantly subjected to oxidative stress from radiation and other sources. The lens has several mechanisms to protect its components from oxidative stress and to maintain its redox state, including enzymatic pathways and high concentrations of ascorbate and reduced glutathione. With aging, accumulation of oxidized lens components and decreased efficiency of repair mechanisms can contribute to the development of lens opacities or cataracts. Maintenance of transparency and homeostasis of the avascular lens depend on an extensive network of gap junctions. Communication through gap junction channels allows intercellular passage of molecules (up to 1 kDa) including antioxidants. Lens gap junctions and their constituent proteins, connexins (Cx43, Cx46, and Cx50), are also subject to the effects of oxidative stress. These observations suggest that oxidative stress-induced damage to connexins (and consequent altered intercellular communication) may contribute to cataract formation. Antioxid. Redox Signal. 11, 339–353. PMID:18831679

  16. Oxidative stress and oxidative damage in chemical carcinogenesis

    SciTech Connect

    Klaunig, James E. Wang Zemin; Pu Xinzhu; Zhou Shaoyu

    2011-07-15

    Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

  17. eNOS-uncoupling in age-related erectile dysfunction

    PubMed Central

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  18. An update on the role of mitochondrial α-ketoglutarate dehydrogenase in oxidative stress

    PubMed Central

    Starkov, Anatoly A.

    2012-01-01

    The activity of mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC) is severely reduced in human pathologies where oxidative stress is traditionally thought to play an important role, such as familial and sporadic forms of Alzheimer's disease and other age-related neurodegenerative diseases. This minireview is focused on substantial data that were accumulated over the last 2 decades to support the concept that KGDHC can be a primary mitochondrial target of oxidative stress and at the same time a key contributor to it by producing reactive oxygen species. This article is part of a Special Issue entitled ‘Mitochondrial function’. PMID:22820180

  19. Age-Related Macular Degeneration: Insights into Inflammatory Genes

    PubMed Central

    Ragazzo, Michele; Missiroli, Filippo; Borgiani, Paola; Angelucci, Francesco; Marsella, Luigi Tonino; Cusumano, Andrea; Novelli, Giuseppe; Ricci, Federico; Giardina, Emiliano

    2014-01-01

    Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old). AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension). In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species) have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2) that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines), immune cells (macrophages), and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression. PMID:25478207

  20. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy. PMID:25715554

  1. TOLUENE EFFECTS ON OXIDATIVE STRESS IN BRAIN REGIONS OF YOUNG-ADULT, MIDDLE-AGE AND SENESCENT BROWN NORWAY RATS

    EPA Science Inventory

    Aging-related susceptibility to environmental chemicals is poorly understood. Oxidative stress (OS) appears to play an important role in susceptibility and disease in old age. The objectives of this study, therefore, were to test whether OS is a potential toxicity pathway for tol...

  2. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  3. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    PubMed Central

    Rahal, Anu; Kumar, Amit; Singh, Vivek; Yadav, Brijesh

    2014-01-01

    Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. PMID:24587990

  4. Caspase-2 protects against oxidative stress in vivo.

    PubMed

    Shalini, S; Puccini, J; Wilson, C H; Finnie, J; Dorstyn, L; Kumar, S

    2015-09-17

    Caspase-2 belongs to the caspase family of cysteine proteases with established roles in apoptosis. Recently, caspase-2 has been implicated in nonapoptotic functions including maintenance of genomic stability and tumor suppression. Our previous studies demonstrated that caspase-2 also regulates cellular redox status and delays the onset of several ageing-related traits. In the current study, we tested stress tolerance ability in caspase-2-deficient (Casp2(-/-)) mice by challenging both young and old mice with a low dose of the potent reactive oxygen species (ROS) generator, PQ that primarily affects lungs. In both groups of mice, PQ induced pulmonary damage. However, the lesions in caspase-2 knockout mice were consistently and reproducibly more severe than those in wild-type (WT) mice. Furthermore, serum interleukin (IL)-1β and IL-6 levels were higher in PQ-exposed aged Casp2(-/-) mice indicating increased inflammation. Interestingly, livers from Casp2(-/-) mice displayed karyomegaly, a feature commonly associated with ageing and aneuploidy. Given that Casp2(-/-) mice show impaired antioxidant defense, we tested oxidative damage in these mice. Protein oxidation significantly increased in PQ-injected old Casp2(-/-) mice. Moreover, FoxO1, SOD2 and Nrf2 expression levels were reduced and induction of superoxide dismutase (SOD) and glutathione peroxidase activity was not observed in PQ-treated Casp2(-/-) mice. Strong c-Jun amino-terminal kinase (JNK) activation was observed in Casp2(-/-) mice, indicative of increased stress. Together, our data strongly suggest that caspase-2 deficiency leads to increased cellular stress largely because these mice fail to respond to oxidative stress by upregulating their antioxidant defense mechanism. This makes the mice more vulnerable to exogenous challenges and may partly explain the shorter lifespan of Casp2(-/-) mice. PMID:25531319

  5. Age-related hearing loss

    MedlinePlus

    ... is no known single cause of age-related hearing loss. Most commonly, it is caused by changes in the inner ear that occur as you grow older. Your genes and loud noise (from rock concerts or music headphones) may play a large role. The following ...

  6. Oxidative Stress in Placenta: Health and Diseases.

    PubMed

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  7. Oxidative Stress in Placenta: Health and Diseases

    PubMed Central

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  8. A Heart That Beats for 500 Years: Age-Related Changes in Cardiac Proteasome Activity, Oxidative Protein Damage and Expression of Heat Shock Proteins, Inflammatory Factors, and Mitochondrial Complexes in Arctica islandica, the Longest-Living Noncolonial Animal

    PubMed Central

    Sosnowska, Danuta; Richardson, Chris; Sonntag, William E.; Csiszar, Anna; Ridgway, Iain

    2014-01-01

    Study of negligibly senescent animals may provide clues that lead to better understanding of the cardiac aging process. To elucidate mechanisms of successful cardiac aging, we investigated age-related changes in proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in the heart of the ocean quahog Arctica islandica, the longest-lived noncolonial animal (maximum life span potential: 508 years). We found that in the heart of A. islandica the level of oxidatively damaged proteins did not change significantly up to 120 years of age. No significant aging-induced changes were observed in caspase-like and trypsin-like proteasome activity. Chymotrypsin-like proteasome activity showed a significant early-life decline, then it remained stable for up to 182 years. No significant relationship was observed between the extent of protein ubiquitination and age. In the heart of A. islandica, an early-life decline in expression of HSP90 and five mitochondrial electron transport chain complexes was observed. We found significant age-related increases in the expression of three cytokine-like mediators (interleukin-6, interleukin-1β, and tumor necrosis factor-α) in the heart of A. islandica. Collectively, in extremely long-lived molluscs, maintenance of protein homeostasis likely contributes to the preservation of cardiac function. Our data also support the concept that low-grade chronic inflammation in the cardiovascular system is a universal feature of the aging process, which is also manifest in invertebrates. PMID:24347613

  9. Oxidative stress in developmental brain disorders.

    PubMed

    Hayashi, Masaharu; Miyata, Rie; Tanuma, Naoyuki

    2012-01-01

    In order to examine the involvement of oxidative stress in developmental brain disorders, we have performed immunohistochemistry in autopsy brains and enzyme-linked immunosorbent assay (ELISA) in the cerebrospinal fluid and urines of patients. Here, we review our data on the hereditary DNA repair disorders, congenital metabolic errors and childhood-onset neurodegenerative disorders. First, in our studies on hereditary DNA repair disorders, increased oxidative DNA damage and lipid peroxidation were carried out in the degeneration of basal ganglia, intracerebral calcification and cerebellar degeneration in patients with xeroderma pigmentosum, Cockayne syndrome and ataxia-telangiectasia-like disorder, respectively. Next, congenital metabolic errors, apoptosis due to lipid peroxidation seemed to cause neuronal damage in neuronal ceroid-lipofuscinosis. Oxidative stress of DNA combined with reduced expression of antioxidant enzymes occurred in the lesion of the cerebral cortex in mucopolysaccharidoses and mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes. In childhood-onset neurodegenerative disorders, increased oxidative DNA damage and lipid peroxidation may lead to motor neuron death in spinal muscular atrophy like in amyotrophic lateral sclerosis. In patients with dentatorubral-pallidoluysian atrophy, a triplet repeat disease, deposition of oxidative products of nucleosides and reduced expression of antioxidant enzymes were found in the lenticular nucleus. In contrast, the involvement of oxidative stress is not definite in patients with Lafora disease. Rett syndrome patients showed changes of oxidative stress markers and antioxidant power in urines, although the changes may be related to systemic complications. PMID:22411250

  10. Oxidative Stress Resistance in Deinococcus radiodurans†

    PubMed Central

    Slade, Dea; Radman, Miroslav

    2011-01-01

    Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health. PMID:21372322

  11. Sustained stress response after oxidative stress in trabecular meshwork cells

    PubMed Central

    Li, Guorong; Luna, Coralia; Liton, Paloma B.; Navarro, Iris; Epstein, David L.

    2007-01-01

    Purpose To investigate the mechanisms by which chronic oxidative stress may lead to a sustained stress response similar to that previously observed in the trabecular meshwork (TM) of glaucoma donors. Methods Porcine TM cells were treated with 200 μM H2O2 twice a day for four days and were allowed to recover for three additional days. After the treatment, TM cells were analyzed for generation of intracellular reactive oxygen species (iROS), mitochondrial potential, activation of NF-κB, and the expression of inflammatory markers IL-1α, IL-6, IL-8, and ELAM-1. Potential sources of iROS were evaluated using inhibitors for nitric oxide, nitric oxide synthetase, cyclooxygenase, xanthine oxidase, NADPH oxidase, mitochondrial ROS, and PKC. The role of NF-κB activation in the induction of inflammatory markers was evaluated using the inhibitors Lactacystin and BAY11–7082. Results Chronic oxidative stress simulated by H2O2 exposure of porcine TM cells resulted in the sustained production of iROS by the mitochondria. Inhibition of mitochondrial iROS had a significant inhibitory effect on the activation of NF-κB and the induction of IL-1α, IL-6, IL-8, and ELAM-1 triggered by chronic oxidative stress. Inhibition of NF-κB partially prevented the induction of IL-1α, IL-8, and ELAM-1, but not IL-6. Conclusions Chronic oxidative stress in TM cells induced iROS production in mitochondria. This increase in iROS may contribute to the pathogenesis of the TM in glaucoma by inducing the expression of inflammatory mediators previously observed in glaucoma donors as well as the levels of oxidative damage in the tissue. PMID:18199969

  12. Protein Phosphatase 2A Mediates Oxidative Stress Induced Apoptosis in Osteoblasts.

    PubMed

    Huang, Chong-xin; Lv, Bo; Wang, Yue

    2015-01-01

    Osteoporosis is one of the most common bone diseases, which is characterized by a systemic impairment of bone mass and fragility fractures. Age-related oxidative stress is highly associated with impaired osteoblastic dysfunctions and subsequent osteoporosis. In osteoblasts (bone formation cells), reactive oxygen species (ROS) are continuously generated and further cause lipid peroxidation, protein damage, and DNA lesions, leading to osteoblastic dysfunctions, dysdifferentiations, and apoptosis. Although much progress has been made, the mechanism responsible for oxidative stress induced cellular alternations and osteoblastic toxicity is still not fully elucidated. Here, we demonstrate that protein phosphatase 2A (PP2A), a major protein phosphatase in mammalian cells, mediates oxidative stress induced apoptosis in osteoblasts. Our results showed that lipid peroxidation products (4-HNE) may induce dramatic oxidative stress, inflammatory reactions, and apoptosis in osteoblasts. These oxidative stress responses may ectopically activate PP2A phosphatase activity, which may be mediated by inactivation of AKT/mTOR pathway. Moreover, inhibition of PP2A activity by okadaic acid might partly prevent osteoblastic apoptosis under oxidative conditions. These findings may reveal a novel mechanism to clarify the role of oxidative stress for osteoblastic apoptosis and provide new possibilities for the treatment of related bone diseases, such as osteoporosis. PMID:26538836

  13. Protein Phosphatase 2A Mediates Oxidative Stress Induced Apoptosis in Osteoblasts

    PubMed Central

    Huang, Chong-xin; Lv, Bo; Wang, Yue

    2015-01-01

    Osteoporosis is one of the most common bone diseases, which is characterized by a systemic impairment of bone mass and fragility fractures. Age-related oxidative stress is highly associated with impaired osteoblastic dysfunctions and subsequent osteoporosis. In osteoblasts (bone formation cells), reactive oxygen species (ROS) are continuously generated and further cause lipid peroxidation, protein damage, and DNA lesions, leading to osteoblastic dysfunctions, dysdifferentiations, and apoptosis. Although much progress has been made, the mechanism responsible for oxidative stress induced cellular alternations and osteoblastic toxicity is still not fully elucidated. Here, we demonstrate that protein phosphatase 2A (PP2A), a major protein phosphatase in mammalian cells, mediates oxidative stress induced apoptosis in osteoblasts. Our results showed that lipid peroxidation products (4-HNE) may induce dramatic oxidative stress, inflammatory reactions, and apoptosis in osteoblasts. These oxidative stress responses may ectopically activate PP2A phosphatase activity, which may be mediated by inactivation of AKT/mTOR pathway. Moreover, inhibition of PP2A activity by okadaic acid might partly prevent osteoblastic apoptosis under oxidative conditions. These findings may reveal a novel mechanism to clarify the role of oxidative stress for osteoblastic apoptosis and provide new possibilities for the treatment of related bone diseases, such as osteoporosis. PMID:26538836

  14. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    PubMed Central

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N.; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M.; Tsao, Philip S.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease. PMID:26512646

  15. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    PubMed Central

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  16. [Presbycusis - Age Related Hearing Loss].

    PubMed

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. PMID:27392191

  17. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  18. Oxidative stress, mitochondrial damage and neurodegenerative diseases

    PubMed Central

    Guo, Chunyan; Sun, Li; Chen, Xueping; Zhang, Danshen

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases. PMID:25206509

  19. Oxidative stress profiling: part II. Theory, technology, and practice.

    PubMed

    Cutler, Richard G; Plummer, John; Chowdhury, Kajal; Heward, Christopher

    2005-12-01

    Many of the most serious human diseases have a strong association with the steady-state level of oxidative damage in tissues. On an individual level this damage is defined as the patient's oxidative stress status (OSS). OSS is associated with many of the major age-related diseases such as cancer, heart disease, diabetes, and Alzheimer's disease, as well as with the aging process itself. In general, the greater the OSS of the individual, the higher the risk for disease development. To further understand the role that OSS has as a causative or an associated factor for these diseases, and to develop more effective personalized therapy to minimize OSS, requires a reliable means to measure the many different components contributing to an individual's OSS. This procedure is called oxidative stress profiling (OSP) and represents a new strategy to simultaneously assess an individual's OSS as well as to identify key physiological parameters, such as the hormone, lipid, antioxidant, or iron profile, that may be responsible for that individual's OSS. The OSP strategy provides physicians with information that enable them to make a more accurate diagnosis of the patient's condition and to recommend specific types of therapy based on better scientific data. Follow-up studies of the patient would then be conducted using these same tests until the OSS of the patient has been minimized. The OSP strategy is particularly well suited for a personalized health optimization program. The procedure is based on measuring both the steady-state levels of oxidative damage in nucleic acids, proteins, and lipids and the protective and defense processes of these components using blood, urine, and breath samples. Testing individuals before and after a controlled amount of exercise (70% VO2) may also help to obtain greater sensitivity and reproducibility. Evaluation of test results to obtain an integrated calculated OSS result for a patient represents a major challenge. One approach is to present

  20. Oxidative stress and antioxidant strategies in dermatology.

    PubMed

    Baek, Jinok; Lee, Min-Geol

    2016-07-01

    Oxidative stress results from a prooxidant-antioxidant imbalance, leading to cellular damage. It is mediated by free radicals, such as reactive oxygen species or reactive nitrogen species, that are generated during physiological aerobic metabolism and pathological inflammatory processes. Skin serves as a protective organ that plays an important role in defending both external and internal toxic stimuli and maintaining homeostasis. It is becoming increasingly evident that oxidative stress is involved in numerous skin diseases and that antioxidative strategies can serve as effective and easy methods for improving these conditions. Herein, we review dysregulated antioxidant systems and antioxidative therapeutic strategies in dermatology. PMID:26020527

  1. Oxidative Stress in Schizophrenia: An Integrated Approach

    PubMed Central

    Bitanihirwe, Byron K.Y.; Woo, Tsung-Ung W.

    2010-01-01

    Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioural and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-D-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons.[bkyb1] Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia. PMID:20974172

  2. Potential Modulation of Sirtuins by Oxidative Stress

    PubMed Central

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  3. Potential Modulation of Sirtuins by Oxidative Stress.

    PubMed

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1-7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  4. Mitochondrial oxidative stress promotes atrial fibrillation

    PubMed Central

    Xie, Wenjun; Santulli, Gaetano; Reiken, Steven R.; Yuan, Qi; Osborne, Brent W.; Chen, Bi-Xing; Marks, Andrew R.

    2015-01-01

    Oxidative stress has been suggested to play a role in the pathogenesis of atrial fibrillation (AF). Indeed, the prevalence of AF increases with age as does oxidative stress. However, the mechanisms linking redox state to AF are not well understood. In this study we identify a link between oxidative stress and aberrant intracellular Ca2+ release via the type 2 ryanodine receptor (RyR2) that promotes AF. We show that RyR2 are oxidized in the atria of patients with chronic AF compared with individuals in sinus rhythm. To dissect the molecular mechanism linking RyR2 oxidation to AF we used two murine models harboring RyR2 mutations that cause intracellular Ca2+ leak. Mice with intracellular Ca2+ leak exhibited increased atrial RyR2 oxidation, mitochondrial dysfunction, reactive oxygen species (ROS) production and AF susceptibility. Both genetic inhibition of mitochondrial ROS production and pharmacological treatment of RyR2 leakage prevented AF. Collectively, our results indicate that alterations of RyR2 and mitochondrial ROS generation form a vicious cycle in the development of AF. Targeting this previously unrecognized mechanism could be useful in developing effective interventions to prevent and treat AF. PMID:26169582

  5. Superoxide Dismutase 1 Loss Disturbs Intracellular Redox Signaling, Resulting in Global Age-Related Pathological Changes

    PubMed Central

    2014-01-01

    Aging is characterized by increased oxidative stress, chronic inflammation, and organ dysfunction, which occur in a progressive and irreversible manner. Superoxide dismutase (SOD) serves as a major antioxidant and neutralizes superoxide radicals throughout the body. In vivo studies have demonstrated that copper/zinc superoxide dismutase-deficient (Sod1−/−) mice show various aging-like pathologies, accompanied by augmentation of oxidative damage in organs. We found that antioxidant treatment significantly attenuated the age-related tissue changes and oxidative damage-associated p53 upregulation in Sod1−/− mice. This review will focus on various age-related pathologies caused by the loss of Sod1 and will discuss the molecular mechanisms underlying the pathogenesis in Sod1−/− mice. PMID:25276767

  6. Modulation of cell death in age-related diseases.

    PubMed

    Tezil, Tugsan; Basaga, Huveyda

    2014-01-01

    Aging is a stage of life of all living organisms. According to the free-radical theory, aging cells gradually become unable to maintain cellular homeostasis due to the adverse effects of reactive oxygen species (ROS). ROS can cause irreversible DNA mutations, protein and lipid damage which are increasingly accumulated in the course of time if cells could not overcome these effects by the antioxidant defence system. Accrued damaged molecules in cells may either induce cellular death or contribute to develop various pathologies. Hence, programmed cell death mechanisms, apoptosis and autophagy, play a vital role in the aging process. Although they are strictly controlled by various interconnected signalling pathways, alterations in their regulations may contribute to severe pathologies including cancer, Alzheimer's and Parkinson's diseases. In this review, we summarized our current understanding and hypotheses regarding oxidative stress and age-related dysregulation of cell death signalling pathways. PMID:24079770

  7. Molecular pathology of age-related macular degeneration

    PubMed Central

    Ding, Xiaoyan; Patel, Mrinali; Chan, Chi-Chao

    2009-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. Although the etiology and pathogenesis of AMD remain largely unclear, a complex interaction of genetic and environmental factors is thought to exist. AMD pathology is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium, and Bruch’s membrane, as well as, in some cases, alterations in choroidal capillaries. Recent research on the genetic and molecular underpinnings of AMD brings to light several basic molecular pathways and pathophysiological processes that might mediate AMD risk, progression, and/or response to therapy. This review summarizes, in detail, the molecular pathological findings in both humans and animal models, including genetic variations in CFH, CX3CR1, and ARMS2/HtrA1, as well as the role of numerous molecules implicated in inflammation, apoptosis, cholesterol trafficking, angiogenesis, and oxidative stress. PMID:19026761

  8. Retinal phagocytes in age-related macular degeneration

    PubMed Central

    Kim, Soo-Young

    2015-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in industrial countries. Vision loss caused by AMD results from geographic atrophy (dry AMD) and/or choroidal neovascularization (wet AMD). Presently, the etiology and pathogenesis of AMD is not fully understood and there is no effective treatment. Oxidative stress in retinal pigment epithelial (RPE) cells is considered to be one of the major factors contributing to the pathogenesis of AMD. Also retinal glia, as scavengers, are deeply related with diseases and could play a role. Therefore, therapeutic approaches for microglia and Müller glia, as well as RPE, may lead to new strategies for AMD treatment. This review summarizes the pathological findings observed in RPE cells, microglia and Müller glia of AMD murine models. PMID:26052551

  9. Oxidative stress, NADPH oxidases, and arteries.

    PubMed

    Sun, Qi-An; Runge, Marschall S; Madamanchi, Nageswara R

    2016-05-10

    Atherosclerosis and its major complications - myocardial infarction and stroke - remain major causes of death and disability in the United States and world-wide. Indeed, with dramatic increases in obesity and diabetes mellitus, the prevalence and public health impact of cardiovascular diseases (CVD) will likely remain high. Major advances have been made in development of new therapies to reduce the incidence of atherosclerosis and CVD, in particular for treatment of hypercholesterolemia and hypertension. Oxidative stress is the common mechanistic link for many CVD risk factors. However, only recently have the tools existed to study the interface between oxidative stress and CVD in animal models. The most important source of reactive oxygen species (and hence oxidative stress) in vascular cells are the multiple forms of enzymes nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Recently published and emerging studies now clearly establish that: 1) NADPH oxidases are of critical importance in atherosclerosis and hypertension in animal models; 2) given the tissue-specific expression of key components of NADPH oxidase, it may be possible to target vascular oxidative stress for prevention of CVD. PMID:25649240

  10. Oxidative Stress Control by Apicomplexan Parasites

    PubMed Central

    Izui, Natália M.; Schettert, Isolmar; Liebau, Eva

    2015-01-01

    Apicomplexan parasites cause infectious diseases that are either a severe public health problem or an economic burden. In this paper we will shed light on how oxidative stress can influence the host-pathogen relationship by focusing on three major diseases: babesiosis, coccidiosis, and toxoplasmosis. PMID:25722976

  11. [Age-related macular degeneration].

    PubMed

    Garcia Layana, A

    1998-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the occidental world. Patients suffering this process have an important reduction on their quality of life being handicapped to read, to write, to recognise faces of their friends, or even to watch the television. One of the main problems of that disease is the absence of an effective treatment able to revert the process. Laser treatment is only useful in a limited number of patients, and even in these cases recurrent lesions are frequent. These facts and the progressive ageing of our society establish the ARMD as one of the biggest aim of medical investigations for the next century, and currently is focus of attention in the most industrialised countries. One of the most promising pieces of research is focused in the investigation of the risk factors associated with the age-related macular degeneration, in order to achieve a prophylactic treatment avoiding its appearance. Diet elements such as fat ingestion or reduced antioxidant intakes are being investigated as some of these factors, what open a new possibility for a prophylactic treatment. Finally, research is looking for new therapeutic modalities such as selective radiotherapy in order to improve or maintain the vision of these patients. PMID:10420956

  12. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response.

    PubMed

    Busch, Andrea W U; Montgomery, Beronda L

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  13. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  14. Current therapeutic developments in atrophic age-related macular degeneration.

    PubMed

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age-Related Eye Disease Study (AREDS) formulation, which has been demonstrated to slow down the progression of dry AMD. This review summarises recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem cell-based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  15. Current Therapeutic Development for Atrophic Age-related Macular Degeneration

    PubMed Central

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age Related Eye Disease Study (AREDS) formulation which has been demonstrated to slow down the progression of dry AMD. This review summarizes recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem-cell based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  16. Thiol specific oxidative stress response in Mycobacteria.

    PubMed

    Dosanjh, Nirpjit S; Rawat, Mamta; Chung, Ji-Hae; Av-Gay, Yossef

    2005-08-01

    The cellular response of mycobacteria to thiol specific oxidative stress was studied in Mycobacterium bovis BCG cultures. Two-dimensional gel electrophoresis revealed that upon diamide treatment at least 60 proteins were upregulated. Fourteen of these proteins were identified by MALDI-MS; four proteins, AhpC, Tpx, GroEL2, and GroEL1 are functionally related to oxidative stress response; eight proteins, LeuC, LeuD, Rv0224c, Rv3029c, AsnB, Rv2971, PheA and HisH are classified as part of the bacterial intermediary metabolism and respiration pathways; protein EchA14 belong to lipid metabolism, and NrdE, belongs to the mycobacterial information pathway category. Reverse transcription followed by quantitative real time PCR in response to diamide stress demonstrated that protein expression is directly proportional to the corresponding gene transcription. PMID:16006064

  17. Inflammatory and oxidative stress in rotavirus infection.

    PubMed

    Guerrero, Carlos A; Acosta, Orlando

    2016-05-12

    Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines. PMID:27175349

  18. Inflammatory and oxidative stress in rotavirus infection

    PubMed Central

    Guerrero, Carlos A; Acosta, Orlando

    2016-01-01

    Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines. PMID:27175349

  19. Senescence-Induced Oxidative Stress Causes Endothelial Dysfunction.

    PubMed

    Bhayadia, Raj; Schmidt, Bernhard M W; Melk, Anette; Hömme, Meike

    2016-02-01

    Age is a risk factor for cardiovascular disease, suggesting a causal relationship between age-related changes and vascular damage. Endothelial dysfunction is an early pathophysiological hallmark in the development of cardiovascular disease. Senescence, the cellular equivalent of aging, was proposed to be involved in endothelial dysfunction, but functional data showing a causal relationship are missing.Endothelium-dependent vasodilation was measured in aortic rings ex vivo. We investigated aortas from aged C57Bl/6 mice (24-28 months), in which p16 (INK4a) and p19 (ARF) expression, markers of stress-induced senescence, were significantly induced compared to young controls (4-6 months). To reflect telomere shortening in human aging, we investigated aortas from telomerase deficient (Terc(-/-)) mice of generation 3 (G3). Endothelium-dependent vasodilation in aged wildtype and in Terc(-/-) G3 mice was impaired. A combination of the superoxide dismutase mimetic 1-Oxyl-2,2,6, 6-tetramethyl-4-hydroxypiperidine (TEMPOL) and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin significantly improved endothelium-dependent vasodilation in aged wildtype and Terc(-/-) G3 mice compared to untreated controls. We show that both, aging and senescence induced by telomere shortening, cause endothelial dysfunction that can be restored by antioxidants, indicating a role for oxidative stress. The observation that cellular senescence is a direct signalling event leading to endothelial dysfunction holds the potential to develop new targets for the prevention of cardiovascular disease. PMID:25735595

  20. Oxidative stress and its downstream signaling in aging eyes

    PubMed Central

    Pinazo-Durán, María Dolores; Gallego-Pinazo, Roberto; García-Medina, Jose Javier; Zanón-Moreno, Vicente; Nucci, Carlo; Dolz-Marco, Rosa; Martínez-Castillo, Sebastián; Galbis-Estrada, Carmen; Marco-Ramírez, Carla; López-Gálvez, Maria Isabel; Galarreta, David J; Díaz-Llópis, Manuel

    2014-01-01

    Background Oxidative stress (OS) and its biomarkers are the biochemical end point of the imbalance between reactive oxygen species (ROS) production and the ability of the antioxidant (AOX) biological systems to fight against oxidative injury. Objective We reviewed the role of OS and its downstream signaling in aging eyes. Methods A search of the literature and current knowledge on the physiological and pathological mechanisms of OS were revisited in relation to the eyes and the aging process. Most prevalent ocular diseases have been analyzed herein in relation to OS and nutraceutic supplements, such as dry-eye disorders, glaucoma, age-related macular degeneration, and diabetic retinopathy. Results Clinical, biochemical, and molecular data from anterior and posterior eye segment diseases point to OS as the common pathogenic mechanism in the majority of these ocular disorders, many of which are pathologies causing visual impairment, blindness, and subsequent loss of life quality. Studies with nutraceutic supplements in aging eye-related pathologies have also been reviewed. Conclusion OS, nutritional status, and nutraceutic supplements have to be considered within the standards of care of older ophthalmologic patients. OS biomarkers and surrogate end points may help in managing the aging population with ocular diseases. PMID:24748782

  1. Cofactor binding protects flavodoxin against oxidative stress.

    PubMed

    Lindhoud, Simon; van den Berg, Willy A M; van den Heuvel, Robert H H; Heck, Albert J R; van Mierlo, Carlo P M; van Berkel, Willem J H

    2012-01-01

    In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification. PMID:22829943

  2. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats

    PubMed Central

    LI, YALI; LIU, JIAN; GAO, DENGFENG; WEI, JIN; YUAN, HAIFENG; NIU, XIAOLIN; ZHANG, QIAOJUN

    2016-01-01

    The aim of the present study was to investigate the age-related alterations in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats (SHR) and the underlying mechanisms. Aging resulted in a significant increase in the number of activated astrocytes and apoptotic cells in the SHR group, which was accompanied by increased expression of oxidative stress markers (iNOS and gp47phox) and apoptotic regulatory proteins (Bax and caspase-3). In addition, the expression of PPAR-γ and Bcl-2 were progressively reduced with increasing age in the SHR group. The 32 and 64-week-old SHRs exhibited significantly increased numbers of apoptotic cells, oxidative stress markers and pro-apoptotic proteins compared with age-matched WKY rats, which was accompanied by reduced expression of PPAR-γ. Compared with the 16 and 32-week-old WKY group, the 64-week-old WKY rats exhibited increased oxidative stress and pro-apoptotic markers, and increased levels apoptotic cells. In conclusion, the present study indicated that both aging and hypertension enhanced brain damage and oxidative stress injury in the hippocampi of SHRs, indicated by an increased presence of apoptotic cells and astrocytes. In addition, reduced expression of PPAR-γ may contribute to the age-related brain damage in SHRs. PMID:26846626

  3. Systemic treatment with a 5HT1a agonist induces anti-oxidant protection and preserves the retina from mitochondrial oxidative stress.

    PubMed

    Biswal, Manas R; Ahmed, Chulbul M; Ildefonso, Cristhian J; Han, Pingyang; Li, Hong; Jivanji, Hiral; Mao, Haoyu; Lewin, Alfred S

    2015-11-01

    Chronic oxidative stress contributes to age related diseases including age related macular degeneration (AMD). Earlier work showed that the 5-hydroxy-tryptamine 1a (5HT1a) receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) protects retinal pigment epithelium (RPE) cells from hydrogen peroxide treatment and mouse retinas from oxidative insults including light injury. In our current experiments, RPE derived cells subjected to mitochondrial oxidative stress were protected from cell death by the up-regulation of anti-oxidant enzymes and of the metal ion chaperone metallothionein. Differentiated RPE cells were resistant to oxidative stress, and the expression of genes for protective proteins was highly increased by oxidative stress plus drug treatment. In mice treated with 8-OH-DPAT, the same genes (MT1, HO1, NqO1, Cat, Sod1) were induced in the neural retina, but the drug did not affect the expression of Sod2, the gene for manganese superoxide dismutase. We used a mouse strain deleted for Sod2 in the RPE to accelerate age-related oxidative stress in the retina and to test the impact of 8-OH-DPAT on the photoreceptor and RPE degeneration developed in these mice. Treatment of mice with daily injections of the drug led to increased electroretinogram (ERG) amplitudes in dark-adapted mice and to a slight improvement in visual acuity. Most strikingly, in mice treated with a high dose of the drug (5 mg/kg) the structure of the RPE and Bruch's membrane and the normal architecture of photoreceptor outer segments were preserved. These results suggest that systemic treatment with this class of drugs may be useful in preventing geographic atrophy, the advanced form of dry AMD, which is characterized by RPE degeneration. PMID:26315784

  4. Oxidative stress induced carbonylation in human plasma.

    PubMed

    Madian, Ashraf G; Diaz-Maldonado, Naomi; Gao, Qiang; Regnier, Fred E

    2011-10-19

    The focus of this study was on the assessment of technology that might be of clinical utility in identification, quantification, characterization of carbonylation in human plasma proteins. Carbonylation is widely associated with oxidative stress diseases. Breast cancer patient samples were chosen as a stress positive case based on the fact that oxidative stress has been reported to be elevated in this disease. Measurements of 8-isoprostane in plasma confirmed that breast cancer patients in this study were indeed experiencing significant oxidative stress. Carbonyl groups in proteins from freshly drawn blood were derivatized with biotin hydrazide after which the samples were dialyzed and the biotinylated proteins subsequently selected, digested and labeled with iTRAQ™ heavy isotope coding reagent(s). Four hundred sixty proteins were identified and quantified, 95 of which changed 1.5 fold or more in concentration. Beyond confirming the utility of the analytical method, association of protein carbonylation was examined as well. Nearly one fourth of the selected proteins were of cytoplasmic, nuclear, or membrane origin. Analysis of the data by unbiased knowledge assembly methods indicated the most likely disease associated with the proteins was breast neoplasm. Pathway analysis showed the proteins which changed in carbonylation were strongly associated with Brca1, the breast cancer type-1 susceptibility protein. Pathway analysis indicated the major molecular functions of these proteins are defense, immunity and nucleic acid binding. PMID:21856457

  5. Oxidative stress induced carbonylation in human plasma

    PubMed Central

    Madian, Ashraf G.; Diaz-Maldonado, Naomi; Gao, Qiang; Regnier, Fred E.

    2011-01-01

    The focus of this study was on the assessment of technology that might be of clinical utility in identification, quantification, characterization of carbonylation in human plasma proteins. Carbonylation is widely associated with oxidative stress diseases. Breast cancer patient samples were chosen as a stress positive case based on the fact that oxidative stress has been reported to be elevated in this disease. Measurements of 8-isoprostane in plasma confirmed that breast cancer patients in this study were indeed experiencing significant oxidative stress. Carbonyl groups in proteins from freshly drawn blood were derivatized with biotin hydrazide after which the samples were dialyzed and the biotinylated proteins subsequently selected, digested and labeled with iTRAQ™ heavy isotope coding reagent(s). Four hundred sixty proteins were identified and quantified, 95 of which changed 1.5 fold or more in concentration. Beyond confirming the utility of the analytical method, association of protein carbonylation was examined as well. Nearly one fourth of the selected proteins were of cytoplasmic, nuclear, or membrane origin. Analysis of the data by unbiased knowledge assembly methods indicated the most likely disease associated with the proteins was breast neoplasm. Pathway analysis showed the proteins which changed in carbonylation were strongly associated with Brca1, the breast cancer type-1 susceptibility protein. Pathway analysis indicated the major molecular functions of these proteins are defense, immunity and nucleic acid binding. PMID:21856457

  6. Oxidative stress and mitochondrial dysfunction in fibromyalgia.

    PubMed

    Cordero, Mario D; de Miguel, Manuel; Carmona-López, Inés; Bonal, Pablo; Campa, Francisco; Moreno-Fernández, Ana María

    2010-01-01

    Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology and pathophysiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of FM. Furthermore, it is controversial the role of mitochondria in the oxidant imbalance documented in FM. Signs and symptoms associated with muscular alteration and mitochondrial dysfunction, including oxidative stress, have been observed in patients with FM. To this respect, Coenzyme Q10 (CoQ10) deficiency, an essential electron carrier in the mitochondrial respiratory chain and a strong antioxidant, alters mitochondria function and mitochondrial respiratory complexes organization and leading to increased ROS generation. Recently have been showed CoQ10 deficiency in blood mononuclear cells in FM patients, so if the hypothesis that mitochondrial dysfunction is the origin of oxidative stress in FM patients is demonstrated, could help to understand the complex pathophysiology of this disorder and may lead to development of new therapeutic strategies for prevention and treatment of this disease. PMID:20424583

  7. Selected oxidative stress markers in gynecological laparoscopy

    PubMed Central

    Koźlik, Jacek; Przybyłowska, Joanna; Mikrut, Kinga; Zwoliński, Jacek; Piątek, Jacek; Sobczak, Paweł

    2014-01-01

    Introduction The surgical stress response after laparoscopy is smaller when compared with open surgery, and it is expected that after minimally invasive surgery the possible development of oxidative stress will be less severe. Aim To evaluate markers of pro-oxidant activity – levels of lipid peroxides and malondialdehyde – and activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase in the perioperative period in patients undergoing gynecological laparoscopy and to determine whether the duration of laparoscopy can affect these changes. Material and methods The study included 64 patients, divided into two groups: group 1 with duration of laparoscopy up to 20 min, and group 2 with duration of the operation over 40 min. Blood samples were collected before anesthesia, 5 min after release of pneumoperitoneum, and 10 h after surgery. Results A statistically significant increase in the levels of lipid peroxides and malondialdehyde in samples collected after surgery was found in comparison with values obtained before surgery. Also statistically significant differences existed between groups of patients with different duration of surgery. Superoxide dismutase and glutathione peroxidase activity values were significantly decreased. They were also significantly different between the two groups with different duration of surgery. Conclusions In our study, levels of the markers of pro-oxidant activity increased and levels of the markers of antioxidant enzymes decreased, suggesting development of oxidative stress. The duration of laparoscopic procedures affects the severity of the presented changes. PMID:25960799

  8. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  9. Airway oxidative stress in chronic cough

    PubMed Central

    2013-01-01

    Background The mechanisms of chronic cough are unclear. Many reactive oxygen species affect airway sensory C-fibres which are capable to induce cough. Several chronic lung diseases are characterised by cough and oxidative stress. In asthma, an association between the cough severity and airway oxidative stress has been demonstrated. The present study was conducted to investigate whether airway oxidative stress is associated with chronic cough in subjects without chronic lung diseases. Methods Exhaled breath condensate samples were obtained in 43 non-smoking patients with chronic cough and 15 healthy subjects. Exclusion criteria included a doctor’s diagnosis of any lung disorders and any abnormality in lung x-ray. The concentration of 8-isoprostane was measured. In addition, the patients filled in Leicester Cough Questionnaire and underwent hypertonic saline cough provocation test, spirometry, ambulatory peak flow monitoring, nitric oxide measurement, and histamine airway challenge. In a subgroup of patients the measurements were repeated during 12 weeks’ treatment with inhaled budesonide, 800 ug/day. Results The 8-isoprostane concentrations were higher in the cough patients than in the healthy subjects (24.6 ± 1.2 pg/ml vs. 10.1 ± 1.7 pg/ml, p = 0.045). The 8-isoprostane concentration was associated with the Leicester Cough Questionnaire total score (p = 0.044) but not with the cough sensitivity to saline or other tests. Budesonide treatment did not affect the 8-isoprostane concentrations. Conclusions Chronic cough seems to be associated with airway oxidative stress in subjects with chronic cough but without chronic lung diseases. This finding may help to develop novel antitussive drugs. Trial registration The study was registered in ClinicalTrials.gov database (KUH5801112), identifier NCT00859274. PMID:24294924

  10. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish.

    PubMed

    Chen, Minjie; Yin, Junfa; Liang, Yong; Yuan, Shaopeng; Wang, Fengbang; Song, Maoyong; Wang, Hailin

    2016-05-01

    Graphene oxide (GO) has been extensively explored as a promising nanomaterial for applications in biology because of its unique properties. Therefore, systematic investigation of GO toxicity is essential to determine its fate in the environment and potential adverse effects. In this study, acute toxicity, oxidative stress and immunotoxicity of GO were investigated in zebrafish. No obvious acute toxicity was observed when zebrafish were exposed to 1, 5, 10 or 50mg/L GO for 14 days. However, a number of cellular alterations were detected by histological analysis of the liver and intestine, including vacuolation, loose arrangement of cells, histolysis and disintegration of cell boundaries. As evidence for oxidative stress, malondialdehyde levels and superoxide dismutase and catalase activities were increased and glutathione content was decreased in the liver after treatment with GO. GO treatment induced an immune response in zebrafish, as demonstrated by increased expression of tumor necrosis factor α, interleukin-1 β, and interleukin-6 in the spleen. Our findings demonstrated that GO administration in an aquatic system can cause oxidative stress and immune toxicity in adult zebrafish. To our knowledge, this is the first report of immune toxicity of GO in zebrafish. PMID:26921726

  11. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain

    PubMed Central

    Simpson, Tamara; Pase, Matthew; Stough, Con

    2015-01-01

    The detrimental effect of neuronal cell death due to oxidative stress and mitochondrial dysfunction has been implicated in age-related cognitive decline and neurodegenerative disorders such as Alzheimer's disease. The Indian herb Bacopa monnieri is a dietary antioxidant, with animal and in vitro studies indicating several modes of action that may protect the brain against oxidative damage. In parallel, several studies using the CDRI08 extract have shown that extracts of Bacopa monnieri improve cognitive function in humans. The biological mechanisms of this cognitive enhancement are unknown. In this review we discuss the animal studies and in vivo evidence for Bacopa monnieri as a potential therapeutic antioxidant to reduce oxidative stress and improve cognitive function. We suggest that future studies incorporate neuroimaging particularly magnetic resonance spectroscopy into their randomized controlled trials to better understand whether changes in antioxidant status in vivo cause improvements in cognitive function. PMID:26413126

  12. Smoke Exposure Causes Endoplasmic Reticulum Stress and Lipid Accumulation in Retinal Pigment Epithelium through Oxidative Stress and Complement Activation*

    PubMed Central

    Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel

    2014-01-01

    Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD. PMID:24711457

  13. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  14. Oxidative Stress and Periodontal Disease in Obesity

    PubMed Central

    Dursun, Erhan; Akalın, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-01-01

    Abstract Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women. Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated. Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status

  15. Oxidative Stress and Periodontal Disease in Obesity.

    PubMed

    Dursun, Erhan; Akaln, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  16. Oxidative stress as an indicator of the costs of reproduction among free-ranging rhesus macaques

    PubMed Central

    Georgiev, Alexander V.; Thompson, Melissa Emery; Mandalaywala, Tara M.; Maestripieri, Dario

    2015-01-01

    ABSTRACT Sex differences in longevity may reflect sex-specific costs of intra-sexual competition and reproductive effort. As male rhesus macaques experience greater intrasexual competition and die younger, we predicted that males would experience greater oxidative stress than females and that oxidative stress would reflect sex-specific measures of reproductive effort. Males, relative to females, had higher concentrations of 8-OHdG and malondialdehyde, which are markers of DNA oxidative damage and lipid peroxidation, respectively. Older macaques had lower 8-OHdG levels than younger ones, suggesting that oxidative stress decreases in parallel with known age-related declines in reproductive investment. Among males, a recent period of social instability affected oxidative status: males who attacked others at higher rates had higher 8-OHdG levels. Multiparous lactating females with daughters had higher 8-OHdG levels than those with sons. No differences in antioxidant capacity were found. These results lend initial support for the use of oxidative stress markers to assess trade-offs between reproductive effort and somatic maintenance in primates. PMID:25908058

  17. Oxidative stress and Parkinson’s disease

    PubMed Central

    Blesa, Javier; Trigo-Damas, Ines; Quiroga-Varela, Anna; Jackson-Lewis, Vernice R.

    2015-01-01

    Parkinson disease (PD) is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in PD. Environmental factors, such as neurotoxins, pesticides, insecticides, dopamine (DA) itself, and genetic mutations in PD-associated proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process. PMID:26217195

  18. ALS and Oxidative Stress: The Neurovascular Scenario

    PubMed Central

    Thakur, Keshav; Gupta, Pawan Kumar

    2013-01-01

    Oxidative stress and angiogenic factors have been placed as the prime focus of scientific investigations after an establishment of link between vascular endothelial growth factor promoter (VEGF), hypoxia, and amyotrophic lateral sclerosis (ALS) pathogenesis. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter and mutant superoxide dismutase 1 (SOD1) which are characterised by atrophy and muscle weakness resulted in phenotype resembling human ALS in mice. This results in lower motor neurodegeneration thus establishing an important link between motor neuron degeneration, vasculature, and angiogenic molecules. In this review, we have presented human, animal, and in vitro studies which suggest that molecules like VEGF have a therapeutic, diagnostic, and prognostic potential in ALS. Involvement of vascular growth factors and hypoxia response elements also highlights the converging role of oxidative stress and neurovascular network for understanding and treatment of various neurodegenerative disorders like ALS. PMID:24367722

  19. Oxidative stress in coronary artery bypass surgery

    PubMed Central

    Dias, Amaury Edgardo Mont’Serrat Ávila Souza; Melnikov, Petr; Cônsolo, Lourdes Zélia Zanoni

    2015-01-01

    Objective The aim of this prospective study was to assess the dynamics of oxidative stress during coronary artery bypass surgery with cardiopulmonary bypass. Methods Sixteen patients undergoing coronary artery bypass grafting were enrolled. Blood samples were collected from the systemic circulation during anesthesia induction (radial artery - A1), the systemic venous return (B1 and B2) four minutes after removal of the aortic cross-clamping, of the coronary sinus (CS1 and CS2) four minutes after removal of the aortic cross-clamping and the systemic circulation four minutes after completion of cardiopulmonary bypass (radial artery - A2). The marker of oxidative stress, malondialdehyde, was measured using spectrophotometry. Results The mean values of malondialdehyde were (ng/dl): A1 (265.1), B1 (490.0), CS1 (527.0), B2 (599.6), CS2 (685.0) and A2 (527.2). Comparisons between A1/B1, A1/CS1, A1/B2, A1/CS2, A1/A2 were significant, with ascending values (P<0.05). Comparisons between the measurements of the coronary sinus and venous reservoir after the two moments of reperfusion (B1/B2 and CS1/CS2) were higher when CS2 (P<0.05). Despite higher values ​​after the end of cardiopulmonary bypass (A2), when compared to samples of anesthesia (A1), those show a downward trend when compared to the samples of the second moment of reperfusion (CS2) (P<0.05). Conclusion The measurement of malondialdehyde shows that coronary artery bypass grafting with cardiopulmonary bypass is accompanied by increase of free radicals and this trend gradually decreases after its completion. Aortic clamping exacerbates oxidative stress but has sharper decline after reperfusion when compared to systemic metabolism. The behavior of thiobarbituric acid species indicates that oxidative stress is an inevitable pathophysiological component. PMID:27163415

  20. Renal oxidative stress, oxygenation, and hypertension.

    PubMed

    Palm, Fredrik; Nordquist, Lina

    2011-11-01

    Hypertension is closely associated with progressive kidney dysfunction, manifested as glomerulosclerosis, interstitial fibrosis, proteinuria, and eventually declining glomerular filtration. The postulated mechanism for development of glomerulosclerosis is barotrauma caused by increased capillary pressure, but the reason for development of interstitial fibrosis and the subsequently reduced kidney function is less clear. However, it has been hypothesized that tissue hypoxia induces fibrogenesis and progressive renal failure. This is very interesting, since recent reports highlight several different mechanisms resulting in altered oxygen handling and availability in the hypertensive kidney. Such mechanisms include decreased renal blood flow due to increased vascular tone induced by ANG II that limits oxygen delivery and increases oxidative stress, resulting in increased mitochondrial oxygen usage, increased oxygen usage for tubular electrolyte transport, and shunting of oxygen from arterial to venous blood in preglomerular vessels. It has been shown in several studies that interventions to prevent oxidative stress and to restore kidney tissue oxygenation prevent progression of kidney dysfunction. Furthermore, inhibition of ANG II activity, by either blocking ANG II type 1 receptors or angiotensin-converting enzyme, or by preventing oxidative stress by administration of antioxidants also results in improved blood pressure control. Therefore, it seems likely that tissue hypoxia in the hypertensive kidney contributes to progression of kidney damage, and perhaps also persistence the high blood pressure. PMID:21832206

  1. Oxidative Stress in Patients With Acne Vulgaris

    PubMed Central

    Arican, Ozer; Belge Kurutas, Ergul; Sasmaz, Sezai

    2005-01-01

    Acne vulgaris is one of the common dermatological diseases and its pathogenesis is multifactorial. In this study, we aim to determine the effects of oxidative stress in acne vulgaris. Forty-three consecutive acne patients and 46 controls were enrolled. The parameters of oxidative stress such as catalase (CAT), glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), and malondialdehyde (MDA) in the venous blood of cases were measured spectrophotometrically. The values compared with control group, the relation between the severity and distribution of acne, and the correlation of each enzyme level were researched. CAT and G6PD levels in patients were found to be statistically decreased, and SOD and MDA levels were found to be statistically increased (P < .001). However, any statistical difference and correlation could not be found between the severity and distribution of lesions and the mean levels of enzymes. In addition, we found that each enzyme is correlated with one another. Our findings show that oxidative stress exists in the acne patients. It will be useful to apply at least one antioxidant featured drug along with the combined acne treatment. PMID:16489259

  2. Lamins as mediators of oxidative stress

    SciTech Connect

    Sieprath, Tom; Darwiche, Rabih; De Vos, Winnok H.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer The nuclear lamina defines structural and functional properties of the cell nucleus. Black-Right-Pointing-Pointer Lamina dysfunction leads to a broad spectrum of laminopathies. Black-Right-Pointing-Pointer Recent data is reviewed connecting laminopathies to oxidative stress. Black-Right-Pointing-Pointer A framework is proposed to explain interactions between lamins and oxidative stress. -- Abstract: The nuclear lamina defines both structural and functional properties of the eukaryotic cell nucleus. Mutations in the LMNA gene, encoding A-type lamins, lead to a broad spectrum of diseases termed laminopathies. While different hypotheses have been postulated to explain disease development, there is still no unified view on the mechanistic basis of laminopathies. Recent observations indicate that laminopathies are often accompanied by altered levels of reactive oxygen species and a higher susceptibility to oxidative stress at the cellular level. In this review, we highlight the role of reactive oxygen species for cell function and disease development in the context of laminopathies and present a framework of non-exclusive mechanisms to explain the reciprocal interactions between a dysfunctional lamina and altered redox homeostasis.

  3. Asthmatic cough and airway oxidative stress.

    PubMed

    Koskela, Heikki O; Purokivi, Minna K; Nieminen, Riina M; Moilanen, Eeva

    2012-05-31

    The mechanisms of cough in asthma are unclear. Asthma is associated with an oxidative stress. Many reactive oxygen species sensitize or activate sensory C-fibers which are capable to induce cough. It was hypothesized that oxidative stress in the airways might contribute to the cough severity in asthma. Exhaled breath condensate samples were collected in ten healthy and 26 asthmatic subjects. The concentration of 8-isoprostane was measured. In addition, the subjects filled in Leicester Cough Questionnaire and underwent cough provocation tests with dry air hyperpnoea and hypertonic saline, among other measurements. Among the asthmatic subjects, high 8-isoprostane was associated with severe cough response to hyperpnoea (p=0.001), low Leicester Cough Questionnaire values (indicating severe subjective cough, p=0.02), and usage of combination asthma drugs (p=0.03-0.04). However, the 8-isoprostane concentrations did not differ significantly between the healthy and the asthmatic subjects. Airway oxidative stress may be associated with experienced cough severity and measured cough sensitivity in asthma. PMID:22546340

  4. Role of oxidative stress in Alzheimer's disease

    PubMed Central

    HUANG, WEN-JUAN; ZHANG, XIA; CHEN, WEI-WEI

    2016-01-01

    Alzheimer's disease (AD) is the most common cause of disability in individuals aged >65 years worldwide. AD is characterized by the abnormal deposition of amyloid β (Aβ) peptide, and intracellular accumulation of neurofibrillary tangles of hyperphosphorylated τ protein and dementia. The neurotoxic oligomer Aβ peptide, which is the neuropathological diagnostic criterion of the disease, together with τ protein, are mediators of the neurodegeneration that is among the main causative factors. However, these phenomena are mainly initiated and enhanced by oxidative stress, a process referring to an imbalance between antioxidants and oxidants in favour of oxidants. This imbalance can occur as a result of increased free radicals or a decrease in antioxidant defense, free radicals being a species that contains one or more unpaired electrons in its outer shell. The major source of potent free radicals is the reduction of molecular oxygen in water, that initially yields the superoxide radical, which produces hydrogen peroxide by the addition of an electron. The reduction of hydrogen peroxide produces highly reactive hydroxyl radicals, termed reactive oxygen species (ROS) that can react with lipids, proteins, nucleic acids, and other molecules and may also alter their structures and functions. Thus, tissues and organs, particularly the brain, a vulnerable organ, are affected by ROS due to its composition. The brain is largely composed of easily oxidizable lipids while featuring a high oxygen consumption rate. The current review examined the role of oxidative stress in AD. PMID:27123241

  5. Ferritin and the response to oxidative stress.

    PubMed Central

    Orino, K; Lehman, L; Tsuji, Y; Ayaki, H; Torti, S V; Torti, F M

    2001-01-01

    Iron is required for normal cell growth and proliferation. However, excess iron is potentially harmful, as it can catalyse the formation of toxic reactive oxygen species (ROS) via Fenton chemistry. For this reason, cells have evolved highly regulated mechanisms for controlling intracellular iron levels. Chief among these is the sequestration of iron in ferritin. Ferritin is a 24 subunit protein composed of two subunit types, termed H and L. The ferritin H subunit has a potent ferroxidase activity that catalyses the oxidation of ferrous iron, whereas ferritin L plays a role in iron nucleation and protein stability. In the present study we report that increased synthesis of both subunits of ferritin occurs in HeLa cells exposed to oxidative stress. An increase in the activity of iron responsive element binding proteins in response to oxidative stress was also observed. However, this activation was transient, allowing ferritin protein induction to subsequently proceed. To assess whether ferritin induction reduced the accumulation of ROS, and to test the relative contribution of ferritin H and L subunits in this process, we prepared stable transfectants that overexpressed either ferritin H or ferritin L cDNA under control of a tetracycline-responsive promoter. We observed that overexpression of either ferritin H or ferritin L reduced the accumulation of ROS in response to oxidant challenge. PMID:11415455

  6. Nitric oxide, stomatal closure, and abiotic stress.

    PubMed

    Neill, Steven; Barros, Raimundo; Bright, Jo; Desikan, Radhika; Hancock, John; Harrison, Judith; Morris, Peter; Ribeiro, Dimas; Wilson, Ian

    2008-01-01

    Various data indicate that nitric oxide (NO) is an endogenous signal in plants that mediates responses to several stimuli. Experimental evidence in support of such signalling roles for NO has been obtained via the application of NO, usually in the form of NO donors, via the measurement of endogenous NO, and through the manipulation of endogenous NO content by chemical and genetic means. Stomatal closure, initiated by abscisic acid (ABA), is effected through a complex symphony of intracellular signalling in which NO appears to be one component. Exogenous NO induces stomatal closure, ABA triggers NO generation, removal of NO by scavengers inhibits stomatal closure in response to ABA, and ABA-induced stomatal closure is reduced in mutants that are impaired in NO generation. The data indicate that ABA-induced guard cell NO generation requires both nitric oxide synthase-like activity and, in Arabidopsis, the NIA1 isoform of nitrate reductase (NR). NO stimulates mitogen-activated protein kinase (MAPK) activity and cGMP production. Both these NO-stimulated events are required for ABA-induced stomatal closure. ABA also stimulates the generation of H2O2 in guard cells, and pharmacological and genetic data demonstrate that NO accumulation in these cells is dependent on such production. Recent data have extended this model to maize mesophyll cells where the induction of antioxidant defences by water stress and ABA required the generation of H2O2 and NO and the activation of a MAPK. Published data suggest that drought and salinity induce NO generation which activates cellular processes that afford some protection against the oxidative stress associated with these conditions. Exogenous NO can also protect cells against oxidative stress. Thus, the data suggest an emerging model of stress responses in which ABA has several ameliorative functions. These include the rapid induction of stomatal closure to reduce transpirational water loss and the activation of antioxidant defences

  7. Melanocytes as instigators and victims of oxidative stress.

    PubMed

    Denat, Laurence; Kadekaro, Ana L; Marrot, Laurent; Leachman, Sancy A; Abdel-Malek, Zalfa A

    2014-06-01

    Epidermal melanocytes are particularly vulnerable to oxidative stress owing to the pro-oxidant state generated during melanin synthesis, and to the intrinsic antioxidant defenses that are compromised in pathologic conditions. Melanoma is thought to be oxidative stress driven, and melanocyte death in vitiligo is thought to be instigated by a highly pro-oxidant state in the epidermis. We review the current knowledge about melanin and the redox state of melanocytes, how paracrine factors help counteract oxidative stress, the role of oxidative stress in melanoma initiation and progression and in melanocyte death in vitiligo, and how this knowledge can be harnessed for melanoma and vitiligo treatment. PMID:24573173

  8. Control of oxidative stress in hepatocellular carcinoma: Helpful or harmful?

    PubMed Central

    Takaki, Akinobu; Yamamoto, Kazuhide

    2015-01-01

    Oxidative stress is becoming recognized as a key factor in the progression of chronic liver disease (CLD) and hepatocarcinogenesis. The metabolically important liver is a major reservoir of mitochondria that serve as sources of reactive oxygen species, which are apparently responsible for the initiation of necroinflammation. As a result, CLD could be a major inducer of oxidative stress. Chronic hepatitis C is a powerful generator of oxidative stress, causing a high rate of hepatocarcinogenesis among patients with cirrhosis. Non-alcoholic steatohepatitis is also associated with oxidative stress although its hepatocarcinogenic potential is lower than that of chronic hepatitis C. Analyses of serum markers and histological findings have shown that hepatocellular carcinoma correlates with oxidative stress and experimental data indicate that oxidative stress increases the likelihood of developing hepatocarcinogenesis. However, the results of antioxidant therapy have not been favorable. Physiological oxidative stress is a necessary biological response, and thus adequate control of oxidative stress and a balance between oxidative and anti-oxidative responses is important. Several agents including metformin and L-carnitine can reportedly control mechanistic oxidative stress. This study reviews the importance of oxidative stress in hepatocarcinogenesis and of control strategies for the optimal survival of patients with CLD and hepatocellular carcinoma. PMID:25954479

  9. The JaICA-genox oxidative stress profile--an overview on the profiling technique in the oxidative stress assessment and management.

    PubMed

    Ochi, H; Cheng, R Z; Kantha, S S; Takeuchi, M; Ramarathnam, N

    2000-01-01

    It is widely accepted that oxidative stress (OS) is a major causative factor for many of the age-related dysfunctions and specific diseases. Since the oxidative stress state (OSS) of an individual depends on hereditary, dietary, and environmental factors, there is a large heterogeneity in the population that may be related to disease incidence and longevity. Hence there is a need to assess how well an individual is coping against OS. The Japan Institute for the Control of Aging (JaICA) and Genox have jointly developed a profiling technique to measure the "Oxidative Stress Profiles (JaICA-Genox OSP)" of individuals and laboratory test animals. The JaICA-Genox OSP consists of about 45 different assays measuring the levels of oxidative damage in lipids and nucleic acids, and the antioxidant defenses in the serum. In addition, several bio-markers for cardiovascular disease risk are also measured, and assays to measure specific age- and sex-related hormones in the serum and urine, and race elements in serum, urine, and drinking water are also undertaken. This overview discusses the designing of the JaICA-Genox OSP and its application in the testing of human subjects. PMID:11237182

  10. Aging modifies brain region-specific vulnerability to experimental oxidative stress induced by low dose hydrogen peroxide

    PubMed Central

    Rosenberg, Irwin H.; Shukitt-Hale, Barbara; Bielinski, Donna; Dallal, Gerard E.; Joseph, James A.

    2007-01-01

    Our previous studies demonstrated a significant decline in brain function and behavior in Fischer 344 (F344) rats with age. The present study was designed to test the hypothesis that dysregulation in calcium homeostasis (as assessed through 45Ca flux) may contribute to the increase in age-related vulnerability to oxidative stress in brain regions, and result in a deficit in behavior-mediated signaling. Crude membrane (P-2) and more purified synaptosomal fractions were isolated from the striatum, hippocampus, and frontal cortex of young (6 months) and old (22 months) F344 rats and were assessed for calcium flux and extracellular-regulated kinase activity 1 (ERK) under control and oxidative stress conditions induced by low dose hydrogen peroxide (final concentration 5 μM). The level of oxidative stress responses was monitored by measuring reactive oxygen species (ROS) and glutathione (GSH). The results showed a significant difference in oxidative stress responses between young and old rats in evaluated brain regions. Old rats showed higher sensitivity to oxidative stress than young rats. The present findings show the differential effects of oxidative stress on calcium flux in brain regions with age that are dependent upon the brain areas examined and the fraction assessed. The accumulation of ROS and the decrease in GSH in the frontal cortex were sufficient to decrease ERK activity in old rats. This is the first study, to our knowledge, that demonstrates age-related differential sensitivity to oxidative stress expressed as a function of behavior-mediated signaling and stress levels among different fractions isolated from brain regions controlling behavior. PMID:19424838

  11. Melissa Officinalis L. Extracts Protect Human Retinal Pigment Epithelial Cells against Oxidative Stress-Induced Apoptosis

    PubMed Central

    Jeung, In Cheul; Jee, Donghyun; Rho, Chang-Rae; Kang, Seungbum

    2016-01-01

    Background: We evaluated the protective effect of ALS-L1023, an extract of Melissa officinalis L. (Labiatae; lemon balm) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells (ARPE-19 cells). Methods: ARPE-19 cells were incubated with ALS-L1023 for 24 h and then treated with hydrogen peroxide (H2O2). Oxidative stress-induced apoptosis and intracellular generation of reactive oxygen species (ROS) were assessed by flow cytometry. Caspase-3/7 activation and cleaved poly ADP-ribose polymerase (PARP) were measured to investigate the protective role of ALS-L1023 against apoptosis. The protective effect of ALS-L1023 against oxidative stress through activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) was evaluated by Western blot analysis. Results: ALS-L1023 clearly reduced H2O2-induced cell apoptosis and intracellular production of ROS. H2O2-induced oxidative stress increased caspase-3/7 activity and apoptotic PARP cleavage, which were significantly inhibited by ALS-L1023. Activation of the PI3K/Akt pathway was associated with the protective effect of ALS-L1023 on ARPE-19 cells. Conclusions: ALS-L1023 protected human RPE cells against oxidative damage. This suggests that ALS-L1023 has therapeutic potential for the prevention of dry age-related macular degeneration. PMID:26941573

  12. Siglec receptors impact mammalian lifespan by modulating oxidative stress.

    PubMed

    Schwarz, Flavio; Pearce, Oliver M T; Wang, Xiaoxia; Samraj, Annie N; Läubli, Heinz; Garcia, Javier O; Lin, Hongqiao; Fu, Xiaoming; Garcia-Bingman, Andrea; Secrest, Patrick; Romanoski, Casey E; Heyser, Charles; Glass, Christopher K; Hazen, Stanley L; Varki, Nissi; Varki, Ajit; Gagneux, Pascal

    2015-01-01

    Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan. PMID:25846707

  13. Siglec receptors impact mammalian lifespan by modulating oxidative stress

    PubMed Central

    Schwarz, Flavio; Pearce, Oliver MT; Wang, Xiaoxia; Samraj, Annie N; Läubli, Heinz; Garcia, Javier O; Lin, Hongqiao; Fu, Xiaoming; Garcia-Bingman, Andrea; Secrest, Patrick; Romanoski, Casey E; Heyser, Charles; Glass, Christopher K; Hazen, Stanley L; Varki, Nissi; Varki, Ajit; Gagneux, Pascal

    2015-01-01

    Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan. DOI: http://dx.doi.org/10.7554/eLife.06184.001 PMID:25846707

  14. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    PubMed Central

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio

    2014-01-01

    Abstract Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. Critical Issues: Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. Future Directions: The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability. Antioxid. Redox Signal. 20, 507–518. PMID:23641894

  15. Oxidative stress, thyroid dysfunction & Down syndrome

    PubMed Central

    Campos, Carlos; Casado, Ángela

    2015-01-01

    Down syndrome (DS) is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1) is coded on chromosome 21 and it is overexpressed (~50%) resulting in an increase of reactive oxygen species (ROS) due to overproduction of hydrogen peroxide (H2O2). ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS. PMID:26354208

  16. Blood oxidative stress markers after ultramarathon swimming.

    PubMed

    Kabasakalis, Athanasios; Kyparos, Antonios; Tsalis, Georgios; Loupos, Dimitrios; Pavlidou, Anastasia; Kouretas, Dimitrios

    2011-03-01

    Data on redox balance in response to marathon swimming are lacking, whereas findings from studies using other types of ultraendurance exercise are controversial. The aim of the present study was to investigate the effect of ultramarathon swimming on selective blood oxidative stress markers. Five well-trained male swimmers aged 28.8 (6.0) years participated in the study. Blood samples were obtained before and after the ultramarathon swimming, for full blood count analysis and determination of protein carbonyls, thiobarbituric acid-reactive substances (TBARS), and total antioxidant capacity (TAC). The swimmers swam 19.4 (3.4) hours, covering 50.5 (15.0) km. Hematocrit and erythrocyte count, and leukocyte, neutrophil and monocyte counts were significantly elevated after swimming, whereas protein carbonyls, TBARS and TAC did not significantly change. The findings of the present study indicate that well-trained swimmers were able to regulate a redox homeostasis during ultra-long duration swimming. It is also postulated that the relatively low intensity of marathon swimming may not be a sufficient stimulus to induce oxidative stress in well-trained swimmers. The fact that low-intensity long-duration exercise protocols are not associated with oxidative damage is useful knowledge for coaches and athletes in scheduling the content of the training sessions that preceded and followed these exercise protocols. PMID:20613649

  17. Oxidative stress in haemodialysis--intradialytic changes.

    PubMed

    Srinivasa Rao, P V; Dakshinamurty, K V; Saibaba, K S; Raghavan, M S; Vijayabhaskar, M; Sreekrishna, V; Ambekar, J G; Jayaseelan, L

    2001-01-01

    Oxidative stress is likely to be involved in the development of complications due to haemodialysis. Though there is evidence for production of oxygen free radicals during haemodialysis, reports on net oxidative imbalance due to a single dialysis session are conflicting. Hence, a time-course analysis of changes in lipid peroxides (LPO) along with antioxidant enzymes and vitamins was carried out. Hourly changes in LPO and antioxidants were studied during a first-use cuprophan membrane and acetate dialysis in 20 patients on regular haemodialysis treatment. Data were corrected for haemoconcentration and standardised to measure the rate of change before statistical evaluation using analysis of variance for repeated measures. The results of the study showed a net oxidative stress due to a single dialysis session in the form of increased plasma and erythrocyte lipid peroxidation, decrease in plasma vitamin E, slight increase in plasma superoxide dismutase and erythrocyte glutathione peroxidase and no change in plasma glutathione peroxidase. erythrocyte superoxide dismutase and plasma vitamin A levels. The oxygen radical production was found to be maximum in the first hour of dialysis. PMID:11778848

  18. The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer's disease.

    PubMed

    Aliev, Gjumrakch; Smith, Mark A; Seyidov, Dilara; Neal, Maxwell Lewis; Lamb, Bruce T; Nunomura, Akihiko; Gasimov, Eldar K; Vinters, Harry V; Perry, George; LaManna, Joseph C; Friedland, Robert P

    2002-01-01

    Alzheimer's disease (AD) and stroke are two leading causes of age-associated dementia. A rapidly growing body of evidence indicates that increased oxidative stress from reactive oxygen radicals is associated with the aging process and age-related degenerative disorders such as atherosclerosis, ischemia/reperfusion, arthritis, stroke, and neurodegenerative diseases. New evidence has also indicated that vascular lesions are a key factor in the development of AD. This idea is based on a positive correlation between AD and cardiovascular and cerebrovascular diseases such as arterio- and atherosclerosis and ischemia/reperfusion injury. In this review we consider recent evidence supporting the existence of an intimate relationship between oxidative stress and vascular lesions in the pathobiology of AD. We also consider the opportunities for therapeutic interventions based on the molecular pathways involved with these causal relationships. PMID:11770899

  19. Oxidative stress-mediated HMGB1 biology

    PubMed Central

    Yu, Yan; Tang, Daolin; Kang, Rui

    2015-01-01

    High mobility group box 1 (HMGB1) is a widely-expressed and highly-abundant protein that acts as an extracellular signal upon active secretion by immune cells or passive release by dead, dying, and injured cells. Both intracellular and extracellular HMGB1 play pivotal roles in regulation of the cellular response to stress. Targeting the translocation, release, and activity of HMGB1 can limit inflammation and reduce tissue damage during infection and sterile inflammation. Although the mechanisms contributing to HMGB1 biology are still under investigation, it appears that oxidative stress is a central regulator of HMGB1's translocation, release, and activity in inflammation and cell death (e.g., necrosis, apoptosis, autophagic cell death, pyroptosis, and NETosis). Thus, targeting HMGB1 with antioxidant compounds may be an attractive therapeutic strategy for inflammation-associated diseases such as sepsis, ischemia and reperfusion injury, arthritis, diabetes, and cancer. PMID:25904867

  20. Oxidative stress-induced telomeric erosion as a mechanism underlying airborne particulate matter-related cardiovascular disease

    PubMed Central

    2012-01-01

    Particulate matter (PM) pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD). While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer. Not only would pollution

  1. Oxidative stress in prostate hyperplasia and carcinogenesis.

    PubMed

    Udensi, Udensi K; Tchounwou, Paul B

    2016-01-01

    Prostatic hyperplasia (PH) is a common urologic disease that affects mostly elderly men. PH can be classified as benign prostatic hyperplasia (BPH), or prostate cancer (PCa) based on its severity. Oxidative stress (OS) is known to influence the activities of inflammatory mediators and other cellular processes involved in the initiation, promotion and progression of human neoplasms including prostate cancer. Scientific evidence also suggests that micronutrient supplementation may restore the antioxidant status and hence improve the clinical outcomes for patients with BPH and PCa. This review highlights the recent studies on prostate hyperplasia and carcinogenesis, and examines the role of OS on the molecular pathology of prostate cancer progression and treatment. PMID:27609145

  2. Nitric Oxide, Oxidative Stress and Inflammation in Pulmonary Arterial Hypertension

    PubMed Central

    Crosswhite, Patrick; Sun, Zhongjie

    2010-01-01

    Pulmonary arterial hypertension (PAH) is a chronic and progressive disease characterized by a persistent elevation of pulmonary artery pressure accompanied by right ventricular hypertrophy (RVH). The current treatment for pulmonary hypertension is limited and only provides symptomatic relief due to unknown etiology and pathogenesis of the disease. Both vasoconstriction and structural remodeling (enhanced proliferation of VSMC) of the pulmonary arteries contribute to the progressive course of PAH, irrespective of different underlying causes. The exact molecular mechanism of PAH, however, is not fully understood. The purpose of this review is to provide recent advances in the mechanistic investigation of PAH. Specifically, this review focuses on nitric oxide (NO), oxidative stress and inflammation and how these factors contribute to the development and progression of PAH. This review also discusses recent and potential therapeutic advancements for the treatment of PAH. PMID:20051913

  3. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System.

    PubMed

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-02-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere's disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  4. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System

    PubMed Central

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-01-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere’s disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  5. Air pollution and circulating biomarkers of oxidative stress

    PubMed Central

    Staimer, Norbert; Vaziri, Nosratola D.

    2013-01-01

    Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations. PMID:23626660

  6. Inflammation and its role in age-related macular degeneration.

    PubMed

    Kauppinen, Anu; Paterno, Jussi J; Blasiak, Janusz; Salminen, Antero; Kaarniranta, Kai

    2016-05-01

    Inflammation is a cellular response to factors that challenge the homeostasis of cells and tissues. Cell-associated and soluble pattern-recognition receptors, e.g. Toll-like receptors, inflammasome receptors, and complement components initiate complex cellular cascades by recognizing or sensing different pathogen and damage-associated molecular patterns, respectively. Cytokines and chemokines represent alarm messages for leukocytes and once activated, these cells travel long distances to targeted inflamed tissues. Although it is a crucial survival mechanism, prolonged inflammation is detrimental and participates in numerous chronic age-related diseases. This article will review the onset of inflammation and link its functions to the pathogenesis of age-related macular degeneration (AMD), which is the leading cause of severe vision loss in aged individuals in the developed countries. In this progressive disease, degeneration of the retinal pigment epithelium (RPE) results in the death of photoreceptors, leading to a loss of central vision. The RPE is prone to oxidative stress, a factor that together with deteriorating functionality, e.g. decreased intracellular recycling and degradation due to attenuated heterophagy/autophagy, induces inflammation. In the early phases, accumulation of intracellular lipofuscin in the RPE and extracellular drusen between RPE cells and Bruch's membrane can be clinically detected. Subsequently, in dry (atrophic) AMD there is geographic atrophy with discrete areas of RPE loss whereas in the wet (exudative) form there is neovascularization penetrating from the choroid to retinal layers. Elevations in levels of local and systemic biomarkers indicate that chronic inflammation is involved in the pathogenesis of both disease forms. PMID:26852158

  7. Diversity in Robustness of Lactococcus lactis Strains during Heat Stress, Oxidative Stress, and Spray Drying Stress

    PubMed Central

    Dijkstra, Annereinou R.; Setyawati, Meily C.; Bayjanov, Jumamurat R.; Alkema, Wynand; van Hijum, Sacha A. F. T.; Hugenholtz, Jeroen

    2014-01-01

    In this study we tested 39 Lactococcus lactis strains isolated from diverse habitats for their robustness under heat and oxidative stress, demonstrating high diversity in survival (up to 4 log units). Strains with an L. lactis subsp. lactis phenotype generally displayed more-robust phenotypes than strains with an L. lactis subsp. cremoris phenotype, whereas the habitat from which the strains had been isolated did not appear to influence stress survival. Comparison of the stress survival phenotypes with already available comparative genomic data sets revealed that the absence or presence of specific genes, including genes encoding a GntR family transcriptional regulator, a manganese ABC transporter permease, a cellobiose phosphotransferase system (PTS) component, the FtsY protein, and hypothetical proteins, was associated with heat or oxidative stress survival. Finally, 14 selected strains also displayed diversity in survival after spray drying, ranging from 20% survival for the most robust strains, which appears acceptable for industrial application, to 0.1% survival for the least-tolerant strains. The high and low levels of survival upon spray drying correlated clearly with the combined robustness under heat and oxidative stress. These results demonstrate the relevance of screening culture collections for robustness under heat and oxidative stress on top of the typical screening for acidifying and flavor-forming properties. PMID:24212574

  8. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease.

    PubMed

    Yan, Michael H; Wang, Xinglong; Zhu, Xiongwei

    2013-09-01

    Alzheimer disease (AD) and Parkinson disease (PD) are the two most common age-related neurodegenerative diseases characterized by prominent neurodegeneration in selective neural systems. Although a small fraction of AD and PD cases exhibit evidence of heritability, among which many genes have been identified, the majority are sporadic without known causes. Molecular mechanisms underlying neurodegeneration and pathogenesis of these diseases remain elusive. Convincing evidence demonstrates oxidative stress as a prominent feature in AD and PD and links oxidative stress to the development of neuronal death and neural dysfunction, which suggests a key pathogenic role for oxidative stress in both AD and PD. Notably, mitochondrial dysfunction is also a prominent feature in these diseases, which is likely to be of critical importance in the genesis and amplification of reactive oxygen species and the pathophysiology of these diseases. In this review, we focus on changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD. PMID:23200807

  9. Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death

    PubMed Central

    Fang, Yuan; Su, Tu; Qiu, Xiaorong; Mao, Pingan; Xu, Yidan; Hu, Zizhong; Zhang, Yi; Zheng, Xinhua; Xie, Ping; Liu, Qinghuai

    2016-01-01

    It is known that oxidative stress plays a pivotal role in age-related macular degeneration (AMD) pathogenesis. Alpha-mangostin is the main xanthone purified from mangosteen known as anti-oxidative properties. The aim of the study was to test the protective effect of alpha-mangostin against oxidative stress both in retina of light-damaged mice model and in hydrogen peroxide (H2O2)-stressed RPE cells. We observed that alpha-mangostin significantly inhibited light-induced degeneration of photoreceptors and 200 μM H2O2-induced apoptosis of RPE cells. 200 μM H2O2-induced generation of reactive oxygen species (ROS) and light-induced generation of malondialdehyde (MDA) were suppressed by alpha-mangostin. Alpha-mangostin stimulation resulted in an increase of superoxide dismutase (SOD) activity, glutathione peroxidase (GPX) activity and glutathione (GSH) content both in vivo and vitro. Furthermore, the mechanism of retinal protection against oxidative stress by alpha-mangostin involves accumulation and the nuclear translocation of the NF-E2-related factor (Nrf2) along with up-regulation the expression of heme oxygenas-1 (HO-1). Meanwhile, alpha-mangostin can activate the expression of PKC-δ and down-regulate the expression of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, P38. The results suggest that alpha-mangostin could be a new approach to suspend the onset and development of AMD. PMID:26888416

  10. Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death.

    PubMed

    Fang, Yuan; Su, Tu; Qiu, Xiaorong; Mao, Pingan; Xu, Yidan; Hu, Zizhong; Zhang, Yi; Zheng, Xinhua; Xie, Ping; Liu, Qinghuai

    2016-01-01

    It is known that oxidative stress plays a pivotal role in age-related macular degeneration (AMD) pathogenesis. Alpha-mangostin is the main xanthone purified from mangosteen known as anti-oxidative properties. The aim of the study was to test the protective effect of alpha-mangostin against oxidative stress both in retina of light-damaged mice model and in hydrogen peroxide (H2O2)-stressed RPE cells. We observed that alpha-mangostin significantly inhibited light-induced degeneration of photoreceptors and 200 μM H2O2-induced apoptosis of RPE cells. 200 μM H2O2-induced generation of reactive oxygen species (ROS) and light-induced generation of malondialdehyde (MDA) were suppressed by alpha-mangostin. Alpha-mangostin stimulation resulted in an increase of superoxide dismutase (SOD) activity, glutathione peroxidase (GPX) activity and glutathione (GSH) content both in vivo and vitro. Furthermore, the mechanism of retinal protection against oxidative stress by alpha-mangostin involves accumulation and the nuclear translocation of the NF-E2-related factor (Nrf2) along with up-regulation the expression of heme oxygenas-1 (HO-1). Meanwhile, alpha-mangostin can activate the expression of PKC-δ and down-regulate the expression of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, P38. The results suggest that alpha-mangostin could be a new approach to suspend the onset and development of AMD. PMID:26888416

  11. Melamine Induces Oxidative Stress in Mouse Ovary

    PubMed Central

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathi-one peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway. PMID:26545251

  12. Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule?

    PubMed

    Foucaud, L; Goulaouic, S; Bennasroune, A; Laval-Gilly, P; Brown, D; Stone, V; Falla, J

    2010-09-01

    The aim of this study was to investigate whether carbon black (CB) nanoparticles might induce toxicity to monocytic cells in vitro via an oxidative stress mechanism involving formation of the lipid peroxidation product 4-hydroxynonenal (4-HNE) and the subsequent role of 4-HNE in inducing further cytotoxic effects. ROS production in cells by CB nanoparticles was shown by the oxidation of DCFH after a short time exposure. These particles induced the formation of 4-HNE-protein adducts and significant modification of glutathione content corresponding to an increase of oxidized glutathione form (GSSG) and a decrease of total glutathione (GSX) content. These results attest to an oxidative stress induced by the carbon black nanoparticles, although no induction of HO-1 protein expression was detected. Concerning the effects of a direct exposure to 4-HNE, our results showed that 4-HNE is not cytotoxic for concentrations lower than 12.5 microM. By contrast, it provokes a very high cytotoxicity for concentrations above 25 microM. An induction of HO-1 expression was observed from concentrations above 5 microM of 4-HNE. Finally, glutathione content decreased significantly from 5 microM of 4-HNE but no modification was observed under this concentration. The discrepancy between effects of carbon black nanoparticles and 4-HNE on the intracellular markers of oxidative stress suggests that 4-HNE is not directly implied in the signalling of oxidative toxicity of nanoparticles but is an effective biomarker of oxidative effects of nanoparticles. PMID:20638469

  13. Chasing great paths of Helmut Sies "Oxidative Stress".

    PubMed

    Majima, Hideyuki J; Indo, Hiroko P; Nakanishi, Ikuo; Suenaga, Shigeaki; Matsumoto, Ken-Ichiro; Matsui, Hirofumi; Minamiyama, Yukiko; Ichikawa, Hiroshi; Yen, Hsiu-Chuan; Hawkins, Clare L; Davies, Michael J; Ozawa, Toshihiko; St Clair, Daret K

    2016-04-01

    Prof. Dr. Helmut Sies is a pioneer of "Oxidative Stress", and has published over 18 papers with the name of "Oxidative Stress" in the title. He has been Editor-in-Chief of the journal "Archives of Biochemistry and Biophysics" for many years, and is a former Editor-in-Chief of the journal "Free Radical Research". He has clarified our understanding of the causes of chronic developing diseases, and has studied antioxidant factors. In this article, importance of "Oxidative Stress" and our mitochondrial oxidative stress studies; roles of mitochondrial ROS, effects of vitamin E and its homologues in oxidative stress-related diseases, effects of antioxidants in vivo and in vitro, and a mitochondrial superoxide theory for oxidative stress diseases and aging are introduced, and some of our interactions with Helmut are described, congratulating and appreciating his great path. PMID:27095216

  14. Going retro: Oxidative stress biomarkers in modern redox biology.

    PubMed

    Margaritelis, N V; Cobley, J N; Paschalis, V; Veskoukis, A S; Theodorou, A A; Kyparos, A; Nikolaidis, M G

    2016-09-01

    The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting. PMID:26855421

  15. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    SciTech Connect

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  16. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  17. Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy

    PubMed Central

    Muriach, María; Flores-Bellver, Miguel; Romero, Francisco J.; Barcia, Jorge M.

    2014-01-01

    Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation. PMID:25215171

  18. Oxidative stress in psoriasis and potential therapeutic use of antioxidants.

    PubMed

    Lin, Xiran; Huang, Tian

    2016-06-01

    The pathophysiology of psoriasis is complex and dynamic. Recently, the involvement of oxidative stress in the pathogenesis of psoriasis has been proposed. Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control and/or molecular damage. In this article, the published studies on the role of oxidative stress in psoriasis pathogenesis are reviewed, focusing on the impacts of oxidative stress on dendritic cells, T lymphocytes, and keratinocytes, on angiogenesis and on inflammatory signaling (mitogen-activated protein kinase, nuclear factor-κB, and Janus kinase/signal transducer and activator of transcription). As there is compelling evidence that oxidative stress is involved in the pathogenesis of psoriasis, the possibility of using this information to develop novel strategies for treatment of patients with psoriasis is of considerable interest. In this article, we also review the published studies on treating psoriasis with antioxidants and drugs with antioxidant activity. PMID:27098416

  19. Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila

    PubMed Central

    Wang, Ching-Tzu; Chen, Yi-Chun; Wang, Yi-Yun; Huang, Ming-Hao; Yen, Tzu-Li; Li, Hsun; Liang, Cyong-Jhih; Sang, Tzu-Kang; Cho, Si-Chih; Yuh, Chiou-Hwa; Wang, Chao-Yung; Brummel, Theodore J.; Wang, Horng-Dar

    2011-01-01

    Summary Aging and age-related diseases can be viewed as the result of the lifelong accumulation of stress insults. The identification of mutant strains and genes which are responsive to stress and can alter longevity profiles provides new therapeutic targets for age-related diseases. Here we reported that a Drosophila strain with reduced expression of ribose-5-phosphate isomerase (rpi), EP2456, exhibits increased resistance to oxidative stress and enhanced lifespan. In addition, the strain also displays higher levels of NADPH. The knockdown of rpi in neurons by double-stranded RNA interference recapitulated the lifespan extension and oxidative stress resistance in Drosophila. This manipulation was also found to ameliorate the effects of genetic manipulations aimed at creating a model for studying Huntington’s disease by overexpression of polyglutamine in the eye, suggesting that modulating rpi levels could serve as a treatment for normal aging as well as for polyglutamine neurotoxicity. PMID:22040003

  20. Oxidative stress modulates theophylline effects on steroid responsiveness.

    PubMed

    Marwick, John A; Wallis, Gillian; Meja, Koremu; Kuster, Bernhard; Bouwmeester, Tewis; Chakravarty, Probir; Fletcher, Danielle; Whittaker, Paul A; Barnes, Peter J; Ito, Kazuhiro; Adcock, Ian M; Kirkham, Paul A

    2008-12-19

    Oxidative stress is a central factor in many chronic inflammatory diseases such as severe asthma and chronic obstructive pulmonary disease (COPD). Oxidative stress reduces the anti-inflammatory corticosteroid action and may therefore contribute to the relative corticosteroid insensitivity seen in these diseases. Low concentrations of theophylline can restore the anti-inflammatory action of corticosteroids in oxidant exposed cells, however the mechanism remains unknown. Here, we demonstrate that a low concentration of theophylline restores corticosteroid repression of pro-inflammatory mediator release and histone acetylation in oxidant exposed cells. Global gene expression analysis shows that theophylline regulates distinct pathways in naïve and oxidant exposed cells and reverses oxidant mediated modulated of pathways. Furthermore, quantitative chemoproteomics revealed that theophylline has few high affinity targets in naive cells but an elevated affinity in oxidant stressed cells. In conclusion, oxidative stress alters theophylline binding profile and gene expression which may result in restoration of corticosteroid function. PMID:18951874

  1. Effects of oxidative stress on erythrocyte deformability

    NASA Astrophysics Data System (ADS)

    Bayer, Rainer; Wasser, Gerd

    1996-05-01

    Hemolysis as a consequence of open heart surgery is well investigated and explained by the oxidative and/or mechanical stress produced, e.g. by the heart lung machine. In Europe O3 is widely used by physicians, dedicated to alternative medicine. They apply O3 mostly by means of the Major Autohematotherapy (MAH, a process of removing 50 - 100 ml of blood, adding O3 gas to it and returning it to the patient's body). No controlled studies on the efficacy of O3 are available so far, but several anecdotal cases appear to confirm that MAH improves microcirculation, possibly due to increased RBC flexibility. Most methods established to estimate RBC deformability are hard to standardize and include high error of measurement. For our present investigation we used the method of laser diffraction in combination with image analysis. The variation coefficient of the measurement is less than 1%. Previous investigations of our group have shown, that mechanical stress decreases deformability, already at rather low levels of mechanical stress which do not include hemolysis. On the other hand exposure to O2, H2O2 or O3 does not alter the deformability of RBC and--except O3--does not induce considerably hemolysis. However this only holds true if deformability (shear rates 36/s - 2620/s) is determined in isotonic solutions. In hypertonic solutions O3 decreases RBC deformability, but improves it in hypotonic solutions. The results indicate that peroxidative stress dehydrates RBC and reduces their size. To explain the positive effect of O3 on the mechanical fragility of RBC we tentatively assume, that the reduction of RBC size facilitates the feed through small pore filters. In consequence, the size reduction in combination with undisturbed deformability at iso-osmolarity may have a beneficial effect on microcirculation.

  2. Blueberry treatment decreased D-galactose-induced oxidative stress and brain damage in rats.

    PubMed

    Çoban, Jale; Doğan-Ekici, Işın; Aydın, A Fatih; Betül-Kalaz, Esra; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2015-06-01

    D-galactose (GAL) causes aging-related changes and oxidative stress in the organism. We investigated the effect of whole fresh blueberry (BB) (Vaccinium corymbosum L.) treatment on oxidative stress in age-related brain damage model. Rats received GAL (300 mg/kg; s.c.; 5 days per week) alone or together with 5 % (BB1) and 10 % (BB2) BB containing chow for two months. Malondialdehyde (MDA),protein carbonyl (PC) and glutathione (GSH) levels, and Cu Zn-superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione transferase (GST) activities as well as acetylcholinesterase (AChE) activities were determined. Expressions of B cell lymphoma-2 (Bcl-2), Bax and caspase-3 were also evaluated in the brain by immunohistochemistry. MDA and PC levels and AChE activity increased, but GSH levels, SOD and GSH-Px activities decreased together with histopathological structural damage in the brain of GAL-treated rats. BB treatments, especially BB2 reduced MDA and PC levels and AChE activity and elevated GSH levels and GSH-Px activity. BB1 and BB2 treatments diminished apoptosis and ameliorated histopathological findings in the brain of GAL-treated rats. These results indicate that BB partially prevented the shift towards an imbalanced prooxidative status and apoptosis together with histopathological amelioration by acting as an antioxidant (radical scavenger) itself in GAL-treated rats. PMID:25511550

  3. Age-related changes in the transcriptome of antibody-secreting cells

    PubMed Central

    Kurupati, Raj; Showe, Louise C.; Ertl, Hildegund C.J.

    2016-01-01

    We analyzed age-related defects in B cell populations from young and aged mice. Microarray analysis of bone marrow resident antibody secreting cells (ASCs) showed significant changes upon aging, affecting multiple genes, pathways and functions including those that play a role in immune regulation, humoral immune responses, chromatin structure and assembly, cell metabolism and the endoplasmic reticulum (ER) stress response. Further analysis showed upon aging defects in energy production through glucose catabolism with reduced oxidative phosphorylation. In addition aged B cells had increased levels of reactive oxygen-species (ROS), which was linked to enhanced expression of the co-inhibitor programmed cell death (PD)-1. PMID:26967249

  4. Amyloids, Melanins and Oxidative Stress in Melanomagenesis

    PubMed Central

    Liu-Smith, Feng; Poe, Carrie; Farmer, Patrick J.; Meyskens, Frank L.

    2015-01-01

    Melanoma has traditionally been viewed as an ultra-violet (UV) radiation induced malignancy. While UV is a common inducing factor, other endogenous stresses such as metal ion accumulation or the melanin pigment itself, may provide alternative pathways to melanoma progression. Eumelanosomes within melanoma often exhibit disrupted membranes and fragmented pigment which may be due to alterations in their amyloid-based striatial matrix. The melanosomal amyloid can itself be toxic, especially in combination with reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated by endogenous NADPH oxidase (NOX) and nitric oxide synthase (NOS) enzymes; a toxic mix that may initiate melanomagenesis. Further understanding of the loss of the melanosomal organization, the behavior of the exposed melanin, and the induction of ROS/RNS in melanomas may provide critical insights into this deadly disease. PMID:25271672

  5. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  6. Oxidative stress in normal and diabetic rats.

    PubMed

    Torres, M D; Canal, J R; Pérez, C

    1999-01-01

    Parameters related to oxidative stress were studied in a group of 10 Wistar diabetic rats and 10 control rats. The levels of total erythrocyte catalase activity in the diabetic animals were significantly (p<0.001) greater than the control levels. The diabetic animals presented an amount of vitamin E far greater (p<0.0001) than the controls, as was also the case for the vitaminE/polyunsaturated fatty acid (PUFA) and vitaminE/linoleic acid (C18:2) ratios. Greater vitaminE/triglyceride (TG) ratio, however, appeared in the control group. The corresponding vitamin A ratios (vitaminA/TG, vitaminA/PUFA, vitaminA/C 18:2) were higher in the control group. Our work corroborates the findings that fatty acid metabolism presents alterations in the diabetes syndrome and that the antioxidant status is affected. PMID:10523056

  7. The Oxygen Paradox, oxidative stress, and ageing.

    PubMed

    Davies, Kelvin J A

    2016-04-01

    Professor Helmut Sies is being lauded in this special issue of Archives of Biochemistry & Biophysics, on the occasion of his retirement as Editor-in-Chief. There is no doubt that Helmut has exerted an enormously positive influence on this journal, the fields of Biochemistry & Biophysics in general, and the areas of free radical and redox biology & medicine in particular. Helmut Sies' many discoveries about peroxide metabolism, glutathione, glutathione peroxidases, singlet oxygen, carotenoids in general and lycopene in particular, and flavonoids, fill the pages of his more than 600 publications. In addition, he will forever be remembered for coining the term 'oxidative stress' that is so widely used (and sometimes abused) by most of his colleagues. PMID:27095211

  8. Glutamate neurotoxicity, oxidative stress and mitochondria.

    PubMed

    Atlante, A; Calissano, P; Bobba, A; Giannattasio, S; Marra, E; Passarella, S

    2001-05-18

    The excitatory neurotransmitter glutamate plays a major role in determining certain neurological disorders. This situation, referred to as 'glutamate neurotoxicity' (GNT), is characterized by an increasing damage of cell components, including mitochondria, leading to cell death. In the death process, reactive oxygen species (ROS) are generated. The present study describes the state of art in the field of GNT with a special emphasis on the oxidative stress and mitochondria. In particular, we report how ROS are generated and how they affect mitochondrial function in GNT. The relationship between ROS generation and cytochrome c release is described in detail, with the released cytochrome c playing a role in the cell defense mechanism against neurotoxicity. PMID:11376653

  9. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  10. Mechanism of Inflammation in Age-Related Macular Degeneration

    PubMed Central

    Parmeggiani, Francesco; Romano, Mario R.; Costagliola, Ciro; Semeraro, Francesco; Incorvaia, Carlo; D'Angelo, Sergio; Perri, Paolo; De Palma, Paolo; De Nadai, Katia; Sebastiani, Adolfo

    2012-01-01

    Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease. PMID:23209345

  11. Age-related macular degeneration: experimental and emerging treatments

    PubMed Central

    Hubschman, Jean Pierre; Reddy, Shantan; Schwartz, Steven D

    2009-01-01

    Purpose: This essay reviews the experimental treatments and new imaging modalities that are currently being explored by investigators to help treat patients with age-related macular degeneration (AMD). Design: Interpretative essay. Methods: Literature review and interpretation. Results: Experimental treatments to preserve vision in patients with exudative AMD include blocking vascular endothelial growth factor (VEGF), binding VEGF, and modulating the VEGF receptors. Investigators are also attempting to block signal transduction with receptor tyrosine kinase inhibitors. Experimental treatments for non-exudative AMD include agents that target inflammation, oxidative stress, and implement immune-modulation. The effectiveness of these newer pharmacologic agents has the potential to grow exponentially when used in combination with new and improved imaging modalities that can help identify disease earlier and follow treatment response more precisely. Conclusion: With a better understanding, at the genetic and molecular level, of AMD and the development of superior imaging modalities, investigators are able to offer treatment options that may offer unprecedented visual gains while reducing the need for repetitive treatments. PMID:19668561

  12. Nitroxide pharmaceutical development for age-related degeneration and disease

    PubMed Central

    Zarling, Jacob A.; Brunt, Vienna E.; Vallerga, Anne K.; Li, Weixing; Tao, Albert; Zarling, David A.; Minson, Christopher T.

    2015-01-01

    Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed. PMID:26594225

  13. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    PubMed Central

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-01-01

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed. PMID:26540040

  14. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  15. [Carbonyl stress and oxidatively modified proteins in chronic renal failure].

    PubMed

    Bargnoux, A-S; Morena, M; Badiou, S; Dupuy, A-M; Canaud, B; Cristol, J-P

    2009-01-01

    Oxidative stress is commonly observed in chronic renal failure patients resulting from an unbalance between overproduction of reactive oxygen species and impairement of defense mechanisms. Proteins appear as potential targets of uremia-induced oxidative stress and may undergo qualitative modifications. Proteins could be directly modified by reactive oxygen species which leads to amino acid oxydation and cross-linking. Proteins could be indirectly modified by reactive carbonyl compounds produced by glycoxidation and lipo-peroxidation. The resulting post-traductional modifications are known as carbonyl stress. In addition, thiols could be oxidized or could react with homocystein leading to homocysteinylation. Finally, tyrosin could be oxidized by myeloperoxidase leading to advanced oxidative protein products (AOPP). Oxidatively modified proteins are increased in chronic renal failure patients and may contribute to exacerbate the oxidative stress/inflammation syndrome. They have been involved in long term complications of uremia such as amyloidosis and accelerated atherosclerosis. PMID:19297289

  16. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  17. Age-Related Changes in Creative Thinking

    ERIC Educational Resources Information Center

    Roskos-Ewoldsen, Beverly; Black, Sheila R.; Mccown, Steven M.

    2008-01-01

    Age-related differences in cognitive processes were used to understand age-related declines in creativity. According to the Geneplore model (Finke, Ward, & Smith, 1992), there are two phases of creativity--generating an idea and exploring the implications of the idea--each with different underlying cognitive processes. These two phases are…

  18. Oxidative and nitrative stress in neurodegeneration.

    PubMed

    Cobb, Catherine A; Cole, Marsha P

    2015-12-01

    Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage. PMID:26024962

  19. Chronic obstructive pulmonary disease and oxidative stress.

    PubMed

    Domej, W; Földes-Papp, Z; Flögel, E; Haditsch, B

    2006-04-01

    The respiratory tract as the main entrance for various inhalative substances has great potential to generate reactive species directly or indirectly in excess. Thus, heavy smokers are at high risk for development, impairment and failed response to treatment of chronic obstructive pulmonary disease (COPD). The article is an update regarding the influence of reactive oxygen (ROS) and nitrogen (RNS) species on COPD; however, we do not intend to describe ROS and RNS actions on the entire lung tissue. Here, we focus on the airways, because in human most of the described effects of ROS and RNS species are measured on respiratory epithelial cells obtained by bronchoscopy. ROS and RNS species are physiological compounds in cells and risk factors for several respiratory diseases. In general, both kinds of species are thermodynamically stabile, but their reaction behaviors in cellular environments are very different. For example, the life times of the superoxide anion radical range from micro/milliseconds up to minutes and even hours in in-vitro model systems. Oxidative stress by cigarette smoke was investigated in detail by the authors of this article. In addition, original studies by the authors on the amount of fine particulate matter and trace elements in lung biopsies after defined inhalation indicate a distortion of the equilibrium between oxidants and antioxidants. We also try to present some modern views with respect to genomic medicine for future therapeutic perspectives, although this is an upcoming sector of COPD therapy. PMID:16724946

  20. Correlation of Zinc with Oxidative Stress Biomarkers

    PubMed Central

    Morales-Suárez-Varela, María; Llopis-González, Agustín; González-Albert, Verónica; López-Izquierdo, Raúl; González-Manzano, Isabel; Cháves, Javier; Huerta-Biosca, Vicente; Martin-Escudero, Juan C.

    2015-01-01

    Hypertension and smoking are related with oxidative stress (OS), which in turn reports on cellular aging. Zinc is an essential element involved in an individual’s physiology. The aim of this study was to evaluate the relation of zinc levels in serum and urine with OS and cellular aging and its effect on the development of hypertension. In a Spanish sample with 1500 individuals, subjects aged 20–59 years were selected, whose zinc intake levels fell within the recommended limits. These individuals were classified according to their smoking habits and hypertensive condition. A positive correlation was found (Pearson’s C = 0.639; p = 0.01) between Zn serum/urine quotient and oxidized glutathione levels (GSSG). Finally, risk of hypertension significantly increased when the GSSG levels exceeded the 75 percentile; OR = 2.80 (95%CI = 1.09–7.18) and AOR = 3.06 (95%CI = 0.96–9.71). Low zinc levels in serum were related with OS and cellular aging and were, in turn, to be a risk factor for hypertension.  PMID:25774936

  1. Oxidative stress in atherosclerosis and diabetes.

    PubMed

    Lankin, V Z; Lisina, M O; Arzamastseva, N E; Konovalova, G G; Nedosugova, L V; Kaminnyi, A I; Tikhaze, A K; Ageev, F T; Kukharchuk, V V; Belenkov, Yu N

    2005-07-01

    We measured the content of lipid peroxides in plasma LDL from patients with chronic CHD not accompanied by hypercholesterolemia; CHD and hypercholesterolemia; type 2 diabetes mellitus and decompensation of carbohydrate metabolism; and CHD, circulatory insufficiency, and type 2 diabetes mellitus (without hypercholesterolemia). The content of lipid peroxides in LDL isolated from blood plasma by differential ultracentrifugation in a density gradient was estimated by a highly specific method with modifications (reagent Fe(2+) xylene orange and triphenylphosphine as a reducing agent for organic peroxides). The content of lipid peroxides in LDL from patients was much higher than in controls (patients without coronary heart disease and diabetes). Hypercholesterolemia and diabetes can be considered as factors promoting LDL oxidation in vivo. Our results suggest that stimulation of lipid peroxidation in low-density lipoproteins during hypercholesterolemia and diabetes is associated with strong autooxidation of cholesterol and glucose during oxidative and carbonyl (aldehyde) stress, respectively. These data illustrate a possible mechanism of the progression of atherosclerosis in patients with diabetes mellitus. PMID:16254616

  2. Influence of Oxidative Stress on Stored Platelets

    PubMed Central

    2016-01-01

    Platelet storage and its availability for transfusion are limited to 5-6 days. Oxidative stress (OS) is one of the causes for reduced efficacy and shelf-life of platelets. The studies on platelet storage have focused on improving the storage conditions by altering platelet storage solutions, temperature, and materials. Nevertheless, the role of OS on platelet survival during storage is still unclear. Hence, this study was conducted to investigate the influence of storage on platelets. Platelets were stored for 12 days at 22°C. OS markers such as aggregation, superoxides, reactive oxygen species, glucose, pH, lipid peroxidation, protein oxidation, and antioxidant enzymes were assessed. OS increased during storage as indicated by increments in aggregation, superoxides, pH, conjugate dienes, and superoxide dismutase and decrements in glucose and catalase. Thus, platelets could endure OS till 6 days during storage, due to the antioxidant defense system. An evident increase in OS was observed from day 8 of storage, which can diminish the platelet efficacy. The present study provides an insight into the gradual changes occurring during platelet storage. This lays the foundation towards new possibilities of employing various antioxidants as additives in storage solutions. PMID:26949396

  3. The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance.

    PubMed

    Moskalev, Alexey; Plyusnina, Ekaterina; Shaposhnikov, Mikhail; Shilova, Lyubov; Kazachenok, Alexey; Zhavoronkov, Alexander

    2012-11-15

    There is a relationship between various cellular stress factors and aging. In earlier studies, we demonstrated that overexpression of the D-GADD45 gene increases the life span of Drosophila melanogaster. In this study, we investigate the relationship between D-GADD45 activity and resistance to oxidative, genotoxic and thermal stresses as well as starvation. In most cases, flies with constitutive and conditional D-GADD45 overexpression in the nervous system were more stress-resistant than ones without overexpression. At the same time, most of the studied stress factors increased D-GADD45 expression in the wild-type strain. The lifespan-extending effect of D-GADD45 overexpression was also retained after exposure to chronic and acute gamma-irradiation, with doses of 40 сGy and 30 Gy, respectively. However, knocking out D-GADD45 resulted in a significant reduction in lifespan, lack of radiation hormesis and radioadaptive response. A dramatic decrease in the spontaneous level of D-GADD45 expression was observed in the nervous system as age progressed, which may be one of the causes of the age-related deterioration of organismal stress resistance. Thus, D-GADD45 expression is activated by most of the studied stress factors, and D-GADD45 overexpression resulted in an increase of stress resistance. PMID:23095639

  4. Testosterone and oxidative stress: the oxidation handicap hypothesis

    PubMed Central

    Alonso-Alvarez, Carlos; Bertrand, Sophie; Faivre, Bruno; Chastel, Olivier; Sorci, Gabriele

    2006-01-01

    Secondary sexual traits (SST) are usually thought to have evolved as honest signals of individual quality during mate choice. Honesty of SST is guaranteed by the cost of producing/maintaining them. In males, the expression of many SST is testosterone-dependent. The immunocompetence handicap hypothesis has been proposed as a possible mechanism ensuring honesty of SST on the basis that testosterone, in addition to its effect on sexual signals, also has an immunosuppressive effect. The immunocompetence handicap hypothesis has received mixed support. However, the cost of testosterone-based signalling is not limited to immunosuppression and might involve other physiological functions such as the antioxidant machinery. Here, we tested the hypothesis that testosterone depresses resistance to oxidative stress in a species with a testosterone-dependent sexual signal, the zebra finch. Male zebra finches received subcutaneous implants filled with flutamide (an anti-androgen) or testosterone, or kept empty (control). In agreement with the prediction, we found that red blood cell resistance to a free radical attack was the highest in males implanted with flutamide and the lowest in males implanted with testosterone. We also found that cell-mediated immune response was depressed in testosterone-treated birds, supporting the immunocompetence handicap hypothesis. The recent finding that red blood cell resistance to free radicals is negatively associated with mortality in this species suggests that benefits of sexual signalling might trade against the costs derived from oxidation. PMID:17251089

  5. Testosterone and oxidative stress: the oxidation handicap hypothesis.

    PubMed

    Alonso-Alvarez, Carlos; Bertrand, Sophie; Faivre, Bruno; Chastel, Olivier; Sorci, Gabriele

    2007-03-22

    Secondary sexual traits (SST) are usually thought to have evolved as honest signals of individual quality during mate choice. Honesty of SST is guaranteed by the cost of producing/maintaining them. In males, the expression of many SST is testosterone-dependent. The immunocompetence handicap hypothesis has been proposed as a possible mechanism ensuring honesty of SST on the basis that testosterone, in addition to its effect on sexual signals, also has an immunosuppressive effect. The immunocompetence handicap hypothesis has received mixed support. However, the cost of testosterone-based signalling is not limited to immunosuppression and might involve other physiological functions such as the antioxidant machinery. Here, we tested the hypothesis that testosterone depresses resistance to oxidative stress in a species with a testosterone-dependent sexual signal, the zebra finch. Male zebra finches received subcutaneous implants filled with flutamide (an anti-androgen) or testosterone, or kept empty (control). In agreement with the prediction, we found that red blood cell resistance to a free radical attack was the highest in males implanted with flutamide and the lowest in males implanted with testosterone. We also found that cell-mediated immune response was depressed in testosterone-treated birds, supporting the immunocompetence handicap hypothesis. The recent finding that red blood cell resistance to free radicals is negatively associated with mortality in this species suggests that benefits of sexual signalling might trade against the costs derived from oxidation. PMID:17251089

  6. The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms

    PubMed Central

    Edrey, Yael H.; Yang, Ting; Mele, James

    2008-01-01

    Reactive oxygen species (ROS), inevitable byproducts of aerobic metabolism, are known to cause oxidative damage to cells and molecules. This, in turn, is widely accepted as a pivotal determinant of both lifespan and health span. While studies in a wide range of species support the role of ROS in many age-related diseases, its role in aging per se is questioned. Comparative data from a wide range of endotherms offer equivocal support for this theory, with many exceptions and inconclusive findings as to whether or not oxidative stress is either a correlate or a determinant of maximum species lifespan. Available data do not support the premise that metabolic rate and in vivo ROS production are determinants of lifespan, or that superior antioxidant defense contributes to species longevity. Rather, published studies often show either a negative associate or lack of correlation with species longevity. Furthermore, many long-living species such as birds, bats and mole-rats exhibit high levels of oxidative damage even at young ages. Similarly genetic manipulations altering expression of key antioxidants do not necessarily show an impact on lifespan, even though oxidative damage levels may be affected. While it is possible that these multiple exceptions to straightforward predictions of the free radical theory of aging all reflect species-specific, “private” mechanisms of aging, the preponderance of contrary data nevertheless present a challenge to this august theory. Therefore, contrary to accepted dogma, the role of oxidative stress as a determinant of longevity is still open to question. PMID:19424860

  7. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    EPA Science Inventory

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  8. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    PubMed

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis. PMID:27423629

  9. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  10. Antioxidant status and biomarkers of oxidative stress in canine lymphoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background – Oxidative stress might play a role in carcinogenesis, as well as impacting morbidity and mortality of veterinary cancer patients. The purpose of this study was to evaluate antioxidant concentrations and biomarkers of oxidative stress in dogs with newly-diagnosed lymphoma prior to treatm...

  11. Oxidative Stress Induces Caveolin 1 Degradation and Impairs Caveolae Functions in Skeletal Muscle Cells

    PubMed Central

    Mougeolle, Alexis; Poussard, Sylvie; Decossas, Marion; Lamaze, Christophe

    2015-01-01

    Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2) at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle. PMID:25799323

  12. Bmp6 Regulates Retinal Iron Homeostasis and Has Altered Expression in Age-Related Macular Degeneration

    PubMed Central

    Hadziahmetovic, Majda; Song, Ying; Wolkow, Natalie; Iacovelli, Jared; Kautz, Leon; Roth, Marie-Paule; Dunaief, Joshua L.

    2011-01-01

    Iron-induced oxidative stress causes hereditary macular degeneration in patients with aceruloplasminemia. Similarly, retinal iron accumulation in age-related macular degeneration (AMD) may exacerbate the disease. The cause of retinal iron accumulation in AMD is poorly understood. Given that bone morphogenetic protein 6 (Bmp6) is a major regulator of systemic iron, we examined the role of Bmp6 in retinal iron regulation and in AMD pathogenesis. Bmp6 was detected in the retinal pigment epithelium (RPE), a major site of pathology in AMD. In cultured RPE cells, Bmp6 was down-regulated by oxidative stress and up-regulated by iron. Intraocular Bmp6 protein injection in mice up-regulated retinal hepcidin, an iron regulatory hormone, and altered retinal labile iron levels. Bmp6−/− mice had age-dependent retinal iron accumulation and degeneration. Postmortem RPE from patients with early AMD exhibited decreased Bmp6 levels. Because oxidative stress is associated with AMD pathogenesis and down-regulates Bmp6 in cultured RPE cells, the diminished Bmp6 levels observed in RPE cells in early AMD may contribute to iron build-up in AMD. This may in turn propagate a vicious cycle of oxidative stress and iron accumulation, exacerbating AMD and other diseases with hereditary or acquired iron excess. PMID:21703414

  13. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    SciTech Connect

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  14. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    PubMed Central

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  15. ROS Function in Redox Signaling and Oxidative Stress

    PubMed Central

    Schieber, Michael; Chandel, Navdeep S.

    2014-01-01

    Oxidative stress refers to elevated intracellular levels of reactive oxygen species (ROS) that cause damage to lipids, proteins and DNA. Oxidative stress has been linked to a myriad of pathologies. However, elevated ROS are also signaling molecules i.e. redox biology that maintain physiological functions. In this review we discuss the two faces of ROS, redox signaling and oxidative stress, and their contribution to both physiological and pathological conditions. Redox biology refers to low levels of ROS that activate signaling pathways to initiate biological processes while oxidative stress denotes high levels of ROS that incur damage to DNA, protein or lipids. Thus, the response to ROS displays hormesis. The In this review, we argue that redox biology, rather than oxidative stress, underlies physiological and pathological conditions. PMID:24845678

  16. Nanoparticles, lung injury, and the role of oxidant stress.

    PubMed

    Madl, Amy K; Plummer, Laurel E; Carosino, Christopher; Pinkerton, Kent E

    2014-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties that induce inflammation and oxidative stress in biological systems. Oxidative stress reflects the imbalance between the generation of reactive oxygen species and the biochemical mechanisms to detoxify and repair the damage resulting from reactive intermediates. This review examines current research on incidental and engineered nanoparticles in terms of their health effects on lungs and the mechanisms by which oxidative stress via physicochemical characteristics influences toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review also briefly discusses some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site-specific fashion. PMID:24215442

  17. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology.

    PubMed

    Denu, Ryan A; Hematti, Peiman

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  18. Nanoparticles, Lung Injury, and the Role of Oxidant Stress

    PubMed Central

    Madl, Amy K.; Plummer, Laurel E.; Carosino, Christopher; Pinkerton, Kent E.

    2015-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties, which have been shown to induce inflammation and oxidative stress in biologic systems. Oxidative stress reflects the imbalance between the generation of reaction oxygen species (ROS) and the biochemical mechanisms to detoxify and repair resulting damage of reactive intermediates. This review examines current research incidental and engineered nanoparticles in terms of their health effects on the lungs and mechanisms by which oxidative stress via physicochemical characteristics influence toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review will also briefly discuss some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site specific fashion. PMID:24215442

  19. Parainflammation, chronic inflammation, and age-related macular degeneration.

    PubMed

    Chen, Mei; Xu, Heping

    2015-11-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration. PMID:26292978

  20. Clinical Perspective of Oxidative Stress in Sporadic ALS

    PubMed Central

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  1. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis

    PubMed Central

    Arimoto-Matsuzaki, Kyoko; Saito, Haruo; Takekawa, Mutsuhiro

    2016-01-01

    Cytoplasmic stress granules (SGs) are multimolecular aggregates of stalled translation pre-initiation complexes that prevent the accumulation of misfolded proteins, and that are formed in response to certain types of stress including ER stress. SG formation contributes to cell survival not only by suppressing translation but also by sequestering some apoptosis regulatory factors. Because cells can be exposed to various stresses simultaneously in vivo, the regulation of SG assembly under multiple stress conditions is important but unknown. Here we report that reactive oxygen species (ROS) such as H2O2 oxidize the SG-nucleating protein TIA1, thereby inhibiting SG assembly. Thus, when cells are confronted with a SG-inducing stress such as ER stress caused by protein misfolding, together with ROS-induced oxidative stress, they cannot form SGs, resulting in the promotion of apoptosis. We demonstrate that the suppression of SG formation by oxidative stress may underlie the neuronal cell death seen in neurodegenerative diseases. PMID:26738979

  2. Hypertension and physical exercise: The role of oxidative stress.

    PubMed

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. PMID:26987496

  3. Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster.

    PubMed

    Jordan, Katherine W; Craver, Kyle L; Magwire, Michael M; Cubilla, Carmen E; Mackay, Trudy F C; Anholt, Robert R H

    2012-01-01

    Reactive oxygen species (ROS) are a common byproduct of mitochondrial energy metabolism, and can also be induced by exogenous sources, including UV light, radiation, and environmental toxins. ROS generation is essential for maintaining homeostasis by triggering cellular signaling pathways and host defense mechanisms. However, an imbalance of ROS induces oxidative stress and cellular death and is associated with human disease, including age-related locomotor impairment. To identify genes affecting sensitivity and resistance to ROS-induced locomotor decline, we assessed locomotion of aged flies of the sequenced, wild-derived lines from the Drosophila melanogaster Genetics Reference Panel on standard medium and following chronic exposure to medium supplemented with 3 mM menadione sodium bisulfite (MSB). We found substantial genetic variation in sensitivity to oxidative stress with respect to locomotor phenotypes. We performed genome-wide association analyses to identify candidate genes associated with variation in sensitivity to ROS-induced decline in locomotor performance, and confirmed the effects for 13 of 16 mutations tested in these candidate genes. Candidate genes associated with variation in sensitivity to MSB-induced oxidative stress form networks of genes involved in neural development, immunity, and signal transduction. Many of these genes have human orthologs, highlighting the utility of genome-wide association in Drosophila for studying complex human disease. PMID:22715409

  4. Biomarkers of oxidative stress in erythrocytes as a function of human age.

    PubMed

    Maurya, Pawan Kumar; Kumar, Prabhanshu; Chandra, Pranjal

    2015-12-26

    Despite more than 300 theories to explain the aging process, oxidative stress theory offers the best mechanism to explain aging and age related disorders. Several studies has shown the importance of oxidative stress during aging. PubMed, Science Direct and Springer online data bases are taken into consideration to write this mini-review. Human erythrocytes are most abundant and specialized cells in the body. Erythrocytes were extensively studied due to their metabolism and gas transport functions. Recent studies on erythrocytes have provided us detailed information of cell membrane and its structural organization that may help in studying the aging and age associated changes. The susceptibility of an organism is associated with the antioxidant potential of the body. Erythrocytes have potent antioxidant protection consisting of enzymatic and non-enzymatic pathways that counteract with reactive oxygen species, thus maintaining the redox regulation in the body. The non-enzymatic and enzymatic antioxidants and other biomarkers associated with erythrocyte membrane transport functions are the main content of this review. Biomarkers of oxidative stress in erythrocytes and its membrane were taken into the consideration during human aging that will be the main subject of this mini- review. PMID:26713282

  5. Biomarkers of oxidative stress in erythrocytes as a function of human age

    PubMed Central

    Maurya, Pawan Kumar; Kumar, Prabhanshu; Chandra, Pranjal

    2015-01-01

    Despite more than 300 theories to explain the aging process, oxidative stress theory offers the best mechanism to explain aging and age related disorders. Several studies has shown the importance of oxidative stress during aging. PubMed, Science Direct and Springer online data bases are taken into consideration to write this mini-review. Human erythrocytes are most abundant and specialized cells in the body. Erythrocytes were extensively studied due to their metabolism and gas transport functions. Recent studies on erythrocytes have provided us detailed information of cell membrane and its structural organization that may help in studying the aging and age associated changes. The susceptibility of an organism is associated with the antioxidant potential of the body. Erythrocytes have potent antioxidant protection consisting of enzymatic and non-enzymatic pathways that counteract with reactive oxygen species, thus maintaining the redox regulation in the body. The non-enzymatic and enzymatic antioxidants and other biomarkers associated with erythrocyte membrane transport functions are the main content of this review. Biomarkers of oxidative stress in erythrocytes and its membrane were taken into the consideration during human aging that will be the main subject of this mini- review. PMID:26713282

  6. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2016-08-16

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  7. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  8. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  9. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  10. Oxidative Stress-Mediated Regulation of Proteasome Complexes*

    PubMed Central

    Aiken, Charity T.; Kaake, Robyn M.; Wang, Xiaorong; Huang, Lan

    2011-01-01

    Oxidative stress has been implicated in aging and many human diseases, notably neurodegenerative disorders and various cancers. The reactive oxygen species that are generated by aerobic metabolism and environmental stressors can chemically modify proteins and alter their biological functions. Cells possess protein repair pathways to rescue oxidized proteins and restore their functions. If these repair processes fail, oxidized proteins may become cytotoxic. Cell homeostasis and viability are therefore dependent on the removal of oxidatively damaged proteins. Numerous studies have demonstrated that the proteasome plays a pivotal role in the selective recognition and degradation of oxidized proteins. Despite extensive research, oxidative stress-triggered regulation of proteasome complexes remains poorly defined. Better understanding of molecular mechanisms underlying proteasome function in response to oxidative stress will provide a basis for developing new strategies aimed at improving cell viability and recovery as well as attenuating oxidation-induced cytotoxicity associated with aging and disease. Here we highlight recent advances in the understanding of proteasome structure and function during oxidative stress and describe how cells cope with oxidative stress through proteasome-dependent degradation pathways. PMID:21543789

  11. GENETICS OF HUMAN AGE RELATED DISORDERS.

    PubMed

    Srivastava, I; Thukral, N; Hasija, Y

    2015-01-01

    Aging is an inevitable biological phenomenon. The incidence of age related disorders (ARDs) such as cardiovascular diseases, cancer, arthritis, dementia, osteoporosis, diabetes, neurodegenerative diseases increase rapidly with aging. ARDs are becoming a key social and economic trouble for the world's elderly population (above 60 years), which is expected to reach 2 billion by 2050. Advancement in understanding of genetic associations, particularly through genome wide association studies (GWAS), has revealed a substantial contribution of genes to human aging and ARDs. In this review, we have focused on the recent understanding of the extent to which genetic predisposition may influence the aging process. Further analysis of the genetic association studies through pathway analysis several genes associated with multiple ARDs have been highlighted such as apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), cadherin 13 (CDH13), CDK5 regulatory subunit associated protein 1 (CDKAL-1), methylenetetrahydrofolate reductase (MTHFR), disrupted in schizophrenia 1 (DISC1), nitric oxide synthase 3 (NOS3), paraoxonase 1 (PON1), indicating that these genes could play a pivotal role in ARD causation. These genes were found to be significantly enriched in Jak-STAT signalling pathway, asthma and allograft rejection. Further, interleukin-6 (IL-6), insulin (INS), vascular endothelial growth factor A (VEGFA), estrogen receptor1 (ESR1), transforming growth factor, beta 1(TGFB1) and calmodulin 1 (CALM1) were found to be highly interconnected in network analysis. We believe that extensive research on the presence of common genetic variants among various ARDs may facilitate scientists to understand the biology behind ARDs causation. PMID:26856084

  12. Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia.

    PubMed

    Sutalangka, Chatchada; Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-mee, Wipawee

    2013-01-01

    To date, the preventive strategy against dementia is still essential due to the rapid growth of its prevalence and the limited therapeutic efficacy. Based on the crucial role of oxidative stress in age-related dementia and the antioxidant and nootropic activities of Moringa oleifera, the enhancement of spatial memory and neuroprotection of M. oleifera leaves extract in animal model of age-related dementia was determined. The possible underlying mechanism was also investigated. Male Wistar rats, weighing 180-220 g, were orally given M. oleifera leaves extract at doses of 100, 200, and 400 mg/kg at a period of 7 days before and 7 days after the intracerebroventricular administration of AF64A bilaterally. Then, they were assessed memory, neuron density, MDA level, and the activities of SOD, CAT, GSH-Px, and AChE in hippocampus. The results showed that the extract improved spatial memory and neurodegeneration in CA1, CA2, CA3, and dentate gyrus of hippocampus together with the decreased MDA level and AChE activity but increased SOD and CAT activities. Therefore, our data suggest that M. oleifera leaves extract is the potential cognitive enhancer and neuroprotectant. The possible mechanism might occur partly via the decreased oxidative stress and the enhanced cholinergic function. However, further explorations concerning active ingredient(s) are still required. PMID:24454988

  13. Moringa oleifera Mitigates Memory Impairment and Neurodegeneration in Animal Model of Age-Related Dementia

    PubMed Central

    Sutalangka, Chatchada; Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-mee, Wipawee

    2013-01-01

    To date, the preventive strategy against dementia is still essential due to the rapid growth of its prevalence and the limited therapeutic efficacy. Based on the crucial role of oxidative stress in age-related dementia and the antioxidant and nootropic activities of Moringa oleifera, the enhancement of spatial memory and neuroprotection of M. oleifera leaves extract in animal model of age-related dementia was determined. The possible underlying mechanism was also investigated. Male Wistar rats, weighing 180–220 g, were orally given M. oleifera leaves extract at doses of 100, 200, and 400 mg/kg at a period of 7 days before and 7 days after the intracerebroventricular administration of AF64A bilaterally. Then, they were assessed memory, neuron density, MDA level, and the activities of SOD, CAT, GSH-Px, and AChE in hippocampus. The results showed that the extract improved spatial memory and neurodegeneration in CA1, CA2, CA3, and dentate gyrus of hippocampus together with the decreased MDA level and AChE activity but increased SOD and CAT activities. Therefore, our data suggest that M. oleifera leaves extract is the potential cognitive enhancer and neuroprotectant. The possible mechanism might occur partly via the decreased oxidative stress and the enhanced cholinergic function. However, further explorations concerning active ingredient(s) are still required. PMID:24454988

  14. Tyrphostins protect neuronal cells from oxidative stress.

    PubMed

    Sagara, Yutaka; Ishige, Kumiko; Tsai, Cindy; Maher, Pamela

    2002-09-27

    Tyrphostins are a family of tyrosine kinase inhibitors originally synthesized as potential anticarcinogenic compounds. Because tyrphostins have chemical structures similar to those of the phenolic antioxidants, we decided to test the protective efficacy of tyrphostins against oxidative stress-induced nerve cell death (oxytosis). Many commercially available tyrphostins, at concentrations ranging from 0.5 to 200 microm, protect both HT-22 hippocampal cells and rat primary neurons from oxytosis brought about by treatment with glutamate, as well as by treatment with homocysteic acid and buthionine sulfoximine. The tyrphostins protect nerve cells by three distinct mechanisms. Some tyrphostins, such as A25, act as antioxidants and eliminate the reactive oxygen species that accumulate as a result of glutamate treatment. These tyrphostins also protect cells from hydrogen peroxide and act as antioxidants in an in vitro assay. In contrast, tyrphostins A9 and AG126 act as mitochondrial uncouplers, collapsing the mitochondrial membrane potential and thereby reducing the generation of reactive oxygen species from mitochondria during glutamate toxicity. Finally, the third group of tyrphostins does not appear to be effective as antioxidants but rather protects cells by increasing the basal level of cellular glutathione. Therefore, the effects of tyrphostins on cells are not limited to their ability to inhibit tyrosine kinases. PMID:12121989

  15. Effect of Oxidative Stress on Male Reproduction

    PubMed Central

    Virk, Gurpriya; Ong, Chloe; du Plessis, Stefan S

    2014-01-01

    Infertility affects approximately 15% of couples trying to conceive, and a male factor contributes to roughly half of these cases. Oxidative stress (OS) has been identified as one of the many mediators of male infertility by causing sperm dysfunction. OS is a state related to increased cellular damage triggered by oxygen and oxygen-derived free radicals known as reactive oxygen species (ROS). During this process, augmented production of ROS overwhelms the body's antioxidant defenses. While small amounts of ROS are required for normal sperm functioning, disproportionate levels can negatively impact the quality of spermatozoa and impair their overall fertilizing capacity. OS has been identified as an area of great attention because ROS and their metabolites can attack DNA, lipids, and proteins; alter enzymatic systems; produce irreparable alterations; cause cell death; and ultimately, lead to a decline in the semen parameters associated with male infertility. This review highlights the mechanisms of ROS production, the physiological and pathophysiological roles of ROS in relation to the male reproductive system, and recent advances in diagnostic methods; it also explores the benefits of using antioxidants in a clinical setting. PMID:24872947

  16. Oxidative stress: the special case of diabetes.

    PubMed

    Wiernsperger, N F

    2003-01-01

    The implication of oxidative stress (OS) in diabetes is a major concern for the development of therapeutics aimed at improving the metabolic and/or vascular dysfunctions of this burdening disease. Ample evidence is available suggesting that OS is present in essentially all tissues and can even be observed in prediabetic states. This raises the question of the origin of OS and suggests that, although hyperglycemia is largely linked with free radical production, its role may mainly be the aggravation of a preexisting state. Indeed other factors are also causally linked to OS, such as hormones and lipids. The main debate is about the pertinence of antioxidant therapy since the large scale clinical trials performed recently have essentially failed to show any significant improvement in metabolic or vascular disturbances of diabetic patients. However this conclusion must be tempered by the fact that they have mainly been using vitamin E +/-C; indeed many arguments suggest that either the choice or the application modalities of these substances may have been inadequate. Potential reasons for the actual failure of antioxidant therapy in diabetes are discussed; the indisputable involvement of OS in this disease still leaves hope for alternative therapeutic approaches. PMID:14757973

  17. Aldose reductase, oxidative stress, and diabetic mellitus.

    PubMed

    Tang, Wai Ho; Martin, Kathleen A; Hwa, John

    2012-01-01

    Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications. PMID:22582044

  18. Oxidative Stress and Neurobiology of Demyelination.

    PubMed

    Ljubisavljevic, Srdjan

    2016-01-01

    Despite a large amount of research which aims at defining the pathophysiology of human demyelination (i.e., multiple sclerosis), etiological bases of disease have been unknown so far. The point of intersection of all assumed etiological factors, which are mainly based upon immunological cascades, is neuroinflammation. The precise definition of the place and role of all pathogenetic factors in the occurrence and development of the disease is of crucial importance for understanding the clinical nature and for finding more effective therapeutic options. There are few studies whose results give more precise data about the role and the importance of other factors in neuroinflammation, besides immunological ones, with regard to clinical and paraclinical correlates of the disease. The review integrates results found in previously performed studies which have evaluated oxidative stress participation in early and late neuroinflammation. The largest number of studies indicates that the use of antioxidants affects the change of neuroinflammation course under experimental conditions, which is reflected in the reduction of the severity and the total reversibility in clinical presentation of the disease, the faster achieving of remission, and the delayed and slow course of neuroinflammation. Therapies based on the knowledge of redox biology targeting free radical generation hold great promise in modulation of the neuroinflammation and its clinical presentations. PMID:25502298

  19. Boolean modeling and fault diagnosis in oxidative stress response

    PubMed Central

    2012-01-01

    Background Oxidative stress is a consequence of normal and abnormal cellular metabolism and is linked to the development of human diseases. The effective functioning of the pathway responding to oxidative stress protects the cellular DNA against oxidative damage; conversely the failure of the oxidative stress response mechanism can induce aberrant cellular behavior leading to diseases such as neurodegenerative disorders and cancer. Thus, understanding the normal signaling present in oxidative stress response pathways and determining possible signaling alterations leading to disease could provide us with useful pointers for therapeutic purposes. Using knowledge of oxidative stress response pathways from the literature, we developed a Boolean network model whose simulated behavior is consistent with earlier experimental observations from the literature. Concatenating the oxidative stress response pathways with the PI3-Kinase-Akt pathway, the oxidative stress is linked to the phenotype of apoptosis, once again through a Boolean network model. Furthermore, we present an approach for pinpointing possible fault locations by using temporal variations in the oxidative stress input and observing the resulting deviations in the apoptotic signature from the normally predicted pathway. Such an approach could potentially form the basis for designing more effective combination therapies against complex diseases such as cancer. Results In this paper, we have developed a Boolean network model for the oxidative stress response. This model was developed based on pathway information from the current literature pertaining to oxidative stress. Where applicable, the behaviour predicted by the model is in agreement with experimental observations from the published literature. We have also linked the oxidative stress response to the phenomenon of apoptosis via the PI3k/Akt pathway. Conclusions It is our hope that some of the additional predictions here, such as those pertaining to the

  20. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  1. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    PubMed

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy. PMID:26851532

  2. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  3. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    PubMed Central

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  4. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    PubMed

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. PMID:23911531

  5. Genetically induced oxidative stress in mice causes thrombocytosis, splenomegaly and placental angiodysplasia that leads to recurrent abortion

    PubMed Central

    Ishii, Takamasa; Miyazawa, Masaki; Takanashi, Yumi; Tanigawa, Maya; Yasuda, Kayo; Onouchi, Hiromi; Kawabe, Noboru; Mitsushita, Junji; Hartman, Phil S.; Ishii, Naoaki

    2014-01-01

    Historical data in the 1950s suggests that 7%, 11%, 33%, and 87% of couples were infertile by ages 30, 35, 40 and 45, respectively. Up to 22.3% of infertile couples have unexplained infertility. Oxidative stress is associated with male and female infertility. However, there is insufficient evidence relating to the influence of oxidative stress on the maintenance of a viable pregnancy, including pregnancy complications and fetal development. Recently, we have established Tet-mev-1 conditional transgenic mice, which can express the doxycycline-induced mutant SDHCV69E transgene and experience mitochondrial respiratory chain dysfunction leading to intracellular oxidative stress. In this report, we demonstrate that this kind of abnormal mitochondrial respiratory chain-induced chronic oxidative stress affects fertility, pregnancy and delivery rates as well as causes recurrent abortions, occasionally resulting in maternal death. Despite this, spermatogenesis and early embryogenesis are completely normal, indicating the mutation's effects to be rather subtle. Female Tet-mev-1 mice exhibit thrombocytosis and splenomegaly in both non-pregnant and pregnant mice as well as placental angiodysplasia with reduced Flt-1 protein leading to hypoxic conditions, which could contribute to placental inflammation and fetal abnormal angiogenesis. Collectively these data strongly suggest that chronic oxidative stress caused by mitochondrial mutations provokes spontaneous abortions and recurrent miscarriage resulting in age-related female infertility. PMID:24936442

  6. The Role of Hippocampal Iron Concentration and Hippocampal Volume in Age-Related Differences in Memory

    PubMed Central

    Rodrigue, Karen M.; Daugherty, Ana M.; Haacke, E. Mark; Raz, Naftali

    2013-01-01

    The goal of this study was to examine the relationships between 2 age-sensitive indices of brain integrity—volume and iron concentration—and the associated age differences in memory performance. In 113 healthy adults (age 19–83 years), we measured the volume and estimated iron concentration in the hippocampus (HC), caudate nucleus (Cd), and primary visual cortex (VC) in vivo with T2* relaxation times, and assessed memory performance with multiple tests. We applied structural equation modeling to evaluate the contribution of individual differences in 2 indices of integrity, volume and T2*, to age-related memory variance. The results show that in healthy adults, age differences in memory can be explained in part by individual differences in HC volume that in turn are associated with differences in HC iron concentration. Lower memory scores were linked to smaller HC and higher HC iron concentration. No such associations were noted for Cd and VC. We conclude that the association between age-related declines in memory and reduced hippocampal volume may reflect the impact of oxidative stress related to increase in free iron concentration. Longitudinal follow-up is needed to test whether altered iron homeostasis in the HC is an early marker for age-related cognitive decline. PMID:22645251

  7. Antioxidant-enriched diet does not delay the progression of age-related hearing loss.

    PubMed

    Sha, Su-Hua; Kanicki, Ariane; Halsey, Karin; Wearne, Kimberly Anne; Schacht, Jochen

    2012-05-01

    Oxidative stress has been linked to noise- and drug-induced as well as age-related hearing loss. Antioxidants can attenuate the decline of cochlear structure and function after exposure to noise or drugs, but it is debated as to whether they can protect from age-related hearing loss. In a long-term longitudinal study, 10-month-old female CBA/J mice were placed on either a control or antioxidant-enriched diet and monitored through 24 months of age. Supplementation with vitamins A, C, and E, L-carnitine, and α-lipoic acid significantly increased the antioxidant capacity of inner ear tissues. However, by 24 months of age, the magnitude of hearing loss was equal between the two groups. Likewise, there were no significant differences in hair cell loss or degeneration of spiral ganglion cells. We conclude that dietary manipulations can alter cochlear antioxidant capacity but do not ameliorate age-related sensorineural hearing loss in the CBA/J mouse. PMID:22154190

  8. Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration

    PubMed Central

    Blasiak, Janusz; Synowiec, Ewelina; Salminen, Antero; Kaarniranta, Kai

    2012-01-01

    The pathogenesis of age-related macular degeneration (AMD) is complex and involves interactions between environmental and genetic factors, with oxidative stress playing an important role inducing damage in biomolecules, including DNA. Therefore, genetic variability in the components of DNA repair systems may influence the ability of the cell to cope with oxidative stress and in this way contribute to the pathogenesis of AMD. However, few reports have been published on this subject so far. We demonstrated that the c.977C>G polymorphism (rs1052133) in the hOGG1 gene and the c.972G>C polymorphism (rs3219489) in the MUTYH gene, the products of which play important roles in the repair of oxidatively damaged DNA, might be associated with the risk of AMD. Oxidative stress may promote misincorporation of uracil into DNA, where it is targeted by several DNA glycosylases. We observed that the g.4235T>C (rs2337395) and c.–32A>G (rs3087404) polymorphisms in two genes encoding such glycosylases, UNG and SMUG1, respectively, could be associated with the occurrence of AMD. Polymorphisms in some other DNA repair genes, including XPD (ERCC2), XRCC1 and ERCC6 (CSB) have also been reported to be associated with AMD. These data confirm the importance of the cellular reaction to DNA damage, and this may be influenced by variability in DNA repair genes, in AMD pathogenesis. PMID:23202958

  9. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology

    PubMed Central

    Jaquet, Vincent; Trabace, Luigia; Krause, Karl-Heinz

    2013-01-01

    Abstract Significance: Severe life stress (SLS), as opposed to trivial everyday stress, is defined as a serious psychosocial event with the potential of causing an impacting psychological traumatism. Recent Advances: Numerous studies have attempted to understand how the central nervous system (CNS) responds to SLS. This response includes a variety of morphological and neurochemical modifications; among them, oxidative stress is almost invariably observed. Oxidative stress is defined as disequilibrium between oxidant generation and the antioxidant response. Critical Issues: In this review, we discuss how SLS leads to oxidative stress in the CNS, and how the latter impacts pathophysiological outcomes. We also critically discuss experimental methods that measure oxidative stress in the CNS. The review covers animal models and human observations. Animal models of SLS include sleep deprivation, maternal separation, and social isolation in rodents, and the establishment of hierarchy in non-human primates. In humans, SLS, which is caused by traumatic events such as child abuse, war, and divorce, is also accompanied by oxidative stress in the CNS. Future Directions: The outcome of SLS in humans ranges from resilience, over post-traumatic stress disorder, to development of chronic mental disorders. Defining the sources of oxidative stress in SLS might in the long run provide new therapeutic avenues. Antioxid. Redox Signal. 18, 1475–1490. PMID:22746161

  10. The Role of Flavonoids on Oxidative Stress in Epilepsy

    PubMed Central

    Diniz, Tâmara Coimbra; Silva, Juliane Cabral; de Lima-Saraiva, Sarah Raquel Gomes; Ribeiro, Fernanda Pires Rodrigues de Almeida; Pacheco, Alessandra Gomes Marques; de Freitas, Rivelilson Mendes; Quintans-Júnior, Lucindo José; Quintans, Jullyana de Souza Siqueira; Mendes, Rosemairy Luciane; Almeida, Jackson Roberto Guedes da Silva

    2015-01-01

    Backgrounds. Oxidative stress can result from excessive free-radical production and it is likely implicated as a possible mechanism involved in the initiation and progression of epileptogenesis. Flavonoids can protect the brain from oxidative stress. In the central nervous system (CNS) several flavonoids bind to the benzodiazepine site on the GABAA-receptor resulting in anticonvulsive effects. Objective. This review provides an overview about the role of flavonoids in oxidative stress in epilepsy. The mechanism of action of flavonoids and its relation to the chemical structure is also discussed. Results/Conclusions. There is evidence that suggests that flavonoids have potential for neuroprotection in epilepsy. PMID:25653736

  11. Inhibition of the oxidative stress response by heat stress in Caenorhabditis elegans.

    PubMed

    Crombie, Timothy A; Tang, Lanlan; Choe, Keith P; Julian, David

    2016-07-15

    It has long been recognized that simultaneous exposure to heat stress and oxidative stress shows a synergistic interaction that reduces organismal fitness, but relatively little is known about the mechanisms underlying this interaction. We investigated the role of molecular stress responses in driving this synergistic interaction using the nematode Caenorhabditis elegans To induce oxidative stress, we used the pro-oxidant compounds acrylamide, paraquat and juglone. As expected, we found that heat stress and oxidative stress interact synergistically to reduce survival. Compared with exposure to each stressor alone, during simultaneous sublethal exposure to heat stress and oxidative stress the normal induction of key oxidative-stress response (OxSR) genes was generally inhibited, whereas the induction of key heat-shock response (HSR) genes was not. Genetically activating the SKN-1-dependent OxSR increased a marker for protein aggregation and decreased whole-worm survival during heat stress alone, with the latter being independent of HSF-1. In contrast, compared with wild-type worms, inactivating the HSR by HSF-1 knockdown, which would be expected to decrease basal heat shock protein expression, increased survival during oxidative stress alone. Taken together, these data suggest that, in C. elegans, the HSR and OxSR cannot be simultaneously activated to the same extent that each can be activated during a single stressor exposure. We conclude that the observed synergistic reduction in survival during combined exposure to heat stress and oxidative stress is due, at least in part, to inhibition of the OxSR during activation of the HSR. PMID:27207646

  12. Protective mechanisms of Cucumis sativus in diabetes-related modelsof oxidative stress and carbonyl stress

    PubMed Central

    Heidari, Himan; Kamalinejad, Mohammad; Noubarani, Maryam; Rahmati, Mokhtar; Jafarian, Iman; Adiban, Hasan; Eskandari, Mohammad Reza

    2016-01-01

    Introduction: Oxidative stress and carbonyl stress have essential mediatory roles in the development of diabetes and its related complications through increasing free radicals production and impairing antioxidant defense systems. Different chemical and natural compounds have been suggested for decreasing such disorders associated with diabetes. The objectives of the present study were to investigate the protective effects of Cucumis sativus (C. sativus) fruit (cucumber) in oxidative and carbonyl stress models. These diabetes-related models with overproduction of reactive oxygen species (ROS) and reactive carbonyl species (RCS) simulate conditions observed in chronic hyperglycemia. Methods: Cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonyl stress model) were measured and the protective effects of C. sativus were evaluated using freshly isolated rat hepatocytes. Results: Aqueous extract of C. sativus fruit (40 μg/mL) prevented all cytotoxicity markers in both the oxidative and carbonyl stress models including cell lysis, ROS formation, membrane lipid peroxidation, depletion of glutathione, mitochondrial membrane potential decline, lysosomal labialization, and proteolysis. The extract also protected hepatocytes from protein carbonylation induced by glyoxal. Our results indicated that C. sativus is able to prevent oxidative stress and carbonyl stress in the isolated hepatocytes. Conclusion: It can be concluded that C. sativus has protective effects in diabetes complications and can be considered a safe and suitable candidate for decreasing the oxidative stress and carbonyl stress that is typically observed in diabetes mellitus. PMID:27340622

  13. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context. PMID:25542633

  14. Increased oxidative stress in foam cells obtained from hemodialysis patients.

    PubMed

    Gonçalves, Marlene S B; Fabris, Bruno A; Brinholi, Francis F; Bortolasci, Chiara C; Watanabe, Maria A E; Oliveira, Karen B; Delfino, Vinícius D A; Lavado, Edson L; Barbosa, Décio S

    2013-04-01

    Premature atherosclerosis represents the main cause of mortality among end-stage renal disease patients (ESRD). Increased inflammation and oxidative stress are involved in initiation and progression of the atherosclerotic plaque. As foam cells are capable of producing significant amounts of inflammatory mediators and free radicals, we hypothesized that foam cells from uremic patients could produce more inflammation and oxidative stress than foam cells from normal people and be, somehow, involved in the accelerated atherosclerosis of uremia. To test this hypothesis, the levels of a few markers of inflammation and oxidative stress: Tumor necrosis factor-α, inducible nitric oxide synthase, malondialdehyde, nitric oxide by-products were measured in the supernatants of macrophage-derived foam cells cultures from 18 hemodialysis patients and 18 apparently healthy individuals controls. Malondialdehyde levels in the supernatant of cell cultures (macrophages stimulated or not with native and oxidized lipoprotein) were significantly increased in uremic patients; no statistically significant difference was found between the supernatant concentrations of nitric oxide by-products, inducible nitric oxide synthase activity, and tumor necrosis factor-α between patients and controls. Our results, obtained with human macrophages and macrophage-derived foam cells, are compatible with the theory that increased cellular oxidative stress and inflammatory activity in ESRD patients could accelerate the atherosclerotic process. The present culture protocol showed it is possible to use human mononuclear cells to evaluate the oxidative metabolism of foam cells, which are considered to be the initial step of atherosclerotic lesions. PMID:22928784

  15. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver

    PubMed Central

    Satapati, Santhosh; Kucejova, Blanka; Duarte, Joao A.G.; Fletcher, Justin A.; Reynolds, Lacy; Sunny, Nishanth E.; He, Tianteng; Nair, L. Arya; Livingston, Kenneth; Fu, Xiaorong; Merritt, Matthew E.; Sherry, A. Dean; Malloy, Craig R.; Shelton, John M.; Lambert, Jennifer; Parks, Elizabeth J.; Corbin, Ian; Magnuson, Mark A.; Browning, Jeffrey D.; Burgess, Shawn C.

    2015-01-01

    Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid–induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways. PMID:26571396

  16. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  17. Oxidized Extracellular DNA as a Stress Signal in Human Cells

    PubMed Central

    Ermakov, Aleksei V.; Konkova, Marina S.; Kostyuk, Svetlana V.; Izevskaya, Vera L.; Veiko, Natalya N.

    2013-01-01

    The term “cell-free DNA” (cfDNA) was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA). Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DNA could serve as a stress signal that promotes irradiation-induced bystander effect. Evidence points to TLR9 as a possible candidate for oxidized DNA sensor. An exposure to oxidized ecDNA stimulates a synthesis of reactive oxygen species (ROS) that evokes an adaptive response that includes transposition of the homologous loci within the nucleus, polymerization and the formation of the stress fibers of the actin, as well as activation of the ribosomal gene expression, and nuclear translocation of NF-E2 related factor-2 (NRF2) that, in turn, mediates induction of phase II detoxifying and antioxidant enzymes. In conclusion, the oxidized DNA is a stress signal released in response to oxidative stress in the cultured cells and, possibly, in the human body; in particular, it might contribute to systemic abscopal effects of localized irradiation treatments. PMID:23533696

  18. Salivary Nitric Oxide, a Biomarker for Stress and Anxiety?

    PubMed Central

    Al-Smadi, Ahmed Mohammad; Ashour, Ala Fawzi; Al-Awaida, Wajdy

    2016-01-01

    Objective To investigate if salivary nitrate correlates to the daily psychological stress and anxiety in a group of human subjects. Methods The convenient sample recruitment method was employed; data from seventy three subjects were analyzed. The Perceived Stress Scale (PSS) and Hamilton Anxiety Rating Scale (HAM-A) inventories were used to determine stress and anxiety scores respectively. Salivary nitric oxide was measured through nitrate (NOx) levels using the Griess reaction method. Results Although stress and anxiety were correlated. No significant correlation exists between salivary nitrate and daily psychological stress and anxiety in the study's participants. Conclusion While all previous studies focused NOx levels in acute stress models. This is the first study to investigate the correlation between salivary nitrates and daily psychological stress and anxiety. Although stress and anxiety were correlated, there is no correlation between salivary nitrates and daily psychological stress and anxiety. Further studies are required to investigate this correlation using other biological samples such as plasma. PMID:27247597

  19. Inhibition of phagocytic activity of ARPE-19 cells by free radical mediated oxidative stress.

    PubMed

    Olchawa, Magdalena M; Pilat, Anna K; Szewczyk, Grzegorz M; Sarna, Tadeusz Jan

    2016-08-01

    Oxidative stress is a main factor responsible for key changes leading to the onset of age-related macular degeneration (ARMD) that occur in the retinal pigment epithelium (RPE), which is involved in phagocytosis of photoreceptor outer segments (POS). In this study, hydrogen peroxide (H2O2), H2O2 and iron ions (Fe) or rose Bengal (RB) in the presence of NADH and Fe were used to model free radical mediated oxidative stress to test if free radicals and singlet oxygen have different efficiency to inhibit phagocytosis of ARPE-19 cells. Free radical mediated oxidative stress was confirmed by HPLC-EC(Hg) measurements of cholesterol hydroperoxides in treated cells. Electron paramagnetic resonance (EPR) spin trapping was employed to detect superoxide anion. Cell survival was analyzed by the MTT assay. Specific phagocytosis of fluorescein-5-isothiocyanate-labeled POS and non-specific phagocytosis of fluorescent beads were measured by flow cytometry. HPLC analysis of cells photosensitized with RB in the presence of NADH and Fe indicated substantial increase in formation of free radical-dependent 7α/7β-hydroperoxides. EPR spin trapping confirmed the photogeneration of superoxide anion in samples enriched with RB, NADH and Fe. For all three protocols sub-lethal oxidative stress induced significant inhibition of the specific phagocytosis of POS. In contrast, non-specific phagocytosis was inhibited only by H2O2 or H2O2 and Fe treatment. Inhibition of phagocytosis was transient and recoverable by 24 h. These results suggest that free radicals may exert similar to singlet oxygen efficiency in inhibiting phagocytosis of RPE cells, and that the effect depends on the location where initial reactive species are formed. PMID:27225587

  20. Omega-3 Fatty Acids, Oxidative Stress, and Leukocyte Telomere Length: A Randomized Controlled Trial

    PubMed Central

    Kiecolt-Glaser, Janice K.; Epel, Elissa S.; Belury, Martha A.; Andridge, Rebecca; Lin, Jue; Glaser, Ronald; Malarkey, William B.; Hwang, Beom Seuk; Blackburn, Elizabeth

    2012-01-01

    Shorter telomeres have been associated with poor health behaviors, age-related diseases, and early mortality. Telomere length is regulated by the enzyme telomerase, and is linked to exposure to proinflammatory cytokines and oxidative stress. In our recent randomized controlled trial, omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation lowered the concentration of serum proinflammatory cytokines. This study assessed whether n-3 PUFA supplementation also affected leukocyte telomere length, telomerase, and oxidative stress. In addition to testing for group differences, changes in the continuous n-6:n-3 PUFA ratio were assessed to account for individual differences in adherence, absorption, and metabolism. The double-blind 4-month trial included 106 healthy sedentary overweight middle-aged and older adults who received (1) 2.5 g/day n-3 PUFAs, (2) l.25 g/day n-3 PUFAs, or (3) placebo capsules that mirrored the proportions of fatty acids in the typical American diet. Supplementation significantly lowered oxidative stress as measured by F2-isoprostanes (p=0.02). The estimated geometric mean log-F2-isoprostanes values were 15% lower in the two supplemented groups compared to placebo. Although group differences for telomerase and telomere length were nonsignificant, changes in the n-6:n-3 PUFA plasma ratios helped clarify the intervention’s impact: telomere length increased with decreasing n-6:n-3 ratios, p=0.02. The data suggest that lower n-6:n-3 PUFA ratios can impact cell aging. The triad of inflammation, oxidative stress, and immune cell aging represents important pre-disease mechanisms that may be ameliorated through nutritional interventions. This translational research broadens our understanding of the potential impact of the n-6:n-3 PUFA balance. ClinicalTrials.gov identifier: NCT00385723 PMID:23010452

  1. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  2. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    PubMed Central

    Rebbani, Khadija; Tsukiyama-Kohara, Kyoko

    2016-01-01

    About 150 million people worldwide are chronically infected with hepatitis C virus (HCV). The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24) is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis. PMID:27293514

  3. Role of sulfiredoxin in systemic diseases influenced by oxidative stress

    PubMed Central

    Ramesh, Asha; Varghese, Sheeja S.; Doraiswamy, Jayakumar; Malaiappan, Sankari

    2014-01-01

    Sulfiredoxin is a recently discovered member of the oxidoreductases family which plays a crucial role in thiol homoeostasis when under oxidative stress. A myriad of systemic disorders have oxidative stress and reactive oxygen species as the key components in their etiopathogenesis. Recent studies have evaluated the role of this enzyme in oxidative stress mediated diseases such as atherosclerosis, chronic obstructive pulmonary disease and a wide array of carcinomas. Its action is responsible for the normal functioning of cells under oxidative stress and the promotion of cell survival in cancerous cells. This review will highlight the cumulative effects of sulfiredoxin in various systemic disorders with a strong emphasis on its target activity and the factors influencing its expression in such conditions. PMID:25460739

  4. OXIDATIVE STRESS STATUS IN HUMANS WITH METABOLIC SYNDROME

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Each component of the constellation of Metabolic Syndrome signs - dyslipidemia, hyperglycemia, hypertension, and obesity - has been associated, though not unequivocally, with an elevation of oxidative stress. Moreover, reductions in these conditions appear generally associated with attenuation of b...

  5. The Role of Oxidative Stress in Neurodegenerative Diseases

    PubMed Central

    Kim, Geon Ha; Kim, Jieun E.; Rhie, Sandy Jeong

    2015-01-01

    Oxidative stress is induced by an imbalanced redox states, involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system. The brain is one of organs especially vulnerable to the effects of ROS because of its high oxygen demand and its abundance of peroxidation-susceptible lipid cells. Previous studies have demonstrated that oxidative stress plays a central role in a common pathophysiology of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases, although the results with regard to their efficacy of treating neurodegenerative disease have been inconsistent. In this review, we will discuss the role of oxidative stress in the pathophysiology of neurodegenerative diseases and in vivo measurement of an index of damage by oxidative stress. Moreover, the present knowledge on antioxidant in the treatment of neurodegenerative diseases and future directions will be outlined. PMID:26713080

  6. Age-Related White Matter Changes

    PubMed Central

    Xiong, Yun Yun; Mok, Vincent

    2011-01-01

    Age-related white matter changes (WMC) are considered manifestation of arteriolosclerotic small vessel disease and are related to age and vascular risk factors. Most recent studies have shown that WMC are associated with a host of poor outcomes, including cognitive impairment, dementia, urinary incontinence, gait disturbances, depression, and increased risk of stroke and death. Although the clinical relevance of WMC has been extensively studied, to date, only very few clinical trials have evaluated potential symptomatic or preventive treatments for WMC. In this paper, we reviewed the current understanding in the pathophysiology, epidemiology, clinical importance, chemical biomarkers, and treatments of age-related WMC. PMID:21876810

  7. Pharmacogenetics and age-related macular degeneration.

    PubMed

    Schwartz, Stephen G; Brantley, Milam A

    2011-01-01

    Pharmacogenetics seeks to explain interpatient variability in response to medications by investigating genotype-phenotype correlations. There is a small but growing body of data regarding the pharmacogenetics of both nonexudative and exudative age-related macular degeneration. Most reported data concern polymorphisms in the complement factor H and age-related maculopathy susceptibility 2 genes. At this time, the data are not consistent and no definite conclusions may be drawn. As clinical trials data continue to accumulate, these relationships may become more apparent. PMID:22046503

  8. Introduction to Oxidative Stress in Biomedical and Biological Research

    PubMed Central

    Breitenbach, Michael; Eckl, Peter

    2015-01-01

    Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field. PMID:26117854

  9. The Effect of Aging on Mitochondrial Complex I and the Extent of Oxidative Stress in the Rat Brain Cortex.

    PubMed

    Tatarkova, Zuzana; Kovalska, Maria; Timkova, Veronika; Racay, Peter; Lehotsky, Jan; Kaplan, Peter

    2016-08-01

    One of the characteristic features of the aging is dysfunction of mitochondria. Its role in the regulation of metabolism and apoptosis suggests a possible link between these cellular processes. This study investigates the relationship of respiratory complex I with aging-related oxidative stress in the cerebral mitochondria. Deterioration of complex I seen in senescent (26-months old) mitochondria was accompanied by decline in total thiol group content, increase of HNE and HNE-protein adducts as well as decreased content of complex I subunits, GRIM-19 and NDUFV2. On the other hand, decline of complex I might be related with the mitochondrial apoptosis through increased Bax/Bcl-2 cascade in 15-month old animal brains. Higher amount of Bcl-2, Bcl-xL with the lower content of GRIM-19 could maintain to some extent elevated oxidative stress in mitochondria as seen in the senescent group. In the cortical M1 region increased presence of TUNEL+ cells and more than 20-times higher density of Fluoro-Jade C+ cells in 26-months old was observed, suggesting significant neurodegenerative effect of aging in the neuronal cells. Our study supports a scenario in which the age-related decline of complex I might sensitize neurons to the action of death agonists, such as Bax through lipid and protein oxidative stimuli in mitochondria. Although aging is associated with oxidative stress, these changes did not increase progressively with age, as similar extent of lesions was observed in oxidative stress markers of the both aged groups. PMID:27161369

  10. Folic acid supplementation at lower doses increases oxidative stress resistance and longevity in Caenorhabditis elegans.

    PubMed

    Rathor, Laxmi; Akhoon, Bashir Akhlaq; Pandey, Swapnil; Srivastava, Swati; Pandey, Rakesh

    2015-12-01

    Folic acid (FA) is an essential nutrient that the human body needs but cannot be synthesized on its own. Fortified foods and plant food sources such as green leafy vegetables, beans, fruits, and juices are good sources of FA to meet the daily requirements of the body. The aim was to evaluate the effect of dietary FA levels on the longevity of well-known experimental aging model Caenorhabditis elegans. Here, we show for first time that FA extends organism life span and causes a delay in aging. We observed that FA inhibits mechanistic target of rapamycin (mTOR) and insulin/insulin growth factor 1 (IGF-1) signaling pathways to control both oxidative stress levels and life span. The expression levels of stress- and life span-relevant gerontogenes, viz. daf-16, skn-1, and sir. 2.1, and oxidative enzymes, such as glutathione S-transferase 4 (GST-4) and superoxide dismutase 3 (SOD-3), were also found to be highly enhanced to attenuate the intracellular reactive oxygen species (ROS) damage and to delay the aging process. Our study promotes the use of FA to mitigate abiotic stresses and other aging-related ailments. PMID:26546011

  11. In Vivo Imaging of Retinal Oxidative Stress Using a Reactive Oxygen Species–Activated Fluorescent Probe

    PubMed Central

    Prunty, Megan C.; Aung, Moe H.; Hanif, Adam M.; Allen, Rachael S.; Chrenek, Micah A.; Boatright, Jeffrey H.; Thule, Peter M.; Kundu, Kousik; Murthy, Niren; Pardue, Machelle T.

    2015-01-01

    Purpose In vivo methods for detecting oxidative stress in the eye would improve screening and monitoring of the leading causes of blindness: diabetic retinopathy, glaucoma, and age-related macular degeneration. Methods To develop an in vivo biomarker for oxidative stress in the eye, we tested the efficacy of a reactive oxygen species (ROS)–activated, near-infrared hydrocyanine-800CW (H-800CW) fluorescent probe in light-induced retinal degeneration (LIRD) mouse models. After intravitreal delivery in LIRD rats, fluorescent microscopy was used to confirm that the oxidized H-800CW appeared in the same retinal layers as an established ROS marker (dichlorofluorescein). Results Dose–response curves of increasing concentrations of intravenously injected H-800CW demonstrated linear increases in both intensity and total area of fundus hyperfluorescence in LIRD mice, as detected by scanning laser ophthalmoscopy. Fundus hyperfluorescence also correlated with the duration of light damage and functional deficits in vision after LIRD. In LIRD rats with intravitreal injections of H-800CW, fluorescent labeling was localized to photoreceptor inner segments, similar to dichlorofluorescein. Conclusions Hydrocyanine-800CW detects retinal ROS in vivo and shows potential as a novel biomarker for ROS levels in ophthalmic diseases. PMID:26348635

  12. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.

    PubMed

    Wang, Jing; Yang, Xin; Zhang, Jingjing

    2016-08-01

    Pancreatic β cell dysfunction, i.e., failure to provide insulin in concentrations sufficient to control blood sugar, is central to the etiology of all types of diabetes. Current evidence implicates mitochondrial oxidative stress and endoplasmic reticulum (ER) stress in pancreatic β cell loss and impaired insulin secretion. Oxidative and ER stress are interconnected so that misfolded proteins induce reactive oxygen species (ROS) production; likewise, oxidative stress disturbs the ER redox state thereby disrupting correct disulfide bond formation and proper protein folding. mTOR signaling regulates many metabolic processes including protein synthesis, cell growth, survival and proliferation. Oxidative stress inhibits mTORC1, which is considered an important suppressor of mitochondrial oxidative stress in β cells, and ultimately, controls cell survival. The interplay between ER stress and mTORC1 is complicated, since the unfolded protein response (UPR) activation can occur upstream or downstream of mTORC1. Persistent activation of mTORC1 initiates protein synthesis and UPR activation, while in the later phase induces ER stress. Chronic activation of ER stress inhibits Akt/mTORC1 pathway, while under particular settings, acute activation of UPR activates Akt-mTOR signaling. Thus, modulating mitochondrial oxidative stress and ER stress via mTOR signaling may be an approach that will effectively suppress obesity- or glucolipotoxicity-induced metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM). In this review, we focus on the regulations between mTOR signaling and mitochondrial oxidative or ER stress in pancreatic β cells. PMID:27185188

  13. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  14. Impaired Metabolic Reactivity to Oxidative Stress in Early Psychosis Patients

    PubMed Central

    Fournier, Margot; Ferrari, Carina; Baumann, Philipp S.; Polari, Andrea; Monin, Aline; Bellier-Teichmann, Tanja; Wulff, Jacob; Pappan, Kirk L.; Cuenod, Michel; Conus, Philippe; Do, Kim Q.

    2014-01-01

    Because increasing evidence point to the convergence of environmental and genetic risk factors to drive redox dysregulation in schizophrenia, we aim to clarify whether the metabolic anomalies associated with early psychosis reflect an adaptation to oxidative stress. Metabolomic profiling was performed to characterize the response to oxidative stress in fibroblasts from control individuals (n = 20) and early psychosis patients (n = 30), and in all, 282 metabolites were identified. In addition to the expected redox/antioxidant response, oxidative stress induced a decrease of lysolipid levels in fibroblasts from healthy controls that were largely muted in fibroblasts from patients. Most notably, fibroblasts from patients showed disrupted extracellular matrix- and arginine-related metabolism after oxidative stress, indicating impairments beyond the redox system. Plasma membrane and extracellular matrix, 2 regulators of neuronal activity and plasticity, appeared as particularly susceptible to oxidative stress and thus provide novel mechanistic insights for pathophysiological understanding of early stages of psychosis. Statistically, antipsychotic medication at the time of biopsy was not accounting for these anomalies in the metabolism of patients’ fibroblasts, indicating that they might be intrinsic to the disease. Although these results are preliminary and should be confirmed in a larger group of patients, they nevertheless indicate that the metabolic signature of reactivity to oxidative stress may provide reliable early markers of psychosis. Developing protective measures aimed at normalizing the disrupted pathways should prevent the pathological consequences of environmental stressors. PMID:24687046

  15. Oxidative Stress in Niemann-Pick Disease, Type C

    PubMed Central

    Fu, Rao; Yanjanin, Nicole M.; Bianconi, Simona; Pavan, William J.; Porter, Forbes D.

    2010-01-01

    Niemann-Pick Disease, type C (NPC) is a neurodegenerative lysosomal storage disorder due to impaired intracellular cholesterol and lipid transport. Increased oxidative stress has been reported in human NPC1 mutant fibroblasts and in tissues from Npc1 mutant mice. However, oxidative stress in NPC patients has not been established. In this study, we demonstrated increased oxidative stress in NPC patients. Evaluation of serum from 37 NPC patients, compared to control values, showed significant decreases (p<0.01) in both the fraction of reduced coenzyme Q10 (CoQ10) and trolox equivalent antioxidant capacity (TEAC). Both findings are consistent with increased oxidative stress in NPC. Supplementation with CoQ10 was not effective in correcting the decreased fraction of reduced CoQ10. Increased oxidative stress may be a contributing factor to the pathology of NPC, and demonstration of increased oxidative stress in NPC patients provides both a rationale and the biomarkers necessary to test the efficacy of antioxidant therapy in NPC. PMID:20667755

  16. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase

    PubMed Central

    Sanchez–Padilla, J.; Guzman, J.N.; Ilijic, E.; Kondapalli, J.; Galtieri, D.J.; Yang, B.; Schieber, S.; Oertel, W.; Wokosin, D.; Schumacker, P. T.; Surmeier, D. J.

    2014-01-01

    Summary Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging–related neurodegenerative diseases, like Parkinson’s disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, LC neurons were studied using electrophysiological and optical approaches in ex vivo mouse brain slices. These studies revealed that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca2+ concentration attributable to opening of L–type Ca2+ channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide, each increased the spike rate, but differentially affected mitochondrial oxidant stress. Oxidant stress also was increased in an animal model of PD. Thus, our results point to activity–dependent Ca2+ entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons. PMID:24816140

  17. Glutamate cysteine ligase and the age-related decline in cellular glutathione: The therapeutic potential of γ-glutamylcysteine.

    PubMed

    Ferguson, Gavin; Bridge, Wallace

    2016-03-01

    A consistent underlying index of aging is a decline in the cellular levels of the tripeptide glutathione (GSH). GSH is an essential thiol antioxidant produced in the cytosol of all cells and plays a key role in protecting against oxidative stress by neutralising free radicals and reactive oxygen species (ROS). The decline in GSH has been associated with changes in the expression and activity of the rate-limiting enzyme glutamate cysteine ligase (GCL), which produces the intermediate dipeptide γ-glutamylcysteine (γ-GC). The molecular mechanisms that affect these age-related changes remain unclear due to the complexity of GCL regulation. Impairment of the transcriptional activity of Nrf2 has been demonstrated to contribute to GCL dysregulation in aged rats. However, considering the complex nature of GCL regulation, relatively little research has been conducted to investigate the age-associated post-transcriptional controls of the enzyme. Defining these unknown mechanisms may inform our understanding of the aetiology of many age-related diseases and assist in formulating appropriate therapeutic strategies. This review focuses on the suitability of treatment with exogenous γ-GC to raise GSH levels by circumventing the age-related dysregulation of the rate-limiting step of GSH, providing promise for future research for the treatment of chronic oxidative stress-related diseases. PMID:26845022

  18. Current concepts in the pathophysiology of fibromyalgia: the potential role of oxidative stress and nitric oxide.

    PubMed

    Ozgocmen, Salih; Ozyurt, Huseyin; Sogut, Sadik; Akyol, Omer

    2006-05-01

    Fibromyalgia (FM) is a common chronic pain syndrome with an unknown etiology. Recent years added new information to our understanding of FM pathophysiology. Researches on genetics, biogenic amines, neurotransmitters, hypothalamic-pituitary-adrenal axis hormones, oxidative stress, and mechanisms of pain modulation, central sensitization, and autonomic functions in FM revealed various abnormalities indicating that multiple factors and mechanisms are involved in the pathogenesis of FM. Oxidative stress and nitric oxide may play an important role in FM pathophysiology, however it is still not clear whether oxidative stress abnormalities documented in FM are the cause or the effect. This should encourage further researches evaluating the potential role of oxidative stress and nitric oxide in the pathophysiology of FM and the efficacy of antioxidant treatments (omega-3 and -6 fatty acids, vitamins and others) in double blind and placebo controlled trials. These future researches will enhance our understanding of the complex pathophysiology of this disorder. PMID:16328420

  19. Oxidation stress evolution and relaxation of oxide film/metal substrate system

    NASA Astrophysics Data System (ADS)

    Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih

    2012-07-01

    Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.

  20. Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis.

    PubMed

    Heinecke, Jay W

    2003-02-01

    Oxidative modifications of low-density lipoprotein (LDL) have been proposed to play a critical role in atherogenesis. To test the role of proposed antioxidants in inhibiting LDL oxidation and vascular disease, it is important to identify the biologically relevant sources of oxidative stress in the human arterial wall. Mass spectrometric (MS) quantification of oxidized amino acids in proteins was used as a "molecular fingerprint" to identify the pathways that inflict oxidative damage in vivo. For example, myeloperoxidase is expressed in macrophages in human atherosclerotic lesions, and immunohistochemical studies suggest that it might be a pathway for LDL oxidation. We found that hypochlorous acid, tyrosyl radical, and reactive nitrogen species generated by myeloperoxidase each yielded a unique pattern of protein oxidation products in vitro. MS analysis of human atherosclerotic tissue revealed a similar pattern of oxidation products. This strategy has pinpointed myeloperoxidase as a pathway that promotes LDL oxidation in the human artery wall. It is noteworthy that vitamin E fails to inhibit LDL oxidation by myeloperoxidase in vitro. Because the utility of an antioxidant depends critically on the nature of the oxidant that inflicts tissue damage, interventions that specifically inhibit physiologically relevant pathways would be logical candidates for clinical trials of antioxidants. Such a rational approach to therapy is likely to accelerate progress against oxidative stress and coronary artery disease. PMID:12645639

  1. Topical Nutraceutical Optixcare EH Ameliorates Experimental Ocular Oxidative Stress in Rats

    PubMed Central

    Guo, Changmei; Kawada, Hiroyoshi; Randazzo, James; Blessing, Karen

    2014-01-01

    Abstract Purpose: Based on the hypothesis that oral nutraceuticals do not adequately reach all ocular tissues in the anterior segment, we evaluated the ability of a 3% concentration of the ingredients in a topical nutraceutical antioxidant formulation called Optixcare Eye Health (Optixcare EH) to ameliorate oxidative stress in rat models of age-related ocular diseases. Methods: Diabetes was induced by tail-vein injection of streptozotocin, and the development of cataracts was monitored by slit lamp. Young rats were exposed to ultraviolet (UV) light, and the reduction in lens glutathione (GSH) levels and increase in 4-hydroxynonenol (4-HNE) were measured. Oxidative stress in the neural retina was generated by exposure of dark-adapted rats to 1,000 lx of light, and oxidative stress markers were measured. Dry eye was induced in rats by twice daily (b.i.d.) subcutaneous scopolamine injections. Topical Optixcare EH was administered b.i.d. and compared in select experiments to the multifunctional antioxidant JHX-4, the topical aldose reductase inhibitor (ARI) Kinostat™, oral Ocu-GLO™, and the topical ocular comfort agents Optixcare Eye Lube, Optixcare Eye Lube + Hyaluron, and Idrop Vet Plus hyaluronic acid. Results: In diabetic rats, topical ARI treatment prevented cataract formation while the nutraceuticals delayed their development with Optixcare EH>Ocu-GLO. In UV-exposed rats, the reduction of GSH and increase in 4-HNE in the lens were normalized in order JHX-4>Optixcare EH>Ocu-GLO. In the retina, oxidative stress markers were reduced better by oral JHX-4 compared with topical Optixcare EH. In the scopolamine-induced dry-eye rats, tear flow was maintained by Optixcare EH treatment, while none of the comfort agents examined altered tear flow. Conclusions: Topical administration of a 3% concentration of the ingredients in Optixcare EH reduces experimentally induced reactive oxygen species in rats exposed to several sources of ocular oxidative stress. In addition

  2. Infrared Dielectric Properties of Low-Stress Silicon Oxide

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Wollack, Edward J.; Brown, Ari D.; Miller, Kevin H.

    2016-01-01

    Silicon oxide thin films play an important role in the realization of optical coatings and high-performance electrical circuits. Estimates of the dielectric function in the far- and mid-infrared regime are derived from the observed transmittance spectrum for a commonly employed low-stress silicon oxide formulation. The experimental, modeling, and numerical methods used to extract the dielectric function are presented.

  3. Residual stress distribution in oxide films formed on Zircaloy-2

    NASA Astrophysics Data System (ADS)

    Sawabe, T.; Sonoda, T.; Furuya, M.; Kitajima, S.; Takano, H.

    2015-11-01

    In order to evaluate residual the stress distribution in oxides formed on zirconium alloys, synchrotron X-ray diffraction (XRD) was performed on the oxides formed on Zircaloy-2 after autoclave treatment at a temperature of 360° C in pure water. The use of a micro-beam XRD and a micro-sized cross-sectional sample achieved the detailed local characterization of the oxides. The oxide microstructure was observed by TEM following the micro-beam XRD measurements. The residual compressive stress increased in the vicinity of the oxide/metal interface of the pre-transition oxide. Highly oriented columnar grains of a monoclinic phase were observed in that region. Furthermore, at the interface of the post-first transition oxide, there was only a small increase in the residual compressive stress and the columnar grains had a more random orientation. The volume fraction of the tetragonal phase increased with the residual compressive stress. The results are discussed in terms of the formation and transition of the protective oxide.

  4. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  5. CONCENTRATED AMBIENT AIR POLLUTION CREATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  6. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  7. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  8. Age Related Changes in Preventive Health Behavior.

    ERIC Educational Resources Information Center

    Leventhal, Elaine A.; And Others

    Health behavior may be influenced by age, beliefs, and symptomatology. To examine age-related health beliefs and behaviors with respect to six diseases (the common cold, colon-rectal cancer, lung cancer, heart attack, high blood pressure, and senility), 396 adults (196 males, 200 females) divided into three age groups completed a questionnaire…

  9. Driving and Age-Related Macular Degeneration

    PubMed Central

    Owsley, Cynthia; McGwin, Gerald

    2009-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety, and considers directions for future research. PMID:20046818

  10. Neuromuscular contributions to age-related weakness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related physiological change of neuromuscular function is not a linear process and is likely influenced by various biological and behavioral factors (e.g., genetics, nutrition, physical activity level, comorbidities, etc.). These factors contribute to heterogeneity among older adults, which chal...

  11. Translational Research Involving Oxidative Stress and Diseases of Aging

    PubMed Central

    Floyd, Robert A.; Towner, Rheal A.; He, Ting; Hensley, Kenneth; Maples, Kirk R.

    2011-01-01

    There is ample mounting evidence that reactive oxidant species are exacerbated in inflammatory processes, many pathological conditions and underlying processes of chronic age-related diseases. Therefore there is increased expectation that therapeutics can be developed which act in some fashion to suppress reactive oxidant species and ameliorate the condition. This has turned out to be more difficult than at first expected. Developing therapeutics for indications where reactive oxidant species is an important consideration presents some unique challenges. We discuss important questions including whether reactive oxidant species should be a therapeutic target and the need to recognize the fact that an antioxidant in a defined chemical system may be a poor antioxidant operationally in a biological system and the importance of considering the fact that reactive oxidant species may accompany the disease or pathological system rather than being a causative factor. We also discuss the value of having preclinical models to determine if the processes which are important in causing the disease under study is critically dependent on reactive oxidant species events and if the therapeutic under consideration quells these processes. In addition we discuss measures of success that must be met in commercial research and development in preclinical and clinical trials and discuss as examples our translational research effort in developing nitrones for the treatment of acute ischemic stroke and as anti-cancer agents. PMID:21549833

  12. Pinosylvin-mediated protection against oxidative stress in human retinal pigment epithelial cells

    PubMed Central

    Koskela, Ali; Reinisalo, Mika; Hyttinen, Juha M. T.; Kaarniranta, Kai

    2014-01-01

    -mediated protection against oxidative stress whereas the role of p62 seemed to be insignificant at the gene expression and cell viability levels. Conclusions Our results suggest that PS treatment conferred protection against oxidative stress through the induction of HO-1 in human RPE cells. Consequently, PS-stilbene compounds, which can be isolated in significant amounts from bark waste, may possess health-promoting properties against aging-related diseases associated with oxidative stress such as age-related macular degeneration (AMD) and Alzheimer’s disease. These natural compounds may offer opportunities for high-value use of bark waste in diverse health-related applications. PMID:24940030

  13. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease.

    PubMed

    Mota, Sandra I; Costa, Rui O; Ferreira, Ildete L; Santana, Isabel; Caldeira, Gladys L; Padovano, Carmela; Fonseca, Ana C; Baldeiras, Inês; Cunha, Catarina; Letra, Liliana; Oliveira, Catarina R; Pereira, Cláudia M F; Rego, Ana Cristina

    2015-07-01

    Oxidative stress and endoplasmic reticulum (ER) stress have been associated with Alzheimer's disease (AD) progression. In this study we analyzed whether oxidative stress involving changes in Nrf2 and ER stress may constitute early events in AD pathogenesis by using human peripheral blood cells and an AD transgenic mouse model at different disease stages. Increased oxidative stress and increased phosphorylated Nrf2 (p(Ser40)Nrf2) were observed in human peripheral blood mononuclear cells (PBMCs) isolated from individuals with mild cognitive impairment (MCI). Moreover, we observed impaired ER Ca2+ homeostasis and increased ER stress markers in PBMCs from MCI individuals and mild AD patients. Evidence of early oxidative stress defense mechanisms in AD was substantiated by increased p(Ser40)Nrf2 in 3month-old 3xTg-AD male mice PBMCs, and also with increased nuclear Nrf2 levels in brain cortex. However, SOD1 protein levels were decreased in human MCI PBMCs and in 3xTg-AD mice brain cortex; the latter further correlated with reduced SOD1 mRNA levels. Increased ER stress was also detected in the brain cortex of young female and old male 3xTg-AD mice. We demonstrate oxidative stress and early Nrf2 activation in AD human and mouse models, which fails to regulate some of its targets, leading to repressed expression of antioxidant defenses (e.g., SOD-1), and extending to ER stress. Results suggest markers of prodromal AD linked to oxidative stress associated with Nrf2 activation and ER stress that may be followed in human peripheral blood mononuclear cells. PMID:25857617

  14. Metallothionein Alleviates Oxidative Stress-Induced Endoplasmic Reticulum Stress and Myocardial Dysfunction

    PubMed Central

    Guo, Rui; Ma, Heng; Gao, Feng; Zhong, Li; Ren, Jun

    2009-01-01

    Oxidative stress and endoplasmic reticulum (ER) stress have been implicated in cardiovascular diseases although the interplay between the two is not clear. This study was designed to examine the influence of oxidative stress through glutathione depletion on myocardial ER stress and contractile function in the absence or presence of the heavy metal scavenger antioxidant metallothionein (MT). FVB and MT overexpression transgenic mice received the GSH synthase inhibitor buthionine sulfoximine (BSO, 30 mM) in drinking water for 2 weeks. Oxidative stress, ER stress, apoptosis, cardiac function and ultrastructure were assessed using GSH/GSSG assay, reactive oxygen species (ROS), immunoblotting, caspase-3 activity, Langendorff perfused heart function (LVDP and ± dP/dt), and transmission electron microscopy. BSO led to a robust decrease in the GSH/GSSG ratio and increased ROS production, consolidating oxidative stress. Cardiac function and ultrastructure were compromised following BSO treatment, the effect of which was obliterated by MT. BSO promoted overt ER stress as evidenced by upregulated BiP, calregulin, phospho-IRE1α and phospho-eIF2α without affecting total IRE1α and eIF2α. BSO treatment led to apoptosis manifested as elevated expression of CHOP/GADD153, caspase-12 and Bax as well as caspase-3 activity, reduced Bcl-2 expression and JNK phosphorylation, all of which was ablated by MT. Moreover, both antioxidant N-acetylcysteine and the ER stress inhibitor tauroursodeoxycholic acid reversed the oxidative stress inducer menadione-elicited depression in cardiomyocyte contractile function. Taken together, these data suggested that ER stress occurs likely downstream of oxidative stress en route to cardiac dysfunction. PMID:19344729

  15. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  16. Veterans have less age-related cognitive decline.

    PubMed

    McLay, R N; Lyketsos, C G

    2000-08-01

    Military service involves exposure to a number of stresses, both psychological and physical. On the other hand, military personnel generally maintain excellent fitness, and veterans have increased access to education and health care. The overall effect on age-related cognitive decline, whether for good or ill, of having served in the armed forces has not been investigated previously. In this study, we examined a diverse population of 208 veterans and 1,216 civilians followed as part of the Epidemiologic Catchment Area Study in 1981, 1982, and 1993 to 1996. We examined change in Mini-Mental State Examination (MMSE) score after a median of 11.5 years. Veterans were found to have significantly less decrease in MMSE scores at follow-up even after sex, race, and education were taken into account. These results suggest an overall positive effect of military service on the rate of age-related cognitive decline. PMID:10957857

  17. Oxidative stress in β-thalassaemia and sickle cell disease.

    PubMed

    Voskou, S; Aslan, M; Fanis, P; Phylactides, M; Kleanthous, M

    2015-12-01

    Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies. PMID:26285072

  18. Oxidative stress in β-thalassaemia and sickle cell disease

    PubMed Central

    Voskou, S.; Aslan, M.; Fanis, P.; Phylactides, M.; Kleanthous, M.

    2015-01-01

    Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies. PMID:26285072

  19. Oxidative stress and autophagy: Crucial modulators of kidney injury

    PubMed Central

    Sureshbabu, Angara; Ryter, Stefan W.; Choi, Mary E.

    2015-01-01

    Both acute kidney injury (AKI) and chronic kidney disease (CKD) that lead to diminished kidney function are interdependent risk factors for increased mortality. If untreated over time, end stage renal disease (ESRD) is an inevitable outcome. Acute and chronic kidney diseases occur partly due to imbalance between the molecular mechanisms that govern oxidative stress, inflammation, autophagy and cell death. Oxidative stress refers to the cumulative effects of highly reactive oxidizing molecules that cause cellular damage. Autophagy removes damaged organelles, protein aggregates and pathogens by recruiting these substrates into double membrane vesicles called autophagosomes which subsequently fuse with lysosomes. Mounting evidence suggests that both oxidative stress and autophagy are significantly involved in kidney health and disease. However, very little is known about the signaling processes that link them. This review is focused on understanding the role of oxidative stress and autophagy in kidney diseases. In this review, we also discuss the potential relationships between oxidative stress and autophagy that may enable the development of better therapeutic intervention to halt the progression of kidney disease and promote its repair and resolution. PMID:25613291

  20. Salivary markers of oxidative stress in oral diseases

    PubMed Central

    Tóthová, L'ubomíra; Kamodyová, Natália; Červenka, Tomáš; Celec, Peter

    2015-01-01

    Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis, and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status, and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis. PMID:26539412

  1. Stressed Oxidation of C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Brewer, David N.; Eckel, Andrew J.; Cawley, James D.

    1997-01-01

    Constant load, stressed oxidation testing was performed on T-300 C/SiC composites with a SiC seal coat. Test conditions included temperatures ranging from 350 C to 1500 C at stresses of 69 MPa and 172 MPa (10 and 25 ksi). The coupon subjected to stressed oxidation at 550 C/69 MPa for 25 hours had a room temperature residual strength one-half that of the as-received coupons. The coupon tested at the higher stress and all coupons tested at higher temperatures failed in less than 25 hr. Microstructural analysis of the fracture surfaces, using SEM (scanning electron microscopy), revealed the formation of reduced cross-sectional fibers with pointed tips. Analysis of composite cross-sections show pathways for oxygen ingress. The discussion will focus on fiber/matrix interphase oxidation and debonding as well as the formation and implications of the fiber tip morphology.

  2. Brain aging, memory impairment and oxidative stress: a study in Drosophila melanogaster.

    PubMed

    Haddadi, Mohammad; Jahromi, Samaneh Reiszadeh; Sagar, B K Chandrasekhar; Patil, Rajashekhar K; Shivanandappa, T; Ramesh, S R

    2014-02-01

    Memory impairment during aging is believed to be a consequence of decline in neuronal function and increase in neurodegeneration. Accumulation of oxidative damage and reduction of antioxidant defense system play a key role in organismal aging and functional senescence. In our study, we examined the age-related memory impairment (AMI) in relation to oxidative stress using Drosophila model. We observed a decline in cognitive function in old flies with respect to both short-lived and consolidated forms of olfactory memory. Light and electron microscopy of mushroom bodies revealed a reduction in the number of synapses and discernible architectural defects in mitochondria. An increase in neuronal apoptosis in Kenyon cells was also evident in aged flies. Biochemical investigations revealed a comparable age-associated decrease in the activity of antioxidant enzymes such as catalase and superoxide dismutase as well as the GSH level, accompanied by an increase in the level of lipid peroxidation and generation of reactive oxygen species in the brain. There was no significant difference in the activity level of AChE and BChE enzymes between different age groups while immunohistochemical studies showed a significant decrease in the level of ChAT in 50-day-old flies. RNAi-mediated silencing of cat and sod1 genes caused severe memory impairment in 15-day-old flies, whereas, over-expression of cat gene could partially rescue the memory loss in the old flies. We demonstrated that a Drosophila long-lived strain, possessing enhanced activity of antioxidant enzymes and higher rate of resistance to oxidative stress, shows lower extent of AMI compared to normal lifespan strain. Present study provides evidence for involvement of oxidative stress in AMI in Drosophila. PMID:24183945

  3. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    PubMed

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine. PMID:21422516

  4. General approach on chemistry and stress coupling effects during oxidation

    NASA Astrophysics Data System (ADS)

    Suo, Yaohong; Shen, Shengping

    2013-10-01

    In this paper, the mechanism of growth strain is discussed based on the irreversible evolving equations by considering the coupling effects of stress and chemical reaction during isothermal oxidation, and a simple model relating the growth strain and the oxide thickness is developed. If the effect of the stress on the chemical reaction is not taken into account, the model reduces to the Clarke assumption. The expression of Dox is exhibited, and its value can be determined by experiments. The stress evolving equations are derived, where the viscoplastic strain of the oxide and metal and the growth strain of the oxide are considered. Numerical results are given and compared with results from experiments and the existing model. There is good agreement between the proposed model and the experimental data.

  5. Markers of Oxidative Stress and Neuroprogression in Depression Disorder

    PubMed Central

    Vaváková, Magdaléna; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed. PMID:26078821

  6. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  7. Retinopathy of prematurity: an oxidative stress neonatal disease.

    PubMed

    Stone, William L; Shah, Darshan; Hollinger, Shawn M

    2016-01-01

    Proteomics is the global study of proteins in an organism or a tissue/fluid and is clinically relevant since most disease states are accompanied by specific alterations in an organism's proteome. This review focuses on the application of proteomics to neonatology with particular emphasis on retinopathy of prematurity (ROP), which is a disease in which oxidative stress plays a key pathophysiological role. Oxidative stress is a physiologically relevant redox imbalance caused by an excess of reactive oxygen (ROS) or reactive nitrogen oxide species (RNOS). A major conclusion of this review is that proteomics may be the optimal technology for studying neonatal diseases such as ROP, particularly in the setting of a neonatal intensive care unit (NICU). Proteomics has already identified a number of ROP serum biomarkers. This review will also suggest novel therapeutic approaches to ROP and other neonatal oxidative stress diseases (NOSDs) based on a systems medicine approach. PMID:26709767

  8. OXIDATIVE STRESS 3 Is a Chromatin-Associated Factor Involved in Tolerance to Heavy Metals and Oxidative Stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cDNA expression library from Brassica juncea was introduced into the fission yeast Schizosaccharomyces pombe to select for transformants tolerant to cadmium. Transformants expressing OXIDATIVE STRESS 3 (OXS3) or OXS3-Like cDNA exhibited enhanced tolerance to a range of metals and oxidizing chemica...

  9. Genetic and Pharmacological Inhibition of Malonyl CoA Decarboxylase Does Not Exacerbate Age-Related Insulin Resistance in Mice.

    PubMed

    Ussher, John R; Fillmore, Natasha; Keung, Wendy; Zhang, Liyan; Mori, Jun; Sidhu, Vaninder K; Fukushima, Arata; Gopal, Keshav; Lopaschuk, David G; Wagg, Cory S; Jaswal, Jagdip S; Dyck, Jason R B; Lopaschuk, Gary D

    2016-07-01

    Aging is associated with the development of chronic diseases such as insulin resistance and type 2 diabetes. A reduction in mitochondrial fat oxidation is postulated to be a key factor contributing to the progression of these diseases. Our aim was to investigate the contribution of impaired mitochondrial fat oxidation toward age-related disease. Mice deficient for malonyl CoA decarboxylase (MCD(-/-)), a mouse model of reduced fat oxidation, were allowed to age while life span and a number of physiological parameters (glucose tolerance, insulin tolerance, indirect calorimetry) were assessed. Decreased fat oxidation in MCD(-/-) mice resulted in the accumulation of lipid intermediates in peripheral tissues, but this was not associated with a worsening of age-associated insulin resistance and, conversely, improved longevity. This improvement was associated with reduced oxidative stress and reduced acetylation of the antioxidant enzyme superoxide dismutase 2 in muscle but not the liver of MCD(-/-) mice. These findings were recapitulated in aged mice treated with an MCD inhibitor (CBM-3001106), and these mice also demonstrated improvements in glucose and insulin tolerance. Therefore, our results demonstrate that in addition to decreasing fat oxidation, MCD inhibition also has novel effects on protein acetylation. These combined effects protect against age-related metabolic dysfunction, demonstrating that MCD inhibitors may have utility in the battle against chronic disease in the elderly. PMID:27207536

  10. Oxidative Stress and Mitochondrial Dysfunction in Alzheimer’s Disease

    PubMed Central

    Wang, Xinglong; Wang, Wenzhang; Li, Li; Perry, George; Lee, Hyoung-gon; Zhu, Xiongwei

    2013-01-01

    Alzheimer’s disease (AD) exhibits extensive oxidative stress throughout the body, being detected peripherally as well as associated with the vulnerable regions of the brain affected in disease. Abundant evidence not only demonstrates the full spectrum of oxidative damage to neuronal macromolecules, but also reveals the occurrence of oxidative events early in the course of the disease and prior to the formation of the pathology, which support an important role of oxidative stress in AD. As a disease of abnormal aging, AD demonstrats oxidative damage at levels that significantly surpass that of elderly controls, which suggests the involvement of additional factor(s). Structurally and functionally damaged mitochondria, which are more proficient at producing reactive oxygen species but less so in ATP, are also an early and prominent feature of the disease. Since mitochondria are also vulnerable to oxidative stress, it is likely that a vicious downward spiral involving the interactions between mitochondrial dysfunction and oxidative stress contributes to the initiation and/or amplification of reactive oxygen species that is critical to the pathogenesis of AD. PMID:24189435

  11. Contaminant-induced oxidative stress in fish: a mechanistic approach.

    PubMed

    Lushchak, Volodymyr I

    2016-04-01

    The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described. PMID:26607273

  12. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans

    PubMed Central

    Luo, Zhong-Cheng; Bilodeau, Jean-François; Monique Nuyt, Anne; Fraser, William D.; Julien, Pierre; Audibert, Francois; Xiao, Lin; Garofalo, Carole; Levy, Emile

    2015-01-01

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24–28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin concentrations. Strong positive correlations were observed between maternal and cord plasma biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently negatively correlated to oxidative stress biomarkers in maternal (r = −0.32, p < 0.0001 for MDA; r = −0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = −0.13, p = 0.04 for MDA; r = −0.32, p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect fetal ghrelin levels in humans. The implications in developmental “programming” the vulnerability to metabolic syndrome related disorders remain to be elucidated. PMID:26643495

  13. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  14. Oxidative stress in patients with obstructive sleep apnoea syndrome.

    PubMed

    Passali, D; Corallo, G; Yaremchuk, S; Longini, M; Proietti, F; Passali, G C; Bellussi, L

    2015-12-01

    Obstructive sleep apnoea syndrome (OSAS) is a disorder that leads to metabolic abnormalities and increased cardiovascular risk. The aim of this study was to identify early laboratory markers of cardiovascular disease through analysis of oxidative stress in normal subjects and patients with OSAS. A prospective study was designed to compare outcomes of oxidative stress laboratory tests in 20 adult patients with OSAS and a control group of 20 normal subjects. Laboratory techniques for detecting and quantifying free radical damage must be targeted to assess the pro-oxidant component and the antioxidant in order to obtain an overall picture of oxidative balance. No statistical differences in age, sex distribution, or BMI were found between the two groups (p>0.05). There were significant differences in the apnoea/hypopnoea index (AHI) between OSAS patients and the control group (p<0.05). Statistically significant differences in isoprostane, advanced oxidation protein products (AOPP) and non-protein bound iron (NPBI) levels were found between the study and control groups. No significant difference in the levels of thiol biomarkers was found between the two groups. The main finding of the present study was increased production of oxidative stress biomarkers in OSAS patients. The major difference between thiols and other oxidative stress biomarkers is that thiols are antioxidants, while the others are expressions of oxidative damage. The findings of the present study indicate that biomarkers of oxidative stress in OSAS may be used as a marker of upper airway obstructive episodes due to mechanical trauma, as well as a marker of hypoxaemia causing local oropharyngeal inflammation. PMID:26900248

  15. A Meta-Analysis of Oxidative Stress Markers in Depression

    PubMed Central

    Liu, Tao; Zhong, Shuming; Liao, Xiaoxiao; Chen, Jian; He, Tingting; Lai, Shunkai; Jia, Yanbin

    2015-01-01

    Object Studies have suggested that depression was accompanied by oxidative stress dysregulation, including abnormal total antioxidant capacity (TAC), antioxidants, free radicals, oxidative damage and autoimmune response products. This meta-analysis aims to analyse the clinical data quantitatively by comparing the oxidative stress markers between depressed patients and healthy controls. Methods A search was conducted to collect the studies that measured the oxidative stress markers in depressed patients. Studies were searched in Embase, Medline, PsychINFO, Science direct, CBMDisc, CNKI and VIP from 1990 to May 2015. Data were subjected to meta-analysis by using a random effects model for examining the effect sizes of the results. Bias assessments, heterogeneity assessments and sensitivity analyses were also conducted. Results 115 articles met the inclusion criteria. Lower TAC was noted in acute episodes (AEs) of depressed patients (p<0.05). Antioxidants, including serum paraoxonase, uric acid, albumin, high-density lipoprotein cholesterol and zinc levels were lower than controls (p<0.05); the serum uric acid, albumin and vitamin C levels were increased after antidepressant therapy (p<0.05). Oxidative damage products, including red blood cell (RBC) malondialdehyde (MDA), serum MDA and 8-F2-isoprostanes levels were higher than controls (p<0.05). After antidepressant medication, RBC and serum MDA levels were decreased (p<0.05). Moreover, serum peroxide in free radicals levels were higher than controls (p<0.05). There were no differences between the depressed patients and controls for other oxidative stress markers. Conclusion This meta-analysis supports the facts that the serum TAC, paraoxonase and antioxidant levels are lower, and the serum free radical and oxidative damage product levels are higher than controls in depressed patients. Meanwhile, the antioxidant levels are increased and the oxidative damage product levels are decreased after antidepressant medication

  16. Impact of early life stress on the pathogenesis of mental disorders: relation to brain oxidative stress.

    PubMed

    Schiavone, Stefania; Colaianna, Marilena; Curtis, Logos

    2015-01-01

    Stress is an inevitable part of human life and it is experienced even before birth. Stress to some extent could be considered normal and even necessary for the survival and the regular psychological development during childhood or adolescence. However, exposure to prolonged stress could become harmful and strongly impact mental health increasing the risk of developing psychiatric disorders. Recent studies have attempted to clarify how the human central nervous system (CNS) reacts to early life stress, focusing mainly on neurobiological modifications. Oxidative stress, defined as a disequilibrium between the oxidant generation and the antioxidant response, has been recently described as a candidate for most of the observed modifications. In this review, we will discuss how prolonged stressful events during childhood or adolescence (such as early maternal separation, parental divorce, physical violence, sexual or psychological abuses, or exposure to war events) can lead to increased oxidative stress in the CNS and enhance the risk to develop psychiatric diseases such as anxiety, depression, drug abuse or psychosis. Defining the sources of oxidative stress following exposure to early life stress might open new beneficial insights in therapeutic approaches to these mental disorders. PMID:25564385

  17. Role of Nrf2 in Oxidative Stress and Toxicity

    PubMed Central

    Ma, Qiang

    2015-01-01

    Organismal life encounters reactive oxidants from internal metabolism and environmental toxicant exposure. Reactive oxygen and nitrogen species cause oxidative stress and are traditionally viewed as being harmful. On the other hand, controlled production of oxidants in normal cells serves useful purposes to regulate signaling pathways. Reactive oxidants are counterbalanced by complex antioxidant defense systems regulated by a web of pathways to ensure that the response to oxidants is adequate for the body’s needs. A recurrent theme in oxidant signaling and antioxidant defense is reactive cysteine thiol–based redox signaling. The nuclear factor erythroid 2–related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants. Nrf2 controls the basal and induced expression of an array of antioxidant response element–dependent genes to regulate the physiological and pathophysiological outcomes of oxidant exposure. This review discusses the impact of Nrf2 on oxidative stress and toxicity and how Nrf2 senses oxidants and regulates antioxidant defense. PMID:23294312

  18. Leukocyte Telomere Length in Major Depression: Correlations with Chronicity, Inflammation and Oxidative Stress - Preliminary Findings

    PubMed Central

    Wolkowitz, Owen M.; Mellon, Synthia H.; Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Su, Yali; Reus, Victor I.; Rosser, Rebecca; Burke, Heather M.; Kupferman, Eve; Compagnone, Mariana; Nelson, J. Craig; Blackburn, Elizabeth H.

    2011-01-01

    Background Depression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect of “accelerated aging” in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if leukocyte telomeres are shortened in Major Depressive Disorder (MDD), whether this is a function of lifetime depression exposure and whether this is related to putative mediators, oxidation and inflammation. Methodology Leukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio) and inflammation (IL-6). Analyses were controlled for age and sex. Principal Findings The depressed group, as a whole, did not differ from the controls in telomere length. However, telomere length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p<0.05). Average telomere length in the depressed subjects who were above the median of lifetime depression exposure (≥9.2 years' cumulative duration) was 281 base pairs shorter than that in controls (p<0.05), corresponding to approximately seven years of “accelerated cell aging.” Telomere length was inversely correlated with oxidative stress in the depressed subjects (p<0.01) and in the controls (p<0.05) and with inflammation in the depressed subjects (p<0.05). Conclusions These preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This suggest that telomere shortening does not antedate depression and is

  19. Characterization of RNA damage under oxidative stress in Escherichia coli

    PubMed Central

    Liu, Min; Gong, Xin; Alluri, Ravi Kumar; Wu, Jinhua; Sablo, Tene’; Li, Zhongwei

    2012-01-01

    We have examined the level of 8-hydroxyguanosine (8-oxo-G), an oxidized form of guanosine, in RNA in Escherichia coli under normal and oxidative stress conditions. The level of 8-oxo-G in RNA rises rapidly and remains high for hours in response to hydrogen peroxide (H2O2) challenge in a dose-dependent manner. H2O2 induced elevation of 8-oxo-G content is much higher in RNA than that of 8-hydroxydeoxyguanosine (8-oxo-dG) in DNA. Under normal conditions, the 8-oxo-G level is low in RNA isolated from the ribosome and it is nearly three times higher in non-ribosomal RNAs. In contrast, 8-oxo-G generated by a short exposure to H2O2 is almost equally distributed in various RNA species, suggesting that although ribosomal RNAs are normally less oxidized, they are not protected against exogenous H2O2. Interestingly, highly folded RNA is not protected from oxidation because 8-oxo-G generated by H2O2 treatment in vitro increases to approximately the same levels in tRNA and rRNA in both native and denatured forms. Lastly, increased RNA oxidation is closely associated with cell death by oxidative stress. Our data suggests that RNA is a primary target for reactive oxygen species and RNA oxidation is part of the paradox that cells have to deal with under oxidative stress. PMID:22718628

  20. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone

    SciTech Connect

    Carney, J.M.; Starke-Reed, P.E.; Oliver, C.N.; Landum, R.W.; Cheng, M.S.; Wu, J.F.; Floyd, R.A. )

    1991-05-01

    Oxygen free radicals and oxidative events have been implicated as playing a role in bringing about the changes in cellular function that occur during aging. Brain readily undergoes oxidative damage, so it is important to determine if aging-induced changes in brain may be associated with oxidative events. Previously we demonstrated that brain damage caused by an ischemia/reperfusion insult involved oxidative events. In addition, pretreatment with the spin-trapping compound N-tert-butyl-alpha-phenylnitrone (PBN) diminished the increase in oxidized protein and the loss of glutamine synthetase (GS) activity that accompanied ischemia/reperfusion injury in brain. We report here that aged gerbils had a significantly higher level of oxidized protein as assessed by carbonyl residues and decreased GS and neutral protease activities as compared to young adult gerbils. We also found that chronic treatment with the spin-trapping compound PBN caused a decrease in the level of oxidized protein and an increase in both GS and neutral protease activity in aged Mongolian gerbil brain. In contrast to aged gerbils, PBN treatment of young adult gerbils had no significant effect on brain oxidized protein content or GS activity. Male gerbils, young adults (3 months of age) and retired breeders (15-18 months of age), were treated with PBN for 14 days with twice daily dosages of 32 mg/kg. If PBN administration was ceased after 2 weeks, the significantly decreased level of oxidized protein and increased GS and neutral protease activities in old gerbils changed in a monotonic fashion back to the levels observed in aged gerbils prior to PBN administration. We also report that old gerbils make more errors than young animals and that older gerbils treated with PBN made fewer errors in a radial arm maze test for temporal and spatial memory than the untreated aged controls.

  1. Effects of Bevacizumab on Bcl-2 Expression and Apoptosis in Retinal Pigment Epithelial Cells under Oxidative Stress

    PubMed Central

    Kim, Sukjin; Kim, Young Jun; Kim, Na Rae

    2015-01-01

    Purpose To evaluate the effects of bevacizumab on expression of B-cell leukemia/lymphoma (Bcl)-2 and apoptosis in retinal pigment epithelial (RPE) cells under oxidative stress conditions. Methods RPE cells were treated with H2O2 (0, 100, 200, 300, and 400 µM) and bevacizumab at or above the doses normally used in clinical practice (0, 0.33, 0.67, 1.33, and 2.67 mg/mL). Cell apoptosis was measured using flow cytometry with annexin V-fluorescein isothiocyanate. The expression of Bcl-2 mRNA was determined using reverse transcription polymerase chain reaction. Results Under low oxidative stress conditions (H2O2 100 µM), cell apoptosis was not significantly different at any concentration of bevacizumab, but Bcl-2 mRNA expression decreased with increasing concentration of bevacizumab (0.33, 0.67, 1.33, and 2.67 mg/mL). Under moderate oxidative stress conditions (H2O2 200 µM), Bcl-2 mRNA expression decreased with increasing concentration of bevacizumab (0.33, 0.67, 1.33, and 2.67 mg/mL), but cell apoptosis increased only at 2.67 mg/mL of bevacizumab. Under high oxidative stress (300 µM) conditions, cell apoptosis increased at high concentrations of bevacizumab (1.33 and 2.67 mg/mL), but it did not correlate with Bcl-2 expression. Conclusions Withdrawal of vascular endothelial growth factor can lead to RPE cell apoptosis and influences the expression of anti-apoptotic genes such as Bcl-2 under oxidative stress conditions. Since oxidative stress levels of each patient are unknown, repeated injections of intravitreal bevacizumab, as in eyes with age-related macular degeneration, might influence RPE cell survival. PMID:26635460

  2. Substance P promotes the recovery of oxidative stress-damaged retinal pigmented epithelial cells by modulating Akt/GSK-3β signaling

    PubMed Central

    Baek, Sang-Min; Yu, Seung-Young; Son, Youngsook

    2016-01-01

    Purpose Senescence of the retina causes an accumulation of reactive oxygen species (ROS). Oxidative stress associated with ROS can damage RPE cells, leading to neovascularization and severe ocular disorders, including age-related macular degeneration (AMD). Thus, the early treatment of the damage caused by oxidative stress is critical for preventing the development of ocular diseases such as AMD. In this study, we examined the role of substance P (SP) in the recovery of RPE cells damaged by oxidative stress. Methods To induce oxidative stress, RPE cells were treated with H2O2 at various doses. Recovery from oxidative stress was studied following treatment with SP by analyzing cell viability, cell proliferation, cell apoptosis, and Akt/glycogen synthase kinase (GSK)-3β activation in RPE cells in vitro. Results H2O2 treatment reduced cellular viability in a dose-dependent manner. SP inhibited the reduction of cell viability due to H2O2 and caused increased cell proliferation and decreased cell apoptosis. Cell survival under oxidative stress requires the activation of Akt signaling that enables cells to resist oxidative stress-induced damage. SP treatment activated Akt/GSK-3β signaling in RPE cells, which were damaged due to oxidative stress, and the inhibition of Akt signaling in SP-treated RPE cells prevented SP-induced recovery. Pretreatment with the neurokinin 1 receptor (NK1R) antagonist reduced the recovery effect of SP on damaged RPE cells. Conclusions SP can protect RPE cells from oxidant-induced cell death by activating Akt/GSK-3β signaling via NK1R. This study suggests the possibility of SP as a treatment for oxidative stress-related diseases. PMID:27582624

  3. Mitochondrial oxidative stress and mammalian healthspan

    PubMed Central

    Wanagat, Jonathan; Dai, Dao-Fu; Rabinovitch, Peter

    2010-01-01

    Aging of the American society is leading to a growing need for disease-modifying interventions to treat age-related diseases and enhance healthspan. Mitochondria and mitochondrially-generated reactive oxygen species appear to play a central role in these processes and are a likely target for interventions. Conventional, untargeted antioxidants have not demonstrated a clear benefit in human studies. As a result, approaches have been developed to target antioxidants specifically to mitochondria. Studies have employed a wide array of targeted molecules including antioxidant enzymes such as catalase, peroxiredoxin, superoxide dismutases and small molecular compounds which recapitulate the antioxidant activities of these enzymes. Lifespan and healthspan effects differ between interventions suggesting varied roles for specific mitochondrial reactive oxygen species and their impact on usual aging. Consistent findings in myocardial protection across various interventions support a focus on the impact of cardiac aging on healthspan. The advancement of mitochondrially-targeted small molecule antioxidants suggests the prospect of swift translation to human use. PMID:20566356

  4. Mild oxidative stress is beneficial for sperm telomere length maintenance

    PubMed Central

    Mishra, Swetasmita; Kumar, Rajeev; Malhotra, Neena; Singh, Neeta; Dada, Rima

    2016-01-01

    AIM: To evaluate telomere length in sperm DNA and its correlation with oxidative stress (normal, mild, severe). METHODS: The study included infertile men (n = 112) and age matched fertile controls (n = 102). The average telomere length from the sperm DNA was measured using a quantitative real time PCR based assay. Seminal reactive oxygen species (ROS) and 8-Isoprostane (8-IP) levels were measured by chemiluminescence assay and ELISA respectively. RESULTS: Average sperm telomere length in infertile men and controls was 0.609 ± 0.15 and 0.789 ± 0.060, respectively (P < 0.0001). Seminal ROS levels in infertile was higher [66.61 ± 28.32 relative light units (RLU)/s/million sperm] than in controls (14.04 ± 10.67 RLU/s/million sperm) (P < 0.0001). The 8-IP level in infertile men was significantly higher (421.55 ± 131.29 pg/mL) than in controls (275.94 ± 48.13 pg/mL) (P < 0.001). When correlated to oxidative stress, in normal range of oxidative stress (ROS, 0-21.3 RLU/s/million sperm) the average telomere length in cases was 0.663 ± 0.14, in mild oxidative stress (ROS, 21.3-35 RLU/s/million sperm) it was elevated (0.684 ± 0.12) and in severe oxidative stress (ROS > 35 RLU/s/million sperm) average telomere length was decreased to 0.595 ± 0.15. CONCLUSION: Mild oxidative stress results in lengthening of telomere length, but severe oxidative stress results in shorter telomeres. Although telomere maintenance is a complex trait, the study shows that mild oxidative stress is beneficial in telomere length maintenance and thus a delicate balance needs to be established to maximize the beneficial effects of free radicals and prevent harmful effects of supra physiological levels. Detailed molecular evaluation of telomere structure, its correlation with oxidative stress would aid in elucidating the cause of accelerated telomere length attrition. PMID:27376021

  5. Oxidative Stress Induced Mitochondrial Failure and Vascular Hypoperfusion as a Key Initiator for the Development of Alzheimer Disease

    PubMed Central

    Aliev, Gjumrakch; Palacios, Hector H.; Gasimov, Eldar; Obrenovich, Mark E.; Morales, Ludis; Leszek, Jerzy; Bragin, Valentin; Herrera, Arturo Solís; Gokhman, Dmitry

    2010-01-01

    Mitochondrial dysfunction may be a principal underlying event in aging, including age-associated brain degeneration. Mitochondria provide energy for basic metabolic processes. Their decay with age impairs cellular metabolism and leads to a decline of cellular function. Alzheimer disease (AD) and cerebrovascular accidents (CVAs) are two leading causes of age-related dementia. Increasing evidence strongly supports the theory that oxidative stress, largely due to reactive oxygen species (ROS), induces mitochondrial damage, which arises from chronic hypoperfusion and is primarily responsible for the pathogenesis that underlies both disease processes. Mitochondrial membrane potential, respiratory control ratios and cellular oxygen consumption decline with age and correlate with increased oxidant production. The sustained hypoperfusion and oxidative stress in brain tissues can stimulate the expression of nitric oxide synthases (NOSs) and brain endothelium probably increase the accumulation of oxidative stress products, which therefore contributes to blood brain barrier (BBB) breakdown and brain parenchymal cell damage. Determining the mechanisms behind these imbalances may provide crucial information in the development of new, more effective therapies for stroke and AD patients in the near future.

  6. OGG1 is essential in oxidative stress induced DNA demethylation.

    PubMed

    Zhou, Xiaolong; Zhuang, Ziheng; Wang, Wentao; He, Lingfeng; Wu, Huan; Cao, Yan; Pan, Feiyan; Zhao, Jing; Hu, Zhigang; Sekhar, Chandra; Guo, Zhigang

    2016-09-01

    DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes. PMID:27251462

  7. Cellular Mechanisms of Oxidative Stress and Action in Melanoma.

    PubMed

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment. PMID:26064422

  8. Role of oxidative stress in Deoxynivalenol induced toxicity.

    PubMed

    Mishra, Sakshi; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2014-10-01

    Deoxynivalenol (DON) is a Fusarium toxin that causes a variety of toxic effects with symptoms such as diarrhoea and low weight gain. To date, no review has addressed the toxicity of DON in relation to oxidative stress. The focus of this article is primarily intended to summarize the information associated with oxidative stress as a plausible mechanism for DON-induced toxicity. The present review shows that over the past two decades, several investigators have documented the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in oxidative stress as a result of DON treatment and have correlated them with various types of toxicity. The evidence for induction of an oxidative stress response resulting from DON exposure has been more focused on in vitro models and is relatively lacking in in vivo studies. Hence, more emphasis should be laid on in vivo investigations with doses that are commonly encountered in food products. Since DON is commonly found in food and feed, the cellular effects of this toxin in relation to oxidative stress, as well as effective measures to combat its toxicity, are important aspects to be considered for future studies. PMID:25010452

  9. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

    PubMed Central

    So, Mi Jung; Cho, Eun Ju

    2014-01-01

    The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS. PMID:25320709

  10. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    SciTech Connect

    Lefevre, Sophie; Sliwa, Dominika; Rustin, Pierre; Camadro, Jean-Michel; Santos, Renata

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  11. Lithospermum erythrorhizon extract protects keratinocytes and fibroblasts against oxidative stress.

    PubMed

    Yoo, Hee Geun; Lee, Bong Han; Kim, Wooki; Lee, Jong Suk; Kim, Gun Hee; Chun, Ock K; Koo, Sung I; Kim, Dae-Ok

    2014-11-01

    Oxidative stress damages dermal and epidermal cells and degrades extracellular matrix proteins, such as collagen, ultimately leading to skin aging. The present study evaluated the potential protective effect of the aqueous methanolic extract obtained from Lithospermum erythrorhizon (LE) against oxidative stress, induced by H2O2 and ultraviolet (UV) irradiation, on human keratinocyte (HaCaT) and human dermal fibroblast-neonatal (HDF-n) cells. Exposure of cells to H2O2 or UVB irradiation markedly increased oxidative stress and reduced cell viability. However, pretreatment of cells with the LE extract not only increased cell viability (up to 84.5%), but also significantly decreased oxidative stress. Further, the LE extract downregulated the expression of matrix metalloproteinase-1, an endopeptidase that degrades extracellular matrix collagen. In contrast, treatment with the LE extract did not affect the expression of procollagen type 1 in HDF-n cells exposed to UVA irradiation. Thirteen phenolic compounds, including derivatives of shikonin and caffeic acid, were identified by ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. These results suggest that LE-derived extracts may protect oxidative-stress-induced skin aging by inhibiting degradation of skin collagen, and that this protection may derive at least in part from the antioxidant phenolics present in these extracts. Further studies are warranted to determine the potential utility of LE-derived extracts in both therapeutic and cosmetic applications. PMID:25136892

  12. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis

    PubMed Central

    2014-01-01

    Background Oxidative stress has been suggested as a mechanism underlying skin aging, as it triggers apoptosis in various cell types, including fibroblasts, which play important roles in the preservation of healthy, youthful skin. Catechins, which are antioxidants contained in green tea, exert various actions such as anti-inflammatory, anti-bacterial, and anti-cancer actions. In this study, we investigated the effect of (+)-catechin on apoptosis induced by oxidative stress in fibroblasts. Methods Fibroblasts (NIH3T3) under oxidative stress induced by hydrogen peroxide (0.1 mM) were treated with either vehicle or (+)-catechin (0–100 μM). The effect of (+)-catechin on cell viability, apoptosis, phosphorylation of c-Jun terminal kinases (JNK) and p38, and activation of caspase-3 in fibroblasts under oxidative stress were evaluated. Results Hydrogen peroxide induced apoptotic cell death in fibroblasts, accompanied by induction of phosphorylation of JNK and p38 and activation of caspase-3. Pretreatment of the fibroblasts with (+)-catechin inhibited hydrogen peroxide-induced apoptosis and reduced phosphorylation of JNK and p38 and activation of caspase-3. Conclusion (+)-Catechin protects against oxidative stress-induced cell death in fibroblasts, possibly by inhibiting phosphorylation of p38 and JNK. These results suggest that (+)-catechin has potential as a therapeutic agent for the prevention of skin aging. PMID:24712558

  13. Oxidative stress modulation in hepatitis C virus infected cells

    PubMed Central

    Lozano-Sepulveda, Sonia A; Bryan-Marrugo, Owen L; Cordova-Fletes, Carlos; Gutierrez-Ruiz, Maria C; Rivas-Estilla, Ana M

    2015-01-01

    Hepatitis C virus (HCV) replication is associated with the endoplasmic reticulum, where the virus can induce cellular stress. Oxidative cell damage plays an important role in HCV physiopathology. Oxidative stress is triggered when the concentration of oxygen species in the extracellular or intracellular environment exceeds antioxidant defenses. Cells are protected and modulate oxidative stress through the interplay of intracellular antioxidant agents, mainly glutathione system (GSH) and thioredoxin; and antioxidant enzyme systems such as superoxide dismutase, catalase, GSH peroxidase, and heme oxygenase-1. Also, the use of natural and synthetic antioxidants (vitamin C and E, N-acetylcysteine, glycyrrhizin, polyenylphosphatidyl choline, mitoquinone, quercetin, S-adenosylmethionine and silymarin) has already shown promising results as co-adjuvants in HCV therapy. Despite all the available information, it is not known how different agents with antiviral activity can interfere with the modulation of the cell redox state induced by HCV and decrease viral replication. This review describes an evidence-based consensus on molecular mechanisms involved in HCV replication and their relationship with cell damage induced by oxidative stress generated by the virus itself and cell antiviral machinery. It also describes some molecules that modify the levels of oxidative stress in HCV-infected cells. PMID:26692473

  14. Cellular Mechanisms of Oxidative Stress and Action in Melanoma

    PubMed Central

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment. PMID:26064422

  15. Arterial Stiffness, Oxidative Stress, and Smoke Exposure in Wildland Firefighters

    PubMed Central

    Gaughan, Denise M.; Siegel, Paul D.; Hughes, Michael D.; Chang, Chiung-Yu; Law, Brandon F.; Campbell, Corey R.; Richards, Jennifer C.; Kales, Stefanos F.; Chertok, Marcia; Kobzik, Lester; Nguyen, Phuongson; O’Donnell, Carl R.; Kiefer, Max; Wagner, Gregory R.; Christiani, David C.

    2015-01-01

    Objectives To assess the association between exposure, oxidative stress, symptoms, and cardiorespiratory function in wildland firefighters. Methods We studied two Interagency Hotshot Crews with questionnaires, pulse wave analysis for arterial stiffness, spirometry, urinary 8-iso-prostaglandin F2α (8-isoprostane) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), and the smoke exposure marker (urinary levoglucosan). Arterial stiffness was assessed by examining levels of the aortic augmentation index, expressed as a percentage. An oxidative stress score comprising the average of z-scores created for 8-OHdG and 8-isoprostane was calculated. Results Mean augmentation index % was higher for participants with higher oxidative stress scores after adjusting for smoking status. Specifically for every one unit increase in oxidative stress score the augmentation index % increased 10.5% (95% CI: 2.5, 18.5%). Higher mean lower respiratory symptom score was associated with lower percent predicted forced expiratory volume in one second/forced vital capacity. Conclusions Biomarkers of oxidative stress may serve as indicators of arterial stiffness in wildland firefighters. PMID:24909863

  16. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention. PMID:26596837

  17. Mitochondrial Dysfunction and Oxidative Stress in Asthma: Implications for Mitochondria-Targeted Antioxidant Therapeutics

    PubMed Central

    Reddy, P. Hemachandra

    2011-01-01

    Asthma is a complex, inflammatory disorder characterized by airflow obstruction of variable degrees, bronchial hyper-responsiveness, and airway inflammation. Asthma is caused by environmental factors and a combination of genetic and environmental stimuli. Genetic studies have revealed that multiple loci are involved in the etiology of asthma. Recent cellular, molecular, and animal-model studies have revealed several cellular events that are involved in the progression of asthma, including: increased Th2 cytokines leading to the recruitment of inflammatory cells to the airway, and an increase in the production of reactive oxygen species and mitochondrial dysfunction in the activated inflammatory cells, leading to tissue injury in the bronchial epithelium. Further, aging and animal model studies have revealed that mitochondrial dysfunction and oxidative stress are involved and play a large role in asthma. Recent studies using experimental allergic asthmatic mouse models and peripheral cells and tissues from asthmatic humans have revealed antioxidants as promising treatments for people with asthma. This article summarizes the latest research findings on the involvement of inflammatory changes, and mitochondrial dysfunction/oxidative stress in the development and progression of asthma. This article also addresses the relationship between aging and age-related immunity in triggering asthma, the antioxidant therapeutic strategies in treating people with asthma. PMID:21461182

  18. Cytoprotective Mechanism of Cyanidin and Delphinidin against Oxidative Stress-Induced Tenofibroblast Death.

    PubMed

    Nam, Dae Cheol; Hah, Young Sool; Nam, Jung Been; Kim, Ra Jeong; Park, Hyung Bin

    2016-07-01

    Age-related rotator cuff tendon degeneration is related to tenofibroblast apoptosis. Anthocyanins reduce oxidative stress-induced apoptotic cell death in tenofibroblasts. The current study investigated the presence of cell protective effects in cyanidin and delphinidin, the most common aglycon forms of anthocyanins. We determined whether these anthocyanidins have antiapoptotic and antinecrotic effects in tenofibroblasts exposed to H2O2, and evaluated their biomolecular mechanisms. Both cyanidin and delphinidin inhibited H2O2-induced apoptosis in a dose-dependent manner. However, at concentrations of 100 μg/ml or greater, delphinidin showed cytotoxicity against tenofibroblasts and a decreased antinecrotic effect. Cyanidin and delphinidin both showed inhibitory effects on the H2O2-induced increase in intracellular ROS formation and the activation of ERK1/2 and JNK. In conclusion, both cyanidin and delphinidin have cytoprotective effects on cultured tenofibroblasts exposed to H2O2. These results suggest that cyanidin and delphinidin are both beneficial for the treatment of oxidative stress-mediated tenofibroblast cell death, but their working concentrations are different. PMID:27098861

  19. Cytoprotective Mechanism of Cyanidin and Delphinidin against Oxidative Stress-Induced Tenofibroblast Death

    PubMed Central

    Nam, Dae Cheol; Hah, Young Sool; Nam, Jung Been; Kim, Ra Jeong; Park, Hyung Bin

    2016-01-01

    Age-related rotator cuff tendon degeneration is related to tenofibroblast apoptosis. Anthocyanins reduce oxidative stress-induced apoptotic cell death in tenofibroblasts. The current study investigated the presence of cell protective effects in cyanidin and delphinidin, the most common aglycon forms of anthocyanins. We determined whether these anthocyanidins have antiapoptotic and antinecrotic effects in tenofibroblasts exposed to H2O2, and evaluated their biomolecular mechanisms. Both cyanidin and delphinidin inhibited H2O2-induced apoptosis in a dose-dependent manner. However, at concentrations of 100 μg/ml or greater, delphinidin showed cytotoxicity against tenofibroblasts and a decreased antinecrotic effect. Cyanidin and delphinidin both showed inhibitory effects on the H2O2-induced increase in intracellular ROS formation and the activation of ERK1/2 and JNK. In conclusion, both cyanidin and delphinidin have cytoprotective effects on cultured tenofibroblasts exposed to H2O2. These results suggest that cyanidin and delphinidin are both beneficial for the treatment of oxidative stress-mediated tenofibroblast cell death, but their working concentrations are different. PMID:27098861

  20. Diaphragmatic breathing reduces exercise-induced oxidative stress.

    PubMed

    Martarelli, Daniele; Cocchioni, Mario; Scuri, Stefania; Pompei, Pierluigi

    2011-01-01

    Diaphragmatic breathing is relaxing and therapeutic, reduces stress, and is a fundamental procedure of Pranayama Yoga, Zen, transcendental meditation and other meditation practices. Analysis of oxidative stress levels in people who meditate indicated that meditation correlates with lower oxidative stress levels, lower cortisol levels and higher melatonin levels. It is known that cortisol inhibits enzymes responsible for the antioxidant activity of cells and that melatonin is a strong antioxidant; therefore, in this study, we investigated the effects of diaphragmatic breathing on exercise-induced oxidative stress and the putative role of cortisol and melatonin hormones in this stress pathway. We monitored 16 athletes during an exhaustive training session. After the exercise, athletes were divided in two equivalent groups of eight subjects. Subjects of the studied group spent 1 h relaxing performing diaphragmatic breathing and concentrating on their breath in a quiet place. The other eight subjects, representing the control group, spent the same time sitting in an equivalent quite place. Results demonstrate that relaxation induced by diaphragmatic breathing increases the antioxidant defense status in athletes after exhaustive exercise. These effects correlate with the concomitant decrease in cortisol and the increase in melatonin. The consequence is a lower level of oxidative stress, which suggests that an appropriate diaphragmatic breathing could protect athletes from long-term adverse effects of free radicals. PMID:19875429

  1. Plasma levels of oxidative stress-responsive apoptosis inducing protein (ORAIP) in rats subjected to physicochemical oxidative stresses.

    PubMed

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Seko, Yoshinori

    2016-01-01

    Oxidative stress is known to play a pivotal role in the pathogenesis of various disorders including atherosclerosis, aging and especially ischaemia/reperfusion injury. It causes cell damage that leads to apoptosis. However, the precise mechanism has been uncertain. Recently, we identified an apoptosis-inducing humoral factor in a hypoxia/reoxygenated medium of cardiac myocytes. We named this novel post-translationally modified secreted form of eukaryotic translation initiation factor 5A (eIF5A) as oxidative stress-responsive apoptosis inducing protein (ORAIP). We developed a sandwich ELISA and confirmed that myocardial ischaemia/reperfusion markedly increased plasma levels of ORAIP. To investigate whether the role of ORAIP is common to various types of oxidative stress, we measured plasma ORAIP levels in rats subjected to three physicochemical models of oxidative stress including N2/O2 inhalation, cold/warm-stress (heat shock) and blood acidification. In all three models, plasma ORAIP levels significantly increased and reached a peak level at 10-30 min after stimulation, then decreased within 60 min. The (mean±S.E.M.) plasma ORAIP levels before and after (peak) stimulation were (16.4±9.6) and (55.2±34.2) ng/ml in N2/O2 inhalation, (14.1±12.4) and (34.3±14.6) ng/ml in cold/warm-stress, and (18.9±14.3) and (134.0±67.2) ng/ml in blood acidification study. These data strongly suggest that secretion of ORAIP in response to oxidative stress is universal mechanism and plays an essential role. ORAIP will be an important novel biomarker as well as a specific therapeutic target of these oxidative stress-induced cell injuries. PMID:26934977

  2. Acute exercise and oxidative stress: a 30 year history

    PubMed Central

    Fisher-Wellman, Kelsey; Bloomer, Richard J

    2009-01-01

    The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years. PMID:19144121

  3. Causes and consequences of oxidative stress in spermatozoa.

    PubMed

    Aitken, Robert John; Gibb, Zamira; Baker, Mark A; Drevet, Joel; Gharagozloo, Parviz

    2015-02-01

    Spermatozoa are highly vulnerable to oxidative attack because they lack significant antioxidant protection due to the limited volume and restricted distribution of cytoplasmic space in which to house an appropriate armoury of defensive enzymes. In particular, sperm membrane lipids are susceptible to oxidative stress because they abound in significant amounts of polyunsaturated fatty acids. Susceptibility to oxidative attack is further exacerbated by the fact that these cells actively generate reactive oxygen species (ROS) in order to drive the increase in tyrosine phosphorylation associated with sperm capacitation. However, this positive role for ROS is reversed when spermatozoa are stressed. Under these conditions, they default to an intrinsic apoptotic pathway characterised by mitochondrial ROS generation, loss of mitochondrial membrane potential, caspase activation, phosphatidylserine exposure and oxidative DNA damage. In responding to oxidative stress, spermatozoa only possess the first enzyme in the base excision repair pathway, 8-oxoguanine DNA glycosylase. This enzyme catalyses the formation of abasic sites, thereby destabilising the DNA backbone and generating strand breaks. Because oxidative damage to sperm DNA is associated with both miscarriage and developmental abnormalities in the offspring, strategies for the amelioration of such stress, including the development of effective antioxidant formulations, are becoming increasingly urgent. PMID:27062870

  4. [Characteristics of oxidative stress in mental maladaptation].

    PubMed

    Smirnova, L P; Ivanova, S A; Krotenko, N M; Levchuk, L A; Gutkevich, E V; Semke, V Ia

    2012-01-01

    Changes in the balance of pro and antioxidant systems were studied in persons in state of mental maladaptation, developed under the influence of emotional stress. Activation of lipid peroxidation has been revealed associated with increase of amount of malondialdehyde in erythrocytes and blood serum in persons surveyed. Activity of catalase and glutathione peroxidase in erythrocytes in persons in state of mental stress was increased and glutathione preductase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase has been reliably reduced as compared with group of healthy people. Comparative chemiluminiscent analysis of common antioxidant properties of serum of blood of studied groups has also revealed decrease of antioxidant properties of blood under influence of mental stress. PMID:23101248

  5. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    PubMed Central

    Wages, Phillip A.; Lavrich, Katelyn S.; Zhang, Zhenfa; Cheng, Wan-Yun; Corteselli, Elizabeth; Gold, Avram; Bromberg, Philip; Simmons, Steven O.; Samet, James M.

    2016-01-01

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0–1000 μM 1,2-NQ for 0–30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress. PMID:26605980

  6. Oxidative stress and life histories: unresolved issues and current needs.

    PubMed

    Speakman, John R; Blount, Jonathan D; Bronikowski, Anne M; Buffenstein, Rochelle; Isaksson, Caroline; Kirkwood, Tom B L; Monaghan, Pat; Ozanne, Susan E; Beaulieu, Michaël; Briga, Michael; Carr, Sarah K; Christensen, Louise L; Cochemé, Helena M; Cram, Dominic L; Dantzer, Ben; Harper, Jim M; Jurk, Diana; King, Annette; Noguera, Jose C; Salin, Karine; Sild, Elin; Simons, Mirre J P; Smith, Shona; Stier, Antoine; Tobler, Michael; Vitikainen, Emma; Peaker, Malcolm; Selman, Colin

    2015-12-01

    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting

  7. Oxidative stress, circulating antioxidants, and dietary preferences in songbirds.

    PubMed

    Alan, Rebecca R; McWilliams, Scott R

    2013-03-01

    Oxidative stress is an unavoidable consequence of metabolism and increases during intensive exercise. This is especially problematic for migratory birds that metabolize fat to fuel long-distance flight. Birds can mitigate damage by increasing endogenous antioxidants (e.g. uric acid) or by consuming dietary antioxidants (e.g. tocopherol). During flight, birds may increase protein catabolism of lean tissue which may increase circulating uric acid and many birds also consume an antioxidant-rich frugivorous diet during autumn migration. We evaluated three related hypotheses in a migratory passerine: (1) protein consumption is positively related to circulating antioxidants, (2) a dietary oxidative stressor [i.e. polyunsaturated fatty acid (PUFA)] influences antioxidant capacity and oxidative damage, and (3) oxidative stress influences dietary antioxidant preferences. White-throated Sparrows (Zonotrichia albicollis) consuming a high protein diet increased circulating uric acid; however, uric acid, antioxidant capacity, and oxidative stress did not differ between birds consuming a high PUFA versus a low PUFA diet, despite increased oxidative damage in high PUFA birds. Birds did not prefer antioxidant-rich diets even when fed high PUFA, low protein. We conclude that White-throated Sparrows successfully mitigated oxidative damage associated with a high PUFA diet and mounted an endogenous antioxidant response independent of uric acid, other circulating antioxidants, and dietary antioxidants. PMID:23270695

  8. Age Related Bioenergetics Profiles in Isolated Rat Cardiomyocytes Using Extracellular Flux Analyses

    PubMed Central

    Mdaki, Kennedy S.; Larsen, Tricia D.; Weaver, Lucinda J.; Baack, Michelle L.

    2016-01-01

    Mitochondrial dysfunction is increasingly recognized and studied as a mediator of heart disease. Extracellular flux analysis (XF) has emerged as a powerful tool to investigate cellular bioenergetics in the context of cardiac health and disease, however its use and interpretation requires improved understanding of the normal metabolic differences in cardiomyocytes (CM) at various stages of maturation. This study standardized XF analyses methods (mitochondrial stress test, glycolytic stress test and palmitate oxidation test) and established age related differences in bioenergetics profiles of healthy CMs at newborn (NB1), weaning (3WK), adult (10WK) and aged (12–18MO) time points. Findings show that immature CMs demonstrate a more robust and sustained glycolytic capacity and a relative inability to oxidize fatty acids when compared to older CMs. The study also highlights the need to recognize the contribution of CO2 from the Krebs cycle as well as lactate from anaerobic glycolysis to the proton production rate before interpreting glycolytic capacity in CMs. Overall, this study demonstrates that caution should be taken to assure that translatable developmental time points are used to investigate mitochondrial dysfunction as a cause of cardiac disease. Specifically, XF analysis of newborn CMs should be reserved to study fetal/neonatal disease and older CMs (≥10 weeks) should be used to investigate adult disease pathogenesis. Knowledge gained will aid in improved investigation of developmentally programmed heart disease and stress the importance of discerning maturational differences in bioenergetics when developing mitochondrial targeted preventative and therapeutic strategies for cardiac disease. PMID:26872351

  9. Age Related Bioenergetics Profiles in Isolated Rat Cardiomyocytes Using Extracellular Flux Analyses.

    PubMed

    Mdaki, Kennedy S; Larsen, Tricia D; Weaver, Lucinda J; Baack, Michelle L

    2016-01-01

    Mitochondrial dysfunction is increasingly recognized and studied as a mediator of heart disease. Extracellular flux analysis (XF) has emerged as a powerful tool to investigate cellular bioenergetics in the context of cardiac health and disease, however its use and interpretation requires improved understanding of the normal metabolic differences in cardiomyocytes (CM) at various stages of maturation. This study standardized XF analyses methods (mitochondrial stress test, glycolytic stress test and palmitate oxidation test) and established age related differences in bioenergetics profiles of healthy CMs at newborn (NB1), weaning (3WK), adult (10WK) and aged (12-18MO) time points. Findings show that immature CMs demonstrate a more robust and sustained glycolytic capacity and a relative inability to oxidize fatty acids when compared to older CMs. The study also highlights the need to recognize the contribution of CO2 from the Krebs cycle as well as lactate from anaerobic glycolysis to the proton production rate before interpreting glycolytic capacity in CMs. Overall, this study demonstrates that caution should be taken to assure that translatable developmental time points are used to investigate mitochondrial dysfunction as a cause of cardiac disease. Specifically, XF analysis of newborn CMs should be reserved to study fetal/neonatal disease and older CMs (≥10 weeks) should be used to investigate adult disease pathogenesis. Knowledge gained will aid in improved investigation of developmentally programmed heart disease and stress the importance of discerning maturational differences in bioenergetics when developing mitochondrial targeted preventative and therapeutic strategies for cardiac disease. PMID:26872351

  10. Novel biomarker pipeline to probe the oxidation sites and oxidation degrees of hemoglobin in bovine erythrocytes exposed to oxidative stress.

    PubMed

    Zong, Wansong; Wang, Xiaoning; Yang, Chuanxi; Du, Yonggang; Sun, Weijun; Xu, Zhenzhen

    2016-06-01

    Research on biomarkers for protein oxidation might give insight into the mechanistic mode of oxidative stress. In the work present here, a novel pipeline was established to probe the oxidation mechanism of bovine hemoglobin (Hb) with its oxidation products serving as the biomarkers. Reactive oxygen species generated by irradiation were used to mimic oxidative stress conditions to oxidize Hb in bovine erythrocytes. After Hb extraction and digestion, oxidized peptides in the tryptic fragments were assigned by comparison with the extracted ion chromatography spectra of native peptide from the control sample. Subsequent tandem mass spectrometry analysis of these peptides proved that oxidation was limited to partially exposed amino acid residues (α-Phe36 , β-Met1 , β-Trp14 , for instance) in Hb. Quantitation analysis on these oxidized peptides showed that oxidation degrees of target sites had positive correlations with the extended oxidation dose and the oxidation processes were also controlled by residues types. Compared with the conventional protein carbonyl assay, the identified oxidized products were feasibility biomarkers for Hb oxidation, indicating that the proposed biomarker pipeline was suitable to provide specific and valid information for protein oxidation. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26348117

  11. The role of mitochondria in age-related hearing loss.

    PubMed

    Chen, Hengchao; Tang, Jianguo

    2014-02-01

    Age-related hearing loss (ARHL), the hearing loss associated with aging, is a vital problem in present society. The severity of hearing loss is possibly associated with the degeneration of cochlear cells. Mitochondria play a key role in the energy supply, cellular redox homeostasis, signaling, and regulation of programmed cell death. In this review, we focus on the central role of mitochondria in ARHL. The mitochondrial redox imbalance and mitochondrial DNA mutation might collaboratively involve in the process of cochlear senescence in response to the aging stress. Subsequent responses, including alteration of mitochondrial biogenesis, mitophagy, apoptosis and paraptosis, participate in the aging process from different respects. PMID:24202185

  12. Oxidative stress and therapeutic implications in psychiatric disorders.

    PubMed

    Zhang, Xiang Yang; Yao, Jeffrey K

    2013-10-01

    Increasing evidence indicates that disturbances of antioxidant defense system and presence of oxidative stress can play a part in a wide range of neuropsychiatric disorders, including schizophrenia, bipolar disorder, and major depression, as well as antipsychotic-induced tardive dyskinesia (TD). Moreover, researchers have embarked on using antioxidant treatment as adjunct therapy for psychiatry disorders. Evidence from clinical, pre-clinical and epidemiological studies suggests that a benefit of using antioxidant compounds should be considered as an adjunctive therapy in these patients. These are some of the main perspectives that are reviewed by four articles in this special section. Overall, there has been growing recognition of the importance of oxidative stress in the pathophysiology of psychiatric disorders and the development of TD. The collection of articles in this special section will contribute to providing more efficacious treatments arising from a better appreciation of the roles of oxidative stress in these psychiatric disorders. PMID:23523744

  13. Discovery of biomarkers for oxidative stress based on cellular metabolomics.

    PubMed

    Wang, Ningli; Wei, Jianteng; Liu, Yewei; Pei, Dong; Hu, Qingping; Wang, Yu; Di, Duolong

    2016-07-01

    Oxidative stress has a close relationship with various pathologic physiology phenomena and the potential biomarkers of oxidative stress may provide evidence for clinical diagnosis or disease prevention. Metabolomics was employed to identify the potential biomarkers of oxidative stress. High-performance liquid chromatography-diode array detector, mass spectrometry and partial least squares discriminate analysis were used in this study. The 10, 15 and 13 metabolites were considered to discriminate the model group, vitamin E-treated group and l-glutathione-treated group, respectively. Some of them have been identified, namely, malic acid, vitamin C, reduced glutathione and tryptophan. Identification of other potential biomarkers should be conducted and their physiological significance also needs to be elaborated. PMID:27168482

  14. Does aspirin-induced oxidative stress cause asthma exacerbation?

    PubMed Central

    Kacprzak, Dorota

    2015-01-01

    Aspirin-induced asthma (AIA) is a distinct clinical syndrome characterized by severe asthma exacerbations after ingestion of aspirin or other non-steroidal anti-inflammatory drugs. The exact pathomechanism of AIA remains unknown, though ongoing research has shed some light. Recently, more and more attention has been focused on the role of aspirin in the induction of oxidative stress, especially in cancer cell systems. However, it has not excluded the similar action of aspirin in other inflammatory disorders such as asthma. Moreover, increased levels of 8-isoprostanes, reliable biomarkers of oxidative stress in expired breath condensate in steroid-naïve patients with AIA compared to AIA patients treated with steroids and healthy volunteers, has been observed. This review is an attempt to cover aspirin-induced oxidative stress action in AIA and to suggest a possible related pathomechanism. PMID:26170841

  15. Uremic toxins, oxidative stress, and renal fibrosis: an interwined complex.

    PubMed

    Chao, Chia-Ter; Chiang, Chih-Kang

    2015-03-01

    The prevalence of end-stage renal diseases is currently on the rise globally, and finding the way to curb this tide is urgently needed. Tubulointerstitial fibrosis is a common pathway for essentially all the nephropathy categories known to date, and the manifestations of renal fibrosis include excessive deposition of extracellular matrix with distortion of renal microstructures and functional deterioration. Uremic toxins have been gradually found to play an important role in the development of progressive renal fibrosis, with protein-bound indoxyl sulfate, p-cresol, and p-cresyl sulfate receiving the most attention. However, the contribution of oxidative stress among the pathogenesis of uremic toxins and renal fibrosis has not been evaluated much until recently. In this review, we will discuss about the nature and sources of oxidative stress in the kidney and how uremic toxins use oxidative stress to orchestrate the processes of renal fibrosis. PMID:25511523

  16. Transketolase counteracts oxidative stress to drive cancer development

    PubMed Central

    Xu, Iris Ming-Jing; Lai, Robin Kit-Ho; Lin, Shu-Hai; Tse, Aki Pui-Wah; Chiu, David Kung-Chun; Koh, Hui-Yu; Law, Cheuk-Ting; Wong, Chun-Ming; Cai, Zongwei; Wong, Carmen Chak-Lui; Ng, Irene Oi-Lin

    2016-01-01

    Cancer cells experience an increase in oxidative stress. The pentose phosphate pathway (PPP) is a major biochemical pathway that generates antioxidant NADPH. Here, we show that transketolase (TKT), an enzyme in the PPP, is required for cancer growth because of its ability to affect the production of NAPDH to counteract oxidative stress. We show that TKT expression is tightly regulated by the Nuclear Factor, Erythroid 2-Like 2 (NRF2)/Kelch-Like ECH-Associated Protein 1 (KEAP1)/BTB and CNC Homolog 1 (BACH1) oxidative stress sensor pathway in cancers. Disturbing the redox homeostasis of cancer cells by genetic knockdown or pharmacologic inhibition of TKT sensitizes cancer cells to existing targeted therapy (Sorafenib). Our study strengthens the notion that antioxidants are beneficial to cancer growth and highlights the therapeutic benefits of targeting pathways that generate antioxidants. PMID:26811478

  17. Transketolase counteracts oxidative stress to drive cancer development.

    PubMed

    Xu, Iris Ming-Jing; Lai, Robin Kit-Ho; Lin, Shu-Hai; Tse, Aki Pui-Wah; Chiu, David Kung-Chun; Koh, Hui-Yu; Law, Cheuk-Ting; Wong, Chun-Ming; Cai, Zongwei; Wong, Carmen Chak-Lui; Ng, Irene Oi-Lin

    2016-02-01

    Cancer cells experience an increase in oxidative stress. The pentose phosphate pathway (PPP) is a major biochemical pathway that generates antioxidant NADPH. Here, we show that transketolase (TKT), an enzyme in the PPP, is required for cancer growth because of its ability to affect the production of NAPDH to counteract oxidative stress. We show that TKT expression is tightly regulated by the Nuclear Factor, Erythroid 2-Like 2 (NRF2)/Kelch-Like ECH-Associated Protein 1 (KEAP1)/BTB and CNC Homolog 1 (BACH1) oxidative stress sensor pathway in cancers. Disturbing the redox homeostasis of cancer cells by genetic knockdown or pharmacologic inhibition of TKT sensitizes cancer cells to existing targeted therapy (Sorafenib). Our study strengthens the notion that antioxidants are beneficial to cancer growth and highlights the therapeutic benefits of targeting pathways that generate antioxidants. PMID:26811478

  18. Iron-Deficiency Anemia Enhances Red Blood Cell Oxidative Stress

    PubMed Central

    Nagababu, Enika; Gulyani, Seema; Earley, Christopher J.; Cutler, Roy G.; Mattson, Mark P.; Rifkind, Joseph M.

    2009-01-01

    Oxidative stress associated with iron deficiency anemia in a murine model was studied feeding an iron deficient diet. Anemia was monitored by a decrease in hematocrit and hemoglobin. For the 9 week study an increase in total iron binding capacity was also demonstrated. Anemia resulted in an increase in red blood cells (RBC) oxidative stress as indicated by increased levels of fluorescent heme degradation products (1.24 fold after 5 weeks; 2.1 fold after 9 weeks). The increase in oxidative stress was further confirmed by elevated levels of methemoglobin for mice fed an iron deficient diet. Increased hemoglobin autoxidation and subsequent generation of ROS can account for the shorter RBC lifespan and other pathological changes associated with iron deficiency anemia. PMID:19051108

  19. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    EPA Science Inventory

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  20. Work at high altitude and oxidative stress: antioxidant nutrients.

    PubMed

    Askew, E W

    2002-11-15

    A significant portion of the world's geography lies above 10,000 feet elevation, an arbitrary designation that separates moderate and high altitude. Although the number of indigenous people living at these elevations is relatively small, many people travel to high altitude for work or recreation, exposing themselves to chronic or intermittent hypoxia and the associated risk of acute mountain sickness (AMS) and less frequently, high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). The symptoms of AMS (headache, nausea, anorexia, fatigue, lassitude) occur in those who travel too high, too fast. Some investigators have linked the development of these symptoms with the condition of altered blood-brain barrier permeability, possibly related to hypoxia induced free radical formation. The burden of oxidative stress increases during the time spent at altitude and may even persist for some time upon return to sea level. The physiological and medical consequences of increased oxidative stress engendered by altitude is unclear; indeed, hypoxia is believed to be the trigger for the cascade of signaling events that ultimately leads to adaptation to altitude. These signaling events include the generation of reactive oxygen species (ROS) that may elicit important adaptive responses. If produced in excess, however, these ROS may contribute to impaired muscle function and reduced capillary perfusion at altitude or may even play a role in precipitating more serious neurological and pulmonary crisis. Oxidative stress can be observed at altitude without strenuous physical exertion; however, environmental factors other than hypoxia, such as exercise, UV light exposure and cold exposure, can also contribute to the burden. Providing antioxidant nutrients via the diet or supplements to the diet can reduce oxidative stress secondary to altitude exposure. In summary, the significant unanswered question concerning altitude exposure and antioxidant supplementation is

  1. IRON OXIDE NANOPARTICLE-INDUCED OXIDATIVE STRESS AND INFLAMMATION

    EPA Science Inventory

    1. Nanoparticle Physicochemical Characterizations
    2. We first focused on creating NP systems that could be used to test our hypotheses and assessing their stability in aqueous media. The iron oxide NP systems were not stable in cell culture medium o...

    3. Oxidative Stress and Ca2+ Release Events in Mouse Cardiomyocytes

      PubMed Central

      Shirokova, Natalia; Kang, Chifei; Fernandez-Tenorio, Miguel; Wang, Wei; Wang, Qiongling; Wehrens, Xander H.T.; Niggli, Ernst

      2014-01-01

      Cellular oxidative stress, associated with a variety of common cardiac diseases, is well recognized to affect the function of several key proteins involved in Ca2+ signaling and excitation-contraction coupling, which are known to be exquisitely sensitive to reactive oxygen species. These include the Ca2+ release channels of the sarcoplasmic reticulum (ryanodine receptors or RyR2s) and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). Oxidation of RyR2s was found to increase the open probability of the channel, whereas CaMKII can be activated independent of Ca2+ through oxidation. Here, we investigated how oxidative stress affects RyR2 function and SR Ca2+ signaling in situ, by analyzing Ca2+ sparks in permeabilized mouse cardiomyocytes under a broad range of oxidative conditions. The results show that with increasing oxidative stress Ca2+ spark duration is prolonged. In addition, long and very long-lasting (up to hundreds of milliseconds) localized Ca2+ release events started to appear, eventually leading to sarcoplasmic reticulum (SR) Ca2+ depletion. These changes of release duration could be prevented by the CaMKII inhibitor KN93 and did not occur in mice lacking the CaMKII-specific S2814 phosphorylation site on RyR2. The appearance of long-lasting Ca2+ release events was paralleled by an increase of RyR2 oxidation, but also by RyR-S2814 phosphorylation, and by CaMKII oxidation. Our results suggest that in a strongly oxidative environment oxidation-dependent activation of CaMKII leads to RyR2 phosphorylation and thereby contributes to the massive prolongation of SR Ca2+ release events. PMID:25517148

    4. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases?

      PubMed Central

      Sahoo, Sanghamitra; Meijles, Daniel N.; Pagano, Patrick J.

      2016-01-01

      Reactive oxygen species (ROS) and oxidative stress have long been linked to aging and diseases prominent in the elderly such as hypertension, atherosclerosis, diabetes and atrial fibrillation (AF). NADPH oxidases (Nox) are a major source of ROS in the vasculature and are key players in mediating redox signalling under physiological and pathophysiological conditions. In this review, we focus on the Nox-mediated ROS signalling pathways involved in the regulation of ‘longevity genes’ and recapitulate their role in age-associated vascular changes and in the development of age-related cardiovascular diseases (CVDs). This review is predicated on burgeoning knowledge that Nox-derived ROS propagate tightly regulated yet varied signalling pathways, which, at the cellular level, may lead to diminished repair, the aging process and predisposition to CVDs. In addition, we briefly describe emerging Nox therapies and their potential in improving the health of the elderly population. PMID:26814203

    5. Cellular and molecular mechanisms of age-related macular degeneration: from impaired autophagy to neovascularization.

      PubMed

      Klettner, Alexa; Kauppinen, Anu; Blasiak, Janusz; Roider, Johan; Salminen, Antero; Kaarniranta, Kai

      2013-07-01

      Age-related macular degeneration (AMD) is a complex, degenerative and progressive disease involving multiple genetic and environmental factors. It can result in severe visual loss e.g. AMD is the leading cause of blindness in the elderly in the western countries. Although age, genetics, diet, smoking, and many cardiovascular factors are known to be linked with this disease there is increasing evidence that long-term oxidative stress, impaired autophagy clearance and inflammasome mediated inflammation are involved in the pathogenesis. Under certain conditions these may trigger detrimental processes e.g. release of vascular endothelial growth factor (VEGF), causing choroidal neovascularization e.g. in wet AMD. This review ties together these crucial pathological threads in AMD. PMID:23603148

    6. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

      PubMed Central

      Spiers, Jereme G.; Chen, Hsiao-Jou Cortina; Sernia, Conrad; Lavidis, Nickolas A.

      2015-01-01

      Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis induce activity in the cellular reduction-oxidation (redox) system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure. PMID:25646076

    7. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

      PubMed Central

      Kurita-Ochiai, Tomoko; Jia, Ru; Cai, Yu; Yamaguchi, Yohei; Yamamoto, Masafumi

      2015-01-01

      Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis. PMID:26783845

    8. Age-related eye disease and gender.

      PubMed

      Zetterberg, Madeleine

      2016-01-01

      Worldwide, the prevalence of moderate to severe visual impairment and blindness is 285 millions, with 65% of visually impaired and 82% of all blind people being 50 years and older. Meta-analyses have shown that two out of three blind people are women, a gender discrepancy that holds true for both developed and developing countries. Cataract accounts for more than half of all blindness globally and gender inequity in access to cataract surgery is the major cause of the higher prevalence of blindness in women. In addition to gender differences in cataract surgical coverage, population-based studies on the prevalence of lens opacities indicate that women have a higher risk of developing cataract. Laboratory as well as epidemiologic studies suggest that estrogen may confer antioxidative protection against cataractogenesis, but the withdrawal effect of estrogen in menopause leads to increased risk of cataract in women. For the other major age-related eye diseases; glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy, data are inconclusive. Due to anatomic factors, angle closure glaucoma is more common in women, whereas the dominating glaucoma type; primary open-angle glaucoma (POAG), is more prevalent in men. Diabetic retinopathy also has a male predominance and vascular/circulatory factors have been implied both in diabetic retinopathy and in POAG. For AMD, data on gender differences are conflicting although some studies indicate increased prevalence of drusen and neovascular AMD in women. To conclude, both biologic and socioeconomic factors must be considered when investigating causes of gender differences in the prevalence of age-related eye disease. PMID:26508081

    9. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

    10. Severe physical exertion, oxidative stress, and acute lung injury.

      PubMed

      Shah, Nikunj R; Iqbal, M Bilal; Barlow, Andrew; Bayliss, John

      2011-11-01

      We report the case of a 27-year-old male athlete presenting with severe dyspnoea 24 hours after completing an "Ironman Triathlon." Subsequent chest radiology excluded pulmonary embolus but confirmed an acute lung injury (ALI). Echocardiography corroborated a normal brain natriuretic peptide level by demonstrating good biventricular systolic function with no regional wall motion abnormalities. He recovered well, without requiring ventilatory support, on supplemental oxygen therapy and empirical antibiotics. To date, ALI following severe physical exertion has never been described. Exercise is a form of physiological stress resulting in oxidative stress through generation of reactive oxygen/nitrogen species. In its extreme form, there is potential for an excessive oxidative stress response--one that overwhelms the body's protective antioxidant mechanisms. As our case demonstrated, oxidative stress secondary to severe physical exertion was the most likely factor in the pathogenesis of ALI. Further studies are necessary to explore the pathological consequences of exercise-induced oxidative stress. Although unproven as of yet, further research may be needed to demonstrate if antioxidant therapy can prevent or ameliorate potential life-threatening complications in the acute setting. PMID:22064719

    11. Haptoglobin Is Required to Prevent Oxidative Stress and Muscle Atrophy

      PubMed Central

      Lo Verso, Francesca; Santini, Ferruccio; Vitti, Paolo; Chisari, Carmelo; Sandri, Marco; Maffei, Margherita

      2014-01-01

      Background Oxidative stress (OS) plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp) is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. Results We used Hp knockout mice (Hp-/-) to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD), OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. Conclusions Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges. PMID:24959824

    12. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

      PubMed

      Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

      2005-04-22

      Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease. PMID:15766574

    13. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress.

      PubMed

      Ihara, Yoshito; Yasuoka, Chie; Kageyama, Kan; Wada, Yoshinao; Kondo, Takahito

      2002-09-20

      In mouse pancreatic insulin-producing betaTC cells, oxidative stress due to H(2)O(2) causes tyrosine phosphorylation in various proteins. To identify proteins bearing phosphotyrosine under stress, the proteins were affinity purified using an anti-phosphotyrosine antibody-conjugated agarose column. A protein of 180kDa was identified as clathrin heavy chain (CHC) by electrophoresis and mass spectrometry. Immunoprecipitated CHC showed tyrosine phosphorylation upon H(2)O(2) treatment and the phosphorylation was suppressed by the Src kinase inhibitor, PP2. The phosphorylation status of CHC affected the intracellular localization of CHC and the clathrin-dependent endocytosis of transferrin under oxidative stress. In conclusion, CHC is a protein that is phosphorylated at tyrosine by H(2)O(2) and this phosphorylation status is implicated in the intracellular localization and functions of CHC under oxidative stress. The present study demonstrates that oxidative stress affects intracellular vesicular trafficking via the alteration of clathrin-dependent vesicular trafficking. PMID:12237126

    14. Oxidative stress: a concept in redox biology and medicine

      PubMed Central

      Sies, Helmut

      2015-01-01

      Oxidative stress” as a concept in redox biology and medicine has been formulated in 1985; at the beginning of 2015, approx. 138,000 PubMed entries show for this term. This concept has its merits and its pitfalls. Among the merits is the notion, elicited by the combined two terms of (i) aerobic metabolism as a steady-state redox balance and (ii) the associated potential strains in the balance as denoted by the term, stress, evoking biological stress responses. Current research on molecular redox switches governing oxidative stress responses is in full bloom. The fundamental importance of linking redox shifts to phosphorylation/dephosphorylation signaling is being more fully appreciated, thanks to major advances in methodology. Among the pitfalls is the fact that the underlying molecular details are to be worked out in each particular case, which is bvious for a global concept, but which is sometimes overlooked. This can lead to indiscriminate use of the term, oxidative stress, without clear relation to redox chemistry. The major role in antioxidant defense is fulfilled by antioxidant enzymes, not by small-molecule antioxidant compounds. The field of oxidative stress research embraces chemistry, biochemistry, cell biology, physiology and pathophysiology, all the way to medicine and health and disease research. PMID:25588755

    15. Oxidative-stress-induced epigenetic changes in chronic diabetic complications.

      PubMed

      Feng, Biao; Ruiz, Michael Anthony; Chakrabarti, Subrata

      2013-03-01

      Oxidative stress plays an important role in the development and progression of chronic diabetic complications. Diabetes causes mitochondrial superoxide overproduction in the endothelial cells of both large and small vessels. This increased superoxide production causes the activation of several signal pathways involved in the pathogenesis of chronic complications. In particular, endothelial cells are major targets of glucose-induced oxidative damage in the target organs. Oxidative stress activates cellular signaling pathways and transcription factors in endothelial cells including protein kinase C (PKC), c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), forkhead box O (FOXO), and nuclear factor kappa-B (NF-κB). Oxidative stress also causes DNA damage and activates DNA nucleotide excision repair enzymes including the excision repair cross complimenting 1(ERCC1), ERCC4, and poly(ADP-ribose) polymerase (PARP). Augmented production of histone acetyltransferase p300, and alterations of histone deacetylases, including class III deacetylases sirtuins, are also involved in this process. Recent research has found that small noncoding RNAs, like microRNA, are a new kind of regulator associated with chronic diabetic complications. There are extensive and complicated interactions and among these molecules. The purpose of this review is to demonstrate the role of oxidative stress in the development of diabetic complications in relation to epigenetic changes such as acetylation and microRNA alterations. PMID:23537434

    16. Proteomic analysis of seminal fluid from men exhibiting oxidative stress

      PubMed Central

      2013-01-01

      Background Seminal plasma serves as a natural reservoir of antioxidants. It helps to remove excessive formation of reactive oxygen species (ROS) and consequently, reduce oxidative stress. Proteomic profiling of seminal plasma proteins is important to understand the molecular mechanisms underlying oxidative stress and sperm dysfunction in infertile men. Methods This prospective study consisted of 52 subjects: 32 infertile men and 20 healthy donors. Once semen and oxidative stress parameters were assessed (ROS, antioxidant concentration and DNA damage), the subjects were categorized into ROS positive (ROS+) or ROS negative (ROS-). Seminal plasma from each group was pooled and subjected to proteomics analysis. In-solution digestion and protein identification with liquid chromatography tandem mass spectrometry (LC-MS/MS), followed by bioinformatics analyses was used to identify and characterize potential biomarker proteins. Results A total of 14 proteins were identified in this analysis with 7 of these common and unique proteins were identified in both the ROS+ and ROS- groups through MASCOT and SEQUEST analyses, respectively. Prolactin-induced protein was found to be more abundantly present in men with increased levels of ROS. Gene ontology annotations showed extracellular distribution of proteins with a major role in antioxidative activity and regulatory processes. Conclusions We have identified proteins that help protect against oxidative stress and are uniquely present in the seminal plasma of the ROS- men. Men exhibiting high levels of ROS in their seminal ejaculate are likely to exhibit proteins that are either downregulated or oxidatively modified, and these could potentially contribute to male infertility. PMID:24004880

    17. Epigenetic Regulation of Oxidative Stress in Ischemic Stroke

      PubMed Central

      Zhao, Haiping; Han, Ziping; Ji, Xunming; Luo, Yumin

      2016-01-01

      The prevalence and incidence of stroke rises with life expectancy. However, except for the use of recombinant tissue-type plasminogen activator, the translation of new therapies for acute stroke from animal models into humans has been relatively unsuccessful. Oxidative DNA and protein damage following stroke is typically associated with cell death. Cause-effect relationships between reactive oxygen species and epigenetic modifications have been established in aging, cancer, acute pancreatitis, and fatty liver disease. In addition, epigenetic regulatory mechanisms during stroke recovery have been reviewed, with focuses mainly on neural apoptosis, necrosis, and neuroplasticity. However, oxidative stress-induced epigenetic regulation in vascular neural networks following stroke has not been sufficiently explored. Improved understanding of the epigenetic regulatory network upon oxidative stress may provide effective antioxidant approaches for treating stroke. In this review, we summarize the epigenetic events, including DNA methylation, histone modification, and microRNAs, that result from oxidative stress following experimental stroke in animal and cell models, and the ways in which epigenetic changes and their crosstalk influence the redox state in neurons, glia, and vascular endothelial cells, helping us to understand the foregone and vicious epigenetic regulation of oxidative stress in the vascular neural network following stroke. PMID:27330844

    18. Oxidative stress--assassin behind the ischemic stroke.

      PubMed

      Pradeep, Hanumanthappa; Diya, Joseph B; Shashikumar, Shivaiah; Rajanikant, Golgodu K

      2012-01-01

      Ischemic stroke is the second leading cause of death and disability worldwide and is associated with significant clinical and socioeconomic implications, emphasizing the need for effective therapies. Several neuroprotective strategies have failed in clinical trials because of poor knowledge of the molecular processes flanked with ischemic stroke. Therefore, uncovering the molecular processes involved in ischemic brain injury is of critical importance. Therapeutic strategies for ischemic stroke remain ineffective, though rapid advances occur in understanding the pathophysiology of the disease. The oxidative stress is one such high-potential phenomenon, the precise role of which needs to be understood during ischemic events. Nevertheless, the studies carried out in preclinical models of ischemic stroke have pointed to the major role of oxidative stress in exacerbating the ischemic injury. Oxidative stress leading to cell death requires generation of free radicals through multiple mechanisms, such as respiratory inhibition, Ca(2+) imbalance, excitotoxicity, reperfusion injury and inflammation. Free radicals are highly reactive to all the molecular targets: lipids, proteins and nucleic acids, modifying their chemical structure and generating oxidation-derived products. This review discusses molecular aspects of oxidative stress in ischemic stroke and catastrophes that set up as an aftermath of the trauma. PMID:23023336

    19. Fungicide prochloraz induces oxidative stress and DNA damage in vitro.

      PubMed

      Lundqvist, J; Hellman, B; Oskarsson, A

      2016-05-01

      Prochloraz is widely used in horticulture and agriculture, e.g. as a post-harvest anti-mold treatment. Prochloraz is a known endocrine disruptor causing developmental toxicity with multiple mechanisms of action. However, data are scarce concerning other toxic effects. Since oxidative stress response, with formation of reactive oxygen species (ROS), is a common mechanism for different toxic endpoints, e.g. genotoxicity, carcinogenicity and teratogenicity, the aim of this study was to investigate if prochloraz can induce oxidative stress and/or DNA damage in human cells. A cell culture based in vitro model was used to study oxidative stress response by prochloraz, as measured by the activity of the nuclear factor erythroid 2-related factor 2 (Nrf2), a key molecule in oxidative defense mechanisms. It was observed that prochloraz induced oxidative stress in cultured human adrenocortical H295R and hepatoma HepG2 cells at non-toxic concentrations. Further, we used Comet assay to investigate the DNA damaging potential of prochloraz, and found that non-toxic concentrations of prochloraz induced DNA damage in HepG2 cells. These are novel findings, contradicting previous studies in the field of prochloraz and genotoxicity. This study reports a new mechanism by which prochloraz may exert toxicity. Our findings suggest that prochloraz might have genotoxic properties. PMID:26945613

    20. Environmental-induced oxidative stress in neurodegenerative disorders and aging.

      PubMed

      Migliore, Lucia; Coppedè, Fabio

      2009-03-31

      The aetiology of most neurodegenerative disorders is multifactorial and consists of an interaction between environmental factors and genetic predisposition. Free radicals derived primarily from molecular oxygen have been implicated and considered as associated risk factors for a variety of human disorders including neurodegenerative diseases and aging. Damage to tissue biomolecules, including lipids, proteins and DNA, by free radicals is postulated to contribute importantly to the pathophysiology of oxidative stress. The potential of environmental exposure to metals, air pollution and pesticides as well as diet as risk factors via the induction of oxidative stress for neurodegenerative diseases and aging is discussed. The role of genetic background is discussed on the light of the oxidative stress implication, focusing on both complex neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis) and monogenic neurological disorders (Huntington's disease, Ataxia telangiectasia, Friedreich Ataxia and others). Emphasis is given to role of the repair mechanisms of oxidative DNA damage in delaying aging and protecting against neurodegeneration. The emerging interplay between environmental-induced oxidative stress and epigenetic modifications of critical genes for neurodegeneration is also discussed. PMID:18952194

    21. In vitro model suggests oxidative stress involved in keratoconus disease

      NASA Astrophysics Data System (ADS)

      Karamichos, D.; Hutcheon, A. E. K.; Rich, C. B.; Trinkaus-Randall, V.; Asara, J. M.; Zieske, J. D.

      2014-04-01

      Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype.

  1. Fluorescence lifetime imaging of endogenous biomarker of oxidative stress.

    PubMed

    Datta, Rupsa; Alfonso-García, Alba; Cinco, Rachel; Gratton, Enrico

    2015-01-01

    Presence of reactive oxygen species (ROS) in excess of normal physiological level results in oxidative stress. This can lead to a range of pathological conditions including inflammation, diabetes mellitus, cancer, cardiovascular and neurodegenerative disease. Biomarkers of oxidative stress play an important role in understanding the pathogenesis and treatment of these diseases. A number of fluorescent biomarkers exist. However, a non-invasive and label-free identification technique would be advantageous for in vivo measurements. In this work we establish a spectroscopic method to identify oxidative stress in cells and tissues by fluorescence lifetime imaging (FLIM). We identified an autofluorescent, endogenous species with a characteristic fluorescent lifetime distribution as a probe for oxidative stress. To corroborate our hypothesis that these species are products of lipid oxidation by ROS, we correlate the spectroscopic signals arising from lipid droplets by combining FLIM with THG and CARS microscopy which are established techniques for selective lipid body imaging. Further, we performed spontaneous Raman spectral analysis at single points of the sample which provided molecular vibration information characteristics of lipid droplets. PMID:25993434

  2. Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration

    PubMed Central

    Sinha, Debasish; Blasiak, Janusz; Kauppinen, Anu; Veréb, Zoltán; Salminen, Antero; Boulton, Michael E.; Petrovski, Goran

    2013-01-01

    Age-related macular degeneration (AMD) is a complex, degenerative and progressive eye disease that usually does not lead to complete blindness, but can result in severe loss of central vision. Risk factors for AMD include age, genetics, diet, smoking, oxidative stress and many cardiovascular-associated risk factors. Autophagy is a cellular housekeeping process that removes damaged organelles and protein aggregates, whereas heterophagy, in the case of the retinal pigment epithelium (RPE), is the phagocytosis of exogenous photoreceptor outer segments. Numerous studies have demonstrated that both autophagy and heterophagy are highly active in the RPE. To date, there is increasing evidence that constant oxidative stress impairs autophagy and heterophagy, as well as increases protein aggregation and causes inflammasome activation leading to the pathological phenotype of AMD. This review ties together these crucial pathological topics and reflects upon autophagy as a potential therapeutic target in AMD. PMID:23590900

  3. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    SciTech Connect

    David Henry, M. Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-28

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, T{sub c}. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb{sub 2}O{sub 5}, consumed the top 6–10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. T{sub c} measurements using a SQUID magnetometer indicate that the tensile films maintained a T{sub c} approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  4. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    NASA Astrophysics Data System (ADS)

    David Henry, M.; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-01

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, Tc. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb2O5, consumed the top 6-10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. Tc measurements using a SQUID magnetometer indicate that the tensile films maintained a Tc approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  5. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo; Aschner, Michael; Rocha, Joao B.T.

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  6. Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies

    PubMed Central

    Hubert, Patrice A.; Lee, Sang Gil; Lee, Sun-Kyeong; Chun, Ock K.

    2014-01-01

    Bone loss during aging has become an increasing public health concern as average life expectancy has increased. One of the most prevalent forms of age-related bone disease today is osteoporosis in which the body slows down bone formation and existing bone is increasingly being resorbed by the body to maintain the calcium balance. Some causes of this bone loss can be attributed to dysregulation of osteoblast and osteoclast activity mediated by increased oxidative stress through the aging process. Due to certain serious adverse effects of the currently available therapeutic agents that limit their efficacy, complementary and alternative medicine (CAM) has garnered interest as a natural means for the prevention of this debilitating disease. Natural antioxidant supplementation, a type of CAM, has been researched to aid in reducing bone loss caused by oxidative stress. Naturally occurring polyphenols, such as anthocyanins rich in berries, are known to have anti-oxidative properties. Several studies have been reviewed to determine the impact polyphenol intake—particularly that of berries—has on bone health. Studies reveal a positive association of high berry intake and higher bone mass, implicating berries as possible inexpensive alternatives in reducing the risk of age related bone loss. PMID:26784669

  7. Mitochondrial-derived reactive oxygen species (ROS) play a causal role in aging-related intervertebral disc degeneration

    PubMed Central

    Nasto, Luigi A.; Robinson, Andria R.; Ngo, Kevin; Clauson, Cheryl L.; Dong, Qing; St. Croix, Claudette; Sowa, Gwendolyn; Pola, Enrico; Robbins, Paul D.; Kang, James; Niedernhofer, Laura J.; Wipf, Peter; Vo, Nam V.

    2013-01-01

    Oxidative damage is a well-established driver of aging. Evidence of oxidative stress exists in aged and degenerated discs, but it is unclear how it affects disc metabolism. In this study, we first determined whether oxidative stress negatively impacts disc matrix metabolism using disc organotypic and cell cultures. Mouse disc organotypic culture grown at atmospheric oxygen (20% O2) exhibited perturbed disc matrix homeostasis, including reduced proteoglycan synthesis and enhanced expression of matrix metalloproteinases, compared to discs grown at low oxygen levels (5% O2). Human disc cells grown at 20% O2 showed increased levels of mitochondrial-derived superoxide anions and perturbed matrix homeostasis. Treatment of disc cells with the mitochondria-targeted reactive oxygen species (ROS) scavenger XJB-5-131 blunted the adverse effects caused by 20% O2. Importantly, we demonstrated that treatment of accelerated aging Ercc1−/Δmice, previously established to be a useful in vivo model to study age-related intervertebral disc degeneration (IDD), also resulted in improved disc total glycosaminoglycan content and proteoglycan synthesis. This demonstrates that mitochondrial-derived ROS contributes to age-associated IDD in Ercc1−/Δmice. Collectively, these data provide strong experimental evidence that mitochondrial-derived ROS play a causal role in driving changes linked to aging-related IDD and a potentially important role for radical scavengers in preventing IDD. PMID:23389888

  8. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  9. Statins Decrease Oxidative Stress and ICD Therapies

    PubMed Central

    Bloom, Heather L.; Shukrullah, Irfan; Veledar, Emir; Gutmann, Rebecca; London, Barry; Dudley, Samuel C.

    2010-01-01

    Recent studies demonstrate that statins decrease ventricular arrhythmias in internal cardioverter defibrillator (ICD) patients. The mechanism is unknown, but evidence links increased inflammatory and