Science.gov

Sample records for age-related spatial memory

  1. An age-related deficit in spatial-feature reference memory in homing pigeons (Columba livia).

    PubMed

    Coppola, Vincent J; Flaim, Mary E; Carney, Samantha N; Bingman, Verner P

    2015-03-01

    Age-related memory decline in mammals has been well documented. By contrast, very little is known about memory decline in birds as they age. In the current study we trained younger and older homing pigeons on a reference memory task in which a goal location could be encoded by spatial and feature cues. Consistent with a previous working memory study, the results revealed impaired acquisition of combined spatial-feature reference memory in older compared to younger pigeons. Following memory acquisition, we used cue-conflict probe trials to provide an initial assessment of possible age-related differences in cue preference. Both younger and older pigeons displayed a similarly modest preference for feature over spatial cues. PMID:25449841

  2. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  3. Age-Related Effects of Study Time Allocation on Memory Performance in a Verbal and a Spatial Task

    ERIC Educational Resources Information Center

    Krueger, Lacy E.

    2012-01-01

    Past studies have suggested that study time allocation partially mediates age relations on memory performance in a verbal task. To identify whether this applied to a different material modality, participants ages 20-87 completed a spatial task in addition to a traditional verbal task. In both the verbal and the spatial task, increased age was…

  4. Maternal inflammation linearly exacerbates offspring age-related changes of spatial learning and memory, and neurobiology until senectitude.

    PubMed

    Li, Xue-Wei; Cao, Lei; Wang, Fang; Yang, Qi-Gang; Tong, Jing-Jing; Li, Xue-Yan; Chen, Gui-Hai

    2016-06-01

    Maternal inflammation during pregnancy can elevate the risk of neurodegenerative disorders in offspring. However, how it affects age-related impairments of spatial learning and memory and changes in the neurobiological indictors in the offspring in later adulthood is still elusive. In this study, the CD-1 mice with maternal gestational inflammation due to receiving lipopolysaccharide (LPS, i.p. 50 or 25μg/kg) were divided into 3-, 12-, 18-, and 22-month-old groups. The spatial learning and memory were evaluated using a six-radial arm water maze and the levels of presynaptic proteins (synaptotagmin-1 and syntaxin-1) and histone acetylation (H3K9ac and H4K8ac) in the dorsal hippocampus were detected using the immunohistochemical method. The results indicated that there were significant age-related impairments of spatial learning and memory, decreased levels of H4K8ac, H3K9ac, and syntaxin-1, and increased levels of synaptotagmin-1 in the offspring mice from 12 months old to 22 months old compared to the same-age controls. Maternal LPS treatment significantly exacerbated the offspring impairments of spatial learning and memory, the reduction of H3K9ac, H4K8ac, and syntaxin-1, and the increment of synaptotagmin-1 from 12 months old to 22 months old compared to the same-age control groups. The changes in the neurobiological indicators significantly correlated with the impairments of spatial learning and memory. Furthermore, this correlation, besides the age and LPS-treatment effects, also showed a dose-dependent effect. Our results suggest that maternal inflammation during pregnancy could exacerbate age-related impairments of spatial learning and memory, and neurobiochemical indicators in the offspring CD-1 mice from midlife to senectitude. PMID:26992827

  5. Age-related effects on spatial memory across viewpoint changes relative to different reference frames.

    PubMed

    Montefinese, Maria; Sulpizio, Valentina; Galati, Gaspare; Committeri, Giorgia

    2015-07-01

    Remembering object positions across different views is a fundamental competence for acting and moving appropriately in a large-scale space. Behavioural and neurological changes in elderly subjects suggest that the spatial representations of the environment might decline compared to young participants. However, no data are available on the use of different reference frames within topographical space in aging. Here we investigated the use of allocentric and egocentric frames in aging, by asking young and older participants to encode the location of a target in a virtual room relative either to stable features of the room (allocentric environment-based frame), or to an unstable objects set (allocentric objects-based frame), or to the viewer's viewpoint (egocentric frame). After a viewpoint change of 0° (absent), 45° (small) or 135° (large), participants judged whether the target was in the same spatial position as before relative to one of the three frames. Results revealed a different susceptibility to viewpoint changes in older than young participants. Importantly, we detected a worst performance, in terms of reaction times, for older than young participants in the allocentric frames. The deficit was more marked for the environment-based frame, for which a lower sensitivity was revealed as well as a worst performance even when no viewpoint change occurred. Our data provide new evidence of a greater vulnerability of the allocentric, in particular environment-based, spatial coding with aging, in line with the retrogenesis theory according to which cognitive changes in aging reverse the sequence of acquisition in mental development. PMID:25037856

  6. Age-Related Differences in Cortical Activity during a Visuo-Spatial Working Memory Task with Facial Stimuli

    PubMed Central

    Belham, Flávia Schechtman; Satler, Corina; Garcia, Ana; Tomaz, Carlos; Gasbarri, Antonella; Rego, Artur; Tavares, Maria Clotilde H.

    2013-01-01

    Emotion, importantly displayed by facial expressions, is one of the most significant memory modulators. The interaction between memory and the different emotional valences change across lifespan, while young adults (YA) are expected to better recall negative events (Negativity Bias Hypothesis), older adults (OA) tend to focus on positive stimuli (Positivity Effect Hypothesis). This research work aims at verifying whether cortical electrical activity of these two age groups would also be differently influenced by emotional valences in a visuo-spatial working memory task. 27 YA (13 males) and 25 OA (14 males), all healthy volunteers, underwent electroencephalographic recordings (21 scalp electrodes montage), while performing the Spatial Delayed Recognition Span Task using a touch screen with different stimuli categories: neutral, positive and negative faces and geometric pictures. YA obtained higher scores than OA, and showed higher activation of theta and alpha bands in the frontal and midline regions, besides a more evident right-hemispheric asymmetry on alpha band when compared to OA. For both age groups, performance in the task was worse for positive faces than to negative and to neutral faces. Facial stimuli induced a better performance and higher alpha activation on the pre-frontal region for YA, and on the midline, occipital and left temporal regions for OA when compared to geometric figures. The superior performance of YA was expected due to the natural cognitive deficits connected to ageing, as was a better performance with facial stimuli due to the evolutionary importance of faces. These results were related to cortical activity on areas of importance for action-planning, decision making and sustained attention. Taken together, they are in accordance with the Negativity Bias but do not support the Positivity Effect. The methodology used was able to identify age-related differences in cortical activity during emotional mnemonic processing and may be

  7. Isoflurane Exposure during Mid-Adulthood Attenuates Age-Related Spatial Memory Impairment in APP/PS1 Transgenic Mice

    PubMed Central

    Xu, Huan; Wang, Beilei; Chen, Xuemei; Chen, Jie; Wang, Xiangrui

    2012-01-01

    Many in vitro findings suggest that isoflurane exposure might accelerate the process of Alzheimer Disease (AD); however, no behavioral evidence exists to support this theory. In the present study, we hypothesized that exposure of APP/PS1 transgenic mice to isoflurane during mid-adulthood, which is the pre-symptomatic phase of amyloid beta (Abeta) deposition, would alter the progression of AD. Seven-month-old Tg(APPswe,PSEN1dE9)85Dbo/J transgenic mice and their wild-type littermates were exposed to 1.1% isoflurane for 2 hours per day for 5 days. Learning and memory ability was tested 48 hours and 5 months following isoflurane exposure using the Morris Water Maze and Y maze, respectively. Abeta deposition and oligomers in the hippocampus were measured by immunohistochemistry or Elisa 5 months following isoflurane exposure. We found that the performance of both the transgenic and wild-type mice in the Morris Water Maze significantly improved 48 hours following isoflurane exposure. The transgenic mice made significantly fewer discrimination errors in the Y maze following isoflurane exposure, and no differences were found between wild-type littermates 5 months following isoflurane exposure. For the transgenic mice, the Abeta plaque and oligomers in the hippocampus was significantly decreased in the 5 months following isoflurane exposure. In summary, repeated isoflurane exposure during the pre-symptomatic phase not only improved spatial memory in both the APP/PS1 transgenic and wild-type mice shortly after the exposure but also prevented age-related decline in learning and memory and attenuated the Abeta plaque and oligomers in the hippocampus of transgenic mice. PMID:23185565

  8. A Mid-Life Vitamin A Supplementation Prevents Age-Related Spatial Memory Deficits and Hippocampal Neurogenesis Alterations through CRABP-I

    PubMed Central

    Touyarot, Katia; Bonhomme, Damien; Roux, Pascale; Alfos, Serge; Lafenêtre, Pauline; Richard, Emmanuel; Higueret, Paul; Pallet, Véronique

    2013-01-01

    Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions. PMID:23977218

  9. Age-Related Visual and Kinesthetic Encoding Effects on Spatial Memory of a Maze-Like Floor Plan.

    ERIC Educational Resources Information Center

    Sinnott, Jan D.; And Others

    As part of an experimental research program on lifespan naturalistic and laboratory memory for spatial representation, investigators examined interactions between the effects of visual and kinesthetic encoding and age on memory for space using a modification of the Sinnott (1987) human maze paradigm. It was hypothesized that an age effect favoring…

  10. The canine sand maze: an appetitive spatial memory paradigm sensitive to age-related change in dogs.

    PubMed

    Salvin, Hannah E; McGreevy, Paul D; Sachdev, Perminder S; Valenzuela, Michael J

    2011-01-01

    Aged dogs exhibit a spectrum of cognitive abilities including a syndrome similar to Alzheimer's disease. A major impediment to research so far has been the lack of a quick and accurate test of visuospatial memory appropriate for community-based animals. We therefore report on the development and validation of the Canine Sand Maze. A 4.5-m-diameter circular pool was filled with a sand and powdered food reward mix to a depth of 10 cm. Dogs were given 4 habituation and 16 learning trials which alternated a food reward being half (control trials) or fully-buried (acquisition trials) in a fixed location. After a 90-min break, a probe trial was conducted. Cognitively normal, aged (> 8 years, n  =  11) and young (1-4 years, n  =  11), breed-matched dogs were compared. After correction for differences in control trials, average probe times were 2.97 and 10.81 s for young and aged dogs, respectively. In the probe trial, both groups spent significantly more time in the target quadrant but there was a trend for young dogs to cross a 1 m(2) annulus zone around the buried reward more frequently (2.6 times) than aged dogs (1.5 times). Test-retest reliability in a subset of young dogs (n  =  5) was high. On the basis of these findings, the Canine Sand Maze is presented as a quick, sensitive and nonaversive tool for assessing spatial learning and reference memory in dogs. PMID:21541168

  11. Hippocampal expression of myelin-associated inhibitors is induced with age-related cognitive decline and correlates with deficits of spatial learning and memory

    PubMed Central

    VanGuilder, Heather D.; Bixler, Georgina V.; Sonntag, William E.; Freeman, Willard M.

    2012-01-01

    Impairment of cognitive functions including hippocampus-dependent spatial learning and memory affects nearly half of the aged population. Age-related cognitive decline is associated with synaptic dysfunction that occurs in the absence of neuronal cell loss, suggesting that impaired neuronal signaling and plasticity may underlie age-related deficits of cognitive function. Expression of myelin-associated inhibitors (MAIs) of synaptic plasticity, including the ligands MAG, Nogo-A, and OMgp, and their common receptor, NgR1, was examined in hippocampal synaptosomes and CA1, CA3 and DG subregions derived from adult (12–13 months) and aged (26–28 months) Fischer 344 × Brown Norway rats. Rats were behaviorally phenotyped by Morris water maze testing and classified as aged cognitively intact (n=7–8) or aged cognitively impaired (n=7–10) relative to adults (n=5–7). MAI protein expression was induced in cognitively impaired, but not cognitively intact, aged rats and correlated with cognitive performance in individual rats. Immunohistochemical experiments demonstrated that upregulation of MAIs occurs, in part, in hippocampal neuronal axons and somata. While a number of pathways and processes are altered with brain aging, we report a coordinated induction of myelin-associated inhibitors of functional and structural plasticity only in cognitively impaired aged rats. Induction of MAIs may decrease stimulus-induced synaptic strengthening and structural remodeling, ultimately impairing synaptic mechanisms of spatial learning and memory and resulting in cognitive decline. PMID:22269040

  12. The Canine Sand Maze: An Appetitive Spatial Memory Paradigm Sensitive to Age-Related Change in Dogs

    ERIC Educational Resources Information Center

    Salvin, Hannah E.; McGreevy, Paul D.; Sachdev, Perminder S.; Valenzuela, Michael J.

    2011-01-01

    Aged dogs exhibit a spectrum of cognitive abilities including a syndrome similar to Alzheimer's disease. A major impediment to research so far has been the lack of a quick and accurate test of visuospatial memory appropriate for community-based animals. We therefore report on the development and validation of the Canine Sand Maze. A 4.5-m-diameter…

  13. EPA/DHA and Vitamin A Supplementation Improves Spatial Memory and Alleviates the Age-related Decrease in Hippocampal RXRγ and Kinase Expression in Rats

    PubMed Central

    Létondor, Anne; Buaud, Benjamin; Vaysse, Carole; Richard, Emmanuel; Layé, Sophie; Pallet, Véronique; Alfos, Serge

    2016-01-01

    Studies suggest that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and vitamin A are critical to delay aged-related cognitive decline. These nutrients regulate gene expression in the brain by binding to nuclear receptors such as the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Moreover, EPA/DHA and retinoids activate notably kinase signaling pathways such as AKT or MAPK, which includes ERK1/2. This suggests that these nutrients may modulate brain function in a similar way. Therefore, we investigated in middle-aged rats the behavioral and molecular effects of supplementations with EPA/DHA and vitamin A alone or combined. 18-month-old rats exhibited reference and working memory deficits in the Morris water maze, associated with a decrease in serum vitamin A and hippocampal EPA/DHA contents. RARα, RXRβ, and RXRγ mRNA expression and CAMKII, AKT, ERK1/2 expression were decreased in the hippocampus of middle-aged rats. A combined EPA/DHA and vitamin A supplementation had a beneficial additive effect on reference memory but not in working memory in middle-aged rats, associated with an alleviation of the age-related decrease in RXRγ, CAMKII, AKT, and ERK1 expression in the hippocampus. This study provides a new combined nutritional strategy to delay brain aging. PMID:27242514

  14. EPA/DHA and Vitamin A Supplementation Improves Spatial Memory and Alleviates the Age-related Decrease in Hippocampal RXRγ and Kinase Expression in Rats.

    PubMed

    Létondor, Anne; Buaud, Benjamin; Vaysse, Carole; Richard, Emmanuel; Layé, Sophie; Pallet, Véronique; Alfos, Serge

    2016-01-01

    Studies suggest that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and vitamin A are critical to delay aged-related cognitive decline. These nutrients regulate gene expression in the brain by binding to nuclear receptors such as the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Moreover, EPA/DHA and retinoids activate notably kinase signaling pathways such as AKT or MAPK, which includes ERK1/2. This suggests that these nutrients may modulate brain function in a similar way. Therefore, we investigated in middle-aged rats the behavioral and molecular effects of supplementations with EPA/DHA and vitamin A alone or combined. 18-month-old rats exhibited reference and working memory deficits in the Morris water maze, associated with a decrease in serum vitamin A and hippocampal EPA/DHA contents. RARα, RXRβ, and RXRγ mRNA expression and CAMKII, AKT, ERK1/2 expression were decreased in the hippocampus of middle-aged rats. A combined EPA/DHA and vitamin A supplementation had a beneficial additive effect on reference memory but not in working memory in middle-aged rats, associated with an alleviation of the age-related decrease in RXRγ, CAMKII, AKT, and ERK1 expression in the hippocampus. This study provides a new combined nutritional strategy to delay brain aging. PMID:27242514

  15. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity

    PubMed Central

    Foster, Thomas C.

    2012-01-01

    In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca2+) regulation and Ca2+-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca2+ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca2+ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging. PMID:22307057

  16. Can DRYAD explain age-related associative memory deficits?

    PubMed

    Smyth, Andrea C; Naveh-Benjamin, Moshe

    2016-02-01

    A recent interesting theoretical account of aging and memory judgments, the DRYAD (density of representations yields age-related deficits; Benjamin, 2010; Benjamin, Diaz, Matzen, & Johnson, 2012), attributes the extensive findings of disproportional age-related deficits in memory for source, context, and associations, to a global decline in memory fidelity. It is suggested that this global deficit, possibly due to a decline in attentional processes, is moderated by weak representation of contextual information to result in disproportional age-related declines. In the current article, we evaluate the DRYAD model, comparing it to specific age-related deficits theories, in particular, the ADH (associative deficit hypothesis, Naveh-Benjamin, 2000). We question some of the main assumptions/hypotheses of DRYAD in light of data reported in the literature, and we directly assess the role of attention in age-related deficits by manipulations of divided attention and of the instructions regarding what to pay attention to in 2 experiments (one from the literature and a new one). The results of these experiments fit the predictions of the ADH and do not support the main assumption/hypotheses of DRYAD. PMID:25961878

  17. 1'-Acetoxychavicol acetate ameliorates age-related spatial memory deterioration by increasing serum ketone body production as a complementary energy source for neuronal cells.

    PubMed

    Kojima-Yuasa, Akiko; Yamamoto, Tomiya; Yaku, Keisuke; Hirota, Shiori; Takenaka, Shigeo; Kawabe, Kouichi; Matsui-Yuasa, Isao

    2016-09-25

    1'-Acetoxychavicol acetate (ACA) is naturally obtained from the rhizomes and seeds of Alpinia galangal. Here, we examined the effect of ACA on learning and memory in senescence-accelerated mice prone 8 (SAMP8). In mice that were fed a control diet containing 0.02% ACA for 25 weeks, the learning ability in the Morris water maze test was significantly enhanced in comparison with mice that were fed the control diet alone. In the Y-maze test, SAMP8 mice showed decreased spontaneous alterations in comparison with senescence-accelerated resistant/1 (SAMR1) mice, a homologous control, which was improved by ACA pretreatment. Serum metabolite profiles were obtained by GC-MS analysis, and each metabolic profile was plotted on a 3D score plot. Based upon the diagram, it can be seen that the distribution areas for the three groups were completely separate. Furthermore, the contents of β-hydroxybutyric acid and palmitic acid in the serum of SAMP8-ACA mice were higher than those of SAMP8-control mice and SAMR1-control mice. We also found that SAMR1 mice did not show histological abnormalities, whereas histological damage in the CA1 region of the hippocampus in SAMP8-control mice was observed. However, SAMP8-ACA mice were observed in a similar manner as SAMR1 mice. These findings confirm that ACA increases the serum concentrations of β-hydroxybutyric acid and palmitic acid levels and thus these fuels might contribute to the maintenance of the cognitive performance of SAMP8 mice. PMID:27481192

  18. Age-related differences in working memory updating components.

    PubMed

    Linares, Rocío; Bajo, M Teresa; Pelegrina, Santiago

    2016-07-01

    The aim of this study was to investigate possible age-related changes throughout childhood and adolescence in different component processes of working memory updating (WMU): retrieval, transformation, and substitution. A set of numerical WMU tasks was administered to four age groups (8-, 11-, 14-, and 21-year-olds). To isolate the effect of each of the WMU components, participants performed different versions of a task that included different combinations of the WMU components. The results showed an expected overall decrease in response times and an increase in accuracy performance with age. Most important, specific age-related changes in the retrieval component were found, demonstrating that the effect of retrieval on accuracy was larger in children than in adolescents or young adults. These findings indicate that the availability of representations from outside the focus of attention may change with age. Thus, the retrieval component of updating could contribute to the age-related changes observed in the performance of many updating tasks. PMID:26985577

  19. Alzheimer's disease and age-related memory decline (preclinical).

    PubMed

    Terry, Alvin V; Callahan, Patrick M; Hall, Brandon; Webster, Scott J

    2011-08-01

    An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer's disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as "Mild Cognitive Impairment" (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD and MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy and adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory

  20. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline.

    PubMed

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-08-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline. PMID:25866202

  1. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline

    PubMed Central

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-01-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer’s disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline. PMID:25866202

  2. Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia.

    PubMed

    Sutalangka, Chatchada; Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-mee, Wipawee

    2013-01-01

    To date, the preventive strategy against dementia is still essential due to the rapid growth of its prevalence and the limited therapeutic efficacy. Based on the crucial role of oxidative stress in age-related dementia and the antioxidant and nootropic activities of Moringa oleifera, the enhancement of spatial memory and neuroprotection of M. oleifera leaves extract in animal model of age-related dementia was determined. The possible underlying mechanism was also investigated. Male Wistar rats, weighing 180-220 g, were orally given M. oleifera leaves extract at doses of 100, 200, and 400 mg/kg at a period of 7 days before and 7 days after the intracerebroventricular administration of AF64A bilaterally. Then, they were assessed memory, neuron density, MDA level, and the activities of SOD, CAT, GSH-Px, and AChE in hippocampus. The results showed that the extract improved spatial memory and neurodegeneration in CA1, CA2, CA3, and dentate gyrus of hippocampus together with the decreased MDA level and AChE activity but increased SOD and CAT activities. Therefore, our data suggest that M. oleifera leaves extract is the potential cognitive enhancer and neuroprotectant. The possible mechanism might occur partly via the decreased oxidative stress and the enhanced cholinergic function. However, further explorations concerning active ingredient(s) are still required. PMID:24454988

  3. Moringa oleifera Mitigates Memory Impairment and Neurodegeneration in Animal Model of Age-Related Dementia

    PubMed Central

    Sutalangka, Chatchada; Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-mee, Wipawee

    2013-01-01

    To date, the preventive strategy against dementia is still essential due to the rapid growth of its prevalence and the limited therapeutic efficacy. Based on the crucial role of oxidative stress in age-related dementia and the antioxidant and nootropic activities of Moringa oleifera, the enhancement of spatial memory and neuroprotection of M. oleifera leaves extract in animal model of age-related dementia was determined. The possible underlying mechanism was also investigated. Male Wistar rats, weighing 180–220 g, were orally given M. oleifera leaves extract at doses of 100, 200, and 400 mg/kg at a period of 7 days before and 7 days after the intracerebroventricular administration of AF64A bilaterally. Then, they were assessed memory, neuron density, MDA level, and the activities of SOD, CAT, GSH-Px, and AChE in hippocampus. The results showed that the extract improved spatial memory and neurodegeneration in CA1, CA2, CA3, and dentate gyrus of hippocampus together with the decreased MDA level and AChE activity but increased SOD and CAT activities. Therefore, our data suggest that M. oleifera leaves extract is the potential cognitive enhancer and neuroprotectant. The possible mechanism might occur partly via the decreased oxidative stress and the enhanced cholinergic function. However, further explorations concerning active ingredient(s) are still required. PMID:24454988

  4. Glutamatergic treatment strategies for age-related memory disorders.

    PubMed

    Müller, W E; Scheuer, K; Stoll, S

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7997073

  5. Aging-related episodic memory decline: are emotions the key?

    PubMed Central

    Kinugawa, Kiyoka; Schumm, Sophie; Pollina, Monica; Depre, Marion; Jungbluth, Carolin; Doulazmi, Mohamed; Sebban, Claude; Zlomuzica, Armin; Pietrowsky, Reinhard; Pause, Bettina; Mariani, Jean; Dere, Ekrem

    2013-01-01

    Episodic memory refers to the recollection of personal experiences that contain information on what has happened and also where and when these events took place. Episodic memory function is extremely sensitive to cerebral aging and neurodegerative diseases. We examined episodic memory performance with a novel test in young (N = 17, age: 21–45), middle-aged (N = 16, age: 48–62) and aged but otherwise healthy participants (N = 8, age: 71–83) along with measurements of trait and state anxiety. As expected we found significantly impaired episodic memory performance in the aged group as compared to the young group. The aged group also showed impaired working memory performance as well as significantly decreased levels of trait anxiety. No significant correlation between the total episodic memory and trait or state anxiety scores was found. The present results show an age-dependent episodic memory decline along with lower trait anxiety in the aged group. Yet, it still remains to be determined whether this difference in anxiety is related to the impaired episodic memory performance in the aged group. PMID:23378831

  6. Repetition Priming in Adults with Williams Syndrome: Age-Related Dissociation between Implicit and Explicit Memory

    ERIC Educational Resources Information Center

    Krinsky-McHale, Sharon J.; Kittler, Phyllis; Brown, W. Ted; Jenkins, Edmund C.; Devenny, Darlynne A.

    2005-01-01

    We examined implicit and explicit memory in adults with Williams syndrome. An age-related dissociation was found; repetition priming (reflecting implicit memory) did not show change with age, but free recall (reflecting explicit memory) was markedly reduced. We also compared the performance of adults with Williams syndrome to adults with Down…

  7. Age-related differences in memory and in the memory effects of nootropic drugs.

    PubMed

    Petkov, V D; Mosharrof, A H; Petkov, V V; Kehayov, R A

    1990-01-01

    In experiments of 2-, 5-, 10- and 22-month old rats, using active avoidance with punishment reinforcement (maze and shuttle-box) and passive avoidance (step-down), we found that acquisition and retention in aged rats were impaired significantly or only as a trend. The nootropics adafenoxate, meclofenoxate, citicholine, aniracetam and the standardized ginseng extract administered orally for 7 to 10 days usually facilitated learning and improved memory in the rats of all ages. By some of the indices used the drugs gave more pronounced favourable effects in old rats, while by others better effects were observed in young or adult rats. The results demonstrate significant age-related differences in learning and memory in rats and in the effects of nootropic drugs on these processes. PMID:2281798

  8. Ageing-related stereotypes in memory: When the beliefs come true.

    PubMed

    Bouazzaoui, Badiâa; Follenfant, Alice; Ric, François; Fay, Séverine; Croizet, Jean-Claude; Atzeni, Thierry; Taconnat, Laurence

    2016-05-01

    Age-related stereotype concerns culturally shared beliefs about the inevitable decline of memory with age. In this study, stereotype priming and stereotype threat manipulations were used to explore the impact of age-related stereotype on metamemory beliefs and episodic memory performance. Ninety-two older participants who reported the same perceived memory functioning were divided into two groups: a threatened group and a non-threatened group (control). First, the threatened group was primed with an ageing stereotype questionnaire. Then, both groups were administered memory complaints and memory self-efficacy questionnaires to measure metamemory beliefs. Finally, both groups were administered the Logical Memory task to measure episodic memory, for the threatened group the instructions were manipulated to enhance the stereotype threat. Results indicated that the threatened individuals reported more memory complaints and less memory efficacy, and had lower scores than the control group on the logical memory task. A multiple mediation analysis revealed that the stereotype threat effect on the episodic memory performance was mediated by both memory complaints and memory self-efficacy. This study revealed that stereotype threat impacts belief in one's own memory functioning, which in turn impairs episodic memory performance. PMID:26057336

  9. Who, When, and Where? Age-Related Differences on a New Memory Test

    ERIC Educational Resources Information Center

    Sumida, Catherine A.; Holden, Heather M.; Van Etten, Emily J.; Wagner, Gabrielle M.; Hileman, Jacob D.; Gilbert, Paul E.

    2016-01-01

    Our study examined age-related differences on a new memory test assessing memory for "who," "when," and "where," and associations among these elements. Participants were required to remember a sequence of pictures of different faces paired with different places. Older adults remembered significantly fewer correct…

  10. Mechanisms of Age-Related Decline in Memory Search across the Adult Life Span

    ERIC Educational Resources Information Center

    Hills, Thomas T.; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R.

    2013-01-01

    Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis).…

  11. Young and Older Adults’ Beliefs about Effective Ways to Mitigate Age-Related Memory Decline

    PubMed Central

    Horhota, Michelle; Lineweaver, Tara; Ositelu, Monique; Summers, Kristi; Hertzog, Christopher

    2013-01-01

    This study investigated whether young and older adults vary in their beliefs about the impact of various mitigating factors on age-related memory decline. Eighty young (ages 18–23) and eighty older (ages 60–82) participants reported their beliefs about their own memory abilities and the strategies that they use in their everyday lives to attempt to control their memory. Participants also reported their beliefs about memory change with age for hypothetical target individuals who were described as using (or not using) various means to mitigate memory decline. There were no age differences in personal beliefs about control over current or future memory ability. However, the two age groups differed in the types of strategies they used in their everyday life to control their memory. Young adults were more likely to use internal memory strategies, whereas older adults were more likely to focus on cognitive exercise and maintaining physical health as ways to optimize their memory ability. There were no age differences in rated memory change across the life span in hypothetical individuals. Both young and older adults perceived strategies related to improving physical and cognitive health as effective means of mitigating memory loss with age, whereas internal memory strategies were perceived as less effective means for controlling age-related memory decline. PMID:22082012

  12. Controlled processes account for age-related decrease in episodic memory.

    PubMed

    Vanderaspoilden, Valérie; Adam, Stéphane; der Linden, Martial Van; Morais, José

    2007-05-01

    A decrease in controlled processes has been proposed to be responsible for age-related episodic memory decline. We used the Process Dissociation Procedure, a method that attempts to estimate the contribution of controlled and automatic processes to cognitive performance, and entered both estimates in regression analyses. Results indicate that only controlled processes explained a great part of the age-related variance in a word recall task, especially when little environmental support was offered. PMID:16860766

  13. Age-related decline of precision and binding in visual working memory.

    PubMed

    Peich, Muy-Cheng; Husain, Masud; Bays, Paul M

    2013-09-01

    Working memory declines with normal aging, but the nature of this impairment is debated. Studies based on detecting changes to arrays of visual objects have identified two possible components to age-related decline: a reduction in the number of items that can be stored, or a deficit in maintaining the associations (bindings) between individual object features. However, some investigations have reported intact binding with aging, and specific deficits arising only in Alzheimer's disease. Here, using a recently developed continuous measure of recall fidelity, we tested the precision with which adults of different ages could reproduce from memory the orientation and color of a probed array item. The results reveal a further component of cognitive decline: an age-related decrease in the resolution with which visual information can be maintained in working memory. This increase in recall variability with age was strongest under conditions of greater memory load. Moreover, analysis of the distribution of errors revealed that older participants were more likely to incorrectly report one of the unprobed items in memory, consistent with an age-related increase in misbinding. These results indicate a systematic decline with age in working memory resources that can be recruited to store visual information. The paradigm presented here provides a sensitive index of both memory resolution and feature binding, with the potential for assessing their modulation by interventions. The findings have implications for understanding the mechanisms underpinning working memory deficits in both health and disease. PMID:23978008

  14. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone

    SciTech Connect

    Carney, J.M.; Starke-Reed, P.E.; Oliver, C.N.; Landum, R.W.; Cheng, M.S.; Wu, J.F.; Floyd, R.A. )

    1991-05-01

    Oxygen free radicals and oxidative events have been implicated as playing a role in bringing about the changes in cellular function that occur during aging. Brain readily undergoes oxidative damage, so it is important to determine if aging-induced changes in brain may be associated with oxidative events. Previously we demonstrated that brain damage caused by an ischemia/reperfusion insult involved oxidative events. In addition, pretreatment with the spin-trapping compound N-tert-butyl-alpha-phenylnitrone (PBN) diminished the increase in oxidized protein and the loss of glutamine synthetase (GS) activity that accompanied ischemia/reperfusion injury in brain. We report here that aged gerbils had a significantly higher level of oxidized protein as assessed by carbonyl residues and decreased GS and neutral protease activities as compared to young adult gerbils. We also found that chronic treatment with the spin-trapping compound PBN caused a decrease in the level of oxidized protein and an increase in both GS and neutral protease activity in aged Mongolian gerbil brain. In contrast to aged gerbils, PBN treatment of young adult gerbils had no significant effect on brain oxidized protein content or GS activity. Male gerbils, young adults (3 months of age) and retired breeders (15-18 months of age), were treated with PBN for 14 days with twice daily dosages of 32 mg/kg. If PBN administration was ceased after 2 weeks, the significantly decreased level of oxidized protein and increased GS and neutral protease activities in old gerbils changed in a monotonic fashion back to the levels observed in aged gerbils prior to PBN administration. We also report that old gerbils make more errors than young animals and that older gerbils treated with PBN made fewer errors in a radial arm maze test for temporal and spatial memory than the untreated aged controls.

  15. The Role of Hippocampal Iron Concentration and Hippocampal Volume in Age-Related Differences in Memory

    PubMed Central

    Rodrigue, Karen M.; Daugherty, Ana M.; Haacke, E. Mark; Raz, Naftali

    2013-01-01

    The goal of this study was to examine the relationships between 2 age-sensitive indices of brain integrity—volume and iron concentration—and the associated age differences in memory performance. In 113 healthy adults (age 19–83 years), we measured the volume and estimated iron concentration in the hippocampus (HC), caudate nucleus (Cd), and primary visual cortex (VC) in vivo with T2* relaxation times, and assessed memory performance with multiple tests. We applied structural equation modeling to evaluate the contribution of individual differences in 2 indices of integrity, volume and T2*, to age-related memory variance. The results show that in healthy adults, age differences in memory can be explained in part by individual differences in HC volume that in turn are associated with differences in HC iron concentration. Lower memory scores were linked to smaller HC and higher HC iron concentration. No such associations were noted for Cd and VC. We conclude that the association between age-related declines in memory and reduced hippocampal volume may reflect the impact of oxidative stress related to increase in free iron concentration. Longitudinal follow-up is needed to test whether altered iron homeostasis in the HC is an early marker for age-related cognitive decline. PMID:22645251

  16. Age-Related Changes in Duration Reproduction: Involvement of Working Memory Processes

    ERIC Educational Resources Information Center

    Baudouin, Alexia; Vanneste, Sandrine; Pouthas, Viviane; Isingrini, Michel

    2006-01-01

    The aim of the present research was to study age-related changes in duration reproduction by differentiating the working memory processes underlying this time estimation task. We compared performances of young and elderly adults in a duration reproduction task performed in simple and concurrent task conditions. Participants were also administered…

  17. Insulin-like growth factor 2 rescues aging-related memory loss in rats.

    PubMed

    Steinmetz, Adam B; Johnson, Sarah A; Iannitelli, Dylan E; Pollonini, Gabriella; Alberini, Cristina M

    2016-08-01

    Aging is accompanied by declines in memory performance, and particularly affects memories that rely on hippocampal-cortical systems, such as episodic and explicit. With aged populations significantly increasing, the need for preventing or rescuing memory deficits is pressing. However, effective treatments are lacking. Here, we show that the level of the mature form of insulin-like growth factor 2 (IGF-2), a peptide regulated in the hippocampus by learning, required for memory consolidation and a promoter of memory enhancement in young adult rodents, is significantly reduced in hippocampal synapses of aged rats. By contrast, the hippocampal level of the immature form proIGF-2 is increased, suggesting an aging-related deficit in IGF-2 processing. In agreement, aged compared to young adult rats are deficient in the activity of proprotein convertase 2, an enzyme that likely mediates IGF-2 posttranslational processing. Hippocampal administration of the recombinant, mature form of IGF-2 rescues hippocampal-dependent memory deficits and working memory impairment in aged rats. Thus, IGF-2 may represent a novel therapeutic avenue for preventing or reversing aging-related cognitive impairments. PMID:27318130

  18. Age-Related Declines in Visuospatial Working Memory Correlate With Deficits in Explicit Motor Sequence Learning

    PubMed Central

    Bo, J.; Borza, V.

    2009-01-01

    Numerous studies have shown that older adults exhibit deficits in motor sequence learning, but the mechanisms underlying this effect remain unclear. Our recent work has shown that visuospatial working-memory capacity predicts the rate of motor sequence learning and the length of motor chunks formed during explicit sequence learning in young adults. In the current study, we evaluate whether age-related deficits in working memory explain the reduced rate of motor sequence learning in older adults. We found that older adults exhibited a correlation between visuospatial working-memory capacity and motor sequence chunk length, as we observed previously in young adults. In addition, older adults exhibited an overall reduction in both working-memory capacity and motor chunk length compared with that of young adults. However, individual variations in visuospatial working-memory capacity did not correlate with the rate of learning in older adults. These results indicate that working memory declines with age at least partially explain age-related differences in explicit motor sequence learning. PMID:19726728

  19. Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning.

    PubMed

    Bo, J; Borza, V; Seidler, R D

    2009-11-01

    Numerous studies have shown that older adults exhibit deficits in motor sequence learning, but the mechanisms underlying this effect remain unclear. Our recent work has shown that visuospatial working-memory capacity predicts the rate of motor sequence learning and the length of motor chunks formed during explicit sequence learning in young adults. In the current study, we evaluate whether age-related deficits in working memory explain the reduced rate of motor sequence learning in older adults. We found that older adults exhibited a correlation between visuospatial working-memory capacity and motor sequence chunk length, as we observed previously in young adults. In addition, older adults exhibited an overall reduction in both working-memory capacity and motor chunk length compared with that of young adults. However, individual variations in visuospatial working-memory capacity did not correlate with the rate of learning in older adults. These results indicate that working memory declines with age at least partially explain age-related differences in explicit motor sequence learning. PMID:19726728

  20. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: Relationship with spatial impairment

    PubMed Central

    Bañuelos, C.; LaSarge, C. L.; McQuail, J. A.; Hartman, J. J.; Gilbert, R. J.; Ormerod, B. K.; Bizon, J. L.

    2013-01-01

    Both cholinergic and GABAergic projections from the rostral basal forebrain have been implicated in hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in co-distributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase (ChAT) immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 (GAD67) immunopositive) neurons, and total (NeuN immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline. PMID:22817834

  1. Gulliver meets Descartes: early modern concepts of age-related memory loss.

    PubMed

    Schäfer, Daniel

    2003-03-01

    Age-related memory loss was a marginal issue in medical discussions during early modern times and until well into the second half of the 17th century. There are many possible explanations: the lack of similar traditions in antiquity and in the Middle Ages, insufficient physiological and morphological knowledge of the brain, and the underlying conflict between idealistic and materialistic perspectives on the functions of the soul and the conditions of these in old age. After these boundaries had been pushed back by the influence of Cartesianism and Iatromechanism, the problem of age-related memory loss was increasingly regarded as a physical illness and began to receive more attention. This trend first occurred in medicine, before spreading to the literary world, where the novel "Gulliver's Travels" is one clear and famous example. PMID:12785108

  2. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets

    PubMed Central

    Matsumoto, Yukihisa; Matsumoto, Chihiro S.; Takahashi, Toshihumi; Mizunami, Makoto

    2016-01-01

    Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes. PMID:27616985

  3. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets.

    PubMed

    Matsumoto, Yukihisa; Matsumoto, Chihiro S; Takahashi, Toshihumi; Mizunami, Makoto

    2016-01-01

    Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes. PMID:27616985

  4. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline.

    PubMed

    Müller, Nils C J; Genzel, Lisa; Konrad, Boris N; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel; Dresler, Martin

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience-in our case piano skills-increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  5. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline

    PubMed Central

    Müller, Nils C. J.; Genzel, Lisa; Konrad, Boris N.; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience–in our case piano skills–increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  6. I owe you: age-related similarities and differences in associative memory for gains and losses.

    PubMed

    Castel, Alan D; Friedman, Michael C; McGillivray, Shannon; Flores, Cynthia C; Murayama, Kou; Kerr, Tyson; Drolet, Aimee

    2016-09-01

    Older adults often experience associative memory impairments but can sometimes remember important information. The current experiments investigate potential age-related similarities and differences associate memory for gains and losses. Younger and older participants were presented with faces and associated dollar amounts, which indicated how much money the person "owed" the participant, and were later given a cued recall test for the dollar amount. Experiment 1 examined face-dollar amount pairs while Experiment 2 included negative dollar amounts to examine both gains and losses. While younger adults recalled more information relative to older adults, both groups were more accurate in recalling the correct value associated with high-value faces compared to lower-value faces and remembered gist-information about the values. However, negative values (losses) did not have a strong impact on recall among older adults versus younger adults, illustrating important associative memory differences between younger and older adults. PMID:26847137

  7. DRYAD and ADH: Further comments on explaining age-related differences in memory.

    PubMed

    Naveh-Benjamin, Moshe; Smyth, Andrea C

    2016-02-01

    Recently, Smyth and Naveh-Benjamin (2016) questioned some of the main assumptions/hypotheses of DRYAD (or density of representations yields age-related deficits), a global-deficit model of aging and memory judgments (Benjamin, 2010; Benjamin et al., 2012). Smyth and Naveh-Benjamin (2016) provided empirical evidence that seems incompatible with DRYAD, but that fits the associative deficit hypothesis (ADH; Naveh-Benjamin, 2000), 1 specific-deficit theoretical view. In response, Aaron Benjamin (2016) offered a discussion of the complementary strengths and weaknesses of the DRYAD and the ADH, and the potential ways they might work together. We agree with many of his comments, but are not convinced that DRYAD is able to explain basic replicable empirical evidence of the type mentioned in Smyth and Naveh-Benjamin (2016). We discuss the reasons why we are not fully convinced by the demonstration of DRYAD's simulation of results presented in Benjamin (2016) and then present an implementation of ADH in a computationally based age-related impaired neuromodulation approach that was shown to simulate the basic empirical results of age-related associative memory deficits. We also discuss the issues of parsimony of theories and the appropriate type of representation, in the context of global versus specific deficits theoretical views. Finally, we show that the ADH's take on the distinction between items and associations has been adopted by some global computational models of memory. We believe that considerations of the above issues and others raised by Benjamin (2016) can lead to fruitful discussions that will benefit both theory development and existing knowledge of aging and memory. PMID:26866588

  8. Changes in pattern completion – a key mechanism to explain age-related recognition memory deficits?

    PubMed Central

    Vieweg, Paula; Stangl, Matthias; Howard, Lorelei R.; Wolbers, Thomas

    2016-01-01

    Accurate memory retrieval from partial or degraded input requires the reactivation of memory traces, a hippocampal mechanism termed pattern completion. Age-related changes in hippocampal integrity have been hypothesized to shift the balance of memory processes in favor of the retrieval of already stored information (pattern completion), to the detriment of encoding new events (pattern separation). Using a novel behavioral paradigm, we investigated the impact of cognitive aging (1) on recognition performance across different levels of stimulus completeness, and (2) on potential response biases. Participants were required to identify previously learned scenes among new ones. Additionally, all stimuli were presented in gradually masked versions to alter stimulus completeness. Both young and older adults performed increasingly poorly as the scenes became less complete, and this decline in performance was more pronounced in elderly participants indicative of a pattern completion deficit. Intriguingly, when novel scenes were shown, only the older adults showed an increased tendency to identify these as familiar scenes. In line with theoretical models, we argue that this reflects an age-related bias towards pattern completion. PMID:25597525

  9. A four-component model of age-related memory change.

    PubMed

    Healey, M Karl; Kahana, Michael J

    2016-01-01

    We develop a novel, computationally explicit, theory of age-related memory change within the framework of the context maintenance and retrieval (CMR2) model of memory search. We introduce a set of benchmark findings from the free recall and recognition tasks that include aspects of memory performance that show both age-related stability and decline. We test aging theories by lesioning the corresponding mechanisms in a model fit to younger adult free recall data. When effects are considered in isolation, many theories provide an adequate account, but when all effects are considered simultaneously, the existing theories fail. We develop a novel theory by fitting the full model (i.e., allowing all parameters to vary) to individual participants and comparing the distributions of parameter values for older and younger adults. This theory implicates 4 components: (a) the ability to sustain attention across an encoding episode, (b) the ability to retrieve contextual representations for use as retrieval cues, (c) the ability to monitor retrievals and reject intrusions, and (d) the level of noise in retrieval competitions. We extend CMR2 to simulate a recognition memory task using the same mechanisms the free recall model uses to reject intrusions. Without fitting any additional parameters, the 4-component theory that accounts for age differences in free recall predicts the magnitude of age differences in recognition memory accuracy. Confirming a prediction of the model, free recall intrusion rates correlate positively with recognition false alarm rates. Thus, we provide a 4-component theory of a complex pattern of age differences across 2 key laboratory tasks. PMID:26501233

  10. High cognitive reserve is associated with a reduced age-related deficit in spatial conflict resolution

    PubMed Central

    Puccioni, Olga; Vallesi, Antonino

    2012-01-01

    Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR) and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69–79 years-old) and 18 younger controls (18–34 years-old) matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs) if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn−1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors. PMID:23248595

  11. Understanding age-related reductions in visual working memory capacity: Examining the stages of change detection

    PubMed Central

    Duda, Bryant; Hussey, Erin; Mason, Emily; Molitor, Robert J.; Woodman, Geoffrey F.; Ally, Brandon A.

    2014-01-01

    Visual working memory (VWM) capacity is reduced in older adults. Research has shown age-related impairments to VWM encoding, but aging is likely to affect multiple stages of VWM. In the present study, we recorded the event-related potentials (ERPs) of younger and older adults during VWM maintenance and retrieval. We measured encoding-stage processing with the P1 component, maintenance-stage processing with the contralateral delay activity (CDA), and retrieval-stage processing by comparing the activity for old and new items (old–new effect). Older adults showed lower behavioral capacity estimates (K) than did younger adults, but surprisingly, their P1 components and CDAs were comparable to those of younger adults. This remarkable dissociation between neural activity and behavior in the older adults indicated that the P1 and CDA did not accurately assess their VWM capacity. However, the neural activity evoked during VWM retrieval yielded results that helped clarify the age-related differences. During retrieval, younger adults showed early old–new effects in frontal and occipital areas and a late central–parietal old–new effect, whereas older adults showed a late right-lateralized parietal old–new effect. The younger adults’ early old–new effects strongly resembled an index of perceptual fluency, suggesting that perceptual implicit memory was activated. The activation of implicit memory could have facilitated the younger adults’ behavior, and the lack of these early effects in older adults may suggest that they have much lower-resolution memory than do younger adults. From these data, we speculated that younger and older adults store the same number of items in VWM, but that younger adults store a higher-resolution representation than do older adults. PMID:24420648

  12. Aging and associative recognition: A view from the DRYAD model of age-related memory deficits.

    PubMed

    Benjamin, Aaron S

    2016-02-01

    How do we best characterize the memory deficits that accompany aging? A popular hypothesis, articulated originally by Naveh-Benjamin (2000) and reviewed in the accompanying article by Smyth and Naveh-Benjamin (2016), suggests that older adults are selectively deficient in establishing associations between to-be-learned memoranda and as a result have deficits in memory for sources or contexts. An alternative proposal, called density of representations yields age-related deficits (DRYAD) and outlined in recent articles by Benjamin (2010) and colleagues (Benjamin, Diaz, Matzen, & Johnson, 2012), attributes disproportionate deficits in memory to a global, rather than a selective, deficit of memory. In an attempt to adjudicate between these competing positions, Smyth and Naveh-Benjamin (2016) discussed 2 sets of experimental data that they claim speak against the global deficit model. Here I review some general principles of how the global-deficit view is applied to experimental paradigms and demonstrate that even a simplified form of DRYAD can comfortably accommodate the critical findings cited by Smyth and Naveh-Benjamin. I also evaluate aspects of their results that may be problematic for DRYAD and describe ways in which DRYAD's account of associative recognition can be falsified. I end with a discussion of the complementary strengths and weaknesses of the 2 approaches and consider ways in which the associative deficit hypothesis and DRYAD might work more profitably together than apart. PMID:26866587

  13. Neurophysiological correlates of age-related changes in working memory capacity.

    PubMed

    Mattay, Venkata S; Fera, Francesco; Tessitore, Alessandro; Hariri, Ahmad R; Berman, Karen F; Das, Saumitra; Meyer-Lindenberg, Andreas; Goldberg, Terry E; Callicott, Joseph H; Weinberger, Daniel R

    2006-01-01

    Cognitive abilities such as working memory (WM) capacity decrease with age. To determine the neurophysiological correlates of age-related reduction in working memory capacity, we studied 10 young subjects (<35 years of age; mean age=29) and twelve older subjects (>55 years of age; mean age=59) with whole brain blood oxygenation-level dependent (BOLD) fMRI on a 1.5 T GE MR scanner using a SPIRAL FLASH pulse sequence (TE=24 ms, TR=56 ms, FA=60 degrees , voxel dimensions=3.75 mm(3)). Subjects performed a modified version of the "n" back working memory task at different levels of increasing working memory load (1-Back, 2-Back and 3-Back). Older subjects performed as well as the younger subjects at 1-Back (p=0.4), but performed worse than the younger subjects at 2-Back (p<0.01) and 3-Back (p=0.06). Older subjects had significantly longer reaction time (RT) than younger subjects (p<0.04) at all levels of task difficulty. Image analysis using SPM 99 revealed a similar distribution of cortical activity between younger and older subjects at all task levels. However, an analysis of variance revealed a significant group x task interaction in the prefrontal cortex bilaterally; within working memory capacity, as in 1-Back when the older subjects performed as well as the younger subjects, they showed greater prefrontal cortical (BA 9) activity bilaterally. At higher working memory loads, however, when they performed worse then the younger subjects, the older subjects showed relatively reduced activity in these prefrontal regions. These data suggest that, within capacity, compensatory mechanisms such as additional prefrontal cortical activity are called upon to maintain proficiency in task performance. As cognitive demand increases, however, they are pushed past a threshold beyond which physiological compensation cannot be made and, a decline in performance occurs. PMID:16213083

  14. Episodic future thinking: the role of working memory and inhibition on age-related differences.

    PubMed

    Zavagnin, Michela; De Beni, Rossana; Borella, Erika; Carretti, Barbara

    2016-02-01

    The ability to remember past events and imagine future events (episodic future thinking-EFT) has been shown to decline with aging. However, only few studies have analyzed the cognitive mechanisms involved in EFT in both young and older adults. The present study examined the role of working memory and inhibition on age-related differences between young and older adults in EFT, in response to short sentences reflecting common events, some of which were repeated in both conditions (past and future). Thirty-seven young and 36 older adults completed an adapted version of the autobiographical interview, in which sentences were presented. Results showed that processing resources explained a significant part of the variance in the amount of details; in particular, inhibition explained the amount of external details produced in the future condition. In addition, using sentences, the older group did not differ from the young adults in terms of the proportion of internal details recalled in the past condition, whereas they produced a lower proportion of internal details in the future condition. The effect of using structured material was reinforced by repeating some sentences in the past. Further, only older adults rated the remembered episodes as more emotionally salient and relevant than the imagined ones. Age-related differences between young and older adults in EFT appear to depend on the type of material used, on basic mechanisms of cognition, and are characterized by both quantitative and qualitative differences. PMID:25963665

  15. Age-related effects on perceptual and semantic encoding in memory.

    PubMed

    Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H

    2014-03-01

    This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. PMID:24374080

  16. Age-Related Wayfinding Differences in Real Large-Scale Environments: Detrimental Motor Control Effects during Spatial Learning Are Mediated by Executive Decline?

    PubMed Central

    Taillade, Mathieu; Sauzéon, Hélène; Arvind Pala, Prashant; Déjos, Marie; Larrue, Florian; Gross, Christian; N’Kaoua, Bernard

    2013-01-01

    The aim of this study was to evaluate motor control activity (active vs. passive condition) with regards to wayfinding and spatial learning difficulties in large-scale spaces for older adults. We compared virtual reality (VR)-based wayfinding and spatial memory (survey and route knowledge) performances between 30 younger and 30 older adults. A significant effect of age was obtained on the wayfinding performances but not on the spatial memory performances. Specifically, the active condition deteriorated the survey measure in all of the participants and increased the age-related differences in the wayfinding performances. Importantly, the age-related differences in the wayfinding performances, after an active condition, were further mediated by the executive measures. All of the results relative to a detrimental effect of motor activity are discussed in terms of a dual task effect as well as executive decline associated with aging. PMID:23843992

  17. Age-Related Declines in Early Sensory Memory: Identification of Rapid Auditory and Visual Stimulus Sequences

    PubMed Central

    Fogerty, Daniel; Humes, Larry E.; Busey, Thomas A.

    2016-01-01

    Age-related temporal-processing declines of rapidly presented sequences may involve contributions of sensory memory. This study investigated recall for rapidly presented auditory (vowel) and visual (letter) sequences presented at six different stimulus onset asynchronies (SOA) that spanned threshold SOAs for sequence identification. Younger, middle-aged, and older adults participated in all tasks. Results were investigated at both equivalent performance levels (i.e., SOA threshold) and at identical physical stimulus values (i.e., SOAs). For four-item sequences, results demonstrated best performance for the first and last items in the auditory sequences, but only the first item for visual sequences. For two-item sequences, adults identified the second vowel or letter significantly better than the first. Overall, when temporal-order performance was equated for each individual by testing at SOA thresholds, recall accuracy for each position across the age groups was highly similar. These results suggest that modality-specific processing declines of older adults primarily determine temporal-order performance for rapid sequences. However, there is some evidence for a second amodal processing decline in older adults related to early sensory memory for final items in a sequence. This selective deficit was observed particularly for longer sequence lengths and was not accounted for by temporal masking. PMID:27199737

  18. Alzheimer’s Disease and Age-Related Memory Decline (Preclinical)

    PubMed Central

    Terry, Alvin V.; Callahan, Patrick M.; Hall, Brandon; Webster, Scott J.

    2011-01-01

    An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer’s disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as “Mild Cognitive Impairment” (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD, MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy, adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory

  19. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits.

    PubMed

    Ward, Andrew M; Mormino, Elizabeth C; Huijbers, Willem; Schultz, Aaron P; Hedden, Trey; Sperling, Reisa A

    2015-01-01

    Advanced aging negatively impacts memory performance. Brain aging has been associated with shrinkage in medial temporal lobe structures essential for memory--including hippocampus and entorhinal cortex--and with deficits in default-mode network connectivity. Yet, whether and how these imaging markers are relevant to age-related memory deficits remains a topic of debate. Using a sample of 182 older (age 74.6 ± 6.2 years) and 66 young (age 22.2 ± 3.6 years) participants, this study examined relationships among memory performance, hippocampus volume, entorhinal cortex thickness, and default-mode network connectivity across aging. All imaging markers and memory were significantly different between young and older groups. Each imaging marker significantly mediated the relationship between age and memory performance and collectively accounted for most of the variance in age-related memory performance. Within older participants, default-mode connectivity and hippocampus volume were independently associated with memory. Structural equation modeling of cross-sectional data within older participants suggest that entorhinal thinning may occur before reduced default-mode connectivity and hippocampal volume loss, which in turn lead to deficits in memory performance. PMID:25113793

  20. ESTROGENS AND AGE-RELATED MEMORY DECLINE IN RODENTS: WHAT HAVE WE LEARNED AND WHERE DO WE GO FROM HERE?

    PubMed Central

    Frick, Karyn M.

    2009-01-01

    The question of whether ovarian hormone therapy can prevent or reduce age-related memory decline in menopausal women has been the subject of much recent debate. Although numerous studies have demonstrated a beneficial effect of estrogen and/or progestin therapy for certain types of memory in menopausal women, recent clinical trials suggest that such therapy actually increases the risk of cognitive decline and dementia. Because rodent models have been frequently used to examine the effects of age and/or ovarian hormone deficiency on mnemonic function, rodent models of age-related hormone and memory decline may be useful in helping to resolve this issue. This review will focus on evidence suggesting that estradiol modulates memory, particularly hippocampal-dependent memory, in young and aging female rats and mice. Various factors affecting the mnemonic response to estradiol in aging females will be highlighted to illustrate the complications inherent to studies of estrogen therapy in aging females. Avenues for future development of estradiol-based therapies will also be discussed, and it is argued that an approach to drug development based on identifying the molecular mechanisms underlying estrogenic modulation of memory may lead to promising future treatments for reducing age-related mnemonic decline. PMID:18835561

  1. Processing Speed, Inhibitory Control, and Working Memory: Three Important Factors to Account for Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Pereiro Rozas, Arturo X.; Juncos-Rabadan, Onesimo; Gonzalez, Maria Soledad Rodriguez

    2008-01-01

    Processing speed, inhibitory control and working memory have been identified as the main possible culprits of age-related cognitive decline. This article describes a study of their interrelationships and dependence on age, including exploration of whether any of them mediates between age and the others. We carried out a LISREL analysis of the…

  2. Molecular Mechanism for Age-Related Memory Loss: The Histone-Binding Protein RbAp48

    PubMed Central

    Pavlopoulos, Elias; Jones, Sidonie; Kosmidis, Stylianos; Close, Maggie; Kim, Carla; Kovalerchik, Olga; Small, Scott A.; Kandel, Eric R.

    2016-01-01

    To distinguish age-related memory loss more explicitly from Alzheimer’s disease (AD), we have explored its molecular underpinning in the dentate gyrus (DG), a subregion of the hippocampal formation thought to be targeted by aging. We carried out a gene expression study in human postmortem tissue harvested from both DG and entorhinal cortex (EC), a neighboring subregion unaffected by aging and known to be the site of onset of AD. Using expression in the EC for normalization, we identified 17 genes that manifested reliable age-related changes in the DG. The most significant change was an age-related decline in RbAp48, a histone-binding protein that modifies histone acetylation. To test whether the RbAp48 decline could be responsible for age-related memory loss, we turned to mice and found that, consistent with humans, RbAp48 was less abundant in the DG of old than in young mice. We next generated a transgenic mouse that expressed a dominant-negative inhibitor of RbAp48 in the adult forebrain. Inhibition of RbAp48 in young mice caused hippocampus-dependent memory deficits similar to those associated with aging, as measured by novel object recognition and Morris water maze tests. Functional magnetic resonance imaging studies showed that within the hippocampal formation, dysfunction was selectively observed in the DG, and this corresponded to a regionally selective decrease in histone acetylation. Up-regulation of RbAp48 in the DG of aged wild-type mice ameliorated age-related hippocampus-based memory loss and age-related abnormalities in histone acetylation. Together, these findings show that the DG is a hippocampal subregion targeted by aging, and identify molecular mechanisms of cognitive aging that could serve as valid targets for therapeutic intervention. PMID:23986399

  3. Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48.

    PubMed

    Pavlopoulos, Elias; Jones, Sidonie; Kosmidis, Stylianos; Close, Maggie; Kim, Carla; Kovalerchik, Olga; Small, Scott A; Kandel, Eric R

    2013-08-28

    To distinguish age-related memory loss more explicitly from Alzheimer's disease (AD), we have explored its molecular underpinning in the dentate gyrus (DG), a subregion of the hippocampal formation thought to be targeted by aging. We carried out a gene expression study in human postmortem tissue harvested from both DG and entorhinal cortex (EC), a neighboring subregion unaffected by aging and known to be the site of onset of AD. Using expression in the EC for normalization, we identified 17 genes that manifested reliable age-related changes in the DG. The most significant change was an age-related decline in RbAp48, a histone-binding protein that modifies histone acetylation. To test whether the RbAp48 decline could be responsible for age-related memory loss, we turned to mice and found that, consistent with humans, RbAp48 was less abundant in the DG of old than in young mice. We next generated a transgenic mouse that expressed a dominant-negative inhibitor of RbAp48 in the adult forebrain. Inhibition of RbAp48 in young mice caused hippocampus-dependent memory deficits similar to those associated with aging, as measured by novel object recognition and Morris water maze tests. Functional magnetic resonance imaging studies showed that within the hippocampal formation, dysfunction was selectively observed in the DG, and this corresponded to a regionally selective decrease in histone acetylation. Up-regulation of RbAp48 in the DG of aged wild-type mice ameliorated age-related hippocampus-based memory loss and age-related abnormalities in histone acetylation. Together, these findings show that the DG is a hippocampal subregion targeted by aging, and identify molecular mechanisms of cognitive aging that could serve as valid targets for therapeutic intervention. PMID:23986399

  4. Residual abilities in age-related macular degeneration to process spatial frequencies during natural scene categorization.

    PubMed

    Musel, Benoit; Hera, Ruxandra; Chokron, Sylvie; Alleysson, David; Chiquet, Christophe; Romanet, Jean-Paul; Guyader, Nathalie; Peyrin, Carole

    2011-11-01

    Age-related macular degeneration (AMD) is characterized by a central vision loss. We explored the relationship between the retinal lesions in AMD patients and the processing of spatial frequencies in natural scene categorization. Since the lesion on the retina is central, we expected preservation of low spatial frequency (LSF) processing and the impairment of high spatial frequency (HSF) processing. We conducted two experiments that differed in the set of scene stimuli used and their exposure duration. Twelve AMD patients and 12 healthy age-matched participants in Experiment 1 and 10 different AMD patients and 10 healthy age-matched participants in Experiment 2 performed categorization tasks of natural scenes (Indoors vs. Outdoors) filtered in LSF and HSF. Experiment 1 revealed that AMD patients made more no-responses to categorize HSF than LSF scenes, irrespective of the scene category. In addition, AMD patients had longer reaction times to categorize HSF than LSF scenes only for indoors. Healthy participants' performance was not differentially affected by spatial frequency content of the scenes. In Experiment 2, AMD patients demonstrated the same pattern of errors as in Experiment 1. Furthermore, AMD patients had longer reaction times to categorize HSF than LSF scenes, irrespective of the scene category. Again, spatial frequency processing was equivalent for healthy participants. The present findings point to a specific deficit in the processing of HSF information contained in photographs of natural scenes in AMD patients. The processing of LSF information is relatively preserved. Moreover, the fact that the deficit is more important when categorizing HSF indoors, may lead to new perspectives for rehabilitation procedures in AMD. PMID:22192508

  5. Resveratrol Prevents Age-Related Memory and Mood Dysfunction with Increased Hippocampal Neurogenesis and Microvasculature, and Reduced Glial Activation

    PubMed Central

    Kodali, Maheedhar; Parihar, Vipan K.; Hattiangady, Bharathi; Mishra, Vikas; Shuai, Bing; Shetty, Ashok K.

    2015-01-01

    Greatly waned neurogenesis, diminished microvasculature, astrocyte hypertrophy and activated microglia are among the most conspicuous structural changes in the aged hippocampus. Because these alterations can contribute to age-related memory and mood impairments, strategies efficacious for mitigating these changes may preserve cognitive and mood function in old age. Resveratrol, a phytoalexin found in the skin of red grapes having angiogenic and antiinflammatory properties, appears ideal for easing these age-related changes. Hence, we examined the efficacy of resveratrol for counteracting age-related memory and mood impairments and the associated detrimental changes in the hippocampus. Two groups of male F344 rats in late middle-age having similar learning and memory abilities were chosen and treated with resveratrol or vehicle for four weeks. Analyses at ~25 months of age uncovered improved learning, memory and mood function in resveratrol-treated animals but impairments in vehicle-treated animals. Resveratrol-treated animals also displayed increased net neurogenesis and microvasculature, and diminished astrocyte hypertrophy and microglial activation in the hippocampus. These results provide novel evidence that resveratrol treatment in late middle age is efficacious for improving memory and mood function in old age. Modulation of the hippocampus plasticity and suppression of chronic low-level inflammation appear to underlie the functional benefits mediated by resveratrol. PMID:25627672

  6. Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors.

    PubMed

    Luo, Yi; Zhou, Jun; Li, Ming-Xing; Wu, Peng-Fei; Hu, Zhuang-Li; Ni, Lan; Jin, You; Chen, Jian-Guo; Wang, Fang

    2015-04-01

    Aging-related emotional memory deficit is a well-known complication in Alzheimer's disease and normal aging. However, little is known about its molecular mechanism. To address this issue, we examined the role of norepinephrine (NE) and its relevant drug desipramine in the regulation of hippocampal long-term potentiation (LTP), surface expression of AMPA receptor, and associative fear memory in rats. We found that there was a defective regulation of NE content and AMPA receptor trafficking during fear conditioning, which were accompanied by impaired emotional memory and LTP in aged rats. Furthermore, we also found that the exogenous upregulation of NE ameliorated the impairment of LTP and emotional memory via enhancing AMPA receptor trafficking in aged rats, and the downregulation of NE impaired LTP in adult rats. Finally, acute treatment with NE or desipramine rescued the impaired emotional memory in aged rats. These results imply a pivotal role for NE in synaptic plasticity and associative fear memory in aging rats and suggest that desipramine is a potential candidate for treating aging-related emotional memory deficit. PMID:25564942

  7. Differentiating Spatial Memory from Spatial Transformations

    ERIC Educational Resources Information Center

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…

  8. Spatial and temporal age-related spectral alterations in benign human breast tissue

    NASA Astrophysics Data System (ADS)

    Theophilou, Georgios; Fogarty, Simon W.; Trevisan, Júlio; Strong, Rebecca J.; Heys, Kelly A.; Patel, Imran I.; Stringfellow, Helen F.; Martin-Hirsch, Pierre L.; Martin, Francis L.

    2016-02-01

    Epidemiological evidence suggests that cancers attributable to exogenous carcinogenic agents may appear decades after initiating exposures. Environmental factors including lifestyle and/or diet have been implicated in the aetiology of breast cancer. Breast tissue undergoes continuous molecular and morphological changes from the time of thelarche to menopause and thereafter. These alterations are both cyclical and longitudinal, and can be influenced by several environmental factors including exposure to oestrogens. Research into the latent period leading to breast carcinogenesis has been mostly limited to when hyperplastic lesions are present. Investigations to identify a biomarker of commitment to disease in normal breast tissue are hindered by the molecular and histological diversity of disease-free breast tissue. Benign tissue from reduction mammoplasties provides an opportunity to study biochemical differences between women of similar ages as well as alterations with advancing age. Herein, synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy was used to examine the terminal ductal lobular epithelium (TDLU) and, intra- and inter-lobular epithelium to identify spatial and temporal changes within these areas. Principal component analysis (PCA) followed by linear discriminant analysis of mid-infrared spectra revealed unambiguous inter-individual as well as age-related differences in each histological compartment interrogated. Moreover, exploratory PCA of luminal and myoepithelial cells within the TDLU indicated the presence of specific cells, potentially stem cells. Understanding alterations within benign tissue may assist in the identification of alterations in latent pre-clinical stages of breast cancer.

  9. Spatial memory in foraging games.

    PubMed

    Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T

    2016-03-01

    Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging. PMID:26752603

  10. Age-related reduction of the confidence-accuracy relationship in episodic memory: effects of recollection quality and retrieval monitoring.

    PubMed

    Wong, Jessica T; Cramer, Stefanie J; Gallo, David A

    2012-12-01

    We investigated age-related reductions in episodic metamemory accuracy. Participants studied pictures and words in different colors and then took forced-choice recollection tests. These tests required recollection of the earlier presentation color, holding familiarity of the response options constant. Metamemory accuracy was assessed for each participant by comparing recollection test accuracy with corresponding confidence judgments. We found that recollection test accuracy was greater in younger than older adults and also for pictures than font color. Metamemory accuracy tracked each of these recollection differences, as well as individual differences in recollection test accuracy within each age group, suggesting that recollection ability affects metamemory accuracy. Critically, the age-related impairment in metamemory accuracy persisted even when the groups were matched on recollection test accuracy, suggesting that metamemory declines were not entirely due to differences in recollection frequency or quantity, but that differences in recollection quality and/or monitoring also played a role. We also found that age-related impairments in recollection and metamemory accuracy were equivalent for pictures and font colors. This result contrasted with previous false recognition findings, which predicted that older adults would be differentially impaired when monitoring memory for less distinctive memories. These and other results suggest that age-related reductions in metamemory accuracy are not entirely attributable to false recognition effects, but also depend heavily on deficient recollection and/or monitoring of specific details associated with studied stimuli. PMID:22449027

  11. Thermodynamic Model of Spatial Memory

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  12. Characterization of Spatial Memory Reconsolidation

    ERIC Educational Resources Information Center

    De Jaeger, Xavier; Courtey, Julie; Brus, Maïna; Artinian, Julien; Villain, Hélène; Bacquié, Elodie; Roullet, Pascal

    2014-01-01

    Reconsolidation is necessary for the restabilization of reactivated memory traces. However, experimental parameters have been suggested as boundary conditions for this process. Here we investigated the role of a spatial memory trace's age, strength, and update on the reconsolidation process in mice. We first found that protein synthesis is…

  13. Age-related Changes in the Sleep-dependent Reorganization of Declarative Memories.

    PubMed

    Baran, Bengi; Mantua, Janna; Spencer, Rebecca M C

    2016-06-01

    Consolidation of declarative memories has been associated with slow wave sleep in young adults. Previous work suggests that, in spite of changes in sleep, sleep-dependent consolidation of declarative memories may be preserved with aging, although reduced relative to young adults. Previous work on young adults shows that, with consolidation, retrieval of declarative memories gradually becomes independent of the hippocampus. To investigate whether memories are similarly reorganized over sleep at the neural level, we compared functional brain activation associated with word pair recall following a nap and equivalent wake in young and older adults. SWS during the nap predicted better subsequent memory recall and was negatively associated with retrieval-related hippocampal activation in young adults. In contrast, in older adults there was no relationship between sleep and memory performance or with retrieval-related hippocampal activation. Furthermore, compared with young adults, postnap memory retrieval in older adults required strong functional connectivity of the hippocampus with the PFC, whereas there were no differences between young and older adults in the functional connectivity of the hippocampus following wakefulness. These results suggest that, although neural reorganization takes place over sleep in older adults, the shift is unique from that seen in young adults, perhaps reflecting memories at an earlier stage of stabilization. PMID:26918588

  14. Spatial memory: are lizards really deficient?

    PubMed Central

    LaDage, L. D.; Roth, T. C.; Cerjanic, A. M.; Sinervo, B.; Pravosudov, V. V.

    2012-01-01

    In many animals, behaviours such as territoriality, mate guarding, navigation and food acquisition rely heavily on spatial memory abilities; this has been demonstrated in diverse taxa, from invertebrates to mammals. However, spatial memory ability in squamate reptiles has been seen as possible, at best, or non-existent, at worst. Of the few previous studies testing for spatial memory in squamates, some have found no evidence of spatial memory while two studies have found evidence of spatial memory in snakes, but have been criticized based on methodological issues. We used the Barnes maze, a common paradigm to test spatial memory abilities in mammals, to test for spatial memory abilities in the side-blotched lizard (Uta stansburiana). We found the existence of spatial memory in this species using this spatial task. Thus, our study supports the existence of spatial memory in this squamate reptile species and seeks to parsimoniously align this species with the diverse taxa that demonstrate spatial memory ability. PMID:22933038

  15. Age-related differences in time-based prospective memory: The role of time estimation in the clock monitoring strategy.

    PubMed

    Vanneste, Sandrine; Baudouin, Alexia; Bouazzaoui, Badiâa; Taconnat, Laurence

    2016-07-01

    Time-based prospective memory (TBPM) is required when it is necessary to remember to perform an action at a specific future point in time. This type of memory has been found to be particularly sensitive to ageing, probably because it requires a self-initiated response at a specific time. In this study, we sought to examine the involvement of temporal processes in the time monitoring strategy, which has been demonstrated to be a decisive factor in TBPM efficiency. We compared the performance of young and older adults in a TBPM task in which they had to press a response button every minute while categorising words. The design allowed participants to monitor time by checking a clock whenever they decided. Participants also completed a classic time-production task and several executive tasks assessing inhibition, updating and shifting processes. Our results confirm an age-related lack of accuracy in prospective memory performance, which seems to be related to a deficient strategic use of time monitoring. This could in turn be partially explained by age-related temporal deficits, as evidenced in the duration production task. These findings suggest that studies designed to investigate the age effect in TBPM tasks should consider the contribution of temporal mechanisms. PMID:26247302

  16. Age-related changes in working memory and the ability to ignore distraction.

    PubMed

    McNab, Fiona; Zeidman, Peter; Rutledge, Robb B; Smittenaar, Peter; Brown, Harriet R; Adams, Rick A; Dolan, Raymond J

    2015-05-19

    A weakened ability to effectively resist distraction is a potential basis for reduced working memory capacity (WMC) associated with healthy aging. Exploiting data from 29,631 users of a smartphone game, we show that, as age increases, working memory (WM) performance is compromised more by distractors presented during WM maintenance than distractors presented during encoding. However, with increasing age, the ability to exclude distraction at encoding is a better predictor of WMC in the absence of distraction. A significantly greater contribution of distractor filtering at encoding represents a potential compensation for reduced WMC in older age. PMID:25941369

  17. Age-Related Differences on Cognitive Overload in an Audio-Visual Memory Task

    ERIC Educational Resources Information Center

    Murray, Jennifer; Thomson, Mary E.

    2011-01-01

    The present study aimed to provide evidence outlining whether the type of stimuli used in teaching would provoke differing levels of recall across three different academic age groups. One hundred and twenty-one participants, aged 11-25 years, were given a language-based memory task in the form of a wordlist consisting of 15 concrete and 15…

  18. Age-Related Differences in the Temporal Dynamics of Prospective Memory Retrieval: A Lifespan Approach

    ERIC Educational Resources Information Center

    Mattli, Florentina; Zollig, Jacqueline; West, Robert

    2011-01-01

    The efficiency of prospective memory (PM) typically increases from childhood to young adulthood and then decreases in later adulthood. The current study used event-related brain potentials (ERPs) to examine the development of the neural correlates of processes associated with the detection of a PM cue, switching from the ongoing activity to the…

  19. Integrative and semantic relations equally alleviate age-related associative memory deficits.

    PubMed

    Badham, Stephen P; Estes, Zachary; Maylor, Elizabeth A

    2012-03-01

    Two experiments compared effects of integrative and semantic relations between pairs of words on lexical and memory processes in old age. Integrative relations occur when two dissimilar and unassociated words are linked together to form a coherent phrase (e.g., horse-doctor). In Experiment 1, older adults completed a lexical-decision task where prime and target words were related either integratively or semantically. The two types of relation both facilitated responses compared to a baseline condition, demonstrating that priming can occur in older adults with minimal preexisting associations between primes and targets. In Experiment 2, young and older adults completed a cued recall task with integrative, semantic, and unrelated word pairs. Both integrative and semantic pairs showed significantly smaller age differences in associative memory compared to unrelated pairs. Integrative relations facilitated older adults' memory to a similar extent as semantic relations despite having few preexisting associations in memory. Integratability of stimuli is therefore a new factor that reduces associative deficits in older adults, most likely by supporting encoding and retrieval mechanisms. PMID:21639644

  20. The significance of caudate volume for age-related associative memory decline.

    PubMed

    Bauer, E; Toepper, M; Gebhardt, H; Gallhofer, B; Sammer, G

    2015-10-01

    Aging comes along with reduced gray matter (GM) volume in several cerebral areas and with cognitive performance decline in different cognitive domains. Moreover, regional GM volume is linked to specific cognitive sub processes in older adults. However, it remains unclear which regional changes in older individuals are directly associated with decreased cognitive performance. Moreover, most of the studies on this topic focused on hippocampal and prefrontal brain regions and their relation to memory and executive functioning. Interestingly, there are only a few studies that reported an association between striatal brain volume and cognitive performance. This is insofar surprising that striatal structures are (1) highly affected by age and (2) involved in different neural circuits that serve intact cognition. To address these issues, voxel-based morphometry (VBM) was used to analyze GM volume in 18 younger and 18 older adults. Moreover, several neuropsychological tests from different neuropsychological test batteries were applied to assess a broad range of cognitive domains. Older adults showed less GM volume than younger adults within frontal, striatal, and cerebellar brain regions. In the group of older adults, significant correlations were found between striatal GM volume and memory performance and between prefrontal/temporal GM volume and executive functioning. The only direct overlap between brain regions associated with regional atrophy and cognitive performance in older adults was found for the right caudate: older adults showed reduced caudate volume relative to younger adults. Moreover, caudate volume was positively correlated with associative memory accuracy in older adults and older adults showed poorer performances than younger adults in the respective associative memory task. Taken together, the current findings indicate the relevance of the caudate for associative memory decline in the aging brain. PMID:26119913

  1. Evidence for age-related changes to temporal attention and memory from the choice time production task

    PubMed Central

    Gooch, Cynthia M.; Stern, Yaakov; Rakitin, Brian C.

    2009-01-01

    The effect of aging on interval timing was examined using a choice time production task, which required participants to choose a key response based on the location of the stimulus, but to delay responding until after a learned time interval. Experiment 1 varied attentional demands of the response choice portion of the task by varying difficulty of stimulus-response mapping. Choice difficulty affected temporal accuracy equally in both age groups, but older participants’ response latencies were more variable under more difficult response choice conditions. Experiment 2 tested the contribution of long-term memory to differences in choice time production between age groups over 3 days of testing. Direction of errors in time production between the two age groups diverged over the 3 sessions, but variability did not differ. Results from each experiment separately show age-related changes to attention and memory in temporal processing using different measures and manipulations in the same task. PMID:19132578

  2. Age-related slowing of memory retrieval: Contributions of perceptual speed and cerebral white matter integrity

    PubMed Central

    Bucur, Barbara; Madden, David J.; Spaniol, Julia; Provenzale, James M.; Cabeza, Roberto; White, Leonard E.; Huettel, Scott A.

    2007-01-01

    Previous research suggests that, in reaction time (RT) measures of episodic memory retrieval, the unique effects of adult age are relatively small compared to the effects aging shares with more elementary abilities such as perceptual speed. Little is known, however, regarding the mechanisms of perceptual speed. We used diffusion tensor imaging (DTI) to test the hypothesis that white matter integrity, as indexed by fractional anisotropy (FA), serves as one mechanism of perceptual slowing in episodic memory retrieval. Results indicated that declines in FA in the pericallosal frontal region and in the genu of the corpus callosum, but not in other regions, mediated the relationship between perceptual speed and episodic retrieval RT. This relation held, though to a different degree, for both hits and correct rejections. These findings suggest that white matter integrity in prefrontal regions is one mechanism underlying the relation between individual differences in perceptual speed and episodic retrieval. PMID:17383774

  3. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    PubMed

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity. PMID:25156204

  4. Chunking in Spatial Memory

    ERIC Educational Resources Information Center

    Sargent, Jesse; Dopkins, Stephen; Philbeck, John; Chichka, David

    2010-01-01

    In order to gain insight into the nature of human spatial representations, the current study examined how those representations are affected by blind rotation. Evidence was sought on the possibility that whereas certain environmental aspects may be updated independently of one another, other aspects may be grouped (or chunked) together and updated…

  5. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle

    PubMed Central

    Tsai, Sheng-Feng; Chen, Pei-Chun; Calkins, Marcus J.; Wu, Shih-Ying; Kuo, Yu-Min

    2016-01-01

    Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas. PMID:27047373

  6. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle.

    PubMed

    Tsai, Sheng-Feng; Chen, Pei-Chun; Calkins, Marcus J; Wu, Shih-Ying; Kuo, Yu-Min

    2016-01-01

    Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas. PMID:27047373

  7. Compensatory effects of pointing and predictive cueing on age-related declines in visuospatial working memory.

    PubMed

    Ouwehand, Kim; van Gog, Tamara; Paas, Fred

    2016-08-01

    In this study, we investigated whether the visuospatial working memory performance of young and older adults would improve if they used a multimodal as compared with a unimodal encoding strategy, and whether or not visual cues would add to this effect. In Experiment 1, participants were presented with trials consisting of an array of squares and an array of circles. They were instructed to point at one type of figure (multimodal encoding strategy) and only to observe the other (unimodal encoding strategy). After each trial, an immediate location recognition test of one of the two arrays followed. In Experiment 2, the same task was used, but a cue was provided, either before or after the encoding phase, indicating which of the two arrays would be tested. Our results showed that a multimodal, as compared with a unimodal, encoding strategy improved visuospatial working memory performance in both young and older adults (Exp. 1), and that adding visual cues to the multimodal but not to the unimodal encoding strategy improved older adults' performance up to the level of young adults (Exp. 2). In both age groups, cueing after encoding led to higher performance in the multimodal than in the unimodal condition when the second array was tested. However, cueing before encoding led to higher performance in the multimodal than in the unimodal condition when the first array of the figure sequence was tested. These results suggest that pointing together with predictive cueing can have beneficial effects on visuospatial working memory, which is especially important for older adults. PMID:27126873

  8. Treatment of age-related memory complaints with Ginkgo biloba extract: a randomized double blind placebo-controlled study.

    PubMed

    Brautigam, M R; Blommaert, F A; Verleye, G; Castermans, J; Jansen Steur, E N; Kleijnen, J

    1998-12-01

    A growing number of people is subject to age-related cognitive impairment due to the proportional increase of the ageing population. Therefore, there is a growing interest in cognition-enhancing substances. The efficacy of an alcohol/water extract of Ginkgo biloba in elderly individuals with memory- and/or concentration complaints was tested in a randomized, double-blind, placebo-controlled study by using both subjective and objective parameters. After a wash-out period of 4 weeks 241 non-institutionalised patients in the age range 55-86 years were randomly allocated to receive either Ginkgo biloba alcohol/water extract in a high dose (HD), a low dose (LD) or a placebo (PL) for 24 weeks. Patients were assessed using a psychometric testbattery in the following order: Expended Mental Control Test (EMCT) measuring attention and concentration, Benton Test of Visual Retention-Revised (measures short term visual memory), Rey Test part 1 (measures short term memory and learning curve), Beck Depressive Inventory (BDI) measuring the presence and severeness of a depression in order to exclude depressive patients and Rey Test part 2 (measures long term memory: recognition). Furthermore, subjective perception of memory and concentration was measured. 197 patients completed the study (mean MMSE score: 26.29). In the subjective test, the EMCT, the Rey 1 and Rey 2 no significant differences in improvement in time between the groups were observed. In the Benton test increases of 18%, 26% and 11% (expressed as percentage of baseline scores) were observed in the HD, LD and PL respectively (MANOVA; p = 0.0076). No substantial correlation was observed between subjective perception of the severeness of memory complaints and the objective test results. No differences in the number of (gastrointestinal) side effects were observed between placebo and verum groups. These results indicate that the use of Ginkgo extracts in elderly individuals with cognitive impairment might be promising

  9. Early age-related changes in episodic memory retrieval as revealed by event-related potentials.

    PubMed

    Guillaume, Cécile; Clochon, Patrice; Denise, Pierre; Rauchs, Géraldine; Guillery-Girard, Bérengère; Eustache, Francis; Desgranges, Béatrice

    2009-01-28

    Familiarity is better preserved than recollection in ageing. The age at which changes first occur and the slope of the subsequent decline, however, remain unclear. In this study, we investigated changes in episodic memory, by using event-related potentials (ERPs) in young (m=24), middle-aged (m=58) and older (m=70) adults. Although behavioural performance did not change before the age of 65 years, changes in ERP correlates were already present in the middle-aged adults. The ERP correlates of recollection and monitoring processes were the first to be affected by ageing, with a linear decrease as age increased. Conversely, the ERP correlate of familiarity remained unchanged, at least up to the age of 65 years. These results suggest a differential time course for the age effects on episodic retrieval. PMID:19104457

  10. Spatial resolution in visual memory.

    PubMed

    Ben-Shalom, Asaf; Ganel, Tzvi

    2015-04-01

    Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory. PMID:25112394

  11. Age-related changes in brain activity are specific for high order cognitive processes during successful encoding of information in working memory

    PubMed Central

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Memory capacity suffers an age-related decline, which is supposed to be due to a generalized slowing of processing speed and to a reduced availability of processing resources. Information encoding in memory has been demonstrated to be very sensitive to age-related changes, especially when carried out through self-initiated strategies or under high cognitive demands. However, most event-related potentials (ERP) research on age-related changes in working memory (WM) has used tasks that preclude distinction between age-related changes in encoding and retrieval processes. Here, we used ERP recording and a delayed match to sample (DMS) task with two levels of memory load to assess age-related changes in electrical brain activity in young and old adults during successful information encoding in WM. Age-related decline was reflected in lower accuracy rates and longer reaction times in the DMS task. Beside, only old adults presented lower accuracy rates under high than low memory load conditions. However, effects of memory load on brain activity were independent of age and may indicate an increased need of processing after stimulus classification as reflected in larger mean voltages in high than low load conditions between 550 and 1000 ms post-stimulus for young and old adults. Regarding age-related effects on brain activity, results also revealed smaller P2 and P300 amplitudes that may signal the existence of an age dependent reduction in the processing resources available for stimulus evaluation and categorization. Additionally, P2 and N2 latencies were longer in old than in young participants. Furthermore, longer N2 latencies were related to greater accuracy rates on the DMS task, especially in old adults. These results suggest that age-related slowing of processing speed may be specific for target stimulus analysis and evaluation processes. Thus, old adults seem to improve their performance the longer they take to evaluate the stimulus they encode in visual WM. PMID

  12. Age-related changes in brain activity are specific for high order cognitive processes during successful encoding of information in working memory.

    PubMed

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Memory capacity suffers an age-related decline, which is supposed to be due to a generalized slowing of processing speed and to a reduced availability of processing resources. Information encoding in memory has been demonstrated to be very sensitive to age-related changes, especially when carried out through self-initiated strategies or under high cognitive demands. However, most event-related potentials (ERP) research on age-related changes in working memory (WM) has used tasks that preclude distinction between age-related changes in encoding and retrieval processes. Here, we used ERP recording and a delayed match to sample (DMS) task with two levels of memory load to assess age-related changes in electrical brain activity in young and old adults during successful information encoding in WM. Age-related decline was reflected in lower accuracy rates and longer reaction times in the DMS task. Beside, only old adults presented lower accuracy rates under high than low memory load conditions. However, effects of memory load on brain activity were independent of age and may indicate an increased need of processing after stimulus classification as reflected in larger mean voltages in high than low load conditions between 550 and 1000 ms post-stimulus for young and old adults. Regarding age-related effects on brain activity, results also revealed smaller P2 and P300 amplitudes that may signal the existence of an age dependent reduction in the processing resources available for stimulus evaluation and categorization. Additionally, P2 and N2 latencies were longer in old than in young participants. Furthermore, longer N2 latencies were related to greater accuracy rates on the DMS task, especially in old adults. These results suggest that age-related slowing of processing speed may be specific for target stimulus analysis and evaluation processes. Thus, old adults seem to improve their performance the longer they take to evaluate the stimulus they encode in visual WM. PMID

  13. Age-Related Differences in Spatial Frequency Processing during Scene Categorization.

    PubMed

    Ramanoël, Stephen; Kauffmann, Louise; Cousin, Emilie; Dojat, Michel; Peyrin, Carole

    2015-01-01

    Visual analysis of real-life scenes starts with the parallel extraction of different visual elementary features at different spatial frequencies. The global shape of the scene is mainly contained in low spatial frequencies (LSF), and the edges and borders of objects are mainly contained in high spatial frequencies (HSF). The present fMRI study investigates the effect of age on the spatial frequency processing in scenes. Young and elderly participants performed a categorization task (indoor vs. outdoor) on LSF and HSF scenes. Behavioral results revealed performance degradation for elderly participants only when categorizing HSF scenes. At the cortical level, young participants exhibited retinotopic organization of spatial frequency processing, characterized by medial activation in the anterior part of the occipital lobe for LSF scenes (compared to HSF), and the lateral activation in the posterior part of the occipital lobe for HSF scenes (compared to LSF). Elderly participants showed activation only in the anterior part of the occipital lobe for LSF scenes (compared to HSF), but not significant activation for HSF (compared to LSF). Furthermore, a ROI analysis revealed that the parahippocampal place area, a scene-selective region, was less activated for HSF than LSF for elderly participants only. Comparison between groups revealed greater activation of the right inferior occipital gyrus in young participants than in elderly participants for HSF. Activation of temporo-parietal regions was greater in elderly participants irrespective of spatial frequencies. The present findings indicate a specific low-contrasted HSF deficit for normal elderly people, in association with an occipito-temporal cortex dysfunction, and a functional reorganization of the categorization of filtered scenes. PMID:26288146

  14. Age-Related Differences in Spatial Frequency Processing during Scene Categorization

    PubMed Central

    2015-01-01

    Visual analysis of real-life scenes starts with the parallel extraction of different visual elementary features at different spatial frequencies. The global shape of the scene is mainly contained in low spatial frequencies (LSF), and the edges and borders of objects are mainly contained in high spatial frequencies (HSF). The present fMRI study investigates the effect of age on the spatial frequency processing in scenes. Young and elderly participants performed a categorization task (indoor vs. outdoor) on LSF and HSF scenes. Behavioral results revealed performance degradation for elderly participants only when categorizing HSF scenes. At the cortical level, young participants exhibited retinotopic organization of spatial frequency processing, characterized by medial activation in the anterior part of the occipital lobe for LSF scenes (compared to HSF), and the lateral activation in the posterior part of the occipital lobe for HSF scenes (compared to LSF). Elderly participants showed activation only in the anterior part of the occipital lobe for LSF scenes (compared to HSF), but not significant activation for HSF (compared to LSF). Furthermore, a ROI analysis revealed that the parahippocampal place area, a scene-selective region, was less activated for HSF than LSF for elderly participants only. Comparison between groups revealed greater activation of the right inferior occipital gyrus in young participants than in elderly participants for HSF. Activation of temporo-parietal regions was greater in elderly participants irrespective of spatial frequencies. The present findings indicate a specific low-contrasted HSF deficit for normal elderly people, in association with an occipito-temporal cortex dysfunction, and a functional reorganization of the categorization of filtered scenes. PMID:26288146

  15. Age-related differences in affective responses to and memory for emotions conveyed by music: a cross-sectional study.

    PubMed

    Vieillard, Sandrine; Gilet, Anne-Laure

    2013-01-01

    There is mounting evidence that aging is associated with the maintenance of positive affect and the decrease of negative affect to ensure emotion regulation goals. Previous empirical studies have primarily focused on a visual or autobiographical form of emotion communication. To date, little investigation has been done on musical emotions. The few studies that have addressed aging and emotions in music were mainly interested in emotion recognition, thus leaving unexplored the question of how aging may influence emotional responses to and memory for emotions conveyed by music. In the present study, eighteen older (60-84 years) and eighteen younger (19-24 years) listeners were asked to evaluate the strength of their experienced emotion on happy, peaceful, sad, and scary musical excerpts (Vieillard et al., 2008) while facial muscle activity was recorded. Participants then performed an incidental recognition task followed by a task in which they judged to what extent they experienced happiness, peacefulness, sadness, and fear when listening to music. Compared to younger adults, older adults (a) reported a stronger emotional reactivity for happiness than other emotion categories, (b) showed an increased zygomatic activity for scary stimuli, (c) were more likely to falsely recognize happy music, and (d) showed a decrease in their responsiveness to sad and scary music. These results are in line with previous findings and extend them to emotion experience and memory recognition, corroborating the view of age-related changes in emotional responses to music in a positive direction away from negativity. PMID:24137141

  16. Age-related impairment of visual recognition memory correlates with impaired synaptic distribution of GluA2 and protein kinase Mζ in the dentate gyrus.

    PubMed

    Aicardi, Giorgio

    2012-10-01

    Age-related functional alterations in the perforant path projection from the entorhinal cortex to the dentate gyrus (DG) of the hippocampus play a major role in age-related memory impairments, but little is known about the molecular mechanisms responsible for these changes. In a recent study, young and aged monkeys were tested on the visual recognition memory test "delayed nonmatching-to-sample"; then, electron microscopic immunocytochemistry was performed in the hippocampal DG to determine the subcellular localization of the GluA2 subunit of the glutamate α-amino-3-hydroxy-5-methyl-4- isoxazole-propionic acid receptor (AMPAR) and protein kinase Mζ (PKMζ), which promotes memory storage by regulating GluA2-containing AMPAR trafficking. The results obtained suggest that age-related deficits in visual recognition memory are coupled with impairment in PKMζ-dependent maintenance of GluA2 at the synapse. Together with previous evidences of the critical role of PKMζ in memory consolidation, these data render this enzyme an attractive potential therapeutic target for treating age-related memory decline, and support the view that the pharmacological manipulation of AMPAR trafficking in the synapses may provide new insights in the search of memory enhancers for aged individuals, including those affected by Alzheimer disease. PMID:22985047

  17. Spatial Memory in Rats after 25 Hours

    ERIC Educational Resources Information Center

    Crystal, Jonathon D.; Babb, Stephanie J.

    2008-01-01

    We investigated the time course of spatial-memory decay in rats using an eight-arm radial maze. It is well established that performance remains high with retention intervals as long as 4 h, but declines to chance with a 24-h retention interval (Beatty, W. W., & Shavalia, D. A. (1980b). Spatial memory in rats: time course of working memory and…

  18. Age-related changes in overcoming proactive interference in associative memory: The role of PFC-mediated executive control processes at retrieval.

    PubMed

    Dulas, Michael R; Duarte, Audrey

    2016-05-15

    Behavioral evidence has shown age-related impairments in overcoming proactive interference in memory, but it is unclear what underlies this deficit. Imaging studies in the young suggest overcoming interference may require several executive control processes supported by the ventrolateral prefrontal cortex (VLPFC) and dorsolateral PFC (DLPFC). The present functional magnetic resonance imaging (fMRI) study investigated whether age-related changes in dissociable executive control processes underlie deficits in overcoming proactive interference in associative memory during retrieval. Participants were tasked with remembering which associate (face or scene) objects were paired with most recently during study, under conditions of high or low proactive interference. Behavioral results demonstrated that, as interference increased, memory performance decreased similarly across groups, with slight associative memory deficits in older adults. Imaging results demonstrated that, across groups, left mid-VLPFC showed increasing activity with increasing interference, though activity did not distinguish correct from incorrect associative memory responses, suggesting this region may not directly serve in successful resolution of proactive interference, per se. Under conditions of high interference, older adults showed reduced associative memory accuracy effects in the DLPFC and anterior PFC. These results suggest that age-related PFC dysfunction may not be ubiquitous. Executive processes supported by ventral regions that detect mnemonic interference may be less affected than processes supported by dorsal and anterior regions that directly resolve interference. PMID:26879623

  19. Proactive interference and concurrent inhibitory processes do not differentially affect item and associative recognition: Implication for the age-related associative memory deficit.

    PubMed

    Guez, Jonathan; Naveh-Benjamin, Moshe

    2016-09-01

    Previous studies have suggested an associative deficit hypothesis [Naveh-Benjamin, M. ( 2000 ). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1170-1187] to explain age-related episodic memory declines. The hypothesis attributes part of the deficient episodic memory performance in older adults to a difficulty in creating and retrieving cohesive episodes. In this article, we further evaluate this hypothesis by testing two alternative processes that potentially mediate associative memory deficits in older adults. Four experiments are presented that assess whether failure of inhibitory processes (proactive interference in Experiments 1 and 2), and concurrent inhibition (in Experiments 3 and 4) are mediating factors in age-related associative deficits. The results suggest that creating conditions that require the operation of inhibitory processes, or that interfere with such processes, cannot simulate associative memory deficit in older adults. Instead, such results support the idea that associative memory deficits reflect a unique binding failure in older adults. This failure seems to be independent of other cognitive processes, including inhibitory and other resource-demanding processes. PMID:26230249

  20. Combined administration of levetiracetam and valproic acid attenuates age-related hyperactivity of CA3 place cells, reduces place field area, and increases spatial information content in aged rat hippocampus.

    PubMed

    Robitsek, Jonathan; Ratner, Marcia H; Stewart, Tara; Eichenbaum, Howard; Farb, David H

    2015-12-01

    Learning and memory deficits associated with age-related mild cognitive impairment have long been attributed to impaired processing within the hippocampus. Hyperactivity within the hippocampal CA3 region that is associated with aging is mediated in part by a loss of functional inhibitory interneurons and thought to underlie impaired performance in spatial memory tasks, including the abnormal tendency in aged animals to pattern complete spatial representations. Here, we asked whether the spatial firing patterns of simultaneously recorded CA3 and CA1 neurons in young and aged rats could be manipulated pharmacologically to selectively reduce CA3 hyperactivity and thus, according to hypothesis, the associated abnormality in spatial representations. We used chronically implanted high-density tetrodes to record the spatial firing properties of CA3 and CA1 units during animal exploration for food in familiar and novel environments. Aged CA3 place cells have higher firing rates, larger place fields, less spatial information content, and respond less to a change from a familiar to a novel environment than young CA3 cells. We also find that the combination of levetiracetam (LEV) + valproic acid (VPA), previously shown to act as a cognitive enhancer in tests of spatial memory, attenuate CA3 place cell firing rates, reduce place field area, and increase spatial information content in aged but not young adult rats. This is consistent with drug enhancing the specificity of neuronal firing with respect to spatial location. Contrary to expectation, however, LEV + VPA reduces place cell discrimination between novel and familiar environments, i.e., spatial correlations increase, independent of age even though drug enhances performance in cognitive tasks. The results demonstrate that spatial information content, or the number of bits of information encoded per action potential, may be the key correlate for enhancement of spatial memory by LEV + VPA. PMID:25941121

  1. Remaking Memories: Reconsolidation Updates Positively Motivated Spatial Memory in Rats

    ERIC Educational Resources Information Center

    Jones, Bethany; Bukoski, Elizabeth; Nadel, Lynn; Fellous, Jean-Marc

    2012-01-01

    There is strong evidence that reactivation of a memory returns it to a labile state, initiating a restabilization process termed reconsolidation, which allows for updating of the memory. In this study we investigated reactivation-dependent updating using a new positively motivated spatial task in rodents that was designed specifically to model a…

  2. Spatial memory in spontaneously hypertensive rats (SHR).

    PubMed

    Sontag, Thomas-A; Fuermaier, Anselm B M; Hauser, Joachim; Kaunzinger, Ivo; Tucha, Oliver; Lange, Klaus W

    2013-01-01

    The spontaneously hypertensive rat (SHR) is an established animal model of ADHD. It has been suggested that ADHD symptoms arise from deficits in executive functions such as working memory, attentional control and decision making. Both ADHD patients and SHRs show deficits in spatial working memory. However, the data on spatial working memory deficits in SHRs are not consistent. It has been suggested that the reported cognitive deficits of SHRs may be related to the SHRs' locomotor activity. We have used a holeboard (COGITAT) to study both cognition and activity in order to evaluate the influence of the activity on the cognitive performance of SHRs. In comparison to Wistar-Kyoto (WKY) rats, SHRs did not have any impairment in spatial working memory and reference memory. When the rats' locomotor activity was taken into account, the SHRs' working memory and reference memory were significantly better than in WKY rats. The locomotor activity appears to be a confounding factor in spatial memory tasks and should therefore be controlled for in future studies. In the SHR model of ADHD, we were unable to demonstrate an impairment of working memory which has been reported in patients with ADHD. PMID:24009775

  3. Hemispheric lateralization of verbal and spatial working memory during adolescence

    PubMed Central

    Nagel, Bonnie J.; Herting, Megan M.; Maxwell, Emily C.; Bruno, Richard; Fair, Damien

    2013-01-01

    Adult functional magnetic resonance imaging (fMRI) literature suggests that a left-right hemispheric dissociation may exist between verbal and spatial working memory (WM), respectively. However, investigation of this type has been obscured by incomparable verbal and spatial WM tasks and/or visual inspection at arbitrary thresholds as means to assess lateralization. Furthermore, it is unclear whether this hemispheric lateralization is present during adolescence, a time in which WM skills are improving, and whether there is a developmental association with laterality of brain functioning. This study used comparable verbal and spatial WM n-back tasks during fMRI and a bootstrap analysis approach to calculate lateralization indices (LI) across several thresholds to examine the potential of a left-right WM hemispheric dissociation in healthy adolescents. We found significant left hemispheric lateralization for verbal WM, most notably in the frontal and parietal lobes, as well as right hemisphere lateralization for spatial WM, seen in frontal and temporal cortices. Although no significant relationships were observed between LI and age or LI and performance, significant age-related patterns of brain activity were demonstrated during both verbal and spatial WM. Specifically, increased adolescent age was associated with less activity in the default mode brain network during verbal WM. In contrast, increased adolescent age was associated with greater activity in task-positive posterior parietal cortex during spatial working memory. Our findings highlight the importance of utilizing non-biased statistical methods and comparable tasks for determining patterns of functional lateralization. Our findings also suggest that, while a left-right hemispheric dissociation of verbal and spatial WM is apparent by early adolescence, age-related changes in functional activation during WM are also present. PMID:23511846

  4. MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0

    PubMed Central

    Wenke, Jamie L.; Rose, Kristie L.; Spraggins, Jeffrey M.; Schey, Kevin L.

    2015-01-01

    Purpose To spatially map human lens Aquaporin-0 (AQP0) protein modifications, including lipidation, truncation, and deamidation, from birth through middle age using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Methods Human lens sections were water-washed to facilitate detection of membrane protein AQP0. We acquired MALDI images from eight human lenses ranging in age from 2 months to 63 years. In situ tryptic digestion was used to generate peptides of AQP0 and peptide images were acquired on a 15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Peptide extracts were analyzed by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and database searched to identify peptides observed in MALDI imaging experiments. Results Unmodified, truncated, and fatty acid–acylated forms of AQP0 were detected in protein imaging experiments. Full-length AQP0 was fatty acid acylated in the core and cortex of young (2- and 4-month) lenses. Acylated and unmodified AQP0 were C-terminally truncated in older lens cores. Deamidated tryptic peptides (+0.9847 Da) were mass resolved from unmodified peptides by FTICR MS. Peptide images revealed differential localization of un-, singly-, and doubly-deamidated AQP0 C-terminal peptide (239–263). Deamidation was present at 4 months and increases with age. Liquid chromatography–MS/MS results indicated N246 undergoes deamidation more rapidly than N259. Conclusions Results indicated AQP0 fatty acid acylation and deamidation occur during early development. Progressive age-related AQP0 processing, including deamidation and truncation, was mapped in human lenses as a function of age. The localization of these modified AQP0 forms suggests where AQP0 functions may change throughout lens development and aging. PMID:26574799

  5. Memory Loss, Dementia, and Stroke: Implications for Rehabilitation of Older Adults with Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Warren, Mary

    2008-01-01

    Older adults with age-related macular degeneration (AMD) are not immune to the other diseases of aging. Although AMD is the leading cause of low vision in older Americans, stroke is the leading cause of disability, and dementias affect another 2.5 million older Americans. Each condition alone can significantly impair a person's ability to…

  6. Spatial Relational Memory Requires Hippocampal Adult Neurogenesis

    PubMed Central

    Koehl, Muriel; Ichas, François; De Giorgi, Francesca; Costet, Pierre; Abrous, Djoher Nora; Piazza, Pier Vincenzo

    2008-01-01

    The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning. PMID:18509506

  7. Connecting Spatial Memories of Two Nested Spaces

    ERIC Educational Resources Information Center

    Zhang, Hui; Mou, Weimin; McNamara, Timothy P.; Wang, Lin

    2014-01-01

    Four experiments investigated the manner in which people use spatial reference directions to organize spatial memories of 2 conceptually nested layouts. Participants learned directions of 8 remote cities centered to Beijing or Edmonton, where the experiments occurred, using a map or using direct pointing. The map and the environment were aligned,…

  8. A pathway for spatial memory encoding.

    PubMed

    Gibson, Brett M; Mair, Robert

    2016-06-01

    The medial prefrontal cortex has been shown to play a role for rodents in successful completion of tasks that require spatial memory, but the pathways responsible for the transmission of spatial information to the mPFC, and the nature and timing of such information, are unknown. Recently, Spellman, Rigotti, Ahmari, Fusi, Gogos, and Gordon (Nature, 522, 309-314, 2015) addressed these questions in an eloquent and ingenious series of experiments, which we review in the broader context of the neurobiology of spatial memory. PMID:26902364

  9. Age-related and intelligence-related differences in implicit memory: effects of generation on a word-fragment completion test.

    PubMed

    Komatsu, S; Naito, M; Fuke, T

    1996-07-01

    In two experiments, subjects either read a bracketed word in a sentence or generated a word in response to its definition. A word-fragment completion test was then carried out. In Experiment 1, children's priming under the generate condition was substantial, as compared with baseline performance, but was significantly lower than that under the read condition, whereas there was no difference in adults' priming between these two conditions. Furthermore, prior generation induced an age-related increase in priming despite no age difference under the read condition. In Experiment 2, mentally retarded persons exhibited a profile similar to that of children. These results suggests that there are two different components in implicit memory, one that shows no developmental difference and heavily relies on perceptual processing and the other that shows an age-related or intelligence-related increase and heavily relies on conceptual processing. PMID:8683186

  10. Computer-Based Cognitive Programs for Improvement of Memory, Processing Speed and Executive Function during Age-Related Cognitive Decline: A Meta-Analysis

    PubMed Central

    Shao, Yan-kun; Mang, Jing; Li, Pei-lan; Wang, Jie; Deng, Ting; Xu, Zhong-xin

    2015-01-01

    Background Several studies have assessed the effects of computer-based cognitive programs (CCP) in the management of age-related cognitive decline, but the role of CCP remains controversial. Therefore, this systematic review evaluated the evidence on the efficacy of CCP for age-related cognitive decline in healthy older adults. Methods Six electronic databases (through October 2014) were searched. The risk of bias was assessed using the Cochrane Collaboration tool. The standardized mean difference (SMD) and 95% confidence intervals (CI) of a random-effects model were calculated. The heterogeneity was assessed using the Cochran Q statistic and quantified with the I2 index. Results Twelve studies were included in the current review and were considered as moderate to high methodological quality. The aggregated results indicate that CCP improves memory performance (SMD, 0.31; 95% CI 0.16 to 0.45; p < 0.0001) and processing speed (SMD, 0.50; 95% CI 0.14 to 0.87; p = 0.007) but not executive function (SMD, -0.12; 95% CI -0.33 to 0.09; p = 0.27). Furthermore, there were long-term gains in memory performance (SMD, 0.59; 95% CI 0.13 to 1.05; p = 0.01). Conclusion CCP may be a valid complementary and alternative therapy for age-related cognitive decline, especially for memory performance and processing speed. However, more studies with longer follow-ups are warranted to confirm the current findings. PMID:26098943

  11. Children's and Adults' Memory for Emotional Pictures: Examining Age-Related Patterns Using the Developmental Affective Photo System

    ERIC Educational Resources Information Center

    Cordon, Ingrid M.; Melinder, Annika M. D.; Goodman, Gail S.; Edelstein, Robin S.

    2013-01-01

    Two studies were conducted to examine theoretical questions about children's and adults' memory for emotional visual stimuli. In Study 1, 7- to 9-year-olds and adults (N = 172) participated in the initial creation of the Developmental Affective Photo System (DAPS). Ratings of emotional valence, arousal, and complexity were obtained. In Study 2,…

  12. Individual Differences in Spatial Text Processing: High Spatial Ability Can Compensate for Spatial Working Memory Interference

    ERIC Educational Resources Information Center

    Meneghetti, Chiara; Gyselinck, Valerie; Pazzaglia, Francesca; De Beni, Rossana

    2009-01-01

    The present study investigates the relation between spatial ability and visuo-spatial and verbal working memory in spatial text processing. In two experiments, participants listened to a spatial text (Experiments 1 and 2) and a non-spatial text (Experiment 1), at the same time performing a spatial or a verbal concurrent task, or no secondary task.…

  13. Updating in Models of Spatial Memory

    NASA Astrophysics Data System (ADS)

    Rump, Björn; McNamara, Timothy P.

    This chapter discusses a new model of spatial memory and updating. The model includes an egocentric subsystem that computes and represents transient self-to-object spatial relations and an environmental subsystem that forms enduring representations of environments using intrinsic reference systems. Updating occurs in both subsystems, but only the egocentric subsystem readily provides object locations relative to any adopted orientation. In the absence of visual support, updating in the egocentric subsystem is limited, and object locations may have to be retrieved from the orientation dependent environmental subsystem. The model is evaluated in light of the results of numerous studies from the areas of spatial memory and spatial updating and contrasted with two alternative models. Furthermore, results are presented that suggest that interobject spatial relations are preferentially represented when they are aligned with intrinsic reference directions in the environmental subsystem.

  14. Physical exercise, neuroplasticity, spatial learning and memory.

    PubMed

    Cassilhas, Ricardo C; Tufik, Sergio; de Mello, Marco Túlio

    2016-03-01

    There has long been discussion regarding the positive effects of physical exercise on brain activity. However, physical exercise has only recently begun to receive the attention of the scientific community, with major interest in its effects on the cognitive functions, spatial learning and memory, as a non-drug method of maintaining brain health and treating neurodegenerative and/or psychiatric conditions. In humans, several studies have shown the beneficial effects of aerobic and resistance exercises in adult and geriatric populations. More recently, studies employing animal models have attempted to elucidate the mechanisms underlying neuroplasticity related to physical exercise-induced spatial learning and memory improvement, even under neurodegenerative conditions. In an attempt to clarify these issues, the present review aims to discuss the role of physical exercise in the improvement of spatial learning and memory and the cellular and molecular mechanisms involved in neuroplasticity. PMID:26646070

  15. An implicit spatial memory alignment effect.

    PubMed

    Cerles, Mélanie; Gomez, Alice; Rousset, Stéphane

    2015-09-01

    The memory alignment effect is the advantage of reasoning from a perspective which is aligned with the frame of reference used to encode an environment in memory. It usually occurs when participants have to consciously take a perspective to perform a spatial memory task. The present experiment assesses whether the memory alignment effect can occur without requiring to consciously take a given perspective, when the misaligned perspective is only perceptively provided. In others words, does the memory alignment effect still arise when it is only implicitly prompted? Thirty participants learned a sequence of four objects' positions in a room from a north-as-up survey perspective. During the testing phase, they had to point to the direction of a target object from another object ('the reference') with a fixed north-up orientation. The background behind the reference object displayed either a uniform color (control condition) or a misaligned ground-level perspective. The latter displayed a reference object's position information which was either congruent with the studied environment (congruent misaligned condition) or incongruent (incongruent misaligned condition). Mean pointing errors were higher in the congruent misaligned condition than in the control condition, whereas the incongruent misaligned condition did not differ from the control one. The present study shows that the memory alignment effect can arise without requiring a conscious misaligned perspective taking. Moreover, the perceived misaligned perspective must share the same spatial content as the memorized spatial representation in order to induce an alignment effect. PMID:26233526

  16. Spatially Extended Memory Models of Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Fox, Jeffrey; Riccio, Mark; Hua, Fei; Bodenschatz, Eberhard; Gilmour, Robert

    2002-03-01

    Beat-to-beat alternation of cardiac electrical properties (alternans) commonly occurs during rapid periodic pacing. Although alternans is generally associated with a resititution curve with slope >=1, recent studies by Gauthier and co-workers reported the absence of alternans in frog heart tissue with a restitution curve of slope >=1. These experimental findings were understood in terms of a memory model in which the duration D of an action potential depends on the preceding rest interval I as well as a memory variable M that accumulates during D and dissipates during I. We study the spatiotemporal dynamics of a spatially extended 1-d fiber using an ionic model that exhibits memory effects. We find that while a single cell can have a restitution slope >=1 and not show alternans (because of memory), the spatially extended system exhibits alternans. To understand the dynamical mechanism of this behavior, we study a coupled maps memory model both numerically and analytically. These results illustrate that spatial effects and memory effects can play a significant role in determining the dynamics of wave propagation in cardiac tissue.

  17. That's a good one! Belief in efficacy of mnemonic strategies contributes to age-related increase in associative memory.

    PubMed

    Daugherty, Ana M; Ofen, Noa

    2015-08-01

    The development of associative memory during childhood may be influenced by metacognitive factors. Here, one aspect of metamemory function--belief in strategy efficacy-was tested for a role in the effective use of encoding strategies. A sample of 61 children and adults (8-25 years of age) completed an associative recognition memory test and were assessed on belief in the efficacy of encoding strategies. Independent of age, belief ratings identified two factors: "deep" and "shallow" encoding strategies. Although the strategy factor structure was stable across age, adolescents and adults were more likely to prefer using a deep encoding strategy, whereas children were equally likely to prefer a shallow strategy. Belief ratings of deep encoding strategies increased with age and, critically, accounted for better associative recognition. PMID:25854595

  18. Age-related changes in neural activity during source memory encoding in young, middle-aged and elderly adults.

    PubMed

    Cansino, Selene; Trejo-Morales, Patricia; Hernández-Ramos, Evelia

    2010-07-01

    Source memory, the ability to remember contextual information present at the moment an event occurs, declines gradually during normal aging. The present study addressed whether source memory decline is related to changes in neural activity during encoding across age. Event-related potentials (ERPs) were recorded in three groups of 14 subjects each: young (21-26 years), middle-aged (50-55 years) and older adults (70-77 years). ERPs were recorded while the subjects performed a natural/artificial judgment on images of common objects that were presented randomly in one of the quadrants of the screen (encoding phase). At retrieval, old images mixed with new ones were presented at the center of the screen and the subjects judged whether each image was new or old and, if old, were asked to indicate at which position of the screen the image was presented in the encoding session. The neurophysiological activity recorded during encoding was segregated for the study items according to whether their context was correctly retrieved or not, so as to search for subsequent memory effects (SME). These effects, which consisted of larger amplitude for items subsequently attracting a correct source judgment than an incorrect one, were observed in the three groups, but their onset was delayed across the age groups. The amplitude of the SME was similar across age groups at the frontal and central electrode sites, but was manifested more at the posterior sites in middle-aged and older adults, suggesting that source memory decline may be related to less efficient encoding mechanisms. PMID:20441775

  19. Are age-related differences between young and older adults in an affective working memory test sensitive to the music effects?

    PubMed

    Borella, Erika; Carretti, Barbara; Grassi, Massimo; Nucci, Massimo; Sciore, Roberta

    2014-01-01

    There are evidences showing that music can affect cognitive performance by improving our emotional state. The aim of the current study was to analyze whether age-related differences between young and older adults in a Working Memory (WM) Span test in which the stimuli to be recalled have a different valence (i.e., neutral, positive, or negative words), are sensitive to exposure to music. Because some previous studies showed that emotional words can sustain older adults' performance in WM, we examined whether listening to music could enhance the benefit of emotional material, with respect to neutral words, on WM performance decreasing the age-related difference between younger and older adults. In particular, the effect of two types of music (Mozart vs. Albinoni), which differ in tempo, arousal and mood induction, on age-related differences in an affective version of the Operation WM Span task was analyzed. Results showed no effect of music on the WM test regardless of the emotional content of the music (Mozart vs. Albinoni). However, a valence effect for the words in the WM task was found with a higher number of negative words recalled with respect to positive and neutral ones in both younger and older adults. When individual differences in terms of accuracy in the processing phase of the Operation Span task were considered, only younger low-performing participants were affected by the type music, with the Albinoni condition that lowered their performance with respect to the Mozart condition. Such a result suggests that individual differences in WM performance, at least when young adults are considered, could be affected by the type of music. Altogether, these findings suggest that complex span tasks, such as WM tasks, along with age-related differences are not sensitive to music effects. PMID:25426064

  20. Are age-related differences between young and older adults in an affective working memory test sensitive to the music effects?

    PubMed Central

    Borella, Erika; Carretti, Barbara; Grassi, Massimo; Nucci, Massimo; Sciore, Roberta

    2014-01-01

    There are evidences showing that music can affect cognitive performance by improving our emotional state. The aim of the current study was to analyze whether age-related differences between young and older adults in a Working Memory (WM) Span test in which the stimuli to be recalled have a different valence (i.e., neutral, positive, or negative words), are sensitive to exposure to music. Because some previous studies showed that emotional words can sustain older adults’ performance in WM, we examined whether listening to music could enhance the benefit of emotional material, with respect to neutral words, on WM performance decreasing the age-related difference between younger and older adults. In particular, the effect of two types of music (Mozart vs. Albinoni), which differ in tempo, arousal and mood induction, on age-related differences in an affective version of the Operation WM Span task was analyzed. Results showed no effect of music on the WM test regardless of the emotional content of the music (Mozart vs. Albinoni). However, a valence effect for the words in the WM task was found with a higher number of negative words recalled with respect to positive and neutral ones in both younger and older adults. When individual differences in terms of accuracy in the processing phase of the Operation Span task were considered, only younger low-performing participants were affected by the type music, with the Albinoni condition that lowered their performance with respect to the Mozart condition. Such a result suggests that individual differences in WM performance, at least when young adults are considered, could be affected by the type of music. Altogether, these findings suggest that complex span tasks, such as WM tasks, along with age-related differences are not sensitive to music effects. PMID:25426064

  1. Spatial Clustering during Memory Search

    ERIC Educational Resources Information Center

    Miller, Jonathan F.; Lazarus, Eben M.; Polyn, Sean M.; Kahana, Michael J.

    2013-01-01

    In recalling a list of previously experienced items, participants are known to organize their responses on the basis of the items' semantic and temporal similarities. Here, we examine how spatial information influences the organization of responses in free recall. In Experiment 1, participants studied and subsequently recalled lists of landmarks.…

  2. Double Dissociations in Visual and Spatial Short-Term Memory

    ERIC Educational Resources Information Center

    Klauer, Karl Christoph; Zhao, Zengmei

    2004-01-01

    A visual short-term memory task was more strongly disrupted by visual than spatial interference, and a spatial memory task was simultaneously more strongly disrupted by spatial than visual interference. This double dissociation supports a fractionation of visuospatial short-term memory into separate visual and spatial components. In 6 experiments,…

  3. Spatial clustering during memory search.

    PubMed

    Miller, Jonathan F; Lazarus, Eben M; Polyn, Sean M; Kahana, Michael J

    2013-05-01

    In recalling a list of previously experienced items, participants are known to organize their responses on the basis of the items' semantic and temporal similarities. Here, we examine how spatial information influences the organization of responses in free recall. In Experiment 1, participants studied and subsequently recalled lists of landmarks. In Experiment 2, participants played a game in which they delivered objects to landmarks in a virtual environment and later recalled the delivered objects. Participants in both experiments were simply asked to recall as many items as they could remember in any order. By analyzing the conditional probabilities of recall transitions, we demonstrate strong spatial and temporal organization of studied items in both experiments. PMID:22905933

  4. Geometric Determinants of Human Spatial Memory

    ERIC Educational Resources Information Center

    Hartley, Tom; Trinkler, Iris; Burgess, Neil

    2004-01-01

    Geometric alterations to the boundaries of a virtual environment were used to investigate the representations underlying human spatial memory. Subjects encountered a cue object in a simple rectangular enclosure, with distant landmarks for orientation. After a brief delay, during which they were removed from the arena, subjects were returned to it…

  5. Memory Effects in Visual Spatial Information Processing.

    ERIC Educational Resources Information Center

    Fishbein, Harold D.

    1978-01-01

    Eight, ten, and twelve year old children were tested on a novel procedure involving the successive presentation of standard and comparision stimuli. Two hypotheses were evaluated: one dealing with memory effects, and the other with children's pretesting of choice responses in spatial information processing. (Editor/RK)

  6. Age-related changes in feature-based object memory retrieval as measured by event-related potentials

    PubMed Central

    Chiang, Hsueh-Sheng; Mudar, Raksha A.; Spence, Jeffrey S.; Pudhiyidath, Athula; Eroh, Justin; DeLaRosa, Bambi; Kraut, Michael A.; Hart, John

    2014-01-01

    To investigate neural mechanisms that support semantic functions in aging, we recorded scalp EEG during an object retrieval task in 22 younger and 22 older adults. The task required determining if a particular object could be retrieved when two visual words representing object features were presented. Both age groups had comparable accuracy although response times were longer in older adults. In both groups a left fronto-temporal negative potential occurred at around 750 msec during object retrieval, consistent with previous findings (Brier et al., 2008). Only in older adults a later positive frontal potential was found peaking between 800 and 1000 msec during no retrieval. These findings suggest younger and older adults employ comparable neural mechanisms when features clearly facilitate retrieval of an object memory, but when features yield no retrieval, older adults use additional neural resources to engage in a more effortful and exhaustive search prior to making a decision. PMID:24911552

  7. Increased expression of osteonectin/SPARC mRNA and protein in age-related human cataracts and spatial expression in the normal human lens

    PubMed Central

    Kantorow, Marc; Huang, Quingling; Yang, Xian-jie; Sage, E. Helene; Magabo, Kristine S.; Miller, Kevin M.; Horwitz, Joseph

    2010-01-01

    Purpose We have previously reported increased levels of Osteonectin/SPARC transcript in age-related cataractous compared to normal human lenses. The purpose of the present study was to evaluate the corresponding levels of osteonectin/SPARC protein in age-related cataractous relative to normal lenses and to evaluate the levels of osteonectin/SPARC transcript in specific types of age-related human cataracts. The spatial expression of osteonectin/SPARC was also evaluated in normal human lenses. Methods Specific types of age-related cataracts were collected and graded. Normal human lenses were microdissected into epithelia and fibers. Osteonectin/SPARC protein levels were monitored by Western immunoblotting, and transcript levels were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR). Osteonectin/SPARC expression patterns were examined by RT-PCR and by immunostaining. Results Higher levels of osteonectin/SPARC protein were detected in age-related cataractous relative to normal human lenses. Increased levels of osteonectin/SPARC transcript were also detected in posterior-subcapsular and nuclear cataractous lenses relative to normal lenses. Osteonectin/SPARC transcripts were detected in the lens epithelium but not fibers. Osteonectin/SPARC protein levels were highest in the peripheral lens epithelium. Conclusions Consistent with our previous studies on osteonectin/SPARC mRNA levels, osteonectin/SPARC protein levels were also elevated in cataractous compared to normal human lenses. Increased levels of osteonectin/SPARC mRNA were also found in nuclear and posterior-subcapsular cataracts relative to normal lenses. Osteonectin/SPARC expression is confined to the lens epithelium, and osteonectin/SPARC levels are highest in the peripheral lens epithelium. PMID:10756178

  8. Age-Related Changes in Electrophysiological and Neuropsychological Indices of Working Memory, Attention Control, and Cognitive Flexibility

    PubMed Central

    Peltz, Carrie Brumback; Gratton, Gabriele; Fabiani, Monica

    2011-01-01

    Older adults exhibit great variability in their cognitive abilities, with some maintaining high levels of performance on executive control tasks and others showing significant deficits. Previous event-related potential (ERP) work has shown that some of these performance differences are correlated with persistence of the novelty/frontal P3 in older adults elicited by task-relevant events, presumably reflecting variability in the capacity to suppress orienting to unexpected but no longer novel events. In recent ERP work in young adults, we showed that the operation-span (OSPAN) task (a measure of attention control) is predictive of the ability of individuals to keep track of stimulus sequencing and to maintain running mental representations of task stimuli, as indexed by the parietally distributed P300 (or P3b). Both of these phenomena reflect aspects of frontal function (cognitive flexibility and attention control, respectively). To investigate these phenomena we sorted both younger and older adults into low- and high-working memory spans and low- and high-cognitive flexibility subgroups, and examined ERPs during an equal-probability choice reaction time task. For both age groups (a) participants with high OSPAN scores were better able to keep track of stimulus sequencing, as indicated by their smaller P3b to sequential changes; and (b) participants with lower cognitive flexibility had larger P3a than their high-scoring counterparts. However, these two phenomena did not interact suggesting that they manifest dissociable control mechanisms. Further, the fact that both effects are already visible in younger adults suggests that at least some of the brain mechanisms underlying individual differences in cognitive aging may already operate early in life. PMID:21887150

  9. Impaired allocentric spatial memory underlying topographical disorientation.

    PubMed

    Burgess, Neil; Trinkler, Iris; King, John; Kennedy, Angus; Cipolotti, Lisa

    2006-01-01

    The cognitive processes supporting spatial navigation are considered in the context of a patient (CF) with possible very early Alzheimer's disease who presents with topographical disorientation. Her verbal memory and her recognition memory for unknown buildings, landmarks and outdoor scenes was intact, although she showed an impairment in face processing. By contrast, her navigational ability, quantitatively assessed within a small virtual reality (VR) town, was significantly impaired. Interestingly, she showed a selective impairment in a VR object-location memory test whenever her viewpoint was shifted between presentation and test, but not when tested from the same viewpoint. We suggest that a specific impairment in locating objects relative to the environment rather than relative to the perceived viewpoint (i.e. allocentric rather than egocentric spatial memory) underlies her topographical disorientation. We discuss the likely neural bases of this deficit in the light of related studies in humans and animals, focusing on the hippocampus and related areas. The specificity of our test indicates a new way of assessing topographical disorientation, with possible application to the assessment of progressive dementias such as Alzheimer's disease. PMID:16703955

  10. Remarkable spatial memory in a migratory cardinalfish.

    PubMed

    Fukumori, Kayoko; Okuda, Noboru; Yamaoka, Kosaku; Yanagisawa, Yasunobu

    2010-03-01

    The ability to orient and navigate within a certain environment is essential for all animals, and spatial memory enables animals to remember the locations of such markers as predators, home, and food. Here we report that the migratory marine cardinalfish Apogon notatus has the potential to retain long-term spatial memory comparable to that of other animals. Female A. notatus establish a small territory on a shallow boulder bottom to pair and spawn with males. We carried out field research in two consecutive breeding seasons on territory settlement by individually marked females. Females maintained a territory at the same site throughout one breeding season. After overwintering in deep water, many of them (82.1%) returned to their breeding ground next spring and most occupied the same site as in the previous season, with only a 0.56 m shift on average. Our results suggest that female A. notatus have long-distance homing ability to pinpoint the exact location of their previous territory, and retain spatial memory for as long as 6 months. PMID:19784851

  11. Assessing Spatial Learning and Memory in Rodents

    PubMed Central

    Vorhees, Charles V.; Williams, Michael T.

    2014-01-01

    Maneuvering safely through the environment is central to survival of almost all species. The ability to do this depends on learning and remembering locations. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues and nearby proximal cues, egocentric navigation. Allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures; in humans this system encodes allocentric, semantic, and episodic memory. This form of memory is assessed in laboratory animals in many ways, but the dominant form of assessment is the Morris water maze (MWM). Egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and, when overlearned, becomes procedural memory. In this article, several allocentric assessment methods for rodents are reviewed and compared with the MWM. MWM advantages (little training required, no food deprivation, ease of testing, rapid and reliable learning, insensitivity to differences in body weight and appetite, absence of nonperformers, control methods for proximal cue learning, and performance effects) and disadvantages (concern about stress, perhaps not as sensitive for working memory) are discussed. Evidence-based design improvements and testing methods are reviewed for both rats and mice. Experimental factors that apply generally to spatial navigation and to MWM specifically are considered. It is concluded that, on balance, the MWM has more advantages than disadvantages and compares favorably with other allocentric navigation tasks. PMID:25225309

  12. Age-Related Performance on the Brixton Spatial Anticipation Test in Healthy Child and Adolescent Girls: A Preliminary Evaluation.

    PubMed

    Harvey, Lucy; Rose, Mark; Jonsson, Rosie; Lask, Bryan

    2016-01-01

    The Brixton Spatial Anticipation Test assesses individuals' cognitive flexibility in terms of rule detection and attainment. It has been used to assess executive functioning in both clinical and nonclinical adult samples. However, little is currently known about the suitability of this task for younger populations. The current study therefore aimed to provide an initial exploration of this task's suitability for young people. Brixton responses from a healthy sample of children and adolescents were presented to investigate performance in both rule detection and rule attainment, respectively. A convenience sample of 72 female participants (Mage = 14.95 years, SD = 1.53 years, range = 11-17 years; MIQ = 103.76, SD = 10.81) was studied. The sample was divided according to age into four groups (11-12 years, 13-14 years, 15 years, and 16-17 years) to allow for developmental trajectory. No significant age performance differences were found. Small effect sizes between age groups lend support to the null findings. The current study suggests that the Brixton task norms are suitable for use with individuals aged 11 to 17 years old. However, normative work is still needed in this area, incorporating an adult sample for comparison, to comment upon the developmental trajectory specific to this task. PMID:25928610

  13. Spatial learning and memory in birds.

    PubMed

    Healy, Susan D; Hurly, T Andrew

    2004-01-01

    Behavioral ecologists, well versed in addressing functional aspects of behavior, are acknowledging more and more the attention they need also to pay to mechanistic processes. One of these is the role of cognition. Song learning and imprinting are familiar examples of behaviors for which cognition plays an important role, but attention is now turning to other behaviors and a wider diversity of species. We focus here on work that investigates the nature of spatial learning and memory in the context of behaviors such as foraging and food storing. We also briefly explore the difficulties of studying cognition in the field. The common thread to all of this work is the value of using psychological techniques as tools for assessing learning and memory abilities in order to address questions of interest to behavioral ecologists. PMID:15084814

  14. Differential Age Effects on Spatial and Visual Working Memory

    ERIC Educational Resources Information Center

    Oosterman, Joukje M.; Morel, Sascha; Meijer, Lisette; Buvens, Cleo; Kessels, Roy P. C.; Postma, Albert

    2011-01-01

    The present study was intended to compare age effects on visual and spatial working memory by using two versions of the same task that differed only in presentation mode. The working memory task contained both a simultaneous and a sequential presentation mode condition, reflecting, respectively, visual and spatial working memory processes. Young…

  15. Spatial Working Memory and Gender Differences in Science

    ERIC Educational Resources Information Center

    Geiger, John F.; Litwiller, Robert M.

    2005-01-01

    One reason for the lack of female participation in science could be due to cognitive differences between males and females. The present study measured verbal and spatial working memory for 15 males and 48 females. Males were found to have both a larger verbal memory and a larger spatial memory. Participants then read texts that either presented…

  16. Age-Related Changes in the Functional Network Underlying Specific and General Autobiographical Memory Retrieval: A Pivotal Role for the Anterior Cingulate Cortex

    PubMed Central

    Martinelli, Pénélope; Sperduti, Marco; Devauchelle, Anne-Dominique; Kalenzaga, Sandrine; Gallarda, Thierry; Lion, Stéphanie; Delhommeau, Marion; Anssens, Adèle; Amado, Isabelle; Meder, Jean François; Krebs, Marie-Odile; Oppenheim, Catherine; Piolino, Pascale

    2013-01-01

    Age-related changes in autobiographical memory (AM) recall are characterized by a decline in episodic details, while semantic aspects are spared. This deleterious effect is supposed to be mediated by an inefficient recruitment of executive processes during AM retrieval. To date, contrasting evidence has been reported on the neural underpinning of this decline, and none of the previous studies has directly compared the episodic and semantic aspects of AM in elderly. We asked 20 young and 17 older participants to recall specific and general autobiographical events (i.e., episodic and semantic AM) elicited by personalized cues while recording their brain activity by means of fMRI. At the behavioral level, we confirmed that the richness of episodic AM retrieval is specifically impoverished in aging and that this decline is related to the reduction of executive functions. At the neural level, in both age groups, we showed the recruitment of a large network during episodic AM retrieval encompassing prefrontal, cortical midline and posterior regions, and medial temporal structures, including the hippocampus. This network was very similar, but less extended, during semantic AM retrieval. Nevertheless, a greater activity was evidenced in the dorsal anterior cingulate cortex (dACC) during episodic, compared to semantic AM retrieval in young participants, and a reversed pattern in the elderly. Moreover, activity in dACC during episodic AM retrieval was correlated with inhibition and richness of memories in both groups. Our findings shed light on the direct link between episodic AM retrieval, executive control, and their decline in aging, proposing a possible neuronal signature. They also suggest that increased activity in dACC during semantic AM retrieval in the elderly could be seen as a compensatory mechanism underpinning successful AM performance observed in aging. These results are discussed in the framework of recently proposed models of neural reorganization in aging

  17. Effects of Grape Skin Extract on Age-Related Mitochondrial Dysfunction, Memory and Life Span in C57BL/6J Mice.

    PubMed

    Asseburg, Heike; Schäfer, Carmina; Müller, Madeleine; Hagl, Stephanie; Pohland, Maximilian; Berressem, Dirk; Borchiellini, Marta; Plank, Christina; Eckert, Gunter P

    2016-09-01

    Dementia contributes substantially to the burden of disability experienced at old age, and mitochondrial dysfunction (MD) was identified as common final pathway in brain aging and Alzheimer's disease. Due to its early appearance, MD is a promising target for nutritional prevention strategies and polyphenols as potential neurohormetic inducers may be strong neuroprotective candidates. This study aimed to investigate the effects of a polyphenol-rich grape skin extract (PGE) on age-related dysfunctions of brain mitochondria, memory, life span and potential hormetic pathways in C57BL/6J mice. PGE was administered at a dose of 200 mg/kg body weight/d in a 3-week short-term, 6-month long-term and life-long study. MD in the brains of aged mice (19-22 months old) compared to young mice (3 months old) was demonstrated by lower ATP levels and by impaired mitochondrial respiratory complex activity (except for mice treated with antioxidant-depleted food pellets). Long-term PGE feeding partly enhanced brain mitochondrial respiration with only minor beneficial effect on brain ATP levels and memory of aged mice. Life-long PGE feeding led to a transient but significant shift of survival curve toward higher survival rates but without effect on the overall survival. The moderate effects of PGE were associated with elevated SIRT1 but not SIRT3 mRNA expressions in brain and liver tissue. The beneficial effects of the grape extract may have been influenced by the profile of bioavailable polyphenols and the starting point of interventions. PMID:27455862

  18. Incorporating animal spatial memory in step selection functions.

    PubMed

    Oliveira-Santos, Luiz Gustavo R; Forester, James D; Piovezan, Ubiratan; Tomas, Walfrido M; Fernandez, Fernando A S

    2016-03-01

    Memory is among the most important and neglected forces that shapes animal movement patterns. Research on the movement-memory interface is crucial to understand how animals use spatial learning to navigate across space because memory-based navigation is directly linked to animals' space use and home range behaviour; however, because memory cannot be measured directly, it is difficult to account for. Here, we incorporated spatial memory into step selection functions (SSF) to understand how resource selection and spatial memory affect space use of feral hogs (Sus scrofa). We used Biased Random Bridge kernel estimates linked to residence time as a surrogate for memory and tested four conceptually different dynamic maps of spatial memory. We applied this memory-based SSF to a data set of hog relocations to evaluate the importance of land cover type, time of day and spatial memory on the animals' space use. Our approach has shown how the incorporation of spatial memory into animal movement models can improve estimates of habitat selection. Memory-based SSF provided a feasible way to gain insight into how animals use spatial learning to guide their movement decisions. We found that while hogs selected forested areas and water bodies and avoided grasslands during the day (primarily at noon), they had a strong tendency to select previously visited areas, mainly those held in recent memory. Beyond actively updating their memory with recent experiences, hogs were able to discriminate among spatial memories encoded at different circadian phases of their activity. Even though hogs are thought to have long memory retention, they likely relied on recent experiences because the local food resources are quickly depleted and slowly renewed, yielding an uncertain spatial distribution of resources. PMID:26714244

  19. Spatial Working Memory Interferes with Explicit, but Not Probabilistic Cuing of Spatial Attention

    ERIC Educational Resources Information Center

    Won, Bo-Yeong; Jiang, Yuhong V.

    2015-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal…

  20. Hippocampal-prefrontal input supports spatial encoding in working memory

    PubMed Central

    Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E.; Fusi, Stefano; Gogos, Joseph A.; Gordon, Joshua A.

    2015-01-01

    Summary Spatial working memory, the caching of behaviorally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. While the prefrontal cortex and hippocampus are known to jointly contribute to successful spatial working memory, the anatomical pathway and temporal window for interaction of these structures critical to spatial working memory has not yet been established. Here, we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory. PMID:26053122

  1. Multiple Systems of Spatial Memory: Evidence from Described Scenes

    ERIC Educational Resources Information Center

    Avraamides, Marios N.; Kelly, Jonathan W.

    2010-01-01

    Recent models in spatial cognition posit that distinct memory systems are responsible for maintaining transient and enduring spatial relations. The authors used perspective-taking performance to assess the presence of these enduring and transient spatial memories for locations encoded through verbal descriptions. Across 3 experiments, spatial…

  2. Spatial Working Memory Effects in Early Visual Cortex

    ERIC Educational Resources Information Center

    Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan

    2010-01-01

    The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…

  3. Aging Effect on Visual and Spatial Components of Working Memory

    ERIC Educational Resources Information Center

    Beigneux, Katia; Plaie, Thierry; Isingrini, Michel

    2007-01-01

    The aim of this study was to evaluate the effect of aging on the storage of visual and spatial working memory according to Logie's model of working memory (1995). In a first experiment young, elderly, and very old subjects carried out two tasks usually used to measure visual span (Visual Patterns Test) and spatial span (Corsi Block Tapping test).…

  4. A Principal Components Analysis of Dynamic Spatial Memory Biases

    ERIC Educational Resources Information Center

    Motes, Michael A.; Hubbard, Timothy L.; Courtney, Jon R.; Rypma, Bart

    2008-01-01

    Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed…

  5. No Sex Differences in Spatial Location Memory for Abstract Designs

    ERIC Educational Resources Information Center

    Rahman, Qazi; Bakare, Monsurat; Serinsu, Ceydan

    2011-01-01

    Previous research has demonstrated a female advantage, albeit imperfectly, on tests of object location memory where object identity information is readily available. However, spatial and visual elements are often confounded in the experimental tasks used. Here spatial and visual memory performance was compared in 30 men and 30 women by presenting…

  6. Chimpanzees and bonobos exhibit divergent spatial memory development.

    PubMed

    Rosati, Alexandra G; Hare, Brian

    2012-11-01

    Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can illuminate which aspects of human spatial development are shared with other primates, versus which aspects are unique to our lineage. Here we present three studies examining spatial memory development in our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (P. paniscus). We first compared memory in a naturalistic foraging task where apes had to recall the location of resources hidden in a large outdoor enclosure with a variety of landmarks (Studies 1 and 2). We then compared older apes using a matched memory choice paradigm (Study 3). We found that chimpanzees exhibited more accurate spatial memory than bonobos across contexts, supporting predictions from these species' different feeding ecologies. Furthermore, chimpanzees - but not bonobos - showed developmental improvements in spatial memory, indicating that bonobos exhibit cognitive paedomorphism (delays in developmental timing) in their spatial abilities relative to chimpanzees. Together, these results indicate that the development of spatial memory may differ even between closely related species. Moreover, changes in the spatial domain can emerge during nonhuman ape ontogeny, much like some changes seen in human children. PMID:23106738

  7. Familiar environments enhance object and spatial memory in both younger and older adults.

    PubMed

    Merriman, Niamh A; Ondřej, Jan; Roudaia, Eugenie; O'Sullivan, Carol; Newell, Fiona N

    2016-06-01

    Recent evidence suggests that familiarity with an environment may protect against spatial memory decline for familiar objects in older adults. We investigated whether a familiar context also reduces age-related decline in spatial memory for novel objects. Twenty-four younger and 23 older participants viewed a virtual rendering of a local environment along two different routes, each through a well-known (West) or lesser-known (East) area within the environment. Older and younger participants reported being more familiar with one (i.e. West) area than the other. In each trial, participants were presented with one route and were instructed to learn ten novel objects and their locations along the route. Following learning, participants immediately completed five test blocks: an object recognition task, an egocentric spatial processing (direction judgement) task, an allocentric spatial processing (proximity judgement) task and two pen-and-paper tests to measure cognitive mapping abilities. First we found an age effect with worse performance by older than younger adults in all spatial tasks, particularly in allocentric spatial processing. However, our results suggested better memory for objects and directions, but not proximity judgements, when the task was associated with more familiar than unfamiliar contexts, in both age groups. There was no benefit of context when a separate young adult group (N = 24) was tested, who reported being equally familiar with both areas. These results suggest an important facilitatory role of context familiarity on object recognition, and in particular egocentric spatial memory, and have implications for enhancing spatial memory in older adults. PMID:26821318

  8. Discrimination performance in aging is vulnerable to interference and dissociable from spatial memory.

    PubMed

    Johnson, Sarah A; Sacks, Patricia K; Turner, Sean M; Gaynor, Leslie S; Ormerod, Brandi K; Maurer, Andrew P; Bizon, Jennifer L; Burke, Sara N

    2016-07-01

    Hippocampal-dependent episodic memory and stimulus discrimination abilities are both compromised in the elderly. The reduced capacity to discriminate between similar stimuli likely contributes to multiple aspects of age-related cognitive impairment; however, the association of these behaviors within individuals has never been examined in an animal model. In the present study, young and aged F344×BN F1 hybrid rats were cross-characterized on the Morris water maze test of spatial memory and a dentate gyrus-dependent match-to-position test of spatial discrimination ability. Aged rats showed overall impairments relative to young in spatial learning and memory on the water maze task. Although young and aged learned to apply a match-to-position response strategy in performing easy spatial discriminations within a similar number of trials, a majority of aged rats were impaired relative to young in performing difficult spatial discriminations on subsequent tests. Moreover, all aged rats were susceptible to cumulative interference during spatial discrimination tests, such that error rate increased on later trials of test sessions. These data suggest that when faced with difficult discriminations, the aged rats were less able to distinguish current goal locations from those of previous trials. Increasing acetylcholine levels with donepezil did not improve aged rats' abilities to accurately perform difficult spatial discriminations or reduce their susceptibility to interference. Interestingly, better spatial memory abilities were not significantly associated with higher performance on difficult spatial discriminations. This observation, along with the finding that aged rats made more errors under conditions in which interference was high, suggests that match-to-position spatial discrimination performance may rely on extra-hippocampal structures such as the prefrontal cortex, in addition to the dentate gyrus. PMID:27317194

  9. How Does the Sparse Memory "Engram" Neurons Encode the Memory of a Spatial-Temporal Event?

    PubMed

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns. PMID:27601979

  10. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume.

    PubMed

    Erickson, Kirk I; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D; Martin, Stephen A; Vieira, Victoria J; Woods, Jeffrey A; McAuley, Edward; Kramer, Arthur F

    2010-04-14

    Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain-derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age, and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958

  11. The ecology of spatial memory in four lemur species.

    PubMed

    Rosati, Alexandra G; Rodriguez, Kerri; Hare, Brian

    2014-07-01

    Evolutionary theories suggest that ecology is a major factor shaping cognition in primates. However, there have been few systematic tests of spatial memory abilities involving multiple primate species. Here, we examine spatial memory skills in four strepsirrhine primates that vary in level of frugivory: ruffed lemurs (Varecia sp.), ring-tailed lemurs (Lemur catta), mongoose lemurs (Eulemur mongoz), and Coquerel's sifakas (Propithecus coquereli). We compare these species across three studies targeting different aspects of spatial memory: recall after a long-delay, learning mechanisms supporting memory and recall of multiple locations in a complex environment. We find that ruffed lemurs, the most frugivorous species, consistently showed more robust spatial memory than the other species across tasks-especially in comparison with sifakas, the most folivorous species. We discuss these results in terms of the importance of considering both ecological and social factors as complementary explanations for the evolution of primate cognitive skills. PMID:24469310

  12. Spatial phase modulation from permanent memory in doped glass.

    PubMed

    Myint, Thandar; Alfano, R R

    2010-04-15

    Diffraction rings are observed from photoinduced permanent memory of doped glass. The permanent memory is created by the high-intensity picosecond laser beam. A 1 mm spot size of laser beam creates spatially variable refractive index memory, which appears as a void located inside the glass. When a probe laser beam passes through the memory region, the diffraction rings arisen from spatial phase modulation of the transverse phase of the input beam are created. Agreement between the observed and calculated beam pattern using Kirchhoff's diffraction integral is satisfactory. PMID:20410991

  13. Multisensory Integration Affects Visuo-Spatial Working Memory

    ERIC Educational Resources Information Center

    Botta, Fabiano; Santangelo, Valerio; Raffone, Antonino; Sanabria, Daniel; Lupianez, Juan; Belardinelli, Marta Olivetti

    2011-01-01

    In the present study, we investigate how spatial attention, driven by unisensory and multisensory cues, can bias the access of information into visuo-spatial working memory (VSWM). In a series of four experiments, we compared the effectiveness of spatially-nonpredictive visual, auditory, or audiovisual cues in capturing participants' spatial…

  14. The neural correlates of age effects on verbal-spatial binding in working memory.

    PubMed

    Meier, Timothy B; Nair, Veena A; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek

    2014-06-01

    In this study, we investigated the neural correlates of age-related differences in the binding of verbal and spatial information utilizing event-related working memory tasks. Twenty-one right handed younger adults and twenty-one right handed older adults performed two versions of a dual task of verbal and spatial working memory. In the unbound dual task version letters and locations were presented simultaneously in separate locations, while in the bound dual task version each letter was paired with a specific location. In order to identify binding-specific differences, mixed-effects ANOVAs were run with the interaction of age and task as the effect of interest. Although older adults performed worse in the bound task than younger adults, there was no significant interaction between task and age on working memory performance. However, interactions of age and task were observed in brain activity analyses. Older adults did not display the greater unbound than bound task activity that younger adults did at the encoding phase in bilateral inferior parietal lobule, right putamen, and globus pallidus as well as at the maintenance phase in the cerebellum. We conclude that the binding of letters and locations in working memory is not as efficient in older adults as it is in younger adults, possibly due to the decline of cognitive control processes that are specific to working memory binding. PMID:24631396

  15. Ontogeny of neural circuits underlying spatial memory in the rat

    PubMed Central

    Ainge, James A.; Langston, Rosamund F.

    2012-01-01

    Spatial memory is a well-characterized psychological function in both humans and rodents. The combined computations of a network of systems including place cells in the hippocampus, grid cells in the medial entorhinal cortex and head direction cells found in numerous structures in the brain have been suggested to form the neural instantiation of the cognitive map as first described by Tolman in 1948. However, while our understanding of the neural mechanisms underlying spatial representations in adults is relatively sophisticated, we know substantially less about how this network develops in young animals. In this article we briefly review studies examining the developmental timescale that these systems follow. Electrophysiological recordings from very young rats show that directional information is at adult levels at the outset of navigational experience. The systems supporting allocentric memory, however, take longer to mature. This is consistent with behavioral studies of young rats which show that spatial memory based on head direction develops very early but that allocentric spatial memory takes longer to mature. We go on to report new data demonstrating that memory for associations between objects and their spatial locations is slower to develop than memory for objects alone. This is again consistent with previous reports suggesting that adult like spatial representations have a protracted development in rats and also suggests that the systems involved in processing non-spatial stimuli come online earlier. PMID:22403529

  16. Age-Related Declines in General Cognitive Abilities of Balb/C Mice and General Activity Are Associated with Disparities in Working Memory, Body Weight, and General Activity

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Grossman, Henya; Light, Kenneth; Townsend, David; Kolata, Stefan

    2008-01-01

    A defining characteristic of age-related cognitive decline is a deficit in general cognitive performance. Here we use a testing and analysis regimen that allows us to characterize the general learning abilities of young (3-5 mo old) and aged (19-21 mo old) male and female Balb/C mice. Animals' performance was assessed on a battery of seven diverse…

  17. Functional Neuroanatomy of Spatial Working Memory in Children.

    ERIC Educational Resources Information Center

    Nelson, Charles A.; Monk, Christopher S.; Lin, Joseph; Carver, Leslie J.; Thomas, Kathleen M.; Truwit, Charles L.

    2000-01-01

    Used functional magnetic resonance imaging (fMRI) to examine spatial working memory in 8- to 11-year-olds tested under 3 conditions. Found that subtracting activation of the motor condition from the memory condition revealed activity in dorsal aspects of the prefrontal cortex and in the posterior parietal and anterior cingulate cortex. Analysis of…

  18. Layout Geometry in Encoding and Retrieval of Spatial Memory

    ERIC Educational Resources Information Center

    Mou, Weimin; Liu, Xianyun; McNamara, Timothy P.

    2009-01-01

    Two experiments investigated whether the spatial reference directions that are used to specify objects' locations in memory can be solely determined by layout geometry. Participants studied a layout of objects from a single viewpoint while their eye movements were recorded. Subsequently, participants used memory to make judgments of relative…

  19. Hippocampal-prefrontal input supports spatial encoding in working memory.

    PubMed

    Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E; Fusi, Stefano; Gogos, Joseph A; Gordon, Joshua A

    2015-06-18

    Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory. PMID:26053122

  20. The Spatial Scaffold: The Effects of Spatial Context on Memory for Events

    ERIC Educational Resources Information Center

    Robin, Jessica; Wynn, Jordana; Moscovitch, Morris

    2016-01-01

    Events always unfold in a spatial context, leading to the claim that it serves as a scaffold for encoding and retrieving episodic memories. The ubiquitous co-occurrence of spatial context with events may induce participants to generate a spatial context when hearing scenarios of events in which it is absent. Spatial context should also serve as an…

  1. Oculomotor preparation as a rehearsal mechanism in spatial working memory.

    PubMed

    Pearson, David G; Ball, Keira; Smith, Daniel T

    2014-09-01

    There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. PMID:24908341

  2. Awake hippocampal sharp-wave ripples support spatial memory.

    PubMed

    Jadhav, Shantanu P; Kemere, Caleb; German, P Walter; Frank, Loren M

    2012-06-15

    The hippocampus is critical for spatial learning and memory. Hippocampal neurons in awake animals exhibit place field activity that encodes current location, as well as sharp-wave ripple (SWR) activity during which representations based on past experiences are often replayed. The relationship between these patterns of activity and the memory functions of the hippocampus is poorly understood. We interrupted awake SWRs in animals learning a spatial alternation task. We observed a specific learning and performance deficit that persisted throughout training. This deficit was associated with awake SWR activity, as SWR interruption left place field activity and post-experience SWR reactivation intact. These results provide a link between awake SWRs and hippocampal memory processes, which suggests that awake replay of memory-related information during SWRs supports learning and memory-guided decision-making. PMID:22555434

  3. Aging and the Effects of Exploratory Behavior on Spatial Memory.

    PubMed

    Varner, Kaitlin M; Dopkins, Stephen; Philbeck, John W

    2016-03-01

    The present research examined the effect of encoding from multiple viewpoints on scene recall in a group of younger (18-22 years) and older (65-80 years) adults. Participants completed a visual search task, during which they were given the opportunity to examine a room using two sets of windows that partitioned the room differently. Their choice of window set was recorded, to determine whether an association between these choices and spatial memory performance existed. Subsequently, participants were tested for spatial memory of the domain in which the search task was completed. Relative to younger adults, older adults demonstrated an increased tendency to use a single set of windows as well as decreased spatial memory for the domain. Window-set usage was associated with spatial memory, such that older adults who relied more heavily on a single set of windows also had better performance on the spatial memory task. These findings suggest that, in older adults, moderation in exploratory behavior may have a positive effect on memory for the domain of exploration. PMID:26758675

  4. Development of Working Memory for Verbal-Spatial Associations

    ERIC Educational Resources Information Center

    Cowan, Nelson; Saults, J. Scott; Morey, Candice C.

    2006-01-01

    Verbal-to-spatial associations in working memory may index a core capacity for abstract information limited in the amount concurrently retained. However, what look like associative, abstract representations could instead reflect verbal and spatial codes held separately and then used in parallel. We investigated this issue in two experiments on…

  5. Chimpanzees and Bonobos Exhibit Divergent Spatial Memory Development

    ERIC Educational Resources Information Center

    Rosati, Alexandra G.; Hare, Brian

    2012-01-01

    Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can…

  6. Hemispheric Lateralization of Verbal and Spatial Working Memory during Adolescence

    ERIC Educational Resources Information Center

    Nagel, Bonnie J.; Herting, Megan M.; Maxwell, Emily C.; Bruno, Richard; Fair, Damien

    2013-01-01

    Adult functional magnetic resonance imaging (fMRI) literature suggests that a left-right hemispheric dissociation may exist between verbal and spatial working memory (WM), respectively. However, investigation of this type has been obscured by incomparable verbal and spatial WM tasks and/or visual inspection at arbitrary thresholds as means to…

  7. Verbal, Visual, and Spatial Working Memory Demands during Text Composition

    ERIC Educational Resources Information Center

    Olive, Thierry; Kellogg, Ronald T.; Piolat, Annie

    2008-01-01

    Two experiments examined whether text composition engages verbal, visual, and spatial working memory to different degrees. In Experiment 1, undergraduate students composed by longhand a persuasive text while performing a verbal, visual, or spatial concurrent task that was presented visually. In Experiment 2, participants performed a verbal or…

  8. Emotional state and local versus global spatial memory.

    PubMed

    Brunyé, Tad T; Mahoney, Caroline R; Augustyn, Jason S; Taylor, Holly A

    2009-02-01

    The present work investigated the effects of participant emotional state on global versus local memory for map-based information. Participants were placed into one of four emotion induction groups, crossing high and low arousal with positive and negative valence, or a control group. They then studied a university campus map and completed two memory tests, free recall and spatial statement verification. Converging evidence from these two tasks demonstrated that arousal amplifies symbolic distance effects and leads to a globally-focused spatial mental representation, partially at the expense of local knowledge. These results were found for both positively- and negatively-valenced affective states. The present study is the first investigation of emotional effects on spatial memory, and has implications for theories of emotion and spatial cognition. PMID:19100525

  9. Is attention based on spatial contextual memory preferentially guided by low spatial frequency signals?

    PubMed

    Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina

    2013-01-01

    A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception. PMID:23776509

  10. Developing Spatial Orientation and Spatial Memory with a Treasure Hunting Game

    ERIC Educational Resources Information Center

    Lin, Chien-Heng; Chen, Chien-Min; Lou, Yu-Chiung

    2014-01-01

    The abilities of both spatial orientation and spatial memory play very important roles in human navigation and spatial cognition. Since such abilities are difficult to strengthen through books or classroom instruction, there are no particular curricula or methods to assist in their development. Therefore, this study develops a spatial…

  11. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.

    PubMed

    Won, Bo-Yeong; Jiang, Yuhong V

    2015-05-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460

  12. Age-related increase in amyloid plaque burden is associated with impairment in conditioned fear memory in CRND8 mouse model of amyloidosis

    PubMed Central

    2012-01-01

    Introduction The current pathological confirmation of the diagnosis of Alzheimer's disease (AD) is still based on postmortem identification of parenchymal amyloid beta (Aβ) plaques, intra-neuronal neurofibrillary tangles, and neuronal loss. The memory deficits that are present in the early stages of AD are linked to the dysfunction of structures in the entorhinal cortex and limbic system, especially the hippocampus and amygdala. Using the CRND8 transgenic mouse model of amyloidosis, which over-expresses a mutant human amyloid precursor protein (APP) gene, we evaluated hippocampus-dependent contextual and amygdala-dependent tone fear conditioned (FC) memory, and investigated the relationship between the fear memory indices and Aβ plaque burden. Methods Mice were tested at three, six, and 12 months of age, which corresponds to early, mild, and severe Aβ plaque deposition, following a cross-sectional experimental design. We used a delay version of the fear conditioning paradigm in which tone stimulus was co-terminated with foot-shocks during exploration of the training chamber. The Aβ plaque burden was evaluated at each age after the completion of the behavioral tests. Results CRDN8 mice showed context fear memory comparable to control mice at three and six months, but were significantly impaired at 12 months of age. In contrast, the tone fear memory was significantly impaired in the model at each age of testing. The Aβ plaque burden significantly increased with age, and was correlated with the overall impairment in context and tone fear memory in the CRND8 mice within the studied age. Conclusions Our data extend previous studies showing that other APP mouse models exhibit impairment in fear conditioned memory, by demonstrating that this impairment is progressive and correlates well with an overall increase in Aβ burden. Also, the demonstrated greater sensitivity of the tone conditioning test in the identification of age dependent differences between CRND8 and

  13. Acute effects of 17 β-estradiol and genistein on insulin sensitivity and spatial memory in aged ovariectomized female rats.

    PubMed

    Alonso, Ana; González-Pardo, Héctor; Garrido, Pablo; Conejo, Nélida M; Llaneza, Plácido; Díaz, Fernando; Del Rey, Carmen González; González, Celestino

    2010-12-01

    Aging is characterized by decline in metabolic function and insulin resistance, and both seem to be in the basis of neurodegenerative diseases and cognitive dysfunction. Estrogens prevent age-related changes, and phytoestrogens influence learning and memory. Our hypothesis was that estradiol and genistein, using rapid-action mechanisms, are able to modify insulin sensitivity, process of learning, and spatial memory. Young and aged ovariectomized rats received acute treatment with estradiol or genistein. Aged animals were more insulin-resistant than young. In each age, estradiol and genistein-treated animals were less insulin-resistant than the others, except in the case of young animals treated with high doses of genistein. In aged rats, no differences between groups were found in spatial memory test, showing a poor performance in the water maze task. However, young females treated with estradiol or high doses of genistein performed well in spatial memory task like the control group. Only rats treated with high doses of genistein showed an optimal spatial memory similar to the control group. Conversely, acute treatment with high doses of phytoestrogens improved spatial memory consolidation only in young rats, supporting the critical period hypothesis for the beneficial effects of estrogens on memory. Therefore, genistein treatment seems to be suitable treatment in aged rats in order to prevent insulin resistance but not memory decline associated with aging. Acute genistein treatment is not effective to restore insulin resistance associated to the early loss of ovarian function, although it can be useful to improve memory deficits in this condition. PMID:20467821

  14. Age-Related Differences in Memory and Executive Functions in Healthy "APOE"[epsilon]4 Carriers: The Contribution of Individual Differences in Prefrontal Volumes and Systolic Blood Pressure

    ERIC Educational Resources Information Center

    Bender, Andrew R.; Raz, Naftali

    2012-01-01

    Advanced age and vascular risk are associated with declines in the volumes of multiple brain regions, especially the prefrontal cortex, and the hippocampus. Older adults, even unencumbered by declining health, perform less well than their younger counterparts in multiple cognitive domains, such as episodic memory, executive functions, and speed of…

  15. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence

    PubMed Central

    McNamara, Colin G; Tejero-Cantero, Álvaro; Trouche, Stéphanie; Campo-Urriza, Natalia; Dupret, David

    2014-01-01

    Here we found that optogenetic burst stimulation of hippocampal dopaminergic fibers from midbrain neurons in mice exploring novel environments enhanced the reactivation of pyramidal cell assemblies during subsequent sleep/rest. When applied during spatial learning of new goal locations, dopaminergic photostimulation improved the later recall of neural representations of space and stabilized memory performance. These findings reveal that midbrain dopaminergic neurons promote hippocampal network dynamics associated with memory persistence. PMID:25326690

  16. Selective memory generalization by spatial patterning of protein synthesis

    PubMed Central

    O’Donnell, Cian; Sejnowski, Terrence J.

    2014-01-01

    Summary Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings we proposed a novel two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. PMID:24742462

  17. Flashbulb Memories and Posttraumatic Stress Reactions Across the Life-Span: Age-related effects of the German Occupation of Denmark during WWII

    PubMed Central

    Berntsen, Dorthe; Rubin, David C.

    2014-01-01

    A representative sample of older Danes were interviewed about experiences from the German occupation of Denmark in WWII. The number of participants with flashbulb memories for the German invasion (1940) and capitulation (1945) increased with participants’ age at the time of the events up to age 8. Among participants under 8 years at the time of their most traumatic event, age at the time correlated positively with current level of posttraumatic stress reactions, vividness of stressful memories and their centrality to life-story and identity. These findings were replicated in Study 2 for self-nominated stressful events sampled from the entire life span using a representative sample of Danes born after 1945. The results are discussed in relation to Posttraumatic Stress Disorder (PTSD) and childhood amnesia. PMID:16594798

  18. Flashbulb memories and posttraumatic stress reactions across the life span: age-related effects of the German occupation of Denmark during World War II.

    PubMed

    Berntsen, Dorthe; Rubin, David C

    2006-03-01

    A representative sample of older Danes were interviewed about experiences from the German occupation of Denmark in World War II. The number of participants with flashbulb memories for the German invasion (1940) and capitulation (1945) increased with participants' age at the time of the events up to age 8. Among participants under 8 years at the time of their most traumatic event, age at the time correlated positively with the current level of posttraumatic stress reactions and the vividness of stressful memories and their centrality to life story and identity. These findings were replicated in Study 2 for self-nominated stressful events sampled from the entire life span using a representative sample of Danes born after 1945. The results are discussed in relation to posttraumatic stress disorder and childhood amnesia. PMID:16594798

  19. The floor effect: impoverished spatial memory for elevator buttons.

    PubMed

    Vendetti, Michael; Castel, Alan D; Holyoak, Keith J

    2013-05-01

    People typically remember objects to which they have frequently been exposed, suggesting that memory is a by-product of perception. However, prior research has shown that people have exceptionally poor memory for the features of some objects (e.g., coins) to which they have been exposed over the course of many years. Here, we examined how people remember the spatial layout of the buttons on a frequently used elevator panel, to determine whether physical interaction (rather than simple exposure) would ensure the incidental encoding of spatial information. Participants who worked in an eight-story office building displayed very poor recall for the elevator panel but above-chance performance on a recognition test. Performance was related to how often and how recently the person had used the elevator. In contrast to their poor memory for the spatial layout of the elevator buttons, most people readily recalled small distinctive graffiti on the elevator walls. In a more implicit test, the majority were able to locate their office floor and the eighth floor button when asked to point toward these buttons when in the actual elevator, with the button labels covered. However, identification was very poor for other floors (including the first floor), suggesting that even frequent interaction with information does not always lead to accurate spatial memory. These findings have implications for understanding the complex relationships among attention, expertise, and memory. PMID:23512481

  20. Age-Related Differences in Memory and Executive Functions in Healthy APOE ε4 Carriers: The Contribution of Individual Differences in Prefrontal Volumes and Systolic Blood Pressure

    PubMed Central

    Bender, Andrew R.; Raz, Naftali

    2012-01-01

    Advanced age and vascular risk are associated with declines in the volumes of multiple brain regions, especially, the prefrontal cortex, and the hippocampus. Older adults, even unencumbered by declining health, perform less well than their younger counterparts in multiple cognitive domains, such as episodic memory, executive functions, and speed of perceptual processing. Presence of a known genetic risk factor for cognitive decline and vascular disease, the ε4 allele of the apolipoprotein E (APOE) gene, accounts for some share of those declines; however, the extent of the joint contribution of genetic and physiological vascular risk factors on the aging brain and cognition is unclear. In a sample of healthy adults (age 19–77), we examined the effects of a vascular risk indicator (systolic blood pressure, SBP) and volumes of hippocampus (HC), lateral prefrontal cortex (lPFC), and prefrontal white matter (pFWM) on processing speed, working memory (WM), and recognition memory. Using path analyses, we modeled indirect effects of age, SBP, and brain volumes on processing speed, WM, and memory and compared the patterns of structural relations among those variables in APOE ε4 carriers and ε3 homozygotes. Among ε4 carriers, age differences in WM were explained by increase in SBP, reduced FWM volume, and slower processing. In contrast, lPFC and FWM volumes, but not BP, explained a share of age differnces in WM among ε3 homozygotes. Thus, even in healthy older carriers of the APOE ε4 allele, clinically unremarkable increase in vascular risk may be associated with reduced frontal volumes and impaired cognitive functions. PMID:22245009

  1. Catha edulis deteriorates spatial working memory in rats, but spares reference memory.

    PubMed

    Alfadly, Saeed Obeid; Batarfi, Ali Mohamed; Veetil, Praveen Kottath

    2014-01-01

    The effects of Catha edulis, a CNS stimulant, on humans and animals have been studied on various aspects like anorectic effect, self-administration, stereotyped behavior, aggressive behavior, operant task, locomotor sensitization, psychosis etc., but how C. edulis influence spatial learning and memory in rats is not clear. C. edulis contains amphetamine like substances, which enhances spatial learning and memory. So, we hypothesize C. edulis will also influence spatial learning and memory. In the aim to assess this effect of C.edulis, a comparative study is conceded using another CNS stimulant, methylphenidate (MPD), which is currently used, for treatment of attention deficit hyperactive disorder (ADHD), instead of amphetamine. Spatial learning and memory was assessed using radial arm maze, by analyzing five dependent measures obtained on every trial: time to complete a trial, latency to first arm entry, number of reference memory errors, number of working memory correct and incorrect errors. Our results show that C. edulis and not MPD fed rats had impaired learning and memory, implicated by increased time to complete a trial. But both C. edulis and MPD increased attention in rats, as in both groups latency to first arm entry was less. Further analysis showed that C. edulis fed rats were more effected in the working memory component and reference memory was intact. These results highlight the importance of restricting the widespread use of C. edulis in humans. The use of MPD as a choice of drug in treatment of ADHD is also supported by this study as it did not deteriorate the learning and memory, in spite of increased attention and alertness. These results are further discussed on the basis of differential action of C. edulis and MPD on neurotransmitter systems of brain, and this reveals the need for detailed analysis in future studies for the effect of C. edulis on hippocampal network. PMID:25906607

  2. Age-related deficits in generation and manipulation of mental images: II. The role of dorsolateral prefrontal cortex.

    PubMed

    Raz, N; Briggs, S D; Marks, W; Acker, J D

    1999-09-01

    The authors investigated neural substrates of age-related declines in mental imagery. Healthy adult participants (ages 19 to 77) performed a series of visual-spatial mental imagery tasks that varied in apparent difficulty and involved stimuli of varying graphic complexity. The volumes of the dorsolateral frontal cortex (DLPFC) and posterior visual processing areas were estimated from magnetic resonance imaging scans. The volume of the DLPFC and the fusiform cortex, working-memory capacity, and performance on the tasks involving image generation and manipulation were significantly reduced with age. Further analyses suggested that age-related deficits in performance on mental imagery tasks may stem in part from age-related shrinkage of the prefrontal cortex and age-related declines in working memory but not from age-related slowing of sensorimotor reaction time. The volume of cortical regions associated with modality-specific visual information processing did not show a consistent relationship with specific mental imagery processes. PMID:10509698

  3. Long-term dietary extra-virgin olive oil rich in polyphenols reverses age-related dysfunctions in motor coordination and contextual memory in mice: role of oxidative stress.

    PubMed

    Pitozzi, Vanessa; Jacomelli, Michela; Catelan, Dolores; Servili, Maurizio; Taticchi, Agnese; Biggeri, Annibale; Dolara, Piero; Giovannelli, Lisa

    2012-12-01

    The aim of this study was to evaluate the effects of olive oil phenols on brain aging in mice and to verify whether the antioxidant and antiinflammatory activities of these polyphenols were involved. C57Bl/6J mice were fed from middle age to senescence with extra-virgin olive oil (10% wt/wt dry diet) rich in phenols (total polyphenol dose/day, 6 mg/kg). Behavioral tests were employed to assess cognitive, motor, and emotional behavior after 6 or 12 months of treatment. Parameters of oxidative status and inflammation were measured in different brain areas at the same times and evaluated for correlation with behavioral changes. The treatment with olive oil phenols improved contextual memory in the step-down test to levels similar to young animals and prevented the age-related impairment in motor coordination in the rotarod test. This motor effect was correlated with reduced lipid peroxidation in the cerebellum (p<0.05), whereas the memory effect did not correlate with oxidation or inflammation parameters. In conclusion, this work points out that natural polyphenols contained in extra-virgin olive oil can improve some age-related dysfunctions by differentially affecting different brain areas. Such a modulation can be obtained with an olive oil intake that is normal in the Mediterranean area, provided that the oil has a sufficiently high content of polyphenols. PMID:22950431

  4. Impaired spatial working memory maintenance in schizophrenia involves both spatial coordinates and spatial reference frames.

    PubMed

    Mazhari, Shahrzad; Badcock, Johanna C; Waters, Flavie A; Dragović, Milan; Badcock, David R; Jablensky, Assen

    2010-10-30

    Spatial working memory (SWM) dysfunction is a central finding in schizophrenia; however, more evidence of impaired maintenance over time is required. Consequently, the present study examined SWM maintenance over short unfilled delays, and with encoding equated. The influence of a vertical reference frame to support maintenance was also investigated. The performance of 58 patients with schizophrenia and 50 healthy controls was assessed using the Visuo-Spatial Working Memory (VSWM) Test across three unfilled delays (0, 2, and 4s). Inaccuracy of direction and distance responses was examined at each delay duration. The results showed that performance was significantly less accurate for both distance and direction responses at 2 and 4s delays in schizophrenia, but was not significantly different from controls at the 0s delay. Patients showed a particularly marked loss of accuracy between the time interval of 0-2s. Furthermore, schizophrenia participants exhibited significantly greater response variability at the vertical axis of symmetry than controls at the 2 and 4s delays, but not at the 0s delay. These data clearly show both impaired maintenance over time and difficulty using a vertical frame of reference in schizophrenia. The latter findings may reflect, in part, dysfunctional reference-related inhibition. PMID:20493553

  5. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation.

    PubMed

    Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-03-01

    Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation. PMID:25481356

  6. Identifying and Exploiting Spatial Regularity in Data Memory References

    SciTech Connect

    Mohan, T; de Supinski, B R; McKee, S A; Mueller, F; Yoo, A; Schulz, M

    2003-07-24

    The growing processor/memory performance gap causes the performance of many codes to be limited by memory accesses. If known to exist in an application, strided memory accesses forming streams can be targeted by optimizations such as prefetching, relocation, remapping, and vector loads. Undetected, they can be a significant source of memory stalls in loops. Existing stream-detection mechanisms either require special hardware, which may not gather statistics for subsequent analysis, or are limited to compile-time detection of array accesses in loops. Formally, little treatment has been accorded to the subject; the concept of locality fails to capture the existence of streams in a program's memory accesses. The contributions of this paper are as follows. First, we define spatial regularity as a means to discuss the presence and effects of streams. Second, we develop measures to quantify spatial regularity, and we design and implement an on-line, parallel algorithm to detect streams - and hence regularity - in running applications. Third, we use examples from real codes and common benchmarks to illustrate how derived stream statistics can be used to guide the application of profile-driven optimizations. Overall, we demonstrate the benefits of our novel regularity metric as a low-cost instrument to detect potential for code optimizations affecting memory performance.

  7. Semantic Elaboration in Auditory and Visual Spatial Memory

    PubMed Central

    Taevs, Meghan; Dahmani, Louisa; Zatorre, Robert J.; Bohbot, Véronique D.

    2010-01-01

    The aim of this study was to investigate the hypothesis that semantic information facilitates auditory and visual spatial learning and memory. An auditory spatial task was administered, whereby healthy participants were placed in the center of a semi-circle that contained an array of speakers where the locations of nameable and non-nameable sounds were learned. In the visual spatial task, locations of pictures of abstract art intermixed with nameable objects were learned by presenting these items in specific locations on a computer screen. Participants took part in both the auditory and visual spatial tasks, which were counterbalanced for order and were learned at the same rate. Results showed that learning and memory for the spatial locations of nameable sounds and pictures was significantly better than for non-nameable stimuli. Interestingly, there was a cross-modal learning effect such that the auditory task facilitated learning of the visual task and vice versa. In conclusion, our results support the hypotheses that the semantic representation of items, as well as the presentation of items in different modalities, facilitate spatial learning and memory. PMID:21833283

  8. Sex differences in spatial memory using serial and search tasks.

    PubMed

    Shah, Darshna S; Prados, Jose; Gamble, Jasmin; De Lillo, Carlo; Gibson, Claire L

    2013-11-15

    The present study assessed the spatial abilities of male and female human participants using different versions of the non-navigational Corsi block-tapping test (CBT) and a search task. Males performed significantly better than females on the standard manual version of the CBT; however, the standard CBT does not allow discrimination between spatial memory span and the role of spatial organisational factors (structure, path length and presence of crossings) in the sequences to recall. These organisational factors were assessed, therefore, in an experiment in which 7-block-sequences had to be recalled in a computerised version of the CBT. No sex differences in performance were observed on the computerised CBT, indicating that males do not make better use of spatial organisational principles. Accordingly, sex differences observed in the manual CBT are likely to rely upon differences in memory span between males and females. In the search task, participants could locate a goal by reference to a Euclidian space (the geometry of a virtual enclose) or to proximal non-geometric cues. Both male and female participants showed a preference for the non-geometric cues, which overshadowed learning about the geometric cues when the two sets were available simultaneously during the training stage. These results indicate that sex differences do exist in those tests which are dependent on memory span. Sex differences were absent, however, in spatial organisational skills or in the usage of Euclidian and egocentric strategies to solve problems relying on spatial ability. PMID:24076150

  9. Single Canonical Model of Reflexive Memory and Spatial Attention

    PubMed Central

    Patel, Saumil S.; Red, Stuart; Lin, Eric; Sereno, Anne B.

    2015-01-01

    Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey’s task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes. PMID:26493949

  10. How Does Working Memory Enable Number-Induced Spatial Biases?

    PubMed Central

    Abrahamse, Elger; van Dijck, Jean-Philippe; Fias, Wim

    2016-01-01

    Number-space associations are a robust observation, but their underlying mechanisms remain debated. Two major accounts have been identified. First, spatial codes may constitute an intrinsic part of number representations stored in the brain – a perspective most commonly referred to as the Mental Number Line account. Second, spatial codes may be generated at the level of working memory when number (or other) representations are coordinated in function of a specific task. The aim of the current paper is twofold. First, whereas a pure Mental Number Line account cannot capture the complexity of observations reported in the literature, we here explore if and how a pure working memory account can suffice. Second, we make explicit (more than in our earlier work) the potential building blocks of such a working memory account, thereby providing clear and concrete foci for empirical efforts to test the feasibility of the account. PMID:27445937

  11. How Does Working Memory Enable Number-Induced Spatial Biases?

    PubMed

    Abrahamse, Elger; van Dijck, Jean-Philippe; Fias, Wim

    2016-01-01

    Number-space associations are a robust observation, but their underlying mechanisms remain debated. Two major accounts have been identified. First, spatial codes may constitute an intrinsic part of number representations stored in the brain - a perspective most commonly referred to as the Mental Number Line account. Second, spatial codes may be generated at the level of working memory when number (or other) representations are coordinated in function of a specific task. The aim of the current paper is twofold. First, whereas a pure Mental Number Line account cannot capture the complexity of observations reported in the literature, we here explore if and how a pure working memory account can suffice. Second, we make explicit (more than in our earlier work) the potential building blocks of such a working memory account, thereby providing clear and concrete foci for empirical efforts to test the feasibility of the account. PMID:27445937

  12. DEVELOPMENT OF SPATIAL MEMORY IN OCCLUSION-EXPERIENCED DOMESTIC CHICKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At around day 11 of life, domestic chicks show a tendency to move out of sight of their mother before returning and regaining social and visual contact. A series of experiments was conducted to investigate the role of this voluntary "out-of-sight" behaviour on the development of spatial memory in yo...

  13. Contributions of Spatial Working Memory to Visuomotor Learning

    ERIC Educational Resources Information Center

    Anguera, Joaquin A.; Reuter-Lorenz, Patricia A.; Willingham, Daniel T.; Seidler, Rachael D.

    2010-01-01

    Previous studies of motor learning have described the importance of cognitive processes during the early stages of learning; however, the precise nature of these processes and their neural correlates remains unclear. The present study investigated whether spatial working memory (SWM) contributes to visuomotor adaptation depending on the stage of…

  14. Frames of Reference in Spatial Memories Acquired From Language

    ERIC Educational Resources Information Center

    Mou, Weimin; Zhang, Kan; McNamara, Timothy P.

    2004-01-01

    Four experiments examined reference systems in spatial memories acquired from language. Participants read narratives that located 4 objects in canonical (front, back, left, right) or noncanonical (left front, right front, left back, right back) positions around them. Participants' focus of attention was first set on each of the 4 objects, and then…

  15. The Conversational Partner's Perspective Affects Spatial Memory and Descriptions

    ERIC Educational Resources Information Center

    Galati, Alexia; Michael, Christina; Mello, Catherine; Greenauer, Nathan M.; Avraamides, Marios N.

    2013-01-01

    We examined whether people spontaneously represent the partner's viewpoint in spatial memory when it is available in advance and whether they adapt their spontaneous descriptions accordingly. In 18 pairs, Directors studied arrays of objects while: (1) not knowing about having to describe the array to a Matcher, (2) knowing about the subsequent…

  16. Categorical Biases in Spatial Memory: The Role of Certainty

    ERIC Educational Resources Information Center

    Holden, Mark P.; Newcombe, Nora S.; Shipley, Thomas F.

    2015-01-01

    Memories for spatial locations often show systematic errors toward the central value of the surrounding region. The Category Adjustment (CA) model suggests that this bias is due to a Bayesian combination of categorical and metric information, which offers an optimal solution under conditions of uncertainty (Huttenlocher, Hedges, & Duncan,…

  17. Retrieval Induces Hippocampal-Dependent Reconsolidation of Spatial Memory

    ERIC Educational Resources Information Center

    Rossato, Janine I.; Medina, Jorge H.; Izquierdo, Ivan; Cammarota, Martin; Bevilaqua, Lia R. M.

    2006-01-01

    Nonreinforced retrieval can cause extinction and/or reconsolidation, two processes that affect subsequent retrieval in opposite ways. Using the Morris water maze task we show that, in the rat, repeated nonreinforced expression of spatial memory causes extinction, which is unaffected by inhibition of protein synthesis within the CA1 region of the…

  18. Spatial Relational Memory in 9-Month-Old Macaque Monkeys

    ERIC Educational Resources Information Center

    Lavenex, Pierre; Lavenex, Pamela Banta

    2006-01-01

    This experiment assesses spatial and nonspatial relational memory in freely moving 9-mo-old and adult (11-13-yr-old) macaque monkeys ("Macaca mulatta"). We tested the use of proximal landmarks, two different objects placed at the center of an open-field arena, as conditional cues allowing monkeys to predict the location of food rewards hidden in…

  19. Spatial Working Memory Is Necessary for Actions to Guide Thought

    ERIC Educational Resources Information Center

    Thomas, Laura E.

    2013-01-01

    Directed actions can play a causal role in cognition, shaping thought processes. What drives this cross-talk between action and thought? I investigated the hypothesis that representations in spatial working memory mediate interactions between directed actions and problem solving. Participants attempted to solve an insight problem while…

  20. Spatial memory extinction: a c-Fos protein mapping study.

    PubMed

    Méndez-Couz, M; Conejo, N M; Vallejo, G; Arias, J L

    2014-03-01

    While the neuronal basis of spatial memory consolidation has been thoroughly studied, the substrates mediating the process of extinction remain largely unknown. This study aimed to evaluate the functional contribution of selected brain regions during the extinction of a previously acquired spatial memory task in the Morris water maze. For that purpose, we used adult male Wistar rats trained in a spatial reference memory task. Learning-related changes in c-Fos inmunoreactive cells after training were evaluated in cortical and subcortical regions. Results show that removal of the hidden platform in the water maze induced extinction of the previously reinforced escape behavior after 16 trials, without spontaneous recovery 24h later. Extinction was related with significantly higher numbers of c-Fos positive nuclei in amygdala nuclei and prefrontal cortex. On the other hand, the lateral mammillary bodies showed higher number of c-Fos positive cells than the control group. Therefore, in contrast with the results obtained in studies of classical conditioning, we show the involvement of diencephalic structures mediating this kind of learning. In summary, our findings suggest that medial prefrontal cortex, the amygdala complex and diencephalic structures like the lateral mammillary nuclei are relevant for the extinction of spatial memory. PMID:24315832

  1. Spatial-Sequential and Spatial-Simultaneous Working Memory in Individuals with Williams Syndrome

    ERIC Educational Resources Information Center

    Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C.; Carretti, Barbara; Vianello, Renzo

    2015-01-01

    The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control…

  2. Allocentric spatial learning and memory deficits in Down syndrome.

    PubMed

    Lavenex, Pamela Banta; Bostelmann, Mathilde; Brandner, Catherine; Costanzo, Floriana; Fragnière, Emilie; Klencklen, Giuliana; Lavenex, Pierre; Menghini, Deny; Vicari, Stefano

    2015-01-01

    Studies have shown that persons with Down syndrome (DS) exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased toward testing egocentric (viewpoint-dependent) spatial representations. Accordingly, allocentric (viewpoint-independent) spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD) children in a real-world, allocentric spatial (AS) memory task. During local cue (LC) trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m × 4 m arena. During AS trials, participants had to locate the same three rewards, in absence of LCs, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an AS representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus-dependent memory in DS. PMID:25762946

  3. Allocentric spatial learning and memory deficits in Down syndrome

    PubMed Central

    Lavenex, Pamela Banta; Bostelmann, Mathilde; Brandner, Catherine; Costanzo, Floriana; Fragnière, Emilie; Klencklen, Giuliana; Lavenex, Pierre; Menghini, Deny; Vicari, Stefano

    2015-01-01

    Studies have shown that persons with Down syndrome (DS) exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased toward testing egocentric (viewpoint-dependent) spatial representations. Accordingly, allocentric (viewpoint-independent) spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD) children in a real-world, allocentric spatial (AS) memory task. During local cue (LC) trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m × 4 m arena. During AS trials, participants had to locate the same three rewards, in absence of LCs, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an AS representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus-dependent memory in DS. PMID:25762946

  4. Spatial-mode storage in a gradient-echo memory

    NASA Astrophysics Data System (ADS)

    Higginbottom, D. B.; Sparkes, B. M.; Rancic, M.; Pinel, O.; Hosseini, M.; Lam, P. K.; Buchler, B. C.

    2012-08-01

    Three-level atomic gradient echo memory (Λ-GEM) is a proposed candidate for efficient quantum storage and for linear optical quantum computation with time-bin multiplexing [Hosseini , Nature (London)NATUAS0028-083610.1038/nature08325 461, 241 (2009)]. In this paper we investigate the spatial multimode properties of a Λ-GEM system. Using a high-speed triggered CCD, we demonstrate the storage of complex spatial modes and images. We also present an in-principle demonstration of spatial multiplexing by showing selective recall of spatial elements of a stored spin wave. Using our measurements, we consider the effect of diffusion within the atomic vapor and investigate its role in spatial decoherence. Our measurements allow us to quantify the spatial distortion due to both diffusion and inhomogeneous control field scattering and compare these to theoretical models.

  5. Developmental aspects of memory for spatial location.

    PubMed

    Ellis, N R; Katz, E; Williams, J E

    1987-12-01

    The purpose was to show whether or not the encoding of location met criteria defining an automatic process (L. Hasher & R. T. Zacks, 1979, Journal of Experimental Psychology: General, 108, 356-388; 1984, American Psychologist, 39, 1372-1388). Among other criteria, automatic processes are not expected to show developmental changes beyond an early age, to be unrelated to intelligence level, and to be unaffected by instructions. In the first experiment preschool through sixth-grade children were compared on a 40-picturebook task following incidental (remember the names of pictures) or intentional (remember location) instruction. Subjects viewed and named pictures in sets of four, arranged in quadrants in the opened book, and then attempted to recall names of the objects pictured and to relocate pictures on blank pages. In the second experiment, second and sixth graders, college students, elderly persons, and mentally retarded persons were compared on a 60-picturebook task following either incidental or semantic incidental instructions (give the function of objects pictured). Memory for location was invariant across age groups and intelligence level. The only exception was that 3 and 4 year olds were more accurate following intentional instructions. Otherwise there were no differences between intentional and incidental instructions. Semantic instructions resulted in slightly more accurate locations. The results were interpreted as supportive of the Hasher and Zacks' automaticity hypothesis. PMID:3694123

  6. How memory-based movement leads to nonterritorial spatial segregation.

    PubMed

    Riotte-Lambert, Louise; Benhamou, Simon; Chamaillé-Jammes, Simon

    2015-04-01

    Home ranges (HRs) are a remarkably common form of animal space use, but we still lack an integrated view of the individual-level processes that can lead to their emergence and maintenance, particularly when individuals are in competition for resources. We built a spatially explicit mechanistic movement model to investigate how simple memory-based foraging rules may enable animals to establish HRs and to what extent this increases their foraging efficiency compared to individuals that do not base foraging decisions on memory. We showed that these simple rules enable individuals to perform better than individuals using the most efficient strategy that does not rely on memory and drive them to spatially segregate through avoidance of resource patches used by others. This striking result questions the common assumption that low HR overlaps are indicators of territorial behavior. Indeed, it appears that, by using an information-updating system, individuals can keep their environment relatively predictable without paying the cost of defending an exclusive space. However, memory-based foraging strategies leading to HR emergence seem unable to prevent the disruptive effects of the arrival of new individuals. This calls for further research on the mechanisms that can stabilize HR spatial organization in the long term. PMID:25811090

  7. Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory

    PubMed Central

    Auger, Meagan L.

    2015-01-01

    Background: Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. Methods: We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1–2min intervals). Results: Infusions of the GABAA receptor antagonist bicuculline (12.5–50ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. Conclusions: These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. PMID:25552433

  8. Improvement of Allocentric Spatial Memory Resolution in Children from 2 to 4 Years of Age

    ERIC Educational Resources Information Center

    Lambert, Farfalla Ribordy; Lavenex, Pierre; Lavenex, Pamela Banta

    2015-01-01

    Allocentric spatial memory, the memory for locations coded in relation to objects comprising our environment, is a fundamental component of episodic memory and is dependent on the integrity of the hippocampal formation in adulthood. Previous research from different laboratories reported that basic allocentric spatial memory abilities are reliably…

  9. Molecular aspects of age-related cognitive decline: the role of GABA signaling

    PubMed Central

    McQuail, Joseph A.; Frazier, Charles J.; Bizon, Jennifer L.

    2015-01-01

    Alterations in inhibitory interneurons contribute to cognitive deficits associated with several psychiatric and neurological diseases. Phasic and tonic inhibition imparted by γ-amino-butyric acid (GABA) receptors regulates neural activity and helps to establish the appropriate network dynamics in cortical circuits that support normal cognition. This review highlights basic science demonstrating that inhibitory signaling is altered in aging, and discusses the impact of age-related shifts in inhibition on different forms of memory function, including hippocampus-dependent spatial reference memory and prefrontal cortex (PFU)-dependent working memory. The clinical appropriateness and tractability of select therapeutic candidates for cognitive aging that target receptors mediating inhibition are also discussed. PMID:26070271

  10. Age-Related Macular Degeneration

    MedlinePlus

    ... this page please turn Javascript on. Age-related Macular Degeneration What is AMD? Click for more information Age-related macular degeneration, ... the macula allows you to see fine detail. AMD Blurs Central Vision AMD blurs the sharp central ...

  11. Age differences in verbal and visuo-spatial working memory updating: evidence from analysis of serial position curves.

    PubMed

    Fiore, Felicia; Borella, Erika; Mammarella, Irene C; De Beni, Rossana

    2012-01-01

    Memory updating is the ability to select and update relevant information and suppress no-longer-relevant data. The few studies in this area, targeting mainly the verbal domain, have investigated and confirmed an age-related decline in working memory updating ability (De Beni & Palladino, 2004; Van der Linden, Bredart, & Beerten, 1994). The present research examines the ability of younger and older adults to update information in verbal and visuo-spatial running memory tasks. Results showed that the participants' performance was higher in the verbal than in the visuo-spatial task. Nonetheless, independently of the task domain, an age-related decline in updating performance was found. Moreover, analysis of serial positions suggested that, in the updating procedure, the participants were not attempting to actively maintain items, preferring to adopt a low-effort, "recency-based" strategy. The use of this type of strategy is more evident in older participants, as shown in both the accuracy performance and the proportion of intrusion errors. PMID:22133192

  12. Emergent weak home-range behaviour without spatial memory

    PubMed Central

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2016-01-01

    Space-use problems have been well investigated. Spatial memory capacity is assumed in many home-range algorithms; however, actual living things do not always exploit spatial memory, and living entities can exhibit adaptive and flexible behaviour using simple cognitive capacity. We have developed an agent-based model wherein the agent uses only detected local regions and compares global efficiencies for a habitat search within its local conditions based on memorized information. Here, memorized information was acquired by scanning locally perceived environments rather than remembering resource locations. When memorized information matched to its current environments, the agent changed resource selection rules. As a result, the agent revisited previous resource sites while exploring new sites, which was demonstrating a weak home-range property. PMID:27429778

  13. Emergent weak home-range behaviour without spatial memory.

    PubMed

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2016-06-01

    Space-use problems have been well investigated. Spatial memory capacity is assumed in many home-range algorithms; however, actual living things do not always exploit spatial memory, and living entities can exhibit adaptive and flexible behaviour using simple cognitive capacity. We have developed an agent-based model wherein the agent uses only detected local regions and compares global efficiencies for a habitat search within its local conditions based on memorized information. Here, memorized information was acquired by scanning locally perceived environments rather than remembering resource locations. When memorized information matched to its current environments, the agent changed resource selection rules. As a result, the agent revisited previous resource sites while exploring new sites, which was demonstrating a weak home-range property. PMID:27429778

  14. Object-centered reference systems and human spatial memory.

    PubMed

    Chen, Xiaoli; McNamara, Timothy

    2011-10-01

    The present study investigated the role of object-centered reference systems in memories of objects' locations. Participants committed to memory the locations and orientations of either 11 human avatars (Experiment 1) or 11 animal models (Experiment 2) displayed in a desktop virtual environment and then completed judgments of relative directions, in which they pointed to objects from imagined vantage points corresponding to the locations of the objects. Results showed that, with avatars, performance was better when the imagined heading was congruent with the facing direction of the avatar located at the imagined vantage point. With animal models, no such facilitation was found. For both types of stimuli, performance was better for the learning view than for the novel 135° view. Results demonstrate that memories of the locations of objects are affected by object-centered reference systems and are consistent with conjectures that spatial memories are hierarchies of spatial reference systems, with higher levels corresponding to larger scales of space. PMID:21786070

  15. Spatial Inferences in Narrative Comprehension: the Role of Verbal and Spatial Working Memory.

    PubMed

    Irrazabal, Natalia; Burin, Debora

    2016-01-01

    During the comprehension of narrative texts, readers keep a mental representation of the location of protagonists and objects; a breach in spatial coherence is detected by longer online reading times (consistency effect). We addressed whether these spatial inferences involve verbal or spatial working memory in two experiments, combining the consistency paradigm with selective verbal and spatial working memory concurrent tasks. The first experiment found longer reading times with a concurrent spatial task under imagery instructions (t33 = 2.87, p = .021). The second experiment, under comprehension reading instructions, found effects of verbal interference on reading times and accuracy. With a verbal secondary task, reading times for the target sentence were shorter (t45 = 3.60, p = .004) and the error rate was significantly higher (t47 = 2.95, p = .005) than without interference. This pattern of results suggests that spatial inferences in narrative comprehension rely mainly on verbal resources, and spatial working memory resources are recruited when imagery is required. PMID:26972773

  16. Tests of the Dynamic Field Theory and The Spatial Precision Hypothesis: Capturing a Qualitative Developmental Transition in Spatial Working Memory

    ERIC Educational Resources Information Center

    Schutte, Anne R.; Spencer, John P.

    2009-01-01

    This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between 3 and 6 years of age, there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds' spatial recall responses are biased toward reference axes after short memory delays, whereas…

  17. Happiness increases verbal and spatial working memory capacity where sadness does not: Emotion, working memory and executive control.

    PubMed

    Storbeck, Justin; Maswood, Raeya

    2016-08-01

    The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory. PMID:25947579

  18. Allocentric spatial memory in humans with hippocampal lesions.

    PubMed

    Parslow, David M; Morris, Robin G; Fleminger, Simon; Rahman, Qazi; Abrahams, Sharon; Recce, Michael

    2005-01-01

    An immersive virtual reality (IVR) system was used to investigate allocentric spatial memory in a patient (PR) who had selective hippocampal damage, and also in patients who had undergone unilateral temporal lobectomies (17 right TL and 19 left TL), their performance compared against normal control groups. A human analogue of the Olton [Olton (1979). Hippocampus, space, and memory. Behavioural Brain Science, 2, 315] spatial maze was developed, consisting of a virtual room, a central virtual circular table and an array of radially arranged up-turned 'shells.' The participant had to search these shells in turn in order to find a blue 'cube' that would then 'move' to another location and so on, until all the shells had been target locations. Within-search errors could be made when the participants returned to a previously visited location during a search, and between-search errors when they revisited previously successful, but now incorrect locations. PR made significantly more between-search errors than his control group, but showed no increase in within-search errors. The right TL group showed a similar pattern of impairment, but the left TL group showed no impairment. This finding implicates the right hippocampal formation in spatial memory functioning in a scenario in which the visual environment was controlled so as to eliminate extraneous visual cues. PMID:15627413

  19. Spatial working memory is enhanced in children by differential outcomes.

    PubMed

    Esteban, Laura; Vivas, Ana B; Fuentes, Luis J; Estévez, Angeles F

    2015-01-01

    Working memory (WM) is essential to academic achievement. Any enhancement of WM abilities may improve children's school performance. We tested the usefulness of the differential outcomes procedure (DOP) to enhance typically developing children's performance on a spatial WM task. The DOP involves a conditional discriminative learning task in which a correct choice response to a specific stimulus-stimulus association is reinforced with a particular reinforcer (outcome). We adapted a spatial memory task to be used with the DOP. Participants had to learn and retain in their WM four target locations of eight possible locations where a shape could be presented. Two groups of 5- and 7-year-old children performed the low-attentional version of the spatial task, and an additional group of 7-year-old children performed the high-attentional version. The results showed that compared with the standard non-differential outcomes procedure (NOP), the DOP produced better memory-based performance in 5-year-old children with the low-attentional task and in 7-year-old children with the high-attentional task. Additionally, delay intervals impaired performance in the NOP but not in the DOP. These findings suggest that the DOP may be a useful complement to other WM intervention programs targeted to improve children's academic performance at school. PMID:26596777

  20. Spatial working memory is enhanced in children by differential outcomes

    PubMed Central

    Esteban, Laura; Vivas, Ana B.; Fuentes, Luis J.; Estévez, Angeles F.

    2015-01-01

    Working memory (WM) is essential to academic achievement. Any enhancement of WM abilities may improve children’s school performance. We tested the usefulness of the differential outcomes procedure (DOP) to enhance typically developing children’s performance on a spatial WM task. The DOP involves a conditional discriminative learning task in which a correct choice response to a specific stimulus-stimulus association is reinforced with a particular reinforcer (outcome). We adapted a spatial memory task to be used with the DOP. Participants had to learn and retain in their WM four target locations of eight possible locations where a shape could be presented. Two groups of 5- and 7-year-old children performed the low-attentional version of the spatial task, and an additional group of 7-year-old children performed the high-attentional version. The results showed that compared with the standard non-differential outcomes procedure (NOP), the DOP produced better memory-based performance in 5-year-old children with the low-attentional task and in 7-year-old children with the high-attentional task. Additionally, delay intervals impaired performance in the NOP but not in the DOP. These findings suggest that the DOP may be a useful complement to other WM intervention programs targeted to improve children´s academic performance at school. PMID:26596777

  1. Spatial memory in captive American black bears (Ursus americanus).

    PubMed

    Zamisch, Valeria; Vonk, Jennifer

    2012-11-01

    The spatial memory and foraging strategies of four adult captive-born American black bears (Ursus americanus) were explored in four experiments using a simulated foraging task. In the first three experiments, each session consisted of two phases separated by a delay: During the exploration phase, subjects foraged among a set of baited and unbaited sites. During the delay, the same locations were rebaited and subjects were released again and allowed to search the sites (search phase). In Experiments 1a and 1b, different sites were baited each day and the interval between exploration and search was short (4 hr or 15 min). Subjects were not accurate at recovering the food items in either experiment. In Experiment 2, an "informed forager" paradigm was used in which one subject was given privileged knowledge about the location of the food during the exploration phase and was later released with an "uninformed" competitor during the search phase. The bears did not achieve above-chance recovery accuracy even in the presence of a competitor. In Experiment 3, the same two of four sites were continually baited and the bears were released simultaneously over a period of 20 days, with each baiting separated by 2 or 3 days. As a group, the bears' foraging accuracy with repeated baiting and longer intervals approached greater than chance accuracy. Results suggest some limitations on bears' use of spatial memory in captive environments, but reveal the potential for use of spatial memory over longer delays. PMID:22545764

  2. Effects of spatial configurations on the resolution of spatial working memory.

    PubMed

    Mutluturk, Aysu; Boduroglu, Aysecan

    2014-11-01

    Recent research demonstrated that people represent spatial information configurally and preservation of configural cues at retrieval helps memory for spatial locations (Boduroğlu & Shah, Memory & Cognition, 37(8), 1120-1131 2009; Jiang, Olson, & Chun, Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(3), 683-702 2000). The present study investigated the effects of spatial configurations on the resolution of individual location representations. In an open-ended task, participants first studied a set of object locations (three and five locations). Then, in a test display where available configural cues were manipulated, participants were asked to determine the original location of a target object whose color was auditorially cued. The difference between the reported location and the original location was taken as a measure of spatial resolution. In three experiments, we consistently observed that the resolution of spatial representations was facilitated by the preservation of spatial configurations at retrieval. We argue that participants may be using available configural cues in conjunction with the summary representation (e.g., centroid) of the original display in the computation of target locations. PMID:24939236

  3. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice.

    PubMed

    Kennard, John A; Harrison, Fiona E

    2014-05-01

    The present study investigated the effects of a single intravenous (i.v.) dose of Vitamin C (ascorbate, ASC) on spatial memory in APP/PSEN1 mice, an Alzheimer's disease model. First, we confirmed the uptake time course in ASC-depleted gulo (-/-) mice, which cannot synthesize ASC. Differential tissue uptake was seen based on ASC transporter distribution. Liver (SVCT1 and SVCT2) ASC was elevated at 30, 60 and 120 min post-treatment (125 mg/kg, i.v.), whereas spleen (SVCT2) ASC increased at 60 and 120 min. There was no detectable change in cortical (SVCT2 at choroid plexus, and neurons) ASC within the 2-h interval, although the cortex preferentially retained ASC. APP/PSEN1 and wild type (WT) mice at three ages (3, 9, or 20 months) were treated with ASC (125 mg/kg, i.v.) or saline 45 min before testing on the Modified Y-maze, a two-trial task of spatial memory. Memory declined with age and ASC treatment improved performance in 9-month-old APP/PSEN1 and WT mice. APP/PSEN1 mice displayed no behavioral impairment relative to WT controls. Although dopamine and metabolite DOPAC decreased in the nucleus accumbens with age, and improved spatial memory was correlated with increased dopamine in saline treated mice, acute ASC treatment did not alter monoamine levels in the nucleus accumbens. These data show that the Modified Y-maze is sensitive to age-related deficits, but not additional memory deficits due to amyloid pathology in APP/PSEN1 mice. They also suggest improvements in short-term spatial memory were not due to changes in the neuropathological features of AD or monoamine signaling. PMID:24508240

  4. Elevations of endogenous kynurenic acid produce spatial working memory deficits.

    PubMed

    Chess, Amy C; Simoni, Michael K; Alling, Torey E; Bucci, David J

    2007-05-01

    Kynurenic acid (KYNA) is a tryptophan metabolite that is synthesized and released by astrocytes and acts as a competitive antagonist of the glycine site of N-methyl-D-aspartate receptors at high concentrations and as a noncompetitive antagonist of the alpha7-nicotinic acetylcholine receptor at low concentrations. The discovery of increased cortical KYNA levels in schizophrenia prompted the hypothesis that elevated KYNA concentration may underlie the working memory dysfunction observed in this population that has been attributed to altered glutamatergic and/or cholinergic transmission. The present study investigated the effect of elevated endogenous KYNA on spatial working memory function in rats. Increased KYNA levels were achieved with intraperitoneal administration of kynurenine (100 mg/kg), the precursor of KYNA synthesis. Rats were treated with either kynurenine or a vehicle solution prior to testing in a radial arm maze task at various delays. Elevations of endogenous KYNA resulted in increased errors in the radial arm maze. In separate experiments, assessment of locomotor activity in an open field and latency to retrieve food reward from one of the maze arms ruled out the possibility that deficits in the maze were attributable to altered locomotor activity or motivation to consume food. These results provide evidence that increased KYNA levels produce spatial working memory deficits and are among the first to demonstrate the influence of glia-derived molecules on cognitive function. The implications for psychopathological conditions such as schizophrenia are discussed. PMID:16920787

  5. NMDA Signaling in CA1 Mediates Selectively the Spatial Component of Episodic Memory

    ERIC Educational Resources Information Center

    Place, Ryan; Lykken, Christy; Beer, Zachery; Suh, Junghyup; McHugh, Thomas J.; Tonegawa, Susumu; Eichenbaum, Howard; Sauvage, Magdalena M.

    2012-01-01

    Recent studies focusing on the memory for temporal order have reported that CA1 plays a critical role in the memory for the sequences of events, in addition to its well-described role in spatial navigation. In contrast, CA3 was found to principally contribute to the memory for the association of items with spatial or contextual information in…

  6. Methylphenidate Improves Visual-Spatial Memory in Children with Attention-Deficit- hyperactivity Disorder

    ERIC Educational Resources Information Center

    Bedard, Anne-Claude; Martinussen, Rhonda; Ickowicz, Abel; Tannock, Rosemary

    2004-01-01

    Objective: To investigate the effect of methylphenidate (MPH) on visual-spatial memory, as measured by subtests of the Cambridge Neuropsychological Testing Automated Battery (CANTAB), in children with attention-deficit/hyperactivity disorder (ADHD). Visual-spatial memory is a core component of working memory that has been shown to be impaired in…

  7. Remembering the Past and Imagining the Future: A Neural Model of Spatial Memory and Imagery

    ERIC Educational Resources Information Center

    Byrne, Patrick; Becker, Suzanna; Burgess, Neil

    2007-01-01

    The authors model the neural mechanisms underlying spatial cognition, integrating neuronal systems and behavioral data, and address the relationships between long-term memory, short-term memory, and imagery, and between egocentric and allocentric and visual and ideothetic representations. Long-term spatial memory is modeled as attractor dynamics…

  8. Macular degeneration - age-related

    MedlinePlus

    Age-related macular degeneration (ARMD); AMD ... distorted and wavy. There may be a small dark spot in the center of your vision that ... leafy vegetables, may also decrease your risk of age-related macular degeneration. If you have wet AMD, ...

  9. Deconstructing Spatial Working Memory and Attention Deficits in Multiple Sclerosis

    PubMed Central

    Gmeindl, Leon; Courtney, Susan M.

    2011-01-01

    Objective To investigate whether spatial working memory (WM) is impaired in multiple sclerosis (MS), and, if it is, to localize impairment to specific cognitive subprocess(es). Method In Experiment 1, MS and control participants performed computerized memory-span and visuomotor tasks. WM subprocesses were taxed by manipulating (1) the requirement to remember serial order, (2) delay duration, and (3) the presence of irrelevant stimuli during target presentation. In Experiment 2, recall and recognition tests varied the difficulty of WM retrieval. In Experiment 3, an attention-cueing task tested the ability to voluntarily and rapidly reorient attention. Results Performance was worse for MS than for control participants in both spatial recall (Exp. 1 span: 95% CIMS = [5.11, 5.57], 95% CIControls = [5.58, 6.03], p = 0.003, 1-tailed; Exp. 2 span: 95% CIMS = [4.44, 5.54], 95% CIControls = [5.47, 6.57], p = 0.006, 1-tailed) and recognition (accuracy: 95% CIMS = [0.71, 0.81], 95% CIControls = [0.79, 0.88], p = 0.01, 1-tailed) tests. However, there was no evidence for deficits in spatiotemporal binding, maintenance, retrieval, distractor suppression, or visuomotor processing. In contrast, MS participants were abnormally slow to reorient attention (cueing effect (ms): 95% CIMS: [90, 169], 95% CIControls: [29, 107], p = 0.015, 1-tailed). Conclusions Results suggest that, whereas spatial WM is impaired in MS, once spatial information has been adequately encoded into WM, individuals with MS are, on average, able to maintain and retrieve this information. Impoverished encoding of spatial information, however, may be due to inefficient voluntary orienting of attention. PMID:22059650

  10. Steroid sulfatase inhibitor DU-14 protects spatial memory and synaptic plasticity from disruption by amyloid β protein in male rats.

    PubMed

    Yue, Xing-Hua; Tong, Jia-Qing; Wang, Zhao-Jun; Zhang, Jun; Liu, Xu; Liu, Xiao-Jie; Cai, Hong-Yan; Qi, Jin-Shun

    2016-07-01

    Alzheimer's disease (AD) is an age-related mental disorder characterized by progressive loss of memory and multiple cognitive impairments. The overproduction and aggregation of Amyloid β protein (Aβ) in the brain, especially in the hippocampus, are closely involved in the memory loss in the patients with AD. Accumulating evidence indicates that the Aβ-induced imbalance of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) in the brain plays an important role in the AD pathogenesis and progression. The level of DHEA is elevated, while DHEAS is dramatically decreased in the AD brain. The present study tried to restore the balance between DHEA and DHEAS by using a non-steroidal sulfatase inhibitor DU-14, which increases endogenous DHEAS through preventing DHEAS converted back into DHEA. We found that: (1) DU-14 effectively attenuated the Aβ1-42-induced cognitive deficits in spatial learning and memory of rats in Morris water maze test; (2) DU-14 prevented Aβ1-42-induced decrease in the cholinergic theta rhythm of hippocampal local field potential (LFP) in the CA1 region; (3) DU-14 protected hippocampal synaptic plasticity against Aβ1-42-induced suppression of long term potentiation (LTP). These results provide evidence for the neuroprotective action of DU-14 against neurotoxic Aβ, suggesting that up-regulation of endogenous DHEAS by DU-14 could be beneficial to the alleviation of Aβ-induced impairments in spatial memory and synaptic plasticity. PMID:27222435

  11. Reconstructions of information in visual spatial working memory degrade with memory load.

    PubMed

    Sprague, Thomas C; Ester, Edward F; Serences, John T

    2014-09-22

    Working memory (WM) enables the maintenance and manipulation of information relevant to behavioral goals. Variability in WM ability is strongly correlated with IQ [1], and WM function is impaired in many neurological and psychiatric disorders [2, 3], suggesting that this system is a core component of higher cognition. WM storage is thought to be mediated by patterns of activity in neural populations selective for specific properties (e.g., color, orientation, location, and motion direction) of memoranda [4-13]. Accordingly, many models propose that differences in the amplitude of these population responses should be related to differences in memory performance [14, 15]. Here, we used functional magnetic resonance imaging and an image reconstruction technique based on a spatial encoding model [16] to visualize and quantify population-level memory representations supported by multivoxel patterns of activation within regions of occipital, parietal and frontal cortex while participants precisely remembered the location(s) of zero, one, or two small stimuli. We successfully reconstructed images containing representations of the remembered-but not forgotten-locations within regions of occipital, parietal, and frontal cortex using delay-period activation patterns. Critically, the amplitude of representations of remembered locations and behavioral performance both decreased with increasing memory load. These results suggest that differences in visual WM performance between memory load conditions are mediated by changes in the fidelity of large-scale population response profiles distributed across multiple areas of human cortex. PMID:25201683

  12. NMDA signaling in CA1 mediates selectively the spatial component of episodic memory.

    PubMed

    Place, Ryan; Lykken, Christy; Beer, Zachery; Suh, Junghyup; McHugh, Thomas J; Tonegawa, Susumu; Eichenbaum, Howard; Sauvage, Magdalena M

    2012-04-01

    Recent studies focusing on the memory for temporal order have reported that CA1 plays a critical role in the memory for the sequences of events, in addition to its well-described role in spatial navigation. In contrast, CA3 was found to principally contribute to the memory for the association of items with spatial or contextual information in tasks focusing on spatial memory. Other studies have shown that NMDA signaling in the hippocampus is critical to memory performance in studies that have investigated spatial and temporal order memory independently. However, the role of NMDA signaling separately in CA1 and CA3 in memory that combines both spatial and temporal processing demands (episodic memory) has not been examined. Here we investigated the effect of the deletion of the NR1 subunit of the NMDA receptor in CA1 or CA3 on the spatial and the temporal aspects of episodic memory, using a behavioral task that allows for these two aspects of memory to be evaluated distinctly within the same task. Under these conditions, NMDA signaling in CA1 specifically contributes to the spatial aspect of memory function and is not required to support the memory for temporal order of events. PMID:22419815

  13. Slime mold uses an externalized spatial "memory" to navigate in complex environments.

    PubMed

    Reid, Chris R; Latty, Tanya; Dussutour, Audrey; Beekman, Madeleine

    2012-10-23

    Spatial memory enhances an organism's navigational ability. Memory typically resides within the brain, but what if an organism has no brain? We show that the brainless slime mold Physarum polycephalum constructs a form of spatial memory by avoiding areas it has previously explored. This mechanism allows the slime mold to solve the U-shaped trap problem--a classic test of autonomous navigational ability commonly used in robotics--requiring the slime mold to reach a chemoattractive goal behind a U-shaped barrier. Drawn into the trap, the organism must rely on other methods than gradient-following to escape and reach the goal. Our data show that spatial memory enhances the organism's ability to navigate in complex environments. We provide a unique demonstration of a spatial memory system in a nonneuronal organism, supporting the theory that an externalized spatial memory may be the functional precursor to the internal memory of higher organisms. PMID:23045640

  14. Head for the hills: the influence of environmental slant on spatial memory organization.

    PubMed

    Kelly, Jonathan W

    2011-08-01

    Environmental slant is known to improve navigation performance in humans and other animals. Successful navigation relies on accurate spatial orientation and accurate spatial memory retrieval. The role of environmental slant in spatial orientation has been established, but its role in spatial memory organization is unclear. Two experiments using immersive virtual reality explored the influence of environmental slant on reference frame selection during spatial learning. Participants studied object locations on a sloped surface. When no additional environmental cues were present (Experiment 1), spatial memory retrieval was best from the studied perspective aligned with the direction of slope. When the direction of slope was placed in competition with the axis of the surrounding room (Experiment 2), spatial memory retrieval was best from the initially studied perspective. The latter finding contrasts with the results of research showing that pigeons preferentially rely on environmental slant over room shape. The findings are discussed in the context of spatial memory theory. PMID:21538203

  15. Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits.

    PubMed

    Kauser, H; Sahu, S; Kumar, S; Panjwani, U

    2014-01-17

    Hypobaric hypoxia (HH) observed at high altitude causes mild cognitive impairment specifically affecting attention and working memory. Adrenergic dysregulation and neuronal damage in prefrontal cortex (PFC) has been implicated in hypoxia induced memory deficits. Optimal stimulation of alpha 2A adrenergic receptor in PFC facilitates the spatial working memory (SWM) under the conditions of adrenergic dysregulation. Therefore the present study was designed to test the efficacy of alpha 2A adrenergic agonist, Guanfacine (GFC), to restore HH induced SWM deficits and PFC neuronal damage. The rats were exposed to chronic HH equivalent to 25,000ft for 7days in an animal decompression chamber and received daily treatment of GFC at a dose of 1mg/kg body weight via the intramuscular route during the period of exposure. The cognitive performance was assessed by Delayed Alternation Task (DAT) using T-Maze and PFC neuronal damage was studied by apoptotic and neurodegenerative markers. Percentage of correct choice decreased significantly while perseverative errors showed a significant increase after 7days HH exposure, GFC significantly ameliorated the SWM deficits and perseveration. There was a marked and significant increase in chromatin condensation, DNA fragmentation, neuronal pyknosis and fluoro Jade positive cells in layer II of the medial PFC in hypoxia exposed group, administration of GFC significantly reduced the magnitude of these changes. Modulation of adrenergic mechanisms by GFC may serve as an effective countermeasure in amelioration of prefrontal deficits and neurodegenerative changes during HH. PMID:24184415

  16. A high fructose diet impairs spatial memory in male rats.

    PubMed

    Ross, A P; Bartness, T J; Mielke, J G; Parent, M B

    2009-10-01

    Over the past three decades there has been a substantial increase in the amount of fructose consumed by North Americans. Recent evidence from rodents indicates that hippocampal insulin signaling facilitates memory and excessive fructose consumption produces hippocampal insulin resistance. Based on this evidence, the present study tested the hypothesis that a high fructose diet would impair hippocampal-dependent memory. Adult male Sprague-Dawley rats (postnatal day 61) were fed either a control (0% fructose) or high fructose diet (60% of calories). Food intake and body mass were measured regularly. After 19 weeks, the rats were given 3 days of training (8 trials/day) in a spatial version of the water maze task, and retention performance was probed 48 h later. The high fructose diet did not affect acquisition of the task, but did impair performance on the retention test. Specifically, rats fed a high fructose diet displayed significantly longer latencies to reach the area where the platform had been located, made significantly fewer approaches to that area, and spent significantly less time in the target quadrant than did control diet rats. There was no difference in swim speed between the two groups. The retention deficits correlated significantly with fructose-induced elevations of plasma triglyceride concentrations. Consequently, the impaired spatial water maze retention performance seen with the high fructose diet may have been attributable, at least in part, to fructose-induced increases in plasma triglycerides. PMID:19500683

  17. Environmental enrichment: effects on spatial memory and hippocampal CREB immunoreactivity.

    PubMed

    Williams, B M; Luo, Y; Ward, C; Redd, K; Gibson, R; Kuczaj, S A; McCoy, J G

    2001-07-01

    Environmental enrichment has been shown to improve performance in tests of spatial memory, induce neurogenesis in the hippocampus, enhance survival of newly formed granule cells, and inhibit spontaneous apoptosis. Although neuroplasticity of the mammalian brain declines with age, recent evidence suggests that the adult brain exhibits significant plasticity in response to environmental stimulation. The present study was designed to evaluate the effect of environmental enrichment on spatial memory and on immunoreactivity to cAMP response element binding protein (CREB) from the hippocampus. C57/BL/6 mice were trained in a Morris water maze after exposure to an enriched environment, either from 35 to 94 days or from 100 to 159 days of age. Hippocampal tissue from representative animals was later analyzed by Western blot for CREB immunoreactivity. Results indicate that environmental enrichment (particularly during the earlier period) improved performance on the Morris water maze and tended to increase immunoreactivity to CREB in the hippocampus. Social interaction by itself did not result in significant differences in navigational performance. Results with regard to social interaction and CREB immunoreactivity were mixed. Results are discussed in terms of evaluating the construct of enrichment, the correlation of CREB transcription and behavior change, and the importance of the developmental period for enrichment. PMID:11495671

  18. Verbal Shadowing and Visual Interference in Spatial Memory

    PubMed Central

    Meilinger, Tobias; Bülthoff, Heinrich H.

    2013-01-01

    Spatial memory is thought to be organized along experienced views and allocentric reference axes. Memory access from different perspectives typically yields V-patterns for egocentric encoding (monotonic decline in performance along with the angular deviation from the experienced perspectives) and W-patterns for axes encoding (better performance along parallel and orthogonal perspectives than along oblique perspectives). We showed that learning an object array with a verbal secondary task reduced W-patterns compared with learning without verbal shadowing. This suggests that axes encoding happened in a verbal format; for example, by rows and columns. Alternatively, general cognitive load from the secondary task prevented memorizing relative to a spatial axis. Independent of encoding, pointing with a surrounding room visible yielded stronger W-patterns compared with pointing with no room visible. This suggests that the visible room geometry interfered with the memorized room geometry. With verbal shadowing and without visual interference only V-patterns remained; otherwise, V- and W-patterns were combined. Verbal encoding and visual interference explain when W-patterns can be expected alongside V-patterns and thus can help in resolving different performance patterns in a wide range of experiments. PMID:24019953

  19. Revisiting evidence for modularity and functional equivalence across verbal and spatial domains in memory.

    PubMed

    Guérard, Katherine; Tremblay, Sébastien

    2008-05-01

    The authors revisited evidence in favor of modularity and of functional equivalence between the processing of verbal and spatial information in short-term memory. This was done by investigating the patterns of intrusions, omissions, transpositions, and fill-ins in verbal and spatial serial recall and order reconstruction tasks under control, articulatory suppression, and spatial tapping conditions. The authors observed that when tasks were fully equated, all patterns of errors were equivalent between the verbal and spatial domains. Moreover, articulatory suppression interfered more with the verbal memory tasks than with the spatial memory tasks. This interference was mostly due to an increase of omissions and transpositions. Similarly, tapping was more disruptive of spatial memory than of verbal memory tasks and affected primarily the number of omissions and transpositions. The patterns of errors and their interaction with interference are discussed in light of the predominant approaches to modeling memory and provide a rich set of data for modeling efforts. PMID:18444756

  20. Large capacity spatially multiplexed optical memories for incoherent correlator application

    NASA Astrophysics Data System (ADS)

    Yu, Francis T.

    1987-05-01

    We have, in this research program, completed various significant aspects on the study of a Large Capacity Spatially Multiplexed Optical Correlator. They are summarized in the following paragraphs: We have quantitatively analyzed the noise performance of an incoherent optical signal processor. The effects due to temporal coherence and due to spatial coherence were studied. In this period, we have also completed research on a real-time large-capacity rapid-scanning optical correlator utilizing a rotating grating concept. We have shown that the proposed optical scanning correlator is capable of processing large-capacity optical memories with rapid spectrum scanning. With the implementation of a closed-circuit TV system the OSC system can be applied in real-world situations. A study of polychromatic correlation by spectral-spatial matched filtering has been conducted. Application of this technique to large capability spatially multiplexing matched filter synthesis is discussed. This technique offers true color signal detection, which is suitable for color image recognition and identification. We have also developed a joint transform correlation concept. This technique utilizes a magneto-optic device with a liquid crystal light valve.

  1. An improved spatial span test of visuospatial memory.

    PubMed

    Woods, David L; Wyma, John M; Herron, Timothy J; Yund, E William

    2016-09-01

    In the widely used Corsi Block Test and Wechsler Spatial Span Tests, participants must reproduce sequences of blocks in the order touched by the examiner until two trials are missed at the same sequence length. The examiner records either the maximum number of blocks correctly reported or the total number of correct lists. Here, we describe a computerized spatial span test (C-SST) that uses psychophysical procedures to quantify visuospatial mean span (MnS) with sub-digit precision. Results from 187 participants ranging in age from 18 to 82 years showed that accuracy declined gradually with list length around the MnS (by ∼30% per item). Simulation studies revealed high variance and biases in CBT and Wechsler measures, and demonstrated that the C-SST provided the most accurate estimate of true span (i.e., the sequence length producing 50% correct). MnS declined more rapidly with age than mean digit span (MnDS) measured in the same participants. Response times correlated with both MnS and MnDS scores. Error analysis showed that omission and transposition errors predominated, with weaker primacy and recency effects in spatial span than digit span testing. The C-SST improves the precision of spatial span testing and reveals significant differences between visuospatial and verbal working memory. PMID:26357906

  2. Spatial working memory is preserved in rats treated with anabolic-androgenic steroids.

    PubMed

    Smith, S T; Stackman, R W; Clark, A S

    1996-10-21

    The effects of anabolic-androgenic steroid (AAS) compounds on spatial working memory were evaluated in male rats. Thirty days of administration of a high dose of three individual AAS compounds (17 alpha-methyltestosterone, methandrostenolone, or testosterone cypionate) had no effects on spatial memory or motivation as tested on a delayed non-match-to-sample radial arm maze task. Administration of these AAS compounds at doses within the human abuse range does not impair spatial working memory in rats. PMID:8930382

  3. Reducing expression of GluN1(0XX) subunit splice variants of the NMDA receptor interferes with spatial reference memory.

    PubMed

    Das, Siba R; Jensen, Ross; Kelsay, Rian; Shumaker, Michelle; Bochart, Rachele; Brim, Brenna; Zamzow, Daniel; Magnusson, Kathy R

    2012-05-01

    The GluN1 subunit of the N-methyl-D-aspartate (NMDA) receptor shows age-related changes in its expression pattern, some of which correlate with spatial memory performance in mice. Aged C57BL/6 mice show an age-related increase in mRNA expression of GluN1 subunit splice variants that lack the N terminal splice cassette, GluN1(0XX) (GluN1-a). This increase in expression is associated with good performance in reference and working memory tasks. The present study was undertaken to determine if GluN1(0XX) splice variants are required for good performance in reference memory tasks in young mice. Mice were bilaterally injected with either siRNA specific for GluN1(0XX) splice variants, control siRNA or vehicle alone into ventro-lateral orbital cortices. A fourth group of mice did not receive any injections. Starting five days post-injection, mice were tested for their performance in spatial reference memory, associative memory and cognitive flexibility tasks over four days in the Morris water maze. There was a 10-19% reduction in mRNA expression for GluN1(0XX) splice variants within the ventro-lateral orbital cortices in mice following GluN1(0XX) siRNA treatment. Declines in performance within the first half of reference memory testing were seen in the mice receiving siRNA against the GluN1(0XX) splice variants, as compared to the mice injected with control siRNA, vehicle and/or no treatment. These results suggest a role for the GluN1(0XX) splice variants in orbital regions for early acquisition and/or consolidation of spatial reference memory. PMID:22360858

  4. Discrimination Performance in Aging Is Vulnerable to Interference and Dissociable from Spatial Memory

    ERIC Educational Resources Information Center

    Johnson, Sarah A.; Sacks, Patricia K.; Turner, Sean M.; Gaynor, Leslie S.; Ormerod, Brandi K.; Maurer, Andrew P.; Bizon, Jennifer L.; Burke, Sara N.

    2016-01-01

    Hippocampal-dependent episodic memory and stimulus discrimination abilities are both compromised in the elderly. The reduced capacity to discriminate between similar stimuli likely contributes to multiple aspects of age-related cognitive impairment; however, the association of these behaviors within individuals has never been examined in an animal…

  5. Spatial memory in sedentary and trained diabetic rats: molecular mechanisms.

    PubMed

    Diegues, João Carlos; Pauli, José Rodrigo; Luciano, Eliete; de Almeida Leme, José Alexandre Curiacos; de Moura, Leandro Pereira; Dalia, Rodrigo Augusto; de Araújo, Michel Barbosa; Sibuya, Clarice Yoshiko; de Mello, Maria Alice Rostom; Gomes, Ricardo José

    2014-06-01

    Diabetes mellitus is a chronic disease that has been associated with memory loss, neurological disorders, and Alzheimer's disease. Some studies show the importance of physical exercise to prevent and minimize various neurological disorders. It is believed that the positive effects of exercise on brain functions are mediated by brain insulin and insulin-like growth factor-1 (IGF-1) signaling. In this study, we investigate the role of swimming exercise training on hippocampus proteins related to insulin/IGF-1 signaling pathway in Type 1 diabetic rats and its effects on spatial memory. Wistar rats were divided into four groups namely sedentary control, trained control, sedentary diabetic (SD), and trained diabetic (TD). Diabetes was induced by Alloxan (ALX) (32 mg/kg b.w.). The training program consisted in swimming 5 days/week, 1 h/day, per 6 weeks, supporting an overload corresponding to 90% of the anaerobic threshold. We employed ALX-induced diabetic rats to explore learning and memory abilities using Morris water maze test. At the end of the training period, the rats were sacrificed 48 h after their last exercise bout when blood samples were collected for serum glucose, insulin, and IGF-1 determinations. Hippocampus was extracted to determinate protein expression (IR, IGF-1R, and APP) and phosphorylation (AKT-1, AKT-2, Tau, and β-amyloide proteins) by Western Blot analysis. All dependent variables were analyzed by two-way analysis of variance with significance level of 5%. Diabetes resulted in hyperglycemia and hypoinsulinemia in both SD and TD groups (P < 0.05); however, in the training-induced group, there was a reduction in blood glucose in TD. The average frequency in finding the platform decreased in SD rats; however, exercise training improved this parameter in TD rats. Aerobic exercise decreased Tau phosphorylation and APP expression, and increased some proteins related to insulin/IGF-1 pathway in hippocampus of diabetic rats. Thus, these molecular

  6. Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory

    PubMed Central

    Passot, Jean-Baptiste; Sheynikhovich, Denis; Duvelle, Éléonore; Arleo, Angelo

    2012-01-01

    Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation. PMID:22485133

  7. Synaptic connectivity and spatial memory: a topological approach

    NASA Astrophysics Data System (ADS)

    Milton, Russell; Babichev, Andrey; Dabaghian, Yuri

    2015-03-01

    In the hippocampus, a network of place cells generates a cognitive map of space, in which each cell is responsive to a particular area of the environment - its place field. The peak response of each cell and the size of each place field have considerable variability. Experimental evidence suggests that place cells encode a topological map of space that serves as a basis of spatial memory and spatial awareness. Using a computational model based on Persistent Homology Theory we demonstrate that if the parameters of the place cells spiking activity fall inside of the physiological range, the network correctly encodes the topological features of the environment. We next introduce parameters of synaptic connectivity into the model and demonstrate that failures in synapses that detect coincident neuronal activity lead to spatial learning deficiencies similar to the ones that are observed in rodent models of neurodegenerative diseases. Moreover, we show that these learning deficiencies may be mitigated by increasing the number of active cells and/or by increasing their firing rate, suggesting the existence of a compensatory mechanism inherent to the cognitive map.

  8. Estradiol enhances learning and memory in a spatial memory task and effects levels of monoaminergic neurotransmitters.

    PubMed

    Luine, V N; Richards, S T; Wu, V Y; Beck, K D

    1998-10-01

    The effects of chronic estrogen treatment on radial arm maze performance and on levels of central monoaminergic and amino acid neurotransmitters were examined in ovariectomized (Ovx) rats. In an eight arms baited paradigm, choice accuracy was enhanced following 12 days but not 3 days of treatment. In addition, performance during acquisition of the eight arms baited maze task was better in estrogen-treated Ovx rats than in Ovx rats. Performance of treated rats was also enhanced in win-shift trials conducted 12 days postestrogen treatment. Working, reference, and working-reference memory was examined when four of the eight arms were baited, and only working memory was improved by estrogen and only after long-term treatment. Activity of Ovx rats on an open field, crossings and rearings, was increased at 5 but not at 35 days following estrogen treatment. In medial prefrontal cortex, levels of NE, DA, and 5-HT were decreased but glutamate and GABA levels were not affected following chronic estrogen treatment. Basal forebrain nuclei also showed changes in monoamines following estrogen. Hippocampal subfields showed no effects of estrogen treatment on monoaminergic or amino acid transmitters. Levels of GABA were increased in the vertical diagonal bands following chronic estrogen. Results show that estrogen enhances learning/memory on a task utilizing spatial memory. Effects in Ovx rats appear to require the chronic (several days) presence of estrogen. Changes in activity of both monoaminergic and amino acid transmitters in the frontal cortex and basal forebrain may contribute to enhancing effects of estrogen on learning/memory. PMID:9799625

  9. Testing a dynamic-field account of interactions between spatial attention and spatial working memory.

    PubMed

    Johnson, Jeffrey S; Spencer, John P

    2016-05-01

    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: If attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal was reexamined in light of a neural-process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color discrimination task during the delay interval of a spatial-recall task. In the critical shifting-attention condition, the color stimulus could appear either toward or away from the midline reference axis, relative to the memorized location. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors, but no change in directional errors, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations-as predicted by the model-systematic changes in the patterns of spatial-recall errors should occur that would depend on the direction of the shift. The results were consistent with the latter possibility-recall errors were biased toward the locations of discrimination targets appearing during the delay. PMID:26810574

  10. Primacy Performance of Normal and Retarded Children: Stimulus Familiarity or Spatial Memory?

    ERIC Educational Resources Information Center

    Swanson, Lee

    1978-01-01

    Explores the effect of stimulus familiarity on the spatial primacy performance of normal and retarded children. Assumes that serial recall tasks reflect spatial memory rather than verbal rehearsal. (BD)

  11. Acute and chronic tramadol administration impair spatial memory in rat

    PubMed Central

    Hosseini-Sharifabad, Ali; Rabbani, Mohammad; Sharifzadeh, Mohammad; Bagheri, Narges

    2016-01-01

    Tramadol hydrochloride, a synthetic opioid, acts via a multiple mechanism of action. Tramadol can potentially change the behavioral phenomena. The present study evaluates the effect of tramadol after single or multiple dose/s on the spatial memory of rat using object recognition task (ORT). Tramadol, 20 mg/kg, was injected intraperitoneally (i.p) as a single dose or once a day for 21 successive days considered as acute or chronic treatment respectively. After treatment, animals underwent two trials in the ORT. In the first trial (T1), animals encountered with two identical objects for exploration in a five-minute period. After 1 h, in the T2 trial, the animals were exposed to a familiar and a nonfamiliar object. The exploration times and frequency of the exploration for any objects were recorded. The results showed that tramadol decreased the exploration times for the nonfamiliar object in the T2 trial when administered either as a single dose (P<0.001) or as the multiple dose (P<0.05) compared to the respective control groups. Both acute and chronic tramadol administration eliminated the different frequency of exploration between the familiar and nonfamiliar objects. Our findings revealed that tramadol impaired memory when administered acutely or chronically. Single dose administration of tramadol showed more destructive effect than multiple doses of tramadol on the memory. The observed data can be explained by the inhibitory effects of tramadol on the wide range of neurotransmitters and receptors including muscarinic, N-methyl D-aspartate, AMPA as well as some second messenger like cAMP and cGMP or its stimulatory effect on the opioid, gama amino butyric acid, dopamine or serotonin in the brain. PMID:27051432

  12. Medial prefrontal theta phase coupling during spatial memory retrieval.

    PubMed

    Kaplan, Raphael; Bush, Daniel; Bonnefond, Mathilde; Bandettini, Peter A; Barnes, Gareth R; Doeller, Christian F; Burgess, Neil

    2014-06-01

    Memory retrieval is believed to involve a disparate network of areas, including medial prefrontal and medial temporal cortices, but the mechanisms underlying their coordination remain elusive. One suggestion is that oscillatory coherence mediates inter-regional communication, implicating theta phase and theta-gamma phase-amplitude coupling in mnemonic function across species. To examine this hypothesis, we used non-invasive whole-head magnetoencephalography (MEG) as participants retrieved the location of objects encountered within a virtual environment. We demonstrate that, when participants are cued with the image of an object whose location they must subsequently navigate to, there is a significant increase in 4-8 Hz theta power in medial prefrontal cortex (mPFC), and the phase of this oscillation is coupled both with ongoing theta phase in the medial temporal lobe (MTL) and perceptually induced 65-85 Hz gamma amplitude in medial parietal cortex. These results suggest that theta phase coupling between mPFC and MTL and theta-gamma phase-amplitude coupling between mPFC and neocortical regions may play a role in human spatial memory retrieval. PMID:24497013

  13. Development of Allocentric Spatial Memory Abilities in Children from 18 months to 5 Years of Age

    ERIC Educational Resources Information Center

    Ribordy, Farfalla; Jabes, Adeline; Lavenex, Pamela Banta; Lavenex, Pierre

    2013-01-01

    Episodic memories for autobiographical events that happen in unique spatiotemporal contexts are central to defining who we are. Yet, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. Here, we studied the development of allocentric spatial memory, a…

  14. Working Memory and Strategy Use Contribute to Gender Differences in Spatial Ability

    ERIC Educational Resources Information Center

    Wang, Lu; Carr, Martha

    2014-01-01

    In this review, a new model that is grounded in information-processing theory is proposed to account for gender differences in spatial ability. The proposed model assumes that the relative strength of working memory, as expressed by the ratio of visuospatial working memory to verbal working memory, influences the type of strategies used on spatial…

  15. Dorsal Hippocampal CREB Is Both Necessary and Sufficient for Spatial Memory

    ERIC Educational Resources Information Center

    Sekeres, Melanie J.; Neve, Rachael L.; Frankland, Paul W.; Josselyn, Sheena A.

    2010-01-01

    Although the transcription factor CREB has been widely implicated in memory, whether it is sufficient to produce spatial memory under conditions that do not normally support memory formation in mammals is unknown. We found that locally and acutely increasing CREB levels in the dorsal hippocampus using viral vectors is sufficient to induce robust…

  16. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy. PMID:25715554

  17. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; McEwen, J. J.; Rabin, B. M.; Joseph, J. A.

    2000-01-01

    It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  18. Context-Specific Effects of Estradiol on Spatial Learning and Memory in the Zebra Finch

    PubMed Central

    Rensel, M.A.; Salwiczek, L.; Roth, J.; Schlinger, B.A.

    2012-01-01

    Estradiol is known to impact cognitive function including spatial learning and memory, with studies focused largely on rodent models. Estrogens can be produced peripherally or centrally as neuroestrogens, and the specific role for neuroestrogens in memory processes remains unresolved. Many songbirds possess remarkable spatial memory capabilities and also express the estrogen synthetic enzyme aromatase abundantly in the hippocampus, suggesting that locally-produced estrogens may promote the acquisition or retrieval of spatial memories in these birds. We examined the effect of estradiol on spatial memory in three contexts in the zebra finch: retrieval after discrimination training, retrieval after familiarization but without discrimination training, and memory acquisition, using a combination of estradiol implants and oral dosing with the aromatase inhibitor fadrozole (FAD). Retrieval of spatial memory in both contexts was impaired when estradiol production was blocked. However, spatial memory acquisition was enhanced when estradiol production was inhibited whereas estradiol replacement impaired acquisition. These results provide evidence for a context-specific role of estradiol in songbird spatial memory, results that finds accord with some mammalian studies but have not yet been observed in birds. PMID:23257279

  19. Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.

    PubMed

    Lim, Sukbin; Goldman, Mark S

    2014-05-14

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory-inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. PMID:24828633

  20. Working Memory in Developing and Applying Mental Models from Spatial Descriptions

    ERIC Educational Resources Information Center

    Brunye, Tad T.; Taylor, Holly A.

    2008-01-01

    Four dual-task experiments examined visuospatial, articulatory, and central executive working memory involvement during the development and application of spatial mental models. In Experiments 1 and 2 participants read route and survey spatial descriptions while undertaking one of four secondary tasks targeting working memory components.…

  1. Accessibility versus Accuracy in Retrieving Spatial Memory: Evidence for Suboptimal Assumed Headings

    ERIC Educational Resources Information Center

    Yerramsetti, Ashok; Marchette, Steven A.; Shelton, Amy L.

    2013-01-01

    Orientation dependence in spatial memory has often been interpreted in terms of accessibility: Object locations are encoded relative to a reference orientation that affords the most accurate access to spatial memory. An open question, however, is whether people naturally use this "preferred" orientation whenever recalling the space. We…

  2. Spontaneous Recovery of Human Spatial Memory in a Virtual Water Maze

    ERIC Educational Resources Information Center

    Luna, David; Martínez, Héctor

    2015-01-01

    The occurrence of spontaneous recovery in human spatial memory was assessed using a virtual environment. In Experiment 1, spatial memory was established by training participants to locate a hidden platform in a virtual water maze using a set of four distal landmarks. In Experiment 2, after learning about the location of a hidden platform, the…

  3. The Effects of Spatial Contextual Familiarity on Remembered Scenes, Episodic Memories, and Imagined Future Events

    ERIC Educational Resources Information Center

    Robin, Jessica; Moscovitch, Morris

    2014-01-01

    Several recent studies have explored the effect of contextual familiarity on remembered and imagined events. The aim of this study was to examine the extent of this effect by comparing the effect of cuing spatial memories, episodic memories, and imagined future events with spatial contextual cues of varying levels of familiarity. We used…

  4. Bidirectional changes to hippocampal theta–gamma comodulation predict memory for recent spatial episodes

    PubMed Central

    Shirvalkar, Prasad R.; Rapp, Peter R.; Shapiro, Matthew L.

    2010-01-01

    Episodic memory requires the hippocampus, which is thought to bind cortical inputs into conjunctive codes. Local field potentials (LFPs) reflect dendritic and synaptic oscillations whose temporal structure may coordinate cellular mechanisms of plasticity and memory. We now report that single-trial spatial memory performance in rats was predicted by the power comodulation of theta (4–10 Hz) and low gamma (30–50 Hz) rhythms in the hippocampus. Theta–gamma comodulation (TGC) was prominent during successful memory retrieval but was weak when memory failed or was unavailable during spatial exploration in sample trials. Muscimol infusion into medial septum reduced the probability of TGC and successful memory retrieval. In contrast, patterned electrical stimulation of the fimbria-fornix increased TGC in amnestic animals and partially rescued memory performance in the water maze. The results suggest that TGC accompanies memory retrieval in the hippocampus and that patterned brain stimulation may inform therapeutic strategies for cognitive disorders. PMID:20351262

  5. Emotion’s Influence on Memory for Spatial and Temporal Context

    PubMed Central

    Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A.

    2010-01-01

    Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item’s valence (positive, negative) or arousal (high, low) would influence its ability to be remembered with those contextual details. Across two experiments, high-arousal items were remembered with spatial and temporal context more often than low-arousal items. Item valence did not influence memory for those details, although positive high-arousal items were recognized or recalled more often than negative items. These data suggest that emotion does not just bias participants to believe they have a vivid memory; rather, the arousal elicited by an event can benefit memory for some types of contextual details. PMID:21379376

  6. Age-related hearing loss

    MedlinePlus

    ... is no known single cause of age-related hearing loss. Most commonly, it is caused by changes in the inner ear that occur as you grow older. Your genes and loud noise (from rock concerts or music headphones) may play a large role. The following ...

  7. Improved effect of Pycnogenol on impaired spatial memory function in partial androgen deficiency rat model.

    PubMed

    Hasegawa, Noboru; Mochizuki, Miyako

    2009-06-01

    The improved effect of Pycnogenol on impaired spatial memory function was studied in orchidectomized rats. Endogenous testosterone levels were decreased by approximately one-half for 3 months after castration. In the radial arm maze, castration significantly impaired working and reference memory function without lowering motor function. Pycnogenol increased the NGF content in the hippocampus and cortex, and improved the spatial memory impairment. These observations confirmed that diagnostic accuracy can be improved by Pycnogenol in androgen-deficient rats. PMID:19142987

  8. Cross-domain interference costs during concurrent verbal and spatial serial memory tasks are asymmetric.

    PubMed

    Morey, Candice C; Mall, Jonathan T

    2012-01-01

    Some evidence suggests that memory for serial order is domain-general. Evidence also points to asymmetries in interference between verbal and visual-spatial tasks. We confirm that concurrently remembering verbal and spatial serial lists provokes substantial interference compared with remembering a single list, but we further investigate the impact of this interference throughout the serial position curve, where asymmetries are indeed apparent. A concurrent verbal order memory task affects spatial memory performance throughout the serial positions of the list, but performing a spatial order task affects memory for the verbal serial list only for early list items; in the verbal task only, the final items are unaffected by a concurrent task. Adding suffixes eliminates this asymmetry, resulting in impairment throughout the list for both tasks. These results suggest that domain-general working memory resources may be supplemented with resources specific to the verbal domain, but perhaps not with equivalent spatial resources. PMID:22512308

  9. [Presbycusis - Age Related Hearing Loss].

    PubMed

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. PMID:27392191

  10. CaMKII activation in the entorhinal cortex disrupts previously encoded spatial memory.

    PubMed

    Yasuda, Masahiro; Mayford, Mark R

    2006-04-20

    To investigate the role of the entorhinal cortex in memory at a molecular level, we developed transgenic mice in which transgene expression was inducible and limited to the superficial layers of the medial entorhinal cortex, pre- and parasubiculum. We found that expression of a constitutively active mutant form of CaMKII in these structures disrupted spatial memory formation. Immediate post-training activation of the transgene disrupted previously established memory while transgene activation 3 weeks following the training was ineffective. These results demonstrate that, similar to the hippocampus, the entorhinal cortex plays a time-limited role in spatial memory formation but is not a final cortical repository of long-term memory. Moreover, these results suggest that the indiscriminate activation of CaMKII is able to disrupt preexisting memories, possibly by altering the pattern of synaptic weight changes that are thought to form the basis of the memory trace. PMID:16630840

  11. Topographic amnesia: spatial memory disorder, perceptual dysfunction, or category specific semantic memory impairment?

    PubMed Central

    McCarthy, R A; Evans, J J; Hodges, J R

    1996-01-01

    A 60 year old patient, SE, who presented with a severe difficulty in finding his way around previously familiar environments and a mild prosopagnosia is described. SE had herpes simplex encephalitis resulting in selective right temporal lobe damage. He showed normal spatial learning, but was severely imparied in his ability to recognise pictures of buildings and landmarks. The disorder was not confined to the visual modality, but rather involved a loss of knowledge about famous buildings and landmarks when tested from their spoken name. SE was contrasted with a more severely prosopagnosic patient, PHD, who showed normal ability to recognise buildings and landmarks, indicating that recognition of people dissociates from recognition of buildings/landmarks. It is concluded that SE's failure of place knowledge represents a category specific supramodal semantic memory impairment. Images PMID:8609511

  12. Glutamate presynaptic vesicular transporter and postsynaptic receptor levels correlate with spatial memory status in aging rat models.

    PubMed

    Ménard, Caroline; Quirion, Rémi; Vigneault, Erika; Bouchard, Sylvain; Ferland, Guylaine; El Mestikawy, Salah; Gaudreau, Pierrette

    2015-03-01

    In humans, memory capacities are generally affected with aging, even without any reported neurologic disorders. The mechanisms behind cognitive decline are not well understood. We studied here whether postsynaptic glutamate receptor and presynaptic vesicular glutamate transporters (VGLUTs) levels may change in the course of aging and be related to cognitive abilities using various age-impaired (AI) or age-unimpaired rat strains. Twenty-four-month-old Long-Evans (LE) rats with intact spatial memory maintained postsynaptic ionotropic glutamate receptor levels in the hippocampal-adjacent cortex similar to those of young animals. In contrast, AI rats showed significantly reduced expression of ionotropic glutamate receptor GluR2, NR2A and NR2B subunits. In AI LE rats, VGLUT1 and VGLUT2 levels were increased and negatively correlated with receptor levels as shown by principal component analysis and correlation matrices. We also investigated whether glutamatergic receptors and VGLUT levels were altered in the obesity-resistant LOU/C/Jall (LOU) rat strain which is characterized by intact memory despite aging. No difference was observed between 24-month-old LOU rats and their young counterparts. Taken together, the unaltered spatial memory performance of 24-month-old age-unimpaired LE and LOU rats suggests that intact coordination of the presynaptic and postsynaptic hippocampal-adjacent cortex glutamatergic networks may be important for successful cognitive aging. Accordingly, altered expression of presynaptic and postsynaptic glutamatergic components, such as in AI LE rats, could be considered a marker of age-related cognitive deficits. PMID:25556161

  13. Niche-specific cognitive strategies: object memory interferes with spatial memory in the predatory bat Myotis nattereri.

    PubMed

    Hulgard, Katrine; Ratcliffe, John M

    2014-09-15

    Related species with different diets are predicted to rely on different cognitive strategies: those best suited for locating available and appropriate foods. Here we tested two predictions of the niche-specific cognitive strategies hypothesis in bats, which suggests that predatory species should rely more on object memory than on spatial memory for finding food and that the opposite is true of frugivorous and nectivorous species. Specifically, we predicted that: (1) predatory bats would readily learn to associate shapes with palatable prey and (2) once bats had made such associations, these would interfere with their subsequent learning of a spatial memory task. We trained free-flying Myotis nattereri to approach palatable and unpalatable insect prey suspended below polystyrene objects. Experimentally naïve bats learned to associate different objects with palatable and unpalatable prey but performed no better than chance in a subsequent spatial memory experiment. Because experimental sequence was predicted to be of consequence, we introduced a second group of bats first to the spatial memory experiment. These bats learned to associate prey position with palatability. Control trials indicated that bats made their decisions based on information acquired through echolocation. Previous studies have shown that bat species that eat mainly nectar and fruit rely heavily on spatial memory, reflecting the relative consistency of distribution of fruit and nectar compared with insects. Our results support the niche-specific cognitive strategies hypothesis and suggest that for gleaning and clutter-resistant aerial hawking bats, learning to associate shape with food interferes with subsequent spatial memory learning. PMID:25013105

  14. Spatial-Simultaneous and Spatial-Sequential Working Memory in Individuals with Down Syndrome: The Effect of Configuration

    ERIC Educational Resources Information Center

    Carretti, Barbara; Lanfranchi, Silvia; Mammarella, Irene C.

    2013-01-01

    Earlier research showed that visuospatial working memory (VSWM) is better preserved in Down syndrome (DS) than verbal WM. Some differences emerged, however, when VSWM performance was broken down into its various components, and more recent studies revealed that the spatial-simultaneous component of VSWM is more impaired than the spatial-sequential…

  15. Visual and Spatial Working Memory Are Not that Dissociated after All: A Time-Based Resource-Sharing Account

    ERIC Educational Resources Information Center

    Vergauwe, Evie; Barrouillet, Pierre; Camos, Valerie

    2009-01-01

    Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and…

  16. The posterior parietal cortex and long-term memory representation of spatial information

    PubMed Central

    Kesner, Raymond P.

    2009-01-01

    The hypothesis to be explored in this chapter is based on the assumption that the posterior parietal cortex (PPC) is directly involved in representing a subset of the spatial features associated with spatial information processing and plays an important role in perceptual memory as well as long-term memory encoding, consolidation, and retrieval of spatial information. After presentation of the anatomical location of the PPC in rats, the nature of PPC representation based on single spatial features, binding of visual features associated with visual spatial attention, binding of object-place associations associated with acquisition and storage of associations where one of the elements is a spatial component, and binding of ideothetic and allothetic information in long-term memory is discussed. Additional evidence for a PPC role in mediation of spatial information in long-term storage is offered. Finally, the relationship between the PPC and the hippocampus from a systems and dynamic point view is presented. PMID:18835456

  17. Virtual Human Analogs to Rodent Spatial Pattern Separation and Completion Memory Tasks

    ERIC Educational Resources Information Center

    Paleja, Meera; Girard, Todd A.; Christensen, Bruce K.

    2011-01-01

    Spatial pattern separation (SPS) and spatial pattern completion (SPC) have played an increasingly important role in computational and rodent literatures as processes underlying associative memory. SPS and SPC are complementary processes, allowing the formation of unique representations and the reconstruction of complete spatial environments based…

  18. Describing Spatial Locations from Perception and Memory: The Influence of Intrinsic Axes on Reference Object Selection

    ERIC Educational Resources Information Center

    Li, Xiaoou; Carlson, Laura A.; Mou, Weimin; Williams, Mark R.; Miller, Jared E.

    2011-01-01

    A target object's location within a configuration of objects can be described by spatially relating it to a reference object that is selected from among its neighbors, with a preference for reference objects that are spatially close and aligned with the target. In the spatial memory literature, these properties of alignment and proximity are…

  19. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation.

    PubMed

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert; Michaelevski, Izhak

    2016-02-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein

  20. Distraction can reduce age-related forgetting.

    PubMed

    Biss, Renée K; Ngo, K W Joan; Hasher, Lynn; Campbell, Karen L; Rowe, Gillian

    2013-04-01

    In three experiments, we assessed whether older adults' generally greater tendency to process distracting information can be used to minimize widely reported age-related differences in forgetting. Younger and older adults studied and recalled a list of words on an initial test and again on a surprise test after a 15-min delay. In the middle (Experiments 1a and 2) or at the end (Experiment 3) of the delay, participants completed a 1-back task in which half of the studied words appeared as distractors. Across all experiments, older adults reliably forgot unrepeated words; however, older adults rarely or never forgot the words that had appeared as distractors, whereas younger adults forgot words in both categories. Exposure to distraction may serve as a rehearsal episode for older adults, and thus as a method by which general distractibility may be co-opted to boost memory. PMID:23426890

  1. [Age-related macular degeneration].

    PubMed

    Garcia Layana, A

    1998-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the occidental world. Patients suffering this process have an important reduction on their quality of life being handicapped to read, to write, to recognise faces of their friends, or even to watch the television. One of the main problems of that disease is the absence of an effective treatment able to revert the process. Laser treatment is only useful in a limited number of patients, and even in these cases recurrent lesions are frequent. These facts and the progressive ageing of our society establish the ARMD as one of the biggest aim of medical investigations for the next century, and currently is focus of attention in the most industrialised countries. One of the most promising pieces of research is focused in the investigation of the risk factors associated with the age-related macular degeneration, in order to achieve a prophylactic treatment avoiding its appearance. Diet elements such as fat ingestion or reduced antioxidant intakes are being investigated as some of these factors, what open a new possibility for a prophylactic treatment. Finally, research is looking for new therapeutic modalities such as selective radiotherapy in order to improve or maintain the vision of these patients. PMID:10420956

  2. Overt is no better than covert when rehearsing visuo-spatial information in working memory.

    PubMed

    Godijn, Richard; Theeuwes, Jan

    2012-01-01

    In the present study, we examined whether eye movements facilitate retention of visuo-spatial information in working memory. In two experiments, participants memorised the sequence of the spatial locations of six digits across a retention interval. In some conditions, participants were free to move their eyes during the retention interval, but in others they either were required to remain fixated or were instructed to move their eyes exclusively to a selection of the memorised locations. Memory performance was no better when participants were free to move their eyes during the memory interval than when they fixated a single location. Furthermore, the results demonstrated a primacy effect in the eye movement behaviour that corresponded with the memory performance. We conclude that overt eye movements do not provide a benefit over covert attention for rehearsing visuo-spatial information in working memory. PMID:21769706

  3. Adult-born dentate neurons are recruited in both spatial memory encoding and retrieval.

    PubMed

    Tronel, Sophie; Charrier, Vanessa; Sage, Cyrille; Maitre, Marlene; Leste-Lasserre, Thierry; Abrous, Djoher N

    2015-11-01

    Adult neurogenesis occurs in the dentate gyrus (DG) of the hippocampus, which is a key structure in learning and memory. Adult-generated granule cells have been shown to play a role in spatial memory processes such as acquisition or retrieval, in particular during an immature stage when they exhibit a period of increased plasticity. Here, we demonstrate that immature and mature neurons born in the DG of adult rats are similarly activated in spatial memory processes. By imaging the activation of these two different neuron generations in the same rat and by using the immediate early gene Zif268, we show that these neurons are involved in both spatial memory acquisition and retrieval. These results demonstrate that adult-generated granule cells are involved in memory beyond their immaturity stage. PMID:25913775

  4. Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.

    PubMed

    Pan, Yi; Luo, Qianying; Cheng, Min

    2016-08-01

    Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location. PMID:27192995

  5. Spatial working memory deficits in schizophrenia patients and their first degree relatives from Palau, Micronesia.

    PubMed

    Myles-Worsley, Marina; Park, Sohee

    2002-08-01

    Spatial working memory deficits associated with dorsolateral prefrontal dysfunction have been found in Caucasian samples of schizophrenia patients and their first-degree relatives. This study evaluated spatial working memory function in affected and unaffected members of multiplex schizophrenia families from the Republic of Palau to determine whether the spatial working memory deficits associated with schizophrenia extend to this non-Caucasian population. Palau is an isolated island nation in Micronesia with an elevated prevalence of schizophrenia and an aggregation of cases in large multigenerational families. Our objective was to evaluate the potential for spatial working memory function to serve as one of multiple endophenotypes in a genetic linkage study of these Palauan schizophrenia families. A spatial delayed response task requiring resistance to distraction and a sensorimotor control task were used to assess spatial working memory in 32 schizophrenia patients, 28 of their healthy first-degree relatives, and 19 normal control subjects. Schizophrenia patients and their relatives were significantly less accurate than normal control subjects on the spatial delayed response task but not on the sensorimotor control task. On both tasks, patients and relatives were slower to respond than the normal controls. There were no age or gender effects on accuracy, and working memory performance in schizophrenia patients was not significantly correlated with medication dosage. In summary, spatial working memory deficits that have been found in Caucasian schizophrenia patients and relatives were confirmed in this isolated Pacific Island family sample. These results suggest that spatial working memory deficits may be a potentially useful addition to the endophenotypic characterization of family members to be used in a comprehensive genome wide linkage analysis of these Palauan families. PMID:12210274

  6. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory

    PubMed Central

    Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.

    2015-01-01

    Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889

  7. Influence of age, spatial memory, and ocular fixation on localization of auditory, visual, and bimodal targets by human subjects.

    PubMed

    Dobreva, Marina S; O'Neill, William E; Paige, Gary D

    2012-12-01

    visual bias with bimodal stimuli. Results highlight age-, memory-, and modality-dependent deterioration in the processing of auditory and visual space, as well as an age-related increase in the dominance of vision when localizing bimodal sources. PMID:23076429

  8. Spatial memories of virtual environments: how egocentric experience, intrinsic structure, and extrinsic structure interact.

    PubMed

    Kelly, Jonathan W; McNamara, Timothy P

    2008-04-01

    Previous research has uncovered three primary cues that influence spatial memory organization:egocentric experience, intrinsic structure (object defined), and extrinsic structure (environment defined). In the present experiments, we assessed the relative importance of these cues when all three were available during learning. Participants learned layouts from two perspectives in immersive virtual reality. In Experiment 1, axes defined by intrinsic and extrinsic structures were in conflict, and learning occurred from two perspectives, each aligned with either the intrinsic or the extrinsic structure. Spatial memories were organized around a reference direction selected from the first perspective, regardless of its alignment with intrinsic or extrinsic structures. In Experiment 2, axes defined by intrinsic and extrinsic structures were congruent, and spatial memories were organized around reference axes defined by those congruent structures, rather than by the initially experienced view. The findings are discussed in the context of spatial memory theory as it relates to real and virtual environments. PMID:18488647

  9. Visual neglect: is there a relationship between impaired spatial working memory and re-cancellation?

    PubMed

    Wansard, Murielle; Meulemans, Thierry; Gillet, Sophie; Segovia, Fermin; Bastin, Christine; Toba, Monica N; Bartolomeo, Paolo

    2014-10-01

    In visual search tasks, neglect patients tend to explore and repeatedly re-cancel stimuli on the ipsilesional side, as if they did not realize that they had previously examined the rightward locations favoured by their lateral bias. The aim of this study was to explore the hypothesis that a spatial working memory deficit explains these ipsilesional re-cancellation errors in neglect patients. For the first time, we evaluated spatial working memory and re-cancellation through separate and independent tasks in a group of patients with right hemisphere damage and a diagnosis of left neglect. Results showed impaired spatial working memory in neglect patients. Compared to the control group, neglect patients cancelled fewer targets and made more re-cancellations both on the left side and on the right side. The spatial working memory deficit appears to be related to re-cancellations, but only for some neglect patients. Alternative interpretations of re-exploration of space are discussed. PMID:24989636

  10. Spatial and Temporal Episodic Memory Retrieval Recruit Dissociable Functional Networks in the Human Brain

    ERIC Educational Resources Information Center

    Ekstrom, Arne D.; Bookheimer, Susan Y.

    2007-01-01

    Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects…

  11. Effects of Motor Activity on Children's Intentional and Incidental Memory for Spatial Locations.

    ERIC Educational Resources Information Center

    Herman, James F.; And Others

    1982-01-01

    Examines (1) the effect of increased motor involvement with an environment on children's memory for spatial locations, and (2) the effect of different degrees of motor involvement under intentional and incidental memory conditions. Thirty boys and 30 girls at each of kindergarten and third-grade levels were individually tested in a large-scale,…

  12. Spatial but Not Object Memory Impairments in Children with Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Nadel, Lynn; Uecker, Anne

    1998-01-01

    Thirty Native American children (mean age=10.3 years), 15 identified with fetal alcohol syndrome (FAS) and 15 controls, were asked to recall places and objects in a task previously shown to be sensitive to memory skills in individuals with and without mental retardation. Children with FAS demonstrated a spatial but not an object memory impairment.…

  13. HDAC inhibition promotes both initial consolidation and reconsolidation of spatial memory in mice

    PubMed Central

    Villain, Hélène; Florian, Cédrick; Roullet, Pascal

    2016-01-01

    Accumulating evidence suggests a critical role for epigenetic regulations in long term memory (LTM) formation. Among them, post-translational modifications of proteins, as histone acetylation, are an important regulator of chromatin remodelling and gene transcription. While the implication of histone acetylation in memory consolidation is widely accepted, less is known about its role in memory reconsolidation i.e. during memory restabilization after its reactivation. In the present study, we investigated the role of histone acetylation during the initial consolidation and the reconsolidation of spatial memory, using a weak massed learning procedure in the Morris water maze paradigm in mice. Usually a weak learning is sufficient for short term memory (STM) formation, but insufficient to upgrade STM to LTM. We found that promoting histone acetylation through intra-hippocampal infusion of a class I selective histone deacetylase (HDAC) inhibitor immediately after a subthreshold spatial learning improved LTM but not STM retention. More importantly, inhibiting HDAC activity after the reactivation of a weak memory promoted specifically LTM reconsolidation without affecting post-reactivation STM. These findings argue in favour of an important role for histone acetylation in memory consolidation, and more particularly during the reconsolidation of spatial memory in mice. PMID:27270584

  14. Long-Term Heavy Ketamine Use is Associated with Spatial Memory Impairment and Altered Hippocampal Activation

    PubMed Central

    Morgan, Celia J. A.; Dodds, Chris M.; Furby, Hannah; Pepper, Fiona; Fam, Johnson; Freeman, Tom P.; Hughes, Emer; Doeller, Christian; King, John; Howes, Oliver; Stone, James M.

    2014-01-01

    Ketamine, a non-competitive N-methyl-d-aspartate receptor antagonist, is rising in popularity as a drug of abuse. Preliminary evidence suggests that chronic, heavy ketamine use may have profound effects on spatial memory but the mechanism of these deficits is as yet unclear. This study aimed to examine the neural mechanism by which heavy ketamine use impairs spatial memory processing. In a sample of 11 frequent ketamine users and 15 poly-drug controls, matched for IQ, age, years in education. We used fMRI utilizing an ROI approach to examine the neural activity of three regions known to support successful navigation; the hippocampus, parahippocampal gyrus, and the caudate nucleus during a virtual reality task of spatial memory. Frequent ketamine users displayed spatial memory deficits, accompanied by and related to, reduced activation in both the right hippocampus and left parahippocampal gyrus during navigation from memory, and in the left caudate during memory updating, compared to controls. Ketamine users also exhibited schizotypal and dissociative symptoms that were related to hippocampal activation. Impairments in spatial memory observed in ketamine users are related to changes in medial temporal lobe activation. Disrupted medial temporal lobe function may be a consequence of chronic ketamine abuse and may relate to schizophrenia-like symptomatology observed in ketamine users. PMID:25538631

  15. Spatial vision is superior in musicians when memory plays a role.

    PubMed

    Weiss, Atalia H; Biron, Tali; Lieder, Itay; Granot, Roni Y; Ahissar, Merav

    2014-01-01

    Musicians' perceptual advantage in the acoustic domain is well established. Recent studies show that musicians' verbal working memory is also superior. Additionally, some studies report that musicians' visuospatial skills are enhanced although others failed to find this enhancement. We now examined whether musicians' spatial vision is superior, and if so, whether this superiority reflects refined visual skills or a general superiority of working memory. We examined spatial frequency discrimination among musicians and nonmusician university students using two presentation conditions: simultaneous (spatial forced choice) and sequential (temporal forced choice). Musicians' performance was similar to that of nonmusicians in the simultaneous condition. However, their performance in the sequential condition was superior, suggesting an advantage only when stimuli need to be retained, i.e., working memory. Moreover, the two groups showed a different pattern of correlations: Musicians' visual thresholds were correlated, and neither was correlated with their verbal memory. By contrast, among nonmusicians, the visual thresholds were not correlated, but sequential thresholds were correlated with verbal memory scores, suggesting that a general working memory component limits their performance in this condition. We propose that musicians' superiority in spatial frequency discrimination reflects an advantage in a domain-general aspect of working memory rather than a general enhancement in spatial-visual skills. PMID:25146576

  16. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    PubMed

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process. PMID:25813749

  17. Dopamine modulation of spatial navigation memory in Parkinson's disease.

    PubMed

    Thurm, Franka; Schuck, Nicolas W; Fauser, Mareike; Doeller, Christian F; Stankevich, Yuliya; Evens, Ricarda; Riedel, Oliver; Storch, Alexander; Lueken, Ulrike; Li, Shu-Chen

    2016-02-01

    Striatal dopamine depletion is a key pathophysiological feature of Parkinson's disease (PD) causing motor and nonmotor symptoms. Research on nonmotor symptoms has mainly focused on frontostriatal functions. However, dopamine pathways ascending from the ventral tegmental area also innervate hippocampal structures and modulate hippocampal-dependent functions, such as spatial memory. Using a virtual spatial navigation task, we investigated dopaminergic modulation of spatial memory in PD patients in a crossover medication ON/OFF design. We examined medication effects on striatal- and hippocampal-dependent spatial memory by either replacing a location cue in the environment or enlarging its spatial boundary. Key results indicate that in contrast to prior evidence for younger adults, PD patients, like their age-matched controls, rely more on striatal cue-based than hippocampal spatial learning. Medication facilitated striatal-dependent cue-location learning, whereas medication benefit in hippocampal boundary-related spatial memory depended on prior experience with the task. Medication effects on spatial memory were comparable to and independent of benefits on motor symptoms. These findings shed new light on dopaminergic modulation of hippocampal-striatal functions in PD. PMID:26827647

  18. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    PubMed Central

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer’s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory. PMID:26246157

  19. The effect of repetition priming on spatial memory during backtracking in a novel environment.

    PubMed

    Mukawa, Michal; Tan, Cheston; Lim, Joo-Hwee; Xu, Qianli; Li, Liyuan

    2015-09-01

    During wayfinding in a novel environment, we encounter many new places. Some of those places are encoded by our spatial memory. But how does the human brain "decides" which locations are more important than others, and how do backtracking and repetition priming enhances memorization of these scenes? In this work, we explore how backtracking improves encoding of encountered locations. We also check whether repetition priming helps with further memory enhancement. We recruited 20 adults. Each participant was guided through an unfamiliar indoor environment. The participants were instructed to remember the path, as they would need to backtrack by themselves. Two groups were defined: the first group performed a spatial memory test at the goal destination and after backtracking; the second group performed the test only after backtracking. The mean spatial memory scores of the first group improved significantly after backtracking: from 49.8 to 60.8%. The score of the second group was 62%. No difference was found in performance between the first group and the second group. Backtracking alone significantly improves spatial memory of visited places. Surprisingly, repetition priming does not further enhance memorization of these places. This result may suggest that spatial reasoning causes significant cognitive load that thwarts further improvement of spatial memory of locations. PMID:26216757

  20. Functional interactions between dentate gyrus, striatum and anterior thalamic nuclei on spatial memory retrieval.

    PubMed

    Méndez-Couz, M; Conejo, N M; González-Pardo, H; Arias, J L

    2015-04-24

    The standard model of memory system consolidation supports the temporal reorganization of brain circuits underlying long-term memory storage, including interactions between the dorsal hippocampus and extra-hippocampal structures. In addition, several brain regions have been suggested to be involved in the retrieval of spatial memory. In particular, several authors reported a possible role of the ventral portion of the hippocampus together with the thalamus or the striatum in the persistence of this type of memory. Accordingly, the present study aimed to evaluate the contribution of different cortical and subcortical brain regions, and neural networks involved in spatial memory retrieval. For this purpose, we used cytochrome c oxidase quantitative histochemistry as a reliable method to measure brain oxidative metabolism. Animals were trained in a hidden platform task and tested for memory retention immediately after the last training session; one week after completing the task, they were also tested in a memory retrieval probe. Results showed that retrieval of the previously learned task was associated with increased levels of oxidative metabolism in the prefrontal cortex, the dorsal and ventral striatum, the anterodorsal thalamic nucleus and the dentate gyrus of the dorsal and ventral hippocampus. The analysis of functional interactions between brain regions suggest that the dorsal and ventral dentate gyrus could be involved in spatial memory retrieval. In addition, the results highlight the key role of the extended hippocampal system, thalamus and striatum in this process. Our study agrees with previous ones reporting interactions between the dorsal hippocampus and the prefrontal cortex during spatial memory retrieval. Furthermore, novel activation patterns of brain networks involving the aforementioned regions were found. These functional brain networks could underlie spatial memory retrieval evaluated in the Morris water maze task. PMID:25680583

  1. As the world turns: short-term human spatial memory in egocentric and allocentric coordinates.

    PubMed

    Banta Lavenex, Pamela; Lecci, Sandro; Prêtre, Vincent; Brandner, Catherine; Mazza, Christian; Pasquier, Jérôme; Lavenex, Pierre

    2011-05-16

    We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world. PMID:21237209

  2. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation

    PubMed Central

    Dzieciol, Anna M.; Gadian, David G.; Jentschke, Sebastian; Doeller, Christian F.; Burgess, Neil; Mishkin, Mortimer

    2015-01-01

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with “moderate” hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. SIGNIFICANCE STATEMENT In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on

  3. Functional cross-hemispheric shift between object-place paired associate memory and spatial memory in the human hippocampus.

    PubMed

    Lee, Choong-Hee; Ryu, Jungwon; Lee, Sang-Hun; Kim, Hakjin; Lee, Inah

    2016-08-01

    The hippocampus plays critical roles in both object-based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object-based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object-place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object-cueing period) to searching for its paired-associate place (object-cued place recognition period). Furthermore, the efficient retrieval of object-place paired associate memory (object-cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679

  4. CB2 Cannabinoid Receptor Knockout in Mice Impairs Contextual Long-Term Memory and Enhances Spatial Working Memory

    PubMed Central

    Li, Yong; Kim, Jimok

    2016-01-01

    Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas. PMID:26819779

  5. Increased task demand during spatial memory testing recruits the anterior cingulate cortex.

    PubMed

    Carr, Joshua K; Fournier, Neil M; Lehmann, Hugo

    2016-09-01

    We examined whether increasing retrieval difficulty in a spatial memory task would promote the recruitment of the anterior cingulate cortex (ACC) similar to what is typically observed during remote memory retrieval. Rats were trained on the hidden platform version of the Morris Water Task and tested three or 30 d later. Retrieval difficulty was manipulated by removing several prominent extra-pool cues from the testing room. Immediate early gene expression (c-Fos) in the ACC was greater following the cue removal and comparable to remote memory retrieval (30-d retention interval) levels, supporting the view of increased ACC contribution during high cognitive-demand memory processes. PMID:27531834

  6. Spatial Patterns of Persistent Neural Activity Vary with the Behavioral Context of Short-Term Memory

    PubMed Central

    Daie, Kayvon

    2015-01-01

    Summary A short-term memory can be evoked by different inputs and control separate targets in different behavioral contexts. To address the circuit mechanisms underlying context-dependent memory function, we determined through optical imaging how memory is encoded at the whole-network level in two behavioral settings. Persistent neural activity maintaining a memory of desired eye position was imaged throughout the oculomotor integrator after saccadic or optokinetic stimulation. While eye position was encoded by the amplitude of network activity, the spatial patterns of firing were context-dependent: cells located caudally generally were most persistent following saccadic input, whereas cells located rostrally were most persistent following optokinetic input. To explain these data, we computationally identified four independent modes of network activity and found these were differentially accessed by saccadic and optokinetic inputs. These results show how a circuit can simultaneously encode memory value and behavioral context, respectively, in its amplitude and spatial pattern of persistent firing. PMID:25661184

  7. VERBAL AND SPATIAL WORKING MEMORY LOAD HAVE SIMILARLY MINIMAL EFFECTS ON SPEECH PRODUCTION

    PubMed Central

    Lee, Ogyoung; Redford, Melissa A.

    2015-01-01

    The goal of the present study was to test the effects of working memory on speech production. Twenty American-English speaking adults produced syntactically complex sentences in tasks that taxed either verbal or spatial working memory. Sentences spoken under load were produced with more errors, fewer prosodic breaks, and at faster rates than sentence produced in the control conditions, but other acoustic correlates of rhythm and intonation did not change. Verbal and spatial working memory had very similar effects on production, suggesting that the different span tasks used to tax working memory merely shifted speakers’ attention away from the act of speaking. This finding runs contra the hypothesis of incremental phonological/phonetic encoding, which predicts the manipulation of information in verbal working memory during speech production. PMID:26448563

  8. Sex, estradiol, and spatial memory in a food-caching corvid.

    PubMed

    Rensel, Michelle A; Ellis, Jesse M S; Harvey, Brigit; Schlinger, Barney A

    2015-09-01

    Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner. PMID:26232613

  9. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels.

    PubMed

    Williams, Claire M; El Mohsen, Manal Abd; Vauzour, David; Rendeiro, Catarina; Butler, Laurie T; Ellis, Judi A; Whiteman, Matthew; Spencer, Jeremy P E

    2008-08-01

    Phytochemical-rich foods have been shown to be effective at reversing age-related deficits in memory in both animals and humans. We show that a supplementation with a blueberry diet (2% w/w) for 12 weeks improves the performance of aged animals in spatial working memory tasks. This improvement emerged within 3 weeks and persisted for the remainder of the testing period. Memory performance correlated well with the activation of cAMP-response element-binding protein (CREB) and increases in both pro- and mature levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in CREB and BDNF in aged and blueberry-supplemented animals were accompanied by increases in the phosphorylation state of extracellular signal-related kinase (ERK1/2), rather than that of calcium calmodulin kinase (CaMKII and CaMKIV) or protein kinase A. Furthermore, age and blueberry supplementation were linked to changes in the activation state of Akt, mTOR, and the levels of Arc/Arg3.1 in the hippocampus, suggesting that pathways involved in de novo protein synthesis may be involved. Although causal relationships cannot be made among supplementation, behavior, and biochemical parameters, the measurement of anthocyanins and flavanols in the brain following blueberry supplementation may indicate that changes in spatial working memory in aged animals are linked to the effects of flavonoids on the ERK-CREB-BDNF pathway. PMID:18457678

  10. Revisiting Evidence for Modularity and Functional Equivalence across Verbal and Spatial Domains in Memory

    ERIC Educational Resources Information Center

    Guerard, Katherine; Tremblay, Sebastien

    2008-01-01

    The authors revisited evidence in favor of modularity and of functional equivalence between the processing of verbal and spatial information in short-term memory. This was done by investigating the patterns of intrusions, omissions, transpositions, and fill-ins in verbal and spatial serial recall and order reconstruction tasks under control,…

  11. When Spatial and Temporal Contiguities Help the Integration in Working Memory: "A Multimedia Learning" Approach

    ERIC Educational Resources Information Center

    Mammarella, Nicola; Fairfield, Beth; Di Domenico, Alberto

    2013-01-01

    Two experiments examined the effects of spatial and temporal contiguities in a working memory binding task that required participants to remember coloured objects. In Experiment 1, a black and white drawing and a corresponding phrase that indicated its colour perceptually were either near or far (spatial study condition), while in Experiment 2,…

  12. Memory for Pictures, Words, and Spatial Location in Older Adults: Evidence for Pictorial Superiority.

    ERIC Educational Resources Information Center

    Park, Denise Cortis; And Others

    1983-01-01

    Tested recognition memory for items and spatial location by varying picture and word stimuli across four slide quadrants. Results showed a pictorial superiority effect for item recognition and a greater ability to remember the spatial location of pictures versus words for both old and young adults (N=95). (WAS)

  13. Sexual Orientation and Spatial Position Effects on Selective Forms of Object Location Memory

    ERIC Educational Resources Information Center

    Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary

    2011-01-01

    Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object…

  14. On the spatial interaction of visual working memory and attention: evidence for a global effect from memory-guided saccades.

    PubMed

    Herwig, Arvid; Beisert, Miriam; Schneider, Werner X

    2010-01-01

    Recent work indicates that covert visual attention and eye movements on the one hand, and covert visual attention and visual working memory on the other hand are closely interrelated. Two experiments address the question whether all three processes draw on the same spatial representations. Participants had to memorize a target location for a subsequent memory-guided saccade. During the memory interval, task-irrelevant distractors were briefly flashed on some trials either near or remote to the memory target. Results showed that the previously flashed distractors attract the saccade's landing position. However, attraction was only found, if the distractor was presented within a sector of +/-20 degrees around the target axis, but not if the distractor was presented outside this sector. This effect strongly resembles the global effect in which saccades are directed to intermediate locations between a target and a simultaneously presented neighboring distractor stimulus. It is argued that covert visual attention, eye movements, and visual working memory recruit the same spatial mechanisms that can probably be ascribed to attentional priority maps. PMID:20616119

  15. Ontogeny of spatial working memory in the subterranean rodent ctenomys talarum.

    PubMed

    Schleich, Cristian E

    2010-09-01

    While several works analyzed the spatial learning and memory capacities in adults of subterranean rodents, no study was done examining the development of these cognitive processes in pups of any of those species. Therefore, the development of spatial working memory in the South American subterranean rodent Ctenomys talarum was investigated by analyzing the pups' spatial performance in a delayed alternation task. When a short delay of 1 min was interposed between runs in the Y-maze, 20-day-old pups made more errors than 40- and 60-day-old pups. When longer intervals (10 min) were elapsed between runs, younger pups made approximately twice as many errors as the ones committed by 60-day-old pups, showing the age-dependent development of spatial working memory in this species of subterranean rodent. Increased space use by C. talarum pups, caused first by the appearance of independent exploratory behavior and later by the need of leaving maternal territory and construct a new burrow system, showed some correspondence with the improvements in the pups' spatial working memory performance, suggesting for the importance of this cognitive capacity in developing pups for which spatial learning and memory constitute essential abilities for survival and fitness. PMID:20806332

  16. The use and validation of the spatial navigation Memory Island test in primary school children.

    PubMed

    Piper, Brian J; Acevedo, Summer F; Craytor, Michael J; Murray, Patrick W; Raber, Jacob

    2010-07-11

    Memory Island (MI) is a human spatial memory assessment, modeled after the Morris water maze, which has been used in adults and the elderly. In this study, we examined whether MI can be used with children and validate the procedure. The objectives of this study were to: (1) examine spatial function with MI in children and (2) determine the associations between MI and other cognitive measures. Seven to 10-year-old children (N=50) completed MI and a battery of tests of attention, visual-spatial memory, and executive function. Spatial memory, as indicated by the percent time in the target quadrant on MI, was better at age ten relative to ages seven or eight. Target preference also correlated with performance on the Conners' Continuous Performance Test and Backwards Spatial Span. These findings indicate there is rapid increase in spatial memory between ages nine and ten and that MI is a translational neuroscience paradigm which provides information that complements and extends upon that obtained using other neuropsychological paradigms in children. PMID:20219554

  17. Spatial learning and memory as a function of age in the dog.

    PubMed

    Head, E; Mehta, R; Hartley, J; Kameka, M; Cummings, B J; Cotman, C W; Ruehl, W W; Milgram, N W

    1995-10-01

    Spatial learning and memory were studied in dogs of varying ages and sources. Compared to young dogs, a significantly higher proportion of aged dogs could not acquire a spatial delayed nonmatching-to-sample task. A regression analysis revealed a significant age effect during acquisition. Spatial memory was studied by comparing performance at delay interval of 20, 70, and 110 s. At short delays aged and young dogs were similar; at longer delays, errors increased to a greater extent in old than in young dogs; however this was not statistically significant. It was possible to identify 2 groups of aged animals, age-impaired and age-unimpaired. Several of the dogs were also tested on an object recognition memory task, which was more difficult to learn than the spatial task. The possibility that these findings are confounded by breed differences is considered. Overall, the present results provide further evidence of the value of a canine model of aging. PMID:8554710

  18. Domestic dogs (Canis familiaris) and the radial arm maze: spatial memory and serial position effects.

    PubMed

    Craig, Marlyse; Rand, Jacquie; Mesch, Rita; Shyan-Norwalt, Melissa; Morton, John; Flickinger, Elizabeth

    2012-08-01

    The present study investigated spatial memory in domestic dogs (Canis familiaris) through the use of a radial arm maze. The study consisted of a total of three separate experiments. In the first two experiments, the ability of the dogs to successfully remember previously unentered arms was evaluated. The third experiment was similar to the first two, but also examined the nature of the serial position effect. Performance in all three experiments was better than expected solely by random choices. Dogs showed a much better memory for spatial locations presented earlier in a spatial list compared with those presented in the middle. Based on the present results, we suggest that the radial arm maze assesses canine spatial memory and that dogs show a primacy effect. PMID:22905996

  19. Age-related changes in the misinformation effect.

    PubMed

    Sutherland, R; Hayne, H

    2001-08-01

    In these experiments, we examined the relation between age-related changes in retention and age-related changes in the misinformation effect. Children (5- and 6- and 11- and 12-year-olds) and adults viewed a video, and their memory was assessed immediately, 1 day, or 6 weeks later (Experiment 1). There were large age-related differences in retention when participants were interviewed immediately and after 1 day, but after the 6-week delay, age-related differences in retention were minimal. In Experiment 2, 11- and 12-year-olds and adults were exposed to neutral, leading, and misleading postevent information 1 day or 6 weeks after they viewed the video. Exposure to misleading information increased the number of commission errors, particularly when participants were asked about peripheral aspects of the video. At both retention intervals, children were more likely than adults to incorporate the misleading postevent information into their subsequent verbal accounts. These findings indicate that age-related changes in the misinformation effect are not predicted by age-related changes in retention. PMID:11511130

  20. Spatial Working Memory Ability in Individuals at Ultra High Risk for Psychosis

    PubMed Central

    Goghari, Vina M.; Brett, Caroline; Tabraham, Paul; Johns, Louise; Valmaggia, Lucia; Broome, Matthew; Woolley, James; Bramon, Elvira; Howes, Oliver

    2014-01-01

    The goal of this investigation was to clarify the nature of spatial working memory difficulties in individuals at ultra high risk (UHR) for psychosis. We evaluated spatial working memory and intelligence in 96 individuals at UHR for psychosis, 28 patients with first episode psychosis (FEP), and 23 healthy controls. Fourteen UHR individuals developed a psychotic disorder during follow-up. Compared to controls, the UHR group was impaired in both the short-term maintenance of material and in the effective use of strategy, but not more immediate memory. These impairments were not as severe as those in the FEP group, as the UHR group performed better than the FEP group. A similar pattern of results was found for the intelligence measures. Discriminant function analyses demonstrated short-term maintenance of material significantly differentiated the UHR and healthy control groups even when accounting for full scale intelligence quotient (IQ); whereas full scale IQ significantly differentiated the UHR and FEP groups and FEP and control groups. Notably, within the UHR group, impaired spatial working memory performance was associated with lower global functioning, but not full scale IQ. The subgroup of UHR individuals who later developed psychosis was not significantly more impaired on any aspect of working memory performance than the group of UHR individuals who did not develop psychosis. Given, the relationship between spatial working memory deficits and functional outcome, these results indicate that cognitive remediation could be useful in individuals at UHR for psychosis to potentially improve functioning. PMID:24398256

  1. Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment☆

    PubMed Central

    Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence

    2013-01-01

    Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9–10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. PMID:23890692

  2. Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment.

    PubMed

    Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence

    2013-01-01

    Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9-10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. PMID:23890692

  3. Binding of Verbal and Spatial Features in Auditory Working Memory

    ERIC Educational Resources Information Center

    Maybery, Murray T.; Clissa, Peter J.; Parmentier, Fabrice B. R.; Leung, Doris; Harsa, Grefin; Fox, Allison M.; Jones, Dylan M.

    2009-01-01

    The present study investigated the binding of verbal identity and spatial location in the retention of sequences of spatially distributed acoustic stimuli. Study stimuli varying in verbal content and spatial location (e.g. V[subscript 1]S[subscript 1], V[subscript 2]S[subscript 2], V[subscript 3]S[subscript 3], V[subscript 4]S[subscript 4]) were…

  4. Augmented reality for the assessment of children's spatial memory in real settings.

    PubMed

    Juan, M-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio

    2014-01-01

    Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5-6 year olds) and primary school (7-8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement. PMID:25438146

  5. Augmented Reality for the Assessment of Children's Spatial Memory in Real Settings

    PubMed Central

    Juan, M.-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio

    2014-01-01

    Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5–6 year olds) and primary school (7–8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement. PMID:25438146

  6. Neural circuit basis of visuo-spatial working memory precision: a computational and behavioral study.

    PubMed

    Almeida, Rita; Barbosa, João; Compte, Albert

    2015-09-01

    The amount of information that can be retained in working memory (WM) is limited. Limitations of WM capacity have been the subject of intense research, especially in trying to specify algorithmic models for WM. Comparatively, neural circuit perspectives have barely been used to test WM limitations in behavioral experiments. Here we used a neuronal microcircuit model for visuo-spatial WM (vsWM) to investigate memory of several items. The model assumes that there is a topographic organization of the circuit responsible for spatial memory retention. This assumption leads to specific predictions, which we tested in behavioral experiments. According to the model, nearby locations should be recalled with a bias, as if the two memory traces showed attraction or repulsion during the delay period depending on distance. Another prediction is that the previously reported loss of memory precision for an increasing number of memory items (memory load) should vanish when the distances between items are controlled for. Both predictions were confirmed experimentally. Taken together, our findings provide support for a topographic neural circuit organization of vsWM, they suggest that interference between similar memories underlies some WM limitations, and they put forward a circuit-based explanation that reconciles previous conflicting results on the dependence of WM precision with load. PMID:26180122

  7. Sex Differences in Mental Rotation and Spatial Visualization Ability: Can They Be Accounted for by Differences in Working Memory Capacity?

    ERIC Educational Resources Information Center

    Kaufman, Scott Barry

    2007-01-01

    Sex differences in spatial ability are well documented, but poorly understood. In order to see whether working memory is an important factor in these differences, 50 males and 50 females performed tests of three-dimensional mental rotation and spatial visualization, along with tests of spatial and verbal working memory. Substantial differences…

  8. Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice

    ERIC Educational Resources Information Center

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…

  9. Isoflurane-Induced Spatial Memory Impairment in Mice is Prevented by the Acetylcholinesterase Inhibitor Donepezil

    PubMed Central

    Wang, Beilei; Xu, Huan; Li, Wen; Chen, Jie; Wang, Xiangrui

    2011-01-01

    Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA) for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg) or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2%) for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE), choline acetylase (ChAT) and α7 nicotinic receptor (α7-nAChR) were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or α7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane. PMID:22114680

  10. Isoflurane-induced spatial memory impairment in mice is prevented by the acetylcholinesterase inhibitor donepezil.

    PubMed

    Su, Diansan; Zhao, Yanxing; Wang, Beilei; Xu, Huan; Li, Wen; Chen, Jie; Wang, Xiangrui

    2011-01-01

    Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA) for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg) or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2%) for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE), choline acetylase (ChAT) and α7 nicotinic receptor (α7-nAChR) were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or α7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane. PMID:22114680

  11. Selective deficit of spatial short-term memory: Role of storage and rehearsal mechanisms.

    PubMed

    Bonnì, Sonia; Perri, Roberta; Fadda, Lucia; Tomaiuolo, Francesco; Koch, Giacomo; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2014-10-01

    We report the neuropsychological and MRI investigation of a patient (GP) who developed a selective impairment of spatial short-term memory (STM) following damage to the dorso-mesial areas of the right frontal lobe. We assessed in this patient spatial STM with an experimental procedure that evaluated immediate and 5-20 s delayed recall of verbal, visual and spatial stimuli. The patient scored significantly worse than normal controls on tests that required delayed recall of spatial data. This could not be ascribed to a deficit of spatial episodic long-term memory because amnesic patients performed normally on these tests. Conversely, the patient scored in the normal range on tests of immediate recall of verbal, visual and spatial data and tests of delayed recall of verbal and visual data. Comparison with a previously described patient who had a selective deficit in immediate spatial recall and an ischemic lesion that affected frontal and parietal dorso-mesial areas in the right hemisphere (Carlesimo GA, Perri R, Turriziani P, Tomaiuolo F, Caltagirone C. Remembering what but not where: independence of spatial and visual working memory in the human brain. Cortex. 2001 Sep; 37(4):519-34) suggests that the right parietal areas are involved in the short-term storage of spatial information and that the dorso-mesial regions of the right frontal underlie mechanisms for the delayed maintenance of the same data. PMID:25127485

  12. Age and gender-related differences in a spatial memory task in humans.

    PubMed

    León, Irene; Tascón, Laura; Cimadevilla, José Manuel

    2016-06-01

    Cognitive skills decline with age. Our ability to keep oriented in our surrounding environment was demonstrated to be influenced by factors like age and gender. Introduction of virtual reality based tasks improved assessment of spatial memory in humans. In this study, spatial orientation was assessed in a virtual memory task in order to determine the effect of aging and gender on navigational skills. Subjects from 45 to 74 years of age were organized in three groups (45-54, 55-64, 65-74 years old). Two levels of difficulty were considered. Results showed that males outperformed females in 65-74 years-old group. In addition to this, females showed a more noticeable poor performance in spatial memory than males, since memory differences appeared between all age groups. On the other hand, 65-74 year-old males showed an impaired performance in comparison with 45-54 year-old group. These results support that spatial memory becomes less accurate as we age and gender is an important factor influencing spatial orientation skills. PMID:26965569

  13. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition

    PubMed Central

    Miller, Adam M. P.; Vedder, Lindsey C.; Law, L. Matthew; Smith, David M.

    2014-01-01

    Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory. PMID:25140141

  14. Partially segregated neural networks for spatial and contextual memory in virtual navigation.

    PubMed

    Rauchs, Géraldine; Orban, Pierre; Balteau, Evelyne; Schmidt, Christina; Degueldre, Christian; Luxen, André; Maquet, Pierre; Peigneux, Philippe

    2008-01-01

    Finding our way in a previously learned, ecologically valid environment concurrently involves spatial and contextual cognitive operations. The former process accesses a cognitive map representing the spatial interactions between all paths in the environment. The latter accesses stored associations between landmark objects and their milieu. Here, we aimed at dissociating their neural basis in the context of memory-based virtual navigation. To do so, subjects freely explored a virtual town for 1 h, then were scanned using fMRI while retrieving their way between two locations, under four navigation conditions designed to probe separately or jointly the spatial and contextual memory components. Besides prominent commonalities found in a large hippocampo-neocortical network classically involved in topographical navigation, results yield evidence for a partial dissociation between the brain areas supporting spatial and contextual components of memory-based navigation. Performance-related analyses indicate that hippocampal activity mostly supports the spatial component, whereas parahippocampal activity primarily supports the contextual component. Additionally, the recruitment of contextual memory during navigation was associated with higher frontal, posterior parietal and lateral temporal activity. These results provide evidence for a partial segregation of the neural substrates of two crucial memory components in human navigation, whose combined involvement eventually leads to efficient navigation behavior within a learned environment. PMID:18240326

  15. Disentangling spatial perception and spatial memory in the hippocampus: a univariate and multivariate pattern analysis fMRI study

    PubMed Central

    Lee, Andy C. H.; Brodersen, Kay H.; Rudebeck, Sarah R.

    2013-01-01

    Although the role of the hippocampus in spatial cognition is well accepted, it is unclear whether its involvement is restricted to the mnemonic domain or also extends to perception. We used functional magnetic resonance imaging (fMRI) to scan neurologically healthy participants during a scene oddity judgment task that placed no explicit demand on long-term memory. Crucially, a surprise recognition test was administered after scanning so that each trial could be categorized not only according to oddity accuracy but also subsequent memory. Univariate analyses showed significant hippocampal activity in association with correct oddity judgment, whereas greater parahippocampal place area (PPA) activity was observed during incorrect oddity trials, both irrespective of subsequent recognition performance. Consistent with this, multivariate pattern analyses revealed that a linear support vector machine was able to distinguish correct from incorrect oddity trials on the basis of activity in voxels within the hippocampus or PPA. Although no significant regions of activity were identified by univariate analyses in association with memory performance, a classifier was able to predict subsequent memory using voxels in either the hippocampus or PPA. Our findings are consistent with the idea that the hippocampus is important for processes beyond long-term declarative memory and that this structure may also play a role in complex spatial perception. PMID:23016766

  16. Reference Frames during the Acquisition and Development of Spatial Memories

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; McNamara, Timothy P.

    2010-01-01

    Four experiments investigated the role of reference frames during the acquisition and development of spatial knowledge, when learning occurs incrementally across views. In two experiments, participants learned overlapping spatial layouts. Layout 1 was first studied in isolation, and Layout 2 was later studied in the presence of Layout 1. The…

  17. Effects of testosterone on spatial learning and memory in adult male rats

    PubMed Central

    Spritzer, Mark D.; Daviau, Emily D.; Coneeny, Meagan K.; Engelman, Shannon M.; Prince, W. Tyler; Rodriguez-Wisdom, Karlye N.

    2011-01-01

    A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting seven days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects. PMID:21295035

  18. Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats.

    PubMed

    Pardo, Joaquín; Uriarte, Maia; Cónsole, Gloria M; Reggiani, Paula C; Outeiro, Tiago F; Morel, Gustavo R; Goya, Rodolfo G

    2016-08-01

    In rats, learning and memory performance decline during aging, which makes this rodent species a suitable model to evaluate therapeutic strategies of potential value for correcting age-related cognitive deficits. Some of these strategies involve neurotrophic factors like insulin-like growth factor-I (IGF-I), a powerful neuroprotective molecule in the brain. Here, we implemented 18-day long intracerebroventricular (ICV) IGF-I gene therapy in 28 months old Sprague-Dawley female rats, and assessed spatial memory performance in the Barnes maze. We also studied hippocampal morphology using an unbiased stereological approach. Adenovectors expressing the gene for rat IGF-I or the reporter DsRed were used. Cerebrospinal fluid (CSF) samples were taken and IGF-I levels determined by radioimmunoassay. At the end of the study, IGF-I levels in the CSF were significantly higher in the experimental group than in the DsRed controls. After treatment, the IGF-I group showed a significant improvement in spatial memory accuracy as compared with DsRed counterparts. In the dentate gyrus (DG) of the hippocampus, the IGF-I group showed a higher number of immature neurons than the DsRed controls. The treatment increased hippocampal astrocyte branching and reduced their number in the hippocampal stratum radiatum. We conclude that the ependymal route is an effective approach to increase CSF levels of IGF-I and that this strategy improves the accuracy of spatial memory in aging rats. The favorable effect of the treatment on DG neurogenesis and astrocyte branching in the stratum radiatum may contribute to improving memory performance in aging rats. PMID:27188415

  19. Binding of Visual and Spatial Short-Term Memory in Williams Syndrome and Moderate Learning Disability

    ERIC Educational Resources Information Center

    Jarrold, Christopher; Phillips, Caroline; Baddeley, Alan D

    2007-01-01

    A main aim of this study was to test the claim that individuals with Williams syndrome have selectively impaired memory for spatial as opposed to visual information. The performance of 16 individuals with Williams syndrome (six males, 10 females; mean age 18y 7mo [SD 7y 6mo], range 9y 1mo-30y 7mo) on tests of short-term memory for item and…

  20. Exposure to radiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529

  1. Exploratory study of the relations between spatial ability and drawing from memory.

    PubMed

    Czarnolewski, Mark Y; Eliot, John

    2012-04-01

    Test scores of 119 students, attending either a public four-year college or a technical school, were related to their proportionality and detail drawing scores on the Memory for Designs Test. In regression models, the ETS Maze Tracing, Eliot-Price Mental Rotations, and Bender-Gestalt tests were consistent predictors of proportionality scores, with the latter two tests uniquely related to these. The ETS Shapes Memory Test and the Form Board Test were the strongest predictors for detail accuracy scores. The Shapes test predicted proportionality when the CTY Visual Memory Test BB was excluded. The models then provided support for the hypothesis that drawing designs from memory, a critical skill in drawing, regardless of whether one focuses on accuracy for proportionality scores or for detail scores, is jointly related to the measures of recognition, production, and traditional spatial ability measures. This study identified multifaceted skills in drawing from memory. PMID:22755465

  2. Disturbance effect of music on processing of verbal and spatial memories.

    PubMed

    Iwanaga, Makoto; Ito, Takako

    2002-06-01

    The purpose of the present study was to examine the disturbance effect of music on performances of memory tasks. Subjects performed a verbal memory task and a spatial memory task in 4 sound conditions, including the presence of vocal music, instrumental music, a natural sound (murmurings of a stream), and no music. 47 undergraduate volunteers were randomly assigned to perform tasks under each condition. Perceived disturbance was highest under the vocal music condition regardless of the type of task. A disturbance in performance by music was observed only with the verbal memory task under the vocal and the instrumental music conditions. These findings were discussed from the perspectives of the working memory hypothesis and the changing state model. PMID:12186247

  3. Memory efficient and constant time 2D-recursive spatial averaging filter for embedded implementations

    NASA Astrophysics Data System (ADS)

    Gan, Qifeng; Seoud, Lama; Ben Tahar, Houssem; Langlois, J. M. Pierre

    2016-04-01

    Spatial Averaging Filters (SAF) are extensively used in image processing for image smoothing and denoising. Their latest implementations have already achieved constant time computational complexity regardless of kernel size. However, all the existing O(1) algorithms require additional memory for temporary data storage. In order to minimize memory usage in embedded systems, we introduce a new two-dimensional recursive SAF. It uses previous resultant pixel values along both rows and columns to calculate the current one. It can achieve constant time computational complexity without using any additional memory usage. Experimental comparisons with previous SAF implementations shows that the proposed 2D-Recursive SAF does not require any additional memory while offering a computational time similar to the most efficient existing SAF algorithm. These features make it especially suitable for embedded systems with limited memory capacity.

  4. Tests of the Dynamic Field Theory and the Spatial Precision Hypothesis: Capturing a Qualitative Developmental Transition in Spatial Working Memory

    PubMed Central

    Schutte, Anne R.; Spencer, John P.

    2009-01-01

    This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between three and six years of age there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds’ spatial recall responses are biased toward reference axes after short memory delays, whereas 6-year-olds’ responses are biased away from reference axes. According to the DFT and the SPH, quantitative improvements over development in the precision of excitatory and inhibitory working memory processes lead to this qualitative shift. Simulations of the DFT in Experiment 1 predict that improvements in precision should cause the spatial range of targets attracted toward a reference axis to narrow gradually over development with repulsion emerging and gradually increasing until responses to most targets show biases away from the axis. Results from Experiment 2 with 3- to 5-year-olds support these predictions. Simulations of the DFT in Experiment 3 quantitatively fit the empirical results and offer insights into the neural processes underlying this developmental change. PMID:19968430

  5. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    PubMed Central

    Wong, Ling M; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. We examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with 22q11.2DS (n = 47) and typically developing controls (n = 49) ages 6–15 years saw images within a grid and after a delay, then indicated the positions of the images in the correct temporal order. Children with 22q11.2DS made more spatial and temporal errors than controls. Females with 22q11.2DS made more spatial and temporal errors than males. These results extend findings of impaired spatiotemporal processing into the memory domain in 22q11.2DS by documenting their influence on working memory performance. PMID:24679349

  6. Survival is linked with reaction time and spatial memory in African striped mice.

    PubMed

    Maille, Audrey; Schradin, Carsten

    2016-08-01

    Studying the association between fitness and cognition in free-living animals is a fundamental step in the elucidation of the evolution of cognition. We assessed whether survival until the onset of the breeding season was related to reaction time or spatial memory in the African striped mouse Rhabdomys pumilio, a rodent that has to survive summer drought before breeding. We tested a total of 90 individuals at the beginning of summer. Female survival was related to a faster response to predation stimuli. Male survival increased with greater spatial memory, possibly because it is important for males to remember the configuration of the environment during dispersal. This study revealed that individual variation in reaction time and spatial memory can be related to survival probability, which is important for understanding the selection pressures acting on basic cognitive traits. PMID:27484646

  7. Netrin-1 improves spatial memory and synaptic plasticity impairment following global ischemia in the rat.

    PubMed

    Bayat, Mahnaz; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Goshadrou, Fatemeh; Ronaghi, Abdolaziz; Mehdizadeh, Mehdi

    2012-05-01

    Cerebral ischemia, which is the second and most common cause of mortality, affects millions of individuals worldwide. The present study was performed to investigate whether intrahippocampal administration of netrin-1 could improve spatial memory impairment in radial arm maze task and restore long-term potentiation (LTP) in 4-vessel occlusion model of global ischemia. The results showed that intrahippocampal infusion of nerin-1 24 h after ischemia (at both doses of 400 and 800 ng) significantly ameliorated spatial memory impairment and at a dose of 800 ng was capable to improve synaptic dysfunction as observed by recovery of population spike component of basal evoked potential and LTP through enhancement of excitability and normalization of paired pulse response. Taken together, the present study shows that netrin-1 dose-dependently ameliorates spatial memory impairment and improves synaptic dysfunction as observed by recovery of population spike component of basal evoked potential and LTP in rats with global ischemia. PMID:22459051

  8. The Focus of Spatial Attention Determines the Number and Precision of Face Representations in Working Memory.

    PubMed

    Towler, John; Kelly, Maria; Eimer, Martin

    2016-06-01

    The capacity of visual working memory for faces is extremely limited, but the reasons for these limitations remain unknown. We employed event-related brain potential measures to demonstrate that individual faces have to be focally attended in order to be maintained in working memory, and that attention is allocated to only a single face at a time. When 2 faces have to be memorized simultaneously in a face identity-matching task, the focus of spatial attention during encoding predicts which of these faces can be successfully maintained in working memory and matched to a subsequent test face. We also show that memory representations of attended faces are maintained in a position-dependent fashion. These findings demonstrate that the limited capacity of face memory is directly linked to capacity limits of spatial attention during the encoding and maintenance of individual face representations. We suggest that the capacity and distribution of selective spatial attention is a dynamic resource that constrains the capacity and fidelity of working memory for faces. PMID:25903465

  9. Effects of early and late nocturnal sleep on priming and spatial memory.

    PubMed

    Plihal, W; Born, J

    1999-09-01

    A wordstem priming task (nondeclarative memory), and a mental spatial rotation task (declarative memory) were presented to subjects of an experimental "sleep" group (n = 11) and of a "wake" control group (n = 10). Repetition priming effects and recall of spatial memory were tested after 3-hr retention intervals, which followed learning and were placed either in the early or in the late half of the night. Sleep group subjects slept during the retention intervals while subjects of the wake group stayed awake. As expected, early retention sleep was dominated by slow wave sleep (SWS), whereas rapid eye movement (REM) sleep prevailed during late retention sleep. After early retention sleep, recall of spatial memory was superior to that after late retention sleep (p < 0.01), and also to that after retention intervals of wakefulness (p < 0.05). In contrast, priming was more effective after late than early retention sleep (p < 0.05). It appears that early sleep dominated by SWS facilitates consolidation of declarative memory whereas late sleep dominated by REM sleep facilitates consolidation of nondeclarative memory. PMID:10442025

  10. Changes in spatial memory and BDNF expression to simultaneous dietary restriction and forced exercise.

    PubMed

    Khabour, Omar F; Alzoubi, Karem H; Alomari, Mahmoud A; Alzubi, Mohammad A

    2013-01-01

    Previous literature suggests that learning and memory formation can be influenced by diet and exercise. In the current study, we investigated the combined effects of forced swimming exercise (FSE) and every other day fasting (EODF) on spatial memory formation and on the levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of Wistar male rats. The radial arm water maze (RAWM) paradigm was used to assess changes in learning and memory formation, whereas ELISA assay was used to measure BDNF protein levels. The FSE and/or EODF were simultaneously instituted for 6 weeks. Results show that FSE improved learning, short-term as well as long-term memory formation, and significantly increased BDNF protein in the hippocampus (p<0.05). However, EODF had no effect on either spatial learning and memory formation or the levels of hippocamapal BDNF protein (p>0.05). In addition, EODF did not modulate beneficial effect of swimming exercise on cognitive function (p>0.05). Thus exercise enhanced, while EODF did not affect spatial learning and memory formation. PMID:23000024

  11. Dipeptide preparation Noopept prevents scopolamine-induced deficit of spatial memory in BALB/c mice.

    PubMed

    Belnik, A P; Ostrovskaya, R U; Poletaeva, I I

    2007-04-01

    The effect of original nootropic preparation Noopept on learning and long-term memory was studied with BALB/c mice. Scopolamine (1 mg/kg) impaired long-term memory trace, while Noopept (0.5 mg/kg) had no significant effect. Noopept completely prevented the development of cognitive disorders induced by scopolamine (blockade of muscarinic cholinergic receptors). Our results confirmed the presence of choline-positive effect in dipeptide piracetam analogue Noopept on retrieval of learned skill of finding a submerged platform (spatial memory). We conclude that the effectiveness of this drug should be evaluated in patients with Alzheimer's disease. PMID:18214292

  12. Disrupting Jagged1-Notch signaling impairs spatial memory formation in adult mice.

    PubMed

    Sargin, Derya; Botly, Leigh C P; Higgs, Gemma; Marsolais, Alexander; Frankland, Paul W; Egan, Sean E; Josselyn, Sheena A

    2013-07-01

    It is well-known that Notch signaling plays a critical role in brain development and growing evidence implicates this signaling pathway in adult synaptic plasticity and memory formation. The Notch1 receptor is activated by two subclasses of ligands, Delta-like (including Dll1 and Dll4) and Jagged (including Jag1 and Jag2). Ligand-induced Notch1 receptor signaling is modulated by a family of Fringe proteins, including Lunatic fringe (Lfng). Although Dll1, Jag1 and Lfng are critical regulators of Notch signaling, their relative contribution to memory formation in the adult brain is unknown. To investigate the roles of these important components of Notch signaling in memory formation, we examined spatial and fear memory formation in adult mice with reduced expression of Dll1, Jag1, Lfng and Dll1 plus Lfng. We also examined motor activity, anxiety-like behavior and sensorimotor gating using the acoustic startle response in these mice. Of the lines of mutant mice tested, we found that only mice with reduced Jag1 expression (mice heterozygous for a null mutation in Jag1, Jag1(+/-)) showed a selective impairment in spatial memory formation. Importantly, all other behavior including open field activity, conditioned fear memory (both context and discrete cue), acoustic startle response and prepulse inhibition, was normal in this line of mice. These results provide the first in vivo evidence that Jag1-Notch signaling is critical for memory formation in the adult brain. PMID:23567106

  13. Reprint of: disrupting Jagged1-Notch signaling impairs spatial memory formation in adult mice.

    PubMed

    Sargin, Derya; Botly, Leigh C P; Higgs, Gemma; Marsolais, Alexander; Frankland, Paul W; Egan, Sean E; Josselyn, Sheena A

    2013-10-01

    It is well-known that Notch signaling plays a critical role in brain development and growing evidence implicates this signaling pathway in adult synaptic plasticity and memory formation. The Notch1 receptor is activated by two subclasses of ligands, Delta-like (including Dll1 and Dll4) and Jagged (including Jag1 and Jag2). Ligand-induced Notch1 receptor signaling is modulated by a family of Fringe proteins, including Lunatic fringe (Lfng). Although Dll1, Jag1 and Lfng are critical regulators of Notch signaling, their relative contribution to memory formation in the adult brain is unknown. To investigate the roles of these important components of Notch signaling in memory formation, we examined spatial and fear memory formation in adult mice with reduced expression of Dll1, Jag1, Lfng and Dll1 plus Lfng. We also examined motor activity, anxiety-like behavior and sensorimotor gating using the acoustic startle response in these mice. Of the lines of mutant mice tested, we found that only mice with reduced Jag1 expression (mice heterozygous for a null mutation in Jag1, Jag1(+/-)) showed a selective impairment in spatial memory formation. Importantly, all other behavior including open field activity, conditioned fear memory (both context and discrete cue), acoustic startle response and prepulse inhibition, was normal in this line of mice. These results provide the first in vivo evidence that Jag1-Notch signaling is critical for memory formation in the adult brain. PMID:23850596

  14. Variable impact of chronic stress on spatial learning and memory in BXD mice.

    PubMed

    Shea, Chloe J A; Carhuatanta, Kimberly A K; Wagner, Jessica; Bechmann, Naomi; Moore, Raquel; Herman, James P; Jankord, Ryan

    2015-10-15

    The effects of chronic stress on learning are highly variable across individuals. This variability stems from gene-environment interactions. However, the mechanisms by which stress affects genetic predictors of learning are unclear. Thus, we aim to determine whether the genetic pathways that predict spatial memory performance are altered by previous exposure to chronic stress. Sixty-two BXD recombinant inbred strains of mice, as well as parent strains C57BL/6J and DBA/2J, were randomly assigned as behavioral control or to a chronic variable stress paradigm and then underwent behavioral testing to assess spatial memory and learning performance using the Morris water maze. Quantitative trait loci (QTL) mapping was completed for average escape latency times for both control and stress animals. Loci on chromosomes 5 and 10 were found in both control and stress environmental populations; eight additional loci were found to be unique to either the control or stress environment. In sum, results indicate that certain genetic loci predict spatial memory performance regardless of prior stress exposure, while exposure to stress also reveals unique genetic predictors of training during the memory task. Thus, we find that genetic predictors contributing to spatial learning and memory are susceptible to the presence of chronic stress. PMID:26079812

  15. SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).

    PubMed

    Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T

    2016-01-01

    In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity. PMID:26870981

  16. Reentrainment Impairs Spatial Working Memory until Both Activity Onset and Offset Reentrain.

    PubMed

    Ruby, Norman F; Patton, Danica F; Bane, Shalmali; Looi, David; Heller, H Craig

    2015-10-01

    Compression of the active phase (α) during reentrainment to phase-shifted light-dark (LD) cycles is a common feature of circadian systems, but its functional consequences have not been investigated. This study tested whether α compression in Siberian hamsters (Phodopus sungorus) impaired their spatial working memory as assessed by spontaneous alternation (SA) behavior in a T-maze. Animals were exposed to a 1- or 3-h phase delay of the LD cycle (16 h light/8 h dark). SA behavior was tested at 4 multiday intervals after the phase shift, and α was quantified for those days. All animals failed at the SA task while α was decompressing but recovered spatial memory ability once α returned to baseline levels. A second experiment exposed hamsters to a 2-h light pulse either early or late at night to compress α without phase-shifting the LD cycle. SA behavior was impaired until α decompressed to baseline levels. In a third experiment, α was compressed by changing photoperiod (LD 16:8, 18:6, 20:4) to see if absolute differences in α were related to spatial memory ability. Animals performed the SA task successfully in all 3 photoperiods. These data show that the dynamic process of α compression and decompression impairs spatial working memory and suggests that α modulation is a potential biomarker for assessing the impact of transmeridian flight or shift work on memory. PMID:26224657

  17. Sex-dependent modulation of age-related cognitive decline by the L-type calcium channel gene Cacna1c (Cav 1.2).

    PubMed

    Zanos, Panos; Bhat, Shambhu; Terrillion, Chantelle E; Smith, Robert J; Tonelli, Leonardo H; Gould, Todd D

    2015-10-01

    Increased calcium influx through L-type voltage-gated calcium channels has been implicated in the neuronal dysfunction underlying age-related memory declines. The present study aimed to test the specific role of Cacna1c (which encodes Cav 1.2) in modulating age-related memory dysfunction. Short-term, spatial and contextual/emotional memory was evaluated in young and aged, wild-type as well as mice with one functional copy of Cacna1c (haploinsufficient), using the novel object recognition, Y-maze and passive avoidance tasks, respectively. Hippocampal expression of Cacna1c mRNA was measured by quantitative polymerase chain reaction. Ageing was associated with object recognition and contextual/emotional memory deficits, and a significant increase in hippocampal Cacna1c mRNA expression. Cacna1c haploinsufficiency was associated with decreased Cacna1c mRNA expression in both young and old animals. However, haploinsufficient mice did not manifest an age-related increase in expression of this gene. Behaviourally, Cacna1c haploinsufficiency prevented object recognition deficits during ageing in both male and female mice. A significant correlation between higher Cacna1c levels and decreased object recognition performance was observed in both sexes. Also, a sex-dependent protective role of decreased Cacna1c levels in contextual/emotional memory loss has been observed, specifically in male mice. These data provide evidence for an association between increased hippocampal Cacna1c expression and age-related cognitive decline. Additionally, they indicate an interaction between the Cacna1c gene and sex in the modulation of age-related contextual memory declines. PMID:25989111

  18. Bangle (Zingiber purpureum) Improves Spatial Learning, Reduces Deficits in Memory, and Promotes Neurogenesis in the Dentate Gyrus of Senescence-Accelerated Mouse P8.

    PubMed

    Nakai, Megumi; Iizuka, Michiro; Matsui, Nobuaki; Hosogi, Kazuko; Imai, Akiko; Abe, Noriaki; Shiraishi, Hisashi; Hirata, Ayumu; Yagi, Yusuke; Jobu, Kohei; Yokota, Junko; Kato, Eishin; Hosoda, Shinya; Yoshioka, Saburo; Harada, Kenichi; Kubo, Miwa; Fukuyama, Yoshiyasu; Miyamura, Mitsuhiko

    2016-05-01

    Bangle (Zingiber purpureum) is a tropical ginger that is used as a spice in Southeast Asia. Phenylbutenoid dimers isolated from Bangle have exhibited neurotrophic effects in primary cultured rat cortical neurons and PC12 cells. Furthermore, chronic treatment with phenylbutenoid dimers enhances hippocampal neurogenesis in olfactory bulbectomized mice. In this study, we investigated the effects of Bangle extract on behavior and hippocampal neurogenesis in vivo. SAMP8 mice, which are an established model for accelerated aging, with age-related learning and memory impairments, were given a Bangle-containing diet for 1 month, and subsequent behavioral tests and immunohistochemistry for Ki67, a proliferating cell marker, were performed. We found that the Bangle-containing diet improved spatial learning and memory deficits in the Morris water maze and significantly increased the numbers of Ki67-positive cells in the dentate gyrus of the SAMP8 mice. In addition, the Bangle extract exhibited a neurotrophin-like activity as indicated by the induction of neurite sprouting in PC12 cells. Our results suggest that Bangle is beneficial for the prevention of age-related progression of cognitive impairment. PMID:26829513

  19. Perinatal choline treatment modifies the effects of a visuo-spatial attractive cue upon spatial memory in naive adult rats.

    PubMed

    Brandner, Catherine

    2002-02-22

    The improvement in memory functions by choline supplementation is hypothesized to be due to increased synthesis and release of acetylcholine in the brain. We have found previously that combined pre- and postnatal choline supplementation results in long-lasting facilitation of spatial memory in juvenile rats when training was conducted in presence of a local salient cue. The present work aims to analyze the effects of peri- and postnatal choline supplementation on spatial abilities of naive adult rats. Treated rats were trained in various cued procedures of the Morris navigation task of 5 months of age. The treatment had a specific effect of reducing the escape latency of the rats when the platform was at a fixed location in space and indicated by a suspended cue. This effect was associated with an improved spatial memory when the cue and the platform were removed. In this condition, the control rats showed impaired spatial discrimination following the removal of the target cue, most likely due to an overshadowing of the distant environmental cues. This impairment was not observed in the treated rats. Further training with the suspended cue at unpredictable places in the pool revealed longer escape latencies in the control than in the treated rats suggesting that this procedure induced a selective perturbation of the normal but not of the treated rats. A special probe trial with the cue at an irrelevant location and no escape platform revealed a significant bias of the control rats towards the cue, but in treated rats towards the uncued spatial escape position. This behavioral dissociation suggests that a salient cue associated with the target induces an alternative "non spatial" guidance strategy in normal rats, with the risk of overshadowing attention towards more distant spatial cues. As a consequence, the improved escape in the presence of the cue in the treated rats is associated with a stronger memory of the spatial position following disappearance of the cue

  20. Both here and there: Simultaneous expression of autonomous spatial memories in rats

    PubMed Central

    Fenton, A. A.; Wesierska, M.; Kaminsky, Yu; Bures, J.

    1998-01-01

    Foraging rats learned to avoid footshock that was present in a part of a circular arena that was either stable or rotating slowly in a lighted room. The rotation dissociated spatial information in the separate reference frames of the room and arena. After learning to avoid the shocked region in either condition, in the absence of shock, memory for this place was expressed by simultaneous avoidance of an area defined in the reference frame of the room as well as of an area defined in the reference frame of the rotating arena. Spatial memories in these distinct reference frames were acquired, retrieved, and extinguished autonomously. PMID:9736765

  1. Distinct pathways for rule-based retrieval and spatial mapping of memory representations in hippocampal neurons

    PubMed Central

    Navawongse, Rapeechai; Eichenbaum, Howard

    2013-01-01

    Hippocampal neurons encode events within the context in which they occurred, a fundamental feature of episodic memory. Here we explored the sources of event and context information represented by hippocampal neurons during the retrieval of object associations in rats. Temporary inactivation of the medial prefrontal cortex differentially reduced the selectivity of rule-based object associations represented by hippocampal neuronal firing patterns but did not affect spatial firing patterns. By contrast, inactivation of the medial entorhinal cortex resulted in a pervasive reorganization of hippocampal mappings of spatial context and events. These results suggest distinct and cooperative prefrontal and medial temporal mechanisms in memory representation. PMID:23325238

  2. Prospective study of Dietary Approaches to Stop Hypertension– and Mediterranean-style dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging123

    PubMed Central

    Munger, Ronald G; Cutler, Adele; Quach, Anna; Bowles, Austin; Corcoran, Christopher; Tschanz, JoAnn T; Norton, Maria C; Welsh-Bohmer, Kathleen A

    2013-01-01

    Background: Healthy dietary patterns may protect against age-related cognitive decline, but results of studies have been inconsistent. Objective: We examined associations between Dietary Approaches to Stop Hypertension (DASH)– and Mediterranean-style dietary patterns and age-related cognitive change in a prospective, population-based study. Design: Participants included 3831 men and women ≥65 y of age who were residents of Cache County, UT, in 1995. Cognitive function was assessed by using the Modified Mini-Mental State Examination (3MS) ≤4 times over 11 y. Diet-adherence scores were computed by summing across the energy-adjusted rank-order of individual food and nutrient components and categorizing participants into quintiles of the distribution of the diet accordance score. Mixed-effects repeated-measures models were used to examine 3MS scores over time across increasing quintiles of dietary accordance scores and individual food components that comprised each score. Results: The range of rank-order DASH and Mediterranean diet scores was 1661–25,596 and 2407–26,947, respectively. Higher DASH and Mediterranean diet scores were associated with higher average 3MS scores. People in quintile 5 of DASH averaged 0.97 points higher than those in quintile 1 (P = 0.001). The corresponding difference for Mediterranean quintiles was 0.94 (P = 0.001). These differences were consistent over 11 y. Higher intakes of whole grains and nuts and legumes were also associated with higher average 3MS scores [mean quintile 5 compared with 1 differences: 1.19 (P < 0.001), 1.22 (P < 0.001), respectively]. Conclusions: Higher levels of accordance with both the DASH and Mediterranean dietary patterns were associated with consistently higher levels of cognitive function in elderly men and women over an 11-y period. Whole grains and nuts and legumes were positively associated with higher cognitive functions and may be core neuroprotective foods common to various healthy plant

  3. Memory loss in a nonnavigational spatial task after hippocampal inactivation in monkeys

    PubMed Central

    Forcelli, Patrick A.; Palchik, Guillermo; Leath, Taylor; DesJardin, Jacqueline T.; Gale, Karen; Malkova, Ludise

    2014-01-01

    The hippocampus has a well-documented role for spatial navigation across species, but its role for spatial memory in nonnavigational tasks is uncertain. In particular, when monkeys are tested in tasks that do not require navigation, spatial memory seems unaffected by lesions of the hippocampus. However, the interpretation of these results is compromised by long-term compensatory adaptation occurring in the days and weeks after lesions. To test the hypothesis that hippocampus is necessary for nonnavigational spatial memory, we selected a technique that avoids long-term compensatory adaptation. We transiently disrupted hippocampal function acutely at the time of testing by microinfusion of the glutamate receptor antagonist kynurenate. Animals were tested on a self-ordered spatial memory task, the Hamilton Search Task. In the task, animals are presented with an array of eight boxes, each containing a food reinforcer; one box may be opened per trial, with trials separated by a delay. Only the spatial location of the boxes serves as a cue to solve the task. The optimal strategy is to open each box once without returning to previously visited locations. Transient inactivation of hippocampus reduced performance to chance levels in a delay-dependent manner. In contrast, no deficits were seen when boxes were marked with nonspatial cues (color). These results clearly document a role for hippocampus in nonnavigational spatial memory in macaques and demonstrate the efficacy of pharmacological inactivation of this structure in this species. Our data bring the role of the hippocampus in monkeys into alignment with the broader framework of hippocampal function. PMID:24591610

  4. Spatial working memory for locations specified by vision and audition: testing the amodality hypothesis.

    PubMed

    Loomis, Jack M; Klatzky, Roberta L; McHugh, Brendan; Giudice, Nicholas A

    2012-08-01

    Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal. PMID:22552825

  5. Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation.

    PubMed

    Adasme, Tatiana; Haeger, Paola; Paula-Lima, Andrea C; Espinoza, Italo; Casas-Alarcón, M Mercedes; Carrasco, M Angélica; Hidalgo, Cecilia

    2011-02-15

    Ryanodine receptors (RyR) amplify activity-dependent calcium influx via calcium-induced calcium release. Calcium signals trigger postsynaptic pathways in hippocampal neurons that underlie synaptic plasticity, learning, and memory. Recent evidence supports a role of the RyR2 and RyR3 isoforms in these processes. Along with calcium signals, brain-derived neurotrophic factor (BDNF) is a key signaling molecule for hippocampal synaptic plasticity and spatial memory. Upon binding to specific TrkB receptors, BDNF initiates complex signaling pathways that modify synaptic structure and function. Here, we show that BDNF-induced remodeling of hippocampal dendritic spines required functional RyR. Additionally, incubation with BDNF enhanced the expression of RyR2, RyR3, and PKMζ, an atypical protein kinase C isoform with key roles in hippocampal memory consolidation. Consistent with their increased RyR protein content, BDNF-treated neurons generated larger RyR-mediated calcium signals than controls. Selective inhibition of RyR-mediated calcium release with inhibitory ryanodine concentrations prevented the PKMζ, RyR2, and RyR3 protein content enhancement induced by BDNF. Intrahippocampal injection of BDNF or training rats in a spatial memory task enhanced PKMζ, RyR2, RyR3, and BDNF hippocampal protein content, while injection of ryanodine at concentrations that stimulate RyR-mediated calcium release improved spatial memory learning and enhanced memory consolidation. We propose that RyR-generated calcium signals are key features of the complex neuronal plasticity processes induced by BDNF, which include increased expression of RyR2, RyR3, and PKMζ and the spine remodeling required for spatial memory formation. PMID:21282625

  6. Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation

    PubMed Central

    Adasme, Tatiana; Haeger, Paola; Paula-Lima, Andrea C.; Espinoza, Italo; Casas-Alarcón, M. Mercedes; Carrasco, M. Angélica; Hidalgo, Cecilia

    2011-01-01

    Ryanodine receptors (RyR) amplify activity-dependent calcium influx via calcium-induced calcium release. Calcium signals trigger postsynaptic pathways in hippocampal neurons that underlie synaptic plasticity, learning, and memory. Recent evidence supports a role of the RyR2 and RyR3 isoforms in these processes. Along with calcium signals, brain-derived neurotrophic factor (BDNF) is a key signaling molecule for hippocampal synaptic plasticity and spatial memory. Upon binding to specific TrkB receptors, BDNF initiates complex signaling pathways that modify synaptic structure and function. Here, we show that BDNF-induced remodeling of hippocampal dendritic spines required functional RyR. Additionally, incubation with BDNF enhanced the expression of RyR2, RyR3, and PKMζ, an atypical protein kinase C isoform with key roles in hippocampal memory consolidation. Consistent with their increased RyR protein content, BDNF-treated neurons generated larger RyR-mediated calcium signals than controls. Selective inhibition of RyR-mediated calcium release with inhibitory ryanodine concentrations prevented the PKMζ, RyR2, and RyR3 protein content enhancement induced by BDNF. Intrahippocampal injection of BDNF or training rats in a spatial memory task enhanced PKMζ, RyR2, RyR3, and BDNF hippocampal protein content, while injection of ryanodine at concentrations that stimulate RyR-mediated calcium release improved spatial memory learning and enhanced memory consolidation. We propose that RyR-generated calcium signals are key features of the complex neuronal plasticity processes induced by BDNF, which include increased expression of RyR2, RyR3, and PKMζ and the spine remodeling required for spatial memory formation. PMID:21282625

  7. Spatial learning and memory in the tortoise (Geochelone carbonaria).

    PubMed

    Wilkinson, Anna; Chan, Hui-Minn; Hall, Geoffrey

    2007-11-01

    A single tortoise (Geochelone carbonaria) was trained in an eight-arm radial maze, with the apparatus and general procedures modeled on those used to demonstrate spatial learning in rats. The tortoise learned to perform reliably above chance, preferentially choosing baited arms, rather than returning to arms previously visited on a trial. Test sessions that examined control by olfactory cues revealed that they did not affect performance. No systematic, stereotyped response patterns were evident. In spite of differences in brain structure, the tortoise showed spatial learning abilities comparable to those observed in mammals. PMID:18085925

  8. The brain uses efference copy information to optimise spatial memory.

    PubMed

    Gonzalez, C C; Burke, M R

    2013-01-01

    Does a motor response to a target improve the subsequent recall of the target position or can we simply use peripheral position information to guide an accurate response? We suggest that a motor plan of the hand can be enhanced with actual motor and efference copy feedback (GoGo trials), which is absent in the passive observation of a stimulus (NoGo trials). To investigate this effect during eye and hand coordination movements, we presented stimuli in two formats (memory guided or visually guided) under three modality conditions (eyes only, hands only (with eyes fixated), or eyes and hand together). We found that during coordinated movements, both the eye and hand response times were facilitated when efference feedback of the movement was provided. Furthermore, both eye and hand movements to remembered locations were significantly more accurate in the GoGo than in the NoGo trial types. These results reveal that an efference copy of a motor plan enhances memory for a location that is not only observed in eye movements, but also translated downstream into a hand movement. These results have significant implications on how we plan, code and guide behavioural responses, and how we can optimise accuracy and timing to a given target. PMID:23073714

  9. Effects of chronic alcohol consumption on spatial reference and working memory tasks.

    PubMed

    Santín, L J; Rubio, S; Begega, A; Arias, J L

    2000-02-01

    The aim of this work was to determine the spatial memory impairments induced by chronic alcohol consumption in rats. The alcoholization process began on the 21st postnatal day and alcohol concentrations were gradually increased to reach a concentration of 20% that was maintained for 4 mon. Behavioral tests were performed in the Morris Water Maze (MWM). The first study assessed the effects of chronic alcohol intake on two reference memory tasks (a place learning with multiple trials and a new place learning carried out in the same experimental context). Alcohol-treated animals presented no overall impairment in their ability to process spatial information. Deficits were restricted to reduced behavioral flexibility in spatial strategies. The second study assessed working memory in two tasks in which information about platform location was only valid for one trial. In the first working memory task, the animals had to perform one trial per day and in the second task they were submitted to four trials per day. At the end of the second experiment, all animals were trained in a visual-cued task. In the second experiment, the most important deficits in alcohol-treated animals occur in spatial working memory tasks, and this impairment was independent of the intertrial interval used. In the second spatial working memory task, performance of the alcohol-treated animals in the earlier trials affected their performance in subsequent trials, suggesting that a process of proactive interference had taken place. The visual-cued task demonstrated that these behavioral impairments were produced without visuoperceptive impairments. PMID:10719794

  10. Spatial memory of domestic dogs (Canis familiaris) for hidden objects in a detour task.

    PubMed

    Fiset, Sylvain; Beaulieu, Claude; LeBlanc, Valérie; Dubé, Lucie

    2007-10-01

    Spatial memory of domestic dogs (Canis familiaris) for hidden objects was investigated via a visible displacement problem of object permanence with a detour paradigm. Experiment 1 showed that dogs were able to spontaneously locate a disappearing object in a detour situation. In Experiments 2 and 3, dead reckoning and allocentric spatial information were put in conflict. Results revealed that dogs simultaneously encoded both sources of information when they had to bypass an obstacle to locate a hidden object. Experiment 3 also revealed that, over the course of testing, dogs gradually learned to rely predominantly on allocentric cues when the detour involved several reorientations. The current study reveals that spatial memory of dogs for hidden objects in a detour task was guided by flexibility in processing spatial information. Dogs could simultaneously encode dead reckoning and allocentric information to locate a disappearing object and used them hierarchically according to the complexity of the detour they encountered in the environment. PMID:17924796

  11. Spatial location and pathway memory compared in the reaching vs. walking domains.

    PubMed

    Piccardi, L; Bianchini, F; Nori, R; Marano, A; Iachini, F; Lasala, L; Guariglia, C

    2014-04-30

    Spatial information processing is influenced by the space in which an individual acts and the nature of the stimulus. This distinction is also present in spatial memory, where stimuli are processed differently because of their nature and the space in which they are released. The aim of the present study was to compare college students' performance on spatial location and pathway memory tasks in two different domains (reaching and walking). Reaching space refers to the portion of space within "grasping distance" and walking space to that beyond arm's reach. Research results indicate that it is easier to remember a pathway in the walking than the reaching domain and to remember single spatial locations in the reaching domain. Women are more able to perform the task in the walking domain than the reaching domain and men perform equally well in both domains. PMID:24631564

  12. Cross-Sensory Transfer of Reference Frames in Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Avraamides, Marios N.

    2011-01-01

    Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…

  13. A Working Memory Account for Spatial-Numerical Associations

    ERIC Educational Resources Information Center

    van Dijck, Jean-Philippe; Fias, Wim

    2011-01-01

    Several psychophysical and neuropsychological investigations have suggested that the mental representation of numbers takes the form of a number line along which magnitude is positioned in ascending order according to our reading habits. A longstanding debate is whether this spatial frame is triggered automatically as intrinsic part of the number…

  14. Spatial Variation in the Storages and Age-Related Dynamics of Forest Carbon Sequestration in Different Climate Zones—Evidence from Black Locust Plantations on the Loess Plateau of China

    PubMed Central

    Li, Taijun; Ren, Bowen; Wang, Dahui; Liu, Guobin

    2015-01-01

    Knowledge about the long-term influences of climate change on the amount of potential carbon (C) sequestration in forest ecosystems, including age-related dynamics, remains unclear. This study used two similar age-sequences of black locust forests (Robinia pseudoacacia L.) in the semi-arid and semi-humid zones of China’s Loess Plateau to assess the variation in C stocks and age-related dynamics. Our results demonstrated that black locust forests of the semi-humid zone stored significantly more C than did forests in the semi-arid zone, across the chronosequence (p < 0.001). The C carrying capacity of the plantations was measured at 166.4 Mg C ha−1 (1 Mg = 106 g) in the semi-humid zone, while the semi-arid zone had a capacity of only 79.4 Mg C ha−1. Soil organic C (SOC) increased continuously with stand age in the semi-arid zone (R2 = 0.84, p = 0.010). However, in the semi-humid zone, SOC declined sharply by 47.8% after the initial stage (5 to 10 y). The C stock in trees increased continuously with stand age in the semi-humid zone (R2 = 0.83, p = 0.011), yet in the semi-arid zone, it decreased dramatically from 43.0 Mg C ha−1 to 28.4 Mg C ha−1 during the old forest stage (38 to 56 y). The shift from being a net C sink to a net C source occurred at the initial stage in the semi-humid zone versus at the old forest stage in the semi-arid zone after reforestation. Surprisingly, with the exception of the initial and later stages (55 y), the patterns of C allocation among trees, soils, understory and litter were not statistically different between the two climate zones. Our results suggest that climate factors can alter the potential amount and age-related dynamics of forest C sequestration. PMID:25799100

  15. Spatial variation in the storages and age-related dynamics of forest carbon sequestration in different climate zones-evidence from black locust plantations on the Loess Plateau of China.

    PubMed

    Li, Taijun; Ren, Bowen; Wang, Dahui; Liu, Guobin

    2015-01-01

    Knowledge about the long-term influences of climate change on the amount of potential carbon (C) sequestration in forest ecosystems, including age-related dynamics, remains unclear. This study used two similar age-sequences of black locust forests (Robinia pseudoacacia L.) in the semi-arid and semi-humid zones of China's Loess Plateau to assess the variation in C stocks and age-related dynamics. Our results demonstrated that black locust forests of the semi-humid zone stored significantly more C than did forests in the semi-arid zone, across the chronosequence (p < 0.001). The C carrying capacity of the plantations was measured at 166.4 Mg C ha-1 (1 Mg = 106 g) in the semi-humid zone, while the semi-arid zone had a capacity of only 79.4 Mg C ha-1. Soil organic C (SOC) increased continuously with stand age in the semi-arid zone (R2 = 0.84, p = 0.010). However, in the semi-humid zone, SOC declined sharply by 47.8% after the initial stage (5 to 10 y). The C stock in trees increased continuously with stand age in the semi-humid zone (R2 = 0.83, p = 0.011), yet in the semi-arid zone, it decreased dramatically from 43.0 Mg C ha-1 to 28.4 Mg C ha-1 during the old forest stage (38 to 56 y). The shift from being a net C sink to a net C source occurred at the initial stage in the semi-humid zone versus at the old forest stage in the semi-arid zone after reforestation. Surprisingly, with the exception of the initial and later stages (55 y), the patterns of C allocation among trees, soils, understory and litter were not statistically different between the two climate zones. Our results suggest that climate factors can alter the potential amount and age-related dynamics of forest C sequestration. PMID:25799100

  16. Spatial memory: Theoretical basis and comparative review on experimental methods in rodents.

    PubMed

    Paul, Carrillo-Mora; Magda, Giordano; Abel, Santamaría

    2009-11-01

    The assessment of learning and memory in animal models has been widely employed in scientific research for a long time. Among these models, those representing diseases with primary processes of affected memory - such as amnesia, dementia, brain aging, etc. - studies dealing with the toxic effects of specific drugs, and other exploring neurodevelopment, trauma, epilepsy and neuropsychiatric disorders, are often called on to employ these tools. There is a diversity of experimental methods assessing animal learning and memory skills. Overall, mazes are the devices mostly used today to test memory in rodents; there are several types of them, but their real usefulness, advantages and applications remain to be fully established and depend on the particular variant selected by the experimenter. The aims of the present article are first, to briefly review the accumulated knowledge in regard to spatial memory tasks; second, to bring the reader information on the different types of rodent mazes available to test spatial memory; and third, to elucidate the usefulness and limitations of each of these devices. PMID:19467271

  17. Developmental D-methamphetamine treatment selectively induces spatial navigation impairments in reference memory in the Morris water maze while sparing working memory.

    PubMed

    Williams, Michael T; Morford, LaRonda L; Wood, Sandra L; Wallace, Tanya L; Fukumura, Masao; Broening, Harry W; Vorhees, Charles V

    2003-06-01

    In previous studies, we have shown that P11-20 treatment with D-methamphetamine (MA) (10 mg/kg x 4/day at 2-h intervals) induces impairments in spatial learning and memory in the Morris water maze after the offspring reach adulthood. Using a split-litter, multiple dose, design (0, 5, 10, and 15 mg/kg MA administered s.c. 4/day at 2-h intervals), the spatial learning effect was further explored with a multiple shifted platform (reversal), reference memory-based procedure and a working memory procedure. Prior to spatial learning, animals were first tested for swimming ability (in a straight swimming channel), sequential learning (in the Cincinnati multiple-T water maze), and proximal cue learning (in the Morris water maze). Rats were then assessed in the hidden platform, reference memory-based spatial version of the Morris maze for acquisition and on five subsequent phases in which the platform was moved to new locations. After the reference memory-based, fixed platform position learning phases, animals were tested in the trial-dependent, matching-to-sample, working memory version of the Morris maze. No group differences were found in straight channel, sequential maze, or cued Morris maze performance. By contrast, all MA groups were impaired in spatial learning during acquisition, multiple shift, and shifted with a reduced platform phases of reference memory-based learning. In addition, MA animals were impaired on memory (probe) trials during the acquisition and shifted with a reduced platform phases of learning. No effects on trial-dependent, matching-to-sample, working memory were found. The findings demonstrate that neonatal treatment with MA induces a selective impairment of reference memory-based spatial learning while sparing sequential, cued, and working memory-based learning. PMID:12645039

  18. From mind wandering to involuntary retrieval: Age-related differences in spontaneous cognitive processes.

    PubMed

    Maillet, David; Schacter, Daniel L

    2016-01-01

    The majority of studies that have investigated the effects of healthy aging on cognition have focused on age-related differences in voluntary and deliberately engaged cognitive processes. Yet many forms of cognition occur spontaneously, without any deliberate attempt at engaging them. In this article we review studies that have assessed age-related differences in four such types of spontaneous thought processes: mind-wandering, involuntary autobiographical memory, intrusive thoughts, and spontaneous prospective memory retrieval. These studies suggest that older adults exhibit a reduction in frequency of both mind-wandering and involuntary autobiographical memory, whereas findings regarding intrusive thoughts have been more mixed. Additionally, there is some preliminary evidence that spontaneous prospective memory retrieval may be relatively preserved in aging. We consider the roles of age-related differences in cognitive resources, motivation, current concerns and emotional regulation in accounting for these findings. We also consider age-related differences in the neural correlates of spontaneous cognitive processes. PMID:26617263

  19. A category adjustment approach to memory for spatial location in natural scenes.

    PubMed

    Holden, Mark P; Curby, Kim M; Newcombe, Nora S; Shipley, Thomas F

    2010-05-01

    Memories for spatial locations often show systematic errors toward the central value of the surrounding region. This bias has been explained using a Bayesian model in which fine-grained and categorical information are combined (Huttenlocher, Hedges, & Duncan, 1991). However, experiments testing this model have largely used locations contained in simple geometric shapes. Use of this paradigm raises 2 issues. First, do results generalize to the complex natural world? Second, what types of information might be used to segment complex spaces into constituent categories? Experiment 1 addressed the 1st question by showing a bias toward prototypical values in memory for spatial locations in complex natural scenes. Experiment 2 addressed the 2nd question by manipulating the availability of basic visual cues (using color negatives) or of semantic information about the scene (using inverted images). Error patterns suggest that both perceptual and conceptual information are involved in segmentation. The possible neurological foundations of location memory of this kind are discussed. PMID:20438259

  20. Dorso- and Ventro-lateral Prefrontal Volume and Spatial Working Memory in Schizotypal Personality Disorder

    PubMed Central

    Goldstein, Kim E.; Hazlett, Erin A.; Savage, Kimberley R.; Berlin, Heather A.; Hamilton, Holly K.; Zelmanova, Yuliya; Look, Amy E.; Koenigsberg, Harold W.; Mitsis, Effie M.; Tang, Cheuk Y.; McNamara, Margaret; Siever, Larry J.; Cohen, Barry H.; New, Antonia S.

    2011-01-01

    Schizotypal personality disorder (SPD) individuals and borderline personality disorder (BPD) individuals have been reported to show neuropsychological impairments and abnormalities in brain structure. However, relationships between neuropsychological function and brain structure in these groups are not well understood. This study compared visual-spatial working memory (SWM) and its associations with dorsolateral prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC) gray matter volume in 18 unmedicated SPD patients with no BPD traits, 18 unmedicated BPD patients with no SPD traits, and 16 healthy controls (HC). Results showed impaired SWM in SPD but not BPD, compared with HC. Moreover, among the HC group, but not SPD patients, better SWM performance was associated with larger VLPFC (BA44/45) gray matter volume (Fisher's Z p-values<0.05). Findings suggest spatial working memory impairments may be a core neuropsychological deficit specific to SPD patients and highlight the role of VLPFC subcomponents in normal and dysfunctional memory performance. PMID:21115066

  1. Phonological and Visuo-Spatial Working Memory in Individuals with Intellectual Disability.

    ERIC Educational Resources Information Center

    Rosenquist, Celia; Conners, Frances A.; Roskos-Ewoldsen, Beverly

    2003-01-01

    Differences in storage and rehearsal components of the phonological loop and visuo-spatial sketchpad were investigated in individuals with (n=19) and without (n=21) intellectual disability matched on memory span. Those with intellectual disability had specific difficulty in the rehearsal component of the phonological loop. Groups did not differ in…

  2. The Relationship between the Perception of Axes of Symmetry and Spatial Memory during Early Childhood

    ERIC Educational Resources Information Center

    Ortmann, Margaret R.; Schutte, Anne R.

    2010-01-01

    Early in development, there is a transition in spatial working memory (SWM). When remembering a location in a homogeneous space (e.g., in a sandbox), young children are biased toward the midline symmetry axis of the space. Over development, a transition occurs that leads to older children being biased away from midline. The dynamic field theory…

  3. Different Cortical Mechanisms for Spatial vs. Feature-Based Attentional Selection in Visual Working Memory

    PubMed Central

    Heuer, Anna; Schubö, Anna; Crawford, J. D.

    2016-01-01

    The limited capacity of visual working memory (VWM) necessitates attentional mechanisms that selectively update and maintain only the most task-relevant content. Psychophysical experiments have shown that the retroactive selection of memory content can be based on visual properties such as location or shape, but the neural basis for such differential selection is unknown. For example, it is not known if there are different cortical modules specialized for spatial vs. feature-based mnemonic attention, in the same way that has been demonstrated for attention to perceptual input. Here, we used transcranial magnetic stimulation (TMS) to identify areas in human parietal and occipital cortex involved in the selection of objects from memory based on cues to their location (spatial information) or their shape (featural information). We found that TMS over the supramarginal gyrus (SMG) selectively facilitated spatial selection, whereas TMS over the lateral occipital cortex (LO) selectively enhanced feature-based selection for remembered objects in the contralateral visual field. Thus, different cortical regions are responsible for spatial vs. feature-based selection of working memory representations. Since the same regions are involved in terms of attention to external events, these new findings indicate overlapping mechanisms for attentional control over perceptual input and mnemonic representations. PMID:27582701

  4. Remote Spatial Memory and the Hippocampus: Effect of Early and Extensive Training in the Radial Maze

    ERIC Educational Resources Information Center

    Ramos, Juan M. J.

    2009-01-01

    In a previous study we showed a temporally graded retrograde amnesia after hippocampal lesions when rats learned a spatial reference memory task in which two types of signals simultaneously indicated the goal arm (shape of the experimental room and extramaze landmarks). To investigate the effect that the navigational demands of the task have on…

  5. Disruption of auditory spatial working memory by inactivation of the forebrain archistriatum in barn owls.

    PubMed

    Knudsen, E I; Knudsen, P F

    1996-10-01

    Barn owls not only localize auditory stimuli with great accuracy, they also remember the locations of auditory stimuli and can use this remembered spatial information to guide their flight and strike. Although the mechanisms of sound localization have been studied extensively, the neurobiological basis of auditory spatial memory has not. Here we show that the ability of barn owls to orient their gaze towards and fly to the remembered location of auditory targets is lost during pharmacological inactivation of a small region in the forebrain, the anterior archistriatum. In contrast, archistriatal inactivation has no effect on stimulus-guided responses to auditory targets. The memory-dependent deficit is evident only for acoustic events that occur in the hemifield contralateral to the side that is inactivated. The data demonstrate that in the avian archistriatum, as in the mammalian frontal cortex, there exists a region that is essential for the expression of spatial working memory and that, in the barn owl, this region encodes auditory spatial memory. PMID:8837773

  6. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    ERIC Educational Resources Information Center

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  7. Different Cortical Mechanisms for Spatial vs. Feature-Based Attentional Selection in Visual Working Memory.

    PubMed

    Heuer, Anna; Schubö, Anna; Crawford, J D

    2016-01-01

    The limited capacity of visual working memory (VWM) necessitates attentional mechanisms that selectively update and maintain only the most task-relevant content. Psychophysical experiments have shown that the retroactive selection of memory content can be based on visual properties such as location or shape, but the neural basis for such differential selection is unknown. For example, it is not known if there are different cortical modules specialized for spatial vs. feature-based mnemonic attention, in the same way that has been demonstrated for attention to perceptual input. Here, we used transcranial magnetic stimulation (TMS) to identify areas in human parietal and occipital cortex involved in the selection of objects from memory based on cues to their location (spatial information) or their shape (featural information). We found that TMS over the supramarginal gyrus (SMG) selectively facilitated spatial selection, whereas TMS over the lateral occipital cortex (LO) selectively enhanced feature-based selection for remembered objects in the contralateral visual field. Thus, different cortical regions are responsible for spatial vs. feature-based selection of working memory representations. Since the same regions are involved in terms of attention to external events, these new findings indicate overlapping mechanisms for attentional control over perceptual input and mnemonic representations. PMID:27582701

  8. Eye Movement Suppression Interferes with Construction of Object-Centered Spatial Reference Frames in Working Memory

    ERIC Educational Resources Information Center

    Wallentin, Mikkel; Kristensen, Line Burholt; Olsen, Jacob Hedeager; Nielsen, Andreas Hojlund

    2011-01-01

    The brain's frontal eye fields (FEF), responsible for eye movement control, are known to be involved in spatial working memory (WM). In a previous fMRI experiment (Wallentin, Roepstorff & Burgess, Neuropsychologia, 2008) it was found that FEF activation was primarily related to the formation of an object-centered, rather than egocentric, spatial…

  9. Reference Directions and Reference Objects in Spatial Memory of a Briefly Viewed Layout

    ERIC Educational Resources Information Center

    Mou, Weimin; Xiao, Chengli; McNamara, Timothy P.

    2008-01-01

    Two experiments investigated participants' spatial memory of a briefly viewed layout. Participants saw an array of five objects on a table and, after a short delay, indicated whether the target object indicated by the experimenter had been moved. Experiment 1 showed that change detection was more accurate when non-target objects were stationary…

  10. White Matter Microstructure in Superior Longitudinal Fasciculus Associated with Spatial Working Memory Performance in Children

    ERIC Educational Resources Information Center

    Vestergaard, Martin; Madsen, Kathrine Skak; Baare, William F. C.; Skimminge, Arnold; Ejersbo, Lisser Rye; Ramsoy, Thomas Z.; Gerlach, Christian; Akeson, Per; Paulson, Olaf B.; Jernigan, Terry L.

    2011-01-01

    During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly…

  11. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    ERIC Educational Resources Information Center

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  12. A Category Adjustment Approach to Memory for Spatial Location in Natural Scenes

    ERIC Educational Resources Information Center

    Holden, Mark P.; Curby, Kim M.; Newcombe, Nora S.; Shipley, Thomas F.

    2010-01-01

    Memories for spatial locations often show systematic errors toward the central value of the surrounding region. This bias has been explained using a Bayesian model in which fine-grained and categorical information are combined (Huttenlocher, Hedges, & Duncan, 1991). However, experiments testing this model have largely used locations contained in…

  13. Hippocampal Lesions Impair Spatial Memory Performance, but Not Song-A Developmental Study of Independent Memory Systems in the Zebra Finch

    PubMed Central

    Bailey, David J.; Wade, Juli; Saldanha, Colin J.

    2009-01-01

    Songbirds demonstrate song- and spatial-learning, forms of memory that appear distinct in formal characteristics and fitting the descriptions and criteria of procedural and episodic-like memory function, respectively. As in other vertebrates, the neural pathways underlying these forms of memory may also be dissociable, and include the corresponding song circuit and hippocampus (HP). Whether (or not) these two memory systems interact is unknown. Interestingly, the HP distinguishes itself as a site of immediate early gene expression in response to song and as a site of estrogen synthesis, a steroid involved in song learning. Thus, an interaction between these memory systems and their anatomical substrates appears reasonable to hypothesize, particularly during development. To test this idea, juvenile male or female zebra finches received chemical lesions of the HP at various points during song learning, as did adults. Song structure, singing behavior, song preference, and spatial memory were tested in adulthood. Although lesions of the HP severely compromised HP-dependent spatial memory function across all ages and in both sexes, we were unable to detect any effects of HP lesions on song learning, singing, or song structure in males. Interestingly, females lesioned as adults, but not as juveniles, did lose the characteristic preference for their father's song. Since compromise of the neural circuits that subserve episodic-like memory does very little (if anything) to affect procedural-like (song learning) memory, we conclude that these memory systems and their anatomical substrates are well dissociated in the developing male zebra finch. PMID:19280648

  14. PPARγ activation prevents impairments in spatial memory and neurogenesis following transient illness

    PubMed Central

    Ormerod, Brandi K.; Hanft, Simon J.; Asokan, Aditya; Haditsch, Ursula; Lee, Star W.; Palmer, Theo D.

    2012-01-01

    The detrimental effects of illness on cognition are familiar to virtually everyone. Some effects resolve quickly while others may linger after the illness resolves. We found that a transient immune response stimulated by lipopolysaccharide (LPS) compromised hippocampal neurogenesis and impaired hippocampus-dependent spatial memory. The immune event caused a 50% reduction in the number of neurons generated during the illness and the onset of the memory impairment was delayed and coincided with the time when neurons generated during the illness would have become functional within the hippocampus. Broad spectrum non-steroidal anti-inflammatory drugs attenuated these effects but selective Cox-2 inhibition was ineffective while PPARγ activation was surprisingly effective at protecting both neurogenesis and memory from the effects of LPS-produced transient illness. These data may highlight novel mechanisms behind chronic inflammatory and neuroinflammatory episodes that are known to compromise hippocampus-dependent forms of learning and memory. PMID:23108061

  15. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  16. Spatial memory deficit across aging: current insights of the role of 5-HT7 receptors

    PubMed Central

    Beaudet, Gregory; Bouet, Valentine; Jozet-Alves, Christelle; Schumann-Bard, Pascale; Dauphin, François; Paizanis, Eleni; Boulouard, Michel; Freret, Thomas

    2015-01-01

    Elderly persons often face biological, psychological or social changes over time that may cause discomfort or morbidity. While some cognitive domains remain stable over time, others undergo a decline. Spatial navigation is a complex cognitive function essential for independence, safety and quality of life. While egocentric (body-centered) navigation is quite preserved during aging, allocentric (externally-centered) navigation—based on a cognitive map using distant landmarks—declines with age. Recent preclinical studies showed that serotonergic 5-HT7 receptors are localized in brain regions associated with allocentric spatial navigation processing. Behavioral assessments with pharmacological or genetic tools have confirmed the role of 5-HT7 receptors in allocentric navigation. Moreover, few data suggested a selective age-related decrease in the expression of 5-HT7 receptors in pivotal brain structures implicated in allocentric navigation such as the hippocampal CA3 region. We aim to provide a short overview of the potential role of 5-HT7 receptors in spatial navigation, and to argue for their interests as therapeutic targets against age-related cognitive decline. PMID:25642173

  17. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  18. Age-Related Changes in Creative Thinking

    ERIC Educational Resources Information Center

    Roskos-Ewoldsen, Beverly; Black, Sheila R.; Mccown, Steven M.

    2008-01-01

    Age-related differences in cognitive processes were used to understand age-related declines in creativity. According to the Geneplore model (Finke, Ward, & Smith, 1992), there are two phases of creativity--generating an idea and exploring the implications of the idea--each with different underlying cognitive processes. These two phases are…

  19. Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory

    PubMed Central

    Moscovitch, Morris; Rosenbaum, R Shayna; Gilboa, Asaf; Addis, Donna Rose; Westmacott, Robyn; Grady, Cheryl; McAndrews, Mary Pat; Levine, Brian; Black, Sandra; Winocur, Gordon; Nadel, Lynn

    2005-01-01

    We review lesion and neuroimaging evidence on the role of the hippocampus, and other structures, in retention and retrieval of recent and remote memories. We examine episodic, semantic and spatial memory, and show that important distinctions exist among different types of these memories and the structures that mediate them. We argue that retention and retrieval of detailed, vivid autobiographical memories depend on the hippocampal system no matter how long ago they were acquired. Semantic memories, on the other hand, benefit from hippocampal contribution for some time before they can be retrieved independently of the hippocampus. Even semantic memories, however, can have episodic elements associated with them that continue to depend on the hippocampus. Likewise, we distinguish between experientially detailed spatial memories (akin to episodic memory) and more schematic memories (akin to semantic memory) that are sufficient for navigation but not for re-experiencing the environment in which they were acquired. Like their episodic and semantic counterparts, the former type of spatial memory is dependent on the hippocampus no matter how long ago it was acquired, whereas the latter can survive independently of the hippocampus and is represented in extra-hippocampal structures. In short, the evidence reviewed suggests strongly that the function of the hippocampus (and possibly that of related limbic structures) is to help encode, retain, and retrieve experiences, no matter how long ago the events comprising the experience occurred, and no matter whether the memories are episodic or spatial. We conclude that the evidence favours a multiple trace theory (MTT) of memory over two other models: (1) traditional consolidation models which posit that the hippocampus is a time-limited memory structure for all forms of memory; and (2) versions of cognitive map theory which posit that the hippocampus is needed for representing all forms of allocentric space in memory. PMID

  20. The topography of alpha-band activity tracks the content of spatial working memory.

    PubMed

    Foster, Joshua J; Sutterer, David W; Serences, John T; Vogel, Edward K; Awh, Edward

    2016-01-01

    Working memory (WM) is a system for the online storage of information. An emerging view is that neuronal oscillations coordinate the cellular assemblies that code the content of WM. In line with this view, previous work has demonstrated that oscillatory activity in the alpha band (8-12 Hz) plays a role in WM maintenance, but the exact contributions of this activity have remained unclear. Here, we used an inverted spatial encoding model in combination with electroencephalography (EEG) to test whether the topographic distribution of alpha-band activity tracks spatial representations held in WM. Participants in three experiments performed spatial WM tasks that required them to remember the precise angular location of a sample stimulus for 1,000-1,750 ms. Across all three experiments, we found that the topographic distribution of alpha-band activity tracked the specific location that was held in WM. Evoked (i.e., activity phase-locked to stimulus onset) and total (i.e., activity regardless of phase) power across a range of low-frequency bands transiently tracked the location of the sample stimulus following stimulus onset. However, only total power in the alpha band tracked the content of spatial WM throughout the memory delay period, which enabled reconstruction of location-selective channel tuning functions (CTFs). These findings demonstrate that alpha-band activity is directly related to the coding of spatial representations held in WM and provide a promising method for tracking the content of this online memory system. PMID:26467522

  1. Age-related changes in Egr1 transcription and DNA methylation within the hippocampus.

    PubMed

    Penner, M R; Parrish, R R; Hoang, L T; Roth, T L; Lubin, F D; Barnes, C A

    2016-08-01

    Aged animals show functional alterations in hippocampal neurons that lead to deficits in synaptic plasticity and changes in cognitive function. Transcription of immediate-early genes (IEGs), including Egr1, is necessary for processes such as long-term potentiation and memory consolidation. Here, we show an age-related reduction in the transcription of Egr1 in the dentate gyrus following spatial behavior, whereas in the area CA1, Egr1 is reduced at rest, but its transcription can be effectively driven by spatial behavior to levels equivalent to those observed in adult animals. One mechanism possibly contributing to these aging-related changes is an age-associated, CpG site-specific change in methylation in DNA associated with the promoter region of the Egr1 gene. Our results add to a growing body of work demonstrating that complex transcriptional and epigenetic changes in the hippocampus significantly contribute to brain and cognitive aging. © 2016 Wiley Periodicals, Inc. PMID:26972614

  2. Exploratory, anxiety and spatial memory impairments are dissociated in mice lacking the LPA1 receptor

    PubMed Central

    Castilla-Ortega, Estela; Sánchez-López, Jorge; Hoyo-Becerra, Carolina; Matas-Rico, Elisa; Zambrana-Infantes, Emma; Chun, Jerold; Fonseca, Fernando Rodríguez De; Pedraza, Carmen; Estivill-Torrús, Guillermo; Santin, Luis J.

    2013-01-01

    Lysophosphatidic acid (LPA) is a new, intercellular signalling molecule in the brain that has an important role in adult hippocampal plasticity. Mice lacking the LPA1 receptor exhibit motor, emotional and cognitive alterations. However, the potential relationship among these concomitant impairments was unclear. Wild-type and maLPA1-null mice were tested on the hole-board for habituation and spatial learning. MaLPA1-null mice exhibited reduced exploration in a novel context and a defective intersession habituation that also revealed increased anxiety-like behaviour throughout the hole-board testing. In regard to spatial memory, maLPA1 nulls failed to reach the controls’ performance at the end of the reference memory task. Moreover, their defective working memory on the first training day suggested a delayed acquisition of the task’s working memory rule, which is also a long term memory component. The temporal interval between trials and the task’s difficulty may explain some of the deficits found in these mice. Principal components analysis revealed that alterations found in each behavioural dimension were independent. Therefore, exploratory and emotional impairments did not account for the cognitive deficits that may be attributed to maLPA1 nulls’ hippocampal malfunction. PMID:20388543

  3. Effects of different exercise protocols on ethanol-induced spatial memory impairment in adult male rats.

    PubMed

    Hashemi Nosrat Abadi, T; Vaghef, L; Babri, S; Mahmood-Alilo, M; Beirami, M

    2013-06-01

    Chronic ethanol consumption is often accompanied by numerous cognitive deficits and may lead to long-lasting impairments in spatial learning and memory. The aim of the present study was to evaluate the therapeutic potential of regular treadmill exercise on hippocampal-dependent memory in ethanol-treated rats. Spatial memory was tested in a Morris Water Maze task. Adult male Wistar rats were exposed to ethanol (4 g/kg, 20% v/v for 4 weeks) and effects of three exercise protocols (pre-ethanol, post-ethanol and pre-to-post-ethanol treatment) were examined. Results showed that ethanol exposure resulted in longer escape latencies during the acquisition phase of the Morris Water Maze task. Moreover, all three exercise protocols significantly decreased the latency to locate the hidden platform. During the probe trial, ethanol led to decreased time spent in the target quadrant. In contrast, performance on the probe trial was significantly better in the rats that had done the post- and pre-to-post-ethanol, but not pre-ethanol, exercises. These findings suggest that treadmill running can attenuate the adverse effects of chronic ethanol exposure on spatial memory, and may serve as a non-pharmacological alcohol abuse treatment. PMID:23683528

  4. Impaired spatial working memory after anterior thalamic lesions: recovery with cerebrolysin and enrichment.

    PubMed

    Loukavenko, Elena A; Wolff, Mathieu; Poirier, Guillaume L; Dalrymple-Alford, John C

    2016-05-01

    Lesions to the anterior thalamic nuclei (ATN) in rats produce robust spatial memory deficits that reflect their influence as part of an extended hippocampal system. Recovery of spatial working memory after ATN lesions was examined using a 30-day administration of the neurotrophin cerebrolysin and/or an enriched housing environment. As expected, ATN lesions in standard-housed rats given saline produced severely impaired reinforced spatial alternation when compared to standard-housed rats with sham lesions. Both cerebrolysin and enrichment substantially improved this working memory deficit, including accuracy on trials that required attention to distal cues for successful performance. The combination of cerebrolysin and enrichment was more effective than either treatment alone when the delay between successive runs in a trial was increased to 40 s. Compared to the intact rats, ATN lesions in standard-housed groups produced substantial reduction in c-Fos expression in the retrosplenial cortex, which remained low after cerebrolysin and enrichment treatments. Evidence that multiple treatment strategies restore some memory functions in the current lesion model reinforces the prospect for treatments in human diencephalic amnesia. PMID:25725627

  5. Fine-grained, local maps and coarse, global representations support human spatial working memory.

    PubMed

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601

  6. Dimethyl fumarate attenuates intracerebroventricular streptozotocin-induced spatial memory impairment and hippocampal neurodegeneration in rats.

    PubMed

    Majkutewicz, Irena; Kurowska, Ewelina; Podlacha, Magdalena; Myślińska, Dorota; Grembecka, Beata; Ruciński, Jan; Plucińska, Karolina; Jerzemowska, Grażyna; Wrona, Danuta

    2016-07-15

    Intracerebroventricular (ICV) injection of streptozotocin (STZ) is a widely-accepted animal model of sporadic Alzheimer's disease (sAD). The present study evaluated the ability of dimethyl fumarate (DMF), an agent with antioxidant and anti-inflammatory properties, to prevent spatial memory impairments and hippocampal neurodegeneration mediated by ICV injection of STZ in 4-month-old rats. Rodent chow containing DMF (0.4%) or standard rodent chow was made available on day 0. Rat body weight and food intake were measured daily for whole the experiment (21days). STZ or vehicle (SHAM) ICV injections were performed on days 2 and 4. Spatial reference and working memory were evaluated using the Morris water maze on days 14-21. Cells containing Fluoro-Jade B (neurodegeneration marker), IL-6, IL-10 were quantified in the hippocampus and choline acetyltransferase (ChAT) in the basal forebrain. The disruption of spatial memory and a high density of hippocampal CA1-3 cells labeled with Fluoro-Jade B or containing IL-6 or IL-10 were observed in the STZ group but not in the STZ+DMF group, as compared to the SHAM or SHAM+DMF groups. STZ vs. STZ+DMF differences were found: worse reference memory acquisition, fewer ChAT-positive neurons in the medial septum (Ch1), more Fluoro-Jade-positive CA1 hippocampal cells in STZ rats. DMF therapy in a rodent model of sAD prevented the disruption of spatial reference and working memory, loss of Ch1 cholinergic cells and hippocampal neurodegeneration as well as the induction of IL-6 and IL-10 in CA1. These beneficial cognitive and molecular effects validate the anti-inflammatory and neuroprotective properties of DMF in the hippocampus. PMID:27083302

  7. Potential Mechanisms Driving Population Variation in Spatial Memory and the Hippocampus in Food-caching Chickadees.

    PubMed

    Croston, Rebecca; Branch, Carrie L; Kozlovsky, Dovid Y; Roth, Timothy C; LaDage, Lara D; Freas, Cody A; Pravosudov, Vladimir V

    2015-09-01

    Harsh environments and severe winters have been hypothesized to favor improvement of the cognitive abilities necessary for successful foraging. Geographic variation in winter climate, then, is likely associated with differences in selection pressures on cognitive ability, which could lead to evolutionary changes in cognition and its neural mechanisms, assuming that variation in these traits is heritable. Here, we focus on two species of food-caching chickadees (genus Poecile), which rely on stored food for survival over winter and require the use of spatial memory to recover their stores. These species also exhibit extensive climate-related population level variation in spatial memory and the hippocampus, including volume, the total number and size of neurons, and adults' rates of neurogenesis. Such variation could be driven by several mechanisms within the context of natural selection, including independent, population-specific selection (local adaptation), environment experience-based plasticity, developmental differences, and/or epigenetic differences. Extensive data on cognition, brain morphology, and behavior in multiple populations of these two species of chickadees along longitudinal, latitudinal, and elevational gradients in winter climate are most consistent with the hypothesis that natural selection drives the evolution of local adaptations associated with spatial memory differences among populations. Conversely, there is little support for the hypotheses that environment-induced plasticity or developmental differences are the main causes of population differences across climatic gradients. Available data on epigenetic modifications of memory ability are also inconsistent with the observed patterns of population variation, with birds living in more stressful and harsher environments having better spatial memory associated with a larger hippocampus and a larger number of hippocampal neurons. Overall, the existing data are most consistent with the

  8. Holographic associative memory system using a thresholding microchannel spatial light modulator

    SciTech Connect

    Song, Q.W.; Yu, F.T.S. . Dept. of Electrical Engineering)

    1989-05-01

    Experimental implementation of a holographic optical associative memory system using a thresholding microchannel spatial light modulator (MSLM) is presented. The first part of the system is a joint transform correlator, in which a liquid crystal light valve is used as a square-law converter for the inner product of the addressing and input memories. The MSLM is used as an active element to recall the associated data. If the device is properly thresholded, the system is capable of improving the quality of the output image.

  9. Excitotoxic lesion of the perirhinal cortex impairs spatial working memory in a delayed-alternation task.

    PubMed

    Maioli, Silvia; Gangarossa, Giuseppe; Locchi, Federica; Andrioli, Anna; Bertini, Giuseppe; Rimondini, Roberto

    2012-05-01

    The perirhinal cortex (PRh) is strategically located between the neocortex and memory-related structures such as the entorhinal cortex and the hippocampal formation. The pattern of strong reciprocal connections between these areas, together with experimental evidence that PRh damage induces specific memory deficits, has placed this cortical region at the center of a growing interest for its role in learning and memory mechanisms. The aim of the present study is to clarify the involvement of PRh in learning and retention in a novel experimental model of spatial working memory, the water T-maze. The data show that pre-acquisition neurotoxic PRh lesions caused task-learning deficits. This impairment was observed during the acquisition phase as well as the retrieval phase. On the other hand, a post-acquisition PRh neurotoxic lesion failed to impair the acquisition and the retrieval of the water T-maze task performed 32 day after lesion. These results suggest a possible key role of PRh in the acquisition but not in the retention of a working memory task. Furthermore, these results show that the water T-maze may be a suitable learning paradigm to study different components of learning and memory. PMID:22391121

  10. View-based organization and interplay of spatial working and long-term memories.

    PubMed

    Röhrich, Wolfgang G; Hardiess, Gregor; Mallot, Hanspeter A

    2014-01-01

    Space perception provides egocentric, oriented views of the environment from which working and long-term memories are constructed. "Allocentric" (i.e. position-independent) long-term memories may be organized as graphs of recognized places or views but the interaction of such cognitive graphs with egocentric working memories is unclear. Here we present a simple coherent model of view-based working and long-term memories, together with supporting evidence from behavioral experiments. The model predicts (i) that within a given place, memories for some views may be more salient than others, (ii) that imagery of a target square should depend on the location where the recall takes place, and (iii) that recall favors views of the target square that would be obtained when approaching it from the current recall location. In two separate experiments in an outdoor urban environment, pedestrians were approached at various interview locations and asked to draw sketch maps of one of two well-known squares. Orientations of the sketch map productions depended significantly on distance and direction of the interview location from the target square, i.e. different views were recalled at different locations. Further analysis showed that location-dependent recall is related to the respective approach direction when imagining a walk from the interview location to the target square. The results are consistent with a view-based model of spatial long-term and working memories and their interplay. PMID:25409437

  11. Spatial memory performance in androgen insensitive male rats.

    PubMed

    Jones, Bryan A; Watson, Neil V

    2005-06-01

    Masculinization of the developing rodent brain critically depends on the process of aromatization of circulating testosterone (T) to its estrogenic metabolite 17beta-estradiol, which subsequently interacts with estrogen receptors to permanently masculinize the brain. However, it remains unclear what role other androgenic mechanisms may play in the process of masculinization. A novel way of examining this is through the study of male rats that express the tfm mutation of the androgen receptor (AR) gene; such males are fully androgen insensitive and manifest a female phenotype due to a failure of AR-mediated masculinization of peripheral structures. Because tfm-affected males develop secretory testes and have near-normal T titers during development, aromatization would be expected to proceed normally, and brain mechanisms may be developmentally masculinized despite the feminized periphery. We compared tfm-affected males (X(tfm)Y) with normal males and females in the Morris Water Maze, a task in which males typically perform better than females. Performance of tfm-affected males was intermediate between that of normal males and females. While an overall male superiority was found in the task, the X(tfm)Y group reached male-typical escape latencies faster than females. Furthermore, in the X(tfm)Y group, the granule cell layer of the dentate gyrus was significantly larger than in females. These results support the suggestion that that AR mediated mechanisms contribute to the masculinization of spatial behaviours and hippocampal morphology, and this may be independent of estrogenic processes. PMID:15924910

  12. Mice with Deficient BK Channel Function Show Impaired Prepulse Inhibition and Spatial Learning, but Normal Working and Spatial Reference Memory

    PubMed Central

    Azzopardi, Erin; Ruettiger, Lukas; Ruth, Peter; Schmid, Susanne

    2013-01-01

    Genetic variations in the large-conductance, voltage- and calcium activated potassium channels (BK channels) have been recently implicated in mental retardation, autism and schizophrenia which all come along with severe cognitive impairments. In the present study we investigate the effects of functional BK channel deletion on cognition using a genetic mouse model with a knock-out of the gene for the pore forming α-subunit of the channel. We tested the F1 generation of a hybrid SV129/C57BL6 mouse line in which the slo1 gene was deleted in both parent strains. We first evaluated hearing and motor function to establish the suitability of this model for cognitive testing. Auditory brain stem responses to click stimuli showed no threshold differences between knockout mice and their wild-type littermates. Despite of muscular tremor, reduced grip force, and impaired gait, knockout mice exhibited normal locomotion. These findings allowed for testing of sensorimotor gating using the acoustic startle reflex, as well as of working memory, spatial learning and memory in the Y-maze and the Morris water maze, respectively. Prepulse inhibition on the first day of testing was normal, but the knockout mice did not improve over the days of testing as their wild-type littermates did. Spontaneous alternation in the y-maze was normal as well, suggesting that the BK channel knock-out does not impair working memory. In the Morris water maze knock-out mice showed significantly slower acquisition of the task, but normal memory once the task was learned. Thus, we propose a crucial role of the BK channels in learning, but not in memory storage or recollection. PMID:24303038

  13. Long term consequences on spatial learning-memory of low-calorie diet during adolescence in female rats; hippocampal and prefrontal cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus.

    PubMed

    Kaptan, Zülal; Akgün-Dar, Kadriye; Kapucu, Ayşegül; Dedeakayoğulları, Huri; Batu, Şule; Üzüm, Gülay

    2015-08-27

    Calorie restriction (CR) is argued to positively affect general health, longevity and normally occurring age-related reduction of cognition. Obesity during adolescence may adversely affect cognition in adulthood but, to date effects of CR have not been investigated. We hypothesized that feeding with as low as 15% low-calorie diet (LCD) during adolescence would increase hippocampal and prefrontal BDNF (Brain-derived neurotrophic factor) levels, proliferative cells and neuron numbers in dentate gyrus (DG), thus positively affecting spatial memory in adulthood. Spatial learning-memory function was improved in adult female Sprague-Dawley rats fed with LCD during adolescence. PCNA (Proliferating cell nuclear antigen-cell proliferation marker) expressing cells and NeuN (Neuronal nuclear antigen-neuron marker) expressing cells in hippocampus DG which are critically involved in memory were increased. Hippocampus and prefrontal cortex BDNF levels were increased while serum glucose levels and level of lipid peroxidation indicator malondialdehyde in serum and hippocampus were reduced. Our unique results suggest that improved cognition in adult rats with LCD feeding during adolescence may result from the increase of neurogenesis and BDNF. These findings reveal the importance of nutrition in adolescence for cognitive function in adulthood. Our results may be useful for further studies aiming to treat age-related cognitive impairments. PMID:26072462

  14. Experimental evidence of spatial memory and home range affinity in White-tailed Deer (Odocoileus virginianus)

    USGS Publications Warehouse

    Nelson, Michael E.

    2015-01-01

    The role of spatial memory in the movement of animals through landscapes remains elusive. To examine spatial memory and home range affinity of White-tailed Deer (Odocoileus virginianus) in northeastern Minnesota during 1995–2007, I translocated 17 adult does with known home ranges to unfamiliar sites and radio-tracked them after their release. Twelve does wearing transmitting radio-collars returned to their home ranges. Death and collar expiration precluded determination of whether the remaining five does would have returned to home ranges. Three of five does wearing global positioning system collars traveled throughout hundreds of square kilometres, circling, backtracking, and returning to release sites, while two others exhibited directional movement for tens of kilometres. Four does that survived to parturition stopped traveling and moved at hourly rates similar to those of control does during the first three weeks of the typical fawn-rearing period, but continued traveling later. Their aberrant extensive travel before and after interruption by parturition suggests that they recognized they were in unfamiliar areas, demonstrating both their capacity and propensity to search for and occupy the familiar space of their individual home ranges. Their successful return to home ranges provided experimental evidence of spatial memory and further elucidated its pervasive role in White-tailed Deer spatial ecology.

  15. Age-related differences in multiple task monitoring.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609

  16. Age-independent and dose-response effects of ethanol on spatial memory in rats.

    PubMed

    Acheson, S K; Ross, E L; Swartzwelder, H S

    2001-04-01

    Results of previous studies have shown that ethanol impairs the acquisition of spatial memory in adolescent rats at doses below those required to impair the acquisition in adults. However, the previous work did not identify doses of ethanol that failed to impair acquisition in adolescents or that impaired acquisition in both adolescent and adult animals. This was our aim in the present study. Male, Long-Evans hooded rats (adolescent and adult) were treated intraperitoneally with 0.0, 0.5, or 2.5 g/kg of ethanol 30 min before daily training on a spatial or nonspatial version of the Morris water maze task. Twenty-four hours after training on the spatial task the animals were given a 1-min probe trial. The low dose of ethanol (0.5 g/kg) failed to impair the performance of animals from either age group on any tasks. It did, however, enhance the initial rate of acquisition on the spatial task. The 2.5-g/kg dose eliminated acquisition of spatial learning in animals of both ages and significantly attenuated performance on a nonspatial task in both age groups. However, the treatment effect in the nonspatial task was eliminated with controlling for baseline performance. These results establish a low dose of ethanol (0.5 g/kg) that does not impair acquisition of spatial memory in adolescent or adult rats. Moreover, the study findings show that 2.5 g/kg of ethanol markedly impairs acquisition of spatial memory in both adolescent and adult animals. PMID:11435027

  17. A Familiar Pattern? Semantic Memory Contributes to the Enhancement of Visuo-Spatial Memories

    ERIC Educational Resources Information Center

    Riby, Leigh M.; Orme, Elizabeth

    2013-01-01

    In this study we quantify for the first time electrophysiological components associated with incorporating long-term semantic knowledge with visuo-spatial information using two variants of a traditional matrix patterns task. Results indicated that the matrix task with greater semantic content was associated with enhanced accuracy and RTs in a…

  18. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2016-08-16

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  19. Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling.

    PubMed

    Aguiar, Aderbal S; Castro, Adalberto A; Moreira, Eduardo L; Glaser, Viviane; Santos, Adair R S; Tasca, Carla I; Latini, Alexandra; Prediger, Rui D S

    2011-01-01

    In the present study, we investigated whether mild-intensity physical exercise represents a successful strategy to enhance spatial learning and memory and hippocampal plasticity in aging rats, as previously described for long-term exposure to running wheel or treadmill exercise. Aging Wistar rats were submitted to short bouts (4-6 min) of exercise treadmill during five consecutive weeks. This mild-intensity exercise program increased muscle oxygen consumption by soleus and heart in aging rats and reversed age-related long-term spatial learning and memory impairments evaluated in the water maze and step-down inhibitory avoidance tasks. Remarkably, the observed cognitive-enhancing properties of short bouts of exercise were accompanied by the activation of serine/threonine protein kinase (AKT) and cAMP response element binding (CREB) pro-survival signaling that culminates in the marked increase on the brain-derived neurotrophic factor (BDNF) mRNA expression and BDNF protein levels on the hippocampus of aging rats. Altogether, these results indicate that short bouts of exercise represent a viable behavioral strategy to improve cognition and synaptic plasticity in aging rats which should be taken into account in further studies addressing the effects of physical exercise in aging subjects. PMID:21983475

  20. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.

    PubMed

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui

    2015-09-01

    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were

  1. Role of ventral pallidal D2 dopamine receptors in the consolidation of spatial memory.

    PubMed

    Péczely, László; Ollmann, Tamás; László, Kristóf; Kovács, Anita; Gálosi, Rita; Kertes, Erika; Zagorácz, Olga; Kállai, Veronika; Karádi, Zoltán; Lénárd, László

    2016-10-15

    The role of dopamine (DA) receptors in spatial memory consolidation has been demonstrated in numerous brain regions, among others in the nucleus accumbens which innervates the ventral pallidum (VP). The VP contains both D1 and D2 DA receptors. We have recently shown that the VP D1 DA receptor activation facilitates consolidation of spatial memory in Morris water maze test. In the present study, the role of VP D2 DA receptors was investigated in the same paradigm. In the first experiment, the D2 DA receptor agonist quinpirole was administered into the VP of male Wistar rats in three doses (0.1, 1.0 or 5.0μg, respectively in 0.4μl physiological saline). In the second experiment, the D2 DA receptor antagonist sulpiride was applied to elucidate whether it can antagonise the effects of quinpirole. The antagonist (4.0μg, dissolved in 0.4μl physiological saline) was microinjected into the VP either by itself or prior to 1.0μg agonist treatment. Control animals received saline in both experiments. The two higher doses (1.0 and 5.0μg) of the agonist accelerated memory consolidation relative to controls and increased the stability of the consolidated memory against extinction. Sulpiride pretreatment antagonised the effects of quinpirole. In addition, the antagonist microinjected into the VP immediately after the second conditioning trial impaired learning functions. The present data provide evidences for the important role of VP D2 DA receptors in the consolidation and stabilization of spatial memory. PMID:27392640

  2. Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment.

    PubMed

    Delpech, Jean-Christophe; Thomazeau, Aurore; Madore, Charlotte; Bosch-Bouju, Clementine; Larrieu, Thomas; Lacabanne, Chloe; Remus-Borel, Julie; Aubert, Agnès; Joffre, Corinne; Nadjar, Agnès; Layé, Sophie

    2015-11-01

    Dietary n-3 polyunsaturated fatty acids (PUFAs) are critical components of inflammatory response and memory impairment. However, the mechanisms underlying the sensitizing effects of low n-3 PUFAs in the brain for the development of memory impairment following inflammation are still poorly understood. In this study, we examined how a 2-month n-3 PUFAs deficiency from pre-puberty to adulthood could increase vulnerability to the effect of inflammatory event on spatial memory in mice. Mice were given diets balanced or deficient in n-3 PUFAs for a 2-month period starting at post-natal day 21, followed by a peripheral administration of lipopolysaccharide (LPS), a bacterial endotoxin, at adulthood. We first showed that spatial memory performance was altered after LPS challenge only in n-3 PUFA-deficient mice that displayed lower n-3/n-6 PUFA ratio in the hippocampus. Importantly, long-term depression (LTD), but not long-term potentiation (LTP) was impaired in the hippocampus of LPS-treated n-3 PUFA-deficient mice. Proinflammatory cytokine levels were increased in the plasma of both n-3 PUFA-deficient and n-3 PUFA-balanced mice. However, only n-3 PUFA-balanced mice showed an increase in cytokine expression in the hippocampus in response to LPS. In addition, n-3 PUFA-deficient mice displayed higher glucocorticoid levels in response to LPS as compared with n-3 PUFA-balanced mice. These results indicate a role for n-3 PUFA imbalance in the sensitization of the hippocampal synaptic plasticity to inflammatory stimuli, which is likely to contribute to spatial memory impairment. PMID:25948102

  3. Daily access to sucrose impairs aspects of spatial memory tasks reliant on pattern separation and neural proliferation in rats.

    PubMed

    Reichelt, Amy C; Morris, Margaret J; Westbrook, Reginald Frederick

    2016-07-01

    High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects in novel and familiar locations when there was a large spatial separation between the objects, but not when the separation was smaller. Neuroproliferation markers in the dentate gyrus of the sucrose-consuming rats were reduced relative to controls. Thus, sucrose consumption impaired aspects of spatial memory and reduced hippocampal neuroproliferation. PMID:27317199

  4. Genetic Variance in Processing Speed Drives Variation in Aging of Spatial and Memory Abilities

    PubMed Central

    Finkel, Deborah; McArdle, John J.; Reynolds, Chandra A.; Hamagami, Fumiaki; Pedersen, Nancy L.

    2013-01-01

    Previous analyses have identified a genetic contribution to the correlation between declines with age in processing speed and higher cognitive abilities. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories for processing speed and cognitive abilities. Longitudinal twin data from the Swedish Adoption/Twin Study of Aging, including up to 5 measurement occasions covering a 16-year period, were available from 806 participants ranging in age from 50 to 88 years at the 1st measurement wave. Factors were generated to tap 4 cognitive domains: verbal ability, spatial ability, memory, and processing speed. Model-fitting indicated that genetic variance for processing speed was a leading indicator of variation in age changes for spatial and memory ability, providing additional support for processing speed theories of cognitive aging. PMID:19413434

  5. Use of a modified spatial-context memory test to detect amnestic mild cognitive impairment.

    PubMed

    Wang, Hsuan-Min; Yang, Chien-Ming; Kuo, Wan-Chin; Huang, Chin-Chang; Kuo, Hung-Chou

    2013-01-01

    In this study we sought to differentiate participants with amnestic mild cognitive impairment (a-MCI) from those with mild dementia of Alzheimer's type (m-DAT) and normal controls by modifying an existing test of spatial context memory (SCMT) designed so as to evaluate the function of brain regions affected in early m-DAT. We found that participants with a-MCI had better total scores on our modified SCMT than those with m-DAT. Furthermore, the locational memory subtest was able to discriminate between those with a-MCI and m-DAT. Additionally, compared with other screening tests, our spatial context memory test showed high sensitivity and specificity in discerning those with a-MCI from the normal population but, was relatively ineffective in discriminating a-MCI patients from those with m-DAT. We conclude that our modified test of SCMT is an effective tool for discriminating a-MCI from m-DAT and does so by detecting differences in locational memory. PMID:23468906

  6. Effect of leaf extract of Capparis zeylanica Linn. on spatial learning and memory in rats.

    PubMed

    Solanki, Ruchi; Chaudhary, Amrendra Kumar; Singh, Ranjit

    2012-10-01

    This study was designed to investigate the nootropic activity of Capparis zeylanica Linn. leaves in rats. The raw material of Capparis zeylanica leaves was successively extracted with petroleum ether and methanol using a Soxhlet apparatus and macerated to form an aqueous extract. The methanolic and aqueous extracts were evaluated for their effect on spatial learning and memory in rats using the Morris water maze task. Three doses (50, 100 and 150 mg/kg; p.o.) of methanolic and aqueous extracts of Capparis zeylanica were administered for 7 successive days to separate groups of animals. Results showed that both the extracts significantly enhanced memory, as shown by decrease in escape latency time. Furthermore, methanolic and aqueous extracts in all doses tested significantly increased the time spent in the target quadrant during the probe trial, indicating retention of spatial memory of the location of a previously placed platform in the target quadrant. These findings indicate that methanolic and aqueous extracts of Capparis zeylanica Linn. leaves have potent nootropic activity. The anti-oxidant property of Capparis zeylanica may contribute favorably to the memory enhancement effect. However, further studies are needed to identify the exact mechanism of action. PMID:22261859

  7. Ketogenic diet attenuates spatial and item memory impairment in pentylenetetrazol-kindled rats.

    PubMed

    Jiang, Yan; Lu, Yuqiang; Jia, Mengmeng; Wang, Xiaohang; Zhang, Zhengxiang; Hou, Qun; Wang, Baohui

    2016-09-01

    The ketogenic diet (KD) controls seizure and improves cognition in patients with drug refractory epilepsy. However, few experimental models have shown this neuroprotective effect on cognition. In this study, we investigated the cognitive protective effects of KD in pentylenetetrazol (PTZ)-kindled rats. We used two relatively low-stress behavioral assessment methods, the novel object recognition (NOR) task and the novel placement recognition (NPR) task, to reveal impairment in item and spatial memory, respectively. We used the Morris water maze (MWM) test for comparisons amongst memory assessment methods. The KD group had a slower body weight gain and shorter bregma-lambda length than the control normal diet (ND) group. KD did not increase anxiety or decrease motor activities in an open-field test. KD attenuated the decrease in exploration ratio both in NOR and NPR tasks in kindled rats. Compared to the kindled ND rats, kindled KD rats stayed longer in target quarter during the probe trial testing of MWM. However, there were no differences in memory acquisition based on the MWM test results. In conclusion, KD attenuated the spatial and item memory impairment in PTZ-induced seizures. PMID:27343950

  8. Gonadal Hormones Rapidly Enhance Spatial Memory and Increase Hippocampal Spine Density in Male Rats.

    PubMed

    Jacome, Luis F; Barateli, Ketti; Buitrago, Dina; Lema, Franklin; Frankfurt, Maya; Luine, Victoria N

    2016-04-01

    17β-estradiol (E2) rapidly, within minutes, activates behaviors and cognition by binding to membrane estrogen receptors, activating cell signaling cascades and increasing dendritic spines. In female rodents, E2 enhances spatial memory within 2-4 hours, and spine density is increased in the CA1 area of the hippocampus within 30-60 minutes. Although chronic gonadal hormone treatments in male rats alter cognition and spines/spine synapses and acute hormone effects occur in hippocampal slices, effects of acute, in vivo hormone administration in males are unknown. Therefore, we assessed rapid effects of E2 (20 μg/kg) and testosterone (T) (750 μg/kg) on spatial memory using the object placement task and on hippocampal spine density using Golgi impregnation. Orchidectomized rats received hormones immediately after the training trial and were tested for retention 2 hours later. Vehicle-injected orchidectomized males spent equal time exploring objects in the old and new locations, but E2- or T-treated subjects spent more time exploring objects at the new location, suggesting enhanced memory. Both hormones also increased spine density in CA1, but not the dentate gyrus, by 20%-40% at 30 minutes and 2 hours after injections. This report is the first, to our knowledge, to show E2 and T enhancements of memory and spine density within such a short time frame in male rats. PMID:26844375

  9. Deficits in egocentric-updating and spatial context memory in a case of developmental amnesia.

    PubMed

    Gomez, A; Rousset, S; Bonniot, C; Charnallet, A; Moreaud, O

    2015-01-01

    Patients with developmental amnesia usually suffer from both episodic and spatial memory deficits. DM, a developmental amnesic, was impaired in her ability to process self-motion (i.e., idiothetic) information while her ability to process external stable landmarks (i.e., allothetic) was preserved when no self-motion processing was required. On a naturalistic and incidental episodic task, DM was severely and predictably impaired on both free and cued recall tasks. Interestingly, when cued, she was more impaired at recalling spatial context than factual or temporal information. Theoretical implications of that co-occurrence of deficits and those dissociations are discussed and testable cerebral hypothesis are proposed. PMID:24579921

  10. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories.

    PubMed

    Serrano, Peter; Friedman, Eugenia L; Kenney, Jana; Taubenfeld, Stephen M; Zimmerman, Joshua M; Hanna, John; Alberini, Cristina; Kelley, Ann E; Maren, Stephen; Rudy, Jerry W; Yin, Jerry C P; Sacktor, Todd C; Fenton, André A

    2008-12-23

    How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta), an autonomously active atypical protein kinase C (PKC) isoform critical for the maintenance of long-term potentiation (LTP). PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP) by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH) and basolateral amygdala (BLA) on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US) associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise, or

  11. Development of Spatial and Verbal Working Memory Capacity in the Human Brain

    ERIC Educational Resources Information Center

    Thomason, Moriah E.; Race, Elizabeth; Burrows, Brittany; Whitfield-Gabrieli, Susan; Glover, Gary H.; Gabrieli, John D. E.

    2009-01-01

    A core aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared brain activation, via fMRI, between children (ages 7-12 years) and adults (ages 20-29 years) performing tests of verbal and spatial WM with varying amounts (loads)…

  12. What does visual suffix interference tell us about spatial location in working memory?

    PubMed

    Allen, Richard J; Castellà, Judit; Ueno, Taiji; Hitch, Graham J; Baddeley, Alan D

    2015-01-01

    A visual object can be conceived of as comprising a number of features bound together by their joint spatial location. We investigate the question of whether the spatial location is automatically bound to the features or whether the two are separable, using a previously developed paradigm whereby memory is disrupted by a visual suffix. Participants were shown a sample array of four colored shapes, followed by a postcue indicating the target for recall. On randomly intermixed trials, a to-be-ignored suffix array consisting of two different colored shapes was presented between the sample and the postcue. In a random half of suffix trials, one of the suffix items overlaid the location of the target. If location was automatically encoded, one might expect the colocation of target and suffix to differentially impair performance. We carried out three experiments, cuing for recall by spatial location (Experiment 1), color or shape (Experiment 2), or both randomly intermixed (Experiment 3). All three studies showed clear suffix effects, but the colocation of target and suffix was differentially disruptive only when a spatial cue was used. The results suggest that purely visual shape-color binding can be retained and accessed without requiring information about spatial location, even when task demands encourage the encoding of location, consistent with the idea of an abstract and flexible visual working memory system. PMID:25030081

  13. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    PubMed

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. PMID:22483548

  14. Enhanced Odor Discrimination and Impaired Olfactory Memory by Spatially Controlled Switch of AMPA Receptors

    PubMed Central

    2005-01-01

    Genetic perturbations of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q), both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable (“mosaic”) among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities. PMID:16216087

  15. Spatial Working Memory in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex.

    PubMed

    Alekseichuk, Ivan; Turi, Zsolt; Amador de Lara, Gabriel; Antal, Andrea; Paulus, Walter

    2016-06-20

    Previous, albeit correlative, findings have shown that the neural mechanisms underlying working memory critically require cross-structural and cross-frequency coupling mechanisms between theta and gamma neural oscillations. However, the direct causality between cross-frequency coupling and working memory performance remains to be demonstrated. Here we externally modulated the interaction of theta and gamma rhythms in the prefrontal cortex using novel cross-frequency protocols of transcranial alternating current stimulation to affect spatial working memory performance in humans. Enhancement of working memory performance and increase of global neocortical connectivity were observed when bursts of high gamma oscillations (80-100 Hz) coincided with the peaks of the theta waves, whereas superimposition on the trough of the theta wave and low gamma frequency protocols were ineffective. Thus, our results demonstrate the sensitivity of working memory performance and global neocortical connectivity to the phase and rhythm of the externally driven theta-gamma cross-frequency synchronization. PMID:27238283

  16. Phenylbutyric acid protects against spatial memory deficits in a model of repeated electroconvulsive therapy.

    PubMed

    Yao, Zhao-Hui; Kang, Xiang; Yang, Liu; Niu, Yi; Lu, Ye; Gong, Cheng-Xin; Tian, Qing; Wang, Jian-Zhi

    2014-05-01

    Repeated electroconvulsive therapy (rECT) is widely applied in the treatment of refractory depression. Among the side effects of rECT, memory impairment is noticeable and needs effective protection. In this study, by employing a recognized repeated electroconvulsive shock (rECS) rat model, we found that rECS induced the significant spatial memory retention deficits with the simultaneous decreases in long-term potential (LTP), enhanced excitable postsynaptic potentials (EPSP), population spike (PS) and input/output curve in perforant pathway-dentate gyrus (PP-DG), but had no obvious neuron loss or dentritic spine loss in the brain by Nissle or Golgi stainings. Furthermore, the increased synaptic proteins of NR2A/B, PSD93, PSD95, the immediate early gene c-Fos and CREB protein were detected in hippocampus of rECS rats. rECS was also found to cause enhanced axon reorganization in DG region of hippocampus by Timm staining. Intraperitoneal injection of phenylbutyric acid (PBA), an aromatic short chain fatty acid acting as a molecule chaperon, could prevent rats from the rECS-induced memory deficits and synaptic potential enhancement by decreasing the levels of the abnormally increased memory-associated proteins and enhanced axon reorganization in hippocampus. Our data suggested that PBA might be potentially used to attenuate the rECS-induced memory impairment. PMID:24712645

  17. The effect of path length and display size on memory for spatial information.

    PubMed

    Guérard, Katherine; Tremblay, Sébastien

    2012-01-01

    In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results. PMID:22246063

  18. Neural correlates of spatial working memory manipulation in a sequential Vernier discrimination task.

    PubMed

    Gutiérrez-Garralda, Juan M; Hernandez-Castillo, Carlos R; Barrios, Fernando A; Pasaye, Erick H; Fernandez-Ruiz, Juan

    2014-12-17

    Visuospatial working memory refers to the short-term storage and manipulation of visuospatial information. To study the neural bases of these processes, 17 participants took part in a modified sequential Vernier task while they were being scanned using an event-related functional MRI protocol. During each trial, participants retained the spatial position of a line during a delay period to later evaluate if it was presented aligned to a second line. This design allowed testing the manipulation of the spatial information from memory. During encoding, there was a larger parietal and cingulate activation under the experimental condition, whereas the opposite was true for the occipital cortex. Throughout the delay period of the experimental condition there was significant bilateral activation in the caudal superior frontal sulcus/middle frontal gyrus, as well as the insular and superior parietal lobes, which confirms the findings from previous studies. During manipulation of spatial memory, the analysis showed higher activation in the lingual gyrus. This increase of activity in visual areas during the manipulation phase fits with the hypothesis that information stored in sensory cortices becomes reactivated once the information is needed to be utilized. PMID:25350139

  19. Hippocampal BDNF treatment facilitates consolidation of spatial memory in spontaneous place recognition in rats.

    PubMed

    Ozawa, Takaaki; Yamada, Kazuo; Ichitani, Yukio

    2014-04-15

    In order to investigate the role of brain-derived neurotrophic factor (BDNF) in the consolidation of spatial memory, we examined the relationship between the increase of hippocampal BDNF and the establishment of long-term spatial memory in spontaneous place recognition test in rats. The test consisted of a sample phase, delay interval, and a test phase, and preferred exploration of the object in a novel place compared with that in a familiar place was assessed in the test phase. In experiment 1, dorsal hippocampal administration of anisomycin, a protein synthesis inhibitor, before the sample phase (20 min) abolished the preference for the novel place object in the test phase conducted 24h later. This impairment was reversed by the dorsal hippocampal BDNF treatment immediately after the sample phase, although the BDNF treatment alone did not improve performance. In experiment 2, we used a shorter sample phase condition (5 min) in which control rats did not show any preference for the novel place object in the test phase after 24h delay, and found that BDNF treatment immediately after the sample phase caused rats' significant preference for it. Results suggest an important role of hippocampal BDNF as a product of protein synthesis that is required for the consolidation of spatial memory. PMID:24503120

  20. Histone Acetylation Regulation in Sleep Deprivation-Induced Spatial Memory Impairment.

    PubMed

    Duan, Ruifeng; Liu, Xiaohua; Wang, Tianhui; Wu, Lei; Gao, Xiujie; Zhang, Zhiqing

    2016-09-01

    Sleep disorders negatively affect cognition and health. Recent evidence has indicated that chromatin remodeling via histone acetylation regulates cognitive function. This study aimed to investigate the possible roles of histone acetylation in sleep deprivation (SD)-induced cognitive impairment. Results of the Morris water maze test showed that 3 days of SD can cause spatial memory impairment in Wistar rats. SD can also decrease histone acetylation levels, increase histone deacetylase 2 (HDAC2) expression, and decrease histone acetyltransferase (CBP) expression. Furthermore, SD can reduce H3 and H4 acetylation levels in the promoters of the brain-derived neurotrophic factor (Bdnf) gene and thus significantly downregulate BDNF expression and impair the activity of key BDNF signaling pathways (pCaMKII, pErk2, and pCREB). However, treatment with the HDAC inhibitor trichostatin A attenuated all the negative effects induced by SD. Therefore, BDNF and its histone acetylation regulation may play important roles in SD-induced spatial memory impairment, whereas HDAC inhibition possibly confers protection against SD-induced impairment in spatial memory and hippocampal functions. PMID:27161370

  1. Functional brain mapping of the macaque related to spatial working memory as revealed by PET.

    PubMed

    Inoue, Masato; Mikami, Akichika; Ando, Ichiro; Tsukada, Hideo

    2004-01-01

    To define the cortical areas that subserve spatial working memory in a nonhuman primate, we measured regional cerebral blood flow (rCBF) with [(15)O]H(2)O and positron emission tomography while monkeys performed a visually guided saccade (VGS) task and an oculomotor delayed-response (ODR) task. Both Statistical Parametric Mapping and regions of interest-based analyses revealed an increase of rCBF in the area surrounding the principal sulcus (PS), the superior convexity, the anterior bank of the arcuate sulcus (AS), the lateral orbitofrontal cortex (lOFC), the frontal pole (FP), the anterior cingulate cortex (ACC), the lateral bank of the intraparietal sulcus (lIPS) and the prestriate cortex. In the prefrontal cortex (PS, superior convexity, AS, lOFC and FP), rCBF values correlated positively with ODR task performance scores. From the hippocampus, rCBF values correlated negatively with ODR task performance. From the AS, superior convexity, lOFC, FP, ACC and lIPS, rCBF values of the PS correlated positively with rCBF values and negatively with hippocampus rCBF values. These results suggest that neural circuitry in the prefrontal cortex directly contributes the spatial working memory processes and that, in spatial working memory processes, the posterior parietal cortex and hippocampus have a different role to the prefrontal cortex. PMID:14654462

  2. MnemoCity Task: Assessment of Childrens Spatial Memory Using Stereoscopy and Virtual Environments.

    PubMed

    Rodríguez-Andrés, David; Juan, M-Carmen; Méndez-López, Magdalena; Pérez-Hernández, Elena; Lluch, Javier

    2016-01-01

    This paper presents the MnemoCity task, which is a 3D application that introduces the user into a totally 3D virtual environment to evaluate spatial short-term memory. A study has been carried out to validate the MnemoCity task for the assessment of spatial short-term memory in children, by comparing the children's performance in the developed task with current approaches. A total of 160 children participated in the study. The task incorporates two types of interaction: one based on standard interaction and another one based on natural interaction involving physical movement by the user. There were no statistically significant differences in the results of the task using the two types of interaction. Furthermore, statistically significant differences were not found in relation to gender. The correlations between scores were obtained using the MnemoCity task and a traditional procedure for assessing spatial short-term memory. Those results revealed that the type of interaction used did not affect the performance of children in the MnemoCity task. PMID:27579715

  3. Select Overexpression of Homer1a in Dorsal Hippocampus Impairs Spatial Working Memory

    PubMed Central

    Celikel, Tansu; Zivkovic, Aleksandar; Resnik, Evgeny; Hasan, Mazahir T.; Licznerski, Pawel; Osten, Pavel; Rozov, Andrej; Seeburg, Peter H.; Schwarz, Martin K.

    2007-01-01

    Long Homer proteins forge assemblies of signaling components involved in glutamate receptor signaling in postsynaptic excitatory neurons, including those underlying synaptic transmission and plasticity. The short immediate-early gene (IEG) Homer1a can dynamically uncouple these physical associations by functional competition with long Homer isoforms. To examine the consequences of Homer1a-mediated “uncoupling” for synaptic plasticity and behavior, we generated forebrain-specific tetracycline (tet) controlled expression of Venus-tagged Homer1a (H1aV) in mice. We report that sustained overexpression of H1aV impaired spatial working but not reference memory. Most notably, a similar impairment was observed when H1aV expression was restricted to the dorsal hippocampus (HP), which identifies this structure as the principal cortical area for spatial working memory. Interestingly, H1aV overexpression also abolished maintenance of CA3-CA1 long-term potentiation (LTP). These impairments, generated by sustained high Homer1a levels, identify a requirement for long Homer forms in synaptic plasticity and temporal encoding of spatial memory. PMID:18982121

  4. Role of dopamine--D2 receptor in spatial memory retention and retrieval determined using Hebb-Williams complex maze.

    PubMed

    Raut, Sanket B; Jadhav, Kshitij S; Marathe, Padmaja A

    2014-01-01

    Effects of bromocriptine and sulpiride were observed on encoding and retrieval of spatial memory in Wistar rats using Hebb-Williams complex maze. Rat was placed in entry chamber and allowed to reach reward chamber. Ten trials were given each day per rat for 3 consecutive days. Within-day encoding score indicative of learning and between-day retrieval score indicative of memory were calculated. Effects of bromocriptine and sulpiride were observed on encoding and retrieval of spatial memory. General learning index was calculated to compare the effect on spatial memory between groups. Bromocriptine increased while sulpiride decreased within-day encoding index but had no effect on retrieval index. In general learning index, sulpiride group showed more errors whereas bromocriptine group did not show any difference as compared to control. These results suggest that dopamine D2 receptors are involved in memory encoding but not retrieval. Also general learning is under positive modulation by D2 receptors. PMID:25906600

  5. Visuo-spatial memory deficits following medial temporal lobe damage: A comparison of three patient groups.

    PubMed

    Esfahani-Bayerl, Nazli; Finke, Carsten; Braun, Mischa; Düzel, Emrah; Heekeren, Hauke R; Holtkamp, Martin; Hasper, Dietrich; Storm, Christian; Ploner, Christoph J

    2016-01-29

    The contributions of the hippocampal formation and adjacent regions of the medial temporal lobe (MTL) to memory are still a matter of debate. It is currently unclear, to what extent discrepancies between previous human lesion studies may have been caused by the choice of distinct patient models of MTL dysfunction, as disorders affecting this region differ in selectivity, laterality and mechanisms of post-lesional compensation. Here, we investigated the performance of three distinct patient groups with lesions to the MTL with a battery of visuo-spatial short-term memory tasks. Thirty-one subjects with either unilateral damage to the MTL (postsurgical lesions following resection of a benign brain tumor, 6 right-sided lesions, 5 left) or bilateral damage (10 post-encephalitic lesions, 10 post-anoxic lesions) performed a series of tasks requiring short-term memory of colors, locations or color-location associations. We have shown previously that performance in the association task critically depends on hippocampal integrity. Patients with postsurgical damage of the MTL showed deficient performance in the association task, but performed normally in color and location tasks. Patients with left-sided lesions were almost as impaired as patients with right-sided lesions. Patients with bilateral post-encephalitic lesions showed comparable damage to MTL sub-regions and performed similarly to patients with postsurgical lesions in the association task. However, post-encephalitic patients showed additional impairments in the non-associative color and location tasks. A strikingly similar pattern of deficits was observed in post-anoxic patients. These results suggest a distinct cerebral organization of associative and non-associative short-term memory that was differentially affected in the three patient groups. Thus, while all patient groups may provide appropriate models of medial temporal lobe dysfunction in associative visuo-spatial short-term memory, additional deficits in

  6. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.

    PubMed

    Villeda, Saul A; Plambeck, Kristopher E; Middeldorp, Jinte; Castellano, Joseph M; Mosher, Kira I; Luo, Jian; Smith, Lucas K; Bieri, Gregor; Lin, Karin; Berdnik, Daniela; Wabl, Rafael; Udeochu, Joe; Wheatley, Elizabeth G; Zou, Bende; Simmons, Danielle A; Xie, Xinmin S; Longo, Frank M; Wyss-Coray, Tony

    2014-06-01

    As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts--in which circulatory systems of young and aged animals are connected--identified synaptic plasticity-related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function. PMID:24793238

  7. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice

    PubMed Central

    Villeda, Saul A; Plambeck, Kristopher E; Middeldorp, Jinte; Castellano, Joseph M; Mosher, Kira I; Luo, Jian; Smith, Lucas K; Bieri, Gregor; Lin, Karin; Berdnik, Daniela; Wabl, Rafael; Udeochu, Joe; Wheatley, Elizabeth G; Zou, Bende; Simmons, Danielle A; Xie, Xinmin S; Longo, Frank M; Wyss-Coray, Tony

    2014-01-01

    As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging1,2. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts—in which circulatory systems of young and aged animals are connected—identified synaptic plasticity–related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function. PMID:24793238

  8. Patterns of preserved and impaired spatial memory in a case of developmental amnesia

    PubMed Central

    Rosenbaum, R. Shayna; Cassidy, Benjamin N.; Herdman, Katherine A.

    2015-01-01

    The hippocampus is believed to have evolved to support allocentric spatial representations of environments as well as the details of personal episodes that occur within them, whereas other brain structures are believed to support complementary egocentric spatial representations. Studies of patients with adult-onset lesions lend support to these distinctions for newly encountered places but suggest that with time and/or experience, schematic aspects of environments can exist independent of the hippocampus. Less clear is the quality of spatial memories acquired in individuals with impaired episodic memory in the context of a hippocampal system that did not develop normally. Here we describe a detailed investigation of the integrity of spatial representations of environments navigated repeatedly over many years in the rare case of H.C., a person with congenital absence of the mammillary bodies and abnormal hippocampal and fornix development. H.C. and controls who had extensive experience navigating the residential and downtown areas known to H.C. were tested on mental navigation tasks that assess the identity, location, and spatial relations among landmarks, and the ability to represent routes. H.C. was able to represent distances and directions between familiar landmarks and provide accurate, though inefficient, route descriptions. However, difficulties producing detailed spatial features on maps and accurately ordering more than two landmarks that are in close proximity to one another along a route suggest a spatial representation that includes only coarse, schematic information that lacks coherence and that cannot be used flexibly. This pattern of performance is considered in the context of other areas of preservation and impairment exhibited by H.C. and suggests that the allocentric-egocentric dichotomy with respect to hippocampal and extended hippocampal system function may need to be reconsidered. PMID:26029074

  9. Apolipoprotein ɛ4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals.

    PubMed

    Salvato, Gerardo; Patai, Eva Z; McCloud, Tayla; Nobre, Anna C

    2016-09-01

    Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan. PMID:27395443

  10. The Effects of Incentives on Visual-Spatial Working Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Shiels, Keri; Hawk, Larry W., Jr.; Lysczek, Cynthia L.; Tannock, Rosemary; Pelham, William E., Jr.; Spencer, Sarah V.; Gangloff, Brian P.; Waschbusch, Daniel A.

    2008-01-01

    Working memory is one of several putative core neurocognitive processes in attention-deficit/hyperactivity disorder (ADHD). The present work seeks to determine whether visual-spatial working memory is sensitive to motivational incentives, a laboratory analogue of behavioral treatment. Participants were 21 children (ages 7-10) with a diagnosis of…

  11. Toward a Definition of Intrinsic Axes: The Effect of Orthogonality and Symmetry on the Preferred Direction of Spatial Memory

    ERIC Educational Resources Information Center

    Richard, Laurence; Waller, David

    2013-01-01

    Mou, Zhao, and McNamara (2007) proposed the "intrinsic model of human spatial memory," which posits that a viewer's memory of an array of objects will exhibit a preferred direction that is aligned with an intrinsic axis of the array. They defined intrinsic axes as salient axes created in part by the physical (geometric) properties of the…

  12. Daily Access to Sucrose Impairs Aspects of Spatial Memory Tasks Reliant on Pattern Separation and Neural Proliferation in Rats

    ERIC Educational Resources Information Center

    Reichelt, Amy C.; Morris, Margaret J.; Westbrook, Reginald Frederick

    2016-01-01

    High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects…

  13. The Extent of Working Memory Deficits Associated with Williams Syndrome: Exploration of Verbal and Spatial Domains and Executively Controlled Processes

    ERIC Educational Resources Information Center

    Rhodes, Sinead M.; Riby, Deborah M.; Fraser, Emma; Campbell, Lorna Elise

    2011-01-01

    The present study investigated verbal and spatial working memory (WM) functioning in individuals with the neuro-developmental disorder Williams syndrome (WS) using WM component tasks. While there is strong evidence of WM impairments in WS, previous research has focused on short-term memory and has neglected assessment of executive components of…

  14. Do the anterior and lateral thalamic nuclei make distinct contributions to spatial representation and memory?

    PubMed

    Clark, Benjamin J; Harvey, Ryan E

    2016-09-01

    The anterior and lateral thalamus has long been considered to play an important role in spatial and mnemonic cognitive functions; however, it remains unclear whether each region makes a unique contribution to spatial information processing. We begin by reviewing evidence from anatomical studies and electrophysiological recordings which suggest that at least one of the functions of the anterior thalamus is to guide spatial orientation in relation to a global or distal spatial framework, while the lateral thalamus serves to guide behavior in relation to a local or proximal framework. We conclude by reviewing experimental work using targeted manipulations (lesion or neuronal silencing) of thalamic nuclei during spatial behavior and single-unit recordings from neuronal representations of space. Our summary of this literature suggests that although the evidence strongly supports a working model of spatial information processing involving the anterior thalamus, research regarding the role of the lateral thalamus is limited and requires further attention. We therefore identify a number of major gaps in this research and suggest avenues of future study that could potentially solidify our understanding of the relative roles of anterior and lateral thalamic regions in spatial representation and memory. PMID:27266961

  15. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults.

    PubMed

    Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I

    2016-05-01

    White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood. PMID

  16. The effects of L-arginine on spatial memory and synaptic plasticity impairments induced by lipopolysaccharide

    PubMed Central

    Anaeigoudari, Akbar; Shafei, Mohammad Naser; Soukhtanloo, Mohammad; Sadeghnia, Hamid Reza; Reisi, Parham; Nosratabadi, Reza; Behradnia, Sepehr; Hosseini, Mahmoud

    2015-01-01

    Background: An important role of nitric oxide (NO) in neuroinflammation has been suggested. It is also suggested that NO has a critical role in learning and memory. Neuro-inflammation induced by lipopolysaccharide (LPS) has been reported that deteriorates learning and memory. The effect of L-arginine (LA) as a precursor of NO on LPS-induced spatial learning and memory and neuronal plasticity impairment was evaluated. Materials and Methods: The animals were grouped into: (1) Control, (2) LPS, (3) LA-LPS, and (4) LA. The rats received intraperitoneally LPS (1 mg/kg) 2 h before experiments and LA (200 mg/kg) 30 min before LPS. The animals were examined in Morris water maze (MWM). Long-term potentiation (LTP) from CA1 area of the hippocampus was also assessed by 100 Hz stimulation in the ipsilateral Schaffer collateral pathway. Results: In MWM, time latency and traveled path were higher in LPS group than the control group (P < 0.001) whereas in LA-LPS group they were shorter than LPS group (P < 0.001). The amplitude and slope of field excitatory postsynaptic potential (fEPSP) decreased in LPS group compared to control group (P < 0.05 and P < 0.01) whereas, there was not any significant difference in these parameters between LPS and LA-LPS groups. Conclusion: Administration of LPS impaired spatial memory and synaptic plasticity. Although LA ameliorated deleterious effects of LPS on learning of spatial tasks, it could not restore LPS-induced LTP impairment. PMID:26601090

  17. Human Dorsolateral Prefrontal Cortex Is Not Necessary for Spatial Working Memory

    PubMed Central

    Mackey, Wayne E.; Devinsky, Orrin; Doyle, Werner K.; Meager, Michael R.

    2016-01-01

    A dominant theory, based on electrophysiological and lesion evidence from nonhuman primate studies, posits that the dorsolateral prefrontal cortex (dlPFC) stores and maintains working memory (WM) representations. Yet, neuroimaging studies have consistently failed to translate these results to humans; these studies normally find that neural activity persists in the human precentral sulcus (PCS) during WM delays. Here, we attempt to resolve this discrepancy. To test the degree to which dlPFC is necessary for WM, we compared the performance of patients with dlPFC lesions and neurologically healthy controls on a memory-guided saccade task that was used in the monkey studies to measure spatial WM. We found that dlPFC damage only impairs the accuracy of memory-guided saccades if the damage impacts the PCS; lesions to dorsolateral dlPFC that spare the PCS have no effect on WM. These results identify the necessary subregion of the frontal cortex for WM and specify how this influential animal model of human cognition must be revised. SIGNIFICANCE STATEMENT High-level cognition depends on working memory (WM) as a critical building block, and many symptoms of psychiatric disorders may be the direct result of impaired WM. Canonical theory posits a critical role for the dorsolateral prefrontal cortex (dlPFC) in WM based on studies of nonhuman primates. However, we find that spatial WM in humans is intact after dlPFC damage unless it impacts the more caudal PCS. Therefore, the human dlPFC is not necessary for spatial WM and highlights the need for careful translation of animal models of human cognition. PMID:26961941

  18. Age-Related White Matter Changes

    PubMed Central

    Xiong, Yun Yun; Mok, Vincent

    2011-01-01

    Age-related white matter changes (WMC) are considered manifestation of arteriolosclerotic small vessel disease and are related to age and vascular risk factors. Most recent studies have shown that WMC are associated with a host of poor outcomes, including cognitive impairment, dementia, urinary incontinence, gait disturbances, depression, and increased risk of stroke and death. Although the clinical relevance of WMC has been extensively studied, to date, only very few clinical trials have evaluated potential symptomatic or preventive treatments for WMC. In this paper, we reviewed the current understanding in the pathophysiology, epidemiology, clinical importance, chemical biomarkers, and treatments of age-related WMC. PMID:21876810

  19. Pharmacogenetics and age-related macular degeneration.

    PubMed

    Schwartz, Stephen G; Brantley, Milam A

    2011-01-01

    Pharmacogenetics seeks to explain interpatient variability in response to medications by investigating genotype-phenotype correlations. There is a small but growing body of data regarding the pharmacogenetics of both nonexudative and exudative age-related macular degeneration. Most reported data concern polymorphisms in the complement factor H and age-related maculopathy susceptibility 2 genes. At this time, the data are not consistent and no definite conclusions may be drawn. As clinical trials data continue to accumulate, these relationships may become more apparent. PMID:22046503

  20. Not all memories are the same: Situational context influences spatial recall within one's city of residency.

    PubMed

    Meilinger, Tobias; Frankenstein, Julia; Simon, Nadine; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2016-02-01

    Reference frames in spatial memory encoding have been examined intensively in recent years. However, their importance for recall has received considerably less attention. In the present study, passersby used tags to arrange a configuration map of prominent city center landmarks. It has been shown that such configurational knowledge is memorized within a north-up reference frame. However, participants adjusted their maps according to their body orientations. For example, when participants faced south, the maps were likely to face south-up. Participants also constructed maps along their location perspective-that is, the self-target direction. If, for instance, they were east of the represented area, their maps were oriented west-up. If the location perspective and body orientation were in opposite directions (i.e., if participants faced away from the city center), participants relied on location perspective. The results indicate that reference frames in spatial recall depend on the current situation rather than on the organization in long-term memory. These results cannot be explained by activation spread within a view graph, which had been used to explain similar results in the recall of city plazas. However, the results are consistent with forming and transforming a spatial image of nonvisible city locations from the current location. Furthermore, prior research has almost exclusively focused on body- and environment-based reference frames. The strong influence of location perspective in an everyday navigational context indicates that such a reference frame should be considered more often when examining human spatial cognition. PMID:26088668

  1. Extraction and restoration of hippocampal spatial memories with non-linear dynamical modeling

    PubMed Central

    Song, Dong; Harway, Madhuri; Marmarelis, Vasilis Z.; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.

    2014-01-01

    To build a cognitive prosthesis that can replace the memory function of the hippocampus, it is essential to model the input-output function of the damaged hippocampal region, so the prosthetic device can stimulate the downstream hippocampal region, e.g., CA1, with the output signal, e.g., CA1 spike trains, predicted from the ongoing input signal, e.g., CA3 spike trains, and the identified input-output function, e.g., CA3-CA1 model. In order for the downstream region to form appropriate long-term memories based on the restored output signal, furthermore, the output signal should contain sufficient information about the memories that the animal has formed. In this study, we verify this premise by applying regression and classification modelings of the spatio-temporal patterns of spike trains to the hippocampal CA3 and CA1 data recorded from rats performing a memory-dependent delayed non-match-to-sample (DNMS) task. The regression model is essentially the multiple-input, multiple-output (MIMO) non-linear dynamical model of spike train transformation. It predicts the output spike trains based on the input spike trains and thus restores the output signal. In addition, the classification model interprets the signal by relating the spatio-temporal patterns to the memory events. We have found that: (1) both hippocampal CA3 and CA1 spike trains contain sufficient information for predicting the locations of the sample responses (i.e., left and right memories) during the DNMS task; and more importantly (2) the CA1 spike trains predicted from the CA3 spike trains by the MIMO model also are sufficient for predicting the locations on a single-trial basis. These results show quantitatively that, with a moderate number of unitary recordings from the hippocampus, the MIMO non-linear dynamical model is able to extract and restore spatial memory information for the formation of long-term memories and thus can serve as the computational basis of the hippocampal memory prosthesis. PMID

  2. Topography of age-related changes in sleep spindles.

    PubMed

    Martin, Nicolas; Lafortune, Marjolaine; Godbout, Jonathan; Barakat, Marc; Robillard, Rebecca; Poirier, Gaétan; Bastien, Célyne; Carrier, Julie

    2013-02-01

    Aging induces multiple changes to sleep spindles, which may hinder their alleged functional role in memory and sleep protection mechanisms. Brain aging in specific cortical regions could affect the neural networks underlying spindle generation, yet the topography of these age-related changes is currently unknown. In the present study, we analyzed spindle characteristics in 114 healthy volunteers aged between 20 and 73 years over 5 anteroposterior electroencephalography scalp derivations. Spindle density, amplitude, and duration were higher in young subjects than in middle-aged and elderly subjects in all derivations, but the topography of age effects differed drastically. Age-related decline in density and amplitude was more prominent in anterior derivations, whereas duration showed a posterior prominence. Age groups did not differ in all-night spindle frequency for any derivation. These results show that age-related changes in sleep spindles follow distinct topographical patterns that are specific to each spindle characteristic. This topographical specificity may provide a useful biomarker to localize age-sensitive changes in underlying neural systems during normal and pathological aging. PMID:22809452

  3. Hypermnesia: age-related differences between young and older adults.

    PubMed

    Widner, R L; Otani, H; Smith, A D

    2000-06-01

    Hypermnesia is a net improvement in memory performance that occurs across tests in a multitest paradigm with only one study session. Our goal was to identify possible age-related differences in hypermnesic recall. We observed hypermnesia for young adults using verbal (Experiment 1) as well as pictorial (Experiment 2) material, but no hypermnesia for older adults in either experiment. We found no age-related difference in reminiscence (Experiments 1 and 2), though there was a substantial difference in intertest forgetting (Experiments 1 and 2). Older, relative to young, adults produced more forgetting, most of which occurred between Tests 1 and 2 (Experiments 1 and 2). Furthermore, older, relative to young, adults produced more intrusions. We failed to identify a relationship between intrusions and intertest forgetting. We suggest that the age-related difference in intertest forgetting may be due to less efficient reinstatement of cues at test by older adults. The present findings reveal that intertest forgetting plays a critical role in hypermnesic recall, particularly for older adults. PMID:10946539

  4. Age-Related Differences and Cognitive Correlates of Self-Reported and Direct Navigation Performance: The Effect of Real and Virtual Test Conditions Manipulation

    PubMed Central

    Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène

    2016-01-01

    The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates. PMID:26834666

  5. 3D hierarchical spatial representation and memory of multimodal sensory data

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine

  6. Functional equivalence of verbal and spatial information in serial short-term memory.

    PubMed

    Jones, D; Farrand, P; Stuart, G; Morris, N

    1995-07-01

    Performance on a test of serial memory for the spatial position of a sequence of dots showed similarities to typical results from the serial recall of verbal material: a marked increase in error with increasing list length, a modest rise in error as retention interval increased, and bow-shaped serial position curves. This task was susceptible to interference from both a spatial task (rote tapping) and a verbal task (mouthed articulatory suppression) and also from the presence of irrelevant speech. Effects were comparable to those found with a serial verbal task that was generally similar in demand characteristics to the spatial task. As a generalization, disruption of the serial recall of visuospatial material was more marked if the interference conditions involved a changing sequence of actions or materials, but not if a single event (tap, mouthed utterance, or sound) was repeated. PMID:7673864

  7. Human chorionic gonadotropin (a luteinizing hormone homologue) decreases spatial memory and increases brain amyloid-β levels in female rats

    PubMed Central

    Berry, Anne S.; Tomidokoro, Yasushi; Ghiso, Jorge; Thornton, Jan

    2008-01-01

    Numerous studies have suggested that estradiol (E) improves spatial memory as female rats with E perform better than those without E. However there is an inverse relationship between E and luteinizing hormone (LH) levels and LH could play a role. We examined whether treatment with the LH homologue human chorionic gonadotropin (hCG), would impair spatial memory of adult E-treated female rats. In the Object Location Memory Task, ovariectomized (ovxed) rats treated with E and either a single high dose (400IU/kg) or a lower repeated dose of hCG (75 IU/kg hourly for 8 hours) showed spatial memory disruption compared to ovxed rats treated with estradiol alone. Impairment was attributed to memory disruption as performance improved with shortened delay between task exposure and testing. Tests on another spatial memory task, the Barnes maze, confirmed that hCG (400IU/kg) can impair memory: although E + veh treated animals made significantly fewer hole errors across time, E + hCG treated did not. In humans, high LH levels have been correlated with Alzheimer’s Disease (AD). Because brain amyloid-beta (Aβ) species have been implicated as a toxic factor thought to cause memory loss in AD, we analyzed whether hCG-treated animals had increased Aβ levels. Levels of Aβ from whole brains or hippocampi were assessed by Western Blot. hCG treatment to E-implanted females significantly increased soluble Aβ40 and Aβ42 levels. These results indicate that high levels of LH/hCG can impair spatial memory, and an increase in brain Aβ species may account for the memory impairment in hCG-treated rats. PMID:18413150

  8. Chronic Alcohol Consumption Impairs Visuo-Spatial Associative Memory in Periadolescent Rhesus Monkeys

    PubMed Central

    Crean, Rebecca D.; Vandewater, Sophia A.; Katner, Simon N.; Huitron-Resendiz, Salvador

    2010-01-01

    Alcohol abuse in the adult is often preceded by high alcohol consumption during adolescence. Profound changes in brain structure and function occur during this developmental period, therefore alcohol may impact essential cognitive skill development during the formal educational years. The objective of this study was to determine if chronic oral alcohol intake slows acquisition and performance of cognitive tasks in male adolescent rhesus monkeys. Treatment groups (Alcohol, N=4; Control, N=3) were evaluated on bimanual dexterity and tests of visuo-spatial memory and learning adapted from the Cambridge Neuropsychological Test Automated Battery. Animals were trained daily in 30 min sessions and had subsequent access to alcohol/Tang® solutions (Alcohol group) or Tang® only (Control group) Monday through Friday for 11 months. Recordings of brainstem auditory evoked potentials (BSAEP) were conducted periodically before and during the chronic drinking. Results Chronic alcohol drinking (ave of 1.78g/kg alcohol per session) impaired behavioral performance assessed ~22 hrs after the prior drinking session. The Alcohol group required more trials than the Control group to reach criterion on the visuo-spatial memory task and showed increased sensitivity to trial difficulty and retention interval. Alcohol animals also had slowed initial acquisition of the bimanual task. The latency of P4 and P5 BSAEP peaks were also delayed in the Alcohol group. Chronic alcohol consumption impaired the acquisition and performance of a spatial memory task and disrupted brainstem auditory processing, thus these results show that repeated alcohol exposure in adolescence interferes with a range of brain functions including complex visuo-spatial mnemonic processing. PMID:20951512

  9. Wakeful rest promotes the integration of spatial memories into accurate cognitive maps.

    PubMed

    Craig, Michael; Dewar, Michaela; Harris, Mathew A; Della Sala, Sergio; Wolbers, Thomas

    2016-02-01

    Flexible spatial navigation, e.g. the ability to take novel shortcuts, is contingent upon accurate mental representations of environments-cognitive maps. These cognitive maps critically depend on hippocampal place cells. In rodents, place cells replay recently travelled routes, especially during periods of behavioural inactivity (sleep/wakeful rest). This neural replay is hypothesised to promote not only the consolidation of specific experiences, but also their wider integration, e.g. into accurate cognitive maps. In humans, rest promotes the consolidation of specific experiences, but the effect of rest on the wider integration of memories remained unknown. In the present study, we examined the hypothesis that cognitive map formation is supported by rest-related integration of new spatial memories. We predicted that if wakeful rest supports cognitive map formation, then rest should enhance knowledge of overarching spatial relations that were never experienced directly during recent navigation. Forty young participants learned a route through a virtual environment before either resting wakefully or engaging in an unrelated perceptual task for 10 min. Participants in the wakeful rest condition performed more accurately in a delayed cognitive map test, requiring the pointing to landmarks from a range of locations. Importantly, the benefit of rest could not be explained by active rehearsal, but can be attributed to the promotion of consolidation-related activity. These findings (i) resonate with the demonstration of hippocampal replay in rodents, and (ii) provide the first evidence that wakeful rest can improve the integration of new spatial memories in humans, a function that has, hitherto, been associated with sleep. PMID:26235141

  10. Training, transfer, and retention of three-dimensional spatial memory in virtual environments

    NASA Technical Reports Server (NTRS)

    Richards, Jason T.; Oman, Charles M.; Shebilske, Wayne L.; Beall, Andrew C.; Liu, Andrew; Natapoff, Alan

    2002-01-01

    Human orientation requires one to remember and visualize spatial arrangements of landmarks from different perspectives. Astronauts have reported difficulties remembering relationships between environmental landmarks when imagined in arbitrary 3D orientations. The present study investigated the effects of strategy training on humans' 1) ability to infer their orientation from landmarks presented ahead and below, 2) performance when subsequently learning a different array, and 3) retention of configurational knowledge over time. On the first experiment day, 24 subjects were tested in a virtual cubic chamber in which a picture of an animal was drawn on each wall. Through trial-by-trial exposures, they had to memorize the spatial relationships among the six pictures around them and learn to predict the direction to a specific picture when facing any view direction, and in any roll orientation. Half of the subjects ("strategy group") were taught methods for remembering picture groupings, while the remainder received no such training ("control group"). After learning one picture array, the procedure was repeated in a second. Accuracy (% correct) and response time learning curves were measured. Performance for the second array and configurational memory of both arrays were also retested 1, 7, and 30 days later. Results showed that subjects "learned how to learn" this generic 3D spatial memory task regardless of their relative orientation to the environment, that ability and configurational knowledge was retained for at least a month, that figure rotation ability and field independence correlate with performance, and that teaching subjects specific strategies in advance significantly improves performance. Training astronauts to perform a similar generic 3D spatial memory task, and suggesting strategies in advance, may help them orient in three dimensions.

  11. Memantine attenuates the impairment of spatial learning and memory of pentylenetetrazol-kindled rats.

    PubMed

    Jia, Li-Jing; Wang, Wei-Ping; Li, Zhou-Ping; Zhen, Jun-Li; An, Li-Wei; Duan, Rui-Sheng

    2011-08-01

    Cognitive disorders after epilepsy can have a great impact on the quality of life of epileptic patients, though it has not drawn much attention. Even after identified, it is often undertreated or has gone untreated. Memantine has been approved to treat moderate to severe Alzheimer disease (AD), which is characterized by cognitive impairment. In present study, we determined the effects of memantine on PTZ-kindled rats, which can mimic the postseizure dysfunction that resembles symptoms observed in human epilepsy. We found that memantine can ameliorate the spatial learning and memory of epileptic rats. But contrary to previous claims that memantine can improve cognition in AD patients, without serious side effects on normal learning and memory abilities, we found that rats treated only with memantine exhibited the impaired spatial learning and memory ability. We conclude that memantine can improve cognition related to an excitotoxicity-induced pathologic state, but the potential side effects of memantine on the physiological processes should be considered. PMID:21479611

  12. A revised spatial serial learning and memory procedure using Corsi's Block-tapping apparatus.

    PubMed

    Crawford, S M; Dickson, A L; Baños, J H

    2000-10-01

    The purpose of this study was to use Corsi's Block Tapping Test as a spatial analog of Benton's Serial Digit Learning Test, using the cognitive neuroscience approach utilized in the California Verbal Learning Test. 60 normal participants, ages 19-52 years, were included and administered an 8-block sequence for 9 trials or until they recalled the entire sequence for 3 consecutive errorless trials. The score was the number of blocks tapped in the correct serial order. An interference trial was administered. Following a 10-min. delay, free recall of the original sequence, cued recall, and recognition measures were obtained. Retroactive interference was significant, but no proactive interference emerged. Scores showed a strong primacy effect. Most participants who learned the sequence to the criterion of three successive errorless trials recalled the sequence after the 10-min. delay. Scores on the cued recall and recognition trials tended to support their validity as less demanding retrieval tasks. The use of this spatial learning and memory procedure allows finer discriminations among nonverbal memory deficits and may facilitate direct comparisons with scores on verbal memory tasks such as Serial Digit Learning and the California Verbal Learning Test. PMID:11065330

  13. Spatial, object, and affective working memory in social anhedonia: an exploratory study.

    PubMed

    Gooding, Diane C; Tallent, Kathleen A

    2003-10-01

    The domain-specificity of working memory was examined in psychosis-prone individuals with elevated social anhedonia scores. A group of individuals with deviant scores on the revised Social Anhedonia Scale (n=43) were compared with a normal control group (n=39) on delayed match-to-sample tasks involving spatial, identity, and affective information. The social anhedonia group performed less well on the spatial and emotion delayed match-to-sample tasks relative to the normally hedonic group. The two groups did not differ in terms of their performance on the identity delayed match-to-sample task. Although the social anhedonia group reported less positive affect, greater negative affect, and more alexithymic tendencies relative to the control group, there were no significant associations between these personality traits and working memory performance. In summary, the findings suggest that poorer working memory performance is not domain-specific in socially anhedonic individuals. The authors conclude that the socially anhedonic group's relatively poor performance on the emotion delayed match-to-sample task reflects difficulty and/or inefficiency in handling cognitively taxing tasks. PMID:12957704

  14. Pregnant rats show enhanced spatial memory, decreased anxiety, and altered levels of monoaminergic neurotransmitters

    PubMed Central

    Macbeth, A.H.; Gautreaux, C.; Luine, V.N.

    2008-01-01

    Spatial memory, anxiety and central monoaminergic activities were measured in non-pregnant (NP) and pregnant females during two time periods of pregnancy: gestational day 7–9 (GD7, GD9) & gestation day 16–18 (GD16, GD18). Pregnant females discriminated between object locations on both test days on an object placement task, whereas NP females were unable to discriminate between locations. Pregnant females displayed decreased anxiety on the elevated plus maze on GD9 compared to NP females, followed by increased anxiety-like behavior on the elevated plus maze on GD18. Monoamine levels and activity (as indexed by turnover ratio) were measured in prefrontal cortex (PFC), CA1 and CA3 regions of the hippocampus (areas important for memory), and medial preoptic area (mPOA, an area important in display of maternal behaviors). In the PFC, NP females generally had higher monoamine levels and turnover ratios; however, norepinephrine (NE) turnover was higher in pregnant females at GD18. In the CA1 and CA3 regions of the hippocampus, monoamine levels and turnover ratios were generally higher during pregnancy, particularly on GD9. In the mPOA, pregnancy was associated with increases in NE activity, a previously unreported finding. The present study expands upon existing research indicating that pregnancy is beneficial to spatial memory and may decrease anxiety. Changes in monoamine levels and activity in specific brain regions indicate that the dopamine, norepinephrine and serotonin systems may contribute to the observed behavioral differences. PMID:18823955

  15. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    PubMed

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits. PMID:26927754

  16. Hippocampal inactivation with TTX impairs long-term spatial memory retrieval and modifies brain metabolic activity.

    PubMed

    Conejo, Nélida María; Cimadevilla, José Manuel; González-Pardo, Héctor; Méndez-Couz, Marta; Arias, Jorge Luis

    2013-01-01

    Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions. PMID:23724089

  17. Hippocampal Inactivation with TTX Impairs Long-Term Spatial Memory Retrieval and Modifies Brain Metabolic Activity

    PubMed Central

    Conejo, Nélida María; Cimadevilla, José Manuel; González-Pardo, Héctor; Méndez-Couz, Marta; Arias, Jorge Luis

    2013-01-01

    Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions. PMID:23724089

  18. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  19. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  20. Age Related Changes in Preventive Health Behavior.

    ERIC Educational Resources Information Center

    Leventhal, Elaine A.; And Others

    Health behavior may be influenced by age, beliefs, and symptomatology. To examine age-related health beliefs and behaviors with respect to six diseases (the common cold, colon-rectal cancer, lung cancer, heart attack, high blood pressure, and senility), 396 adults (196 males, 200 females) divided into three age groups completed a questionnaire…

  1. Driving and Age-Related Macular Degeneration

    PubMed Central

    Owsley, Cynthia; McGwin, Gerald

    2009-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety, and considers directions for future research. PMID:20046818

  2. Neuromuscular contributions to age-related weakness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related physiological change of neuromuscular function is not a linear process and is likely influenced by various biological and behavioral factors (e.g., genetics, nutrition, physical activity level, comorbidities, etc.). These factors contribute to heterogeneity among older adults, which chal...

  3. Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid balance and spatial memory in mice

    PubMed Central

    Tabatadze, Nino; Savonenko, Alena; Song, Hongjun; Bandaru, Veera Venkata Ratnam; Chu, Michael; Haughey, Norman J.

    2010-01-01

    The sphingolipid ceramide is a bioactive signaling lipid that is thought to play important roles in modulating synaptic activity, in part by regulating the function of excitatory postsynaptic receptors. However, the molecular mechanisms by which ceramide exerts its effects on synaptic activity remain largely unknown. We recently demonstrated that a rapid generation of ceramide by neutral sphingomyelinase-2 (nSMase2; also known as sphingomyelin phosphodiesterase-3) played a key role in modulating excitatory postsynaptic currents by controlling the insertion and clustering of NMDA receptors (Wheeler et al. 2009). We now demonstrate that nSMase2 plays a role in memory. Inhibition of nSMase2 impaired spatial and episodic-like memory in mice. At the molecular level, inhibition of nSMase2 decreased ceramide, increased PSD-95, increased the number of AMPA receptors and altered the subunit composition of NMDA receptors. Our study identifies nSMase2 as an important component for efficient memory formation and underscores the importance of ceramide in regulating synaptic events related to learning and memory. PMID:20629193

  4. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model.

    PubMed

    Compte, A; Brunel, N; Goldman-Rakic, P S; Wang, X J

    2000-09-01

    Single-neuron recordings from behaving primates have established a link between working memory processes and information-specific neuronal persistent activity in the prefrontal cortex. Using a network model endowed with a columnar architecture and based on the physiological properties of cortical neurons and synapses, we have examined the synaptic mechanisms of selective persistent activity underlying spatial working memory in the prefrontal cortex. Our model reproduces the phenomenology of the oculomotor delayed-response experiment of Funahashi et al. (S. Funahashi, C.J. Bruce and P.S. Goldman-Rakic, Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 61:331-349, 1989). To observe stable spontaneous and persistent activity, we find that recurrent synaptic excitation should be primarily mediated by NMDA receptors, and that overall recurrent synaptic interactions should be dominated by inhibition. Isodirectional tuning of adjacent pyramidal cells and interneurons can be accounted for by a structured pyramid-to-interneuron connectivity. Robust memory storage against random drift of the tuned persistent activity and against distractors (intervening stimuli during the delay period) may be enhanced by neuromodulation of recurrent synapses. Experimentally testable predictions concerning the neural basis of working memory are discussed. PMID:10982751

  5. Effects of enhanced zinc and copper in drinking water on spatial memory and fear conditioning

    USGS Publications Warehouse

    Chrosniak, L.D.; Smith, L.N.; McDonald, C.G.; Jones, B.F.; Flinn, J.M.

    2006-01-01

    Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper. ?? 2005 Elsevier B.V. All rights reserved.

  6. Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knock out mice

    PubMed Central

    Li, BingJin; Arime, Yosefu; Hall, F. Scott; Uhl, George R.; Sora, Ichiro

    2010-01-01

    Brain-derived neurotrophic factor (BDNF), one of the key brain neurotrophins, has been implicated in neuronal plasticity and memory. Recent studies document the importance of BDNF for normal long-term memory functions. However, there are few studies of the roles of BDNF in short term memory. Dopamine is likely to play important roles in BDNF gene expression in specific brain regions, including frontal cortical regions that are implicated in short term working memory processes that include spontaneous alternation. We have thus tested spatial working memory in dopamine transporter knockout (DAT KO) and wild-type mice. Spontaneous alternation in the Y-maze, an index of short-term spatial working memory in mice, was significantly decreased in DAT KO mice compared to wildtype mice. BDNF protein was significantly decreased in frontal cortex, though not in striatum or hippocampus, of the DAT KO mice. The data support the hypothesis that impaired spatial working memory in DAT KO mice may be related to decreased frontal cortical BDNF in these animals, and document apparent roles for BDNF in a short term memory process. PMID:19932884

  7. Age-related differences in pointing accuracy in familiar and unfamiliar environments.

    PubMed

    Muffato, Veronica; Della Giustina, Martina; Meneghetti, Chiara; De Beni, Rossana

    2015-09-01

    This study aimed to investigate age-related differences in spatial mental representations of familiar and unfamiliar places. Nineteen young adults (aged 18-23) and 19 older adults (aged 60-74), all living in the same Italian town, completed a set of visuospatial measures and then pointed in the direction of familiar landmarks in their town and in the direction of landmarks in an unknown environment studied on a map. Results showed that older adults were less accurate in the visuospatial tasks and in pointing at landmarks in an unfamiliar environment, but performed as well as the young adults when pointing to familiar places. Pointing performance correlated with visuospatial tests accuracy in both familiar and unfamiliar environments, while only pointing in an unknown environment correlated with visuospatial working memory (VSWM). The spatial representation of well-known places seems to be well preserved in older adults (just as well as in young adults), while it declines for unfamiliar environments. Spatial abilities sustain the mental representations of both familiar and unfamiliar environments, while the support of VSWM resources is only needed for the latter. PMID:26224272

  8. Humanin Does Not Protect Against STZ-Induced Spatial Memory Impairment.

    PubMed

    Negintaji, Kourosh; Zarifkar, Asadollah; Ghasemi, Rasoul; Moosavi, Maryam

    2015-06-01

    [Gly14]-Humanin (HNG) is a 24-amino acid peptide which was first identified in the brains of patients diagnosed with Alzheimer's disease (AD). In this region, some neurons were protected against cell damage occurring in this disease. Further studies suggested a neuroprotective role for humanin against Aβ and some other insults. Intraventricularly administered streptozotocin (STZ) disrupts insulin signaling pathway which leads to behavioral and biochemical changes resemble to early signs of AD; therefore, STZ model has been proposed as a model for sporadic Alzheimer's disease (sAD). Regarding the reported beneficial effects of humanin in AD, this study was aimed to investigate if this peptide prevents spatial memory and hippocampal PI3/Akt signaling impairment induced by centrally injected STZ. Adult male Sprague-Dawely rats weighting 250-300 g were used, and cannuls were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3 mg/kg), and humanin (0.01, 0.05, 0.1, and 1 nmol) or saline were injected from day 4 and continued till day 14. The animal's learning and memory capability was assessed on days 15-18 using Morris water maze. After complement of behavioral studies, the hippocampi were isolated, and the level of phosphorylated Akt (pAkt) was assessed through Western blot analysis. The results showed that STZ significantly impaired spatial memory, and humanin in a wide range of doses (0.01, 0.05, 0.1, and 1 nmol) failed to restore STZ-induced deficit. It was also revealed that humanin was not efficient in restoring pAkt disruption. It seems that humanin is not capable in restoring memory deterioration that resulted from insulin signaling disruption. PMID:25744099

  9. Early postnatal nociceptive stimulation results in deficits of spatial memory in male rats.

    PubMed

    Amaral, Cristiane; Antonio, Bruno; Oliveira, Maria Gabriela Menezes; Hamani, Clement; Guinsburg, Ruth; Covolan, Luciene

    2015-11-01

    Prematurely-born infants are exposed to multiple invasive procedures while in the intensive care unit. Newborn rats and humans have similar behavioral responses to noxious stimulation. Previous studies have shown that early noxious stimuli may alter dentate gyrus neurogenesis and the behavioral repertoire of adult rats. We evaluated the late effects of noxious stimulation administered during different phases of development on two spatial memory tests; object recognition (OR) and Morris water maze (WM) tests. Noxious stimulation was induced by an intra-plantar injection of complete Freund's adjuvant (CFA) on postnatal (P) day 1 (group P1) or 8 (P8). Control animals were not stimulated. Behavioral tests were conducted on P60 in both male and female animals. In the WM, three domains were evaluated: acquisition, probe trial performance and reversal re-acquisition. The number of Nissl stained cells in the dentate granule cell layer was assessed by stereological counting. The OR test revealed that P1 male rats had poor long-term memory compared to the control and P8 groups. In the WM, no short- or long-term memory differences were detected between early postnatal-stimulated male and female rats and their respective controls. However, the ability to find the hidden platform in a new position was reduced in P1 male rats. The number of dentate granule cells in P8 males was higher than in all other groups. This study demonstrates that noxious stimulation on P1 results in spatial learning deficits in male animals, but does not disrupt the development of the hippocampus-dependent strategies of learning and memory. PMID:26348792

  10. Examining reference frame interaction in spatial memory using a distribution analysis.

    PubMed

    Street, Whitney N; Wang, Ranxiao Frances

    2016-02-01

    Previous research showed competition among reference frames in spatial attention and language. The present studies developed a new distribution analysis to examine reference frame interactions in spatial memory. Participants viewed virtual arrays of colored pegs and were instructed to remember them either from their own perspective or from the perspective aligned with the rectangular floor. Then they made judgments of relative directions from their respective encoding orientation. Those taking the floor-axis perspective showed systematic bias in the signed errors toward their egocentric perspective, while those taking their own perspective showed no systematic bias, both for random and symmetrical object arrays. The bias toward the egocentric perspective was observed when learning a real symmetric regular object array with strong environmental cues for the aligned axis. These results indicate automatic processing of the self reference while taking the floor-axis perspective but not vice versa, and suggest that research on spatial memory needs to consider the implications of competition effects in reference frame use. PMID:26032226

  11. Effects of aging on slow-wave sleep dynamics and human spatial navigational memory consolidation.

    PubMed

    Varga, Andrew W; Ducca, Emma L; Kishi, Akifumi; Fischer, Esther; Parekh, Ankit; Koushyk, Viachaslau; Yau, Po Lai; Gumb, Tyler; Leibert, David P; Wohlleber, Margaret E; Burschtin, Omar E; Convit, Antonio; Rapoport, David M; Osorio, Ricardo S; Ayappa, Indu

    2016-06-01

    The consolidation of spatial navigational memory during sleep is supported by electrophysiological and behavioral evidence. The features of sleep that mediate this ability may change with aging, as percentage of slow-wave sleep is canonically thought to decrease with age, and slow waves are thought to help orchestrate hippocampal-neocortical dialog that supports systems level consolidation. In this study, groups of younger and older subjects performed timed trials before and after polysomnographically recorded sleep on a 3D spatial maze navigational task. Although younger subjects performed better than older subjects at baseline, both groups showed similar improvement across presleep trials. However, younger subjects experienced significant improvement in maze performance during sleep that was not observed in older subjects, without differences in morning psychomotor vigilance between groups. Older subjects had sleep quality marked by decreased amount of slow-wave sleep and increased fragmentation of slow-wave sleep, resulting in decreased slow-wave activity. Across all subjects, frontal slow-wave activity was positively correlated with both overnight change in maze performance and medial prefrontal cortical volume, illuminating a potential neuroanatomical substrate for slow-wave activity changes with aging and underscoring the importance of slow-wave activity in sleep-dependent spatial navigational memory consolidation. PMID:27143431

  12. Coding strategies in number space: memory requirements influence spatial-numerical associations.

    PubMed

    Lindemann, Oliver; Abolafia, Juan M; Pratt, Jay; Bekkering, Harold

    2008-04-01

    The tendency to respond faster with the left hand to relatively small numbers and faster with the right hand to relatively large numbers (spatial numerical association of response codes, SNARC effect) has been interpreted as an automatic association of spatial and numerical information. We investigated in two experiments the impact of task-irrelevant memory representations on this effect. Participants memorized three Arabic digits describing a left-to-right ascending number sequence (e.g., 3-4-5), a descending sequence (e.g., 5-4-3), or a disordered sequence (e.g., 5-3-4) and indicated afterwards the parity status of a centrally presented digit (i.e., 1, 2, 8, or 9) with a left/right keypress response. As indicated by the reaction times, the SNARC effect in the parity task was mediated by the coding requirements of the memory tasks. That is, a SNARC effect was only present after memorizing ascending or disordered number sequences but disappeared after processing descending sequences. Interestingly, the effects of the second task were only present if all sequences within one experimental block had the same type of order. Taken together, our findings are inconsistent with the idea that spatial-numerical associations are the result of an automatic and obligatory cognitive process but do suggest that coding strategies might be responsible for the cognitive link between numbers and space. PMID:18300183

  13. Spatial Reference Memory in Normal Aging Fischer 344 × Brown Norway F1 Hybrid Rats

    PubMed Central

    McQuail, Joseph A.; Nicolle, Michelle M.

    2014-01-01

    Fischer 344 × Brown Norway F1 (F344×BN-F1) hybrid rats express greater longevity with improved health relative to aging rodents of other strains; however, few behavioral reports have thoroughly evaluated cognition across the F344×BN-F1 lifespan. Consequently, this study evaluated spatial reference memory in F344×BN-F1 rats at 6, 18, 24 or 28 months (mo) of age in the Morris water maze. Reference memory decrements were observed between 6 mo and 18 mo and between 18 mo and 24 mo. At 28 mo, spatial learning was not worse than 24 mo, but swim speed was significantly slower. Reliable individual differences revealed that ~50% of 24-28 mo performed similarly to 6 mo while others were spatial learning-impaired. Aged rats were impaired at learning within daily training sessions, but not impaired at retaining information between days of training. Aged rats were also slower to learn to escape onto the platform, regardless of strategy. In summary, these data clarify the trajectory of cognitive decline in aging F344×BN-F1 rats and elucidate relevant behavioral parameters. PMID:25086838

  14. Acute and chronic ethanol intake: effects on spatial and non-spatial memory in rats.

    PubMed

    García-Moreno, Luis M; Cimadevilla, Jose M

    2012-12-01

    Abusive alcohol consumption produces neuronal damage and biochemical alterations in the mammal brain followed by cognitive disturbances. In this work rats receiving chronic and acute alcohol intake were evaluated in a spontaneous delayed non-matching to sample/position test. Chronic alcohol-treated rats had free access to an aqueous ethanol solution as the only available liquid source from the postnatal day 21 to the end of experiment (postnatal day 90). Acute alcoholic animals received an injection of 2 g/kg ethanol solution once per week. Subjects were evaluated in two tests (object recognition and spatial recognition) based on the spontaneous delayed non-matching to sample or to position paradigm using delays of 1 min, 15 min and 60 min. Results showed that chronic and acute alcohol intake impairs the rats' performance in both tests. Moreover, chronic alcohol-treated rats were more altered than acute treated animals in both tasks. Our results support the idea that chronic and acute alcohol administration during postnatal development caused widespread brain damage resulting in behavioral disturbances and learning disabilities. PMID:22944615

  15. Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior.

    PubMed

    López-Granero, Caridad; Ruiz-Muñoz, Ana M; Nieto-Escámez, Francisco A; Colomina, María T; Aschner, Michael; Sánchez-Santed, Fernando

    2016-03-01

    Little is known about the long-term effects of chronic exposure to low-level organophosphate (OP) pesticides, and the role of neurotransmitter systems, other than the cholinergic system, in mediating OP neurotoxicity. In this study, rats were administered 5mg/kg/day of chlorpyrifos (CPF) for 6 months commencing at 3-months-of-age. The animals were examined 7 months later (at 16-months-of-age) for spatial learning and memory in the Morris water maze (MWM) and locomotor activity. In addition, we assessed the chronic effects of CPF on glutamatergic and gamma-aminobutyric acid (GABAergic) function using pharmacological challenges with dizocilpine (MK801) and diazepam. Impaired performance related to altered search patterns, including thigmotaxis and long-term spatial memory was noted in the MWM in animals exposed to CPF, pointing to dietary CPF-induced behavioral disturbances, such as anxiety. Twenty-four hours after the 31st session of repeated acquisition task, 0.1mg/kg MK801, an N-methyl-d-aspartate (NMDA) antagonist was intraperitoneally (i.p.) injected for 4 consecutive days. Decreased latencies in the MWM in the control group were noted after two sessions with MK801 treatment. Once the MWM assessment was completed, animals were administered 0.1 or 0.2mg/kg of MK801 and 1 or 3mg/kg of diazepam i.p., and tested for locomotor activity. Both groups, the CPF dietary and control, displayed analogous performance in motor activity. In conclusion, our data point to a connection between the long-term spatial memory, thigmotaxic response and CPF long after the exposure ended. PMID:26748072

  16. Initial investigation of the effects of an experimentally learned schema on spatial associative memory in humans.

    PubMed

    van Buuren, Mariët; Kroes, Marijn C W; Wagner, Isabella C; Genzel, Lisa; Morris, Richard G M; Fernández, Guillén

    2014-12-10

    Networks of interconnected neocortical representations of prior knowledge, "schemas," facilitate memory for congruent information. This facilitation is thought to be mediated by augmented encoding and accelerated consolidation. However, it is less clear how schema affects retrieval. Rodent and human studies to date suggest that schema-related memories are differently retrieved. However, these studies differ substantially as most human studies implement pre-experimental world-knowledge as schemas and tested item or nonspatial associative memory, whereas animal studies have used intraexperimental schemas based on item-location associations within a complex spatial layout that, in humans, could engage more strategic retrieval processes. Here, we developed a paradigm conceptually linked to rodent studies to examine the effects of an experimentally learned spatial associative schema on learning and retrieval of new object-location associations and to investigate the neural mechanisms underlying schema-related retrieval. Extending previous findings, we show that retrieval of schema-defining associations is related to activity along anterior and posterior midline structures and angular gyrus. The existence of such spatial associative schema resulted in more accurate learning and retrieval of new, related associations, and increased time allocated to retrieve these associations. This retrieval was associated with right dorsolateral prefrontal and lateral parietal activity, as well as interactions between the right dorsolateral prefrontal cortex and medial and lateral parietal regions, and between the medial prefrontal cortex and posterior midline regions, supporting the hypothesis that retrieval of new, schema-related object-location associations in humans also involves augmented monitoring and systematic search processes. PMID:25505319

  17. Adolescent Binge Drinking Linked to Abnormal Spatial Working Memory Brain Activation: Differential Gender Effects

    PubMed Central

    Squeglia, Lindsay M.; Schweinsburg, Alecia Dager; Pulido, Carmen; Tapert, Susan F.

    2011-01-01

    Background Binge drinking is prevalent during adolescence, and its effect on neurocognitive development is of concern. In adult and adolescent populations, heavy substance use has been associated with decrements in cognitive functioning, particularly on tasks of spatial working memory (SWM). Characterizing the gender-specific influences of heavy episodic drinking on SWM may help elucidate the early functional consequences of drinking on adolescent brain functioning. Methods 40 binge drinkers (13 females, 27 males) and 55 controls (24 females, 31 males) ages 16 to 19, completed neuropsychological testing, substance use interviews, and a spatial working memory task (SWM) during functional magnetic resonance imaging (fMRI). Results Significant binge drinking status x gender interactions were found (p<.05) in 8 brain regions spanning bilateral frontal, anterior cingulate, temporal, and cerebellar cortices. In all regions, female binge drinkers showed less SWM activation than female controls, while male bingers exhibited greater SWM response than male controls. For female binge drinkers, less activation was associated with poorer sustained attention and working memory performances (ps<.025). For male binge drinkers, greater activation was linked to better spatial performance (p<.025). Conclusion Binge drinking during adolescence is associated with gender-specific differences in frontal, temporal, and cerebellar brain activation during a SWM task, which in turn relate to cognitive performance. Activation correlates with neuropsychological performance, strengthening the argument that BOLD activation is both affected by alcohol use and is an important indicator of behavioral functioning. Females may be more vulnerable to the neurotoxic effects of heavy alcohol use during adolescence, while males may be more resilient to the deleterious effects of binge drinking. Future longitudinal research will examine the significance of SWM brain activation as an early neurocognitive

  18. Isolating Observer-Based Reference Directions in Human Spatial Memory: Head, Body, and the Self-to-Array Axis

    ERIC Educational Resources Information Center

    Waller, David; Lippa, Yvonne; Richardson, Adam

    2008-01-01

    Several lines of research have suggested the importance of egocentric reference systems for determining how the spatial properties of one's environment are mentally organized. Yet relatively little is known about the bases for egocentric reference systems in human spatial memory. In three experiments, we examine the relative importance of…

  19. A Study on the Role of the Dorsal Striatum and the Nucleus Accumbens in Allocentric and Egocentric Spatial Memory Consolidation

    ERIC Educational Resources Information Center

    De Leonibus, Elvira; Oliverio, Alberto; Mele, Andrea

    2005-01-01

    There is now accumulating evidence that the striatal complex in its two major components, the dorsal striatum and the nucleus accumbens, contributes to spatial memory. However, the possibility that different striatal subregions might modulate specific aspects of spatial navigation has not been completely elucidated. Therefore, in this study, two…

  20. The Role of Working Memory in Spatial Text Processing: What Benefit of Imagery Strategy and Visuospatial Abilities?

    ERIC Educational Resources Information Center

    Gyselinck, Valerie; Meneghetti, Chiara; De Beni, Rossana; Pazzaglia, Francesca

    2009-01-01

    This study investigated the construction of a spatial model in relation to working memory (WM) and visuospatial abilities. Participants were trained to use either imagery or verbal strategies to process route spatial texts. Results obtained on a free recall task, a verification test and a graphic representation task showed the beneficial effect of…