Science.gov

Sample records for aged biomass burning

  1. Ice Nucleation Properties of Amospherically Aged Biomass Burning Aerosol

    NASA Astrophysics Data System (ADS)

    Polen, M.; Lawlis, E.; Sullivan, R. C.

    2015-12-01

    Biomass burning can sometimes emit surprisingly active ice nucleating particles, though these emissions are not at all consistent between biomass fuel sources and burns. Soot from biomass combustion has been attributed to some but not all of the ice nucleating potential of biomass burning aerosol (BBA), while fossil fuel combustion soot emits very weak ice nucleants. The causes of the sometimes significant but variable ice nucleating ability of BBA are still largely unknown. BBA experiences significant atmospheric aging as the plume evolves and mixes with background air, yet almost no reports exploring the effects of atmospheric aging on the freezing properties of BBA have been made. We have performed some of the first experiments to determine the effects of simulated atmospheric aging on these ice nucleation properties, using a chamber reactor. The fresh and aged BBA was collected for subsequent droplet freezing array analysis using an impinger sampler to collect aerosol in water, and by deposition onto substrates in a MOUDI sampler. Droplets containing the chamber particles were then suspended in oil on a cold plate for freezing temperature spectrum measurement. Aging of Sawgrass flaming-phase combustion BBA by exposure to hydroxyl radicals (from H2O2 photolysis) enhanced the ice nucleation ability, observed by a shift to warmer droplet freezing temperatures by ~2-3°C. The changes in the aerosol's chemical composition during aging were observed using a laser ablation single-particle mass spectrometer and a soot-particle aerosol mass spectrometer. We will report our observations of the effects of other types of simulated aging (including photochemistry under high and low NOx conditions, dark ozonolysis, and nitric acid exposure) on Sawgrass and BBA from other grass and palm fuels.

  2. Aged Boreal Biomass Burning Size Distributions from Bortas 2011

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Sakamoto, K.; Allan, J. D.; Coe, H.; Taylor, J.; Duck, T.

    2014-12-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are strong functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number size-distributions in climate model inventories lead to uncertainties in the CCN concentrations and forcing estimates derived from these models. The BORTAS-B measurement campaign was designed to sample boreal biomass-burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size-distribution of aged biomass-burning emissions (aged ~ 1.5 - 2 days) from boreal wildfires in Northwestern Ontario. The composite median size-distribution yields a single dominant accumulation mode with Dpm = 232 nm, σ = 1.7, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA/ΔCO) along the path of Flight b622 show values of 0.08-0.18 μg m-3 ppbv-1 with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA production/evaporation within the aged plume over the sampling period. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution and flux corresponding to the BORTAS-B aged size-distributions. The model was restricted to coagulation and dilution processes only based on the insignificant net OA production/evaporation derived from the ΔOA/ΔCO enhancement ratios. Depending on the, we estimate that the fresh-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8. Thus, the size of the freshly emitted particles is somewhat unconstrained due to the uncertainties in the plume dilution rates.

  3. Aged boreal biomass burning aerosol size distributions from BORTAS 2011

    NASA Astrophysics Data System (ADS)

    Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.

    2014-09-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number size-distributions in climate model inventories lead to uncertainties in the CCN concentrations and forcing estimates derived from these models. The BORTAS-B measurement campaign was designed to sample boreal biomass-burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size-distribution of aged biomass-burning emissions (aged ∼1-2 days) from boreal wildfires in Northwestern Ontario. The composite median size-distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter), σ = 1.7, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.05-0.18 μg m-3 ppbv-1 with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA production/evaporation within the aged plume over the sampling period. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size-distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We estimate that the fresh-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8 (the ranges are due to uncertainty in the entrainment rate). Thus, the size of the freshly emitted particles is relatively unconstrained due to the uncertainties in

  4. Biomass Burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Pinto, Joseph P.

    1993-01-01

    Biomass burning may be the overwhelming regional or continental-scale source of methane (CH4) as in tropical Africa and a significant global source of CH4. Our best estimate of present methane emissions from biomass burning is about 51.9 Tg/yr, or 10% of the annual methane emissions to the atmosphere. Increased frequency of fires that may result as the Earth warms up may result in increases in this source of atmospheric methane.

  5. Aged boreal biomass-burning aerosol size distributions from BORTAS 2011

    NASA Astrophysics Data System (ADS)

    Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.

    2015-02-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number-size distributions in climate model inventories lead to uncertainties in the CCN (cloud condensation nuclei) concentrations and forcing estimates derived from these models. The BORTAS-B (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellite) measurement campaign was designed to sample boreal biomass-burning outflow over eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size distribution of aged biomass-burning emissions (aged ~ 1-2 days) from boreal wildfires in northwestern Ontario. The composite median size distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter) and σ = 1.5, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.09-0.17 μg m-3 ppbv-1 (parts per billion by volume) with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA (organic aerosol) production/evaporation within the aged plume over the sampling period (plume age: 1-2 days), though it does not preclude OA production/loss at earlier stages. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We

  6. Changes in droplet surface tension affect the observed hygroscopicity of photochemically aged biomass burning aerosol.

    PubMed

    Giordano, Michael R; Short, Daniel Z; Hosseini, Seyedehsan; Lichtenberg, William; Asa-Awuku, Akua A

    2013-10-01

    This study examines the hygroscopic and surface tension properties as a function of photochemical aging of the aerosol emissions from biomass burning. Experiments were conducted in a chamber setting at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Cloud condensation nuclei (CCN) measurements and off-line filter sample analysis were conducted. The water-soluble organic carbon content and surface tension of the extracted filter samples were measured. Surface tension information was then examined with Köhler theory analysis to calculate the hygroscopicity parameter, κ. Laboratory measurement of biomass burning smoke from two chaparral fuels is shown to depress the surface tension of water by 30% or more at organic matter concentrations relevant at droplet activation. Accounting for surface tension depression can lower the calculated κ by a factor of 2. This work provides evidence for surface tension depression in an important aerosol system and may provide closure for differing sub- and supersaturated κ measurements. PMID:23957441

  7. Changes in droplet surface tension affect the observed hygroscopicity of photochemically aged biomass burning aerosol.

    PubMed

    Giordano, Michael R; Short, Daniel Z; Hosseini, Seyedehsan; Lichtenberg, William; Asa-Awuku, Akua A

    2013-10-01

    This study examines the hygroscopic and surface tension properties as a function of photochemical aging of the aerosol emissions from biomass burning. Experiments were conducted in a chamber setting at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Cloud condensation nuclei (CCN) measurements and off-line filter sample analysis were conducted. The water-soluble organic carbon content and surface tension of the extracted filter samples were measured. Surface tension information was then examined with Köhler theory analysis to calculate the hygroscopicity parameter, κ. Laboratory measurement of biomass burning smoke from two chaparral fuels is shown to depress the surface tension of water by 30% or more at organic matter concentrations relevant at droplet activation. Accounting for surface tension depression can lower the calculated κ by a factor of 2. This work provides evidence for surface tension depression in an important aerosol system and may provide closure for differing sub- and supersaturated κ measurements.

  8. Mixing State and Aging of Biomass Burning Aerosols During the 2007 San Diego Wildfires

    NASA Astrophysics Data System (ADS)

    Zauscher, M. D.; Wang, Y.; Moore, M. J.; Gaston, C. J.; Prather, K. A.

    2011-12-01

    Biomass burning aerosols (BBA) significantly affect regional and global air quality, health and climate, yet their mixing state is not fully characterized. Specifically, aerosols from burning land dominated by chaparral shrubs, such as in Southern California, are less characterized than other BBA, although fires in this area have been increasing in frequency since 1980s. During the 2007 San Diego Wildfires the size-resolved chemistry of 100-400 nm single particles was determined in real-time with an ultra-fine aerosol time of flight mass spectrometer (UF-ATOFMS). BBA, identified by having a strong potassium peak and smaller carbonaceous markers present in the mass spectra, made up 84% of all particles measured between 10/22/07 and 11/1/07. Even though levoglucosan is known as a good biomass burning tracer, only 36% of all BBA in this study had this tracer present. Positive Matrix Factorization (PMF) analysis was utilized to group different BBA chemical markers, such as potassium salts, sulfate, ammonium, oxalate and levoglucosan. A spike in ammonium was observed with the increase in relative humidity on 10/25/07 and correlated with nitric acid and nitrate, indicating that the majority of ammonium was present as NH4NO3. The presence of different potassium salts were used to identify the age of BBA. K2Cl+, indicative of fresh BBA, was only seen at the beginning of the wildfires when the size mode of particles was ~<120 nm. K2NO3+ and K3SO4+ spiked at different times, with K2NO3+ peaking before K3SO4+. Particles with K3SO4+ had larger sizes than those with K2NO3+, thus K2NO3+ represents slightly aged whereas K3SO4+ represents moderately aged BBA. The largest BBA observed, and hence the most aged, were those characterized by the lack of potassium salts and the presence of secondary markers, such as sulfate and oxalate. In summary, we observed the evolution of BBA undergoing four distinct aging steps based on particle size and composition: slightly fresh, slightly aged

  9. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires.

    PubMed

    Zauscher, Melanie D; Wang, Ying; Moore, Meagan J K; Gaston, Cassandra J; Prather, Kimberly A

    2013-07-16

    Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles <400 nm contributing to mass concentrations dangerous to public health, up to 148 μg/m(3). Evidence of potassium salts heterogeneously reacting with inorganic acids was observed with continuous high temporal resolution for the first time. Ten distinct chemical types shown as BBA factors were identified through positive matrix factorization coupled to single particle analysis, including particles comprised of potassium chloride and organic nitrogen during the beginning of the wildfires, ammonium nitrate and amines after an increase of relative humidity, and sulfate dominated when the air mass back trajectories passed through the Los Angeles port region. Understanding BBA aging processes and quantifying the size-resolved mass and number concentrations are important in determining the overall impact of wildfires on air quality, health, and climate.

  10. Size separation method for absorption characterization in brown carbon: Application to an aged biomass burning sample

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Robert A.; Young, Cora J.

    2016-01-01

    The majority of brown carbon (BrC) in atmospheric aerosols is derived from biomass burning (BB) and is primarily composed of extremely low volatility organic carbons. We use two chromatographic methods to compare the contribution of large and small light-absorbing BrC components in aged BB aerosols with UV-vis absorbance detection: (1) size exclusion chromatography (SEC) and (2) reverse phase high-performance liquid chromatography. We observe no evidence of small molecule absorbers. Most BrC absorption arises from large molecular weight components (>1000 amu). This suggests that although small molecules may contribute to BrC absorption near the BB source, analyses of aerosol extracts should use methods selective to large molecular weight compounds because these species may be responsible for long-term BrC absorption. Further characterization with electrospray ionization mass spectrometry (MS) coupled to SEC demonstrates an underestimation of the molecular size determined through MS as compared to SEC.

  11. Biomass Burning Data and Information

    Atmospheric Science Data Center

    2015-04-21

    Biomass Burning Data and Information This data set represents ... geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ... models of the atmosphere. Project Title:  Biomass Burning Discipline:  Tropospheric Chemistry ...

  12. Origin, variability and age of biomass burning plumes intercepted during BORTAS-B

    NASA Astrophysics Data System (ADS)

    Finch, D. P.; Palmer, P. I.; Parrington, M.

    2014-12-01

    We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of carbon monoxide (CO) in biomass burning outflow taken during the 2011 BORTAS-B campaign over eastern Canada. The model has some skill reproducing the observed variability, with a Spearman's rank correlation rs = 0.65, but has a positive negative bias for observations <100 ppb and a negative bias for observations > 300 ppb. We find that observed CO variations are largely due to fires over Ontario, as expected, with smaller and less variable contributions from fossil fuel combustion from eastern Asia and NE North America. To help interpret observed variations of CO we develop a Eulerian effective physical age of emissions (A) metric, accounting for mixing and chemical decay, which we apply to pyrogenic emissions of CO. We find that during BORTAS-B the age of emissions intercepted over Halifax, Nova Scotia is typically 4-11 days, and on occasion as young as two days. We show that A is typically 1-5 days older than the associated photochemical ages inferred from co-located measurements of different hydrocarbons. We find that the frequency distribution of differences between the age measures (Δτ) in plumes (defined by CH3CN > 150 ppt) peaks at 3 days. This corresponds to a chemical retardation of 50%. We find a strong relationship in biomass burning plumes between A and Δτ (r2 = 0.80), which is not present outwith these plumes (r2 = 0.28). We argue that these observed relationships, together with a robust observed relationship between CO and black carbon aerosol during BORTAS-B (r2 > 0.7), form the basis of indirect evidence that aerosols co-emitted with gases during pyrolysis markedly slowed down the plume photochemistry during BORTAS-B with respect to photochemistry at the same latitude and altitude in

  13. High HONO concentrations in aged biomass burning plumes in NOMADSS campaign

    NASA Astrophysics Data System (ADS)

    Ye, C.; Zhou, X.; Stutz, J.; Festa, J.; Guenther, A. B.; Weinheimer, A. J.; Knapp, D. J.; Campos, T. L.; Hornbrook, R. S.; Jensen, J. B.; Haggerty, J. A.; Cantrell, C. A.; Mauldin, L.

    2014-12-01

    More than a dozen of aged biomass burning plumes (BBPs) from various sources in free troposphere were encountered during the aircraft-based NOMADSS (Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks) field campaign from June 1 to July 15, 2013. HCN and CO were used as tracers to identify the BBPs; the ratio of n-butane to propane was used to determine the photochemical age of the BBPs, which was ranging from 5 to 15 days. Significant enhancement in HONO concentration, by 5-56 ppt, was observed with elevated NOx and particulate nitrate concentrations in these BBPs comparing to background air mass. High HONO/NOx ratio up to 0.5 suppresses the importance of NOx as HONO precursors. Further HONO and NOx budget analysis reveals that photo-recycling of particulate nitrate in plumes to NOx was the main chemical source of NOx with HONO as an intermediate. An implication of this recycling NOx source on O3 formation is demonstrated in the correlation of O3 and NOx in aged plumes.

  14. Individual Aerosol Particles from Biomass Burning in Southern Africa Compositions and Aging of Inorganic Particles. 2; Compositions and Aging of Inorganic Particles

    NASA Technical Reports Server (NTRS)

    Li, Jia; Posfai, Mihaly; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles collected over southern Africa during the SAFARI 2000 field study were studied using transmission electron microscopy and field-emission scanning electron microscopy. The sizes, shapes, compositions, mixing states, surface coatings, and relative abundances of aerosol particles from biomass burning, in boundary layer hazes, and in the free troposphere were compared, with emphasis on aging and reactions of inorganic smoke particles. Potassium salts and organic particles were the predominant species in the smoke, and most were internally mixed. More KCl particles occur in young smoke, whereas more K2SO4 and KNO3 particles were present in aged smoke. This change indicates that with the aging of the smoke, KCl particles from the fires were converted to K2SO4 and KNO3 through reactions with sulfur- and nitrogen- bearing species from biomass burning as well as other sources. More soot was present in smoke from flaming grass fires than bush and wood fires, probably due to the predominance of flaming combustion in grass fires. The high abundance of organic particles and soluble salts can affect the hygroscopic properties of biomass-burning aerosols and therefore influence their role as cloud condensation nuclei. Particles from biomass burning were important constituents of the regional hazes.

  15. Characterizing the aging of biomass burning organic aerosol by use of mixing ratios: a meta-analysis of four regions.

    PubMed

    Jolleys, Matthew D; Coe, Hugh; McFiggans, Gordon; Capes, Gerard; Allan, James D; Crosier, Jonathan; Williams, Paul I; Allen, Grant; Bower, Keith N; Jimenez, Jose L; Russell, Lynn M; Grutter, Michel; Baumgardner, Darrel

    2012-12-18

    Characteristic organic aerosol (OA) emission ratios (ERs) and normalized excess mixing ratios (NEMRs) for biomass burning (BB) events have been calculated from ambient measurements recorded during four field campaigns. Normalized OA mass concentrations measured using Aerodyne Research Inc. quadrupole aerosol mass spectrometers (Q-AMS) reveal a systematic variation in average values between different geographical regions. For each region, a consistent, characteristic ratio is seemingly established when measurements are collated from plumes of all ages and origins. However, there is evidence of strong regional and local-scale variability between separate measurement periods throughout the tropical, subtropical, and boreal environments studied. ERs close to source typically exceed NEMRs in the far-field, despite apparent compositional change and increasing oxidation with age. The absence of any significant downwind mass enhancement suggests no regional net source of secondary organic aerosol (SOA) from atmospheric aging of BB sources, in contrast with the substantial levels of net SOA formation associated with urban sources. A consistent trend of moderately reduced ΔOA/ΔCO ratios with aging indicates a small net loss of OA, likely as a result of the evaporation of organic material from initial fire emissions. Variability in ERs close to source is shown to substantially exceed the magnitude of any changes between fresh and aged OA, emphasizing the importance of fuel and combustion conditions in determining OA loadings from biomass burning. PMID:23163290

  16. Observations of Smoke Aerosol from Biomass Burning in Mexico: Effect of Particle Aging on Radiative Forcing and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Bruintjes, Roelof; Holben, Brent N.; Christopher, Sundar

    1999-01-01

    We take advantage of the May 1998 biomass burning event in Southern Mexico to test the global applicability of a smoke aerosol size model developed from data observed in South America. The Mexican event is an unique opportunity to observe well-aged, residual smoke. Observations of smoke aerosol size distribution made from vertical profiles of airborne in situ measurements show an inverse relationship between concentration and particle size that suggests the aging process continues more than a week after the smoke is separated from its fire sources. The ground-based radiometer retrievals show that the column-averaged, aged, Mexican smoke particles are larger (diameter = 0.28 - 0.33 micrometers) than the mean smoke particles in South America (diameter = 0.22 - 0.30 micrometers). However, the difference (delta - 0.06 micrometer) translates into differences in backscattering coefficient of only 4-7% and an increase of direct radiative forcing of only 10%.

  17. Cloud Formation Potential of Biomass Burning Aerosol Surrogate-Particles Chemically Aged by OH

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Thalman, R. M.; Wang, J.; Li, Z. Q.; Knopf, D. A.

    2014-12-01

    Heterogeneous or multiphase reactions between trace gases such as OH and atmospheric aerosol can influence physicochemical properties of the particles including composition, morphology and lifetime. In this work, the cloud condensation nuclei (CCN) activity of laboratory-generated biomass burning aerosol (BBA) exposed to OH radicals is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type and OH exposure ([OH]×time) using a CCN counter coupled to a custom-built aerosol flow reactor (AFR). The composition of particles collected by a micro-orifice uniform deposit impactor (MOUDI) first subjected to different OH exposures is analyzed by Raman and scanning transmission X-ray microscopy coupled with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative compounds found in BBA that have different hygroscopicity, chemical functionalities, and reactivity with OH radicals. BBA surrogate-particles are generated following atomization of aqueous solutions with mass ratios LEV:MNC:KS of 1:0:0, 0:1:0, 0:0:1, 1:1:0, 0:1:1, 1:0:1, 1:1:1, and 1:0.03:0.3. OH radicals are generated in the AFR following photolysis of O3 in the presence of H2O using a variable intensity ultra-violet (UV) lamp, which allows equivalent atmospheric OH exposures from days to weeks. In addition, we investigate how κ changes i) in response to varying [O3] with and without OH, and ii) at a fixed OH exposure while varying RH. The impact of OH exposure on the CCN activity of BBA will be presented and its atmospheric implications will be discussed.

  18. Atmospheric Effects of Biomass Burning

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2000-01-01

    Biomass fires are both natural and anthropogenic in origin. The natural trigger is lightning, which leads to mid- and high-latitude fires and episodes of smoke and pollution associated with them. Lightning is also prominent in tropical regions when the dry season gives way to the wet season and lightning in convective systems ignites dry vegetation. Atmospheric consequences of biomass fires are complex. When considering the impacts of fires for a given ecosystem, inputs of fires must be compared to other process that emit trace gases and particles into the atmosphere. Other processes include industrial activity, fires for household purposes and biogenic sources which may themselves interact with fires. That is, fires may promote or restrict biogenic processes. Several books have presented various aspects of fire interactions with atmospheric chemistry and a cross-disciplinary review of a 1992 fire-oriented experiment appears in SAFARI: The Role of southern African Fires in Atmospheric and Ecological Environments. The IGAC/BIBEX core activity (see acronyms at end of Chapter) has sponsored field campaigns that integrate multiple aspects of fires ground-based measurements with an ecological perspective, atmospheric measurements with chemical and meteorological components, and remote sensing. This Chapter presents two aspects of biomass fires and the environment. Namely, the relationship between biomass burning and ozone is described, starting with a brief description of the chemical reactions involved and illustrative measurements and interpretation. Second, because of the need to observe biomass burning and its consequences globally, a summary of remote sensing approaches to the study of fires and trace gases is given. Examples in this Chapter are restricted to tropical burning for matters of brevity and because most burning activity globally is within this zone.

  19. First Airborne PTR-ToF-MS Measurements of VOCs in a Biomass Burning Plume: Primary Emissions and Aging

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Eichler, Philipp; Mikoviny, Tomas; Beyersdorf, Andreas J.; Crawford, James H.; Diskin, Glenn S.; Yang, Melissa; Yokelson, Robert; Weinheimer, Andrew; Fried, Alan; Wisthaler, Armin

    2015-04-01

    The NASA DISCOVER-AQ mission saw the first airborne deployment of a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The newly developed instrument records full mass spectra at 10 Hz and resolves pure hydrocarbons from their oxygenated isobars (e.g. isoprene and furan). Airborne measurements of volatile organic compounds (VOCs) at high spatio-temporal resolution (0.1 s or 10 m) improve our capabilities in characterizing primary emissions from fires and in studying chemical transformations in aging plumes. A biomass-burning plume from a forest understory fire was intercepted by the NASA P-3B near Dublin, GA, USA on September 29, 2013. VOCs were measured at high time resolution along with CO, CO2, NOx, O3, HCHO, aerosols and other air quality and meteorological parameters. Repeated measurements in the immediate proximity of the fire were used to determine VOC emission ratios and their temporal variations. Repeated longitudinal and transversal plume transects were carried out to study plume aging within the first hour of emission. We will discuss the observed OH-NOx-VOC chemistry (including O3 formation), the observed changes in the elemental composition of VOCs (e.g. O:C ratios) and the observed formation of SOA.

  20. First Airborne PTR-ToF-MS Measurements of VOCs in a Biomass Burning Plume: Primary Emissions and Aging

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Müller, M.; Eichler, P.; Mikoviny, T.; Beyersdorf, A. J.; Crawford, J. H.; Diskin, G. S.; Yang, M. M.; Yokelson, R. J.; Weinheimer, A. J.; Fried, A.

    2014-12-01

    The NASA DISCOVER-AQ mission saw the first airborne deployment of a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The newly developed instrument records full mass spectra at 10 Hz and resolves pure hydrocarbons from their oxygenated isobars (e.g. isoprene and furan). Airborne measurements of volatile organic compounds (VOCs) at high spatio-temporal resolution (0.1 s or 10 m) improve our capabilities in characterizing primary emissions from fires and in studying chemical transformations in aging plumes. A biomass-burning plume from a forest understory fire was intercepted by the NASA P-3B near Dublin, GA, USA on September 29, 2013. VOCs were measured at high time resolution along with CO, CO2, NOx, O3, HCHO, aerosols and other air quality and meteorological parameters. Repeated measurements in the immediate proximity of the fire were used to determine VOC emission ratios and their temporal variations. Repeated longitudinal and transversal plume transects were carried out to study plume aging within the first hour of emission. We will discuss the observed OH-NOx-VOC chemistry (including O3 formation), the observed changes in the elemental composition of VOCs (e.g. O:C ratios) and the observed formation of SOA.

  1. Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001-2009 MISR imagery of Borneo

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Krolewski, A. G.; Tosca, M. G.; Randerson, J. T.

    2011-11-01

    atmospheric models estimate the effects of plumes on weather, climate, and air quality. Plume age, the age of smoke furthest down-plume, is lognormally distributed with a median of 2.8 ± 0.3 h, significantly different than median ages reported in other studies. Intercomparison of our results with previous studies shows that the shape, height, optical depth, and lifetime characteristics reported for tropical biomass burning plumes on three continents are dissimilar and distinct from the same characteristics of wildfire plumes from the extratropics.

  2. Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001-2009 MISR imagery of Borneo

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Krolewski, A. G.; Tosca, M. G.; Randerson, J. T.

    2012-04-01

    initially oblong plumes become brighter and more circular with time, increasingly resembling smoke clouds. Wind speed does not explain a significant fraction of the variation in plume geometry. We provide a parameterization of plume shape that can help atmospheric models estimate the effects of plumes on weather, climate, and air quality. Plume age, the age of smoke furthest down-plume, is lognormally distributed with a median of 2.8 h (25th and 75th percentiles at 1.3 h and 4.0 h), different from the median ages reported in other studies. Intercomparison of our results with previous studies shows that the shape, height, optical depth, and lifetime characteristics reported for tropical biomass burning plumes on three continents are dissimilar and distinct from the same characteristics of non-tropical wildfire plumes.

  3. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE PAGES

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-14

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed tomore » OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions

  4. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    DOE PAGES

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-06

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore » O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical

  5. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-01

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging

  6. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-01

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical

  7. Carbon Monoxide from Biomass Burning

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of images shows levels of carbon monoxide at the atmospheric pressure level of 700 millibars (roughly 12,000 feet in altitude) over the continent of South America, as observed by the Measurements Of Pollution In The Troposphere (MOPITT) sensor flying aboard NASA's Terra spacecraft. Data for producing the image on the left were acquired on March 3, 2000, and for the image on the right on September 7, 2000. Blue pixels show low values, yellows show intermediate values, and the red to pink and then white pixels are progressively higher values. In the lefthand image (March 3), notice the fairly low levels of carbon monoxide over the entire continent. The slightly higher equatorial values are the result of burning emissions in sub-Saharan Africa that are convected at the Intertropical Convergence Zone (ITCZ) and spread by the trade winds. Also, notice the effect of the elevated surface topography across the Andes Mountains running north to south along the western coastline. (In this region, white pixels show no data.) In the righthand image (September 7), a large carbon monoxide plume is seen over Brazil, produced primarily by biomass burning across Amazonia and lofted into the atmosphere by strong cloud convection. The generally higher carbon monoxide levels as compared to March are both the result of South American fire emissions and the transport of carbon monoxide across the Atlantic Ocean from widespread biomass burning over Southern Africa. These images were produced using MOPITT data, which are currently being validated. These data were assimilated into an atmospheric chemical transport model using wind vectors provided by the National Center for Environmental Prediction (NCEP). Although there is good confidence in the relative seasonal values and geographic variation measured by MOPITT, that team anticipates their level of confidence will improve further with ongoing intensive validation campaigns and comparisons with in situ and ground

  8. Tropospheric Ozone and Biomass Burning

    NASA Technical Reports Server (NTRS)

    Chandra, Sushil; Ziemke, J. R.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This paper studies the significance of pyrogenic (e.g., biomass burning) emissions in the production of tropospheric ozone in the tropics associated with the forest and savanna fires in the African, South American, and Indonesian regions. Using aerosol index (Al) and tropospheric column ozone (TCO) time series from 1979 to 2000 derived from the Nimbus-7 and Earth Probe TOMS measurements, our study shows significant differences in the seasonal and spatial characteristics of pyrogenic emissions north and south of the equator in the African region and Brazil in South America. In general, they are not related to the seasonal and spatial characteristics of tropospheric ozone in these regions. In the Indonesian region, the most significant increase in TCO occurred during September and October 1997, following large-scale forest and savanna fires associated with the El Nino-induced dry season. However, the increase in TCO extended over most of the western Pacific well outside the burning region and was accompanied by a decrease in the eastern Pacific resembling a west-to-east dipole about the date-line. The net increase in TCO integrated over the tropical region between 15 deg N and 15 deg S was about 6-8 Tg (1 Tg = 10(exp 12) gm) over the mean climatological value of about 72 Tg. This increase is well within the range of interannual variability of TCO in the tropical region and does not necessarily suggest a photochemical source related to biomass burning. The interannual variability in TCO appears to be out of phase with the interannual variability of stratospheric column ozone (SCO). These variabilities seem to be manifestations of solar cycle and quasibiennial oscillations.

  9. Chemical Aging and Cloud Condensation Nuclei Activity of Biomass Burning Aerosol Proxies in the Presence of OH Radicals

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H., Jr.

    Biomass burning aerosol (BBA) can adversely impact regional and global air quality and represents a significant source of organic aerosol (OA) to the atmosphere that can affect climate. Aerosol particles can alter the transfer of radiation in earth's atmosphere directly by scattering and absorbing radiation or indirectly via cloud formation. Gas-to-particle, also termed heterogeneous, oxidation reactions can significantly alter the particle's physical and chemical properties. In turn, this can lead to the degradation of biomolecular markers for air quality-related aerosol source apportionment studies, the particles' lifetime, and modify the particles' abilities to serve as cloud condensation nuclei (CCN). However, the rates, mechanisms, and conditions by which these multiphase oxidation reactions occur and influence the CCN activity of OA is not well understood. The work presented here aims to determine the reactivity and products from the interaction of BBA surrogate-particles and trace gas-phase oxidants and to link the effects of OA chemical aging on the particles' ability to nucleate clouds. The reactive uptake of OH by BBA surrogate-substrates and particles, including levoglucosan, nitroguaiacol, abietic acid, and methyl-nitrocatechol, was determined as a function of both OH concentration and relative humidity (RH) using chemical ionization mass spectrometry coupled to various flow reactors. OH reactive uptake decreased with increasing OH concentration, indicative of OH adsorption followed by reaction. OH oxidation led to significant volatilization, i.e. mass loss of the organic material, as determined by application of high resolution proton transfer reaction time-of-flight mass spectrometry. Volatilized reaction products were identified, providing mechanistic insight of the chemical pathways in the heterogeneous OH oxidation of BBA. The reactive uptake of OH by levoglucosan particles increased with RH due to enhanced OH and organic bulk diffusivity. In

  10. Biomass Burning: Major Uncertainties, Advances, and Opportunities

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Liu, X.; Huey, L. G.; Ryerson, T. B.; Dibb, J. E.; Wisthaler, A.; Müller, M.; Alvarado, M. J.; Kreidenweis, S. M.; Robinson, A. L.; Toon, O. B.; Peischl, J.; Pollack, I. B.

    2014-12-01

    Domestic and open biomass burning are poorly-understood, major influences on Earth's atmosphere composed of countless individual fires that (along with their products) are difficult to quantify spatially and temporally. Each fire is a minimally-controlled complex phenomenon producing a diverse suite of gases and aerosols that experience many different atmospheric processing scenarios. New lab, airborne, and space-based observations along with model and algorithm development are significantly improving our knowledge of biomass burning. Several campaigns provided new detailed emissions profiles for previously undersampled fire types; including wildfires, cooking fires, peat fires, and agricultural burning; which may increase in importance with climate change and rising population. Multiple campaigns have better characterized black and brown carbon and used new instruments such as high resolution PTR-TOF-MS and 2D-GC/TOF-MS to improve quantification of semi-volatile precursors to aerosol and ozone. The aerosol evolution and formation of PAN and ozone, within hours after emission, have now been measured extensively. The NASA DC-8 sampled smoke before and after cloud-processing in two campaigns. The DC-8 performed continuous intensive sampling of a wildfire plume from the source in California to Canada probing multi-day aerosol and trace gas aging. Night-time plume chemistry has now been measured in detail. Fire inventories are being compared and improved, as is modeling of mass transfer between phases and sub-grid photochemistry for global models.

  11. Mercury emissions from biomass burning in China.

    PubMed

    Huang, Xin; Li, Mengmeng; Friedli, Hans R; Song, Yu; Chang, Di; Zhu, Lei

    2011-11-01

    Biomass burning covers open fires (forest and grassland fires, crop residue burning in fields, etc.) and biofuel combustion (crop residues and wood, etc., used as fuel). As a large agricultural country, China may produce large quantities of mercury emissions from biomass burning. A new mercury emission inventory in China is needed because previous studies reflected outdated biomass burning with coarse resolution. Moreover, these studies often adopted the emission factors (mass of emitted species per mass of biomass burned) measured in North America. In this study, the mercury emissions from biomass burning in China (excluding small islands in the South China Sea) were estimated, using recently measured mercury concentrations in various biomes in China as emission factors. Emissions from crop residues and fuelwood were estimated based on annual reports distributed by provincial government. Emissions from forest and grassland fires were calculated by combining moderate resolution imaging spectroradiometer (MODIS) burned area product with combustion efficiency (ratio of fuel consumption to total available fuels) considering fuel moisture. The average annual emission from biomass burning was 27 (range from 15.1 to 39.9) Mg/year. This inventory has high spatial resolution (1 km) and covers a long period (2000-2007), making it useful for air quality modeling.

  12. The consequences of global biomass burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Global biomass burning encompasses forest burning for land clearing, the annual burning of grasslands, the annual burning of agricultural stubble and waste after harvests, and the burning of wood as fuel. These activities generate CO2, CH4 and other hydrocarbons, CO, H2, NO, NH3, and CH3Cl; of these, CO, CH4 and the hydrocarbons, and NO, are involved in the photochemical production of tropospheric O3, while NO is transformed to NO2 and then to nitric acid, which falls as acid rain. Biomass burning is also a major source of atmospheric particulates and aerosols which affect the transmission of incoming solar radiation and outgoing IR radiation through the atmosphere, with significant climatic effects.

  13. Biomass burning a driver for global change

    SciTech Connect

    Levine, J.S.; Cofer, W.R. III; Cahoon, D.R. Jr.; Winstead, E.L.

    1995-03-01

    Recent research has identified another biospheric process that has instantaneous and longer term effects on the production of atmospheric gases: biomass burning. Biomass burning includes the burning of the world`s vegetation-forests, savannas. and agricultural lands, to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the global budgets of many radiatively and chemically active gases - carbon dioxide, methane, nitric oxide, tropospheric ozone, methyl chloride - and elemental carbon particulates. International field experiments and satellite data are yielding a clearer understanding of this important global source of atmospheric gases and particulates. It is seen that in addition to being a significant instantaneous global source of atmospheric gases and particulates, burning enhances the biogenic emissions of nitric oxide and nitrous oxide from the world`s soils. Biomass burning affects the reflectivity and emissivity of the Earth`s surface as well as the hydrological cycle by changing rates of land evaporation and water runoff. For these reasons, it appears that biomass burning is a significant driver of global change. 20 refs., 4 figs., 2 tabs.

  14. Global Burned Area and Biomass Burning Emissions from Small Fires

    NASA Technical Reports Server (NTRS)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  15. Global burned area and biomass burning emissions from small fires

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; van der Werf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-12-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  16. Methane production from global biomass burning

    SciTech Connect

    Wei Min Hao; Ward, D.E.

    1993-11-20

    Emissions of methane from various sources of biomass burning are determined quantitatively for tropical, temperate, and boreal regions. About 85% of the total CH{sub 4} is emitted in the tropical area, which is mainly the result of shifting cultivation, fuelwood use, and deforestation. Methane emissions from biomass burning may have increased by at least 9% during the last decade because of increases in tropical deforestation and the use of fuelwood. Changes in land use practices and population growth in the tropics are possible causes of the increase of atmospheric CH{sub 4} concentration. 31 refs., 1 fig., 4 tabs.

  17. Biomass Burning Observation Project Science Plan

    SciTech Connect

    Kleinman, KI; Sedlacek, AJ

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  18. Characterization of biomass burning particles: chemical composition and processing

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Murphy, D. M.; Cziczo, D. J.; Thomson, D. S.; Degouw, J.; Warneke, C.

    2003-12-01

    During the Intercontinental Transport and Chemical Transformation (ITCT) mission in April and May of 2002, a forest fire plume was intercepted over Utah on May 19. Gas phase species acetonitrile (CH3CN) (a biomass burning tracer) and carbon monoxide (CO) measured greater than five fold enhancements over background concentrations during this plume crossing. In the 100 sec plume crossing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument acquired 202 positive mass spectra of biomass burning particles. Many of these particles contained potassium in addition to organics, carbon, and NO+ (which is a signature for any nitrogen containing compound such as ammonium or nitrate). From characterization of the particle mass spectra obtained during the plume crossing, a qualitative signature has been determined for identifying biomass burning particles. By applying this analysis to the entire ITCT mission, several transport events of smoke plumes have been identified and were confirmed by gas phase measurements. Additional species, such as sulfate, found in the mass spectra of the transported particles indicated processing or aging of the biomass burning particles that had taken place. The analysis has been extended to other field missions (Crystal-Face, ACCENT, and WAM) to identify biomass burning particles without the added benefit of gas phase measurements.

  19. Global biomass burning. Atmospheric, climatic, and biospheric implications

    SciTech Connect

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases.

  20. Biomass Burning Emissions from Fire Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  1. Light absorption by biomass burning source emissions

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Engling, Guenter; Moosmüller, Hans; Arnott, W. Patrick; Chen, L.-W. Antony; Wold, Cyle E.; Hao, Wei Min; He, Ke-bin

    2016-02-01

    Black carbon (BC) aerosol has relatively short atmospheric lifetimes yet plays a unique and important role in the Earth's climate system, making it an important short-term climate mitigation target. Globally, biomass burning is the largest source of BC emissions into the atmosphere. This study investigated the mass absorption efficiency (MAE) of biomass burning BC generated by controlled combustion of various wildland fuels during the Fire Laboratory at Missoula Experiments (FLAME). MAE values derived from a photoacoustic spectrometer (∼7.8 m2/g at a wavelength of 532 nm) were in good agreement with those suggested for uncoated BC when the emission ratios of organic carbon (OC) to elemental carbon (EC) were extremely low (i.e., below 0.3). With the increase of OC/EC, two distinct types of biomass smoke were identified. For the first type, MAE exhibited a positive dependence on OC/EC, while the overestimation of the light absorption coefficient (babs) by a filter-based method was less significant and could be estimated by a nearly constant correction factor. For the second type, MAE was biased low and correlated negatively with OC/EC, while the overestimation of babs by the filter-based method was much more significant and showed an apparent OC/EC dependence. This study suggests that BC emission factors determined by the commonly used thermal-optical methods might be sustantially overestimated for some types of biomass burning emissions. Our results also indicate that biomass burning emissions may include some liquid-like organics that can significantly bias filter-based babs measurements.

  2. Atmospheric Effects of Biomass Burning in Madagascar

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.; Hoegy, Walter R.; Ziemke, Jerry R.; Thorpe, Arthur; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Simultaneous tropospheric ozone and aerosols observed using the TOMS satellite instrument are reported for Madagascar during the 1979 through 1999 time period Ozone observations made using the TOMS tropospheric ozone convective-cloud differential method show that the tropospheric ozone amount associated with Madagascar has an average monthly value of 30 DU (Dobson units). The average value is enhanced by 10 to 15 DU in October This maximum coincides with the time of maximum biomass area burning in Madagascar and parts of southern Africa. The aerosol index derived from TOMS is examined for correlation with biomass burning in Madagascar and southern Africa. There is good correlation between a satellite observation derived fire index for different parts of Madagascar, tropospheric ozone and the TOMS aerosol index in the same geographical area. Aerosols from fires were found to reach their peak in November and to persist over Madagascar until sometime in December.

  3. Characterisation of regional ambient biomass burning organic aerosol mixing ratios

    NASA Astrophysics Data System (ADS)

    Jolleys, M.; Coe, H.; McFiggans, G.; Capes, G.; Allan, J. D.; Crosier, J.; Williams, P.; Allen, G.; Bower, K.; Jimenez, J. L.; Russell, L. M.; Grutter, M.; Baumgardner, D.

    2012-12-01

    No evidence for a regional additional source of secondary organic aerosol (SOA) has been identified in measurements of biomass burning-influenced ambient air masses. Measurements included in this study were obtained from the deployment of an Aerodyne Quadrupole Aerosol Mass Spectrometer during four field campaigns, involving both research aircraft flights and ground-based measurements. OA concentrations normalised to excess CO (OA/dCO) show strong regional and local scale variability, with a difference of almost a factor of five across fresh OA emissions between campaigns. Average OA/dCO is typically higher in the near-field than at a greater distance from source, indicating an absence of significant SOA formation, despite evidence to suggest OA becomes increasingly oxidized with age. This trend is in contrast with observations of anthropogenic OA in urban environments, where OA/dCO is consistently shown to increase with distance from source. There is no such agreement in the case of biomass burning OA (BBOA) amongst the literature base, with conflicting examples relating to the influence of SOA on aerosol loadings. A wide range of average initial emission ratios (ERs) close to source are observed both within the datasets analysed here and within the literature, together with considerable variability in individual OA/dCO values throughout fresh biomass burning plumes. The extent of this variability far outweighs any increase in OA/dCO in the few instances it is observed here, suggesting that source conditions are of greater importance for the propagation of BBOA loadings within the ambient atmosphere. However, the implications of ageing on OA/dCO variability appear to be highly uncertain, with little consistency between observed trends for different locations. Furthermore, the exact effects of the fire conditions influencing emissions from biomass burning events remain poorly constrained. These uncertainties regarding the evolution of biomass burning emissions

  4. Comparison of Biomass Burning Smoke Plume Models

    NASA Astrophysics Data System (ADS)

    Carlson, L. J.; Mason, S. A.; Trentmann, J.; Winterrath, T.; Christian, T. J.; Yokelson, R. J.; Andreae, M. O.; Hobbs, P. V.

    2003-12-01

    Biomass burning is known to inject considerable quantities of trace gases into the atmosphere. Recent laboratory, field, and modeling studies have shown that significant atmospheric transformations occur within the vicinity of fire events before these emissions are released into the regional atmosphere. Understanding the local-scale transformations is an important parameter for inclusion into larger, global tropospheric models. An inter-model comparison was carried out between two independently developed zero-dimensional, gas-phase tropospheric models used to describe the photochemical evolution of young biomass burning smoke plumes. One of these models was developed and operated at the Max Planck Institute in Mainz, Germany; the second was constructed at the University of Montana- Missoula and is currently run at SUNY Fredonia. Identical initial parameters used in both models were taken from field measurements of biomass burning events under very different fire conditions (African savanna and Alaskan forest/shrub/bog mixture). The Fredonia model predicts slightly different chemistry than the Mainz model, which results in higher radical concentrations and lower PAN production when the same initial conditions are applied. Differences in the simulated results may be attributed to subtle differences in the calculation of photolytic rate constants and the modeled tropospheric chemistry. We survey the differences in model construction and the outcomes.

  5. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    On a global scale, the total biomass consumed by annual burning is about 8680 million tons of dry material; the estimated total biomass consumed by the burning of savanna grasslands, at 3690 million tons/year, exceeds all other biomass burning (BMB) components. These components encompass agricultural wastes burning, forest burning, and fuel wood burning. BMB is not restricted to the tropics, and is largely anthropogenic. Satellite measurements indicate significantly increased tropospheric concentrations of CO and ozone associated with BMB. BMB significantly enhances the microbial production and emission of NO(x) from soils, and of methane from wetlands.

  6. Nitrated Secondary Organic Tracer Compounds in Biomass Burning Smoke

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Böge, O.; Gräfe, R.; Herrmann, H.

    2010-12-01

    Natural and human-initiated biomass burning releases large amounts of gases and particles into the atmosphere, impacting climate, environment and affecting public health. Several hundreds of compounds are emitted from biomass burning and these compounds largely originate from the pyrolysis of biopolymers such as lignin, cellulose and hemicellulose. Some of compounds are known to be specific to biomass burning and widely recognized as tracer compounds that can be used to identify the presence of biomass burning PM. Detailed chemical analysis of biomass burning influenced PM samples often reveals the presence compounds that correlated well with levoglucosan, a known biomass burning tracer compound. In particular, nitrated aromatic compounds correlated very well with levoglucosan, indicating that biomass burning as a source for this class of compounds. In the present study, we present evidence for the presence of biomass burning originating secondary organic aerosol (BSOA) compounds in biomass burning influenced ambient PM. These BSOA compounds are typically nitrated aromatic compounds that are produced in the oxidation of precursor compounds in the presence of NOx. The precursor identification was performed from a series of aerosol chamber experiments. m-Cresol, which is emitted from biomass burning at significant levels, is found to be a major precursor compounds for nitrated BSOA compounds found in the ambient PM. We estimate that the total concentrations of these compounds in the ambient PM are comparable to biogenic SOA compounds in winter months, indicating the BSOA contributes important amounts to the regional organic aerosol loading.

  7. Emission of methyl bromide from biomass burning

    SciTech Connect

    Manoe, S.; Andreae, M.O. )

    1994-03-04

    Bromine is, per atom, far more efficient than chlorine in destroying stratospheric ozone, and methyl bromide is the single largest source of stratospheric bromine. The two main previously known sources of this compound are emissions from the ocean and from the compound's use as an agricultural pesticide. Laboratory biomass combustion experiments showed that methyl bromide was emitted in the smoke from various fuels tested. Methyl bromide was also found in smoke plumes from wildfires in savannas, chaparral, and boreal forest. Global emissions of methyl bromide from biomass burning are estimated to be in the range of 10 to 50 gigagrams per year, which is comparable to the amount produced by ocean emission and pesticide use and represents a major contribution ([approximately]30 percent) to the stratospheric bromine budget.

  8. Sources, Transport, and Climate Impacts of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    In this presentation, I will first talk about fundamentals of modeling of biomass burning emissions of aerosols, then show the results of GOCART model simulated biomass burning aerosols. I will compare the model results with observations of satellite and ground-based network in terms of total aerosol optical depth, aerosol absorption optical depth, and vertical distributions. Finally the long-range transport of biomass burning aerosols and the climate effects will be addressed. I will also discuss the uncertainties associated with modeling and observations of biomass burning aerosols

  9. Impact of biomass burning on the atmosphere

    SciTech Connect

    Dignon, J.

    1993-03-01

    Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet`s atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate.

  10. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    NASA Astrophysics Data System (ADS)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  11. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    NASA Astrophysics Data System (ADS)

    Giordano, Michael R.; Chong, Joey; Weise, David R.; Asa-Awuku, Akua A.

    2016-03-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health. We investigate burning emissions from biomass grown in areas of high and low NO x deposition. Gas and aerosol-phase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not available, results indicate a systemic compositional difference between biomass grown in high and low deposition areas. Aerosol emissions from biomass grown in areas of high NO x deposition exhibit a lower volatility than biomass grown in a low deposition area. Furthermore, fuel elemental analysis, NO x emission rates, and aerosol particle number distributions differed significantly between the two sites. Despite the limited scale of fuels explored, there is strong evidence that the atmospheric emissions community must pay attention to the regional air quality of biomass fuels growth areas.

  12. Emissions from Biomass Burning in the Yucatan

    NASA Technical Reports Server (NTRS)

    Yokelson, R.; Crounse, J. D.; DeCarlo, P. F.; Karl, T.; Urbanski, S.; Atlas, E.; Campos, T.; Shinozuka, Y.; Kapustin, V.; Clarke, A. D.; Weinheimer, A.; Knapp, D. J.; Montzka, D. D.; Holloway, J.; Weibring, P.; Flocke, F.; Zheng, W.; Toohey, D.; Wennberg, P. O.; Wiedinmyer, C.; Mauldin, L.; Fried, A.; Richter, D.; Walega, J.; Jimenez, J. L.

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicaters of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually amounts of SO2 and particle chloride, likely due to a strong marine influence on the peninsula.

  13. Global biomass burning - Atmospheric, climatic, and biospheric implications

    SciTech Connect

    Levine, J.S. )

    1990-09-01

    Topics discussed at the March 1990 American Geophysical Union's Conference on biomass burning which was attended by more than 175 participants representing 19 countries are presented. Conference highlights include discussion of remote sensing data concerning biomass burning (BB), gaseous and particle emissions resulting from BB in the tropics, BB in temperate and boreal ecosystems, the historic and prehistoric perspectives on BB, BB and global budgets for carbon, nitrogen, and oxygen, and the BB and the greenhouse effect. Global estimates of annual amounts of biomass burning and of the resulting release of carbon to the atmosphere and the mean gaseous emission ratios for fires in wetlands, chaparral, and boreal ecosystems are given. An overview is presented of some conference discussions including global burning from 1850-1980, the global impact of biomass burning, the great Chinese/Soviet fire of 1987, and burning and biogenic emissions.

  14. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1990-01-01

    Topics discussed at the March 1990 American Geophysical Union's Conference on biomass burning which was attended by more than 175 participants representing 19 countries are presented. Conference highlights include discussion of remote sensing data concerning biomass burning (BB), gaseous and particle emissions resulting from BB in the tropics, BB in temperate and boreal ecosystems, the historic and prehistoric perspectives on BB, BB and global budgets for carbon, nitrogen, and oxygen, and the BB and the greenhouse effect. Global estimates of annual amounts of biomass burning and of the resulting release of carbon to the atmosphere and the mean gaseous emission ratios for fires in wetlands, chaparral, and boreal ecosystems are given. An overview is presented of some conference discussions including global burning from 1850-1980, the global impact of biomass burning, the great Chinese/Soviet fire of 1987, and burning and biogenic emissions.

  15. Detecting organic tracers from biomass burning in the atmosphere.

    PubMed

    Simoneit, B R; Elias, V O

    2001-10-01

    This is a brief review key to the literature on the determination of organic tracers from biomass burning which are detectable even after long-range global transport in total extracts of atmospheric particles. The major tracers are thermal degradation products from the biopolymer cellulose, namely the didehydromonosaccharide derivatives levoglucosan, galactosan and mannosan and the resin acid derivative dehydroabietic acid, with minor beta-sitosterol. Dehydroabietic acid is emitted primarily from burning of conifer fuel and these tracers are found in most aerosol samples from the North American continent. Particulate matter from the atmosphere over oceanic areas contains organic tracers from both natural and biomass burning emissions. The major biomarker compounds characterized are natural products from continental vegetation consisting primarily of epicuticular wax components and trace components from biomass burning emissions. The presence of these tracers in atmospheric particulate matter over the ocean confirms the long-range transport of smoke from biomass burning off the continents. PMID:11693634

  16. Biomass Burning and the Production of Greenhouse Gases. Chapter 9

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1994-01-01

    Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the hydroxyl radical, which regulates the lifetime of almost every atmospheric gas. Following biomass burning, biogenic emissions of nitrous oxide, nitric oxide, and methane are significantly enhanced. It is hypothesized that enhanced postburn biogenic emissions of these gases are related to fire-induced changes in soil chemistry and/or microbial ecology. Biomass burning, once believed to be a tropical phenomenon, has been demonstrated by satellite imagery to also be a regular feature of the world's boreal forests. One example of biomass burning is the extensive 1987 fire that destroyed more than 12 million acres of boreal forest in the People's Republic of China and across its border in the Soviet Union. Recent estimates indicate that almost all biomass burning is human-initiated and that it is increasing with time. With the formation of greenhouse and chemically active gases as direct combustion products and a longer-term enhancement of biogenic emissions of gases, biomass burning may be a significant driver for global change.

  17. Biomass Burning observed during IAGOS - CARIBIC

    NASA Astrophysics Data System (ADS)

    Neumaier, Marco; Fischbeck, Garlich; Hermann, Markus; Scharffe, Dieter; Safadi, Layal; Zahn, Andreas

    2016-04-01

    Biomass Burning observed during IAGOS - CARIBIC Since May 2005 the CARIBIC passenger aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container - Lufthansa, Airbus 340-600) measures ˜100 trace gases and aerosol components in the UTLS (9-12 km altitude) on 4-6 consecutive long-distance flights per month. Volatile Organic Compounds (VOCs) are measured with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Worldwide ~1.3 Tg/y of acetonitrile (CH3CN) is emitted into the atmosphere almost exclusively from biomass burning (BB) together with other VOCs (e.g. ketones, aldehydes, aromatics), CO, CO2, NOx and aerosol particles. Therefore, and due to its rather long tropospheric lifetime of ~6 months, acetonitrile constitutes a reliable BB tracer. Based on the signal of acetonitrile and CO we checked several algorithms to detect BB plumes in the IAGOS-CARIBIC data set. It turned out that the most intense BB plumes were sampled during summer over North America and during autumn over South America. The results will also be discussed with respect to biases due to flight statistics (i.e. destination, flight season, sampling of tropospheric and stratospheric air, etc.). Two flights that took place during the strong ENSO (El Niño/Southern Oscillation) event in July 2015 between Munich (MUC) and Los Angeles (LAX) will be discussed in more detail by taking into account other VOCs and aerosol particles. Here acetonitrile mixing ratios of up to ~1100 pptv were sampled over Greenland ~0.5 km above the tropopause. It is shown that the sampled air originated from Northern America / Canada where strong wildfires took place. During the flight from LAX to MUC the boundary layer air entered the upper troposphere by isentropic quasi-horizontal mixing and not by fast convective transport. The correlation of some VOCs (i.e. acetone, methanol and acetonitrile) with CO will be discussed and contrasted to findings from the literature. It is

  18. Emissions of fine particle fluoride from biomass burning.

    PubMed

    Jayarathne, Thilina; Stockwell, Chelsea E; Yokelson, Robert J; Nakao, Shunsuke; Stone, Elizabeth A

    2014-11-01

    The burning of biomasses releases fluorine to the atmosphere, representing a major and previously uncharacterized flux of this atmospheric pollutant. Emissions of fine particle (PM2.5) water-soluble fluoride (F-) from biomass burning were evaluated during the fourth Fire Laboratory at Missoula Experiment (FLAME-IV) using scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDX) and ion chromatography with conductivity detection. F- was detected in 100% of the PM2.5 emissions from conifers (n=11), 94% of emissions from agricultural residues (n=16), and 36% of the grasses and other perennial plants (n=14). When F- was quantified, it accounted for an average (±standard error) of 0.13±0.02% of PM2.5. F- was not detected in remaining samples (n=15) collected from peat burning, shredded tire combustion, and cook-stove emissions. Emission factors (EF) of F- emitted per kilogram of biomass burned correlated with emissions of PM2.5 and combustion efficiency, and also varied with the type of biomass burned and the geographic location where it was harvested. Based on recent evaluations of global biomass burning, we estimate that biomass burning releases 76 Gg F- yr(-1) to the atmosphere, with upper and lower bounds of 40-150 Gg F- yr(-1). The estimated F- flux from biomass burning is comparable to total fluorine emissions from coal combustion plus other anthropogenic sources. These data demonstrate that biomass burning represents a major source of fluorine to the atmosphere in the form of fine particles, which have potential to undergo long-range transport.

  19. Global biomass burning - Atmospheric, climatic and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1990-01-01

    Changes in the trace gas composition of the atmosphere due to global biomass burning are examined. The environmental consequences of those changes which have become areas of international concern are discussed.

  20. New perspectives on quantitative characterization of biomass burning (Invited)

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.

    2010-12-01

    Biomass burning (BB) occurs seasonally in different vegetated landscapes across the world, consuming large amounts of biomass, generating intense heat energy, and emitting corresponding amounts of smoke plumes that comprise aerosols and trace gases, which include carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), non-methane hydrocarbons, and numerous other trace compounds, many of which have adverse effects on human health, air quality, and environmental processes. Accurate estimates of these emissions are required as model inputs to evaluate and forecast smoke plume transport and impacts on air quality, human health, clouds, weather, radiation, and climate. The goal of this presentation is to highlight results of research activities that are aimed at advancing the quantitative characterization of various aspects of biomass burning (energetics, intensity, burn areas, burn severity, emissions, and fire weather) from aircraft and satellite measurements that can help advance our understanding of biomass burning and its overall effects. We will show recent results of analysis of fire radiative power (FRP), burned areas, fuel consumption, smoke emission rates, and plume heights from satellite measurements, as well as related aircraft calibration/validation activities. We will also briefly examine potential future plans and strategies for effective monitoring of biomass burning characteristics and emissions from aircraft and satellite.

  1. Physiochemical characterisation of biomass burning plumes in Brazil during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2013-04-01

    markedly, with BC concentrations being an order of magnitude greater in the Tocantins case (up to 50 μg m-3 of BC) compared with the Rondonia case (up to 5 μg m-3 of BC). Organic matter (OM) concentrations were similar in both cases, with maximum concentrations peaking between 4-5 mg m-3. Such concentrations are approximately more than 100 times greater than those sampled in the "background" regional haze. This variation of BC to OM ratio has potentially large implications for the radiative balance in the respective regions, as BC represents the major absorbing component of biomass burning aerosol. Further analysis will compare the aerosol mass concentrations with gas phase species, as well as probing the chemical and physical evolution of the aerosol as it advects downwind and is diluted with regional air. In particular, such analyses will focus upon the aging of the organic aerosol component as well as examining how the mixing state of the BC particles evolves. Such properties have important implications for the life cycle and formation of particulate material, which governs its subsequent impacts.

  2. Biomass burning and the production of greenhouse gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    The present discussion of related aspects of biomass burning describes a technique for estimating the instantaneous emission of trace gases generated by such fires on the basis of satellite imagery, and notes that burning results in significantly enhanced biogenic emissions of N2O, NO, and CH4. Biomass burning therefore has both immediate and long-term impacts on the trace-gas content of the atmosphere. The effects of Kuwait's oil fires, which encompass both combustion gases and particulates, are compared with those of the more general problem.

  3. Impact of deforestation on biomass burning in the tropics

    SciTech Connect

    Hao, W.M.; Liu, M.H.; Ward, D.E.

    1994-12-31

    Fires are widely used for various land use practices in tropical countries. Large amounts of trace gases and aerosol particles are produced during the fires. It is important to assess the potential impact of these gases and particulate matter on the chemistry of the atmosphere and global climate. One of the largest uncertainties in quantifying the effects is the lack of information on the source strengths. The authors quantify the amount of biomass burned due to deforestation in each tropical country on basis of the deforestation rate, the above ground density, and the fraction of above ground biomass burned. Approximately 725 Tg of biomass were burned in 1980 and 984 Tg were burned in 1990. The 36% increase took place mostly in Latin America and tropical Asia. The largest source was Brazil, contributing about 29% of the total biomass burned in the tropics. The second largest source was Indonesia accounting for 10%, followed by Zaire accounting for about 8%. The burning of biomass due to increased deforestation has resulted in an additional 33 Tg CO and 2.5 Tg CH{sub 4} emitted annually to the atmosphere from 1980 to 1990.

  4. Sources of black carbon in aerosols: fossil fuel burning vs. biomass burning

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.

    2013-12-01

    The uncertainty in black carbon (BC) analysis and our inability to directly quantify the BC sources in the atmosphere has led to the uncertainty in compiling a regional or global BC emission inventory attributed to biomass burnings. We initiate this study to demonstrate a new approach, which quantifies the source of BC in the atmosphere between biomass and fossil fuel burnings. We applied the newly developed multi-element scanning thermal analysis (MESTA) technology to quantify BC and organic carbon (OC), respectively, in aerosol samples. MESTA can also separate BC from OC for subsequent radiocarbon analyses. Because fossil fuel has been depleted of radiocarbon and biomass has radiocarbon of the modern atmospheric level, we can quantify the sources of BC between fossil fuel and biomass burnings. We sampled the PM2.5 in the ambient air of central Tallahassee and its rural areas during the May-June (prescribed burning) and Nov-Dec (non-burning) periods. The results indicate that biomass burning contributed 89×1% and 67×2% of BC, respectively, during May-June and Nov.-Dec. periods. The rest of PM2.5 BC was contributed from fossil fuel burning. The radiocarbon contents of the OC was 103.42×0.55 percent modern carbon (pmC), which is consistent with the current atmospheric level with a trace of the bomb radiocarbon remained from the open atmosphere nuclear testing.

  5. Formation of secondary aerosols from biomass burning plumes: chamber simulation study

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hu, Q.; Fang, Z.; Deng, W.

    2015-12-01

    Biomass burning contributed substantially to carbonaceous aerosols in China's ambient air, even in its highly industrialized megacities, based on recent source attributions by receptor modeling or by molecular and isotopic tracers. Although chemical evolution of biomass burning plumes in the ambient is a vital issue for the study of climatic and health effects, the understanding of secondary pollutants formation during the aging of biomass burning plumes is far from complete. Here we collected typical agriculture residues and forest plant branches in the Pearl River Delta in south China, and got them burned in laboratory-controlled conditions and introduced the plumes from burning these biomass directly into the GIGCAS indoor smog chamber with a reactor of 30 m3 to investigate the photochemical aging of the plumes. The inorganic trace gases, including SO2, NOx, NH3 and O3, were monitored online with chemiluminescence gas analyzers, precursor volatile organic compounds (VOCs) were monitor online with a PTR-ToF-MS and offline by a preconcentrator coupled with a gas chromatography-mass selective detector/flame ionization detector/electron capture detector (GC-MSD/FID/ECD), particle number concentrations and size distributions were obtained using a scanning mobility particle sizer (SMPS), and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) was used to measure the chemical compositions and evolutions of submicron aerosols and to trace the change in the average element ratios of organics, like H/C, O/C, and N/C. The results from the study were summarized in the following aspects: 1) primary emission factors of gaseous and particulate pollutants from burning of typical biomass including agricultural remains and forest wood plants; 2) yields of secondary pollutants, including secondary inorganic and organic aerosols and gaseous products (like O3) during photochemical aging of biomass burning plumes; 3) relationship between the formed secondary

  6. Atmospheric Tar Balls: Particles from Biomass and Biofuel Burning

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Gelencser, Andras; Simonics, Renata; Arato, Krisztina; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2004-01-01

    Tar balls are amorphous, carbonaceous spherules that occur in the tropospheric aerosol as a result of biomass and biofuel burning. They form a distinct group of particles with diameters typically between 30 and 500 nm and readily identifiable with electron microscopy. Their lack of a turbostratic microstructure distinguishes them from soot, and their morphology and composition (approximately 90 mol% carbon) renders them distinct from other carbonaceous particles. Tar balls are particularly abundant in slightly aged (minutes to hours old) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. The material of tar balls is initially hygroscopic; however, the particles become largely insoluble as a result of free radical polymerization of their organic molecules. Consequently, tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When tar balls coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may contain organic compounds that absorb sunlight. They are an important, previously unrecognized type of carbonaceous (organic) atmospheric particle.

  7. Biomass burning: A significant source of nutrients for Andean rainforests

    NASA Astrophysics Data System (ADS)

    Fabian, P. F.; Rollenbeck, R.; University Of Marburg, Germany

    2010-12-01

    Regular rain and fogwater sampling in the Podocarpus National Park,on the humid eastern slopes of the Ecuadorian Andes,has been carried out since 2002.The samples,accumulated over about 1-week intervals,were analysed for pH,conductivity,and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl-, SO4 2-, NO3-, PO4 3- ).Annual deposition rates of these ions which, due to poor acidic soils with low mineralization rates,constitute the dominant nutrient supply to the mountaineous rainforests, and major ion sources could be determined using back trajectories,along with satellite data. While most of the Na, Cl, and K as well as Ca and Mg input was found to originate from natural oceanic and desert dust sources,respectively (P.Fabian et al.,Adv.Geosci.22,85-94, 2009), NO3, NH4, and about 90% of SO4 (about 10 % is from active volcanoes) are almost entirely due to anthropogenic sources,most likely biomass burning. Industrial and transportation emissions and other pollutants,however,act in a similar way as the precursors produced by biomass burning.For quantifying the impacts of biomass burning vs. those of anthropogenic sources other than biomass burning we used recently established emission inventories,along with simplified model calculations on back trajectories.First results yielding significant contributions of biomass burning will be discussed.

  8. ACE-FTS measurements of trace species in the characterization of biomass burning plumes

    NASA Astrophysics Data System (ADS)

    Tereszchuk, K. A.; González Abad, G.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.; Bernath, P. F.

    2011-12-01

    To further our understanding of the effects of biomass burning emissions on atmospheric composition, we report measurements of trace species in biomass burning plumes made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument on the SCISAT-1 satellite. An extensive set of 15 molecules, C2H2, C2H6, CH3OH, CH4, CO, H2CO, HCN, HCOOH, HNO3, NO, NO2, N2O5, O3, OCS and SF6 are used in our analysis. Even though most biomass burning smoke is typically confined to the boundary layer, some of these emissions are injected directly into the free troposphere via fire-related convective processes and transported away from the emission source. Further knowledge of the aging of biomass burning emissions in the free troposphere is needed. Tracer-tracer correlations are made between known pyrogenic species in these plumes in an effort to characterize them and follow their chemical evolution. Criteria such as age and type of biomass material burned are considered.

  9. Urban, Regional and Global Impacts of Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Rizzo, L. V.; Setzer, A.; Cirino, G.

    2013-05-01

    Biomass burning is a major regional and global driver for atmospheric composition. Its effects in regional and global climate are very significant, but still difficult to assess. Even in large urban areas in Latin America such as Mexico City, Sao Paulo and Santiago, and in developed areas such as Paris and Californian cities it is possible to observe significant biomass burning effects air quality. The wood burning components as well as inner city and vicinities burning if agricultural residues impact heavily the concentration of organic aerosol, carbon monoxide and ozone in urban areas. Regionally, regions such as Amazonia and Central America show large plumes of smoke that extend their impact over continental areas, with changes in the radiation balance, air quality and climate. The deforestation rate in Amazonia have dropped strongly from 27,000 Km2 in 2004 to 6,200 Km2 in 2011, a very significant reduction, but this reduction was not observed in Africa and Southeast Asia. Health effects of biomass burning emissions are very significant, and observed in several key regions. Remote sensing techniques for fire detection have progressed significantly and long time series (10-15 years) are now feasible. The black carbon associated with biomass burning has important impacts in formation and development of clouds in Amazonia and other regions. The organic component of biomass burning emissions scatter light and increase diffuse radiation that alters carbon uptake in large regions of Amazonia and certainly other forested areas. Increase of up to 30% in carbon uptake associated with biomass burning emissions was observed in Amazonia, as part of the LBA Experiment. New analytical methods that quantify the absorption angstrom exponent of biomass burning and fossil fuel black carbon (BC) can differentiate BC from different burning sources. In addition, the hygroscopic properties of particles with a core shell of BC coated with organic compounds can be measured and shows

  10. Reliability of biomass burning estimates from savanna fires: Biomass burning in northern Australia during the 1999 Biomass Burning and Lightning Experiment B field campaign

    NASA Astrophysics Data System (ADS)

    Russell-Smith, Jeremy; Edwards, Andrew C.; Cook, Garry D.

    2003-02-01

    This paper estimates the two-daily extent of savanna burning and consumption of fine (grass and litter) fuels from an extensive 230,000 km2 region of northern Australia during August-September 1999 encompassing the Australian continental component of the Biomass Burning and Lightning Experiment B (BIBLE B) campaign [, 2002]. The extent of burning for the study region was derived from fire scar mapping of imagery from the advanced very high resolution radiometer (AVHRR) on board the National Oceanic and Atmospheric Administration (NOAA) satellite. The mapping was calibrated and verified with reference to one Landsat scene and associated aerial transect validation data. Fine fuel loads were estimated using published fuel accumulation relationships for major regional fuel types. It is estimated that more than 43,000 km2 was burnt during the 25 day study period, with about 19 Mt of fine (grass and litter) fuels. This paper examines assumptions and errors associated with these estimates. It is estimated from uncalibrated fire mapping derived from AVHRR imagery that 417,500 km2 of the northern Australian savanna was burnt in 1999, of which 136,405 km2, or 30%, occurred in the Northern Territory study region. Using generalized fuel accumulation equations, such biomass burning consumed an estimated 212.3 Mt of fine fuels, but no data are available for consumption of coarse fuels. This figure exceeds a recent estimate, based on fine fuels only, for the combined Australian savanna and temperate grassland biomass burning over the period 1990-1999 but is lower than past estimates derived from classification approaches. We conclude that (1) fire maps derived from coarse-resolution optical imagery can be applied relatively reliably to estimate the extent of savanna fires, generally with 70-80% confidence using the approach adopted here, over the major burning period in northern Australia and (2) substantial further field assessment and associated modeling of fuel accumulation

  11. Impact of biomass burning on the atmosphere. Revision 1

    SciTech Connect

    Dignon, J.

    1994-04-01

    Fire has played an important part in biogeochemical cycling throughout much of the history of our plant. This report addresses the coupled evolution of our planet`s atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate.

  12. Emissions of nitrous oxide from biomass burning

    NASA Technical Reports Server (NTRS)

    Winstead, Edward L.; Cofer, Wesley R., III; Levine, Joel S.

    1991-01-01

    A study has been conducted which compared N2O results obtained over large prescribed fires or wildfires, in which 'grab-sampling' with storage had been used with N2O measurements made in near-real time. CO2-normalized emission ratios obtained initially from the laboratory fires are substantially lower than those obtained over large-scale biomass fires. Combustion may not be the only source of N2O in large fire smoke plumes; physical, chemical, and biochemical processes in the soil may be altered by large biomass fires, leading to large N2O releases.

  13. Health impacts of anthropogenic biomass burning in the developed world.

    PubMed

    Sigsgaard, Torben; Forsberg, Bertil; Annesi-Maesano, Isabella; Blomberg, Anders; Bølling, Anette; Boman, Christoffer; Bønløkke, Jakob; Brauer, Michael; Bruce, Nigel; Héroux, Marie-Eve; Hirvonen, Maija-Riitta; Kelly, Frank; Künzli, Nino; Lundbäck, Bo; Moshammer, Hanns; Noonan, Curtis; Pagels, Joachim; Sallsten, Gerd; Sculier, Jean-Paul; Brunekreef, Bert

    2015-12-01

    Climate change policies have stimulated a shift towards renewable energy sources such as biomass. The economic crisis of 2008 has also increased the practice of household biomass burning as it is often cheaper than using oil, gas or electricity for heating. As a result, household biomass combustion is becoming an important source of air pollutants in the European Union.This position paper discusses the contribution of biomass combustion to pollution levels in Europe, and the emerging evidence on the adverse health effects of biomass combustion products.Epidemiological studies in the developed world have documented associations between indoor and outdoor exposure to biomass combustion products and a range of adverse health effects. A conservative estimate of the current contribution of biomass smoke to premature mortality in Europe amounts to at least 40 000 deaths per year.We conclude that emissions from current biomass combustion products negatively affect respiratory and, possibly, cardiovascular health in Europe. Biomass combustion emissions, in contrast to emissions from most other sources of air pollution, are increasing. More needs to be done to further document the health effects of biomass combustion in Europe, and to reduce emissions of harmful biomass combustion products to protect public health.

  14. Health impacts of anthropogenic biomass burning in the developed world.

    PubMed

    Sigsgaard, Torben; Forsberg, Bertil; Annesi-Maesano, Isabella; Blomberg, Anders; Bølling, Anette; Boman, Christoffer; Bønløkke, Jakob; Brauer, Michael; Bruce, Nigel; Héroux, Marie-Eve; Hirvonen, Maija-Riitta; Kelly, Frank; Künzli, Nino; Lundbäck, Bo; Moshammer, Hanns; Noonan, Curtis; Pagels, Joachim; Sallsten, Gerd; Sculier, Jean-Paul; Brunekreef, Bert

    2015-12-01

    Climate change policies have stimulated a shift towards renewable energy sources such as biomass. The economic crisis of 2008 has also increased the practice of household biomass burning as it is often cheaper than using oil, gas or electricity for heating. As a result, household biomass combustion is becoming an important source of air pollutants in the European Union.This position paper discusses the contribution of biomass combustion to pollution levels in Europe, and the emerging evidence on the adverse health effects of biomass combustion products.Epidemiological studies in the developed world have documented associations between indoor and outdoor exposure to biomass combustion products and a range of adverse health effects. A conservative estimate of the current contribution of biomass smoke to premature mortality in Europe amounts to at least 40 000 deaths per year.We conclude that emissions from current biomass combustion products negatively affect respiratory and, possibly, cardiovascular health in Europe. Biomass combustion emissions, in contrast to emissions from most other sources of air pollution, are increasing. More needs to be done to further document the health effects of biomass combustion in Europe, and to reduce emissions of harmful biomass combustion products to protect public health. PMID:26405285

  15. Biomass Burning Observation Project (BBOP) Final Campaign Report

    SciTech Connect

    Kleinman, LI; Sedlacek, A. J.

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  16. Burned area, active fires and biomass burning - approaches to account for emissions from fires in Tanzania

    NASA Astrophysics Data System (ADS)

    Ruecker, Gernot; Hoffmann, Anja; Leimbach, David; Tiemann, Joachim; Ng'atigwa, Charles

    2013-04-01

    Eleven years of data from the globally available MODIS burned area and the MODS Active Fire Product have been analysed for Tanzania in conjunction with GIS data on land use and cover to provide a baseline for fire activity in this East African country. The total radiated energy (FRE) emitted by fires that were picked up by the burned area and active fire product is estimated based on a spatio-temporal clustering algorithm over the burned areas, and integration of the fire radiative power from the MODIS Active Fires product over the time of burning and the area of each burned area cluster. Resulting biomass combusted by unit area based on Woosteŕs scaling factor for FRE to biomass combusted is compared to values found in the literature, and to values found in the Global Fire Emissions Database (GFED). Pyrogenic emissions are then estimated using emission factors. According to our analysis, an average of 11 million ha burn annually (ranging between 8.5 and 12.9 million ha) in Tanzania corresponding to between 10 and 14 % of Tanzaniás land area. Most burned area is recorded in the months from May to October. The land cover types most affected are woodland and shrubland cover types: they comprise almost 70 % of Tanzania's average annual burned area or 6.8 million ha. Most burning occurs in gazetted land, with an annual average of 3.7 million ha in forest reserves, 3.3 million ha in game reserves and 1.46 million ha in national parks, totalling close to 8.5 million ha or 77 % of the annual average burned area of Tanzania. Annual variability of burned area is moderate for most of the analysed classes, and in most cases there is no clear trend to be detected in burned area, except for the Lindi region were annual burned area appears to be increasing. Preliminary results regarding emissions from fires show that for larger fires that burn over a longer time, biomass burned derived through the FRP method compares well to literature values, while the integration over

  17. Transport of Biomass Burning Emissions from Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Jaegle,Lyatt; Hobbs, Peter V.; Liang, Qing

    2004-01-01

    The transport of biomass burning emissions from southern Africa to the neighboring Atlantic and Indian Oceans during the dry season (May-October) of 2000 is characterized using ground, ozonesonde, and aircraft measurements of carbon monoxide (CO) and ozone (O3) in and around southern Africa, together with the GEOS-CHEM global model of tropospheric chemistry. The model shows a positive bias of approximately 20% for CO and a negative bias of approximately 10-25% for O3 at oceanic sites downwind of fire emissions. Near areas of active fire emissions the model shows a negative bias of approximately 60% and approximately 30% for CO and O3, respectively, likely due to the coarse spatial (2 deg. x 2.5 deg.) and temporal (monthly) resolution of the model compared to that of active fires. On average, from 1994 to 2000, approximately 60 Tg of carbon monoxide (CO) from biomass burning in southern Africa was transported eastward to the Indian Ocean across the latitude band 0 deg. -60 S during the 6 months of the dry season. Over the same time period, approximately 40 Tg of CO from southern African biomass burning was transported westward to the Atlantic Ocean over the latitudes 0 deg. -20 S during the 6-month dry season, but most of that amount was transported back eastward over higher latitudes to the south (21 deg. -60 S). Eastward transport of biomass burning emissions from southern Africa enhances CO concentrations by approximately 4- 13 ppbv per month over the southern subtropical Indian Ocean during the dry season, with peak enhancements in September. Carbon monoxide from southern African and South American biomass burning is seen in the model simulations as far away as Australia, contributing approximately 8 ppbv and approximately 12-15 ppbv CO, respectively, and thus explaining the approximately 20- 25 ppbv observed enhancement of CO over Melbourne in mid-September 2000.

  18. Atmospheric tar balls from biomass burning in Mexico

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Buseck, P. R.

    2009-12-01

    Tar balls are spherical, organic aerosol particles that result from biofuel or biomass burning. They absorb sunlight and cause warming of the atmosphere. Although distinctive when viewed with a transmission electron microscope (TEM) because of their spherical shape, much remains to be determined about details of their compositions, occurrences, and generation. Here we aim to characterize the occurrences of tar balls using individual-particle analyses with a TEM and to study their formation in young biomass-burning smoke. The samples were collected using the U.S. Forest Service Twin Otter aircraft during the MILAGRO (Megacity Initiative: Local and Global Research Observations) campaign conducted in March 2006. We analyzed 84 TEM grid samples from ~30 biomass-burning events near Mexico City and over Yucatan. Sixty samples were from young smoke (less than an hour old), and others were from haze that mainly occurred from biomass burning. Tar balls have neither an evident nucleus nor are they normally attached to other particles. They are almost perfectly spherical on TEM grids, indicating that they were solid when collected. It appears as if tar balls consist of lower volatility organic matter than many other organic aerosol particles. On average, 9% by number of biomass-burning aerosol particles were tar balls in samples collected between a few minutes to an hour after emission. On the other hand, samples collected within a few minutes after emission included few or no tar balls. The occurrences and abundances of atmospheric tar balls are important when evaluating the effects of smoke on local and regional climate.

  19. Particulate emissions from different types of biomass burning

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Obrist, Daniel; Zielinska, Barbara; Gertler, Alan

    2013-06-01

    Biomass burning is a significant emission source of PM2.5(i.e., particulate matter with an aerodynamic diameter less than 2.5 μm), but few studies addressed the chemical composition of PM2.5 emissions from various types of fires. Here, we present results from a sampling campaign to quantify PM2.5 emissions from various types of prescribed burning activities using analysis of carbon (elemental carbon: EC; organic carbon: OC; and total carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and particle-bound mercury (PHg). Emissions were characterized for a series of prescribed burns in the Lake Tahoe basin in the western United States, along with controlled biomass combustion in a wood stove. In the field, emissions were collected from: (i) landscape underburns, consisting of wooden tissues, foliage, branches, and surface duff; (ii) pile burns, consisting mainly of wooden tissues stacked up to piles; (iii) mixed underburn/pile burns which consisted of a mix of the above; in a wood stove, burns included different fuel types collected from the Lake Tahoe basin, specifically (iv) wooden logs mainly of pine; (v) green foliage and branches from two dominant shrubs (manzanita and bitterbrush); and (vi) surface duff, mostly consisting of pine needle litter.Our data showed higher ratios of organic to elemental carbon in green fuels (19.2 ± 4.2) compared to dry, wooden logs (7.3 ± 1.9) both in prescribed burns in the field and in controlled stove combustion, indicating that more moisture in green biomass resulted in more smoldering-phase combustion. Further, OC/EC ratios were lower in wood stove burns compared to prescribed burns in the field, which we attribute to higher combustion temperatures in wood stove burns. The suite of 12 select polar organic compounds showed that the most prevalent compounds emitted across all burns were levoglucosan, mannosan, and resin acids (dehydroabietic, pimaric, and

  20. Experimentally measured morphology of biomass burning aerosol and its impacts on CCN ability

    NASA Astrophysics Data System (ADS)

    Giordano, M.; Espinoza, C.; Asa-Awuku, A.

    2014-05-01

    This study examines the morphological properties of freshly emitted and atmospherically aged aerosols from biomass burning. The impacts of particle morphology assumptions on hygroscopic predictions are examined. Chamber experiments were conducted at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Morphological data was obtained through the use of an aerosol particle mass analyzer (APM), scanning mobility particle sizer (SMPS) system and transmission electron microscopy (TEM). Data from these instruments was used to calculate both a dynamic shape factor and a fractal-like dimension for the biomass burning emissions. This data was then used with κ-Köhler theory to adjust the calculated hygroscopicity for experimentally determined morphological characteristics of the aerosol. Laboratory measurement of biomass burning aerosol from two chaparral fuels show that particles are non-spherical with dynamic shape factors greater than 1.15 for aerosol sizes relevant to cloud condensation nuclei (CCN) activation. Accounting for particle morphology can shift the hygroscopicity parameter κ by 0.15 or more. To our knowledge, this work provides the first laboratory chamber measurements of morphological characteristics for biomass burning cloud condensation nuclei and provides experimental particle shape evidence to support the variation in reported hygroscopicities of the complex aerosol.

  1. Experimentally measured morphology of biomass burning aerosol and its impacts on CCN ability

    NASA Astrophysics Data System (ADS)

    Giordano, M.; Espinoza, C.; Asa-Awuku, A.

    2015-02-01

    This study examines the morphological properties of freshly emitted and atmospherically aged aerosols from biomass burning. The impacts of particle morphology assumptions on hygroscopic predictions are examined. Chamber experiments were conducted at the University of California, Riverside, Center for Environmental Research and Technology (CE-CERT) atmospheric processes lab using two biomass fuel sources: manzanita and chamise. Morphological data was obtained through the use of an aerosol particle mass analyzer (APM), scanning mobility particle sizer (SMPS) system and transmission electron microscope (TEM). Data from these instruments was used to calculate both a dynamic shape factor and a fractal-like dimension for the biomass burning emissions. This data was then used with κ-Köhler theory to adjust the calculated hygroscopicity for experimentally determined morphological characteristics of the aerosol. Laboratory measurement of biomass burning aerosol from two chaparral fuels show that particles are nonspherical with dynamic shape factors greater than 1.15 for aerosol sizes relevant to cloud condensation nuclei (CCN) activation. Accounting for particle morphology can shift the hygroscopicity parameter by 0.15 or more. To our knowledge, this work provides the first laboratory chamber measurements of morphological characteristics for biomass burning cloud condensation nuclei and provides experimental particle shape evidence to support the variation in reported hygroscopicities of the complex aerosol.

  2. FTIR measurements of biomass burning species in the Arctic

    NASA Astrophysics Data System (ADS)

    Lutsch, E.; Viatte, C.; Strong, K.; Nussbaumer, E.; Hannigan, J. W.; Kasai, Y.

    2014-12-01

    We present time series of the total column amounts of carbon monoxide (CO), hydrogen cyanide(HCN), acetylene (C2H2), ethane (C2H6), formaldehyde (H2CO), formic acid (HCOOH) and methanol(CH3OH) obtained by Fourier Transform Infrared (FTIR) spectrometer measurements at three Arcticsites. Two are located in the high Arctic at Eureka, Nunavut (80.02°N, 86.42°W) and Thule, Greenland(76.53°N , 68.74°W), and the third is at Poker Flat, Alaska (65.11°N, 147.42°W). Total column amounts of each target species are obtained using the SFIT4 retrieval algorithm based onthe optimal estimation method, along with spectral line parameters from the HITRAN 2008spectroscopic database. The total column time series allow for biomass burning events to be identified at all three sites byenhancements of the total columns above ambient levels. HYSPLIT back-trajectories and MODIS firehot spot data are used to determine the burning source regions and the travel time durations of theplumes. The seasonal variabilities of the longer-lived species of CO, HCN, C2H2 and C2H6 are primarilydetermined by reactions with OH and long-range transport, while those of the shorter-lived species ofH2CO, HCOOH, CH3OH are most influenced by biogenic emissions and short-range transport. Thevarying lifetimes of these species and the independent measurements at the three sites allow for thetransport pathways to be investigated. By accounting for the effect of the aging of the smoke plumes,the measured FTIR enhancement ratios are corrected to obtain emission ratios and emission factors,which are needed to improve the simulation of fire emissions in chemical transport models.

  3. New estimates of nitrous oxide emissions from biomass burning

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Levine, J. S.; Winstead, E. L.; Stocks, B. J.

    1991-01-01

    The recent discovery of an artifact producing increased levels of N2O in combustion gas samples collected and stored in grab bottles before chemical analysis has resulted in the downgrading of fossil-fuel combustion and the questioning of biomass burning as important sources of N2O. As almost all reported analyses of N2O produced from biomass burning have involved essentially the same collection and analysis protocols as used in the fossil-fuel studies, this source of N2O must also be reexamined. Here, measurements of N2O made over a large prescribed fire using a near real-time in situ measurement technique are reported and compared with measurements of N2O from simultaneously collected grab-bottle samples. The results from 27 small laboratory biomass test fires are also used to help clarify the validity of earlier assessments. It is concluded that biomass burning contributes about seven percent of atmospheric N2O, as opposed to earlier estimates of several times this value.

  4. Remote sensing of biomass burning in the tropics

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tucker, Compton J.; Fung, Inez Y.

    1989-01-01

    A technique for assessing the effects of biomass burning on the climate is described. This method is based on the analysis of remote sensing data for the emitted particulates. The relationship between particulates and trace gases is studied. The assessment technique is applied to the 1987 burning season in Brazil. It is noted that during the dry season there may be up to 5000 fires per day which emit 200 ton/hr CO2, 20 ton/hr CO, and 0.5 ton/hr of CH4 to the atmosphere.

  5. Radiative impact of aerosols generated from biomass burning

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1995-01-01

    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Each year, increasing amounts of aerosol particles are released into the atmosphere due to biomass burning, dust storms, forest fires, and volcanic activity. These particles significantly perturb the radiative balance on local, regional, and global scales. While the detection of aerosols over water is a well established procedure, the detection of aerosols over land is often difficult due to the poor contrast between the aerosols and the underlying terrain. In this study, we use textural measures in order to detect aerosols generated from biomass burning over South America, using AVHRR data. The regional radiative effects are then examined using ERBE data. Preliminary results show that the net radiative forcing of aerosols is about -36 W/sq m.

  6. Biomass Burning Contributions to Ambient Volatile Organic Compounds (VOCs) in the Harvest Season in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wu, R.; Xie, S.

    2015-12-01

    Volatile organic compounds (VOCs) play a fundamental role in the tropospheric chemistry as key precursors of ozone and secondary organic aerosol (SOA), and many VOC species have an adverse impact on human health. Therefore, VOCs are of great concern. Biomass burning, which is recognized as an important source of VOCs in China, has a significant effect on air pollution and climate change. Recent studies have reported some source profiles of VOCs emitted from biomass burning in China, and emission inventories have also been developed to estimate the biomass burning emissions. Nevertheless, very little is known about the emission characteristics of biomass burning, nor its contributions to ambient VOCs. This work presents the results from a continuous measurement of 108 VOC compounds by an online GC-MS/FID system at a receptor site in Beijing from October 1-14, 2014. Several biomass burning plumes were identified by extremely high level of acetonitrile, which is an excellent signature of biomass burning. The emission ratios of six VOCs species relative to acetonitrile were determined by enhancement ratio method. The contributions of biomass burning to ambient VOCs were also explored. Results show that the mixing ratios of ambient VOCs in biomass burning days were over twice as that in non-burning days. And biomass burning accounted for 25.1% (benzene), 24.6% (toluene), 18.8% (acetone), 24.9% (MEK), 29.4% (MVK), and 18.2% (n-hexanal) of the ambient mixing ratios, respectively. PMF analysis indicated that the contributions of biomass burning to VOCs increased from 5.5% to 12.7% on average in biomass burning days, which revealed that the high level of ambient VOCs in Beijing during this period can be partly attributed to extensive biomass burning. Our study will be helpful to better understand biomass burning emissions in China, as well as to explore the contributions of biomass burning to haze formation in the harvest season.

  7. Influence of Biomass Burning Aerosols on Southeast Asia Air Quality

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Bar-Or, Rotem; Wang, Chien

    2016-04-01

    Biomass burning activities in Southeast Asia have become a major concern of general public as well as governments in the region. This is because that aerosols emitted from such fires can cause long-lasting haze events under favorite weather conditions in downwind locations such as Singapore, degrading air quality and causing human health issues. In order to improve our understanding of the spatiotemporal coverage and influence of biomass burning aerosols in Southeast Asia, we have used the Weather Research and Forecasting (WRF) model with a smoke aerosol module to conduct multi-year simulations covering the period from 2002 to 2014, driven by the biomass burning emissions from the Fire INventory from NCAR (FINN) version 1.5. To attribute the aerosol influences over various target regions to specific fire locations, we have also partitioned aerosols emitted from five major fire regions of Southeast Asia in the simulations. Based on the simulation results, we have examined the influences of various meteorological regimes on the aerosol transport and wet removal. We find that the transport and scavenging of biomass burning aerosols are strongly modulated by the Southeast Asian monsoon wind field and precipitation. We also identified that in the past decade, smoke aerosols are responsible for a substantial fraction of low visibility events in the major metropolitan areas of the region: 35% in Bangkok, 25% in Kuala Lumpur, 16% in Singapore, and 22% in Jakarta. The fires in the Indochina peninsula account for the largest percentage of the total fire enhancement to PM2.5 in Bangkok (98.9%), and fires in Sumatra were the major contributor in Kuala Lumpur (49%), Singapore (39%), and Jakarta (48%).

  8. Atmospheric Deposition of Soluble Organic Nitrogen due to Biomass Burning

    NASA Astrophysics Data System (ADS)

    Ito, A.; Lin, G.; Penner, J. E.

    2014-12-01

    Atmospheric deposition of reactive nitrogen (N) species from large fires may contribute to enrichment of nutrients in aquatic ecosystems. Here we use an atmospheric chemistry transport model to investigate the supply of soluble organic nitrogen (ON) from open biomass burning to the ocean. The model results show that the annual deposition rate of soluble ON to the oceans is increased globally by 13% with the increase being particularly notable over the coastal water downwind from the source regions. The estimated deposition of soluble ON due to haze events from the secondary formation is more than half of that from the primary sources. We examine the secondary formation of particulate C-N compounds (e.g., imidazole) from the reactions of glyoxal and methylglyoxal with atmospheric ammonium in wet aerosols and upon cloud evaporation. These ON sources result in a significant contribution to the open ocean, suggesting that atmospheric processing in aqueous phase may have a large effect. We compare the soluble ON concentration in aerosols with and without open biomass burning as a case study in Singapore. The model results demonstrate that the soluble ON concentration in aerosols is episodically enriched during the fire events, compared to the without smoke simulations. However, the model results show that the daily soluble ON concentration can be also enhanced in the without smoke simulations during the same period, compared to the monthly averages. This indicates that care should be taken when using in-situ observations to constrain the soluble ON source strength from biomass burning. More accurate quantification of the soluble ON burdens with no smoke sources is therefore needed to assess the effect of biomass burning on bioavailable ON input to the oceans.

  9. The colors of biomass burning aerosols in the atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  10. The colors of biomass burning aerosols in the atmosphere.

    PubMed

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-01-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC. PMID:27306230

  11. The colors of biomass burning aerosols in the atmosphere

    PubMed Central

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-01-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC. PMID:27306230

  12. The colors of biomass burning aerosols in the atmosphere.

    PubMed

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-16

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  13. Volatility and mixing states of ultrafine particles from biomass burning.

    PubMed

    Maruf Hossain, A M M; Park, Seungho; Kim, Jae-Seok; Park, Kihong

    2012-02-29

    Fine and ultrafine carbonaceous aerosols produced from burning biomasses hold enormous importance in terms of assessing radiation balance and public health hazards. As such, volatility and mixing states of size-selected ultrafine particles (UFP) emitted from rice straw, oak, and pine burning were investigated by using volatility tandem differential mobility analyzer (VTDMA) technique in this study. Rice straw combustion produced unimodal size distributions of emitted aerosols, while bimodal size distributions from combustions of oak (hardwood) and pine (softwood) were obtained. A nearness of flue gas temperatures and a lower CO ratio of flaming combustion (FC) to smoldering combustion (SC) were characteristic differences found between softwood and hardwood. SC emitted larger mode particles in higher numbers than smaller mode particles, while the converse was true for FC. Rice straw open burning UFPs exhibited a volatilization behavior similar to that between FC and SC. In addition, internal mixing states were observed for size-selected UFPs in all biomasses for all combustion conditions, while external mixing states were only observed for rice straw combustion. Results for FC and open burning suggested there was an internal mixing of volatile organic carbon (OC) and non-volatile core (e.g., black carbon (BC)), while the SC in rice straw produced UFPs devoid of non-volatile core. Also, it was found that volatility of constituting OC in FC and SC particles was different.

  14. Characterization of biomass burning aerosols from forest fire in Indonesia

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were

  15. Seasonal Variations of Biomass Burning Tracers in Alaskan Aerosols

    NASA Astrophysics Data System (ADS)

    Haque, M. M.; Kawamura, K.; Kim, Y.

    2015-12-01

    Biomass burning (BB) is a large source of atmospheric trace gases and aerosols. During the burning, several organic and inorganic gases and particles are emitted into the atmosphere. Here, we present seasonal variations of specific BB tracers such as levoglucosan, mannosan and galactosan, which are produced by pyrolysis of cellulose and hemicelluloses. We collected TSP aerosol samples (n= 32) from Fairbanks, Alaska in June 2008 to June 2009. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. The result of levoglucosan showed clear seasonal trends with winter maximum (ave.145 ng m-3) and spring minimum (12.3 ng m-3). The analyses of air mass back trajectories and fire spots demonstrated that anhydrosugars may be associated from residential heating and cooking in local region and Siberia in winter time. Levoglucosan showed significant positive correlation with EC (r= 0.67, p= 0.001) and OC (r= 0.51, p= 0.002) but there was no correlation with nss-K+ (r= -0.16, p= 0.37). The emission of K+ from biomass burning depends on burning condition and types of material burned. There are two possible reasons, which can be explained for the lack of correlation between levoglucosan and K+. First, specific burning materials may be used for residential heating, which can't produce K+. Secondly, K+ could be deposit on the surface of chimney breast and it can't emit into the atmosphere. Anhydrosugars contributed 4.4% to water-soluble organic carbon (WSOC) and 2.4% to organic carbon (OC). Their highest values of WSOC (8.1%) and OC (4.9%) in wintertime indicate that contribution of BB to Alaskan aerosols is important in winter period. The current study presents for the first time one-year observation on BB tracers in the subarctic region, which provide useful information to better understand the effect of biomass burning on subarctic atmosphere. It will also be helpful for further long-term climate studies in this region.

  16. An evaluation of the uncertainties in biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Yano, A.; Garcia Menendez, F.; Hu, Y.; Odman, M.

    2012-12-01

    The contribution of biomass burning emissions to the atmospheric loads of gases and aerosols can lead to major air quality problems and have significant climate impacts. Whether from wildfires, natural or human-induced, or controlled burns, biomass burning emissions are an important source of air pollutants regionally in certain parts of the world as well as globally. There are two common ways of estimating biomass burning emissions: by using either ground-based information or satellite observations. When there is sufficient local information about the burn area, the types of fuels and their consumption amounts, and the progression of the fire, ground-based estimation is preferred. For controlled burns a.k.a. prescribed burns and wildfires in places where land management is practiced to a certain extent there is typically sufficient ground-based information for emissions estimation. However, for remote regions where no ground-based information is available on the size, intensity, or the spread of the fire, estimates based on satellite observations are preferred. For example, burn location, size and timing information can be obtained from satellite retrievals of thermal anomalies and fuel loading information can be obtained from satellite products of vegetation cover. In both cases, reasonable emission estimates for a variety of pollutants can be obtained by using emission factors (mass of pollutant released per unit mass of fuel consumed) derived from field or laboratory studies. Here, emissions from a controlled burn and a wildfire are estimated using both ground-based information and satellite observations. The controlled burn was conducted on 17 November 2009 near Santa Barbara, California over 80 ha of land covered with chaparral. An aircraft tracked the smoke plume and measured CO2, light scattering, as well as meteorological parameters during the burn (Akagi et al., 2011). The wildfire is from the summer of 2008 when tens of thousands hectares of wild land

  17. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-06-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. These fuel consumption (FC) rates depend on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC rates are either modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC rates for various biomes and fuel categories to better understand FC rates and variability, and to provide a~database that can be used to constrain biogeochemical models with fire modules. We compiled in total 76 studies covering 10 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1), tropical forest (n = 19, FC = 126), temperate forest (n = 11, FC = 93), boreal forest (n = 16, FC = 39), pasture (n = 6, FC = 28), crop residue (n = 4, FC = 6.5), chaparral (n = 2, FC = 32), tropical peatland (n = 4, FC = 314), boreal peatland (n = 2, FC = 42), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only 3 measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences were found within the defined biomes: for example FC rates of temperate pine forests in the USA were 38% higher than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC rates, not only between biomes but also within biomes and fuel classes. This implies that care should be taken with using averaged values, and our comparison with FC rates from GFED3 indicates that also modeling studies have difficulty in representing the dynamics governing FC.

  18. ACE-FTS observations of pyrogenic trace species in boreal biomass burning plumes during BORTAS

    NASA Astrophysics Data System (ADS)

    Tereszchuk, K. A.; González Abad, G.; Clerbaux, C.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.-F.; Bernath, P. F.

    2012-12-01

    To further our understanding of the effects of biomass burning emissions on atmospheric composition, the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign was conducted on 12 July to 3 August 2011 during the Boreal forest fire season in Canada. The simultaneous aerial, ground and satellite measurement campaign sought to record instances of Boreal biomass burning to measure the tropospheric volume mixing ratios (VMRs) of short- and long-lived trace molecular species from biomass burning emissions. The goal was to investigate the connection between the composition and the distribution of these pyrogenic outflows and their resulting perturbation to atmospheric chemistry, with particular focus on oxidant species to determine the overall impact on the oxidizing capacity of the free troposphere. Measurements of pyrogenic trace species in Boreal biomass burning plumes were made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) onboard the Canadian Space Agency (CSA) SCISAT-1 satellite during the BORTAS campaign. Even though most biomass burning smoke is typically confined to the boundary layer, emissions are often injected directly into the upper troposphere via fire-related convective processes, thus allowing space-borne instruments to measure these pyrogenic outflows. An extensive set of 15 molecules, CH3OH, CH4, C2H2, C2H6, C3H6O, CO, HCN, HCOOH, HNO3, H2CO, NO, NO2, OCS, O3 and PAN have been analyzed. Included in this analysis is the calculation of age-dependent sets of enhancement ratios for each of the species.

  19. time Dependence of Aerosols in Biomass Burn Plumes from Bbop

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Sedlacek, A. J., III; Yokelson, R. J.; Onasch, T. B.; Adachi, K.; Buseck, P. R.; Chand, D.; Collier, S.; Dubey, M. K.; Mei, F.; Shilling, J. E.; Springston, S. R.; Wang, J.; Wigder, N. L.; Zhang, Q.

    2014-12-01

    The Biomass Burn Observation Project (BBOP) was conducted between the beginning of July, 2013 and the end of October, 2013. This period overlapped the wildland fire season in the Pacific Northwest from July to mid September, and in October, prescribed agricultural burns in the lower Mississippi River Valley. Urban plumes from 7 cities in the NW and SE U.S. provided a contrasting set of observations. An extended aircraft deployment using the DOE G-1 was made possible by the fortuitous citing of the planes home base within 2 hours flight time of regions with a high incidence of wildland fires. In this presentation we concentrate on wildland fires and the time development of aerosol concentration, size distributions, and optical and physical properties as a function of plume age. Our focus is on physical properties of organic aerosols, a category that often exceeded 95% of total aerosol mass. Other BBOP presentations will highlight carbonaceous particle chemical composition and morphology as revealed by an SP-AMS, an SP2, and electron microscopy. Flight patterns were designed so as to sample plumes as close to a fire as allowed by aviation rules, followed by one or two sets of three to six transects covering a transport time of two to four hours. Average values of aerosol parameters are calculated for each plume transect with CO used as an inert tracer to account for dilution. It is found that OA increases by ~ 50% to 100%, with much of the increase occurring within the first hour. There is a corresponding increase in scattering which causes single scattering albedo to increase. At 2 to 4 hours downwind, plumes have evolved to yield net cooling, an effect that is much more pronounced if one takes into account known artifacts in PSAP measurements or uses the photothermal interferometer (PTI) to measure light absorption. The fires sampled have a relatively narrow range of modified combustion efficiencies, but it is centered on 0.9, at which point there are emission

  20. Detection of biomass burning smoke from TOMS measurements

    SciTech Connect

    Hsu, N.C.; Seftor, C.J.; Torres, O.; Eck, T.F.

    1996-04-01

    A 14.5 year gridded data set of tropospheric absorbing aerosol index was derived from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) reflectivity difference between 340 and 380 nm channels. Based upon radiative transfer calculations, the reflectivity anomaly between these two UV wavelength channels is very sensitive to smoke and soot aerosols from biomass burning and forest fires, volcanic ash clouds as well as desert mineral dust. The authors demonstrate the ability of the TOMS instrument to detect and track smoke and soot aerosols generated by biomass burning in South America. TOMS data can clearly distinguish between absorbing particles (smoke and dust) and non-absorbing aerosols (clouds and haze). For South American fires, comparisons of TOMS data are consistent with the limited amount of ground-based observations (Porto Nacional, Brazil) and show generally good agreement with other satellite imagery. TOMS data shows large-scale transport of smoke particulates generated by the burning fires in the South America, which subsequentially advects smoke aerosols as far as the Atlantic Ocean east of Uruguay. 15 refs., 4 fig.

  1. The isotopic variability of NOx from biomass burning

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Fibiger, D. L.

    2013-12-01

    While efforts have been made to constrain the importance of various NOx (NO + NO2) sources, there is still significant disagreement between various inventories and models. In addition, nitrate deposition (from oxidation of NOx to HNO3) is difficult to trace back to particular NOx sources. One tool that may help constrain NOx sources is the nitrogen isotopic composition (δ15N). While there have been some measurements of δ15N from various NOx sources, currently source isotopic signatures are not well constrained. There have been variations in both measurement method and location, making it difficult to evaluate variability within and between sources. Here we present data from a laboratory biomass burning campaign at the USDA fire lab in Missoula, MT (FLAME IV) in which NOx emissions from various biomasses were analyzed for δ15N. Using a collection technique, verified for collection efficiency in the laboratory, NOx emissions from the fires were collected in solution as nitrate. This nitrate was then analyzed for δ15N. The NOx varied significantly in δ15N from -8 ‰ (vs air N2) for black spruce to +12 ‰ for organic hay, with the rest of the biomass types falling somewhere between. The link between δ15N of biomass and that of the emitted NOx is also being explored. There is a clear need to increase our knowledge regarding source isotopic signatures, their variability, and the relationship between δ15N of NOx and the isotopic composition of nitrate deposition. This study is the first to quantify the nitrogen isotopic composition of NOx emissions associated with biomass burning.

  2. Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires

    NASA Astrophysics Data System (ADS)

    McCluskey, Christina S.

    Insufficient knowledge regarding the sources and number concentrations of atmospheric ice nucleating particles (INP) leads to large uncertainties in understanding the interaction of aerosols with cloud processes, such as cloud life time and precipitation rates. This study utilizes measurements of INP from a diverse set of biomass burning events to better understand INP associated with biomass burning in the U.S. Prescribed burns in Georgia and Colorado, two Colorado wildfires and two laboratory burns were monitored for INP number concentrations. The relationship between nINP and total particle number concentrations, evident within prescribed burning plumes, was degraded within aged smoke plumes from the wildfires, limiting the utility of this relationship for comparing laboratory and field data. Larger particles, represented by n500nm, are less vulnerable to plume processing and have previously been evaluated for their relation to nINP. Our measurements indicated that for a given n500nm, nINP associated with the wildfires were nearly an order of magnitude higher than nINP found in prescribed fire emissions. Reasons for the differences between INP characteristics in these emissions were explored, including variations in combustion efficiency, fuel type, transport time and environmental conditions. Combustion efficiency and fuel type were eliminated as controlling factors by comparing samples with contrasting combustion efficiencies and fuel types. Transport time was eliminated because the expected impact would be to reduce n500nm, thus resulting in the opposite effect from the observed change. Bulk aerosol chemical composition analyses support the potential role of elevated soil dust particle concentrations during the fires, contributing to the population of INP, but the bulk analyses do not target INP composition directly. It is hypothesized that both hardwood burning and soil lofting are responsible for the elevated production of INP in the Colorado wildfires in

  3. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    NASA Astrophysics Data System (ADS)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C &cong

  4. Biogenic and biomass burning sources of acetone to the troposphere

    SciTech Connect

    Atherton, C.S.

    1997-04-01

    Acetone may be an important source of reactive odd hydrogen in the upper troposphere and lower stratosphere. This source of odd hydrogen may affect the concentration of a number of species, including ozone, nitrogen oxides, methane, and others. Traditional, acetone had been considered a by-product of the photochemical oxidation of other species, and had not entered models as a primary emission. However, recent work estimates a global source term of 40-60 Tg acetone/year. Of this, 25% is directly emitted during biomass burning, and 20% is directly emitted by evergreens and other plants. Only 3% is due to anthropogenic/industrial emissions. The bulk of the remainder, 51% of the acetone source, is a secondary product from the oxidation of propane, isobutane, and isobutene. Also, while it is speculated that the oxidation of pinene (a biogenic emission) may also contribute about 6 Tg/year, this term is highly uncertain. Thus, the two largest primary sources of acetone are biogenic emission and biomass burning, with industrial/anthropogenic emissions very small in comparison.

  5. Particle Size Distributions During Laboratory-Scale Biomass Burns and Prescribed Burns Using Fast Response Instruments

    NASA Astrophysics Data System (ADS)

    Jung, H.; Hosseini, E.; Li, Q.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, W.; Princevac, M.; Mahalingam, S.

    2010-12-01

    Particle size distribution from biomass combustion in an important parameter as it affects air quality, climate modelling and health effects. To date particle size distributions reported from prior studies varies not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distribution in a well controlled repeatable lab scale biomass fires for southwestern US fuels and compare with that from prescribed burns. The combustion laboratory at the USDA Forest Service’s Fire Science Laboratory (FSL), Missoula, MT provided repeatable combustion and dilution environment ideal for particle size distribution study. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which is attributable to dilution of the fresh smoke. Comparing volume size distribution from FMPS and APS measurement ~30 % of particle volume was attributable to the particles ranging from 0.5 to 10 µm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most of fuels gave unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using slopes in MCE vs geometric mean diameter from each mode of combustion than only using MCE values. Prescribed burns were carried out at wildland managed by military bases. Evolution of particle distribution in and out of the plume will be compared with particle distribution from lab scale burning.

  6. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-12-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 ± 77), temperate forest (n = 12, FC = 58 ± 72), boreal forest (n = 16, FC = 35 ± 24), pasture (n = 4, FC = 28 ± 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0-43), crop residue (n = 4, FC = 6.5 ± 9.0), chaparral (n = 3, FC = 27 ± 19), tropical peatland (n = 4, FC = 314 ± 196), boreal peatland (n = 2, FC = 42 [42-43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole

  7. Annual and diurnal african biomass burning temporal dynamics

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Wooster, M. J.; Lagoudakis, E.

    2009-05-01

    Africa is the single largest continental source of biomass burning emissions. Here we conduct the first analysis of one full year of geostationary active fire detections and fire radiative power data recorded over Africa at 15-min temporal interval and a 3 km sub-satellite spatial resolution by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) imaging radiometer onboard the Meteosat-8 satellite. We use these data to provide new insights into the rates and totals of open biomass burning over Africa, particularly into the extremely strong seasonal and diurnal cycles that exist across the continent. We estimate peak daily biomass combustion totals to be 9 and 6 million tonnes of fuel per day in the northern and southern hemispheres respectively, and total fuel consumption between February 2004 and January 2005 is estimated to be at least 855 million tonnes. Analysis is carried out with regard to fire pixel temporal persistence, and we note that the majority of African fires are detected only once in consecutive 15 min imaging slots. An investigation of the variability of the diurnal fire cycle is carried out with respect to 20 different land cover types, and whilst differences are noted between land covers, the fire diurnal cycle characteristics for most land cover type are very similar in both African hemispheres. We compare the Fire Radiative Power (FRP) derived biomass combustion estimates to burned-areas, both at the scale of individual fires and over the entire continent at a 1-degree scale. Fuel consumption estimates are found to be less than 2 kg/m2 for all land cover types noted to be subject to significant fire activity, and for savanna grasslands where literature values are commonly reported the FRP-derived median fuel consumption estimate of 300 g/m2 is well within commonly quoted values. Meteosat-derived FRP data of the type presented here is now available freely to interested users continuously and in near real-time for Africa, Europe and parts

  8. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    NASA Technical Reports Server (NTRS)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  9. The contributions of biomass burning to primary and secondary organics: A case study in Pearl River Delta (PRD), China.

    PubMed

    Wang, BaoLin; Liu, Ying; Shao, Min; Lu, SiHua; Wang, Ming; Yuan, Bin; Gong, ZhaoHeng; He, LingYan; Zeng, LiMin; Hu, Min; Zhang, YuanHang

    2016-11-01

    Synchronized online measurements of gas- and particle- phase organics including non-methane hydrocarbons (NMHCs), oxygenated volatile organic compounds (OVOCs) and submicron organic matters (OM) were conducted in November 2010 at Heshan, Guangdong provincial supersite, China. Several biomass burning events were identified by using acetonitrile as a tracer, and enhancement ratios (EnRs) of organics to carbon monoxide (CO) obtained from this work generally agree with those from rice straw burning in previous studies. The influences of biomass burning on NMHCs, OVOCs and OM were explored by comparing biomass burning impacted plumes (BB plumes) and non-biomass burning plumes (non-BB plumes). A photochemical age-based parameterization method was used to characterize primary emission and chemical behavior of those three organic groups. The emission ratios (EmRs) of NMHCs, OVOCs and OM to CO increased by 27-71%, 34-55% and 67% in BB plumes, respectively, in comparison with non-BB plumes. The estimated formation rate of secondary organic aerosol (SOA) in BB plumes was found to be 24% faster than non-BB plumes. By applying the above emission ratios to the whole PRD, the annual emissions of VOCs and OM from open burning of crop residues would be 56.4 and 3.8Gg in 2010 in PRD, respectively.

  10. The contributions of biomass burning to primary and secondary organics: A case study in Pearl River Delta (PRD), China.

    PubMed

    Wang, BaoLin; Liu, Ying; Shao, Min; Lu, SiHua; Wang, Ming; Yuan, Bin; Gong, ZhaoHeng; He, LingYan; Zeng, LiMin; Hu, Min; Zhang, YuanHang

    2016-11-01

    Synchronized online measurements of gas- and particle- phase organics including non-methane hydrocarbons (NMHCs), oxygenated volatile organic compounds (OVOCs) and submicron organic matters (OM) were conducted in November 2010 at Heshan, Guangdong provincial supersite, China. Several biomass burning events were identified by using acetonitrile as a tracer, and enhancement ratios (EnRs) of organics to carbon monoxide (CO) obtained from this work generally agree with those from rice straw burning in previous studies. The influences of biomass burning on NMHCs, OVOCs and OM were explored by comparing biomass burning impacted plumes (BB plumes) and non-biomass burning plumes (non-BB plumes). A photochemical age-based parameterization method was used to characterize primary emission and chemical behavior of those three organic groups. The emission ratios (EmRs) of NMHCs, OVOCs and OM to CO increased by 27-71%, 34-55% and 67% in BB plumes, respectively, in comparison with non-BB plumes. The estimated formation rate of secondary organic aerosol (SOA) in BB plumes was found to be 24% faster than non-BB plumes. By applying the above emission ratios to the whole PRD, the annual emissions of VOCs and OM from open burning of crop residues would be 56.4 and 3.8Gg in 2010 in PRD, respectively. PMID:27371770

  11. Determination of the broadband optical properties of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Lin, Peng; Laskin, Alexander; Rudich, Yinon

    2016-04-01

    The direct and semi-direct effects of atmospheric aerosol on the Earth's energy balance are still the two of the largest uncertainties in our understanding of anthropogenic radiative forcing. In this study we developed a new approach for determining high sensitivity broadband UV-Vis spectrum (300-650 nm) of extinction, scattering and absorption coefficients, single scattering albedo and the complex refractive index for continuous, spectral and time dependent, monitoring of polydisperse aerosols population. This new approach was applied in a study of biomass burning aerosol. Extinction, scattering and absorption coefficients (αext, αsca, αabs, respectively) were continually monitored using photoacoustic spectrometer coupled to a cavity ring down spectrometer (PA-CRD-AS) at 404 nm, a dual-channel Broadband cavity-enhanced spectrometer (BBCES) at 315-345 nm and 390-420 nm and a three channel integrating nephelometer (IN) centered at 457, 525 and 637 nm. During the biomass burning event, the measured aerosol number concentration increased by more than an order of magnitude relative to other week nights and the mode of the aerosols size distribution increased from 40-50 nm to 110nm diameter. αext and αsca increased by a factor of about 5.5 and 4.5, respectively. The αabs increased by a factor over 20, indicating a significant change in the aerosol overall chemical composition. The imaginary part of the complex RI at 404nm increased from its background level at about 0.02 to a peak of about 0.08 and the SSA decreased from 0.9 to about 0.6. Significant change of the absorption spectral dependence indicates formation of visible-light absorbing compounds. The mass absorption cross section of the water soluble organic aerosol (MACWSOA) reached up to about 12% of the corresponding value for black carbon (BC) at 450 nm and up to 30% at 300 nm. These results demonstrate the importance of biomass burning in understanding global and regional radiative forcing.

  12. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  13. Characteristics and applications of size-segregated biomass burning tracers in China's Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Zhang, Zhisheng; Gao, Jian; Engling, Guenter; Tao, Jun; Chai, Fahe; Zhang, Leiming; Zhang, Renjian; Sang, Xuefang; Chan, Chuen-yu; Lin, Zejian; Cao, Junji

    2015-02-01

    Biomass burning activities in China are ubiquitous and the resulting smoke emissions may pose considerable threats to human health and the environment. In the present study, size-segregated biomass burning tracers, including anhydrosugars (levoglucosan (LG) and mannosan (MN)) and non-sea-salt potassium (nss-K+), were determined at an urban and a suburban site in the Pearl River Delta (PRD) region. The size distributions of biomass burning tracers were generally characterized by a unimodal pattern peaking in the particle size range of 0.44-1.0 μm, except for MN during the wet season, for which a bimodal pattern (one in fine and one in coarse mode) was observed. These observed biomass burning tracers in the PRD region shifted towards larger particle sizes compared to the typical size distributions of fresh biomass smoke particles. Elevated biomass burning tracers were observed during the dry season when biomass burning activities were intensive and meteorological conditions favored the transport of biomass smoke particles from the rural areas in the PRD and neighboring areas to the sampling sites. The fine mode biomass burning tracers significantly correlated with each other, confirming their common sources. Rather high ΔLG/ΔMN ratios were observed at both sites, indicating limited influence from softwood combustion. High Δnss-K+/ΔLG ratios further suggested that biomass burning aerosols in the PRD were predominately associated with burning of crop residues. Using a simplified receptor-oriented approach with an emission factor of 0.075 (LG/TC) obtained from several chamber studies, average contributions of biomass burning emissions to total carbon in fine particles were estimated to be 23% and 16% at the urban and suburban site, respectively, during the dry season. In contrast, the relative contributions to total carbon were lower than 8% at both sites during the wet season.

  14. Intercontinental Transport of Ozone from Tropical Biomass Burning

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    2003-01-01

    Researchers have been looking at the connection between tropical biomass burning and ozone formation and long-range transport for roughly 15 years. One can see the linkage and transport patterns from satellite though aircraft and/or balloon-sonde profiles are required to observe the fine structure (ozone transport over thousands of km often happens in thin layers). In this review, I survey the pyrogenic ozone transport in the large oceanic basins - Indian Ocean, Pacific and Atlantic. Mechanistic complexities are discussed and examples shown from satellite, aircraft and soundings, including NASA results from TOMS, the GTE experiments and the SHADOZ sounding program. Experiments referred to include SAFARI-92, TRACE-A, INDOEX, PEM-Tropics and TRACE-P. augmented by subsidence, a variable tropopause height, and lightning - even ozone pollution from the Indian Ocean has been implicated. Over the Indian Ocean, pollution interacts with convection and the monsoon cycle.

  15. Variability of Biomass Burning Aerosols Layers and Near Ground

    NASA Astrophysics Data System (ADS)

    Vasilescu, Jeni; Belegante, Livio; Marmureanu, Luminita; Toanca, Flori

    2016-06-01

    The aim of this study is to characterize aerosols from both chemical and optical point of view and to explore the conditions to sense the same particles in elevated layers and at the ground. Three days of continuous measurements using a multi-wavelength depolarization lidar(RALI) and a C-ToF-AMS aerosol mass spectrometer are analyzed. The presence of smoke particles was assessed in low level layers from RALI measurements. Chemical composition of submicronic volatile/semi-volatile aerosols at ground level was monitored by the CTOF AMS Several episodes of biomass burning aerosols have been identified by both techniques due to the presence of specific markers (f60, linear particle depolarization ratio, Ängström exponent).

  16. Trace gas emissions from biomass burning in tropical Australian savannas

    SciTech Connect

    Hurst, D.F.; Griffith, D.W.T.; Cook, G.D.

    1994-08-20

    The trace gas emissions of biomass burning was measured during the 1991 and 1992 dry seasons (April through October) at the Kapalga Research Station in Kakadu National Park, Northern Territory, Australia. Over 100 smoke samples from savannah fires were collected, from the ground and from aircraft flying at 50 to 700 meters above the fires. The samples were analyzed for carbon dioxide, carbon monoxide, nitrous oxides, and other carbon and nitrogen compounds using gas phase Fourier transform infrared (FTIR) spectroscopy, matrix isolation FTIR spectroscopy, and chemiluminescence techniques. This paper describes the results of the gas analyses and discusses the potential impacts of these gases on regional atmospheric chemistry.49 refs., 4 figs., 7 tabs.

  17. Incremental effect of festive biomass burning on wintertime PM10 in Brahmaputra Valley of Northeast India

    NASA Astrophysics Data System (ADS)

    Deka, Pratibha; Hoque, Raza Rafiqul

    2014-06-01

    PM10 concentration was monitored at a receptor site in the Brahmaputra Valley during a unique, local, episodic festive biomass burning called meji burning. Mean mass concentration of PM10 during monitoring was found to be 149 ± 45 μg m- 3 with maximum and minimum concentrations of 293 μg m- 3 and 93 μg m- 3 respectively. Elemental analysis by Energy Dispersive X-ray Spectrometer (EDX) revealed high carbonaceous and Br content in PM10 samples. Particulate carbon showed high significant correlation with PM10 and dominance in samples taken during night time. Back trajectory analysis supported long range transport of carbonaceous aerosol from the Indo-Gangetic Plain (IGP) to the region under study. Prevailing meteorology - thermal inversion and low mixing heights - was found to have a strong influence on PM10 levels in the post festive burning period. Enrichment factors of several elements ranged above thousand which indicated a strong influence of anthropogenic activities and input of aged particulates driven from long distance. Incremental effect of meji burning, which we coined as Meji Burning Induced Enrichments (MBIEs), was calculated. MBIE values supported incremental effects explicitly.

  18. The Influence of Fuelbed Physical Properties on Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.; Lincoln, E.; Baker, S. P.; Richardson, M.

    2014-12-01

    Emissions from biomass fires can significantly degrade regional air quality and therefore are of major concern to air regulators and land managers in the U.S. and Canada. Accurately estimating emissions from different fire types in various ecosystems is crucial to predicting and mitigating the impact of fires on air quality. The physical properties of ecosystems' fuelbeds can heavily influence the combustion processes (e.g. flaming or smoldering) and the resultant emissions. However, despite recent progress in characterizing the composition of biomass smoke, significant knowledge gaps remain regarding the linkage between basic fuelbed physical properties and emissions. In laboratory experiments we examined the effects of fuelbed properties on combustion efficiency (CE) and emissions for an important fuel component of temperate and boreal forests - conifer needles. The bulk density (BD), depth (DZ), and moisture content (MC) of Ponderosa Pine needle fuelbeds were manipulated in 75 burns for which gas and particle emissions were measured. We found CE was negatively correlated with BD, DZ and MC and that the emission factors of species associated with smoldering combustion processes (CO, CH4, particles) were positively correlated with these fuelbed properties. The study indicates the physical properties of conifer needle fuelbeds have a significant effect on CE and hence emissions. However, many of the emission models used to predict and manage smoke impacts on air quality assume conifer litter burns by flaming combustion with a high CE and correspondingly low emissions of CO, CH4, particles, and organic compounds. Our results suggest emission models underestimate emissions from fires involving a large component of conifer needles. Additionally, our findings indicate that laboratory studies of emissions should carefully control fuelbed physical properties to avoid confounding effects that may obscure the effects being tested and lead to erroneous interpretations.

  19. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  20. Biomass burning sources of nitrogen oxides, carbon monoxide, and non-methane hydrocarbons

    SciTech Connect

    Atherton, C.S.

    1995-11-01

    Biomass burning is an important source of many key tropospheric species, including aerosols, carbon dioxide (CO{sub 2}), nitrogen oxides (NO{sub {times}}=NO+NO{sub 2}), carbon monoxide (CO), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), methyl bromide (CH{sub 3}Br), ammonia (NH{sub 3}), non-methane hydrocarbons (NMHCs) and other species. These emissions and their subsequent products act as pollutants and affect greenhouse warming of the atmosphere. One important by-product of biomass burning is tropospheric ozone, which is a pollutant that also absorbs infrared radiation. Ozone is formed when CO, CH{sub 4}, and NMHCs react in the presence of NO{sub {times}} and sunlight. Ozone concentrations in tropical regions (where the bulk of biomass burning occurs) may increase due to biomass burning. Additionally, biomass burning can increase the concentration of nitric acid (HNO{sub 3}), a key component of acid rain.

  1. The Short-Term Cooling but Long-Term Global Warming Due to Biomass Burning.

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2004-08-01

    Biomass burning releases gases (e.g., CO2, CO, CH4, NOx, SO2, C2H6, C2H4, C3H8, C3H6) and aerosol particle components (e.g., black carbon, organic matter, K+, Na+, Ca2+, Mg2+, NH4+, H+, Cl-, H2SO4, HSO4-, SO42-, NO3-). To date, the global-scale climate response of controlling emission of these constituents together has not been examined. Here 10-yr global simulations of the climate response of biomass-burning aerosols and short-lived gases are coupled with numerical calculations of the long-term effect of controlling biomass-burning CO2 and CH4 to estimate the net effect of controlling burning over 100 yr. Whereas eliminating biomass-burning particles is calculated to warm temperatures in the short term, this warming may be more than offset after several decades by cooling due to eliminating long-lived CO2, particularly from permanent deforestation. It is also shown analytically that biomass burning always results in CO2 accumulation, even when regrowth fluxes equal emission fluxes and in the presence of fertilization. Further, because burning grassland and cropland yearly, as opposed to every several years, increases CO2, biofuel burning, considered a “renewable” energy source, is only partially renewable, and biomass burning elevates CO2 until it is stopped. Because CO2 from biomass burning is considered recyclable and biomass particles are thought to cool climate, the Kyoto Protocol did not consider biomass-burning controls. If the results here, which apply to a range of scenarios but are subject to uncertainty, are correct, such control may slow global warming, contrary to common perception, and improve human health.


  2. The Global Impact of Biomass Burning: An Interview with EPA's Robert Huggett

    NASA Technical Reports Server (NTRS)

    Sevine, Joel S.

    1995-01-01

    The extent of biomass burning has increased significantly over the past 100 years because of human activities, and such burning is much more frequent and widespread than was previously believed. Biomass burning is now recognized as a significant global source of emissions, contributing as much as 40% of gross carbon dioxide and 38% of tropospheric ozone. Most of the world's burned biomass matter is from the savannas, and because two-thirds of the Earth's savannas are located in Africa, that continent is now recognized as the "burn center" of the planet. In the past few years the international scientific community has conducted field experiments using ground-based and airborne measurements in Africa, South America. and Siberia to better assess the global production of gases and particulates by biomass burning. Researchers are gathering this month in Williamsburg, VA, to discuss the results of these and other investigations at the Second Chapman Conference on Biomass Burning and Global Change, sponsored by the American Geophysical Union. The first international biomass burning conference, held in 1990, was attended by atmospheric chemists, climatologists, ecologists, forest and soil scientists, fire researchers, remote- sensins specialists, and environmental planners and managers from more than 25 countries.When we hear about biomass burning, we usually think of the burning of the worlds tropical forests for permanent land clearing. However, biomass burning serves a variety of land use changes, including the clearing of forests and savannas for agricultural and grazing use; shifting agriculture practices; the control of grass, weeds, and litter on agricultural and grazing lands; the elimination of stubble and waste on agricultural lands after the harvest; and the domestic use of biomass matter.

  3. Impact of Biomass Burning Aerosols on the Biosphere over Amazonia

    NASA Astrophysics Data System (ADS)

    Malavelle, F.; Haywood, J.; Mercado, L.; Folberth, G.; Bellouin, N.

    2014-12-01

    Biomass burning (BB) smoke from deforestation and the burning of agricultural waste emit a complex cocktail of aerosol particles and gases. BB emissions show a regional hotspot over South America on the edges of Amazonia. These major perturbations and impacts on surface temperature, surface fluxes, chemistry, radiation, rainfall, may have significant consequent impacts on the Amazon rainforest, the largest and most productive carbon store on the planet. There is therefore potential for very significant interaction and interplay between aerosols, clouds, radiation and the biosphere in the region. Terrestrial carbon production (i.e. photosynthesis) is intimately tied to the supply of photosynthetically active radiation (PAR - i.e. wavelengths between 300-690 nm). PAR in sufficient intensity and duration is critical for plant growth. However, if a decrease in total radiation is accompanied by an increase in the component of diffuse radiation, plant productivity may increase due to higher light use efficiency per unit of PAR and less photosynthetic saturation. This effect, sometimes referred as diffuse light fertilization effect, could have increased the global land carbon sink by approximately one quarter during the global dimming period and is expected to be a least as important locally. By directly interacting with radiation, BB aerosols significantly reduce the total amount of PAR available to plant canopies. In addition, BB aerosols also play a centre role in cloud formation because they provide the necessary cloud condensation nuclei, hence indirectly altering the water cycle and the components and quantity of PAR. In this presentation, we use the recent observations from the South American Biomass Burning Analysis (SAMBBA) to explore the impact of radiation changes on the carbon cycle in the Amazon region caused by BB emissions. A parameterisation of the impact of diffuse and direct radiation upon photosynthesis rates and net primary productivity in the

  4. Experimental biomass burning emission assessment by combustion chamber

    NASA Astrophysics Data System (ADS)

    Lusini, Ilaria; Pallozzi, Emanuele; Corona, Piermaria; Ciccioli, Paolo; Calfapietra, Carlo

    2014-05-01

    Biomass burning is a significant source of several atmospheric gases and particles and it represents an important ecological factor in the Mediterranean ecosystem. In this work we describe the performances of a recently developed combustion chamber to show the potential of this facility in estimating the emission from wildland fire showing a case study with leaves, small branches and litter of two representative species of Mediterranean vegetation, Quercus pubescens and Pinus halepensis. The combustion chamber is equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect organic volatile compounds (VOCs) and particles, a sampling line connected to a Proton Transfer Reaction Mass-Spectrometer (PTR-MS) and a portable analyzer to measure CO and CO2 emission. VOCs emission were both analyzed with GC-MS and monitored on-line with PTR-MS. The preliminary qualitative analysis of emission showed that CO and CO2 are the main gaseous species emitted during the smoldering and flaming phase, respectively. Many aromatics VOCs as benzene and toluene, and many oxygenated VOC as acetaldehyde and methanol were also released. This combustion chamber represents an important tool to determine the emission factor of each plant species within an ecosystem, but also the contribution to the emissions of the different plant tissues and the kinetics of different compound emissions during the various combustion phases. Another important feature of the chamber is the monitoring of the carbon balance during the biomass combustion.

  5. High temporal resolution measurements of biomass burning events during summertime in the Eastern Mediterranean.

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Zarmpas, Pavlos; Theodosi, Christina; Stavroulas, Iasonas; Kouvarakis, Giorgos; Canonaco, Francesco; Prevot, Andre S. H.; Pandis, Spyros N.; Mihalopoulos, Nikolaos

    2013-04-01

    Several major wildfires occurred at the Greek islands of Chios, Euboea and Andros during the summer of 2012. The corresponding biomass burning-influenced air masses were studied at the remote background site of Finokalia, Crete. The smoke was transported several hundreds of kilometers, arriving at the measurement station after approximately half a day of atmospheric processing, mostly during night-time. The origin of air masses was confirmed by back-trajectory analyses and the chemical composition of the particulate matter was studied by different high-resolution measurements, including an Aerosol Chemical Speciation Monitor (ACSM), and a seven wavelengths aethalometer. Despite the distance between the islands and the travel time, a clear biomass burning profile containing characteristic markers could be derived from BC measurements and exploiting the statistical tool Multilinear Engine (ME-2). During these events aerosol particles contained a noteworthy amount of black carbon, ranging from 2.8 up to 5 μg m-3, which exceeds typical background values by a factor of 8 or more. Simultaneously organic matter concentrations increased significantly. In the case of the island of Chios fires the fine PM levels exceeded background values by a factor of 4 ranging from 2.9 to11.6 μg m-3. PMF is a statistical tool used to deconvolve the organic aerosol spectral matrix measured by the Aerosol Chemical Speciation Monitor (ACSM), resulting in a number of components/factors that are a posteriori validated as possible sources. A successful unconstrained run (PMF) within the Multilinear Engine (ME-2) over the fire events only, lead to a clear biomass burning profile which correlates well with reference biomass burning spectra (R2=0.9). The model was rerun over the entire period by constraining this biomass burning profile and the fire events were all well-represented. More than 70% of the measured OA is "aged", oxidized organic aerosol, which correlates well with reference OOA

  6. Influence of biomass burning on CCN number and hygroscopicity during summertime in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bougiatioti, A.; Bezantakos, S.; Stavroulas, I.; Kalivitis, N.; Kokkalis, P.; Biskos, G.; Mihalopoulos, N.; Papayannis, A.; Nenes, A.

    2015-08-01

    This study investigates the CCN activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from cloud condensation nuclei (CCN) measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the hygroscopicity parameter, κ, for all particle sizes. The reason, however, for this decrease was not the same for all size modes; smaller particle sizes appeared to be richer in less hygroscopic, less CCN-active components due to coagulation processes while larger particles become less hygroscopic during the biomass burning events due to condensation of less hygroscopic gaseous compounds. In addition, smaller particles exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of aging and retained high levels of CCN activity. These conclusions are further supported by the observed mixing state determined by the HTDMA measurements. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles and a large fraction of the CCN concentrations sampled. Based on Positive Matrix Factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend with the BBOA component, with enhancements of CCN in biomass burning plumes ranging between 65 and 150 %, for supersaturations ranging between 0.2 and 0.7 %. Using multilinear regression, we determine the

  7. Threshold age and burn size associated with poor outcomes in the elderly after burn injury.

    PubMed

    Jeschke, Marc G; Pinto, Ruxandra; Costford, Sheila R; Amini-Nik, Saeid

    2016-03-01

    Elderly burn care represents a vast challenge. The elderly are one of the most susceptible populations to burn injuries, but also one of the fastest growing demographics, indicating a substantial increase in patient numbers in the near future. Despite the need and importance of elderly burn care, survival of elderly burn patients is poor. Additionally, little is known about the responses of elderly patients after burn. One central question that has not been answered is what age defines an elderly patient. The current study was conducted to determine whether there is a cut-off age for elderly burn patients that is correlated with an increased risk for mortality and to determine the burn size in modern burn care that is associated with increased mortality. To answer these questions, we applied appropriate statistical analyses to the Ross Tilley Burn Centre and the Inflammatory and Host Response to Injury databases. We could not find a clear cut-off age that differentiates or predicts between survival and death. Risk of death increased linearly with increasing age. Additionally, we found that the LD50 decreases from 45% total body surface area (TBSA) to 25% TBSA from the age of 55 years to the age of 70 years, indicating that even small burns lead to poor outcome in the elderly. We therefore concluded that age is not an ideal to predictor of burn outcome, but we strongly suggest that burn care providers be aware that if an elderly patient sustains even a 25% TBSA burn, the risk of mortality is 50% despite the implementation of modern protocolized burn care.

  8. The effects of chronic nitrogen deposition on atmospheric biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, A. A.; Giordano, M.; Weise, D.; Chang, J.

    2015-12-01

    This study examines how biomass burning emissions can be effected by regional air quality. An environmental chamber at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab measured the properties of aerosols emitted from the burning of coniferous forest litter. Forest litter was collected from two sites of the San Bernardino Mountains Gradient Study in southern California: one site with high chronic nitrogen deposition rate and a site with low nitrogen deposition rate. The chemical and physical properties of the gas and aerosol-phase emissions were measured as a function of photochemical aging. Results indicate that there is a discernable compositional difference in the emissions from forest litter from an unpolluted (low NOx) environment as compared to a polluted (high NOx) environment. Fuel elemental analysis, NOx emission rates, aerosol volatility, and aerosol particle number distributions all differed significantly between the two sites.

  9. Characterization of long-range transported Canadian biomass burning over Central Europe - A case study

    NASA Astrophysics Data System (ADS)

    Gross, Silke; Geiss, Alexander; Heimerl, Katharina; Gasteiger, Josef; Freudenthaler, Volker; Weinzierl, Bernadett; Wiegner, Matthias

    2015-04-01

    Aerosols are a major component of the Earth's atmosphere and have substantial impact on the Earth's radiation budget and on the hydrological cycle. Biomass burning smoke is one important component with respect of global climate warming as it is an important source of black carbon, which is a key player in atmospheric heating. As biomass burning smoke layers are often transported over long distances they cannot be considered as local events only but have a global effect. During transport the smoke particles are affected by aging and mixing processes. Thus their microphysical and optical properties change and, as a consequence their effect on the Earth's radiation budget. However, the influence of aging and mixing processes on the particle microphysical and optical properties is still only poorly understood. To improve our knowledge, studies of transport conditions together with measurements of the horizontal and vertical distribution the smoke layers as well as of their microphysical and optical properties are crucial. We present a case study of long-range transported Canadian biomass burning smoke to Central Europe in summer 2013. The smoke layer is characterized by multi-wavelength lidar measurements over Maisach and by continuous Ceilometer measurements over Munich, Germany. Multi-wavelength lidar measurements are an important tool for the characterization of aerosols, as they provide vertically resolved information of their optical properties which serve as input parameters for the determination of microphysical properties of the aerosol layers. Additionally, airborne in-situ measurements of size distribution and black carbon mass concentration onboard the DLR research aircraft Falcon are presented. The source regions and transport conditions are studied using a combination of satellite measurements and model simulations.

  10. Satellite Contributions to the Quantitative Characterization of Biomass Burning for Climate Modeling

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kahn, Ralph; Chin, Mian

    2012-01-01

    Characterization of biomass burning from space has been the subject of an extensive body of literature published over the last few decades. Given the importance of this topic, we review how satellite observations contribute toward improving the representation of biomass burning quantitatively in climate and air-quality modeling and assessment. Satellite observations related to biomass burning may be classified into five broad categories: (i) active fire location and energy release, (ii) burned areas and burn severity, (iii) smoke plume physical disposition, (iv) aerosol distribution and particle properties, and (v) trace gas concentrations. Each of these categories involves multiple parameters used in characterizing specific aspects of the biomass-burning phenomenon. Some of the parameters are merely qualitative, whereas others are quantitative, although all are essential for improving the scientific understanding of the overall distribution (both spatial and temporal) and impacts of biomass burning. Some of the qualitative satellite datasets, such as fire locations, aerosol index, and gas estimates have fairly long-term records. They date back as far as the 1970s, following the launches of the DMSP, Landsat, NOAA, and Nimbus series of earth observation satellites. Although there were additional satellite launches in the 1980s and 1990s, space-based retrieval of quantitative biomass burning data products began in earnest following the launch of Terra in December 1999. Starting in 2000, fire radiative power, aerosol optical thickness and particle properties over land, smoke plume injection height and profile, and essential trace gas concentrations at improved resolutions became available. The 2000s also saw a large list of other new satellite launches, including Aqua, Aura, Envisat, Parasol, and CALIPSO, carrying a host of sophisticated instruments providing high quality measurements of parameters related to biomass burning and other phenomena. These improved data

  11. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-05-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A potential aerosol mass "PAM" flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~ 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days aging in the atmosphere. VOC observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in an total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net SOA to POA ratio of biomass burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp ~ 3.9 × 1011 molecules cm-3 s-1), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeds the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility

  12. Laboratory Studies of the Heterogeneous Oxidation of Levoglucosan in Biomass Burning Particles

    NASA Astrophysics Data System (ADS)

    Hennigan, C. J.; Sullivan, A.; Collett, J. L.; Robinson, A. L.

    2009-12-01

    range of oxidant exposures represented aging in the atmosphere of about 0.5-3 days, demonstrating that the reaction of levoglucosan is likely an important removal process on time scales relevant to particle lifetimes. Finally, the kinetic data were used to estimate potential biases in receptor model estimates of biomass burning aerosol concentrations.

  13. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010

    SciTech Connect

    Strode, S.; Ott, Lesley E.; Pawson, Steven; Bowyer, Ted W.

    2012-05-09

    While atmospheric concentrations of cesium-137 have decreased since the nuclear testing era, resuspension of Cs-137 during biomass burning provides an ongoing emission source. The summer of 2010 was an intense biomass burning season in western Russia, with high levels of particulate matter impacting air quality and visibility. A radionuclide monitoring station in western Russia shows enhanced airborne Cs-137 concentrations during the wildfire period. Since Cs-137 binds to aerosols, satellite observations of aerosols and fire occurrences can provide a global-scale context for Cs-137 emissions and transport during biomass burning events.

  14. Aerosol transport of biomass burning to the Bolivian Andean region from remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Perez-Ramirez, Daniel; Whiteman, David; Andrade, Marcos; Gasso, Santiago; Stein, Ariel; Torres, Omar; Eck, Tom; Velarde, Fernando; Aliaga, Diego

    2016-04-01

    This work deals with the analysis of columnar aerosol optical and microphysical properties obtained by the AERONET network in the region of Bolivia and its border with Brazil. Through the long record AERONET measurements we focus in the transport of biomass-burning aerosol from the Amazon basin (stations at Rio Branco, Cuiba, Ji Parana and Santa Cruz) to the Andean Altiplano (altitude above 3000 m a.s.l. at the station in the city of La Paz). Also, measurements from the space-sensors MODIS and OMI are used to understand spatial distribution. The main results is the high impact in the aerosol load during the months of August, September and August with mean values of aerosol optical depth at 500 nm (AOD) at the low lands of ≈ 0.60 ± 0.60 and Angstrom exponent (α(440-870)) of ≈ 1.52 ± 0.38. Satellite measurements also follow very similar patterns. Also, that season is characterized by some extreme events that can reach AOD of up to 6.0. Those events are cloud-screened by MODIS but not by OMI sensor, which is attributed to different pixel resolutions. The biomass-burning is clearly transport to the Andean region where higher values of AOD (~ 0.12 ± 0.06 versus 0.09 ± 0.04 in the no biomass-burning season) and α(440-870) (~ 0.95 ± 0.30 versus 0.84 ± 0.3 in the no biomass-burning season). However, the intensity of the biomass-burning season varies between different years. Analysis of precipitation anomalies using TRNM satellites indicates a strong correlation with AOD, which suggest that on dry years there is less vegetation to burn and so less aerosol load. The opposite is found for positive anomalies of precipitation. In the transport of biomass burning larger values of the effective radius (reff) are observed in La Paz (reff = 0.26 ± 0.10 μm) than in the low lands (reff = 0.63 ± 0.24 μm), which has been explained by aerosol aging processes. Moreover, although the spectral dependence is similar, single scattering albedo (SSA) is larger in the low lands

  15. Discrimination of Biomass Burning Smoke and Clouds in MAIAC Algorithm

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Korkin, S.; Wang, Y.; Quayle, B.; Laszlo, I.

    2012-01-01

    The multi-angle implementation of atmospheric correction (MAIAC) algorithm makes aerosol retrievals from MODIS data at 1 km resolution providing information about the fine scale aerosol variability. This information is required in different applications such as urban air quality analysis, aerosol source identification etc. The quality of high resolution aerosol data is directly linked to the quality of cloud mask, in particular detection of small (sub-pixel) and low clouds. This work continues research in this direction, describing a technique to detect small clouds and introducing the smoke test to discriminate the biomass burning smoke from the clouds. The smoke test relies on a relative increase of aerosol absorption at MODIS wavelength 0.412 micrometers as compared to 0.47-0.67 micrometers due to multiple scattering and enhanced absorption by organic carbon released during combustion. This general principle has been successfully used in the OMI detection of absorbing aerosols based on UV measurements. This paper provides the algorithm detail and illustrates its performance on two examples of wildfires in US Pacific North-West and in Georgia/Florida of 2007.

  16. Visualizing Global Wildfire Automated Biomass Burning Algorithm Data

    NASA Astrophysics Data System (ADS)

    Schmidt, C. C.; Hoffman, J.; Prins, E. M.

    2013-12-01

    The Wildfire Automated Biomass Burning Algorithm (WFABBA) produces fire detection and characterization from a global constellation of geostationary satellites on a realtime basis. Presentation of this data in a timely and meaningful way has been a challenge, but as hardware and software have advanced and web tools have evolved, new options have rapidly arisen. The WFABBA team at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the Space Science Engineering Center (SSEC) have begun implementation of a web-based framework that allows a user to visualize current and archived fire data from NOAA's Geostationary Operational Environmental Satellite (GOES), EUMETSAT's Meteosat Second Generation (MSG), JMA's Multifunction Transport Satellite (MTSAT), and KMA's COMS series of satellites. User group needs vary from simple examination of the most recent data to multi-hour composites to animations, as well as saving datasets for further review. In order to maximize the usefulness of the data, a user-friendly and scaleable interface has been under development that will, when complete, allow access to approximately 18 years of WFABBA data, as well as the data produced in real-time. Implemented, planned, and potential additional features will be examined.

  17. Levoglucosan evidence for biomass burning records over Tibetan glaciers.

    PubMed

    You, Chao; Xu, Chao; Xu, Baiqing; Zhao, Huabiao; Song, Lili

    2016-09-01

    Intense biomass burning (BB) events are widespread in tropical and subtropical Asia. However, the impact of BB aerosols on the Tibetan Plateau (TP), especially on Tibetan glaciers, is poorly understood. In this study, BB signals are revealed using the specific molecular tracer levoglucosan in snow and ice samples from different Tibetan glaciers. Tibetan glaciers mainly act as receptors of BB emissions from surrounding regions. Significant differences in levoglucosan concentrations in glacier samples collected from two slopes on the same mountain range indicate that high mountains can act as natural barriers to block the transport of smoke aerosols to the TP. Levoglucosan concentrations show a decreasing trend from west to east on glaciers impacted by the Indian summer monsoon on the southern edge of the TP, while the opposite pattern was observed on glaciers under the prevailing westerlies along the northern edge. The emission sources, the controlling climate system, as well as deposition and degradation during transport determined the spatial distribution regimes of levoglucosan concentration on Tibetan glaciers. PMID:27262131

  18. Impacts of Russian biomass burning on UK air quality

    NASA Astrophysics Data System (ADS)

    Witham, Claire; Manning, Alistair

    Unusually high levels of PM 10 were observed in the UK in May 2006 and September 2002. This paper investigates the possible contribution of long-range transport of smoke from widespread agricultural burning and forest fires in western Russia to these air pollution episodes. The Lagrangian dispersion model NAME is run in both forwards and backwards modes to determine the transport and sources of the polluted air masses for the two incidents. Comparison of the model results to satellite data and ground observations from across Europe demonstrates good agreement for both the timing and magnitude of the episodes and suggests that fires in western Russia were the primary cause of both incidents. Secondary contributions to the 2006 episode may have come from European anthropogenic pollution and pollen released in northern Europe. The occurrence and timing of both pollution episodes were strongly controlled by the meteorological situation at the time. Scaling of model results to observations suggests that 0.5-0.7 Mtonnes of biomass per day could have been burnt during periods when winds reaching the UK were from the east. The newly reported 2006 episode means that Russian fires have affected UK air quality at least twice since 2000 and it is suggested that, without changes in current practice, such events are likely to occur again in the future with implications for UK and European air quality.

  19. Levoglucosan evidence for biomass burning records over Tibetan glaciers.

    PubMed

    You, Chao; Xu, Chao; Xu, Baiqing; Zhao, Huabiao; Song, Lili

    2016-09-01

    Intense biomass burning (BB) events are widespread in tropical and subtropical Asia. However, the impact of BB aerosols on the Tibetan Plateau (TP), especially on Tibetan glaciers, is poorly understood. In this study, BB signals are revealed using the specific molecular tracer levoglucosan in snow and ice samples from different Tibetan glaciers. Tibetan glaciers mainly act as receptors of BB emissions from surrounding regions. Significant differences in levoglucosan concentrations in glacier samples collected from two slopes on the same mountain range indicate that high mountains can act as natural barriers to block the transport of smoke aerosols to the TP. Levoglucosan concentrations show a decreasing trend from west to east on glaciers impacted by the Indian summer monsoon on the southern edge of the TP, while the opposite pattern was observed on glaciers under the prevailing westerlies along the northern edge. The emission sources, the controlling climate system, as well as deposition and degradation during transport determined the spatial distribution regimes of levoglucosan concentration on Tibetan glaciers.

  20. How do Biomass Burning Carbon Monixide Emissions from South America influence Satellite Observed Columns over Africa?

    NASA Astrophysics Data System (ADS)

    Krol, M. C.; van Leeuwen, T. T.; Aouizerats, B.; van der Werf, G.

    2015-12-01

    Large amounts of Carbon Monoxide (CO) are emitted during biomass burning events. These emissions severely perturb the atmospheric composition. For this reason, satellite observations of CO can help to constrain emissions from biomass burning. Other sources of CO, such as the production of CO from naturally emitted non-methane hydrocarbons, may interfere with CO from biomass burning and inverse modeling efforts to estimate biomass burning emissions have to account for these CO sources. The atmospheric lifetime of CO varies from weeks to months, depending on the availability of atmospheric OH for atmospheric oxidation of CO to carbon dioxide. This means that CO can be transported over relatively long distances. It also implies that satellite-observed CO does not necessarily originate from the underlying continent, but may be caused by distant emissions transported to the observation location. In this presentation we focus on biomass burning emissions from South America and Southern Africa during 2010. This year was particularly dry over South America with a large positive anomaly in biomass burning in the 2010 burning season (July-October). We will adress the question how CO plumes from South America biomass burning influence satellite observations from the Infrared Atmospheric Sounding Interferometer (IASI) instrument over Southern Africa. For this we employ the TM5 atmospheric chemistry model, with 1x1 degree zoom resolutions over Africa and South America. Also, we use the TM5-4DVAR code to estimate CO biomass burning emissions using IASI CO observations. The accompanying image shows IASI CO oberservations over Africa on August 27, 2010, compared to the columns simulated with TM5. Clear signs of intercontinental transport from South America are visible over the Southermost region.

  1. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Xie, Z.; Wang, X.; Kang, H.; Zhang, P.

    2015-12-01

    Biomass burning discharges numerous kinds of gases and aerosols, such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), black carbon (BC), alcohols, organic acids and persistent organic pollutants (POPs), and is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we measure levoglucosan, a superior molecular tracer of biomass burning aerosols because of its single source, in marine air from the Arctic Ocean through the North and South Pacific Ocean to coastal Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Marine air in the mid-latitudes (30°-60° N and S) has the highest levoglucosan loading due to the emission from adjacent lands. Air over the Arctic Ocean which affected by biomass burning in the east Siberia has intermediate loading. Equatorial latitudes is the main source of biomass burning emissions, however, levoglucosan is in relatively low level. Large amount of precipitation and high hydroxyl radical concentration in this region cause more deposition and degradation of levoglucosan during transport. Previous studies were debatable on the influence of biomass burning on the Antarctic because of uncertain source of BC. Here via levoglucosan, it is proved that although far away from emission sources, the Antarctic is still affected by biomass burning aerosols which may be derived from South America. Biomass burning has a significant impact on mercury (Hg) and water-soluble organic carbon (WSOC) in marine aerosols from pole to pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  2. Effect of dramatic land use change on gaseous pollutant emissions from biomass burning in Northeastern China

    NASA Astrophysics Data System (ADS)

    Zhao, Hongmei; Tong, Daniel Q.; Gao, Chuanyu; Wang, Guoping

    2015-02-01

    Biomass burning contributes a substantial amount of gas and particle emissions to the atmosphere. As China's breadbasket, northeast China has experienced dramatic land use change in the past century, converting approximately 55 × 104 ha of wetland into farmland to feed a rapidly growing population. This study combines measured emission factors of dominant crops (rice and soybean) and wetland plants (Calamagrostis angu-stifolia, Carex lasiocarpa, Carex pseudo-curaica) and remote sensing land use data to estimate the effect of the unprecedented land use change on gaseous pollutants emissions from biomass burning. Our biomass burning emission estimates resulting from land use changes have increased because of increased post-harvest crop residue burning and decreased burning of wetland plants. From 1986 to 2005, the total emissions of CO2, CO, CXHY, SO2 and NO have increased by 18.6%, 35.7%, 26.8%, 66.2% and 33.2%, respectively. We have found two trends in agricultural burning: increased dryland crop residue burning and decreased wetland (rice paddy) burning. Our results revealed that the large scale land use change in northeastern China has induced more active biomass-burning emissions. The regional emission inventory of gaseous pollutants derived from this work may be used to support further examination of the subsequent effects on regional climate and air quality simulations with numerical atmospheric models.

  3. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa.

    PubMed

    Hodnebrog, Øivind; Myhre, Gunnar; Forster, Piers M; Sillmann, Jana; Samset, Bjørn H

    2016-04-12

    Observations indicate a precipitation decline over large parts of southern Africa since the 1950s. Concurrently, atmospheric concentrations of greenhouse gases and aerosols have increased due to anthropogenic activities. Here we show that local black carbon and organic carbon aerosol emissions from biomass burning activities are a main cause of the observed decline in southern African dry season precipitation over the last century. Near the main biomass burning regions, global and regional modelling indicates precipitation decreases of 20-30%, with large spatial variability. Increasing global CO2 concentrations further contribute to precipitation reductions, somewhat less in magnitude but covering a larger area. Whereas precipitation changes from increased CO2 are driven by large-scale circulation changes, the increase in biomass burning aerosols causes local drying of the atmosphere. This study illustrates that reducing local biomass burning aerosol emissions may be a useful way to mitigate reduced rainfall in the region.

  4. Catalytic Control of Typical Particulate Matters and Volatile Organic Compounds Emissions from Simulated Biomass Burning.

    PubMed

    Chen, Yaxin; Tian, Guangkai; Zhou, Meijuan; Huang, Zhiwei; Lu, Chenxi; Hu, Pingping; Gao, Jiayi; Zhang, Zhaoliang; Tang, Xingfu

    2016-06-01

    Emissions of particulate matters (PMs) and volatile organic compounds (VOCs) from open burning of biomass often cause severe air pollution; a viable approach is to allow biomass to burn in a furnace to collectively control these emissions, but practical control technologies for this purpose are lacking. Here, we report a hollandite manganese oxide (HMO) catalyst that can efficiently control both typical PMs and VOCs emissions from biomass burning. The results reveal that typical alkali-rich PMs such as KCl particles are disintegrated and the K(+) ions are trapped in the HMO "single-walled" tunnels with a great trapping capacity. The K(+)-trapping HMO increases the electron density of the lattice oxygen and the redox ability, thus promoting the combustion of soot PMs and the oxidation of typical VOCs such as aldehydes and acetylates. This could pave a way to control emissions from biomass burning concomitant with its utilization for energy or heat generation. PMID:27128185

  5. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa

    NASA Astrophysics Data System (ADS)

    Hodnebrog, Øivind; Myhre, Gunnar; Forster, Piers M.; Sillmann, Jana; Samset, Bjørn H.

    2016-04-01

    Observations indicate a precipitation decline over large parts of southern Africa since the 1950s. Concurrently, atmospheric concentrations of greenhouse gases and aerosols have increased due to anthropogenic activities. Here we show that local black carbon and organic carbon aerosol emissions from biomass burning activities are a main cause of the observed decline in southern African dry season precipitation over the last century. Near the main biomass burning regions, global and regional modelling indicates precipitation decreases of 20-30%, with large spatial variability. Increasing global CO2 concentrations further contribute to precipitation reductions, somewhat less in magnitude but covering a larger area. Whereas precipitation changes from increased CO2 are driven by large-scale circulation changes, the increase in biomass burning aerosols causes local drying of the atmosphere. This study illustrates that reducing local biomass burning aerosol emissions may be a useful way to mitigate reduced rainfall in the region.

  6. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa.

    PubMed

    Hodnebrog, Øivind; Myhre, Gunnar; Forster, Piers M; Sillmann, Jana; Samset, Bjørn H

    2016-01-01

    Observations indicate a precipitation decline over large parts of southern Africa since the 1950s. Concurrently, atmospheric concentrations of greenhouse gases and aerosols have increased due to anthropogenic activities. Here we show that local black carbon and organic carbon aerosol emissions from biomass burning activities are a main cause of the observed decline in southern African dry season precipitation over the last century. Near the main biomass burning regions, global and regional modelling indicates precipitation decreases of 20-30%, with large spatial variability. Increasing global CO2 concentrations further contribute to precipitation reductions, somewhat less in magnitude but covering a larger area. Whereas precipitation changes from increased CO2 are driven by large-scale circulation changes, the increase in biomass burning aerosols causes local drying of the atmosphere. This study illustrates that reducing local biomass burning aerosol emissions may be a useful way to mitigate reduced rainfall in the region. PMID:27068129

  7. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa

    PubMed Central

    Hodnebrog, Øivind; Myhre, Gunnar; Forster, Piers M.; Sillmann, Jana; Samset, Bjørn H.

    2016-01-01

    Observations indicate a precipitation decline over large parts of southern Africa since the 1950s. Concurrently, atmospheric concentrations of greenhouse gases and aerosols have increased due to anthropogenic activities. Here we show that local black carbon and organic carbon aerosol emissions from biomass burning activities are a main cause of the observed decline in southern African dry season precipitation over the last century. Near the main biomass burning regions, global and regional modelling indicates precipitation decreases of 20–30%, with large spatial variability. Increasing global CO2 concentrations further contribute to precipitation reductions, somewhat less in magnitude but covering a larger area. Whereas precipitation changes from increased CO2 are driven by large-scale circulation changes, the increase in biomass burning aerosols causes local drying of the atmosphere. This study illustrates that reducing local biomass burning aerosol emissions may be a useful way to mitigate reduced rainfall in the region. PMID:27068129

  8. Aerosol emissions by tropical forest and savanna biomass burning: Characteristic trace elements and fluxes

    SciTech Connect

    Echalar, F.; Gaudichet, A.; Cachier, H.

    1995-11-15

    This report characterizes and compares trace element emissions from fires of three different types of savannas and from the southwestern amazonian rain forest. This study tries to verify a fingerprint that may characterize savanna fires or tropical biomass burning.

  9. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    PubMed

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'.

  10. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    PubMed

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216509

  11. Recent Biomass Burning in the Tropics and Related Changes in Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke; Chandra, J. R. S.; Duncan, B. N.; Schoeberl, M. R.; Torres, O.; Damon, M. R.; Bhartia, P. K.

    2009-01-01

    Biomass burning is an important source of chemical precursors of tropospheric ozone. In the tropics, biomass burning produces ozone enhancements over broad regions of Indonesia, Africa, and South America including Brazil. Fires are intentionally set in these regions during the dry season each year to clear cropland and to clear land for human/industrial expansion. In Indonesia enhanced burning occurs during dry El Nino conditions such as in 1997 and 2006. These burning activities cause enhancement in atmospheric particulates and trace gases which are harmful to human health. Measurements from the Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) from October 2004-November 2008 are used to evaluate the effects of biomass burning on tropical tropospheric ozone. These measurements show sizeable decreases approx.15-20% in ozone in Brazil during 2008 compared to 2007 which we attribute to the reduction in biomass burning. Three broad biomass burning regions in the tropics (South America including Brazil, western Africa, and Indonesia) were analyzed in the context of OMI/MLS measurements and the Global Modeling Initiative (GMI) chemical transport model developed at Goddard Space Flight Center. The results indicate that the impact of biomass burning on ozone is significant within and near the burning regions with increases of approx.10-25% in tropospheric column ozone relative to average background concentrations. The model suggests that about half of the increases in ozone from these burning events come from altitudes below 3 km. Globally the model indicates increases of approx.4-5% in ozone, approx.7-9% in NO, (NO+NO2), and approx.30-40% in CO.

  12. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    PubMed

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia.

  13. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    PubMed

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia. PMID:26503008

  14. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].

    PubMed

    Yu, Chao; Chen, Liang-fu; Li, Shen-shen; Tao, Jin-hua; Su, Lin

    2015-03-01

    Biomass burning makes up an important part of both trace gases and particulate matter emissions, which can efficiently degrade air quality and reduce visibility, destabilize the global climate system at regional to global scales. Burned area is one of the primary parameters necessary to estimate emissions, and considered to be the largest source of error in the emission inventory. Satellite-based fire observations can offer a reliable source of fire occurrence data on regional and global scales, a variety of sensors have been used to detect and map fires in two general approaches: burn scar mapping and active fire detection. However, both of the two approaches have limitations. In this article, we explore the relationship between hotspot data and burned area for the Southeastern United States, where a significant amount of biomass burnings from both prescribed and wild fire took place. MODIS (Moderate resolution imaging spectrometer) data, which has high temporal-resolution, can be used to monitor ground biomass. burning in time and provided hot spot data in this study. However, pixel size of MODIS hot spot can't stand for the real ground burned area. Through analysis of the variation of vegetation band reflectance between pre- and post-burn, we extracted the burned area from Landsat-5 TM (Thematic Mapper) images by using the differential normalized burn ratio (dNBR) which is based on TM band4 (0.84 μm) and TM band 7(2.22 μm) data. We combined MODIS fire hot spot data and Landsat-5 TM burned scars data to build the burned area estimation model, results showed that the linear correlation coefficient is 0.63 and the relationships vary as a function of vegetation cover. Based on the National Land Cover Database (NLCD), we built burned area estimation model over different vegetation cover, and got effective burned area per fire pixel, values for forest, grassland, shrub, cropland and wetland are 0.69, 1.27, 0.86, 0.72 and 0.94 km2 respectively. We validated the

  15. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].

    PubMed

    Yu, Chao; Chen, Liang-fu; Li, Shen-shen; Tao, Jin-hua; Su, Lin

    2015-03-01

    Biomass burning makes up an important part of both trace gases and particulate matter emissions, which can efficiently degrade air quality and reduce visibility, destabilize the global climate system at regional to global scales. Burned area is one of the primary parameters necessary to estimate emissions, and considered to be the largest source of error in the emission inventory. Satellite-based fire observations can offer a reliable source of fire occurrence data on regional and global scales, a variety of sensors have been used to detect and map fires in two general approaches: burn scar mapping and active fire detection. However, both of the two approaches have limitations. In this article, we explore the relationship between hotspot data and burned area for the Southeastern United States, where a significant amount of biomass burnings from both prescribed and wild fire took place. MODIS (Moderate resolution imaging spectrometer) data, which has high temporal-resolution, can be used to monitor ground biomass. burning in time and provided hot spot data in this study. However, pixel size of MODIS hot spot can't stand for the real ground burned area. Through analysis of the variation of vegetation band reflectance between pre- and post-burn, we extracted the burned area from Landsat-5 TM (Thematic Mapper) images by using the differential normalized burn ratio (dNBR) which is based on TM band4 (0.84 μm) and TM band 7(2.22 μm) data. We combined MODIS fire hot spot data and Landsat-5 TM burned scars data to build the burned area estimation model, results showed that the linear correlation coefficient is 0.63 and the relationships vary as a function of vegetation cover. Based on the National Land Cover Database (NLCD), we built burned area estimation model over different vegetation cover, and got effective burned area per fire pixel, values for forest, grassland, shrub, cropland and wetland are 0.69, 1.27, 0.86, 0.72 and 0.94 km2 respectively. We validated the

  16. When smoke comes to town: The impact of biomass burning smoke on air quality

    NASA Astrophysics Data System (ADS)

    Keywood, Melita; Cope, Martin; Meyer, C. P. Mick; Iinuma, Yoshi; Emmerson, Kathryn

    2015-11-01

    Biomass burning aerosols influence the radiative balance of the earth-atmosphere system. They also reduce visibility and impact human health. In addition, trace gases and aerosols emitted to the atmosphere during large biomass burning episodes may have a significant effect on atmospheric chemistry due to the presence of reactive species. Six hundred and ninety wildfires burned more than one million hectares in Victoria, Australia between December 2006 and February 2007. Thick smoke haze was transported to Melbourne (population 3.9 million) on several occasions, causing PM10 (particulate mass less than 10 μm in diameter) concentrations to exceed 200 μg m-3. The presence of elevated total secondary organic aerosol (SOA) and speciated SOA compounds (including pinene and cineole oxidation products), O3, and the larger aerosol mode diameter during smoke impacted periods indicated the presence of photochemical oxidation within the plume. The presence of organosulfate compounds and nitro-oxy organosulfate compounds indicated oxidation may have occurred in the presence of acidic seed aerosol and that oxidation may also have occurred at night. Older smoke plumes (aged 30 h) displayed higher concentrations of a number of gaseous and aerosol species relative to the younger smoke plumes (aged 3 h). SOA compounds made up a greater fraction of speciated organic mass in the old plume than in the young plume where speciated biomass burning compounds dominated. Cineole oxidation products made up a greater fraction of the speciated SOA compounds in the old plume while pinene oxidation products made up a greater fraction of the total SOA speciated mass in the samples from the young plume. This may be a result of the slower reaction rate of cineole with OH. Organosulfate compounds and nitro-oxy organosulfate compounds made up greater fractions of the speciated SOA mass in the old plume consistent with the production of nitro-oxy organosulfate compounds under night time conditions in

  17. Brown carbon and internal mixing in biomass burning particles

    PubMed Central

    Lack, Daniel A.; Langridge, Justin M.; Bahreini, Roya; Cappa, Christopher D.; Middlebrook, Ann M.; Schwarz, Joshua P.

    2012-01-01

    Biomass burning (BB) contributes large amounts of black carbon (BC) and particulate organic matter (POM) to the atmosphere and contributes significantly to the earth’s radiation balance. BB particles can be a complicated optical system, with scattering and absorption contributions from BC, internal mixtures of BC and POM, and wavelength-dependent absorption of POM. Large amounts of POM can also be externally mixed. We report on the unique ability of multi-wavelength photo-acoustic measurements of dry and thermal-denuded absorption to deconstruct this complicated wavelength-dependent system of absorption and mixing. Optical measurements of BB particles from the Four Mile Canyon fire near Boulder, Colorado, showed that internal mixtures of BC and POM enhanced absorption by up to 70%. The data supports the assumption that the POM was very weakly absorbing at 532 nm. Enhanced absorption at 404 nm was in excess of 200% above BC absorption and varied as POM mass changed, indicative of absorbing POM. Absorption by internal mixing of BC and POM contributed 19( ± 8)% to total 404-nm absorption, while BC alone contributed 54( ± 16)%. Approximately 83% of POM mass was externally mixed, the absorption of which contributed 27( ± 15)% to total particle absorption (at 404 nm). The imaginary refractive index and mass absorption efficiency (MAE) of POM at 404 nm changed throughout the sampling period and were found to be 0.007 ± 0.005 and 0.82 ± 0.43 m2 g-1, respectively. Our analysis shows that the MAE of POM can be biased high by up to 50% if absorption from internal mixing of POM and BC is not included. PMID:22927381

  18. Removal of NOx and NOy in biomass burning plumes in the boundary layer over northern Australia

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kondo, Y.; Koike, M.; Ko, M.; Kita, K.; Blake, D. R.; Nishi, N.; Hu, W.; Liley, J. B.; Kawakami, S.; Shirai, T.; Miyazaki, Y.; Ikeda, H.; Russel-Smith, J.; Ogawa, T.

    2003-05-01

    The Biomass Burning and Lightning Experiment Phase B (BIBLE-B) aircraft measurement campaign was conducted over the western Pacific and Australia in August and September 1999. In situ aircraft measurements of carbon monoxide (CO), nitric oxide (NO), total reactive nitrogen (NOy), ozone (O3), nonmethane hydrocarbons (NMHCs), and other species were made during BIBLE-B. Meteorological analysis shows that the trace gases emitted from biomass burning in northern Australia were mostly confined within the planetary boundary layer (below ˜3 km) by strong subsidence in the free troposphere. Removal processes of NOx (equal to measured NO + calculated NO2) and NOy in biomass burning plumes in the boundary layer are examined on the basis of correlation analysis. The photochemical lifetime of NOx in biomass burning plumes during the daytime is estimated to be 0.1 to 0.3 days using the correlations of NOx with short-lived NMHCs and hydroxyl radical (OH) concentration calculated from a constrained photochemical model. Correlation of NOy with CO shows that ˜60% of the NOy molecules originating from biomass burning were removed in the boundary layer within 2-3 days. This result is consistent with dry deposition of nitric acid (HNO3) in the plumes. It is likely that only a small fraction of NOy emitted from biomass burning was exported from the boundary layer to the free troposphere during the BIBLE-B period.

  19. Fuel characteristics and emissions from biomass burning and land-use change in Nigeria.

    PubMed

    Isichei, A O; Muoghalu, J I; Akeredolu, F A; Afolabi, O A

    1995-01-01

    Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 × 10(3) ha (kilohectare, or kha) and 200 × kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125 561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain. PMID:24197951

  20. Intercomparison of Near-Real-Time Biomass Burning Emissions Estimates Constrained by Satellite Fire Data

    EPA Science Inventory

    We compare biomass burning emissions estimates from four different techniques that use satellite based fire products to determine area burned over regional to global domains. Three of the techniques use active fire detections from polar-orbiting MODIS sensors and one uses detec...

  1. Biomass Burning: The Cycling of Gases and Particulates from the Biosphere to the Atmosphere

    NASA Astrophysics Data System (ADS)

    Levine, J. S.

    2003-12-01

    Biomass burning is both a process of geochemical cycling of gases and particulates from the biosphere to the atmosphere and a process of global change. In the preface to the book, One Earth, One Future: Our Changing Global Environment (National Academy of Sciences, 1990), Dr. Frank Press, the President of the National Academy of Sciences, writes: "Human activities are transforming the global environment, and these global changes have many faces: ozone depletion, tropical deforestation, acid deposition, and increased atmospheric concentrations of gases that trap heat and may warm the global climate."It is interesting to note that all four global change "faces" identified by Dr. Press have a common thread - they are all caused by biomass burning.Biomass burning or vegetation burning is the burning of living and dead vegetation and includes human-initiated burning and natural lightning-induced burning. The bulk of the world's biomass burning occurs in the tropics - in the tropical forests of South America and Southeast Asia and in the savannasof Africa and South America. The majority of the biomass burning, primarily in the tropics (perhaps as much as 90%), is believed to be human initiated for land clearing and land-use change. Natural fires triggered by atmospheric lightning only accounts for ˜10% of all fires (Andreae, 1991). As will be discussed, a significant amount of biomass burning occurs in the boreal forests of Russia, Canada, and Alaska.Biomass burning is a significant source of gases and particulates to the regional and global atmosphere (Crutzen et al., 1979; Seiler and Crutzen, 1980; Crutzen and Andreae, 1990; Levine et al., 1995). Its burning is truly a multidiscipline subject, encompassing the following areas: fire ecology, fire measurements, fire modeling, fire combustion, remote sensing, fire combustion gaseous and particulate emissions, the atmospheric transport of these emissions, and the chemical and climatic impacts of these emissions. Recently

  2. Trace Gas Emissions From Global Biomass Burning Measured by Fourier Transform Infrared (FTIR) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertschi, I.; Yokelson, R. J.; Christian, T. J.; Field, R. J.; Ward, D. E.; Hao, W.

    2001-05-01

    Biomass burning is an important source of CO(2), CO, CH(4), NO(x), non-methane volatile organic compounds (VOCs), oxygenated volatile organic compounds (OVOCs), and particles in the global atmosphere. In recent field experiments we have used airborne Fourier transform infrared (AFTIR) spectroscopy in Africa, North Carolina, and Alaska. These in-situ measurements have included observations of the rate of ozone and organic acid production, NH(3) losses, and cloud processing in down-wind plumes. In addition, we used AFTIR measurements to characterize the immense mixed haze layers prevalent during the southern Africa dry season and probed the chemistry of two ship plumes off the Namibian coastline. Our airborne measurements of biomass fire emissions were supplemented by ground-based open-path FTIR measurements of the emissions from domestic fuel production and use in African villages and of the post-convection smoldering emissions from African fires. Our ground and airborne measurements both include a suite of important compounds produced from biomass burning sources and from the photochemistry of slightly aged smoke plumes. This suite of compounds includes; O(3), CO(2), CO, CH(4), non-methane VOCs (C(2)H(2), C(2)H(4), C(2)H(6), C(3)H(6)), NO(x), HCN, NH(3), and OVOCs (CH(2)O, HCOOH, CH(3)OH, CH(3)COOH, HOCH(2)COOH, C(6)H(6)O, C(4)H(4)O) that are important HO(x) (OH and HO(2)) precursors. Recently, African and Indonesian fuels were burned in a joint laboratory experiment with the Max-Planck Institute of Chemistry that featured our open-path FTIR and their proton-transfer mass spectrometer (PTR-MS). The research described above consistently shows that biomass fires emit significant concentrations of OVOCs at levels much higher than previously thought. Our laboratory and field findings have been incorporated in a photochemical model that shows the OVOCs in smoke have significant effects on ozone production, HO(x) concentrations, H(2)O(2) production, NO(x) lifetime, and

  3. Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.

    PubMed

    He, Congrong; Miljevic, Branka; Crilley, Leigh R; Surawski, Nicholas C; Bartsch, Jennifer; Salimi, Farhad; Uhde, Erik; Schnelle-Kreis, Jürgen; Orasche, Jürgen; Ristovski, Zoran; Ayoko, Godwin A; Zimmermann, Ralf; Morawska, Lidia

    2016-05-01

    Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10 to 30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning

  4. Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.

    PubMed

    He, Congrong; Miljevic, Branka; Crilley, Leigh R; Surawski, Nicholas C; Bartsch, Jennifer; Salimi, Farhad; Uhde, Erik; Schnelle-Kreis, Jürgen; Orasche, Jürgen; Ristovski, Zoran; Ayoko, Godwin A; Zimmermann, Ralf; Morawska, Lidia

    2016-05-01

    Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10 to 30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning

  5. Distribution and Properties of Aerosol and Gas Phase Constituents within Biomass Burning Regional Haze in Brazil, 2012, during the Sambba (South American Biomass Burning Analysis) Field Campaign

    NASA Astrophysics Data System (ADS)

    Darbyshire, E.; Morgan, W.; Allan, J. D.; Flynn, M.; Liu, D.; O'Shea, S.; Trembath, J.; Szpek, K.; Langridge, J.; Brooke, J.; Ferreira De Brito, J.; Johnson, B. T.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2014-12-01

    Biomass Burning (BB) aerosols (BBA) impact upon weather, climate, ecosystems and human health at global and regional scales. Yet quantitative evaluation is impeded by a limited understanding of BB processes and a dearth of in-situ measurements. Thus large model uncertainties prevail, especially in data poor, intensive BB regions such as Brazil. Hence the timely nature of the SAMBBA campaign, utilizing aircraft (UK Facility for Airborne Atmospheric Measurement BAe-146) and ground based observations out of Porto Velho in Sept-Oct 2012. This work utilizes aircraft measurements to characterize BB regional haze - the inhomogeneous accumulation of aged BBA capped within the boundary layer, present across swathes of Brazil. As context, aerosol optical depth (AOD) and meteorological climatologies are presented and compared to the synoptic conditions of 2012. Throughout the early flights an expansive area of elevated (>1) AOD persisted, although in transitioning toward the wet season, rain out and advection significantly reduced its spatial extent and magnitude in western regions of Brazil. Concurrent decreases in haze BBA concentrations (~50%) were observed from the aircraft measurements sampling in these deforested/forested areas. However, the relative vertical structure, composition, physical and optical properties remained similar. The lofted maxima in aerosol concentrations at ~1.5km, typically not captured in models, is potentially important for regional climate. Significant differences were observed, however, during flights over the eastern savannah-like regions of Brazil, which remained drier throughout. Here, haze BBA concentrations resembled those in the west prior to wash out, with the exception of high loadings of refractive black carbon. This acted to lower the single scattering albedo and alter the number size distribution. The observed haze BBA west-east split is also present at source and remains similar throughout fresh plume evolution, thus we conclude

  6. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    NASA Astrophysics Data System (ADS)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  7. A trajectory modeling investigation of the biomass burning-tropical ozone relationship

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Mcnamara, Donna P.; Schoeberl, Mark R.; Lait, Leslie R.; Newman, Paul A.; Justice, Christopher O.; Kendall, Jacqueline D.

    1994-01-01

    The hypothesis that tropical total O3 maxima seen by the TOMS satellite derive from African biomass burning has been tested using isentropic trajectory analyses with global meteorological data fields. Two case studies from the 1989 biomass burning season demonstrate that a large fraction of the air arriving at the location of TOMS O3 maxima passed over regions of intense burning. Other trajectories initiated at a series of points over Africa and the Atlantic suggest flight strategies for field studies to be conducted in September 1992.

  8. Airborne measurements of CO2, CH4 and HCN in boreal biomass burning plumes

    NASA Astrophysics Data System (ADS)

    O'Shea, Sebastian J.; Bauguitte, Stephane; Muller, Jennifer B. A.; Le Breton, Michael; Archibald, Alex; Gallagher, Martin W.; Allen, Grant; Percival, Carl J.

    2013-04-01

    Biomass burning plays an important role in the budgets of a variety of atmospheric trace gases and particles. For example, fires in boreal Russia have been linked with large growths in the global concentrations of trace gases such as CO2, CH4 and CO (Langenfelds et al., 2002; Simpson et al., 2006). High resolution airborne measurements of CO2, CH4 and HCN were made over Eastern Canada onboard the UK Atmospheric Research Aircraft FAAM BAe-146 from 12 July to 4 August 2011. These observations were made as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites). Flights were aimed at transecting and sampling the outflow from the commonly occurring North American boreal forest fires during the summer months and to investigate and identify the chemical composition and evolution of these plumes. CO2 and CH4 dry air mole fractions were determined using an adapted system based on a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200) from Los Gatos Research Inc, which uses the cavity enhanced absorption spectroscopy technique. In-flight calibrations revealed a mean accuracy of 0.57 ppmv and 2.31 ppbv for 1 Hz observations of CO2 and CH4, respectively, during the BORTAS project. During these flights a number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements. HCN is a distinctive and useful marker for forest fire emissions and it was detected using chemical ionisation mass spectrometry (CIMS). In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 8.5 ± 0.9 g of CH4 and 1512 ± 185 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies and can be used to calculate budgets for the region. However for aged plumes the correlations between CH4 and other

  9. Satellite contributions to the quantitative characterization of biomass burning for climate modeling

    NASA Astrophysics Data System (ADS)

    Ichoku, Charles; Kahn, Ralph; Chin, Mian

    2012-07-01

    Characterization of biomass burning from space has been the subject of an extensive body of literature published over the last few decades. Given the importance of this topic, we review how satellite observations contribute toward improving the representation of biomass burning quantitatively in climate and air-quality modeling and assessment. Satellite observations related to biomass burning may be classified into five broad categories: (i) active fire location and energy release, (ii) burned areas and burn severity, (iii) smoke plume physical disposition, (iv) aerosol distribution and particle properties, and (v) trace gas concentrations. Each of these categories involves multiple parameters used in characterizing specific aspects of the biomass-burning phenomenon. Some of the parameters are merely qualitative, whereas others are quantitative, although all are essential for improving the scientific understanding of the overall distribution (both spatial and temporal) and impacts of biomass burning. Some of the qualitative satellite datasets, such as fire locations, aerosol index, and gas estimates have fairly long-term records. They date back as far as the 1970s, following the launches of the DMSP, Landsat, NOAA, and Nimbus series of earth observation satellites. Although there were additional satellite launches in the 1980s and 1990s, space-based retrieval of quantitative biomass burning data products began in earnest following the launch of Terra in December 1999. Starting in 2000, fire radiative power, aerosol optical thickness and particle properties over land, smoke plume injection height and profile, and essential trace gas concentrations at improved resolutions became available. The 2000s also saw a large list of other new satellite launches, including Aqua, Aura, Envisat, Parasol, and CALIPSO, carrying a host of sophisticated instruments providing high quality measurements of parameters related to biomass burning and other phenomena. These improved data

  10. Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Cubison, M. J.; Hecobian, A.; Jimenez, J. L.; Weber, R. J.; Anderson, B. E.; Nenes, A.

    2013-03-01

    The NASA DC-8 aircraft characterized the aerosol properties, chemical composition, and cloud condensation nuclei (CCN) concentrations of the summertime Arctic during the 2008 NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. Air masses characteristic of fresh and aged biomass burning, boreal forest, Arctic background, and anthropogenic industrial pollution were sampled. Observations were spatially extensive (50-85° N and 40-130° W) and exhibit significant variability in aerosol and CCN concentrations. The chemical composition was dominated by highly oxidized organics (66-94% by volume), with a water-soluble mass fraction of more than 50%. The aerosol hygroscopicity parameter, κ, ranged between κ = 0.08-0.32 for all air mass types. Industrial pollution had the lowest κ of 0.08 ± 0.01, while the Arctic background had the highest and most variable κ of 0.32 ± 0.21, resulting from a lower and more variable organic fraction. Both fresh and aged (long-range transported) biomass burning air masses exhibited remarkably similar κ (0.18 ± 0.13), consistent with observed rapid chemical and physical aging of smoke emissions in the atmosphere, even in the vicinity of fresh fires. The organic hygroscopicity (κorg) was parameterized by the volume fraction of water-soluble organic matter (ɛWSOM), with a κ = 0.12, such that κorg = 0.12ɛWSOM. Assuming bulk (size-independent) composition and including the κorg parameterization enabled CCN predictions to within 30% accuracy for nearly all environments sampled. The only exception was for industrial pollution from Canadian oil sands exploration, where an external mixture and size-dependent composition was required. Aerosol mixing state assumptions (internal vs. external) in all other environments did not significantly affect CCN predictions; however, the external mixing assumption provided the best results, even though the available observations could not determine

  11. Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Cubison, M. J.; Hecobian, A.; Jimenez, J. L.; Weber, R. J.; Anderson, B. E.; Nenes, A.

    2012-09-01

    The NASA DC-8 aircraft characterized the aerosol properties, chemical composition, and cloud condensation nuclei (CCN) concentrations of the summertime Arctic during the 2008 NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. Air masses characteristic of fresh and aged biomass burning, boreal forest, Arctic background, and anthropogenic industrial pollution were sampled. Observations were spatially extensive (50-85° N and 40-130° W) and exhibit significant variability in aerosol and CCN concentrations. The chemical composition was dominated by highly oxidized organics (66-94% by volume), more than half of which was water-soluble. The aerosol hygroscopicity parameter, κ, ranged between κ = 0.1-0.32 for all air mass types. Industrial pollution had the lowest κ of 0.08 ± 0.01, while the Arctic background had the highest and most variable κ of 0.32 ± 0.21, resulting from a lower and more variable organic fraction. Both fresh and aged (long-range transported) biomass burning air masses exhibited remarkably similar κ (0.18 ± 0.13), consistent with observed rapid chemical and physical aging of smoke emissions in the atmosphere, even in the vicinity of fresh fires. The organic hygroscopicity (κorg) was parameterized by the volume fraction of water-soluble organic matter (ϵWSOM), with a κ = 0.12, such that κorg = 0.12ϵWSOM. Assuming bulk (size-independent) composition and including the κorg parameterization enabled CCN predictions to within 30% accuracy for nearly all environments sampled. The only exception was for industrial pollution from Canadian oil sands exploration, where an external mixture and size-dependent composition was required. Aerosol mixing state assumptions (internal vs. external) in all other environments did not significantly affect CCN predictions; however, the external mixing assumption provided the best results, even though the available observations could not

  12. The use of levoglucosan for tracing biomass burning in PM₂.₅ samples in Tuscany (Italy).

    PubMed

    Giannoni, Martina; Martellini, Tania; Del Bubba, Massimo; Gambaro, Andrea; Zangrando, Roberta; Chiari, Massimo; Lepri, Luciano; Cincinelli, Alessandra

    2012-08-01

    Levoglucosan was present in all samples and its concentrations showed a pronounced annual cycle with maximum levels in the cold season. The annual percentage of ratios of levoglucosan to OC ranged from 0.04 to 9.75% evidencing a major contribution of biomass burning to the aerosol OC during the winter. In the urban-background site, OC was strongly correlated with EC in winter, suggesting that the major fraction of OC was generated as primary particles along with EC. A background levoglucosan component showed that biomass burning was continuously taking place in all the investigated sites. The biomass burning contribution to the Tuscany aerosol was made up of a background component and an additional component during winter probably due to wood burning for domestic heating.

  13. Fossil fuel and biomass burning effect on climate - Heating or cooling?

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-01-01

    The basic theory of the effect of pollution on cloud microphysics and its global implications is applied to compare the relative effect of a small increase in the consumption rate of oil, coal, or biomass burning on cooling and heating of the atmosphere. The characteristics of and evidence for the SO2 induced cooling effect are reviewed. This perturbation analysis approach permits linearization, therefore simplifying the analysis and reducing the number of uncertain parameters. For biomass burning the analysis is restricted to burning associated with deforestation. Predictions of the effect of an increase in oil or coal burning show that within the present conditions the cooling effect from oil and coal burning may range from 0.4 to 8 times the heating effect.

  14. Properties and evolution of biomass burning organic aerosol from Canadian boreal forest fires

    NASA Astrophysics Data System (ADS)

    Jolleys, M. D.; Coe, H.; McFiggans, G.; Taylor, J. W.; O'Shea, S. J.; Le Breton, M.; Bauguitte, S. J.-B.; Moller, S.; Di Carlo, P.; Aruffo, E.; Palmer, P. I.; Lee, J. D.

    2014-10-01

    Airborne measurements of biomass burning organic aerosol (BBOA) from boreal forest fires reveal highly contrasting properties for plumes of different ages. These measurements, performed using an Aerodyne Research Inc. compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) during the BORTAS (quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment in the summer of 2011, have been used to derive normalised excess organic aerosol (OA) mass concentrations (ΔOA/ΔCO), with higher average ratios observed closer to source (0.190 ± 0.010) than in the far-field (0.097 ± 0.002). The difference in ΔOA/ΔCO between fresh and aged plumes is influenced by a change in dominant combustion conditions throughout the campaign. Measurements at source sampled largely smouldering fires, while plumes encountered in the far-field originated from fires occurring earlier in the campaign when fire activity had been more intense. Changing combustion conditions also affect the vertical distribution of biomass burning emissions, as aged plumes from more flaming-dominated fires are injected to higher altitudes of up to 6000 m. Proportional contributions of the mass-to-charge ratio (m/z) 60 and 44 peaks in the AMS mass spectra to the total OA mass (denoted f60 and f44) are used as tracers for primary and oxidized BBOA, respectively. Given the shorter aging times associated with near-field plumes, f44 is lower on average than in more aged, transported plumes. However, high levels of ΔO3/ΔCO and -log(NOx/NOy) close to source indicate that emissions can be subject to very rapid oxidation over short timescales. Conversely, the lofting of plumes into the upper troposphere can lead to the retention of source profiles after transportation over extensive temporal and spatial scales, with f60 also higher on average in aged plumes. Evolution of OA composition with aging is comparable to observations of BB tracers in

  15. Biomass Burning and Natural Emissions in the Amazon Rainforest: Impact on the Oxidative Capacity of the Atmosphere

    NASA Astrophysics Data System (ADS)

    dos Santos, F. C.; Guenther, A. B.; Longo, K.; Freitas, S. R.; Moreira, D. S.; Flávio, L.; Braz, R.; Brito, J.; Oram, D.; Forster, G.; Lee, J. D.; Bauguitte, S.

    2015-12-01

    Terrestrial vegetation, especially tropical forests, releases large amounts of biogenic volatile organic compounds (BVOC) into the atmosphere. The global emissions of BVOC (~1000 Tg C/year) are dominant in relation to anthropogenic volatile organic compounds (~100 Tg C/year), with biomass burning contributing close to 10 - 50 Tg C/year. Tropical trees cover about 18% of the global land surface but are estimated to be responsible for approximately 80% of terpenoid and 50% of other BVOCs emissions. Considering the importance of these emissions, the SAMBBA (South American Biomass Burning Analysis) experiment, which occurred during the dry season (September 2012) in the Amazon Rainforest, provided information about the chemical composition of the atmosphere through measurements on the aircraft FAAM BAE-146. Although primarily focused on biomass burning flights, the SAMBBA project carried out other flights providing indirect oxidative capacity data in different environments: natural emission dominated flights and biomass burning flights with fresh plumes (< 2 hours) and aged plumes (> 2 hours). Calculation of the [MVK+MACR]/[Isoprene] ratio enabled investigation of the impact of biomass burning on surface oxidation in comparison to the natural emission flights. During the morning (altitude < 500m), the [MVK+MACR]/[Isoprene] values for natural emission flights (1.0±0.4), fresh plume (1.9±0.6) and aged plume (1.4±0.6) suggest that biomass burning enhances BVOC oxidation in relation to the lifetime of the air mass. This study aims to improve the knowledge about the oxidative capacity of the atmosphere, which depends not only on chemical composition, but also other factors like the history of the air mass trajectories influencing the availability of these compounds, the NOx dependence of isoprene oxidation and whether the chemistry is dominated by OH or O3. A synergistic approach integrating observation and modeling, using 3D numerical model of chemical transport (CCATT

  16. Modeling the impacts of biomass burning on air quality in and around Mexico City

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Molina, L.

    2012-09-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC), contributing about 60, 22, 33, and 22% to primary OA (POA), secondary OA (SOA), total OA (TOA), and EC, respectively, on both the local and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. SOA formation due to the open fires and trash burning enhanced the OA concentration by about 10 and 5% in the MCMA, respectively. On the annual basis and taking the biofuel use emissions into consideration, we estimated that biomass burning contributed about 60, 30, and 25%, respectively, to the loadings of POA, SOA and EC in both the MCMA and its surrounding region, with about 35, 18, and 15% from open fires and trash burning. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  17. Impact Assessment of Biomass Burning on Air Quality in Southeast and East Asia During BASE-ASIA

    NASA Technical Reports Server (NTRS)

    Huang, Kan; Fu, Joshua S.; Hsu, N. Christina; Gao, Yang; Dong, Xinyi; Tsay, Si-Chee; Lam, Yun Fat

    2013-01-01

    A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in MarcheApril when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K(+), OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via longrange transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%.

  18. When smoke comes to town - effects of biomass burning smoke on air quality down under

    NASA Astrophysics Data System (ADS)

    Keywood, Melita; Cope, Martin; (C. P) Meyer, Mick; Iinuma, Yoshi; Emmerson, Kathryn

    2014-05-01

    Annually, biomass burning results in the emission of quantities of trace gases and aerosol to the atmosphere. Biomass burning emissions have a significant effect on atmospheric chemistry due to the presence of reactive species. Biomass burning aerosols influence the radiative balance of the earth-atmosphere system directly through the scattering and absorption of radiation, and indirectly through their influence on cloud microphysical processes, and therefore constitute an important forcing in climate models. They also reduce visibility, influence atmospheric photochemistry and can be inhaled into the deepest parts of the lungs, so that they can have a significant effect on human health. Australia experiences bushfires on an annual basis. In most years fires are restricted to the tropical savannah forests of Northern Australia. However in the summer of 2006/2007 (December 2006 - February 2007), South Eastern Australia was affected by the longest recorded fires in its history. During this time the State of Victoria was ravaged by 690 separate bushfires, including the major Great Divide Fire, which devastated 1,048,238 hectares over 69 days. On several occasions, thick smoke haze was transported to the Melbourne central business district and PM10 concentrations at several air quality monitoring stations peaked at over 200 µg m-3 (four times the National Environment Protection Measure PM10 24 hour standard). During this period, a comprehensive suite of air quality measurements was carried out at a location 25 km south of the Melbourne CBD, including detailed aerosol microphysical and chemical composition measurements. Here we examine the chemical and physical properties of the smoke plume as it impacted Melbourne's air shed and discuss its impact on air quality over the city. We estimate the aerosol emission rates of the source fires, the age of the plumes and investigate the transformation of the smoke as it progressed from its source to the Melbourne airshed. We

  19. Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Saarikoski, S.; Carbone, S.; Hillamo, R.; Facchini, M. C.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Swietlicki, E.; Eriksson Stenström, K.; Prévôt, A. S. H.; Massoli, P.; Canaragatna, M.; Worsnop, D.; Decesari, S.

    2013-12-01

    Atmospheric organic aerosols are generally classified into primary and secondary (POA and SOA) according to their formation processes. An actual separation, however, is challenging when the timescales of emission and of gas-to-particle formation overlap. The presence of SOA formation in biomass burning plumes leads to scientific questions about whether the oxidized fraction of biomass burning aerosol is rather of secondary or primary origin, as some studies would suggest, and about the chemical compositions of oxidized biomass burning POA and SOA. In this study, we apply nuclear magnetic resonance (NMR) spectroscopy to investigate the functional group composition of fresh and aged biomass burning aerosols during an intensive field campaign in the Po Valley, Italy. The campaign was part of the EUCAARI project and was held at the rural station of San Pietro Capofiume in spring 2008. Factor analysis applied to the set of NMR spectra was used to apportion the wood burning contribution and other organic carbon (OC) source contributions, including aliphatic amines. Our NMR results, referred to the polar, water-soluble fraction of OC, show that fresh wood burning particles are composed of polyols and aromatic compounds, with a sharp resemblance with wood burning POA produced in wood stoves, while aged samples are clearly depleted of alcohols and are enriched in aliphatic acids with a smaller contribution of aromatic compounds. The comparison with biomass burning organic aerosols (BBOA) determined by high resolution aerosol mass spectrometry (HR-TOF-AMS) at the site shows only a partial overlap between NMR BB-POA and AMS BBOA, which can be explained by either the inability of BBOA to capture all BB-POA composition, especially the alcohol fraction, or the fact that BBOA account for insoluble organic compounds unmeasured by the NMR. Therefore, an unambiguous composition for biomass burning POA could not be derived from this study, with NMR analysis indicating a higher O / C

  20. Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Saarikoski, S.; Carbone, S.; Hillamo, R.; Facchini, M. C.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Swietlicki, E.; Eriksson Stenström, K.; Prévôt, A. S. H.; Massoli, P.; Canaragatna, M.; Worsnop, D.; Decesari, S.

    2014-05-01

    Atmospheric organic aerosols are generally classified as primary and secondary (POA and SOA) according to their formation processes. An actual separation, however, is challenging when the timescales of emission and gas-to-particle formation overlap. The presence of SOA formation in biomass burning plumes leads to scientific questions about whether the oxidized fraction of biomass burning aerosol is rather of secondary or primary origin, as some studies would suggest, and about the chemical compositions of oxidized biomass burning POA and SOA. In this study, we apply nuclear magnetic resonance (NMR) spectroscopy to investigate the functional group composition of fresh and aged biomass burning aerosols during an intensive field campaign in the Po Valley, Italy. The campaign was part of the EUCAARI project and was held at the rural station of San Pietro Capofiume in spring 2008. Factor analysis applied to the set of NMR spectra was used to apportion the wood burning contribution and other organic carbon (OC) source contributions, including aliphatic amines. Our NMR results, referred to the polar, water-soluble fraction of OC, show that fresh wood burning particles are composed of polyols and aromatic compounds, with a sharp resemblance to wood burning POA produced in wood stoves, while aged samples are clearly depleted of alcohols and are enriched in aliphatic acids with a smaller contribution of aromatic compounds. The comparison with biomass burning organic aerosols (BBOA) determined by high-resolution aerosol mass spectrometry (HR-TOF-AMS) at the site shows only a partial overlap between NMR BB-POA and AMS BBOA, which can be explained by either the inability of BBOA to capture all BB-POA composition, especially the alcohol fraction, or the fact that BBOA account for insoluble organic compounds unmeasured by the NMR. Therefore, an unambiguous composition for biomass burning POA could not be derived from this study, with NMR analysis indicating a higher O / C ratio

  1. The Impact of Aerosols Generated from Biomass Burning, Dust Storms, and Volcanoes Upon the Earth's Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.

    1997-01-01

    A new technique for detecting aerosols from biomass burning and dust is developed. The radiative forcing of aerosols is estimated over four major ecosystems in South America. A new smoke and fire detection scheme is developed for biomass burning aerosols over South America. Surface shortware irradiance calculations are developed in the presence of biomass burning aerosols during the SCAR-B experiment. This new approach utilizes ground based, aircraft, and satellite measurements.

  2. Laboratory Studies of Carbon Emission from Biomass Burning for use in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wald, Andrew E.; Kaufman, Yoram J.

    1998-01-01

    Biomass burning is a significant source of many trace gases in the atmosphere. Up to 25% of the total anthropogenic carbon dioxide added to the atmosphere annually is from biomass burning. However, this gaseous emission from fires is not directly detectable from satellite. Infrared radiance from the fires is. In order to see if infrared radiance can be used as a tracer for these emitted gases, we made laboratory measurements to determine the correlation of emitted carbon dioxide, carbon monoxide and total burned biomass with emitted infrared radiance. If the measured correlations among these quantities hold in the field, then satellite-observed infrared radiance can be used to estimate gaseous emission and total burned biomass on a global, daily basis. To this end, several types of biomass fuels were burned under controlled conditions in a large-scale combustion laboratory. Simultaneous measurements of emitted spectral infrared radiance, emitted carbon dioxide, carbon monoxide, and total mass loss were made. In addition measurements of fuel moisture content and fuel elemental abundance were made. We found that for a given fire, the quantity of carbon burned can be estimated from 11 (micro)m radiance measurements only within a factor of five. This variation arises from three sources, 1) errors in our measurements, 2) the subpixel nature of the fires, and 3) inherent differences in combustion of different fuel types. Despite this large range, these measurements can still be used for large-scale satellite estimates of biomass burned. This is because of the very large possible spread of fire sizes that will be subpixel as seen by Moderate Resolution Imaging Spectroradiometer (MODIS). Due to this large spread, even relatively low-precision correlations can still be useful for large-scale estimates of emitted carbon. Furthermore, such estimates using the MODIS 3.9 (micro)m channel should be even more accurate than our estimates based on 11 (micro)m radiance.

  3. Transport and scavenging of biomass burning aerosols in the maritime continent

    NASA Astrophysics Data System (ADS)

    Lee, H. H.; Wang, C.

    2014-12-01

    Biomass burning frequently occurs in summertime over the maritime continent, especially in Malaysia peninsula, Sumatra, and Borneo. Under certain weather conditions, particulate matters emitted from such fires cause degrade of air quality and thus occurrence of often weekly long haze in downwind locations such as Singapore. It is possible that these biomass burning aerosols may have influenced convective clouds in the maritime continent though such cases have not been well simulated and understood. In order to improve understanding of the spatiotemporal coverage and influence of biomass burning aerosols in the maritime continent, we have used the Weather Research and Forecasting (WRF) model to study the transport of biomass burning aerosols from Malaysia peninsula, Sumatra, and Borneo, using biomass burning emissions from the Fire INventory from NCAR (FINN) version 1.0. We choose to use emissions from the month of August because the annual emissions peak often occurs within this month. Based on a multi-year ensemble simulation, we have examined the influences of various meteorological regimes on the aerosol transport and wet removal.

  4. Holocene linkages between char, soot, biomass burning and climate from Lake Daihai, China

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Marlon, J. R.; Cao, J. J.; Jin, Z. D.; An, Z. S.

    2012-12-01

    Black or elemental carbon (EC), including soot and char, are byproducts of anthropogenic fossil-fuel and biomass burning, and also of wildfires. EC, and particularly soot, strongly affects atmospheric chemistry and physics and thus radiative forcing; it can also alter regional climate and precipitation. Pre-industrial variations in EC as well as its source areas and controls however, are poorly known. Here we use a lake-sediment EC record from China to reconstruct Holocene variations in soot (combustion emissions formed via gas-to-particle conversion processes) and char (combustion residues from pyrolysis) measured with a thermal/optical method. Comparisons with sedimentary charcoal records (i.e., particles measured microscopically), climate and population data are used to infer variations in biomass burning and its controls. During the Holocene, positive correlations are observed between EC and an independent index of regional biomass burning. Negative correlations are observed between EC and monsoon intensity, and tree cover inferred from arboreal pollen percentages. Abrupt declines in temperature are also linked with widespread declines in fire. Our results 1) confirm the robustness of a relatively new method for reconstructing variations in EC; 2) document variations in regional biomass burning; 3) support a strong climatic control of biomass burning throughout the Holocene; and 4) indicate that char levels are higher today than at any time during the Holocene.

  5. Estimates of emissions from open biomass burning in Tropical Asia during 2000-2007

    NASA Astrophysics Data System (ADS)

    Chang, D.

    2009-04-01

    Biomass burning in tropical Asia emits large amounts of trace gases and particulate matters to atmosphere, which have significant influence in climate change and atmospheric chemistry. Emissions from open biomass burning in tropical Asia are estimated during seven fire years 2000-2006 (i.e., April 1st 2000-March 31st 2007), using newly released L3JRC burned area product and MODIS burned area product (MCD45A1). Over seven fire years, both burned areas and fire emissions showed clearly spatial and inter-annual variations. The L3JRC burned areas ranged from 31.3×103 km2 for fire year 2005 to 57.5×103 km2 for 2000, while the MODIS burned areas ranged from 64.9×103 km2 for fire year 2002 to 127.0×103 km2 for 2004. We compared the total burned areas and forest burned areas derived from the two separate products with publication data for several typical countries and found that the L3JRC results were comparable to previous studies and the MODIS results showed significant overestimation. The annual average L3JRC-based emissions were 29915, 1948, 90, 30, 12, 105, and 871 Gg yr-1 for CO2, CO, CH4, NOx, BC, OC, and PM2.5 respectively, while MODIS-based emissions were 86740, 5222, 230, 83, 33, 296, and 2188 Gg yr-1, 60.2%-65.5% higher than L3JRC. Forest fires were the largest contributor to fire emissions, though burned area within forest biomes only constituted a minority of total burned area. Fire emissions were mainly concentrated in Myanmar, Cambodia and India. Furthermore, the seasonal distribution of fire emissions was in good agreement with that of total burned areas.

  6. Climatic Control of Biomass Burning During the Last Glacial-Interglacial Transition

    NASA Astrophysics Data System (ADS)

    Marlon, J. R.; Bartlein, P. J.; Daniau, A.; Harrison, S. P.

    2009-12-01

    Sedimentary charcoal and pollen records were used to test the hypothesis that an extraterrestrial impact at the beginning of the Younger Dryas Chonozone (YDC, 12.9 to 11.7 ka) caused widespread biomass burning in North America. Comet-theory proponents argue that continental-scale wildfires were triggered by the ET impact and are evidenced by carbon spherules, charcoal and soot found at archaeological sites across the continent. We examined charcoal accumulation rates and pollen-inferred vegetation changes in lake-sediment records during the 5000-year interval surrounding the YDC to look for evidence of continental-scale burning. None of the study sites used in the analysis are associated with archaeological sites and many are in remote, high-elevation locations where impacts from human-caused burning was probably minimal. All the records show evidence of sporadic fires throughout the late-glacial period, and together show a trend of increasing biomass burning until the beginning of the YDC, little increase during, and then increasing biomass burning at the end of the YDC. Three of fifteen of the highest-resolution records (i.e. < 50 years per sample), in which individual fire episodes are registered as charcoal peaks, show large fires around the beginning of the YDC, but the strongest evidence for widespread, synchronous fire activity during any 100-yr interval occurs at 11.7 ka, the end of the YDC. Among the potential controls of biomass burning, climate emerges as the most parsimonious explanation for the abrupt increase in biomass burning accompanying the abrupt warming at the end of the YDC through the influence of temperature on biomass productivity (and hence fuels), and fire-promoting environmental conditions. The association between increased biomass burning and the abrupt warming at the end of the YDC is replicated in the response of a composite global biomass burning record to the 20 Greenland Interstadial events during the past 80,000 years. In

  7. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

    USGS Publications Warehouse

    Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S.

    2011-01-01

    Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we examined the depth of ground-layer combustion in 178 sites dominated by black spruce in Alaska, using data collected from 31 fire events between 1983 and 2005. We show that the depth of burning increased as the fire season progressed when the annual area burned was small. However, deep burning occurred throughout the fire season when the annual area burned was large. Depth of burning increased late in the fire season in upland forests, but not in peatland and permafrost sites. Simulations of wildfire-induced carbon losses from Alaskan black spruce stands over the past 60 years suggest that ground-layer combustion has accelerated regional carbon losses over the past decade, owing to increases in burn area and late-season burning. As a result, soils in these black spruce stands have become a net source of carbon to the atmosphere, with carbon emissions far exceeding decadal uptake.

  8. [Emission factors and PM chemical composition study of biomass burning in the Yangtze River Delta region].

    PubMed

    Tang, Xi-Bin; Huang, Cheng; Lou, Sheng-Rong; Qiao, Li-Ping; Wang, Hong-Li; Zhou, Min; Chen, Ming-hua; Chen, Chang-Hong; Wang, Qian; Li, Gui-Ling; Li, Li; Huang, Hai-Ying; Zhang, Gang-Feng

    2014-05-01

    The emission characteristics of five typical crops, including wheat straw, rice straw, oil rape straw, soybean straw and fuel wood, were investigated to explore the gas and particulates emission of typical biomass burning in Yangzi-River-Delta area. The straws were tested both by burning in stove and by burning in the farm with a self-developed measurement system as open burning sources. Both gas and fine particle pollutants were measured in this study as well as the chemical composition of fine particles. The results showed that the average emission factors of CO, NO, and PM2,5 in open farm burning were 28.7 g.kg -1, 1.2 g.kg-1 and 2.65 g kg-1 , respectively. Due to insufficient burning in the low oxygen level environment, the emission factors of stove burning were higher than those of open farm burning, which were 81.9 g kg-1, 2. 1 g.kg -1 and 8.5 gkg -1 , respectively. Oil rape straw had the highest emission factors in all tested straws samples. Carbonaceous matter, including organic carbon(OC) and element carbon(EC) , was the foremost component of PM2, 5from biomass burning. The average mass fractions of OC and EC were (38.92 +/- 13.93)% and (5.66 +/-1.54)% by open farm burning and (26.37 +/- 10. 14)% and (18.97 +/- 10.76)% by stove burning. Water soluble ions such as Cl-and K+ had a large contribution. The average mass fractions of CI- and K+ were (13.27 +/-6. 82)% and (12.41 +/- 3.02)% by open farm burning, and were (16.25 +/- 9.34)% and (13.62 +/- 7.91)% by stove burning. The K +/OC values of particles from wheat straw, rice straw, oil rape straw and soybean straw by open farm burning were 0. 30, 0. 52, 0. 49 and 0. 15, respectively, which can be used to evaluate the influence on the regional air quality in YRD area from biomass burning and provide direct evidence for source apportionment.

  9. Model assessing the impact of biomass burning on air quality and photochemistry in Mexico City

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Wiedinmyer, C.; Yokelson, R. J.; Molina, L. T.

    2010-12-01

    Biomass burning is a major global emission source for trace gases and particulates. Various multi-platform measurements during the Mexico City Metropolitan Area (MCMA)-2003 and Megacity Initiative: Local and Global Research Observations (MILAGRO)-2006 campaigns suggest significant influences of biomass burning (BB) on air quality in Mexico City during the dry season, and the observations show emissions from BB impose viable yet highly variable impacts on organic aerosols (OA) in and around Mexico City. We have developed emission inventories for forest fires surrounding Mexico City based on measurement-estimated emission factors and MODIS fire counts, and for garbage fires in Mexico City based on in situ-measured emission factors and the population distribution and socioeconomic data. In this study, we will comprehensively assess the impact of biomass burning on the aerosol loading, chemical composition, OA formation and photochemistry in Mexico City using WRF-Chem. Analysis of the model results, in conjunction with concurrent field measurements, will be presented.

  10. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  11. Composition of Secondary Organic Aerosols Produced by Photo-Oxidation of Biomass Burning Emissions in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Sullivan, A.; Hennigan, C. J.; Robinson, A. L.; Collett, J. L.

    2009-12-01

    Knowledge of the chemical composition of atmospheric organic aerosols (OA) is essential for accurate representation of OA in air quality and climate models. Both the sources of OA and their properties and effects remain poorly understood. In particular, we still know relatively little about the atmospheric formation of secondary organic aerosols (SOA). There is growing interest in the impact of biomass burning emissions on air quality, human health, and radiative forcing. Through a series of experiments, we are working to quantify changes in the chemical composition of wood smoke particles as a result of photochemical aging under well-controlled laboratory conditions. One specific objective of this study is to identify markers for biomass burning SOA and test whether these markers can be used in atmospheric samples to quantify SOA formation from aging of biomass burning emissions. We analyzed SOA generated in a smog chamber by photooxidation of smoke produced by burning oak wood. In order to initiate photochemistry, the chamber was irradiated with UV light. Aqueous extracts of collected aerosol samples were analyzed with Electrospray Ionization Time-of-Flight Mass Spectrometry. The high mass accuracy of these measurements reduces ambiguity in the assignment of elemental compositions for observed ions. Analysis has shown that primary oak smoke aerosol includes products of the thermal decomposition of cellulose (levoglucosan, cyclotene etc.) and lignin (guaiacol and syringol derivatives, mostly aldehydes and alcohols). After 2 hours of aging at typical summertime hydroxyl radical concentrations, the aerosol mass increased 2.5 fold due to the production of secondary organic aerosol. Mass spectra of the secondary organic aerosol formed are dominated by organic nitrates (nitrophenol, nitrocresol, nitrocatechol, and nitroguaiacol) and aromatic acids (benzoic acid, mono and di-hydroxybenzoic acid). Both nitrates and acids most likely are formed due to oxidation of the

  12. Black Carbon from Biomass Burning Emissions: New Mexico Wildfires and Controlled Laboratory Burns of Fuels Found in the Southwestern US

    NASA Astrophysics Data System (ADS)

    Aiken, A. C.; Dubey, M.; Liu, S.; McMeeking, G. R.; Gorkowski, K.; Arata, C.; Mazzoleni, C.; China, S.; Kreidenweis, S. M.; DeMott, P. J.; Yokelson, R. J.; Robinson, A. L.

    2013-12-01

    Black carbon (BC) is currently considered the second most important global warming factor behind CO2 and is thought to be underestimated by a factor of two in most global models (Bond et al., 2013). Approximately half of BC comes from biomass burning (BB) sources, which are estimated to contribute up to ~0.6 W/m2 warming of the atmosphere. Organic carbon (OC) from fires condenses on and/or mixes with the BC, lowering the overall forcing from BB to 0.03 × 0.12 Wm-2. This reduction depends strongly on the composition and mixing state of OC and BC, which is dependent on fire conditions, e.g. modified combustion efficiency. Models and laboratory measurements indicate that a BC core coated with a non-absorbing layer can enhance absorption by 2, although it has yet to be observed in ambient data to this degree (Cappa et al., 2012). Direct on-line measurements of BC are made with the single particle soot photometer (SP2) from "fresh" and "aged" BB. We investigate BC in concentrated BB plumes from the two largest wildfires in New Mexico's history with different ages and compare them to BC from indoor generation from single-source fuels, e.g. ponderosa pine, juniper, sawgrass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). FLAME-IV includes direct emissions, well-mixed samples, and aging studies. Aerosol optical properties were measured using photoacoustic spectrometry for absorption and nephelometry for scattering with the 3-wavelength and single-wavelength Photoacoustic Soot Spectrometers (PASS-3: 405 nm, 532 nm, 781 nm; PASS: 375 nm) and for the first time are compared with the new Photoacoustic Extinctiometer (PAX; 870 nm) during FLAME-IV. Las Conchas Fire (July-August, 2011) BC was sampled after only a few hours of aging and exhibits mostly core-shell structure. Whitewater Baldy Fire (May-June, 2012) BC was sampled after an aging period of 10-20 hours and includes partially coated BC in addition to thickly coated core-shell BC. Partially coated BC is

  13. Characterizing the Chemical Complexity of Semi-Volatile Organic Compounds from Biomass Burning in Amazonia

    NASA Astrophysics Data System (ADS)

    Wernis, R. A.; Yee, L.; Isaacman-VanWertz, G. A.; Kreisberg, N. M.; de Sá, S. S.; Liu, Y.; Martin, S. T.; Alexander, L.; Palm, B. B.; Hu, W.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Artaxo, P.; Viegas, J.; Manzi, A. O.; Souza, R. A. F. D.; Hering, S. V.; Goldstein, A. H.

    2015-12-01

    Aerosols are a source of great uncertainty in radiative forcing predictions and have poorly understood impacts on human health. In many environments, biomass burning contributes a significant source of primary aerosol as well as reactive gas-phase precursors that can form secondary organic aerosol (SOA). One class of these precursors, semi-volatile organic compounds (SVOCs), has been shown to have a large contribution to the amount of SOA formed from fire emissions. At present, SVOC emissions from biomass burning are poorly constrained and understanding their contributions to SOA formation is an important research challenge. In the Amazonian dry season, biomass burning is a major source of gases and aerosols reducing regional air quality. As part of the GoAmazon 2014/5 field campaign, we deployed the Semi-Volatile Thermal desorption Aerosol Gas Chromatograph (SV-TAG) instrument at the rural T3 site, 60 km to the west of Manaus, Brazil to measure hourly concentrations of SVOCs in the gas and particle phases. This comprehensive technique detects thousands of compounds, enabling the discovery of previously unidentified compounds. In this work we explore compounds for which a correlation with well-known biomass burning tracers is observed to discover the identities of new tracers. We discuss contributions to the total organic aerosol from well-known, rarely reported and newly-identified biomass burning tracers. We find that levoglucosan, perhaps the most commonly used particle phase biomass burning tracer, contributed 0.6% and 0.3% of total organic aerosol in the dry and wet seasons, respectively.

  14. The impact of infield biomass burning on PM levels and its chemical composition.

    PubMed

    Dambruoso, P; de Gennaro, G; Di Gilio, A; Palmisani, J; Tutino, M

    2014-12-01

    In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.

  15. Using MODIS AOD to Constrain Biomass Burning Emission Source Strength in the GOCART Model

    NASA Astrophysics Data System (ADS)

    Petrenko, M. M.; Kahn, R. A.; Chin, M.

    2011-12-01

    Biomass burning has been recognized as a major contributor to atmospheric concentrations of carbonaceous aerosol, dominant in some locations and seasons. Simulations of biomass burning (BB) emissions in global chemistry transport models strongly depend on the inventories that define emission source location and strength. In this work, we use several global biomass burning emission inventories, including GFED3 monthly and daily, FRP-based, GFED-scaled Quick Fire Emission Dataset QFED, and several combinations of fuel load estimates, aerosol emission factors and MODIS-based burned area products as alternative inputs to the GOCART model. The resultant simulated aerosol optical depth (AOD) and its spatial distributions are compared to AOD snapshots measured by the MODIS instrument for 70 fire events occurring between 2006 and 2007. We present the conclusions of GOCART model performance in different regions of the world, for runs initiated with the range of BB emission inventory options. We also explore the limitations of using MODIS AOD snapshots to constrain biomass burning source strength in global aerosol models.

  16. Impact of biomass burning on rainwater acidity and composition in Singapore

    NASA Astrophysics Data System (ADS)

    Balasubramanian, R.; Victor, T.; Begum, R.

    1999-11-01

    The Indonesian forest fires that took place from August through October 1997 released large amounts of gaseous and particulate pollutants into the atmosphere. The particulate emissions produced a plume that was easily visible by satellite and significantly affected regional air quality in Southeast Asia. This prolonged haze episode provided an unprecedented opportunity to examine the effects of biomass burning on regional atmospheric chemistry. We undertook a comprehensive field study to assess the influence of biomass burning impacted air masses on precipitation chemistry in Singapore. Major inorganic and organic ions were determined in 104 rain samples collected using an automated wet-only sampler from July through December 1997. Mean pH values ranged from 3.79 to 6.20 with a volume-weighted mean of 4.35. There was a substantially large number of rain events with elevated concentrations of these ions during the biomass burning period. The relatively high concentrations of SO2-4, NO-3, and NH+4 observed during the burning period are attributed to a long residence time of air masses, leading to progressive gas to particle conversion of biomass burning emission components. The decrease in pH of precipitation in response to the increased concentrations of acids is only marginal, which is ascribed to neutralization of acidity by NH3 and CaCO3.

  17. Surveying Biomass Burning and Smoke Palls from the NASA-Mir Missions (1996-1998)

    NASA Technical Reports Server (NTRS)

    Glasser, Marvin E.

    1999-01-01

    A survey of the photography taken by cosmonauts and astronauts from the Mir station during the NASA-Mir mission was undertaken in order to understand the global spatial patterns of biomass burning events and their associated smoke palls. These NASA-Mir photographs provided spatial and temporal profiles of these dynamic and vital environmental phenomena. The information extracted from the photographic data has the potential to be integrated into the current atmospheric and environmental models to refine their predictive capabilities. In this photo-essay, we provide the results of survey of the NASA-Mir documentation of biomass burning and smoke palls.

  18. Use of Cavity Ring Down Spectroscopy to Characterize Organic Acids and Aerosols Emitted in Biomass Burning

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Fiddler, Marc; Singh, Sujeeta

    2012-02-01

    One poorly understood, but significant class of volatile organic compounds (VOC) present in biomass burning is gas-phase organic acids and inorganic acids. These acids are extremely difficult to measure because of their adsorptive nature. Particulates and aerosols are also produced during biomass burning and impact the radiation budget of the Earth and, hence, impact global climate. Use cavity ring down spectroscopy (CRD) to measure absorption cross sections for OH overtone induced photochemistry in some organic acids (acetic acid and peracetic acid) will be presented and planed measurements of optical properties of aerosols composed of mixtures of different absorbing and non-absorbing species using CRD will be discussed.

  19. Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Kaufman, Yoram J.; Setzer, Alberto W.; Tanre, Didre D.; Ward, Darold E.

    1991-01-01

    Ground-based and airborne measurements of biomass-burning smoke particle optical properties, obtained with a view to aerosol-absorption properties, are presented as a function of time and atmospheric height. The wavelength dependence of the optical thickness can be explained by a log-normal size distribution, with particles' effective radius varying between 0.1 and 0.2 microns. The strong correlation noted between aerosol particle profile and CO profile indicates that smoke particulates constitute a good tracer for emission trace gases from tropical biomass burning.

  20. Organic aerosols in a Brazilian agro-industrial area: Speciation and impact of biomass burning

    NASA Astrophysics Data System (ADS)

    Urban, R. C.; Alves, C. A.; Allen, A. G.; Cardoso, A. A.; Campos, M. L. A. M.

    2016-03-01

    This work presents the first comprehensive organic characterization of atmospheric aerosols from an agro-industrial region (São Paulo State, Brazil) highly impacted by biomass burning. The organic speciation was performed using different solvents of increasing polarity, enabling the identification and quantification of 172 different organic species by GC-MS. The mass of organic compounds reached 123 μg m- 3 in an aerosol sample collected during the sugar cane harvest period compared with 0.82 μg m- 3 in the non-harvest period. The samples most impacted by biomass burning were those with the highest percentages of non-polar compounds (n-alkanes; up to 96%). However, in absolute terms, the total mass of polar compounds in such samples was greater than for samples less impacted by this activity. Retene (a marker for biomass combustion) was the most abundant of the 19 polycyclic aromatic hydrocarbons quantified, corresponding to 14%-84%. This work shows that biomass burning was responsible for a benzo(a)pyrene equivalent index value that exceeded the recommendation of the World Health Organization. Principal component analysis indicated that agricultural biomass burning and emissions from crop processing facilities explained 42% of the variance of the data, while 37% was explained by urban emissions, 10% by vehicle emissions, and 10% by biogenic sources. This study provides insights into the emissions of a suite of organic compounds that could participate in anthropic alteration of regional cloud formation and precipitation patterns.

  1. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    NASA Astrophysics Data System (ADS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  2. High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions.

    PubMed

    Shi, Yusheng; Matsunaga, Tsuneo; Yamaguchi, Yasushi

    2015-09-15

    Biomass burning in tropical regions plays a significant role in atmospheric pollution and climate change. This study quantified a comprehensive monthly biomass burning emissions inventory with 1 km high spatial resolution, which included the burning of vegetation, human waste, and fuelwood for 2010 in three tropical regions. The estimations were based on the available burned area product MCD64A1 and statistical data. The total emissions of all gases and aerosols were 17382 Tg of CO2, 719 Tg of CO, 30 Tg of CH4, 29 Tg of NOx, 114 Tg of NMOC (nonmethane organic compounds), 7 Tg of SO2, 10 Tg of NH3, 79 Tg of PM2.5 (particulate matter), 45 Tg of OC (organic carbon), and 6 Tg of BC (black carbon). Taking CO as an example, vegetation burning accounted for 74% (530 Tg) of the total CO emissions, followed by fuelwood combustion and human waste burning. Africa was the biggest emitter (440 Tg), larger than Central and South America (113 Tg) and South and Southeast Asia (166 Tg). We also noticed that the dominant fire types in vegetation burning of these three regions were woody savanna/shrubland, savanna/grassland, and forest, respectively. Although there were some slight overestimations, our results are supported by comparisons with previously published data.

  3. The effects of biomass burning on the concentration of trace gases in the atmosphere

    NASA Technical Reports Server (NTRS)

    Donaldson, Leon M.

    1988-01-01

    Over the past several years, there has been considerable interest concerning the global effects of biomass burning on concentrations of trace gases in the atmosphere. The paucity of reported studies and investigations into the effects of the Greenhouse Gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), up until about a decade ago, would suggest that the topic was not then one of universal concern. Efforts are now being made to understand the biogenic, anthropogenic and photochemical sources of atmospheric trace gases. Biomass burning which includes the burning of forests for clearing, the burning of vegetative stubble after harvesting, and lightning and human-induced wildfires is but one consideration under the general paradigm of atmospheric perturbations. A team of researchers from the Langley Research Center, along with the Canadian Forest Ministry, Ontario, Canada collaborated in an experiment in a deforestration effort through a prescribed burn. Through a specially designed experimental modeling and instrumentation, a substantial pre-burn data set was collected. The primary focus of the pre-burn experimental activities was the emission of nitrous oxide (N2O) gas from selected sites.

  4. Investigation of biomass burning and aerosol loading and transport in South America utilizing geostationary satellites

    NASA Technical Reports Server (NTRS)

    Menzel, Paul; Prins, Elaine

    1995-01-01

    This study attempts to assess the extent of burning and associated aerosol transport regimes in South America and the South Atlantic using geostationary satellite observations, in order to explore the possible roles of biomass burning in climate change and more directly in atmospheric chemistry and radiative transfer processes. Modeling and analysis efforts have suggested that the direct and indirect radiative effects of aerosols from biomass burning may play a major role in the radiative balance of the earth and are an important factor in climate change calculations. One of the most active regions of biomass burning is located in South America, associated with deforestation in the selva (forest), grassland management, and other agricultural practices. As part of the NASA Aerosol Interdisciplinary Program, we are utilizing GOES-7 (1988) and GOES-8 (1995) visible and multispectral infrared data (4, 11, and 12 microns) to document daily biomass burning activity in South America and to distinguish smoke/aerosols from other multi-level clouds and low-level moisture. This study catalogues the areal extent and transport of smoke/aerosols throughout the region and over the Atlantic Ocean for the 1988 (July-September) and 1995 (June-October) biomass burning seasons. The smoke/haze cover estimates are compared to the locations of fires to determine the source and verify the haze is actually associated with biomass burning activities. The temporal resolution of the GOES data (half-hourly in South America) makes it possible to determine the prevailing circulation and transport of aerosols by considering a series of visible and infrared images and tracking the motion of smoke, haze and adjacent clouds. The study area extends from 40 to 70 deg W and 0 to 40 deg S with aerosol coverage extending over the Atlantic Ocean when necessary. Fire activity is estimated with the GOES Automated Biomass Burning Algorithm (ABBA). To date, our efforts have focused on GOES-7 and GOES-8 ABBA

  5. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2012-08-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. Here we have analyzed how emissions from several biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary fire emissions and the TM5 chemical transport model, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g. fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture matching current levels despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; we show that the majority of savannas have not burned in the past 10 yr, even in Africa which

  6. Short-term cooling but long-term global warming due to biomass burning particles and gases

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2002-12-01

    Biomass burning is the burning of evergreen forests, deciduous forests, woodlands, grassland, and agricultural land, either to clear land for other use, to stimulate grass growth, for forest management, or as a ritual. Biomass burning releases both gases (e.g.,CO2, CO, CH4, NOx, SO2, C2H6, C2H4, C3H8, C3H6) and aerosol particle components (e.g., black carbon, organic matter, K+, Na+, Ca2+, Mg2+, NH4+, H+, Cl-, H2SO4, HSO4-, SO42-, NO3-). The global-scale climate response of controlling emissions of these gas plus particle constituents during biomass burning has not been examined to date. Whereas biomass-burning particles enhance global cooling in the short term, it is found that this cooling is partially suppressed by black carbon and more than offset in the long term by the warming effect of long-lived biomass-burning gases. The emissions of the most important of these gases, CO2, is only partially offset by biomass regrowth each year. As such, a reduction in biomass burning, not considered under the Kyoto Protocol, should slow global warming, contrary to common perception. Control of biomass-burning should also improve human health.

  7. Fossil Fuel and Biomass Burning Effect on Climate--Heating or Cooling?.

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-06-01

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate chaw. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO2 cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to cheek whether the radiative balance favors heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO2 molecules as SO2 molecules, each SO2 molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO2 molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO2 (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the C02 concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect.

  8. Evolution of Biomass Burning Aerosol Optical Properties in the Near Field

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J., III; Arnott, W. P.; Chand, D.; Fortner, E.; Freedman, A.; Kleinman, L. I.; Onasch, T. B.; Shilling, J. E.; Springston, S. R.

    2014-12-01

    Biomass burning (BB) events are known to produce chemically rich environments that can impact the evolution of primary aerosols and influence secondary aerosols production rates. With their increasing in frequency, BB events are expected to exert an ever-increasing impact on climate due to aerosol radiative forcing processes. One area that is still poorly understood is the evolution of these smoke aerosols in the near field. Recent literature suggests that BB aerosols undergo a rapid evolution near their source that is then followed by a slower aging phase. During the summer of 2013, the Department of Energy-sponsored an aircraft field campaign called the Biomass Burning Observation Project (BBOP) that specifically targeted the evolution of smoke aerosols in the near field (< 2 hours). Results examining the evolution of BB optical and microphysical properties will be presented. To probe these properties, the BBOP field campaign deployed a Single Particle Soot Photometer (SP2) to probe the mixing state of refractory black carbon (rBC) and a Soot Particle Aerosol Mass Spectrometer (SP-AMS) to investigate the composition of both non-refractory and rBC-containing particles. Aerosol optical properties were measured in situ using a 355 nm Photoacoustic spectrometer (PAS), a 532 nm photo thermal interferometer (PTI), a 630 nm cavity Attenuation Phase Shifted (CAPS) spectrometer, a 3-λ nephelometer, and a 3-λ PSAP. The BBOP study represented the maiden aircraft deployment for the SP-AMS, the 355 nm PAS and 532 nm PTI. Discussion will be on the near-field evolution of particle mixing state and morphology, chemical composition, and microphysical processes that determine aerosol size distributions and single scattering albedo (SSA) of light absorbing aerosols. In the cases studied, increases in the coating thickness of refractive black carbon (rBC) particles, organic aerosol/rBC ratio, scattering/CO ratio, and aerosol size distributions have been observed. Results will be

  9. Emission factors for open and domestic biomass burning for use in atmospheric models

    NASA Astrophysics Data System (ADS)

    Akagi, S. K.; Yokelson, R. J.; Wiedinmyer, C.; Alvarado, M. J.; Reid, J. S.; Karl, T.; Crounse, J. D.; Wennberg, P. O.

    2011-05-01

    Biomass burning (BB) is the second largest source of trace gases and the largest source of primary fine carbonaceous particles in the global troposphere. Many recent BB studies have provided new emission factor (EF) measurements. This is especially true for non-methane organic compounds (NMOC), which influence secondary organic aerosol (SOA) and ozone formation. New EF should improve regional to global BB emissions estimates and therefore, the input for atmospheric models. In this work we present an up-to-date, comprehensive tabulation of EF for known pyrogenic species based on measurements made in smoke that has cooled to ambient temperature, but not yet undergone significant photochemical processing. All EFs are converted to one standard form (g compound emitted per kg dry biomass burned) using the carbon mass balance method and they are categorized into 14 fuel or vegetation types. Biomass burning terminology is defined to promote consistency. We compile a large number of measurements of biomass consumption per unit area for important fire types and summarize several recent estimates of global biomass consumption by the major types of biomass burning. Post emission processes are discussed to provide a context for the emission factor concept within overall atmospheric chemistry and also highlight the potential for rapid changes relative to the scale of some models or remote sensing products. Recent work shows that individual biomass fires emit significantly more gas-phase NMOC than previously thought and that including additional NMOC can improve photochemical model performance. A detailed global estimate suggests that BB emits at least 400 Tg yr-1 of gas-phase NMOC, which is almost 3 times larger than most previous estimates. Selected recent results (e.g. measurements of HONO and the BB tracers HCN and CH3CN) are highlighted and key areas requiring future research are briefly discussed.

  10. Emission factors for open and domestic biomass burning for use in atmospheric models

    NASA Astrophysics Data System (ADS)

    Akagi, S. K.; Yokelson, R. J.; Wiedinmyer, C.; Alvarado, M. J.; Reid, J. S.; Karl, T.; Crounse, J. D.; Wennberg, P. O.

    2010-11-01

    Biomass burning (BB) is the second largest source of trace gases and the largest source of primary fine carbonaceous particles in the global troposphere. Many recent BB studies have provided new emission factor (EF) measurements. This is especially true for non methane organic compounds (NMOC), which influence secondary organic aerosol (SOA) and ozone formation. New EF should improve regional to global BB emissions estimates and therefore, the input for atmospheric models. In this work we present an up-to-date, comprehensive tabulation of EF for known pyrogenic species based on measurements made in smoke that has cooled to ambient temperature, but not yet undergone significant photochemical processing. All the emission factors are converted to one standard form (g compound emitted per kg dry biomass burned) using the carbon mass balance method and they are categorized into 14 fuel or vegetation types. We compile a large number of measurements of biomass consumption per unit area for important fire types and summarize several recent estimates of global biomass consumption by the major types of biomass burning. Biomass burning terminology is defined to promote consistency. Post emission processes are discussed to provide a context for the emission factor concept within overall atmospheric chemistry and also highlight the potential for rapid changes relative to the scale of some models or remote sensing products. Recent work shows that individual biomass fires emit significantly more gas-phase NMOC than previously thought and that including additional NMOC can improve photochemical model performance. A detailed global estimate suggests that BB emits at least 400 Tg yr-1 of gas-phase NMOC, which is about 4 times larger than most previous estimates. Selected recent results (e.g. measurements of HONO and the BB tracers HCN and CH3CN) are highlighted and key areas requiring future research are briefly discussed.

  11. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data

    NASA Astrophysics Data System (ADS)

    Chang, D.; Song, Y.

    2009-09-01

    Biomass burning in tropical Asia emits large amounts of trace gases and particulate matters into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000-2006 (1 April 2000-31 March 2007). Burned areas were estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1). Available fuel loads and emission factors were assigned for each vegetation type in a GlobCover characterisation map, and fuel moisture content was taken into account when calculating combustion factors. Over the whole period, both burned areas and fire emissions clearly showed spatial and seasonal variations. The L3JRC burned areas ranged from 31 165 km2 in fire year 2005 to 57 313 km2 in 2000, while the MCD45A1 burned areas ranged from 54 260 km2 in fire year 2001 to 127 068 km2 in 2004. Comparisons of L3JRC and MCD45A1 burned areas with ground-based measurements and other satellite information were constructed in several major burning regions, and results suggested that MCD45A1 performed better in most areas than L3JRC did although with a certain degree of underestimation of burned forest areas. The average annual L3JRC-based emissions were 125, 12, 0.98, 1.91, 0.11, 0.89, 0.044, 0.022, 0.42, 3.40, and 3.68 Tg yrburning was determined as the major source of the fire emissions due to the high carbon density. Although agricultural burning was the second important contributor, a great deal of crop residue combustion could probably be missed by satellite observations when compared to previously published data, which may be because of its small burning size. Fire emissions were mainly concentrated in Indonesia

  12. Genotoxicity and composition of particulate matter from biomass burning in the eastern Brazilian Amazon region.

    PubMed

    de Oliveira Alves, Nilmara; Matos Loureiro, Ana Lúcia; Dos Santos, Fernando Cavalcante; Nascimento, Kátia Halter; Dallacort, Rivanildo; de Castro Vasconcellos, Pérola; de Souza Hacon, Sandra; Artaxo, Paulo; de Medeiros, Silvia Regina Batistuzzo

    2011-07-01

    In the present study Tradescantia pallida micronucleus (Trad-MCN) bioassay was used to assess the genotoxicity of particulate matter with a mass median aerodynamic diameter less than 10 μm (PM₁₀) in Tangara da Serra (MT), a Brazilian Amazon region that suffers the impact of biomass burning. The levels of PM (coarse and fine size fractions) and black carbon (BC) collected were also measured. Furthermore, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified in the samples taken during the burning period by gas chromatography with flame ionization detection (GC-FID). The PM and BC results for both fractions indicate a strong correlation (p < 0.001). The analysis of alkanes indicates an anthropic influence. Retene was the most abundant PAH found, an indicator of biomass burning, and 12 other PAHs considered to be potentially mutagenic and/or carcinogenic were identified in this sample. The Trad-MCN bioassay showed a significant increase in micronucleus frequency during the period of most intense burning, possibly related to the mutagenic PAHs that were found in such extracts. This study demonstrated that Trad-MCN was sensitive and efficient in evaluating the genotoxicity of organic compounds from biomass burning. It further emphasizes the importance of performing chemical analysis, because changes in chemical composition generally have a negative effect on many living organisms. This bioassay (ex situ), using T. pallida with chemical analysis, is thus recommended for characterizing the genotoxicity of air pollution.

  13. Understanding the Environmental and Climate Impacts of Biomass Burning in Northern Sub-Saharan Africa

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Gatebe, Charles; Bolten, John; Policelli, Fritz; Habib, Shahid; Lee, Jejung; Wang, Jun; Wilcox, Eric; Adegoke, Jimmy

    2011-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding'of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  14. The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Freitas, Saulo R.; Kottmeier, Christoph; Kraut, Isabel; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard

    2016-07-01

    We quantified the effects of the plume rise of biomass burning aerosol and gases for the forest fires that occurred in Saskatchewan, Canada, in July 2010. For this purpose, simulations with different assumptions regarding the plume rise and the vertical distribution of the emissions were conducted. Based on comparisons with observations, applying a one-dimensional plume rise model to predict the injection layer in combination with a parametrization of the vertical distribution of the emissions outperforms approaches in which the plume heights are initially predefined. Approximately 30 % of the fires exceed the height of 2 km with a maximum height of 8.6 km. Using this plume rise model, comparisons with satellite images in the visible spectral range show a very good agreement between the simulated and observed spatial distributions of the biomass burning plume. The simulated aerosol optical depth (AOD) with data of an AERONET station is in good agreement with respect to the absolute values and the timing of the maximum. Comparison of the vertical distribution of the biomass burning aerosol with CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) retrievals also showed the best agreement when the plume rise model was applied. We found that downwelling surface short-wave radiation below the forest fire plume is reduced by up to 50 % and that the 2 m temperature is decreased by up to 6 K. In addition, we simulated a strong change in atmospheric stability within the biomass burning plume.

  15. Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons

    NASA Astrophysics Data System (ADS)

    Marlon, Jennifer R.; Kelly, Ryan; Daniau, Anne-Laure; Vannière, Boris; Power, Mitchell J.; Bartlein, Patrick; Higuera, Philip; Blarquez, Olivier; Brewer, Simon; Brücher, Tim; Feurdean, Angelica; Gil Romera, Graciela; Iglesias, Virginia; Yoshi Maezumi, S.; Magi, Brian; Mustaphi, Colin J. Courtney; Zhihai, Tonishtan

    2016-06-01

    The location, timing, spatial extent, and frequency of wildfires are changing rapidly in many parts of the world, producing substantial impacts on ecosystems, people, and potentially climate. Paleofire records based on charcoal accumulation in sediments enable modern changes in biomass burning to be considered in their long-term context. Paleofire records also provide insights into the causes and impacts of past wildfires and emissions when analyzed in conjunction with other paleoenvironmental data and with fire models. Here we present new 1000-year and 22 000-year trends and gridded biomass burning reconstructions based on the Global Charcoal Database version 3 (GCDv3), which includes 736 charcoal records (57 more than in version 2). The new gridded reconstructions reveal the spatial patterns underlying the temporal trends in the data, allowing insights into likely controls on biomass burning at regional to global scales. In the most recent few decades, biomass burning has sharply increased in both hemispheres but especially in the north, where charcoal fluxes are now higher than at any other time during the past 22 000 years. We also discuss methodological issues relevant to data-model comparisons and identify areas for future research. Spatially gridded versions of the global data set from GCDv3 are provided to facilitate comparison with and validation of global fire simulations.

  16. The reactivity of NO2 with biomass burning products in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ammann, M.; Rössler, E.

    2003-04-01

    Biomass burning results in a large variety of partially oxidized semivolatile hydrocarbons turning up in the biomass burning aerosol or secondary organic aerosol. A significant fraction of these, e.g. OH-substituted aromatics, can undergo reactions in the condensed phase with NO2 to form nitrite and organic products. These reactions might have an impact on the nitrogen oxide budget in biomass burning plumes but also determine their life-time in the condensed phase, together with other atmospheric oxidants. In this study we present results on the aqueous phase kinetics of NO2 with members of the guaiacol and catechol families as representatives of biomass burning aerosol. We use the wetted wall flow tube technique to measure uptake coefficients of NO2 on buffered aqueous solutions of these species as a function of pH. The loss of NO2 above these solutions is measured using a chemiluminescence detector, and nitrite in the aqueous phase is measured by ion-chromatography.

  17. LEVOGLUCOSAN, A TRACER FOR CELLULOSE IN BIOMASS BURNING AND ATMOSPHERIC PARTICLES. (R823990)

    EPA Science Inventory

    Abstract

    The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation wa...

  18. Biomass Burning Emissions – The Importance of Reducing Uncertainties for Improved Regulatory Decision; an EPA Perspective

    EPA Science Inventory

    Biomass burning emissions from wildland and prescribed fires can have far reaching impacts in several of EPA’s regulatory programs under the Clean Air Act, ultimately affecting decisions on actions taken under State Implementation Plans (SIPs), and programs such as Visibility and...

  19. Development of a Biomass Burning Emissions Inventory by Combining Satellite and Ground-based Information

    EPA Science Inventory

    A 2005 biomass burning (wildfire, prescribed, and agricultural) emission inventory has been developed for the contiguous United States using a newly developed simplified method of combining information from multiple sources for use in the US EPA’s national Emission Inventory (NEI...

  20. Photochemical production of O3 in biomass burning plumes in the boundary layer over northern Australia

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kondo, Y.; Ko, M.; Koike, M.; Kita, K.; Blake, D. R.; Hu, W.; Scott, C.; Kawakami, S.; Miyazaki, Y.; Russell-Smith, J.; Ogawa, T.

    2003-05-01

    In situ aircraft measurements of ozone (O3) and its precursors were made over northern Australia in August-September 1999 during the Biomass Burning and Lightning Experiment Phase B (BIBLE-B). A clear positive correlation of O3 with carbon monoxide (CO) was found in biomass burning plumes in the boundary layer (<3 km). The ΔO3/ΔCO ratio (linear regression slope of O3-CO correlation) is found to be 0.12 ppbv/ppbv, which is comparable to the ratio of 0.15 ppbv/ppbv observed at 0-4 km over the Amazon and Africa in previous studies. The net flux of O3 exported from northern Australia during BIBLE-B is estimated to be 0.3 Gmol O3/day. In the biomass burning region, large enhancements of O3 were coincident with the locations of biomass burning hot spots, suggesting that major O3 production occurred near fires (horizontal scale <50 km).

  1. Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    SciTech Connect

    Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

    2009-05-13

    Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

  2. Biomass Burning and Anthropogenic Sources of CO over New England in the Summer of 2004

    NASA Astrophysics Data System (ADS)

    Warneke, C.; de Gouw, J. A.; Stohl, A.; Cooper, O. R.; Golden, P. D.; Kuster, W.; Kato, S.; Holloway, J. S.; Williams, E. J.; Lerner, B.; McKeen, S. A.; Trainer, M.; Fehsenfeld, F. C.; Atlas, E. L.; Donelly, S. G.

    2005-12-01

    During the summer of 2004 large wildfires were burning in Alaska and western Canada, and part of the emissions were transported towards the northeast United States, where they were observed during the NEAQS-ITCT 2k4 (New England Air Quality Study - Intercontinental Transport and Chemical Transformation) study. Using acetonitrile and chloroform as tracers, the biomass burning and anthropogenic fractions of the carbon monoxide (CO) enhancement are determined. As much as 30% of the measured enhancement is attributed to the forest fires in Alaska and western Canada and 70% to the urban emissions of mainly New York City and Boston. On some days the forest fire emissions were mixed down to the surface and dominated the CO enhancement. The results compare well with those from the FLEXPART transport model, and indicate that the total emissions during the measurement campaign for biomass burning might be as high as 50 Tg.

  3. Observations of UV-B radiation during biomass burning at cuiabá, Brazil

    NASA Astrophysics Data System (ADS)

    Sahai, Y.; Kirchhoff, V. W. J. H.; Paes Leme, N.; Casiccia, C.

    During the last few years, a network (6 stations) of Brewer spectrophotometers has been established in different ecosystems in South America by the Brazilian National Institute for Space Research (INPE). A Brewer spectrophotometer permits simultaneous observations of total ozone and UV-B radiation and is operational on a routine basis at Cuiabá (16°S, 56°W), Brazil, since 1991. Surface ozone is also measured at Cuiabá using UV ozone monitor since 1987. In this paper we present and discuss the simultaneous observations from these two instruments obtained in 1995. This study permits comparison of the observations during the biomas burning period (dry season) with the wet season. Although surface ozone levels were considerably higher during the biomass burning season, no effect on the total ozone column could be observed. The UV-B radiation, however, was significantly reduced due to absorption by biomass burning aerosols.

  4. Siberian and North American Biomass Burning Contributions to the Processes that Influenced the 2008 Arctic Aircraft and Satellite Field Campaigns

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Stocks, B. J.; Carr, R.; Pierce, R. B.; Natarajan, M.; Fromm, M.

    2009-05-01

    Current climate change scenarios predict increases in biomass burning in terms of increases in fire frequency, area burned, fire season length and fire season severity, particularly in boreal regions. Climate and weather control fire danger, which strongly influences the severity of fire events, and these in turn, feed back to the climate system through direct and indirect emissions, modifying cloud condensation nuclei and altering albedo (affecting the energy balance) through vegetative land cover change and deposition. Additionally, fire emissions adversely influence air quality and human health downwind of burning. The boreal zone is significant because this region stores the largest reservoir of terrestrial carbon, globally, and will experience climate change impacts earliest. Boreal biomass burning is an integral component to several of the primary goals of the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARCPAC (Aerosol, Radiation, and Cloud Processes affecting Arctic Climate) 2008 field campaigns, which include its implication for atmospheric composition and climate, aerosol radiative forcing, and chemical processes with a focus on ozone and aerosols. Both the spring and summer phases of ARCTAS and ARCPAC offered substantial opportunities for sampling fresh and aged biomass burning emissions. However, the extent to which spring biomass burning influenced arctic haze was unexpected, which could inform our knowledge of the formation of arctic haze and the early deposition of black carbon on the icy arctic surface. There is already evidence of increased extreme fire seasons that correlate with warming across the circumboreal zone. In this presentation, we discuss seasonal and annual fire activity and anomalies that relate to the ARCTAS and ARCPAC spring (April 1 - 20) and summer (June 18 - July 13) periods across Siberia and North America, with particular emphasis on fire danger and fire behavior as they relate

  5. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2013-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation

  6. Airborne Measurements of Carbonaceous Aerosols in Southern Africa during the Dry Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2003-01-01

    Particulate matter collected aboard the University of Washington's (UW) Convair-580 research aircrafi over southem Afiica during the dry biomass burning season was analyzed for total carbon (TC), organic carbon (OC), and black carbon (BC) contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the TC collected. Consequently, conclusions derived from the data are greatly dependent on whether or not OC concentrations are corrected for this artifact. For example, the estimated aerosol coalbedo (1 - single scattering albedo (SSA)), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected OC concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The BC to (corrected) OC mass ratio (BC/OC) of smoke plume samples (0.18 plus or minus 0.06) is lower than that of samples collected in the regional haze (0.25 plus or minus 0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three quarters of the aerosol burden in the regional haze, while other souxes (e.g., fossil fuel burning) contribute the remainder.

  7. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    SciTech Connect

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  8. Significance of biomass open burning on the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air.

    PubMed

    Shih, Shun-I; Lee, Wen-Jhy; Lin, Long-Full; Huang, Jiao-Yan; Su, Jen-Wei; Chang-Chien, Guo-Ping

    2008-05-01

    In southern Taiwan, two areas (L- and Y-) with/without biomass open burning were selected to compare the PCDD/F concentrations and their congener profiles in the ambient air. The results of this study indicate that biomass (rice straw) open burning exhibited a significant impact on the PCDD/F concentration level in the ambient air. During the biomass burning season, the total PCDD/F I-TEQ concentrations in the ambient air of L- and Y-areas were approximately 4 and 17 times higher than those without biomass open burning, respectively. When 10% mass fraction of rice straw was burned, the contribution fraction of biomass burning on annual total PCDD/F I-TEQ emission was 3.28 and 8.11% for KC County and for Taiwan, respectively; however, when the calculation was on a weekly basis, the contribution fraction of biomass burning on weekly total PCDD/F I-TEQ emission was 30.6 and 53.4% for KC County and for Taiwan, respectively. The results of this study imply that during the week of biomass burning, it appears to be the most significant source of total I-TEQ PCDD emission. The results of this research can be applied to the study of other agricultural areas.

  9. Transported vs. local contributions from secondary and biomass burning sources to PM2.5

    NASA Astrophysics Data System (ADS)

    Kim, Bong Mann; Seo, Jihoon; Kim, Jin Young; Lee, Ji Yi; Kim, Yumi

    2016-11-01

    The concentration of fine particulates in Seoul, Korea has been lowered over the past 10 years, as a result of the city's efforts in implementing environmental control measures. Yet, the particulate concentration level in Seoul remains high as compared to other urban areas globally. In order to further improve fine particulate air quality in the Korea region and design a more effective control strategy, enhanced understanding of the sources and contribution of fine particulates along with their chemical compositions is necessary. In turn, relative contributions from local and transported sources on Seoul need to be established, as this city is particularly influenced by sources from upwind geographic areas. In this study, PM2.5 monitoring was conducted in Seoul from October 2012 to September 2013. PM2.5 mass concentrations, ions, metals, organic carbon (OC), elemental carbon (EC), water soluble OC (WSOC), humic-like substances of carbon (HULIS-C), and 85 organic compounds were chemically analyzed. The multivariate receptor model SMP was applied to the PM2.5 data, which then identified nine sources and estimated their source compositions as well as source contributions. Prior studies have identified and quantified the transported and local sources. However, no prior studies have distinguished contributions of an individual source between transported contribution and locally produced contribution. We differentiated transported secondary and biomass burning sources from the locally produced secondary and biomass burning sources, which was supported with potential source contribution function (PSCF) analysis. Of the total secondary source contribution, 32% was attributed to transported secondary sources, and 68% was attributed to locally formed secondary sources. Meanwhile, the contribution from the transported biomass burning source was revealed as 59% of the total biomass burning contribution, which was 1.5 times higher than that of the local biomass burning source

  10. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    NASA Technical Reports Server (NTRS)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area

  11. Inter-annual changes of Biomass Burning and Desert Dust and their impact over East Asia

    NASA Astrophysics Data System (ADS)

    DONG, X.; Fu, J. S.; Huang, K.

    2014-12-01

    Impact of mineral dust and biomass burning aerosols on air quality has been well documented in the last few decades, but the knowledge about their interactions with anthropogenic emission and their impacts on regional climate is very limited (IPCC, 2007). While East Asia is greatly affected by dust storms in spring from Taklamakan and Gobi deserts (Huang et al., 2010; Li et al., 2012), it also suffers from significant biomass burning emission from Southeast Asia during the same season. Observations from both surface monitoring and satellite data indicated that mineral dust and biomass burning aerosols may approach to coastal area of East Asia simultaneously, thus have a very unique impact on the local atmospheric environment and regional climate. In this study, we first investigated the inter-annual variations of biomass burning and dust aerosols emission for 5 consecutive years from 2006-2010 to estimate the upper and lower limits and correlation with meteorology conditions, and then evaluate their impacts with a chemical transport system. Our preliminary results indicated that biomass burning has a strong correlation with precipitation over Southeast Asia, which could drive the emission varying from 542 Tg in 2008 to 945 Tg in 2010, according to FLAMBE emission inventory (Reid et al., 2009). Mineral dust also demonstrated a strong dependence on wind filed. These inter-annual/annual variations will also lead to different findings and impacts on air quality in East Asia. Reference: Huang, K., et al. (2010), Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007, Journal of Geophysical Research-Atmospheres, 115. IPCC (2007), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, New York. Li, J., et al. (2012), Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in

  12. Biomass Burning, Land-Cover Change, and the Hydrological Cycle in Northern Sub-Saharan Africa

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Ellison, Luke T.; Willmot, K. Elena; Matsui, Toshihisa; Dezfuli, Amin K.; Gatebe, Charles K.; Wang, Jun; Wilcox, Eric M.; Lee, Jejung; Adegoke, Jimmy; Okonkwo, Churchill; Bolten, John; Policelli, Frederick S.; Habib, Shahid

    2016-01-01

    The Northern Sub-Saharan African (NSSA) region, which accounts for 20%-25%of the global carbon emissions from biomass burning, also suffers from frequent drought episodes and other disruptions to the hydrological cycle whose adverse societal impacts have been widely reported during the last several decades. This paper presents a conceptual framework of the NSSA regional climate system components that may be linked to biomass burning, as well as detailed analyses of a variety of satellite data for 2001-2014 in conjunction with relevant model-assimilated variables. Satellite fire detections in NSSA show that the vast majority (greater than 75%) occurs in the savanna and woody savanna land-cover types. Starting in the 2006-2007 burning season through the end of the analyzed data in 2014, peak burning activity showed a net decrease of 2-7% /yr in different parts of NSSA, especially in the savanna regions. However, fire distribution shows appreciable coincidence with land-cover change. Although there is variable mutual exchange of different land cover types, during 2003-2013, cropland increased at an estimated rate of 0.28% /yr of the total NSSA land area, with most of it (0.18% /yr) coming from savanna.During the last decade, conversion to croplands increased in some areas classified as forests and wetlands, posing a threat to these vital and vulnerable ecosystems. Seasonal peak burning is anti-correlated with annual water-cycle indicators such as precipitation, soil moisture, vegetation greenness, and evapotranspiration, except in humid West Africa (5 deg-10 deg latitude),where this anti-correlation occurs exclusively in the dry season and burning virtually stops when monthly mean precipitation reaches 4 mm/d. These results provide observational evidence of changes in land-cover and hydrological variables that are consistent with feedbacks from biomass burning in NSSA, and encourage more synergistic modeling and observational studies that can elaborate this feedback

  13. Biomass burning, land-cover change, and the hydrological cycle in Northern sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Ichoku, Charles; Ellison, Luke T.; Willmot, K. Elena; Matsui, Toshihisa; Dezfuli, Amin K.; Gatebe, Charles K.; Wang, Jun; Wilcox, Eric M.; Lee, Jejung; Adegoke, Jimmy; Okonkwo, Churchill; Bolten, John; Policelli, Frederick S.; Habib, Shahid

    2016-09-01

    The Northern Sub-Saharan African (NSSA) region, which accounts for 20%-25% of the global carbon emissions from biomass burning, also suffers from frequent drought episodes and other disruptions to the hydrological cycle whose adverse societal impacts have been widely reported during the last several decades. This paper presents a conceptual framework of the NSSA regional climate system components that may be linked to biomass burning, as well as detailed analyses of a variety of satellite data for 2001-2014 in conjunction with relevant model-assimilated variables. Satellite fire detections in NSSA show that the vast majority (>75%) occurs in the savanna and woody savanna land-cover types. Starting in the 2006-2007 burning season through the end of the analyzed data in 2014, peak burning activity showed a net decrease of 2-7%/yr in different parts of NSSA, especially in the savanna regions. However, fire distribution shows appreciable coincidence with land-cover change. Although there is variable mutual exchange of different land cover types, during 2003-2013, cropland increased at an estimated rate of 0.28%/yr of the total NSSA land area, with most of it (0.18%/yr) coming from savanna. During the last decade, conversion to croplands increased in some areas classified as forests and wetlands, posing a threat to these vital and vulnerable ecosystems. Seasonal peak burning is anti-correlated with annual water-cycle indicators such as precipitation, soil moisture, vegetation greenness, and evapotranspiration, except in humid West Africa (5°-10° latitude), where this anti-correlation occurs exclusively in the dry season and burning virtually stops when monthly mean precipitation reaches 4 mm d-1. These results provide observational evidence of changes in land-cover and hydrological variables that are consistent with feedbacks from biomass burning in NSSA, and encourage more synergistic modeling and observational studies that can elaborate this feedback mechanism.

  14. Determining contributions of biomass burning and other sources to fine particle contemporary carbon in the western United States

    NASA Astrophysics Data System (ADS)

    Holden, Amanda S.; Sullivan, Amy P.; Munchak, Leigh A.; Kreidenweis, Sonia M.; Schichtel, Bret A.; Malm, William C.; Collett, Jeffrey L., Jr.

    2011-02-01

    of levoglucosan during atmospheric aging of biomass burning emissions likely also results in an underestimate of apportioned primary smoke contributions.

  15. Properties and evolution of biomass burning organic aerosol from Canadian boreal forest fires

    NASA Astrophysics Data System (ADS)

    Jolleys, M. D.; Coe, H.; McFiggans, G.; Taylor, J. W.; O'Shea, S. J.; Le Breton, M.; Bauguitte, S. J.-B.; Moller, S.; Di Carlo, P.; Aruffo, E.; Palmer, P. I.; Lee, J. D.; Percival, C. J.; Gallagher, M. W.

    2015-03-01

    Airborne measurements of biomass burning organic aerosol (BBOA) from boreal forest fires reveal highly contrasting properties for plumes of different ages. These measurements, performed using an Aerodyne Research Inc. compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) during the BORTAS (quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment in the summer of 2011, have been used to derive normalised excess organic aerosol (OA) mass concentrations (ΔOA / ΔCO), with higher average ratios observed closer to source (0.190±0.010) than in the far-field (0.097±0.002). The difference in ΔOA / ΔCO between fresh and aged plumes is influenced by a change in dominant combustion conditions throughout the campaign. Measurements at source comprised 3 plume interceptions during a single research flight and sampled largely smouldering fires. Twenty-three interceptions were made across four flights in the far-field, with plumes originating from fires occurring earlier in the campaign when fire activity had been more intense, creating an underlying contrast in emissions prior to any transformations associated with aging. Changing combustion conditions also affect the vertical distribution of biomass burning emissions, as aged plumes from more flaming-dominated fires are injected to higher altitudes of up to 6000 m. Proportional contributions of the mass-to-charge ratio (m/z) 60 and 44 peaks in the AMS mass spectra to the total OA mass (denoted f60 and f44) are used as tracers for primary and oxidised BBOA, respectively. f44 is lower on average in near-field plumes than those sampled in the far-field, in accordance with longer aging times as plumes are transported a greater distance from source. However, high levels of ΔO3 / ΔCO and -log(NOx / NOy) close to source indicate that emissions can be subject to very rapid oxidation over short timescales. Conversely, the lofting of plumes into the

  16. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    PubMed

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects.

  17. Modeling the impacts of biomass burning on air quality in and around Mexico City

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Molina, L. T.

    2013-03-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC), increasing primary OA (POA) by ~60%, secondary OA (SOA) by ~22%, total OA (TOA = POA + SOA) by ~33%, and EC by ~22%, on both the local (urban) and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. Of the ~22% enhancement in SOA concentrations (equivalent to a ~15% increase in TOA) simulated, about two third was attributed to the open fires and one-third to the trash burning. On the annual basis and taking the biofuel use emissions into consideration, we estimated that open fires, trash burning and biofuel use together contributed about 60% to the loading of POA, 30% to SOA, and 25% to EC in both the MCMA and its surrounding region, of which the open fires and trash burning contributed about 35% to POA, 18% to SOA, and 15% to EC. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates in magnitude, temporal and spatial distribution, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the

  18. Interannual and Seasonal Variability of Biomass Burning Emissions Constrained by Satellite Observations

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Martin, Randall V.; Staudt, Amanda C.; Yevich, Rosemarie; Logan, Jennifer A.

    2003-01-01

    We present a methodology for estimating the seasonal and interannual variation of biomass burning designed for use in global chemical transport models. The average seasonal variation is estimated from 4 years of fire-count data from the Along Track Scanning Radiometer (ATSR) and 1-2 years of similar data from the Advanced Very High Resolution Radiometer (AVHRR) World Fire Atlases. We use the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) data product as a surrogate to estimate interannual variability in biomass burning for six regions: Southeast Asia, Indonesia and Malaysia, Brazil, Central America and Mexico, Canada and Alaska, and Asiatic Russia. The AI data set is available from 1979 to the present with an interruption in satellite observations from mid-1993 to mid-1996; this data gap is filled where possible with estimates of area burned from the literature for different regions. Between August 1996 and July 2000, the ATSR fire-counts are used to provide specific locations of emissions and a record of interannual variability throughout the world. We use our methodology to estimate mean seasonal and interannual variations for emissions of carbon monoxide from biomass burning, and we find that no trend is apparent in these emissions over the last two decades, but that there is significant interannual variability.

  19. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    PubMed Central

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; Zhang, Pengfei

    2013-01-01

    Biomass burning is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we report the molecular tracer levoglucosan concentrations in marine air from the Arctic Ocean through the North and South Pacific Ocean to Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels with the highest atmospheric loadings present in the mid-latitudes (30°–60° N and S), intermediate loadings in the Arctic, and lowest loadings in the Antarctic and equatorial latitudes. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Biomass burning has a significant impact on atmospheric Hg and water-soluble organic carbon (WSOC) from pole-to-pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere. PMID:24176935

  20. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-11-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A "potential aerosol mass" (PAM) flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer-reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days of aging in the atmosphere, and allowing for us to extend the investigation of smoke aging beyond the oxidation levels achieved in traditional smog chambers. Volatile organic compound (VOC) observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net-SOA-to-POA ratio of biomass-burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp~3.9 × 1011 molecules cm-3 s), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors

  1. Assessment of biomass burning emissions and their impacts on urban and regional PM2.5: a Georgia case study.

    PubMed

    Tian, Di; Hu, Yongtao; Wang, Yuhang; Boylan, James W; Zheng, Mei; Russell, Armistead G

    2009-01-15

    Biomass burning is a major and growing contributor to particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5). Such impacts (especially individual impacts from each burning source) are quantified using the Community Multiscale Air Quality (CMAQ) Model, a chemical transport model (CTM). Given the sensitivity of CTM results to uncertain emission inputs, simulations were conducted using three biomass burning inventories. Shortcomings in the burning emissions were also evaluated by comparing simulations with observations and results from a receptor model. Model performance improved significantly with the updated emissions and speciation profiles based on recent measurements for biomass burning: mean fractional bias is reduced from 22% to 4% for elemental carbon and from 18% to 12% for organic matter; mean fractional error is reduced from 59% to 50% for elemental carbon and from 55% to 49% for organic matter. Quantified impacts of biomass burning on PM2.5 during January, March, May, and July 2002 are 3.0, 5.1, 0.8, and 0.3 microg m(-3) domainwide on average, with more than 80% of such impacts being from primary emissions. Impacts of prescribed burning dominate biomass burning impacts, contributing about 55% and 80% of PM2.5 in January and March, respectively, followed by land clearing and agriculture field burning. Significant impacts of wildfires in May and residential wood combustion in fireplaces and woodstoves in January are also found.

  2. Terrestrial cycling of 13CO2 by photosynthesis, respiration, and biomass burning in SiBCASA

    NASA Astrophysics Data System (ADS)

    van der Velde, I. R.; Miller, J. B.; Schaefer, K.; van der Werf, G. R.; Krol, M. C.; Peters, W.

    2014-12-01

    We present an enhanced version of the SiBCASA terrestrial biosphere model that is extended with (a) biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from the Global Fire Emissions Database (GFED), (b) an isotopic discrimination scheme that calculates 13C signatures of photosynthesis and autotrophic respiration, and (c) a separate set of 13C pools to carry isotope ratios into heterotrophic respiration. We quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. The implementation of biomass burning yields similar fluxes as CASA-GFED both in magnitude and spatial patterns. The implementation of isotope exchange gives a global mean discrimination value of 15.2‰, ranges between 4 and 20‰ depending on the photosynthetic pathway in the plant, and compares favorably (annually and seasonally) with other published values. Similarly, the isotopic disequilibrium is similar to other studies that include a small effect of biomass burning as it shortens the turnover of carbon. In comparison to measurements, a newly modified starch/sugar storage pool propagates the isotopic discrimination anomalies to respiration much better. In addition, the amplitude of the drought response by SiBCASA is lower than suggested by the measured isotope ratios. We show that a slight increase in the stomatal closure for large vapor pressure deficit would amplify the respired isotope ratio variability. Our study highlights the importance of isotope ratio observations of 13C to assess and improve biochemical models like SiBCASA, especially with regard to the allocation and turnover of carbon and the responses to drought.

  3. Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment(BASE-ASIA)

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, Christina N.; King, Michael D.; Shu, Peter K.

    2002-01-01

    Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially in Africa, South America, and South East Asia. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass-burning processes, which influence the Earth-atmosphere energetics and hence impact both global climate and tropospheric chemistry. Some gases and aerosols can serve as active cloud condensation nuclei, which play important role in determining the net radiation budget, precipitation rate, and cloud lifetime. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); the reflectivity and emissivity of the land; and the stability of ecosystems and ecosystem biodiversity. Compared to Africa and South America, the climatology in South East Asia reveals quite different characteristics, showing distinct large-scale smoke and cloud sources and interaction regimes. The fresh water distribution in this region is highly dependent on monsoon rainfall; in fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities. Estimating the burning fuel (e.g., bark, branches, and wood), an important part of studying regional carbon cycle, may rely on utilizing a wide range of distinctive spectral features in the shortwave and longwave regions. Therefore, to accurately assess the impact of smoke aerosols in this region requires continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. A new initiative will be proposed and discussed.

  4. Holocene biomass burning recorded in polar and low-latitude ice cores

    NASA Astrophysics Data System (ADS)

    Kehrwald, N. M.; Zennaro, P.; Zangrando, R.; Gabrielli, P.; Thompson, L. G.; Gambaro, A.; Barbante, C.

    2011-12-01

    Ice cores contain specific molecular markers including levoglucosan (1,6-anhydro-β-D-glucopyranose) and other pyrochemical evidence that provides much-needed information on the role of fire in regions with no existing data of past fire activity. Levoglucosan is a cellulose combustion product produced at burning temperatures of 300°C or greater. We first trace fire emissions from a boreal forest source in the Canadian Shield through transport and deposition at Summit, Greenland. Atmospheric and surface samples suggest that levoglucosan in snow can record biomass burning events up to 1000s of kilometers away. Levoglucosan does degrade by interacting with hydroxyl radicals in the atmosphere, but it is emitted in large quantities, allowing the use as a biomass burning tracer. These quantified atmospheric biomass burning emissions and associated parallel oxalate and levoglucosan peaks in snow pit samples validates levoglucosan as a proxy for past biomass burning in snow records and by extension in ice cores. The temporal and spatial resolution of chemical markers in ice cores matches the core in which they are measured. The longest temporal resolution extends back approximately eight glacial cycles in the EPICA Dome C ice core, but many ice cores provide high-resolution Holocene records. The spatial resolution of chemical markers in ice cores depends on the core location where low-latitude ice cores primarily reflect regional climate parameters, and polar ice cores integrate hemispheric signals. Here, we compare levoglucosan flux measured during the late Holocene in the Kilimanjaro (3°04.6'S; 37°21.2'E, 5893 masl) and NEEM, Greenland (77°27' N; 51°3'W, 2454 masl) ice cores. We contrast the Holocene results with levoglucosan flux across the past 600,000 years in the EPICA Dome C (75°06'S, 123°21'E, 3233 masl) ice core.

  5. Spatial and temporal variability in the ratio of trace gases emitted from biomass burning

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.

    2010-10-01

    Fires are a major source of trace gases and aerosols to the atmosphere. Quantitative knowledge on biomass burned is improving, most importantly due to new burned area datasets. The partitioning of biomass burned into emitted trace gases and aerosols, however, has received relatively little attention. To convert estimates of biomass burned to trace gas and aerosol emissions, most studies have used emission ratios (or emission factors (EFs)) based on the arithmetic mean of field measurement outcomes, stratified by biome. However, EFs vary substantially in time and space, even within a single biome. In addition, it is unknown whether the measurement locations provide a representative sample for the various biomes. Here we used the available body of EF literature in combination with satellite-derived information on vegetation characteristics and climatic conditions to better understand the spatio-temporal variability in EFs. While focusing on CO, CH4, and CO2, our findings are also applicable to other trace gases and aerosols. We explored relations between EFs and different satellite datasets thought to drive part of the variability in EFs (tree cover density, vegetation greenness, temperature, precipitation, and the length of the dry season). Although reasonable correlations were found for specific case studies, correlations based on the full suite of available measurements were less satisfying (rmax=0.62). This may be partly due to uncertainties in the driver datasets, differences in measurement techniques, assumptions on the ratio between flaming and smoldering combustion, and incomplete information on the location and timing of measurements. We derived new mean EFs, using the relative importance of each measurement location with regard to the amount of biomass burned. These weighted averages were within 18% of the arithmetic mean. We argue that from a global modeling perspective, future measurement campaigns could be more beneficial if measurements are made over

  6. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    NASA Astrophysics Data System (ADS)

    Prasad Vadrevu, Krishna; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2015-10-01

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2-5.3 km altitude in the forest fire plumes compared to 2.2-3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources.

  7. Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol

    SciTech Connect

    Chang-Graham, Alexandra L.; Profeta, Luisa T. M.; Johnson, Timothy J.; Yokelson, Robert J.; Laskin, Alexander; Laskin, Julia

    2011-02-15

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Finally, further research into the sources, dispersion, and persistence of metal-containing aerosols, as well as their environmental effects, is needed.

  8. The Humic Like Substances in biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Baduel, C.; Voisin, D.; Jaffrezo, J. L.; Legrand, M.

    2009-04-01

    Several studies have shown that "HUmic LIke Substances" (HULIS) may represent a significant fraction (15 and 40 % in mass) of the organic carbon (OC) of atmospheric aerosols. Concentrations indicate seasonal variations with one maximum in summer and another one in winter. This last maximum is tentatively linked to emissions from bimoass combustion, with HULIS coming from the incomplete breakdown of polymeric carbohydrates and lignin products. A second way for HULIS formation can be the transformation of pyrogenic semi-volatile organic compounds through condensation reactions with other molecules. It is also proposed that HULIS can derive from the reaction of soot particles with atmospheric oxidants. This last process can be important for any combustion-generated aerosol. This work is focused on HULIS in samples impacted by combustion processes. It presents results obtained for two HULIS fractions: water soluble HULIS and "Total" HULIS, the fraction extracted in alkali media to extract the more hydrophobic compounds. Samplings were carried out in very close proximity to combustion-generated aerosol activity: in a tunnel and nearby garden fires; in cities during burning season etc. The results indicate some variability in the characteristics of HULIS obtained from these different sources.

  9. Determination of specific molecular markers of biomass burning in lake sediments

    NASA Astrophysics Data System (ADS)

    Kirchgeorg, Torben; Schüpbach, Simon; Kehrwald, Natalie; McWethy, David; Barbante, Carlo

    2014-05-01

    Fire influences regional to global atmospheric chemistry and climate. Molecular markers of biomass burning archived in lake sediments are becoming increasingly important in paleoenvironmental reconstruction and may help determine interactions between climate and fire activity. One group of these molecular markers is the monosaccharide anhydrides levoglucosan, mannosan and galactosan. Several aerosol studies and recent ice core research use these compounds as a marker for biomass burning, but studies from lake sediment cores are rare. Previous sediment methods used gas chromatography - mass spectrometry and required derivatization of samples. Here, we present a high performance anion exchange chromatography-mass spectrometry method to allow separation and detection of the three monosaccharide anhydrides in lake sediments with implications for reconstructing past biomass burning events. We validated the method by quantifying levoglucosan, mannosan and galactosan in selected sediment core samples from Lake Kirkpatrick, New Zealand. The freeze-dried, milled and homogenized sediment samples were first extracted with methanol by pressurized solvent extraction, pre-concentrated and finally separated and analyzed by high performance anion exchange chromatography-mass spectrometry. We compared these isomers with macroscopic charcoal concentrations, as charcoal is a well-known proxy for biomass burning. In addition, we applied the method to a sediment core from Lake Petén Itzá, Guatemala to prove the suitability of these markers for reconstructing biomass burning history over the entire Holocene. In the Lake Kirkpatrick samples, levoglucosan, mannosan and galactosan concentrations significantly correlate with macroscopic charcoal concentrations. The three isomers are present in samples without any macroscopic charcoal, and may reflect the presence of microscopic charcoal. Levoglucosan/mannosan and levoglucosan/(mannosan+galactosan) ratios differ between samples with high

  10. Mixing State and Optical Properties of Biomass Burning Aerosol during the SAMBBA 2012 Campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Brooks, Barbara; McQuaid, Jim; Osborne, Simon

    2013-04-01

    Emissions of black carbon are a global phenomenon associated with combustion activities with an estimated 40 % of global emissions from biomass burning. These emissions are typically dominated in regional hotspots, such as along the edges of the Amazon Basin, and contribute to the regional air quality and have associated health impacts as well as the global climatic impacts of this major source of black carbon as well as other radiatively active species. New airborne measurements will be presented of biomass burning emissions across the Amazon region from the South AMerican Biomass Burning Analysis (SAMBBA) campaign based at Porto Vehlo, Rondônia, Brazil in September 2012. This airborne campaign aboard the FAAM BAe-146 coincided with the seasonal peak in South American biomass burning emissions, which make up the most dominant source of atmospheric pollutants in the region at this time. SAMBBA included dedicated flights involving in-situ measurements and remote sensing of single plume studies through to multi-plume sampling of smouldering and flaming vegetation fires, regional haze sampling, and measurements of biogenic aerosol and gases across Amazonas. This presentation summarises early findings from the SAMBBA aircraft observations focusing on the relationship between biomass burning aerosol properties; size distributions, aerosol mixing state and optical properties from a suite of instruments onboard the FAAM BAe-146. The interplay of these properties influences the regional radiative balance impacting on weather and climate. The Leeds airborne VACC (Volatile Aerosol Concentration and Composition) instrument is designed to investigate the volatility properties of different aerosol species in order to determine aerosol composition; furthermore it can be used to infer the mixing state of the aerosol. Size distributions measured with the volatility system will be compared with ambient size distribution measurements this allows information on organic coating

  11. Production of peroxy nitrates in boreal biomass burning plumes over Canada during the BORTAS campaign

    NASA Astrophysics Data System (ADS)

    Busilacchio, M.; Di Carlo, P.; Aruffo, E.; Biancofiore, F.; Salisburgo, C. D.; Giammaria, F.; Bauguitte, S.; Lee, J.; Moller, S.; Hopkins, J.; Punjabi, S.; Andrews, S.; Lewis, A. C.; Parrington, M.; Palmer, P. I.; Hyer, E.

    2015-03-01

    The observations collected during the BORTAS campaign in summer 2011 over Canada are analysed to study the impact of forest fire emissions on the formation of ozone (O3) and total peroxy nitrates (ΣPNs, ΣROONO2). The suite of measurements on board the BAe-146 aircraft, deployed in this campaign, allows us to calculate the production of O3 and of ΣPNs, a long lived O3 reservoir whose concentration is supposed to be impacted by biomass burning emissions. In fire plumes, profiles of carbon monoxide (CO), which is a well-established tracer of pyrogenic emission, show concentration enhancements that are in strong correspondence with a significant increase of ΣPNs concentrations, whereas minimal increase of the concentrations of O3 and NO2 are observed. In those fire plumes the average ΣPNs production is 12 times greater than in the background plumes, by contrast the average O3 production is only 5 times greater. These results suggest that, at least for boreal forest fires and for the measurements recorded during the BORTAS campaign, fire emissions impact both the oxidized NOy and O3, but: (1) ΣPNs production is affected significantly respect to the O3 production and (2) in the forest fire plumes the ratio between the ΣPNs production and the O3 production is lower than the ratio evaluated in the background air masses, thus confirming that the role played by the ΣPNs produced during biomass burning is significant in the O3 budget. These observations are consistent with elevated production of PAN and concurrent low production (or sometimes loss) of O3 observed in some another campaigns (i.e. ARCTAS-B) focused on forest fire emissions. Moreover our observations extend ARCTAS-B results since PAN is one of the compounds included in the ΣPNs family detected during BORTAS. The implication of these observations is that fire emissions in some cases, for example Boreal forest fires and in the conditions reported here, may influence more long lived precursors of O3 than

  12. Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic

    NASA Astrophysics Data System (ADS)

    Mauzerall, Denise L.; Logan, Jennifer A.; Jacob, Daniel J.; Anderson, Bruce E.; Blake, Donald R.; Bradshaw, John D.; Heikes, Brian; Sachse, Glenn W.; Singh, Hanwant; Talbot, Bob

    1998-04-01

    Photochemistry occuring in biomass burning plumes over the tropical south Atlantic is analyzed using data collected during the Transport and Atmospheric Chemistry Near the Equator-Atlantic aircraft expedition conducted during the tropical dry season in September 1992 and a photochemical point model. Enhancement ratios (ΔY/ΔX, where Δ indicates the enhancement of a compound in the plume above the local background mixing ratio, Y are individual hydrocarbons, CO, O3, N2O, HNO3, peroxyacetyl nitrate (PAN), CH2O, acetone, H2O2, CH3OOH, HCOOH, CH3COOH or aerosols and X is CO or CO2) are reported as a function of plume age inferred from the progression of Δnon-methane hydrocarbons/ΔCO enhancement ratios. Emission, formation, and loss of species in plumes can be diagnosed from progression of enhancement ratios from fresh to old plumes. O3 is produced in plumes over at least a 1 week period with mean ΔO3/ΔCO = 0.7 in old plumes. However, enhancement ratios in plumes can be influenced by changing background mixing ratios and by photochemical loss of CO. We estimate a downward correction of ˜20% in enhancement ratios in old plumes relative to ΔCO to correct for CO loss. In a case study of a large persistent biomass burning plume at 4-km we found elevated concentrations of PAN in the fresh plume. The degradation of PAN helped maintain NOx mixing ratios in the plume where, over the course of a week, PAN was converted to HNO3. Ozone production in the plume was limited by the availability of NOx, and because of the short lifetime of O3 at 4-km, net ozone production in the plume was negligible. Within the region, the majority of O3 production takes place in air above median CO concentration, indicating that most O3 production occurs in plumes. Scaling up from the mean observed ΔO3/ΔCO in old plumes, we estimate a minimum regional O3 production of 17×1010molecules O3 cm-2 s-1. This O3 production rate is sufficient to fully explain the observed enhancement in

  13. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  14. Dependence of Heterogeneous OH Kinetics with Biomass Burning Aerosol Proxies on Oxidant Concentration and Relative Humidity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Knopf, D. A.

    2013-12-01

    Chemical transformations of aerosol particles by heterogeneous reactions with trace gases such as OH radicals can influence particle physicochemical properties and lifetime, affect cloud formation, light scattering, and human health. Furthermore, OH oxidation can result in degradation of particle mass by volatilization reactions, altering the budget of volatile organic compounds (VOCs). However, the reactive uptake coefficient (γ) and particle oxidation degree can vary depending on several factors including oxidant concentration and relative humidity (RH). While RH can influence the extent of dissociation/ionization, it can also affect particle phase and thus oxidant diffusivity. Only one study so far has investigated the effect of RH on the rate of OH uptake to organic surfaces; however, the underlying processes affecting OH reactivity with organic aerosol under humidified conditions still remains elusive. Here, we determine the effect of RH on OH reactivity with laboratory-generated biomass burning aerosol (BBA) surrogate particles: levoglucosan and 4-methyl-5-nitrocatechol. The effect of OH concentration on γ for three common BBA molecular markers (levoglucosan, abietic acid, and nitroguaiacol) under dry conditions was investigated from [OH]≈107-1011 molecule cm-3, covering both [OH] in biomass burning plumes and [OH] commonly used in particle aging studies. Furthermore, key VOC reaction products and their production pathways resulting from BBA volatilization by OH were identified. OH radicals are produced using a microwave induced plasma (MIP) of H2 in He or Ar followed by reaction with O2, or by photolysis of O3 in the presence of H2O. A cylindrical rotating wall flow-tube reactor and fast-flow aerosol flow reactor are used for conducting kinetic studies. OH is detected using a Chemical Ionization Mass Spectrometer (CIMS) and a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) is employed for VOC analysis. γ decreases from 0.2-0.5 at

  15. Decadal changes in aerosol absorption across Brazil resulting from changes in biomass burning practices

    NASA Astrophysics Data System (ADS)

    Coe, H.; Morgan, W.; Darbyshire, E.; Allan, J. D.; Flynn, M.; Liu, D.; Langridge, J.; Johnson, B. T.; Haywood, J. M.; Longo, K.; Artaxo, P.; Highwood, E.; Mollard, J.

    2015-12-01

    Open biomass burning makes a substantial contribution to the global budget of black carbon, yet models significantly underestimate absorption aerosol optical depth compared to observations by approximately a factor of two over South America. These large differences need to be addressed. Recent work has shown that the number of deforestation fires has decreased across Amazonia over the last decade, giving rise to a decrease in the abundance of biomass burning aerosol across the region. At the same time there has been an increase in the frequency of agricultural burning across regions that have previously been deforested, as well as increased burning in the east of Brazil in the Cerrado regions. We sampled both of these types of open burning extensively during a recent aircraft experiment. Significant concentrations of organic carbon as well as black carbon were observed, with this ratio providing the main control on the single scattering albedo (SSA).Deforestation fires and wild forest fires are prevalent across the south west of the Amazon Basin, where smouldering burning dominates. In the east of Brazil, agricultural burning proceeds via a much more efficient form of combustion and as a result, black carbon is a much larger fraction of the aerosol mass and SSAs are much lower than in the west. We have analysed MISR data across the region to show that whilst aerosol optical depths have decreased during the dry season over the last decade, with greater rates of reduction occurring over the south western margins of Amazonia, absorption aerosol optical depths have significantly increased over the Cerrado and remained constant over south western Amazonia. This has led to a decline in SSA across the whole of the region with greater reductions occurring over the eastern states. This finding is consistent with our aircraft measurements. We will discuss the implications of these changes for air quality and climate across the region.

  16. The Sedimentary Charcoal Record of Regional and Global Biomass Burning on Multi-decadal-to-Orbital Time Scales

    NASA Astrophysics Data System (ADS)

    Bartlein, P. J.; Marlon, J.; Global Palaeofire Working Group

    2011-12-01

    The global charcoal database (GCD) assembled by the Global Palaeofire Working Group (GPWG) over the past several years provides over 800 sedimentary charcoal records of biomass burning that allows wildfire to be examined on a range of spatial and temporal scales. These data, and other analyses of sedimentary charcoal records show that: (1) The data-analytical aspects of sedimentary charcoal have matured to the extent that we can show that biomass burning is well represented by these records, that charcoal influx is a general indicator of area or biomass burning, and that peaks of charcoal influx in records with annual-to-decadal resolution provide evidence of individual fires. (2) The spatial coverage of the records is extensive enough to represent much of the global climate space, although coverage of Africa, Siberia, and grassland and desert ecosystems in general could be improved. (3) The temporal coverage is sufficient to resolve millennial-scale environmental changes over the past glacial cycle, and hemispheric and regional variations in biomass burning from the LGM to present. (4) Global biomass burning was very low at the LGM, and increases in biomass burning into the Holocene tracked hemispheric and regional climate changes. (5) Abrupt climate changes during deglaciation caused specific responses in the charcoal records; these responses are replicated during the abrupt warming and cooling episodes accompanying D-O cycles. (6) During the Holocene, biomass burning reflects regional climate changes and does not support the early anthropocene hypothesis. (7) Over the last millennium, biomass burning also tracks regional climate changes, and shows an unambiguous human influence only over the past 250 years. (8) The variations in global biomass burning on multiple time scales described by the sedimentary charcoal record are supported by the emerging ice core records of biomass burning. (9) Increases in biomass burning are strongly linked to temperature increases

  17. Oxidative potential of smoke from burning wood and mixed biomass fuels.

    PubMed

    Kurmi, O P; Dunster, C; Ayres, J G; Kelly, F J

    2013-10-01

    More than half the world's population still rely on burning biomass fuels to heat and light their homes and cook food. Household air pollution, a common component of which is inhalable particulate matter (PM), emitted from biomass burning is associated with increased vulnerability to respiratory infection and an enhanced risk of developing chronic obstructive pulmonary disease. In the light of an emerging hypothesis linking chronic PM exposure during childhood and increased vulnerability to respiratory diseases in adulthood, in a chain of events involving oxidative stress, reduced immunity and subsequent infection, the aim of this study was to characterise the oxidative potential (OP) of PM collected during the burning of wood and mixed biomass, whilst cooking food in the Kathmandu Valley, Nepal. Our assessments were based on the capacity of the particles to deplete the physiologically relevant antioxidants from a validated, synthetic respiratory tract lining fluid (RTLF). Incubation of mixed biomass and wood smoke particles suspensions with the synthetic RTLF for 4 h resulted in a mean loss of ascorbate of 64.76 ± 16.83% and 83.37 ± 14.12% at 50 μg/ml, respectively. Reduced glutathione was depleted by 49.29 ± 15.22% in mixed biomass and 65.33 ± 13.01% in wood smoke particles under the same conditions. Co-incubation with the transition metal chelator diethylenetriaminepentaacetate did not inhibit the rate of ascorbate oxidation, indicating a negligible contribution by redox-active metals in these samples. The capacity of biomass smoke particles to elicit oxidative stress certainly has the potential to contribute towards negative health impacts associated with traditional domestic fuels in the developing world. PMID:23926954

  18. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  19. Direct Measurements of Brown Carbon Absorption in A Wide Range of Biomass Burning Plumes

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Pokhrel, R. P.; Beamesderfer, E.; Lack, D.; Langridge, J.; Wagner, N. L.

    2014-12-01

    Biomass burning represents one of the largest global sources of absorbing aerosol. Despite the importance of biomass burning emissions on the Earth's radiative balance, there remains significant uncertainty about the optical properties of emitted particles. Of particular interest is the impact of lensing on black carbon absorption and the impact of brown carbon. This presentation describes results from the Fire Lab at Missoula Experiment-4 (FLAME-4), which occurred in October 2012. Multi-channel photoacoustic (PAS) and Cavity Ringdown (CRDS) spectrometers were used to measure absorption, extinction, and absorption enhancement of aerosol particles produced from a wide range of globally relevant biomass fuels. Measurements were made at 405, 532, and 660 nm with duplicate channels at 405 and 660 measuring denuded particles, allowing for direct observation of the enhancement of absorption by black carbon particles caused by clear and brown organic coatings. Fuels were chosen based on their contribution to global wildfire emissions and a wide range of fuels will be discussed including some of the first optical measurements of Indonesian peat. The SSA and absorption angstrom exponent (AAE) of different biomass fuels will be explored and the relative importance of black and brown carbon emitted from different biomass fuels will be assessed, demonstrating that for certain fuels absorption from brown carbon is as important, or even more important than absorption from black carbon.

  20. Recent Short Term Global Aerosol Trends over Land and Ocean Dominated by Biomass Burning

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Koren, Ilan; Kleidman, RIchard G.; Levy, Robert C.; Martins, J. Vanderlei; Kim, Kyu-Myong; Tanre, Didier; Mattoo, Shana; Yu, Hongbin

    2007-01-01

    NASA's MODIS instrument on board the Terra satellite is one of the premier tools to assess aerosol over land and ocean because of its high quality calibration and consistency. We analyze Terra-MODIS's seven year record of aerosol optical depth (AOD) observations to determine whether global aerosol has increased or decreased during this period. This record shows that AOD has decreased over land and increased over ocean. Only the ocean trend is statistically significant and corresponds to an increase in AOD of 0.009, or a 15% increase from background conditions. The strongest increasing trends occur over regions and seasons noted for strong biomass burning. This suggests that biomass burning aerosol dominates the increasing trend over oceans and mitigates the otherwise mostly negative trend over the continents.

  1. Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia.

    PubMed

    Karlsson, Per Erik; Ferm, Martin; Tømmervik, Hans; Hole, Lars R; Pihl Karlsson, Gunilla; Ruoho-Airola, Tuija; Aas, Wenche; Hellsten, Sofie; Akselsson, Cecilia; Mikkelsen, Teis Nørgaard; Nihlgård, Bengt

    2013-05-01

    High air concentrations of ammonium were detected at low and high altitude sites in Sweden, Finland and Norway during the spring 2006, coinciding with polluted air from biomass burning in eastern Europe passing over central and northern Fennoscandia. Unusually high values for throughfall deposition of ammonium were detected at one low altitude site and several high altitude sites in north Sweden. The occurrence of the high ammonium in throughfall differed between the summer months 2006, most likely related to the timing of precipitation events. The ammonia dry deposition may have contributed to unusual visible injuries on the tree vegetation in northern Fennoscandia that occurred during 2006, in combination with high ozone concentrations. It is concluded that long-range transport of ammonium from large-scale biomass burning may contribute substantially to the nitrogen load at northern latitudes. PMID:23416271

  2. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning using Satellite Data

    NASA Technical Reports Server (NTRS)

    Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  3. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  4. A pervasive role for biomass burning in tropical high ozone/low water structures

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel C.; Nicely, Julie M.; Salawitch, Ross J.; Canty, Timothy P.; Dickerson, Russell R.; Hanisco, Thomas F.; Wolfe, Glenn M.; Apel, Eric C.; Atlas, Elliot; Bannan, Thomas; Bauguitte, Stephane; Blake, Nicola J.; Bresch, James F.; Campos, Teresa L.; Carpenter, Lucy J.; Cohen, Mark D.; Evans, Mathew; Fernandez, Rafael P.; Kahn, Brian H.; Kinnison, Douglas E.; Hall, Samuel R.; Harris, Neil R. P.; Hornbrook, Rebecca S.; Lamarque, Jean-Francois; Le Breton, Michael; Lee, James D.; Percival, Carl; Pfister, Leonhard; Pierce, R. Bradley; Riemer, Daniel D.; Saiz-Lopez, Alfonso; Stunder, Barbara J. B.; Thompson, Anne M.; Ullmann, Kirk; Vaughan, Adam; Weinheimer, Andrew J.

    2016-01-01

    Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

  5. Biomass burning dominates brown carbon absorption in the rural southeastern United States

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Guo, H.; Xu, L.; Weber, R. J.; Ng, N. L.; Allen, H. M.; Ayres, B. R.; Baumann, K.; Cohen, R. C.; Draper, D. C.; Duffey, K. C.; Edgerton, E.; Fry, J. L.; Hu, W. W.; Jimenez, J. L.; Palm, B. B.; Romer, P.; Stone, E. A.; Wooldridge, P. J.; Brown, S. S.

    2015-01-01

    carbon aerosol consists of light-absorbing organic particulate matter with wavelength-dependent absorption. Aerosol optical extinction, absorption, size distributions, and chemical composition were measured in rural Alabama during summer 2013. The field site was well located to examine sources of brown carbon aerosol, with influence by high biogenic organic aerosol concentrations, pollution from two nearby cities, and biomass burning aerosol. We report the optical closure between measured dry aerosol extinction at 365 nm and calculated extinction from composition and size distribution, showing agreement within experiment uncertainties. We find that aerosol optical extinction is dominated by scattering, with single-scattering albedo values of 0.94 ± 0.02. Black carbon aerosol accounts for 91 ± 9% of the total carbonaceous aerosol absorption at 365 nm, while organic aerosol accounts for 9 ± 9%. The majority of brown carbon aerosol mass is associated with biomass burning, with smaller contributions from biogenically derived secondary organic aerosol.

  6. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    NASA Astrophysics Data System (ADS)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  7. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes.

    PubMed

    Radzi bin Abas, M; Oros, Daniel R; Simoneit, B R T

    2004-05-01

    The haze episodes that occurred in Malaysia in September-October 1991, August-October 1994 and September-October 1997 have been attributed to suspended smoke particulate matter from biomass burning in southern Sumatra and Kalimantan, Indonesia. In the present study, polar organic compounds in aerosol particulate matter from Malaysia are converted to their trimethylsilyl derivatives and analyzed by gas chromatography-mass spectrometry in order to better assess the contribution of the biomass burning component during the haze episodes. On the basis of this analysis, levoglucosan was found to be the most abundant organic compound detected in almost all samples. The monosaccharides, alpha- and beta-mannose, the lignin breakdown products, vanillic and syringic acids and the minor steroids, cholesterol and beta-sitosterol were also present in some samples. The presence of the tracers from smoke overwhelmed the typical signatures of emissions from traffic and other anthropogenic activities in the urban areas.

  8. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Satellite-Surface Perspective

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2004-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring-time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East

  9. High-Resolution Spatially Gridded Biomass Burning Emissions Inventory In Asia

    NASA Astrophysics Data System (ADS)

    Vadrevu, K. P.; Lau, W. K.; da Silva, A.; Justice, C. O.

    2012-12-01

    Biomass burning is long recognized an important source of greenhouse gas (GHG) emissions (CO2, CO, CH4, H2, CH3Cl, NO, HCN, CH3CN, COS, etc) and aerosols. In the Asian region, the current estimates of greenhouse gas emissions and aerosols from biomass burning are severely constrained by the lack of reliable statistics on fire distribution and frequency, and the lack of accurate estimates of area burned, fuel load, etc. As a part of NASA funded interdisciplinary research project entitled "Effects of biomass burning on water cycle and climate in the monsoon Asia", we initially developed a high resolution spatially gridded emissions inventory from the biomass burning for Indo-Ganges region and then extended the inventory to the entire Asia. Active fires from MODIS as well as high resolution LANDSAT data have been used to fine-tune the MODIS burnt area products for estimating the emissions. Locally based emission factors were used to refine the gaseous emissions. The resulting emissions data has been gridded at 5-minute intervals. We also compared our emission estimates with the other emission products such as Global Fire Assimilation System (GFAS), Quick fire emissions database (QFED) and Global Fire Emissions Database (GFED). Our results revealed significant vegetation fires from Myanmar, India, Indonesia, China, Laos, Thailand, Cambodia and Vietnam. These seven countries accounted for 92.4% of all vegetation fires in the Asian region. Satellite-based vegetation fire analysis showed the highest fire occurrence in the closed to open shrub land category, (19%) followed by closed to open, broadleaved evergreen-semi deciduous forest (16%), rain fed croplands (17%), post flooded or irrigated croplands (12%), mosaic cropland vegetation (11%), mosaic vegetation/cropland (10%). Emission contribution from agricultural fires was significant, however, showed discrepancies due to low confidence in burnt areas and lack of crop specific emission factors. Further, our results

  10. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles

    NASA Astrophysics Data System (ADS)

    Mochida, Michihiro; Kawamura, Kimitaka

    2004-11-01

    Biomass burning, which is characterized by pyrolysis as well as vaporization and condensation of biomass constituents, is a significant source of atmospheric organic aerosols. In this study, hygroscopic properties of five organic compounds (levoglucosan, D-glucose, and vanillic, syringic, and 4-hydroxybenozoic acids), which are major pyrolysis products of wood, were measured using a tandem differential mobility analyzer. Levoglucosan, which is typically the most abundant species in wood burning aerosols, showed a significant hygroscopic growth for particles with a diameter of 100 nm. No efflorescence was observed under the measured relative humidity, and a supersaturated condition of levoglucosan-water particles was observed. The growth factors of levoglucosan are 1.08, 1.18, 1.23, and 1.38 at relative humidity (RH) of 60, 80, 85, and 90%, respectively. The measured hygroscopic curves are in general consistent with those estimated from ideal solution theory and Uniquac Functional-Group Activity Coefficient (UNIFAC) and Conductor-Like Screening Model for Real Solvent (COSMO-RS) methods. Significant hygroscopic growth was also observed for D-glucose, whose growth factor is quite similar to that of levoglucosan. However, three model pyrolysis products of lignin (i.e., vanillic-, syringic-, and 4-hydroxybenzoic acids) did not show any hygroscopic growth under the RH conditions up to 95%. On the basis of the organic composition of wood burning aerosols, the water absorption attributed to levoglucosan in wood burning aerosols is calculated to be up to 30% of the organic mass at 90% RH. This study demonstrates that oxygenated organics emitted from biomass burning could significantly enhance the hygroscopic properties of atmospheric aerosols.

  11. Evaluation of biomass burning across North West Europe and its impact on air quality

    NASA Astrophysics Data System (ADS)

    Cordell, R. L.; Mazet, M.; Dechoux, C.; Hama, S. M. L.; Staelens, J.; Hofman, J.; Stroobants, C.; Roekens, E.; Kos, G. P. A.; Weijers, E. P.; Frumau, K. F. A.; Panteliadis, P.; Delaunay, T.; Wyche, K. P.; Monks, P. S.

    2016-09-01

    Atmospheric particulate pollution is a significant problem across the EU and there is concern that there may be an increasing contribution from biomass burning, driven by rising fuel prices and an increased interest in the use of renewable energy sources. This study was carried out to assess current levels of biomass burning and the contribution to total PM10 across five sites in North-West Europe; an area which is frequently affected by poor air quality. Biomass burning was quantified by the determination of levoglucosan concentrations from PM10 aerosol filters collected over a 14 month period in 2013/2014 and continued for a further 12 months at the UK site in Leicester. Levoglucosan levels indicated a distinct period of increased biomass combustion between November and March. Within this period monthly average concentrations ranged between 23 ± 9.7 and 283 ± 163 ng/m3, with Lille showing consistently higher levels than the sites in Belgium, the Netherlands and the UK. The estimated contribution to PM10 was, as expected, highest in the winter season where the season average percentage contribution was lowest in Wijk aan Zee at 2.7 ± 1.4% and again highest in Lille at 11.6 ± 3.8%, with a PM10 mass concentration from biomass that ranged from 0.56 μg/m3 in Leicester to 2.08 μg/m3 in Lille. Overall there was poor correlation between the levoglucosan concentrations measured at the different sites indicating that normally biomass burning would only affect atmospheric particulate pollution in the local area; however, there was evidence that extreme burning events such as the Easter fires traditionally held in parts of North-West Europe can have far wider ranging effects on air quality. Network validation measurements were also taken using a mobile monitoring station which visited the fixed sites to carry out concurrent collections of aerosol filters; the result of which demonstrated the reliability of both PM10 and levoglucosan measurements.

  12. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment

    NASA Astrophysics Data System (ADS)

    de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola

    2015-11-01

    The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the

  13. Impacts of South East Biomass Burning on local air quality in South China Sea

    NASA Astrophysics Data System (ADS)

    Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi

    2016-04-01

    Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local air pollution, but also regional air pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) as well as its contribution to the local air pollution in East and South China Sea, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from SEA with a sinking motion that worsened the surface air quality (tropospheric downwash from the free troposphere). The major sources of SEA biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of SEA biomass burning on local air quality. The correlation between long-range transport events from the particles dispersion results and locally observed air quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.

  14. Analysis of vanillic acid in polar ice cores as a biomass burning proxy - preliminary results from the Akademii Nauk Ice Cap in Siberia

    NASA Astrophysics Data System (ADS)

    Grieman, M. M.; Jimenez, R.; McConnell, J. R.; Fritzsche, D.; Saltzman, E. S.

    2013-12-01

    Biomass burning influences global climate change and the composition of the atmosphere. The drivers, effects, and climate feedbacks related to fire are poorly understood. Many different proxies have been used to reconstruct past fire frequency from lake sediments and polar ice cores. Reconstruction of historical trends in biomass burning is challenging because of regional variability and the qualitative nature of various proxies. Vanillic acid (4-hydroxy-3-methoxybenzoic acid) is a product of the combustion of conifer lignin that is known to occur in biomass burning aerosols. Biomass burning is likely the only significant source of vanillic acid in polar ice. In this study we describe an analytical method for quantifying vanillic acid in polar ice using HPLC with electrospray ionization and tandem mass spectrometric detection. The method has a detection limit of 100 pM and a precision of × 10% at the 100 pM level for analysis of 100 μl of ice melt water. The method was used to analyze more than 1000 discrete samples from the Akademii Nauk ice cap on Severnaya Zemlya in the high Russia Arctic (79°30'N, 97°45'E) (Fritzsche et al., 2002; Fritzsche et al., 2005; Weiler et al., 2005). The samples range in age over the past 2,000 years. The results show a mean vanillic acid concentration of 440 × 710 pM (1σ), with elevated levels during the periods from 300-600 and 1450-1550 C.E.

  15. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions

    PubMed Central

    Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Pietrogrande, Maria Chiara; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-01-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the “brown” carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1–0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4–20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate. PMID:27551086

  16. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions.

    PubMed

    Gilardoni, Stefania; Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Pietrogrande, Maria Chiara; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-09-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the "brown" carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1-0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4-20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate. PMID:27551086

  17. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions

    NASA Astrophysics Data System (ADS)

    Gilardoni, Stefania; Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Chiara Pietrogrande, Maria; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-09-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the “brown” carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1-0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4-20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate.

  18. Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Levin, Ezra J. T.; Hennigan, Christopher J.; Riipinen, Ilona; Lee, Taehyoung; Collett, Jeffrey L.; Jimenez, Jose L.; Kreidenweis, Sonia M.; Robinson, Allen L.

    2013-10-01

    organic aerosol concentrations depend in part on the gas-particle partitioning of primary organic aerosol (POA) emissions. Consequently, heating and dilution were used to investigate the volatility of biomass-burning smoke particles from combustion of common North American trees/shrubs/grasses during the third Fire Lab at Missoula Experiment. Fifty to eighty percent of the mass of biomass-burning POA evaporated when isothermally diluted from plume- (~1000 µg m-3) to ambient-like concentrations (~10 µg m-3), while roughly 80% of the POA evaporated upon heating to 100°C in a thermodenuder with a residence time of ~14 sec. Therefore, the majority of the POA emissions were semivolatile. Thermodenuder measurements performed at three different residence times indicated that there were not substantial mass transfer limitations to evaporation (i.e., the mass accommodation coefficient appears to be between 0.1 and 1). An evaporation kinetics model was used to derive volatility distributions and enthalpies of vaporization from the thermodenuder data. A single volatility distribution can be used to represent the measured gas-particle partitioning from the entire set of experiments, including different fuels, organic aerosol concentrations, and thermodenuder residence times. This distribution, derived from the thermodenuder measurements, also predicts the dilution-driven changes in gas-particle partitioning. This volatility distribution and associated emission factors for each fuel studied can be used to update emission inventories and to simulate the gas-particle partitioning of biomass-burning POA emissions in chemical transport models.

  19. Evaluating aerosol impacts on Numerical Weather Prediction in two extreme dust and biomass-burning events

    NASA Astrophysics Data System (ADS)

    Remy, Samuel; Benedetti, Angela; Jones, Luke; Razinger, Miha; Haiden, Thomas

    2014-05-01

    The WMO-sponsored Working Group on Numerical Experimentation (WGNE) set up a project aimed at understanding the importance of aerosols for numerical weather prediction (NWP). Three cases are being investigated by several NWP centres with aerosol capabilities: a severe dust case that affected Southern Europe in April 2012, a biomass burning case in South America in September 2012, and an extreme pollution event in Beijing (China) which took place in January 2013. At ECMWF these cases are being studied using the MACC-II system with radiatively interactive aerosols. Some preliminary results related to the dust and the fire event will be presented here. A preliminary verification of the impact of the aerosol-radiation direct interaction on surface meteorological parameters such as 2m Temperature and surface winds over the region of interest will be presented. Aerosol optical depth (AOD) verification using AERONET data will also be discussed. For the biomass burning case, the impact of using injection heights estimated by a Plume Rise Model (PRM) for the biomass burning emissions will be presented.

  20. Challenges in modeling the impact of biomass burning on air quality in megacities

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Molina, L. T.

    2013-05-01

    Biomass burning (BB) is the largest source of primary carbonaceous aerosols and the second largest source of trace gases in the global troposphere. The trace gases and particulates emitted by or formed in the biomass burning plumes adversely affect human health and have important impacts on atmospheric chemistry, air quality, and climate change in megacities. Chemical transport models provide an independent tool to assess the BB impacts, and more importantly they can be used to assess the impacts during periods when and with large spatial coverage where measurements are not available. However due to the high variable nature of the BB impacts, the uncertainties in the BB emission estimates arising from the emission factors, biomass assumption estimates, spatial and temporal distributions, the bias in predicted dynamic mixing and transport, and the limited availability of measurements, a modeling evaluation of the BB impacts is a difficult and challenging task. In this study we use Mexico City as a case study to illustrate the challenges in simulating the impacts from open fires, biofuel use and trash burning.

  1. Human amplification of drought-induced biomass burning in Indonesia since 1960

    NASA Astrophysics Data System (ADS)

    Field, R. D.; van der Werf, G. R.; Shen, S. S.

    2009-05-01

    Much of the interannual variability in global atmospheric carbon dioxide concentrations has been attributed to variability of emissions from biomass burning. Under drought conditions, agricultural burning in Indonesia escapes control, and is a disproportionate contributor to these emissions, as seen in the 1997/98 haze disaster. Yet our understanding of the frequency, severity and underlying causes of severe biomass burning in Indonesia is limited because of the absence of satellite data that are useful for fire monitoring before the mid- 1990s. Here we present a continuous monthly record of severe burning events from 1960 to 2006 using the visibility reported at airports in the region. We find that these fires cause what are possibly the world's worst air quality conditions and that they occur only during years when precipitation falls below a well defined threshold. Historically, large fire events have occurred in Sumatra at least since the 1960s. By contrast, the first large fires are recorded in Kalimantan (Indonesian Borneo) in the 1980s, despite earlier severe droughts. We attribute this difference to different patterns of changes in land use and population density. Fires in Indonesia have often been linked with El Niño, but we find that the Indian Ocean Dipole pattern is as important a contributing factor.

  2. Human amplification of drought-induced biomass burning in Indonesia since 1960

    NASA Astrophysics Data System (ADS)

    Field, Robert D.; van der Werf, Guido R.; Shen, Samuel S. P.

    2009-03-01

    Much of the interannual variability in global atmospheric carbon dioxide concentrations has been attributed to variability of emissions from biomass burning. Under drought conditions, burning in Indonesia is a disproportionate contributor to these emissions, as seen in the 1997/98 haze disaster. Yet our understanding of the frequency, severity and underlying causes of severe biomass burning in Indonesia is limited because of the absence of satellite data that are useful for fire monitoring before the mid-1990s. Here we present a continuous monthly record of severe burning events from 1960 to 2006 using the visibility reported at airports in the region. We find that these fires cause extremely poor air quality conditions and that they occur only during years when precipitation falls below a well defined threshold. Historically, large fire events have occurred in Sumatra at least since the 1960s. By contrast, the first large fires are recorded in Kalimantan (Indonesian Borneo) in the 1980s, despite earlier severe droughts. We attribute this difference to different patterns of changes in land use and population density. Fires in Indonesia have often been linked with El Niño, but we find that the Indian Ocean Dipole pattern is as important a contributing factor.

  3. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2014-05-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled the largest fire-induced haze episode in the past decade (2006) in Indonesia using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). We focused mainly on the evolution of the fire plume composition and its interaction with the urbanized area of the city-state of Singapore, and on comparisons of modeled and measured aerosol and CO concentrations. Two simulations were run with the model using the complex Volatility Basis Set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic, and b iomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent datasets for comparison including airborne measurements of Particulate Matter with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and Aerosol Optical Depth (AOD) column observations from 4 satellite-based sensors. We found reasonable agreement of the model runs with both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while secondary organic aerosol (SOA) concentration slightly increased. The

  4. Biomass-burning emissions and associated haze layers over Amazonia

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Browell, E. V.; Gregory, G. L.; Harriss, R. C.; Hill, G. F.; Sachse, G. W.; Talbot, R. W.; Garstang, M.; Jacob, D. J.; Torres, A. L.

    1988-01-01

    The characteristics of haze layers, which were visually observed over the central Amazon Basin during many of the Amazon Boundary Layer Experiment 2A flights in July/August 1985, were investigated by remote and in situ measurements, using the broad range of instrumentation and sampling equipment on board the Electra aircraft. It was found that these layers strongly influenced the chemical and optical characteristics of the atmosphere over the eastern Amazon Basin. Relative to the regional background, the concentrations of CO, CO2, O3, and NO were significantly elevated in the plumes and haze layers, with the NO/CO ratio in fresh plumes much higher than in the aged haze layers. The haze aerosol was composed predominantly of organic material, NH4, K(+), NO3(-), SO4(2-), and organic anions (formate, acetate, and oxalate).

  5. On the influence of biomass burning on the seasonal CO2 signal as observed at monitoring stations

    USGS Publications Warehouse

    Wittenberg, U.; Heimann, Martin; Esse, G.; McGuire, A.D.; Sauf, W.

    1998-01-01

    We investigated the role of biomass burning in simulating the seasonal signal in both prognostic and diagnostic analyses. The prognostic anaysis involved the High-Resolution Biosphere Model, a prognostic terrestrial biosphere model, and the coupled vegetation fire module, which together produce a prognostic data set of biomass burning. The diagnostic analysis invovled the Simple Diagnostic Biosphere Model (SDBM) and the Hao and Liu [1994] diagnostic data set of bimass burning, which have been scaled to global 2 and 4 Pg C yr-1, respectively. The monthly carbon exchange fields between the atmosphere and the biosphere with a spatial resolution of 0.5?? ?? 0.5??, the seasonal atmosphere-ocean exchange fields, and the emissions from fossil fuels have been coupled to the three-dimensional atmospheric transport model TM2. We have chosen eight monitoring stations of the National Oceanic and Atmospheric Administration network to compare the predicted seasonal atmospheric CO2 signals with those deduced from atmosphere-biosphere carbon exchange fluxes without any contribution from biomass burning. The prognostic analysis and the diagnostic analysis with global burning emissions of 4 Pg C yr-1 agree with respect to the change in the amplitude of the seasonal CO2 concentration introduced through biomass burning. We find that the seasonal CO2 signal at stations in higher northern latitudes (north of 30??N) is marginally influenced by biomass burning. For stations in tropical regions an increase in the CO2 amplitude of more an 1 oppmv (up to 50% with respect to the observed trough to peak amplitude) has been calculated. Biomass burning at stations farther south accounts for an increase in the CO2 amplitude of up to 59% (0.6 ppmv). A change in the phase of the seasonal CO2 signal at tropical and southern stations has been shown to be strongly influenced by the onset of biomass burning in southern tropical Africa and America. Comparing simulated and observed seasonal CO2 signals

  6. Stable Carbon Isotopic Fractionation in Smoke and Char Produced During Biomass Burning

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Hsieh, Y.

    2006-12-01

    Stable isotopic ratio of carbon has been used extensively as a tracer of carbon sources in the environment. It has been documented that burning of C4 grasses resulted in significant depletion of C13 in the charcoal while burning of wood and C3 grass did not. This study was initiated to investigate the stable carbon isotopic fractionation of the smoke and char produced during biomass burnings. Samples of Juncus romerianus (C3 salt marsh grass) and Spartina alterniflora (C4 salt marsh grass), Eremochloa ophiuroides (centipede, a C4 lawn grass) and woody debris of a pine forest were colleted and burned in open air fire place. The particulate matter with diameters less than 2.5 micron (PM2.5) emitted from the burning was collected using a PM sampler. The original biomass, PM2.5, black C in PM2.5 and char (ash) were analyzed for their C, N and S thermograms using a multi-elemental scanning thermal analyzer and their stable C isotopic ratios were measured using an EA-IRMS. The results indicate that burning of wood and C3 grass did not produce significant C isotopic fractionation in PM2.5, black C in PM2.5 and char with respect to the original material. However, there was a significant C13-depletion in PM2.5 (-6.2 per mil), black C in PM2.5 (-4.6 per mil) and chars (-4.6 per mil) produced by burning of the C4 centipede grass; whereas the C4 Spartina salt marsh grass produced a C13-depletion in PM2.5 (-2.3 per mil) and black C in PM2.5 (-3.6 per mil), and a slight C13-enrichment in char (0.5 per mil). The isotope fractionation associated with burning of C4 vegetation is probably dependent on species and burning conditions and warrant further study.

  7. Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment (BASE-ASIA)

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, Christina N.; King, Michael D.; Sun, Wen-Yih

    2003-01-01

    Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Analyses from satellite measurements reveal that smoke is frequently present solar (emitted thermal) radiation from clouds due to smoke aerosols can be reduced (enhanced) by as much as 100 (20) W/sq m over the month of March 2000. In addition, the reduction in cloud spectral reflectance at 670 run is large enough to lead to significant errors in retrieving cloud properties (e.g., optical thickness and effective radius) from satellite measurements. The fresh water distribution in this region is highly dependent on monsoon rainfall; in fact, the predictability of the tropical climate system is much reduced during the boreal spring. Estimating the burning fuel (e.g., bark, branches, and wood), an important part of studying regional carbon cycle, may rely on utilizing a wide range of distinctive spectral features in the shortwave and

  8. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2

    NASA Astrophysics Data System (ADS)

    Jain, Atul K.; Tao, Zhining; Yang, Xiaojuan; Gillespie, Conor

    2006-03-01

    Open fire biomass burning and domestic biofuel burning (e.g., cooking, heating, and charcoal making) algorithms have been incorporated into a terrestrial ecosystem model to estimate CO2 and key reactive GHGs (CO, NOx, and NMHCs) emissions for the year 2000. The emissions are calculated over the globe at a 0.5° × 0.5° spatial resolution using tree density imagery, and two separate sets of data each for global area burned and land clearing for croplands, along with biofuel consumption rate data. The estimated global and annual total dry matter (DM) burned due to open fire biomass burning ranges between 5221 and 7346 Tg DM/yr, whereas the resultant emissions ranges are 6564-9093 Tg CO2/yr, 438-568 Tg CO/yr, 11-16 Tg NOx/yr (as NO), and 29-40 Tg NMHCs/yr. The results indicate that land use changes for cropland is one of the major sources of biomass burning, which amounts to 25-27% (CO2), 25 -28% (CO), 20-23% (NO), and 28-30% (NMHCs) of the total open fire biomass burning emissions of these gases. Estimated DM burned associated with domestic biofuel burning is 3,114 Tg DM/yr, and resultant emissions are 4825 Tg CO2/yr, 243 Tg CO/yr, 3 Tg NOx/yr, and 23 Tg NMHCs/yr. Total emissions from biomass burning are highest in tropical regions (Asia, America, and Africa), where we identify important contributions from primary forest cutting for croplands and domestic biofuel burning.

  9. Distributions of Trace Gases and Aerosols during the Dry Biomass Burning Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2003-01-01

    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 micrograms /cubic meter and 13.2 and 14.3 micrograms/cubic meter). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 micrograms/cubic meter, and per 6400 cubic meter , respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 3 10 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 +/- 8 ppmv), CO (261 +/- 81 ppbv), SO2 (2.5 +/- 1.6 ppbv), O3 (64 +/- 13 ppbv), black particulate carbon (2.3 +/- 1.9 microgram/cubic meter), organic particulate carbon (6.2 +/- 5.2 microgram/cubic meter), total particle mass (26.0 +/- 4.7 microgram/cubic meter), and potassium particles (0

  10. Global modeling study of soluble organic nitrogen from open biomass burning

    NASA Astrophysics Data System (ADS)

    Ito, Akinori; Lin, Guangxing; Penner, Joyce E.

    2015-11-01

    Atmospheric deposition of reactive nitrogen (N) species from large fires may contribute to enrichment of nutrients in aquatic ecosystems. Here we use an atmospheric chemistry transport model to investigate the supply of soluble organic nitrogen (ON) from open biomass burning to the ocean. The model results show that the annual deposition rate of soluble ON to the oceans (14 Tg N yr-1) is increased globally by 13% with the increase being particularly notable over the tropical oceans downwind from the source regions. The estimated deposition of soluble ON due to biomass burning from the secondary formation (1.0 Tg N yr-1) is close to that from the primary sources (1.2 Tg N yr-1). We examine the secondary formation of particulate C-N compounds (i.e., imidazole, methyl imidazole, and N-containing oligomers) from the reactions of glyoxal (CHOCHO) and methylglyoxal (CH3COCHO) with ammonium (NH4+) in wet aerosols and upon cloud evaporation. These ON sources result in a significant contribution to the open ocean (1.3 Tg N yr-1), suggesting that atmospheric processing in aqueous-phase may have a large effect. We compare the soluble ON concentration in aerosols with and without open biomass burning as a case study in Singapore. The model results demonstrate that the soluble ON concentration in aerosols is episodically enriched during the fire events, compared to the case without smoke simulations. At the same time, the model results show that the daily soluble ON concentration can be also enhanced in the case without smoke simulations, compared to the monthly averages. These results may suggest that both the primary source strength of ON and the secondary formation rates of ON should be taken into consideration when using in-situ observations to constrain the calculated soluble ON burden due to biomass burning. More accurate quantification of the soluble ON burdens both with and without smoke sources is therefore needed to assess the effect of biomass burning on bioavailable

  11. On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass.

    PubMed

    Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik

    2015-07-01

    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass. PMID:26141898

  12. On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass.

    PubMed

    Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik

    2015-07-01

    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass.

  13. Biomass Burning Emissions in the Cerrado of Brazil Computed with Remote Sensing Data and GIS

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Brass, James A.; Chatfield, Robert B.; Hlavka, Christine A.; Riggan, Philip J.; Setzer, Alberto; Pereira, Joao A. Raposo; Peterson, David L. (Technical Monitor)

    1994-01-01

    Biomass burnin is a common force in much of the developing tropical world where it has wide-ranging environmental impacts. Fire is a component of tropical deforestation and is 0 p often used to clear broad expanses of land for shifting agriculture and cattle ranching. Frequent burning in the tropical savannas is a distinct problem from that of primary forest. In Brazil, most of the burning occurs in the cerrado which occupies approximately 1,800,000 km2, primarily on the great plateau in central Brazil. Wildland and agricultural fires are dramatic sources of regional air pollution in central Brazil. Biomass burning is an important source of a large number of trace gases including greenhouse gases and other chemically active species. Knowledge of trace gas emissions from biomass burning in Brazil is limited by a number of factors, most notably relative emission factors for gases from specific fire types/fuels and accurate estimates of temporal and spatial distribution and extent of fire activity. Estimates of trace gas emissions during September 1992 will be presented that incorporates a digital map of vegetation classes, pyrogenic emission factors calculated from ground and aircraft missions, and Instituto Nacional de Pesquisas Espaciais (INPE) fire products derived from Advanced Very High Resolution Radiometer (AVHRR) data. The regional emissions calculated from National Oceanographic and Atmospheric Administration (NOAA) AVHRR estimates of fire activity will provide an independent estimate for comparison with results obtained by the National Aeronautics and Space Administration (NASA) Transport and Atmospheric Chemistry Near the Equator - Atlantic (TRACE-A) experiments.

  14. Biomass-Burning Aerosols in South East-Asia: Smoke Impact Assessment (BASE-ASIA)

    NASA Technical Reports Server (NTRS)

    Tsay, S.-C.; Hsu, N. C.; King, M. D.; Sun, W.-Y.

    2004-01-01

    Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth- atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth s radiation and water budget. Analyses from satellite measurements reveal the reflected solar (emitted thermal) radiation from clouds due to smoke aerosols can be reduced (enhanced) by 100 (20) Watts per square meter over the month of March 2000. In addition, the reduction in cloud spectral reflectance is large enough to lead to significant errors in satellite retrievals of cloud properties (e.g., optical thickness and effective radius). The fresh water distribution in this region is highly dependent on monsoon rainfall; in fact, the predictability of the tropical climate system is much reduced during the boreal spring. Therefore, to accurately assess the impact of smoke aerosols in this region requires continuous observations from satellites, aircraft, ground-based networks and dedicated field experiments. BASE-ASIA initiative has been proposed and will be discussed.

  15. Total sugars in atmospheric aerosols: An alternative tracer for biomass burning

    NASA Astrophysics Data System (ADS)

    Scaramboni, C.; Urban, R. C.; Lima-Souza, M.; Nogueira, R. F. P.; Cardoso, A. A.; Allen, A. G.; Campos, M. L. A. M.

    2015-01-01

    Ambient aerosols were collected in an agro-industrial region of São Paulo State (Brazil) between May 2010 and February 2012 (n = 87). The atmosphere of the study region is highly affected by the emissions of gases and particles from sugar and fuel ethanol production, because part of the area planted with sugarcane is still burned before manual harvesting. This work proposes the quantification of total sugars as an alternative chemical tracer of biomass burning, instead of levoglucosan. The quantification of total sugars requires a small area of a filter sample and a simple spectrophotometer, in contrast to the determination of levoglucosan, which is much more complex and time-consuming. Total sugars concentrations in the aerosol ranged from 0.28 to 12.5 μg m-3, and (similarly to levoglucosan) the emissions were significantly higher at night and during the sugarcane harvest period, when most agricultural fires occur. The linear correlation between levoglucosan and total sugars (r = 0.612) was stronger than between levoglucosan and potassium (r = 0.379), which has previously been used as a biomass burning tracer. In the study region, potassium is used in fertilizers, and this, together with substantial soil dust resuspension, makes potassium unsuitable for use as a tracer. On average, ca. 40% of the total sugars was found in particles smaller than 0.49 μm. By including data from previous work, it was possible to identify from 35 to 42% of the total sugars, with biomass burning making the largest contribution. The high solubility in water of these sugars means that determination of their concentrations could also provide important information concerning the hydrophilic properties of atmospheric aerosols.

  16. Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Jiang, Qi; Xu, Yisheng; Ma, Yan; Zhang, Yingjie; Liu, Xingang; Li, Weijun; Wang, Fei; Li, Jie; Wang, Pucai; Li, Zhanqing

    2016-03-01

    The North China Plain experiences frequent severe haze pollution during all seasons. Here we present the results from a summer campaign that was conducted at Xianghe, a suburban site located between the megacities of Beijing and Tianjin. Aerosol particle composition was measured in situ by an Aerosol Chemical Speciation Monitor along with a suite of collocated measurements during 1-30 June 2013. Our results showed that aerosol composition at the suburban site was overall similar to that observed in Beijing, which was mainly composed of organics (39%), nitrate (20%), and sulfate (18%). Positive matrix factorization of organic aerosol (OA) identified four OA factors with different sources and processes. While secondary organic aerosol dominated OA, on average accounting for 70%, biomass burning OA (BBOA) was also observed to have a considerable contribution (11%) for the entire study period. The contribution of BBOA was increased to 21% during the BB period in late June, indicating a large impact of agricultural burning on air pollution in summer. Biomass burning also exerted a significant impact on aerosol optical properties. It was estimated that ~60% enhancement of absorption at the ultraviolet spectral region was caused by the organic compounds from biomass burning. The formation mechanisms and sources of severe haze pollution episodes were investigated in a case study. The results highlighted two different mechanisms, i.e., regional transport and local sources, driving the haze life cycles differently in summer in the North China Plain. While secondary aerosol species dominated aerosol composition in the episode from regional transport, organics and black carbon comprised the major fraction in the locally formed haze episode.

  17. Biomass Burning Impact on Surface Ozone in the Western United States

    NASA Astrophysics Data System (ADS)

    Gao, M.; Li, Q.; Mao, Y.; Zhang, L.; Randerson, J. T.; Liou, K.

    2011-12-01

    While summertime surface ozone levels have been decreasing throughout the U.S., the western U.S. (WUS) has seen an upward trend in the past decade. That upward trend is likely a result of the increasing intensity and frequency of wildfires in the WUS. We analyze the surface ozone observations from the Clean Air Status and Trend Network (CASTNet) using the GEOS-Chem model to delineate the potential impact of biomass burning emissions on surface ozone in the WUS. We conduct three-year (2005-2007) GEOS-Chem simulations at 2°×2.5° (globally) and 0.55°×0.66° (nested over North America) horizontal resolutions. Wildfires in the WUS range from relatively weak in 2005 and medium intensity in 2006 to intense burning in 2007. Our focus is on April-November, the fire season in the WUS. GEOS-Chem ozone captures the observed seasonal, synoptic and daily variations. The largest discrepancies are seen during the late July and early August 2007, when model results are baised high by up to 30 ppbv at elevated mountainous sites in the southern Rockies. These biases are largely because of excessive lighting NOx emissions in the model and weak precipitation in the GEOS-5 meteorological reanalysis data. Results from the model sensitivity simulations show on average an increase of ~10 ppb in surface ozone due to biomass burning emissions during summer 2007. Variations of fire-contributed surface ozone strongly correlate with that of potassium (K, a tracer of biomass burning) concentrations at the corresponding CASTNet sites.

  18. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  19. Spatial and temporal variability in the ratio of trace gases emitted from biomass burning

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G.

    2010-12-01

    Fires are a major source of trace gases and aerosols to the atmosphere. The amount of biomass burned is becoming better known, most importantly due to improved burned area datasets. The partitioning of biomass burned into emitted trace gases and aerosols, however, has received relatively little attention. To convert estimates of biomass burned to trace gas and aerosol emissions, most studies have used emission ratios (or emission factors [EFs]) based on the arithmetic mean of field measurement outcomes, stratified by biome. However, EFs vary substantially in time and space, even within a single biome, and in addition it is unknown whether the measurement locations provide a representative sample for the various biomes. Here we used the available body of EF literature in combination with satellite-derived information on vegetation characteristics and climatic conditions to better understand the spatio-temporal variability in EFs. While focusing on CO, CH4, and CO2, our findings are also applicable to other trace gases and aerosols. We explored relations between EFs and different satellite datasets thought to drive part of the variability in EFs (tree cover density, vegetation greenness, temperature, precipitation, and the length of the dry season). Although reasonable correlations were found for specific case studies, correlations based on the full suite of available measurements were less satisfying (r-max=0.62). This may be partly due to uncertainties in the driver datasets, differences in measurement techniques, assumptions on the ratio between flaming and smoldering combustion, and incomplete information on the location and timing of measurement. We derived new mean EFs, using the relative importance of each measurement location. These weighted averages were within 18% of the arithmetic mean. We argue that from a global modeling perspective, future measurement campaigns could be more beneficial if measurements are made over the full fire season, or alternatively

  20. Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels

    NASA Astrophysics Data System (ADS)

    Christian, T. J.; Kleiss, B.; Yokelson, R. J.; Holzinger, R.; Crutzen, P. J.; Hao, W. M.; Saharjo, B. H.; Ward, D. E.

    2003-12-01

    Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH4, NH3, HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21-34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.

  1. Biomass burning in boreal forests and peatlands: Effects on ecosystem carbon losses and soil carbon stabilization as black carbon

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.; Kane, E. S.; Benscoter, B.

    2011-12-01

    Climate change has increased both annual area burned and the severity of biomass combustion in some boreal regions. For example, there has been a four-fold increase in late season fires in boreal Alaska over the last decade relative to the previous 50 years. Such changes in the fire regime are expected to stimulate ecosystem carbon losses through fuel combustion, reduced primary production, and increased decomposition. However, biomass burning also will influence the accumulation of black carbon in soils, which could promote long-term soil carbon sequestration. Variations in slope and aspect regulate soil temperatures and drainage conditions, and affect the development of permafrost and thick peat layers. Wet soil conditions in peatlands and permafrost forests often inhibit combustion during wildfires, leading to strong positive correlations between pre- and post- fire organic soil thickness that persist through multiple fire cycles. However, burning can occur in poorly drained ecosystems through smouldering combustion, which has implications for emission ratios of CO2:CH4:CO as well as black carbon formation. Our studies of combustion severity and black carbon concentrations in boreal soils show a negative relationship between concentrations of black carbon and organic carbon in soils post-fire. Relative to well drained stands, poorly drained sites with thick peat layers (such as north-facing stands) had less severe burning and low concentrations of black carbon in mineral soils post-fire. Conversely, drier forests lost a greater proportion of their organic soils during combustion but retained larger black carbon stocks following burning. Overall, we have quantified greater black carbon concentrations in surface mineral soil horizons than in organic soil horizons. This is surprising given that wildfires typically do not consume the entire organic soil layer in boreal forests, and could be indicative of the vulnerability of black carbon formed in organic horizons

  2. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data

    NASA Astrophysics Data System (ADS)

    Chang, D.; Song, Y.

    2010-03-01

    Biomass burning in tropical Asia emits large amounts of trace gases and particulate matter into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000 to 2006 (1 March 2000-31 February 2007). The size of the burned areas was estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1). Available fuel loads and emission factors were assigned to each vegetation type in a GlobCover characterisation map, and fuel moisture content was taken into account when calculating combustion factors. Over the whole period, both burned areas and fire emissions showed clear spatial and seasonal variations. The size of the L3JRC burned areas ranged from 36 031 km2 in fire year 2005 to 52 303 km2 in 2001, and the MCD45A1 burned areas ranged from 54 790 km2 in fire year 2001 to 148 967 km2 in 2004. Comparisons of L3JRC and MCD45A1 burned areas using ground-based measurements and other satellite data were made in several major burning regions, and the results suggest that MCD45A1 generally performed better than L3JRC, although with a certain degree of underestimation in forest areas. The average annual L3JRC-based emissions were 123 (102-152), 12 (9-15), 1.0 (0.7-1.3), 1.9 (1.4-2.6), 0.11 (0.09-0.12), 0.89 (0.63-1.21), 0.043 (0.036-0.053), 0.021 (0.021-0.023), 0.41 (0.34-0.52), 3.4 (2.6-4.3), and 3.6 (2.8-4.7) Tg yr-1 for CO2, CO, CH4, NMHCs, NOx, NH3, SO2, BC, OC, PM2.5, and PM10, respectively, whereas MCD45A1-based emissions were 122 (108-144), 9.3 (7.7-11.7), 0.63 (0.46-0.86), 1.1 (0.8-1.6), 0.11 (0.10-0.13), 0.54 (0.38-0.76), 0.043 (0.038-0.051), 0.033 (0.032-0.037), 0.39 (0.34-0.47), 3.0 (2.6-3.7), and 3.3 (2.8-4.0) Tg yr-1. Forest burning was identified as the major source of the fire emissions due to its high carbon density. Although agricultural burning was the second highest contributor, it

  3. Burns

    MedlinePlus

    ... doing so puts you in danger as well. Chemical and Electrical Burns For chemical and electrical burns, call 911 or your local ... the power source has been turned off. For chemical burns: Dry chemicals should be brushed off the ...

  4. Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa.

    PubMed

    Colombaroli, Daniele; Ssemmanda, Immaculate; Gelorini, Vanessa; Verschuren, Dirk

    2014-09-01

    Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity. PMID:24677504

  5. Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa.

    PubMed

    Colombaroli, Daniele; Ssemmanda, Immaculate; Gelorini, Vanessa; Verschuren, Dirk

    2014-09-01

    Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.

  6. Seasonal and spatial variation of organic tracers for biomass burning in PM1 aerosols from highly insolated urban areas.

    PubMed

    van Drooge, B L; Fontal, M; Bravo, N; Fernández, P; Fernández, M A; Muñoz-Arnanz, J; Jiménez, B; Grimalt, J O

    2014-10-01

    PM1 aerosol characterization on organic tracers for biomass burning (levoglucosan and its isomers and dehydroabietic acid) was conducted within the AERTRANS project. PM1 filters (N = 90) were sampled from 2010 to 2012 in busy streets in the urban centre of Madrid and Barcelona (Spain) at ground-level and at roof sites. In both urban areas, biomass burning was not expected to be an important local emission source, but regional emissions from wildfires, residential heating or biomass removal may influence the air quality in the cities. Although both areas are under influence of high solar radiation, Madrid is situated in the centre of the Iberian Peninsula, while Barcelona is located at the Mediterranean Coast and under influence of marine atmospheres. Two extraction methods were applied, i.e. Soxhlet and ASE, which showed equivalent results after GC-MS analyses. The ambient air concentrations of the organic tracers for biomass burning increased by an order of magnitude at both sites during winter compared to summer. An exception was observed during a PM event in summer 2012, when the atmosphere in Barcelona was directly affected by regional wildfire smoke and levels were four times higher as those observed in winter. Overall, there was little variation between the street and roof sites in both cities, suggesting that regional biomass burning sources influence the urban areas after atmospheric transport. Despite the different atmospheric characteristics in terms of air relative humidity, Madrid and Barcelona exhibit very similar composition and concentrations of biomass burning organic tracers. Nevertheless, levoglucosan and its isomers seem to be more suitable for source apportionment purposes than dehydroabietic acid. In both urban areas, biomass burning contributions to PM were generally low (2 %) in summer, except on the day when wildfire smoke arrive to the urban area. In the colder periods the contribution increase to around 30 %, indicating that regional

  7. Seasonal and spatial variation of organic tracers for biomass burning in PM1 aerosols from highly insolated urban areas.

    PubMed

    van Drooge, B L; Fontal, M; Bravo, N; Fernández, P; Fernández, M A; Muñoz-Arnanz, J; Jiménez, B; Grimalt, J O

    2014-10-01

    PM1 aerosol characterization on organic tracers for biomass burning (levoglucosan and its isomers and dehydroabietic acid) was conducted within the AERTRANS project. PM1 filters (N = 90) were sampled from 2010 to 2012 in busy streets in the urban centre of Madrid and Barcelona (Spain) at ground-level and at roof sites. In both urban areas, biomass burning was not expected to be an important local emission source, but regional emissions from wildfires, residential heating or biomass removal may influence the air quality in the cities. Although both areas are under influence of high solar radiation, Madrid is situated in the centre of the Iberian Peninsula, while Barcelona is located at the Mediterranean Coast and under influence of marine atmospheres. Two extraction methods were applied, i.e. Soxhlet and ASE, which showed equivalent results after GC-MS analyses. The ambient air concentrations of the organic tracers for biomass burning increased by an order of magnitude at both sites during winter compared to summer. An exception was observed during a PM event in summer 2012, when the atmosphere in Barcelona was directly affected by regional wildfire smoke and levels were four times higher as those observed in winter. Overall, there was little variation between the street and roof sites in both cities, suggesting that regional biomass burning sources influence the urban areas after atmospheric transport. Despite the different atmospheric characteristics in terms of air relative humidity, Madrid and Barcelona exhibit very similar composition and concentrations of biomass burning organic tracers. Nevertheless, levoglucosan and its isomers seem to be more suitable for source apportionment purposes than dehydroabietic acid. In both urban areas, biomass burning contributions to PM were generally low (2 %) in summer, except on the day when wildfire smoke arrive to the urban area. In the colder periods the contribution increase to around 30 %, indicating that regional

  8. Holocene Biomass Burning, Environmental Change, and Human Land Use in the Southern Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Wahl, D.

    2013-12-01

    For several decades scholars have studied the dynamic relationship between the prehispanic Maya and their environment in order to test hypotheses that environmental change played a role in the abandonment of the Maya lowlands. Fire was inherent in Maya land use practices, arguably the primary tool used to alter the landscape and extract resources. Opening of forest for agriculture, building, and extraction/production of construction material necessitated burning. The extensive production of lime plaster for architectural and domestic use demanded harvesting and burning of vast quantities of green wood. While we understand the fundamental role of fire in Maya land use, there are very few records of prehispanic biomass burning from the Maya lowlands. Consequently, only a limited understanding exists of both natural fire regimes and patterns of anthropogenic burning in the tropical dry forests of Central America. Here we report two new well-dated, high-resolution records of biomass burning based on analysis of fossil charcoal recovered from lacustrine sediment cores, extending from the early Holocene to the present. The study sites, Lagos Paixban and Puerto Arturo are located in the southern Maya lowlands in modern northern Peten, Guatemala. Macroscopic charcoal data are presented along with previously published proxy data from the sites, and interpreted in the context of existing regional and local paleoenvironmental and archeological records. Results show that frequent fires occurred in the closed canopy forests of the region since at least the early mid-Holocene (~9000 BP), prior to occupation by sedentary agriculturalists. Following the arrival of sedentary agriculture at around 4600 BP, the system transitioned from climate controlled to anthropogenic control. During the Maya period, changes in fire regime are muted and do not appear to be driven by changes in climate conditions. Low charcoal influx and fire frequency in the Preclassic period suggest that land use

  9. Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes

    SciTech Connect

    Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

    2013-04-15

    Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ν10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 ± 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

  10. Biomass burning and anthropogenic sources of CO over New England in the summer 2004

    NASA Astrophysics Data System (ADS)

    Warneke, C.; de Gouw, J. A.; Stohl, A.; Cooper, O. R.; Goldan, P. D.; Kuster, W. C.; Holloway, J. S.; Williams, E. J.; Lerner, B. M.; McKeen, S. A.; Trainer, M.; Fehsenfeld, F. C.; Atlas, E. L.; Donnelly, S. G.; Stroud, Verity; Lueb, Amy; Kato, S.

    2006-12-01

    During the summer of 2004 large wildfires were burning in Alaska and Canada, and part of the emissions were transported toward the northeast United States, where they were measured during the NEAQS-ITCT 2k4 (New England Air Quality Study-Intercontinental Transport and Chemical Transformation) study on board the NOAA WP-3 aircraft and the NOAA research vessel Ronald H. Brown. Using acetonitrile and chloroform as tracers the biomass burning and the anthropogenic fraction of the carbon monoxide (CO) enhancement are determined. As much as 30% of the measured enhancement is attributed to the forest fires in Alaska and Canada transported into the region, and 70% is attributed to the urban emissions of mainly New York and Boston. On some days the forest fire emissions were mixed down to the surface and dominated the CO enhancement. The results compare well with the FLEXPART transport model, indicating that the total emissions during the measurement campaign for biomass burning might be about 22 Tg. The total U.S. anthropogenic CO sources used in FLEXPART are 25 Tg. FLEXPART model, using the U.S. EPA NEI-99 data, overpredicts the CO mixing ratio around Boston and New York in 2004 by about 50%.

  11. Size distribution of water-soluble components in particulate matter emitted from biomass burning

    NASA Astrophysics Data System (ADS)

    Park, Seung-Shik; Sim, Soo Young; Bae, Min-Suk; Schauer, James J.

    2013-07-01

    Size-resolved measurements of particulate matter (PM) emissions from 10 biomass materials (rice straw, soybean stem, green perilla stem, red pepper stem, pine needles, cherry leaves, cherry stem, maple leaves, gingko leaves and gingko stem) were conducted in a laboratory hood chamber environment using a 10-stage MOUDI. Samples were analyzed to determine the mass, water soluble organic carbon (WSOC), and water soluble inorganic species. This study examines how particle emissions and size distributions of chemical components vary with biomass materials. Mass fractions of water soluble organic mass (WSOM) (=1.6 × WSOC) and ionic species to the PM1.8 emissions varied significantly depending on the biomass type burned. The percent mass of WSOM in PM1.8 emissions ranged from 19.8% (green perilla stem) to 41.9% (red pepper stem) for agricultural crop residues, while the tree category accounted for 9.6% (gingko leaves) to 44.0% (gingko stem) of the PM1.8 emissions. Total ionic species contents in the PM1.8 mass ranged from 7.4% (rice straw) to 26.9% (green perilla stem) for the agricultural waste category, and 5.8% (maple leaves) to 23.5% (gingko stem) for the tree category. The ionic species fraction of the PM1.8 emission was dominated by K+, Cl-, and SO, while Ca2+ was important in the coarse mode particles (>3.1 μm). PM1.8 emissions of K+, Cl-, and SO were as high as 16.9%, 9.0%, and 5.8%, respectively, and were from the green perilla stem, red pepper stem, and gingko stem emissions. Normalized size distributions of mass, WSOC, K+, Cl-, SO, and oxalate in the biomass burning emissions showed a unimodal size distribution, peaking in the size ranges of 0.32-0.55 μm and 0.55-1.0 μm. Size-resolved PM mass fractions of WSOM, K+, Cl-, and SO showed fairly consistent distributions for each biomass type, with higher fractions in the ultrafine mode (<0.10 μm) and lower fractions in the accumulation mode of 0.32-1.0 μm. The size distributions of WSOC were strongly

  12. Fire in Ice: Glacial-Interglacial biomass burning in the NEEM ice core

    NASA Astrophysics Data System (ADS)

    Zennaro, Piero; Kehrwald, Natalie; Zangrando, Roberta; Gambaro, Andrea; Barbante, Carlo

    2014-05-01

    Earth is an intrinsically flammable planet. Fire is a key Earth system process with a crucial role in biogeochemical cycles, affecting carbon cycle mechanisms, land-surface properties, atmospheric chemistry, aerosols and human activities. However, human activities may have also altered biomass burning for thousands of years, thus influencing the climate system. We analyse the specific marker levoglucosan to reconstruct past fire events in ice cores. Levoglucosan (1,6-anhydro-β-D-glucopyranose) is an organic compound that can be only released during the pyrolysis of cellulose at temperatures > 300°C. Levoglucosan is a major fire product in the fine fraction of woody vegetation combustion, can be transported over regional to global distances, and is deposited on the Greenland ice sheet. The NEEM, Greenland ice core (77 27'N, 51 3'W, 2454 masl) documents past fire activity changes from the present back to the penultimate interglacial, the Eemian. Here we present a fire activity reconstruction from both North American and Eurasian sources over the last 120,000 yrs based on levoglucosan signatures in the NEEM ice core. Biomass burning significantly increased over the boreal Northern Hemisphere since the last glacial, resulting in a maximum between 1.5 and 3.5 kyr BP yet decreasing from ~2 kyr BP until the present. Major climate parameters alone cannot explain the observed trend and thus it is not possible to rule out the hypothesis of early anthropogenic influences on fire activity. Over millennial timescales, temperature influences Arctic ice sheet extension and vegetation distribution at Northern Hemisphere high latitudes and may have altered the distance between NEEM and available fuel loads. During the last Glacial, the combination of dry and cold climate conditions, together with low boreal insolation and decreased atmospheric carbon dioxide levels may have also limited the production of available biomass. Diminished boreal forest extension and the southward

  13. Biomass Burning

    NASA Video Gallery

    As part of NASA's 2013 Reel Science Communications program, student Michelle Ko from Pasadena California worked with NASA scientists and communications specialists to produce this impressive video ...

  14. Measured and Modeled Humidification Factors of Fresh Smoke Particles From Biomass Burning: Role of Inorganic Constituents

    SciTech Connect

    Hand, Jenny L.; Day, Derek E.; McMeeking, Gavin M.; Levin, Ezra; Carrico, Christian M.; Kreidenweis, Sonia M.; Malm, William C.; Laskin, Alexander; Desyaterik, Yury

    2010-07-09

    During the 2006 FLAME study (Fire Laboratory at Missoula Experiment), laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry) and bsp(RH), respectively) in order to explore the role of relative humidity (RH) on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels showed large variability in the humidification factor (f(RH) = bsp(RH)/bsp(dry)). Values of f(RH) at RH=85-90% ranged from 1.02 to 2.15 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic and organic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 85-90% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  15. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Day, D. E.; McMeeking, G. M.; Levin, E. J. T.; Carrico, C. M.; Kreidenweis, S. M.; Malm, W. C.; Laskin, A.; Desyaterik, Y.

    2010-02-01

    During the 2006 FLAME study (Fire Laboratory at Missoula Experiment), laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry) and bsp(RH), respectively) in order to explore the role of relative humidity (RH) on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels showed large variability in the humidification factor (f(RH)=bsp(RH)/bsp(dry)). Values of f(RH) at RH=85-90% ranged from 1.02 to 2.15 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic and organic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 85-90% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  16. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Day, D. E.; McMeeking, G. M.; Levin, E. J. T.; Carrico, C. M.; Kreidenweis, S. M.; Malm, W. C.; Laskin, A.; Desyaterik, Y.

    2010-07-01

    During the 2006 FLAME study (Fire Laboratory at Missoula Experiment), laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry) and bsp(RH), respectively) in order to explore the role of relative humidity (RH) on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels from the west and southeast United States showed large variability in the humidification factor (f(RH)=bsp(RH)/bsp(dry)). Values of f(RH) at RH=80-85% ranged from 0.99 to 1.81 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 80-85% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  17. Short-term effects of air pollution from biomass burning in mucociliary clearance of Brazilian sugarcane cutters.

    PubMed

    Ferreira-Ceccato, Aline Duarte; Ramos, Ercy Mara Cípulo; de Carvalho, Luiz Carlos Soares; Xavier, Rafaella Fagundes; Teixeira, Marcos Fernando de Souza; Raymundo-Pereira, Paulo Augusto; Proença, Camila dos Anjos; de Toledo, Alessandra Choqueta; Ramos, Dionei

    2011-11-01

    Nasal mucociliary system is the first line of defense of the upper airways and may be affected acutely by exposure to particulate matter (PM) from biomass burning. Several epidemiologic studies have demonstrated a consistent association between levels of air pollution from biomass burning with increases in hospitalization for respiratory diseases and mortality. To determine the acute effects of exposure to particulate matter from biomass burning in nasal mucociliary transport by saccharin transit time (STT) test, we studied thirty-three non-smokers and twelve light smokers sugarcane cutters in two periods: pre-harvest season and 4 h after harvest at the first day after biomass burning. Lung function, exhaled carbon monoxide (CO), nasal symptoms questionnaire and mucociliary clearance (MC) were assessed. Exhaled CO was increased in smokers compared to non-smokers but did not change significantly after harvest. In contrast, STT was similar between smokers and non-smokers and decreased significantly after harvest in both groups (p < 0.001). Exposure to PM from biomass burning did not influence nasal symptoms. Our results suggest that acute exposure to particulate matter from sugarcane burned affects mucociliary clearance in smokers and non-smokers workers in the absence of symptoms.

  18. Biomass burning aerosol in the State of São Paulo (Southeastern Brazil)

    NASA Astrophysics Data System (ADS)

    Lara, L. L. S.; Artaxo, P.; Martinelli, L. A.; Camargo, P. B.; Ferraz, E. S. B.

    2003-04-01

    A detailed aerosol source apportionment study has been performed in three sites in State of São Paulo with different land-use: sugarcane crops, cattle, urban area and forest. During the summer and winter, the period when sugarcane is burned every year, PM10 has been sampled during day and night in a period of 48 hours, using stacked filters units collecting fine and coarse particulate mode, providing mass, BC and elemental concentration for each aerosol mode. The concentrations of around 20 elements were determined using particle induced X-ray emission technique (PIXE). Ion chromatography was used to determine up to 11 water-soluble ion components. Highest levels of pollutants have been measured around the sugarcane crops, where the annual PM10 concentration (57.1"45.2µgm-3) exceeds of the other urban and industrialized areas and the BC concentration is significantly higher during the sugarcane burning period (4.2"2.2 µgm-3) than the rest of the year (2.0"1.0 µgm-3). The main sources of the aerosol are correlated to the land cover. Factor and cluster analysis showed the main source int the State of São Paulo is biomass burning, followed by soil dust, biogenic emissions and industrial emissions. The sampling and analytical procedures applied in this study showed the sugarcane burning and agricultural practices are the main source of inhalable particulate, possibly altering the aerosol concentration in some places of the State of São Paulo.

  19. Observations of nonmethane organic compounds during ARCTAS - Part 1: Biomass burning emissions and plume enhancements

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Blake, D. R.; Diskin, G. S.; Fried, A.; Fuelberg, H. E.; Meinardi, S.; Mikoviny, T.; Richter, D.; Sachse, G. W.; Vay, S. A.; Walega, J.; Weibring, P.; Weinheimer, A. J.; Wiedinmyer, C.; Wisthaler, A.; Hills, A.; Riemer, D. D.; Apel, E. C.

    2011-11-01

    Mixing ratios of a large number of nonmethane organic compounds (NMOCs) were observed by the Trace Organic Gas Analyzer (TOGA) on board the NASA DC-8 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. Many of these NMOCs were observed concurrently by one or both of two other NMOC measurement techniques on board the DC-8: proton-transfer-reaction mass spectrometry (PTR-MS) and whole air canister sampling (WAS). A comparison of these measurements to the data from TOGA indicates good agreement for the majority of co-measured NMOCs. The ARCTAS study, which included both spring and summer deployments, provided opportunities to sample a large number of biomass burning (BB) plumes with origins in Asia, California and central Canada, ranging from very recent emissions to plumes aged one week or more. For this analysis, BB smoke interceptions were grouped by flight, source region and, in some cases, time of day, generating 40 identified BB plumes for analysis. Normalized excess mixing ratios (NEMRs) to CO were determined for each of the 40 plumes for up to 19 different NMOCs or NMOC groups. Although the majority of observed NEMRs for individual NMOCs or NMOC groups were in agreement with previously-reported values, the observed NEMRs to CO for ethanol, a rarely quantified gas-phase trace gas, ranged from values similar to those previously reported, to up to an order of magnitude greater. Notably, though variable between plumes, observed NEMRs of individual light alkanes are highly correlated within BB emissions, independent of estimated plume ages. BB emissions of oxygenated NMOC were also found to be often well-correlated. Using the NCAR Master Mechanism chemical box model initialized with concentrations based on two observed scenarios, fresh Canadian BB and fresh Californian BB, decreases are predicted for the low molecular weight carbonyls (i.e. formaldehyde, acetaldehyde, acetone and methyl ethyl

  20. Secondary Forest Age and Tropical Forest Biomass Estimation Using TM

    NASA Technical Reports Server (NTRS)

    Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.

    1999-01-01

    The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.

  1. Effect of biomass burning on surface ozone: A case study in 2010 over Northern Sub-Saharan Africa (NSSA)

    NASA Astrophysics Data System (ADS)

    Damoah, R.; Ichuku, C.; Ellison, L.

    2015-12-01

    One of the major sources of tropospheric ozone (O3) precursors such as nitrogen oxides (NOx), carbon monoxides (CO), and non-methane volatile organic compounds (NMVOCs) is biomass burning. The emissions from the burning do not only affect air quality and climate locally, but also on a continental to hemispheric scales through long-range transport. We have used NASA's Global Modeling Initiative Chemistry and Transport Model (GMI-CTM), to quantify the changes in surface ozone over Northern Sub-Saharan Africa (NSSA: 0 - 20N, 20W - 55E), as triggered by biomass burning from different regions. During the winter months (e.g. January), most of the burning is concentrated in the NSSA region while in summer it shifts southward outside the NSSA region. Our analysis reveals that out of the total contribution to surface ozone from biomass burning emissions in the NSSA region, 92 % is due to NSSA biomass burning while the remaining 8 % is from outside the NSSA. In fact, most (~75 %) of the 8 % comes from outside the African continent because little to no biomass burning occurs in Africa outside of the NSSA region during this time of year. However, during the summer months (e.g. July), most of the contribution to NSSA surface ozone (96 %) is due to burning from outside NSSA. Only 10 % of the 96 % comes from outside the African continent because during this time most of the burning is from outside the NSSA but within the African continent. In spring (e.g. April) approximately equal percentages of contributions come from within and outside the NSSA region.

  2. Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Rizzo, Luciana V.; Brito, Joel F.; Sena, Elisa T.; Cirino, Glauber G.; Arana, Andrea

    2013-05-01

    The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular, the strong biosphere-atmosphere interaction is a key component looking at the exchange processes between vegetation and the atmosphere, focusing on aerosol particles. Two aerosol components are the most visible: The natural biogenic emissions of aerosols and VOCs, and the biomass burning emissions. A large effort was done to characterize natural biogenic aerosols that showed detailed organic characterization and optical properties. The biomass burning component in Amazonia is important in term of aerosol and trace gases emissions, with deforestation rates decreasing, from 27,000 Km2 in 2004 to about 5,000 Km2 in 2011. Biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. Long term monitoring of aerosols and trace gases were performed in two sites: a background site in Central Amazonia, 55 Km North of Manaus (called ZF2 ecological reservation) and a monitoring station in Porto Velho, Rondonia state, a site heavily impacted by biomass burning smoke. Several instruments were operated to measured aerosol size distribution, optical properties (absorption and scattering at several wavelengths), composition of organic (OC/EC) and inorganic components among other measurements. AERONET and MODIS measurements from 5 long term sites show a large year-to year variability due to climatic and socio-economic issues. Aerosol optical depths of more than 4 at 550nm was observed frequently over biomass burning areas. In the pristine Amazonian atmosphere, aerosol scattering coefficients ranged between 1 and 200 Mm-1 at 450 nm, while absorption ranged between 1 and 20 Mm-1 at 637 nm. A strong seasonal behavior was observed, with greater aerosol loadings during the

  3. GEM-AQ Simulation of Transport of Biomass Burning Emissions into the Arctic in April 2008

    NASA Astrophysics Data System (ADS)

    Lupu, A.; O'Neill, N. T.; Kaminski, J. W.; Toyota, K.; McConnell, J. C.; Saha, A.; Sofiev, M.

    2009-12-01

    The early fire season of 2008 in northern Asia (forest fires in eastern Siberia and agricultural burning in Kazakhstan) resulted in a large amount of pyrogenic species being transported into the Arctic atmosphere. Biomass burning plumes were encountered during ARCTAS mission flights out of Fairbanks, Alaska, and observed at ground stations in the high Arctic. To simulate these events, we used the Global Environmental Multiscale Air Quality model (GEM-AQ), a global, tropospheric chemistry, general circulation model based on the global multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. GEM-AQ includes a size-resolved multi-component aerosol module. Fire emissions with daily temporal resolution were generated from MODIS active fire products. The model output is compared with trace gases measured during the spring deployment of the ARCTAS field campaign, with vertical lidar profiles and spectral sunphotometer data acquired over different pan-Arctic stations, and with MODIS products over the Arctic.

  4. Overview of the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    NASA Astrophysics Data System (ADS)

    Johnson, Ben; Haywood, Jim; Longo, Karla; Coe, Hugh; Artaxo, Paulo; Morgan, William; Freitas, Saulo

    2013-04-01

    The South American Biomass Burning Analysis (SAMBBA) is an international research project investigating the impacts of biomass burning emissions on climate, air quality and numerical weather prediction over South America. The project involves a combination of measurements and modelling activities to assess the role of biomass burning and biogenic emissions in the earth system. This international collaboration has been led by a partnership between the Met Office, the Brazilian National Institute for Space research (INPE), the University of Sao Paulo, and a consortium of UK Universities. The measurement program was headed by the deployment of UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft over Brazil during the dry season of September - October 2012. This was co-ordinated with ground-based measurements operated by the University of Sao Paulo and INPE. This successful field experiment now provides an excellent source of observations to build our understanding of biomass burning processes and improve model simulations of biomass burning aerosols and their interactions with biogenic emissions, atmospheric chemistry, clouds, radiation, and the terrestrial biosphere. This talk will summarise the field experiment, including the aircraft measurements and ground-based observations made during the dry season of 2012. Preliminary results will highlight the range of biomass burning and biogenic emissions observed from tropical forest, deforested zones and scrub-land. Case studies will also show infra-red camera images of fire radiative output, the evolution of large smoke plumes and the variable composition of background aerosol and extensive haze layers across the region. The lidar data and aircraft profiles also highlight the prevalence of elevated aerosol layers observed at altitudes of 3 - 7km, presumed to be detrainment from large smoke plumes, pyrocumulus and mid-level convection. The ground-based observations also highlight the

  5. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC / OC for aerosol emissions from biomass burning

    NASA Astrophysics Data System (ADS)

    Pokhrel, Rudra P.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2016-08-01

    capabilities even for fuels in which brown carbon absorption is significant. Notably, these parameterizations are effective for emissions from Indonesian peat, which have very little black carbon but significant brown carbon (SSA = 0.990 ± 0.001 at 532 and 660 nm, SSA = 0.937 ± 0.011 at 405 nm). Finally, we demonstrate that our parameterization based on EC / (EC + OC) accurately predicts SSA during the first few hours of plume aging with data from Yokelson et al. (2009) gathered during a biomass burning event in the Yucatán Peninsula of Mexico.

  6. Five year SCIAMACHY IMLM CO total columns: interannual variability, transport and biomass burning

    NASA Astrophysics Data System (ADS)

    de Laat, A. T. J.; Gloudemans, A. M. S.; Aben, I.; Schrijver, H.; Meirink, J. F.; van der Werf, G. R.

    2009-04-01

    We present results from five years (2003-2007) of SCIAMACHY carbon monoxide (CO) total column measurements. Various episodes of enhanced CO related to long-range transport and/or biomass burning can be identified, e.g., biomass burning in Indonesia in 2006, which leads to much more enhanced CO than in other years both over land and over the oceans. Biomass burning in Amazonia shows significant interannual variation and pollutes a large part of the southern hemisphere. Certain pollution episodes are identified in the SCIAMACHY observations which are not present in model results, e.g., the Alaskan fires in July 2004 increase CO for a large part of the Northern Hemisphere, suggesting that the SCIAMACHY observations can be used to improve CO emissions inventories. We validate the SCIAMACHY CO total column observations with independent FTIR CO total column observations, and show that, given differences in collocations, instrument-noise errors and vertical sensitivity, there is in general a good agreement between observed seasonal cycles and interannual variability. The validation of the SCIAMACHY CO total column observations also highlights the unique ability of the SCIAMACHY near-infrared observations to probe the troposphere down to the surface, even at (very) high northern latitudes. The ocean surface reflectivity in the near-infrared (NIR) is too small to obtain useful CO columns from SCIAMACHY. However, the NIR cloud reflectivity is large and thus useful information about CO can be derived over clouded ocean scenes. The simultaneously retrieved methane columns can be used to estimate the cloud top height. This greatly enhances the number of useful observations and spatial coverage and allows more detailed studies of long-range transport of CO. Given the relatively large instrument-noise errors and the large spatial resolution of 120x30 km of the single SCIAMACHY CO observations, considerable improvement can be expected from the future TROPOMI mission which will

  7. Effects of aerosol-radiation interaction on precipitation during biomass-burning season in East China

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Ding, Aijun; Liu, Lixia; Liu, Qiang; Ding, Ke; Niu, Xiaorui; Nie, Wei; Xu, Zheng; Chi, Xuguang; Wang, Minghuai; Sun, Jianning; Guo, Weidong; Fu, Congbin

    2016-08-01

    Biomass burning is a main source for primary carbonaceous particles in the atmosphere and acts as a crucial factor that alters Earth's energy budget and balance. It is also an important factor influencing air quality, regional climate and sustainability in the domain of Pan-Eurasian Experiment (PEEX). During the exceptionally intense agricultural fire season in mid-June 2012, accompanied by rapidly deteriorating air quality, a series of meteorological anomalies was observed, including a large decline in near-surface air temperature, spatial shifts and changes in precipitation in Jiangsu province of East China. To explore the underlying processes that link air pollution to weather modification, we conducted a numerical study with parallel simulations using the fully coupled meteorology-chemistry model WRF-Chem with a high-resolution emission inventory for agricultural fires. Evaluation of the modeling results with available ground-based measurements and satellite retrievals showed that this model was able to reproduce the magnitude and spatial variations of fire-induced air pollution. During the biomass-burning event in mid-June 2012, intensive emission of absorbing aerosols trapped a considerable part of solar radiation in the atmosphere and reduced incident radiation reaching the surface on a regional scale, followed by lowered surface sensible and latent heat fluxes. The perturbed energy balance and re-allocation gave rise to substantial adjustments in vertical temperature stratification, namely surface cooling and upper-air heating. Furthermore, an intimate link between temperature profile and small-scale processes like turbulent mixing and entrainment led to distinct changes in precipitation. On the one hand, by stabilizing the atmosphere below and reducing the surface flux, black carbon-laden plumes tended to dissipate daytime cloud and suppress the convective precipitation over Nanjing. On the other hand, heating aloft increased upper-level convective

  8. Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A

    NASA Astrophysics Data System (ADS)

    Koike, M.; Kondo, Y.; Kita, K.; Nishi, N.; Liu, S. C.; Blake, D.; Ko, M.; Akutagawa, D.; Kawakami, S.; Takegawa, N.; Zhao, Y.; Ogawa, T.

    2002-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE A) aircraft campaign was carried out over the tropical western Pacific in September and October 1998. During this period, biomass burning activity in Indonesia was quite weak. Mixing ratios of NOx and NOy in air masses that had crossed over the Indonesian islands within 3 days prior to the measurement (Indonesian air masses) were systematically higher than those in air masses originating from the central Pacific (tropical air masses). Sixty percent of the Indonesian air masses at 9-13 km (upper troposphere, UT) originated from the central Pacific. The differences in NOy mixing ratio between these two types of air masses were likely due to processes that occurred while air masses were over the Islands. Evidence presented in this paper suggests convection carries material from the surface, and NO is produced from lightning. At altitudes below 3 km (lower troposphere, LT), typical gradient of NOx and NOy to CO (dNOy/dCO and dNOx/dCO) was smaller than that in the biomass burning plumes and in urban areas, suggesting that neither source has a dominant influence. When the CO-NOx and CO-NOy relationships in the UT are compared to the reference relationships chosen for the LT, the NOx and NOy values are higher by 40-60 pptv (80% of NOx) and 70-100 pptv (50% of NOy). This difference is attributed to in situ production of NO by lightning. Analyses using air mass trajectories and geostationary meteorological satellite (GMS) derived cloud height data show that convection over land, which could be accompanied by lightning activity, increases the NOx values, while convection over the ocean generally lowers the NOx level. These processes are found to have a significant impact on the O3 production rate over the tropical western Pacific.

  9. Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A

    NASA Astrophysics Data System (ADS)

    Koike, M.; Kondo, Y.; Kita, K.; Nishi, N.; Liu, S. C.; Blake, D.; Ko, M.; Akutagawa, D.; Kawakami, S.; Takegawa, N.; Zhao, Y.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE A) aircraft campaign was carried out over the tropical western Pacific in September and October 1998. During this period, biomass burning activity in Indonesia was quite weak. Mixing ratios of NOx and NOy in air masses that had crossed over the Indonesian islands within 3 days prior to the measurement (Indonesian air masses) were systematically higher than those in air masses originating from the central Pacific (tropical air masses). Sixty percent of the Indonesian air masses at 9-13 km (upper troposphere, UT) originated from the central Pacific. The differences in NOy mixing ratio between these two types of air masses were likely due to processes that occurred while air masses were over the Islands. Evidence presented in this paper suggests convection carries material from the surface, and NO is produced from lightning. At altitudes below 3 km (lower troposphere, LT), typical gradient of NOx and NOy to CO (dNOy/dCO and dNOx/dCO) was smaller than that in the biomass burning plumes and in urban areas, suggesting that neither source has a dominant influence. When the CO-NOx and CO-NOy relationships in the UT are compared to the reference relationships chosen for the LT, the NOx and NOy values are higher by 40-60 pptv (80% of NOx) and 70-100 pptv (50% of NOy). This difference is attributed to in situ production of NO by lightning. Analyses using air mass trajectories and geostationary meteorological satellite (GMS) derived cloud height data show that convection over land, which could be accompanied by lightning activity, increases the NOx values, while convection over the ocean generally lowers the NOx level. These processes are found to have a significant impact on the O3 production rate over the tropical western Pacific.

  10. Interannual variability of tropospheric trace gases and aerosols: The role of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Apostolos; Marlier, Miriam E.; Faluvegi, Greg; Shindell, Drew T.; Tsigaridis, Kostas; Mangeon, Stéphane

    2015-07-01

    Fires are responsible for a range of gaseous and aerosol emissions. However, their influence on the interannual variability of atmospheric trace gases and aerosols has not been systematically investigated from a global perspective. We examine biomass burning emissions as a driver of interannual variability of large-scale abundances of short-lived constituents such as carbon monoxide (CO), hydroxyl radicals (OH), ozone, and aerosols using the Goddard Institute for Space Studies ModelE composition-climate model and a range of observations, with an emphasis on satellite information. Our model captures the observed variability of the constituents examined in most cases, but with substantial underestimates in boreal regions. The strongest interannual variability on a global scale is found for carbon monoxide (~10% for its global annual burden), while the lowest is found for tropospheric ozone (~1% for its global annual burden). Regionally, aerosol optical depth shows the largest variability which exceeds 50%. Areas of strong variability of both aerosols and CO include the tropical land regions (especially Equatorial Asia and South America) and northern high latitudes, while even regions in the northern midlatitudes experience substantial interannual variability of aerosols. Ozone variability peaks over equatorial Asia in boreal autumn, partly due to varying biomass burning emissions, and over the western and central Pacific in the rest of the year, mainly due to meteorological fluctuations. We find that biomass burning emissions are almost entirely responsible for global CO interannual variability, and similarly important for OH variability. The same is true for global and regional aerosol variability, especially when not taking into account dust and sea-salt particles. We show that important implications can arise from such interannual influences for regional climate and air quality.

  11. Wet deposition of major ions in a rural area impacted by biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Coelho, Cidelmara H.; Allen, Andrew G.; Fornaro, Adalgiza; Orlando, Eduardo A.; Grigoletto, Tahuana L. B.; Campos, M. Lucia A. M.

    2011-09-01

    This work concerns the influence of industrialized agriculture in the tropics on precipitation chemistry. A total of 264 rain events were sampled using a wet-only collector in central São Paulo State, Brazil, between January 2003 and July 2007. Electroneutrality balance calculations (considering H +, K +, Na +, NH4+, Ca 2+, Mg 2+, Cl -, NO3-, SO42-, F -, PO43-, H 3CCOO -, HCOO -, CO42- and HCO3-) showed that there was an excess of cations (˜15%), which was attributed to the presence of unmeasured organic anion species originating from biomass burning and biogenic emissions. On average, the three ions NH4+, NO 3- and H + were responsible for >55% of the total ion concentrations in the rainwater samples. Concentrations (except of H +) were significantly higher ( t-test; P = 0.05), by between two to six-fold depending on species, during the winter sugar cane harvest period, due to the practice of pre-harvest burning of the crop. Principal component analysis showed that three components could explain 88% of the variance for measurements made throughout the year: PC1 (52%, biomass burning and soil dust resuspension); PC2 (26%, secondary aerosols); PC3 (10%, road transport emissions). Differences between harvest and non-harvest periods appeared to be mainly due to an increased relative importance of road transport/industrial emissions during the summer (non-harvest) period. The volume-weighted mean (VWM) concentrations of ammonium (23.4 μmol L -1) and nitrate (17.5 μmol L -1) in rainwater samples collected during the harvest period were similar to those found in rainwater from São Paulo city, which emphasizes the importance of including rural agro-industrial emissions in regional-scale atmospheric chemistry and transport models. Since there was evidence of a biomass burning source throughout the year, it appears that rainwater composition will continue to be affected by vegetation fires, even after sugar cane burning is phased out as envisaged by recent São Paulo

  12. Parameterization of biomass burning aerosolsin the BRAZIL-SR radiative transfer model.

    NASA Astrophysics Data System (ADS)

    Martins, F. R.; Pereira, E. B.; Stuhlmann, R.

    2003-04-01

    This work describes the impact of the aerosols that are generated during biomass burning events in the solar irradiation, and presents a parameterization technique to improve the model estimations of the surface incident solar irradiation obtained by the BRASIL-SR radiative transfer model. It was verified that the mean systematic deviation error (MBE) of model estimates grows about 3 times and the value of root mean squared error (RMSE) duplicates in clear sky days for stations close to burned sites in central region of Brazil. The proximity of burned sites produces an increment of the same order of that produced by the presence of clouds in MBE. The parameterization technique of the biomass burning aerosols uses optical properties provided by "Global Aerosol Data Set" (GADS) and it is in accordance with measurements values obtained in two field missions: TRACE-A (1992) and SCAR-B (1995). Three different compositions were used in this study and the difference among them is the ratio of black carbon present in the aerosols: 5%, 7.8% and 10% of black carbon. These values are within the range of measured values observed in the field missions: from 4% to 12%. The aerosol profile and spatial distribution was obtained from a transport model for estimation of tracers spreading from biomass burning areas developed at INPE-CPTEC. The surface incident solar irradiation estimates, obtained with new aerosol parameterization, presented smaller systematic deviations in all the stations used in the validation process. The correlation among estimated and measured values for surface incident solar radiation grew about 2,5 times by adopting a composition with 5% of elementary carbon. The validation procedure showed that the improvements in aerosol parameterization allowed for better estimates by the model. However, the improvements are still masked by limitation imposed by the availability of only tri-hourly image schedules for the GOES-8 satellite in Southern Hemisphere

  13. Using satellite observations to quantify biomass burning emissions of NOx, and hydrocarbons in the Tropics

    NASA Technical Reports Server (NTRS)

    Jaegle, Lyatt

    2005-01-01

    This is the final report for "Using satellite observations to quantify biomass burning emissions of NOx and hydrocarbons in the Tropics", funded through the New Investigator Program between March 2001 and March 2005. This period includes a 1-year no-cost extension of the original award. This report summarizes our accomplishments during the duration of the grant. Section 2 focuses on the research component of this work, while section 3 describes the education component. The personnel supported under this project is given in section 4. Section 5 lists publications resulting from NASA support and section 6 provides a list of conferences and seminars where the results were presented.

  14. Effects of aerosol from biomass burning on the global radiation budget

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Dickinson, Robert E.; O'Neill, Christine A.

    1992-01-01

    An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution to sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.

  15. A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture.

    PubMed

    Sherwood, Steven

    2002-02-15

    A likely causal chain is established here that connects humidity in the stratosphere, relative humidity near the tropical tropopause, ice crystal size in towering cumulus clouds, and aerosols associated with tropical biomass burning. The connections are revealed in satellite-observed fluctuations of each quantity on monthly to yearly time scales. More aerosols lead to smaller ice crystals and more water vapor entering the stratosphere. The connections are consistent with physical reasoning, probably hold on longer time scales, and may help to explain why stratospheric water vapor appears to have been increasing for the past five decades. PMID:11847336

  16. Speciation of "Brown" Carbon in Cloud Water Affected by Biomass Burning

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Desyaterik, Y.; Sun, Y.; Shen, X.; Lee, T.; Wang, X.; Wang, W.; Wang, T.

    2011-12-01

    While black carbon (BC) is the most absorbing aerosol compound in the atmosphere, light absorption by organic matter in the visible and near ultraviolet (UV) wavelength range is of growing interest. Biomass burning emissions and secondary organic products of aqueous phase atmospheric chemistry, in particular, have received attention as potentially important sources of "brown" carbon. Here we present analysis of light-absorbing species in cloud samples. Cloud water was collected at the summit of Mt. Tai (1534 m, a.s.l.) in polluted eastern China during spring and summer of 2008. Total organic carbon (TOC) concentrations in these samples ranged from a few ppmC up to 200 ppmC. The highest TOC concentrations were associated with periods of cloud interaction with biomass burning emissions. Cloud samples were analyzed with a liquid chromatograph coupled with a UV/Vis diode array detector followed by a time-of-flight mass spectrometer (ToF-MS) with an electrospray ionization source. The combination of on-line absorbance and MS detection permits us to identify compounds in cloud water associated with strong absorbance in the near UV and visible. More than 90% of the time, absorbance peaks in sample chromatograms exhibited a corresponding ion current peak, in positive and/or negative mode, in the ToF-MS. The high resolution, accurate mass spectra from the ToF-MS allow determination of the elemental composition of the detected ions. When available, UV/Vis spectra for these compounds were compared with reference NIST spectra. The strongest absorbance occurred during periods when biomass burning emissions strongly influenced cloud composition. During these periods approximately a dozen strongly light absorbing species were identified. The key light-absorbing compounds identified are mostly nitro-aromatic compounds, including C6H5NO3, C6H5NO4, C7H7NO4, C8H9NO4, C9H9NO4, C7H7NO3, and C8H7NO3. Together these compounds contributed between approximately 15 and 45% of the total

  17. A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture.

    PubMed

    Sherwood, Steven

    2002-02-15

    A likely causal chain is established here that connects humidity in the stratosphere, relative humidity near the tropical tropopause, ice crystal size in towering cumulus clouds, and aerosols associated with tropical biomass burning. The connections are revealed in satellite-observed fluctuations of each quantity on monthly to yearly time scales. More aerosols lead to smaller ice crystals and more water vapor entering the stratosphere. The connections are consistent with physical reasoning, probably hold on longer time scales, and may help to explain why stratospheric water vapor appears to have been increasing for the past five decades.

  18. Effects of aerosol from biomass burning on the global radiation budget.

    PubMed

    Penner, J E; Dickinson, R E; O'neill, C A

    1992-06-01

    An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution of sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.

  19. Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.

  20. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) project

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1991-01-01

    IGAC is an ambitious, decade-long and global research initiative concerned with major research challenges in the field of atmospheric chemistry; its chemists and ecosystem biologists are addressing the problems associated with global biomass burning (BMB). Among IGAC's goals is the achievement of a fundamental understanding of the natural and anthropogenic processes determining changes in atmospheric composition and chemistry, in order to allow century-long predictions. IGAC's studies have been organized into 'foci', encompassing the marine, tropical, polar, boreal, and midlatitude areas, as well as their global composite interactions. Attention is to be given to the effects of BMB on biogeochemical cycles.

  1. Biomass Burning:Significant Source of Nitrate and Sulfate for the Andean Rain Forest in Ecuador

    NASA Astrophysics Data System (ADS)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.

    2009-04-01

    Forest fires are significant sources of carbon, sulfur and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very long distances, even traversing oceans. Chemical analyses of rain and fogwater samples collected on the wet eastern slopes of the Ecuadorian Andes show frequent episodes of high sulfate and nitrate concentration, from which annual deposition rates of about14 kg/ha and 7 kg/ha ,respectively, are derived. These are comparable to those observed in polluted central Europe. Regular rain and fogwater sampling along an altitude profile between 1800 and 3185 m, has been carried out since 2002.The research area located at 30 58'S ,790 5' W is dominated by trade winds from easterly directions. The samples, generally accumulated over 1-week intervals, were analysed for pH, conductivity and major ions(K+,Na+,NH4+,Ca2+,Mg 2+,SO42-,NO3-,PO43-).For all components a strong seasonal variation is observed, while the altitudinal gradient is less pronounced. About 65 % of the weekly samples were significantly loaded with cations and anions, with pH often as low 3.5 to 4.0 and conductivity up to 50 uS/cm. Back trajectories (FLEXTRA) showed that respective air masses had passed over areas of intense biomass burning, sometimes influenced by volcanoes, ocean spray, or even episodic Sahara and/or Namib desert dust interference not discussed here. Enhanced SO4 2-and NO3- were identified, by combining satellite-based fire pixels with back trajectories, as predominantly resulting from biomass burning. For most cases, by using emission inventories, anthropogenic precursor sources other than forest fires play a minor role, thus leaving biomass burning as the main source of nitrate and sulphate in rain and fogwater. Some SO4 2- , about 10 % of the total input, could be identified to originate from active volcanoes, whose plumes were sometimes encountered by the respective back trajectories. While volcanic, oceanic and

  2. Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium

    NASA Astrophysics Data System (ADS)

    Lee, Alex K. Y.; Willis, Megan D.; Healy, Robert M.; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.

    2016-05-01

    Biomass burning organic aerosol (BBOA) can be emitted from natural forest fires and human activities such as agricultural burning and domestic energy generation. BBOA is strongly associated with atmospheric brown carbon (BrC) that absorbs near-ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single-particle measurements from a Soot-Particle Aerosol Mass Spectrometer coupled with a light scattering module (LS-SP-AMS) were performed to examine the mixing state of BBOA, refractory black carbon (rBC), and potassium (K, a tracer for biomass burning aerosol) in an air mass influenced by wildfire emissions transported from northern Québec to Toronto, representing aged biomass burning plumes. Cluster analysis of single-particle measurements identified five BBOA-related particle types. rBC accounted for 3-14 wt % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW) organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles. The average mass absorption efficiency of low-volatility BBOA is about 0.8-1.1 m2 g-1 based on a theoretical closure calculation. Our estimates indicate that low-volatility BBOA contributes ˜ 33-44 % of thermo-processed particle absorption at 405 nm; and almost all of the BBOA absorption was associated with low-volatility organics.

  3. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite

    NASA Astrophysics Data System (ADS)

    Andela, Niels; van der Werf, Guido R.; Kaiser, Johannes W.; van Leeuwen, Thijs T.; Wooster, Martin J.; Lehmann, Caroline E. R.

    2016-06-01

    Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in

  4. Biomass burning contribution to ambient air particulate levels at Navrongo in the Savannah zone of Ghana.

    PubMed

    Ofosu, Francis G; Hopke, Philip K; Aboh, Innocent J K; Bamford, Samuel A

    2013-09-01

    The concentrations of airborne particulate matter (PM) in Navrongo, a town in the Sahel Savannah Zone of Ghana, have been measured and the major sources have been identified. This area is prone to frequent particulate pollution episodes due to Harmattan dust and biomass burning, mostly from annual bushfires. The contribution of combustion emissions, particularly from biomass and fossil fuel, to ambient air particulate loadings was assessed. Sampling was conducted from February 2009 to February 2010 in Navrongo. Two Gent samplers were equipped to collect PM10 in two size fractions, coarse (PM10-2.5) and fine (PM2.5). Coarse particles are collected on a coated, 8-microm-pore Nuclepore filter. Fine particle samples were sampled with 47-mm-diameter Nuclepore and quartz filters. Elemental carbon (EC) and organic carbon (OC) concentrations were determined from the quartz filters using thermal optical reflectance (IMPROVE/TOR) methods. Elements were measured on the fine-particle Nuclepore filters using energy-dispersive x-ray fluorescence. The average PM2.5 mass concentration obtained at Navrongo was 32.3 microg/m. High carbonaceous concentrations were obtained from November to March, the period of Harmattan dust and severe bush fires. Total carbon was found to contribute approximately 40% of the PM2.5 particulate mass. Positive matrix factorization (PMF) suggested six major sources contributing to the PM2.5 mass. They are two stroke engines, gasoline emissions, soil dust, diesel emissions, biomass burning, and resuspended soil dust. Biomass combustion (16.0%) was identified as second most important source next to soil dust at Navrongo.

  5. OBSTRUCTIVE LUNG DISEASE AND EXPOSURE TO BURNING BIOMASS FUEL IN THE INDOOR ENVIRONMENT.

    PubMed

    Diette, Gregory B; Accinelli, Roberto A; Balmes, John R; Buist, A Sonia; Checkley, William; Garbe, Paul; Hansel, Nadia N; Kapil, Vikas; Gordon, Stephen; Lagat, David K; Yip, Fuyuen; Mortimer, Kevin; Perez-Padilla, Rogelio; Roth, Christa; Schwaninger, Julie M; Punturieri, Antonello; Kiley, James

    2012-09-01

    It is estimated that up to half of the world's population burns biomass fuel (wood, crop residues, animal dung and coal) for indoor uses such as cooking, lighting and heating. As a result, a large proportion of women and children are exposed to high levels of household air pollution (HAP). The short and long term effects of these exposures on the respiratory health of this population are not clearly understood. On May 9-11, 2011 NIH held an international workshop on the "Health Burden of Indoor Air Pollution on Women and Children," in Arlington, VA. To gather information on the knowledge base on this topic and identify research gaps, ahead of the meeting we conducted a literature search using PubMed to identify publications that related to HAP, asthma, and chronic obstructive pulmonary disease (COPD). Abstracts were all analyzed and we report on those considered by the respiratory sub study group at the meeting to be most relevant to the field. Many of the studies published are symptom-based studies (as opposed to objective measures of lung function or clinical examination etc.) and measurement of HAP was not done. Many found some association between indoor exposures to biomass smoke as assessed by stove type (e.g., open fire vs. liquid propane gas) and respiratory symptoms such as wheeze and cough. Among the studies that examined objective measures (e.g. spirometry) as a health outcome, the data supporting an association between biomass smoke exposure and COPD in adult women are fairly robust, but the findings for asthma are mixed. If an association was observed between the exposures and lung function, most data seemed to demonstrate mild to moderate reductions in lung function, the pathophysiological mechanisms of which need to be investigated. In the end, the group identified a series of scientific gaps and opportunities for research that need to be addressed to better understand the respiratory effects of exposure to indoor burning of the different forms of

  6. Emission factors from biomass burning in three types of appliances: fireplace, woodstove and pellet stove

    NASA Astrophysics Data System (ADS)

    Duarte, Márcio; Vicente, Estela; Calvo, Ana; Nunes, Teresa; Tarelho, Luis; Alves, Célia

    2014-05-01

    In the last years, the importance of biomass fuels has increased mainly for two reasons. One of them is the effort to control the emissions of greenhouse gases, and on the other hand, the increasing costs associated with fossil fuels. Besides that, biomass burning is now recognised as one of the major sources contributing to high concentrations of particulate matter, especially during winter time. Southern European countries have a lack of information regarding emission profiles from biomass burning. Because of that, in most source apportionment studies, the information used comes from northern and alpine countries, whose combustion appliances, fuels and habits are different from those in Mediterranean countries. Due to this lack of information, series of tests using different types of equipment, as well as fuels, were carried out in order to obtain emission profiles and emission factors that correspond to the reality in southern European countries. Tests involved three types of biomass appliances used in Portugal, a fireplace, a woodstove and a modern pellet stove. Emission factors (mg.kg-1 fuel, dry basis) for CO, THC and PM10 were obtained. CO emission factors ranged from 38, for pine on the woodstove, to 84 for eucalyptus in the fireplace. THC emissions were between 4 and 24, for pine in the woodstove and eucalyptus in the fireplace, respectively. PM10 emission factors were in the range from 3.99, for pine in the woodstove, to 17.3 for eucalyptus in the fireplace. On average, the emission factors obtained for the fireplace are 1.5 (CO) to 4 (THC) times higher than those of the woodstove. The fireplace has emission factors for CO, THC and PM10 10, 35 and 32 times, respectively, higher than the pellet stove.

  7. Observations of volatile organic compounds during ARCTAS - Part 1: Biomass burning emissions and plume enhancements

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Blake, D. R.; Diskin, G. S.; Fuelberg, H. E.; Meinardi, S.; Mikoviny, T.; Sachse, G. W.; Vay, S. A.; Weinheimer, A. J.; Wiedinmyer, C.; Wisthaler, A.; Hills, A.; Riemer, D. D.; Apel, E. C.

    2011-05-01

    Mixing ratios of a large number of volatile organic compounds (VOCs) were observed by the Trace Organic Gas Analyzer (TOGA) on board the NASA DC-8 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. Many of these VOCs were observed concurrently by one or both of two other VOC measurement techniques on board the DC-8: proton-transfer-reaction mass spectrometry (PTR-MS) and whole air canister sampling (WAS). A comparison of these measurements to the data from TOGA indicates good agreement for the majority of co-measured VOCs. The ARCTAS study, which included both spring and summer deployments, provided opportunities to sample a large number of biomass burning (BB) plumes with origins in Asia, California and Central Canada, ranging from very recent emissions to plumes aged one week or more. For this analysis, identified BB plumes were grouped by flight, source region and, in some cases, time of day, generating 40 individual plume groups, each consisting of one or more BB plume interceptions. Normalized excess mixing ratios (EMRs) to CO were determined for each of the 40 plume groups for up to 19 different VOCs or VOC groups, many of which show significant variability, even within relatively fresh plumes. This variability demonstrates the importance of assessing BB plumes both regionally and temporally, as emissions can vary from region to region, and even within a fire over time. Comparisons with literature confirm that variability of EMRs to CO over an order of magnitude for many VOCs is consistent with previous observations. However, this variability is often diluted in the literature when individual observations are averaged to generate an overall regional EMR from a particular study. Previous studies give the impression that emission ratios are generally consistent within a given region, and this is not necessarily the case, as our results show. For some VOCs, earlier assumptions may lead to

  8. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions

    NASA Astrophysics Data System (ADS)

    Yan, Caiqing; Zheng, Mei; Sullivan, Amy P.; Bosch, Carme; Desyaterik, Yury; Andersson, August; Li, Xiaoying; Guo, Xiaoshuang; Zhou, Tian; Gustafsson, Örjan; Collett, Jeffrey L.

    2015-11-01

    Emissions from biomass burning contribute significantly to water-soluble organic carbon (WSOC) and light-absorbing organic carbon (brown carbon). Ambient atmospheric samples were collected at an urban site in Beijing during winter and summer, along with source samples from residential crop straw burning. Carbonaceous aerosol species, including organic carbon (OC), elemental carbon (EC), WSOC and multiple saccharides as well as water-soluble potassium (K+) in PM2.5 (fine particulate matter with size less than 2.5 μm) were measured. Chemical signatures of atmospheric aerosols in Beijing during winter and summer days with significant biomass burning influence were identified. Meanwhile, light absorption by WSOC was measured and quantitatively compared to EC at ground level. The results from this study indicated that levoglucosan exhibited consistently high concentrations (209 ± 145 ng m-3) in winter. Ratios of levoglucosan/mannosan (L/M) and levoglucosan/galacosan (L/G) indicated that residential biofuel use is an important source of biomass burning aerosol in winter in Beijing. Light absorption coefficient per unit ambient WSOC mass calculated at 365 nm is approximately 1.54 ± 0.16 m2 g-1 in winter and 0.73 ± 0.15 m2 g-1 in summer. Biomass burning derived WSOC accounted for 23 ± 7% and 16 ± 7% of total WSOC mass, and contributed to 17 ± 4% and 19 ± 5% of total WSOC light absorption in winter and summer, respectively. It is noteworthy that, up to 30% of total WSOC light absorption was attributed to biomass burning in significant biomass-burning-impacted summer day. Near-surface light absorption (over the range 300-400 nm) by WSOC was about ∼40% of that by EC in winter and ∼25% in summer.

  9. Plant community composition and biomass in Gulf Coast Chenier Plain marshes: responses to winter burning and structural marsh management.

    PubMed

    Gabrey, S W; Afton, A D

    2001-02-01

    Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.

  10. Plant community composition and biomass in Gulf Coast Chenier Plain marshes: Responses to winter burning and structural marsh management

    USGS Publications Warehouse

    Gabrey, S.W.; Afton, A.D.

    2001-01-01

    Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.

  11. Ozone Tendency in Biomass Burning Plumes: Influence of Biogenic and Anthropogenic Emissions Downwind of Forest Fires

    NASA Astrophysics Data System (ADS)

    Finch, D.; Palmer, P. I.

    2014-12-01

    Forest fires emit pollutants that can influence downwind surface concentrations of ozone, with potential implications for exceeding air quality regulations. The influence of emissions from biogenic and anthropogenic sources that are mixed into a biomass burning plume as it travels downwind is not well understood. Using the GEOS-Chem atmospheric chemistry transport model and a novel method to track the centre of biomass burning plumes, we identify the chemical reactions that determine ozone production and loss along the plume trajectory. Using a series of sensitivity runs, we quantify the role of biogenic and anthropogenic emissions on the importance of individual chemical reactions. We illustrate the method using data collected during the BORTAS aircraft campaign over eastern Canada during summer 2011. We focus on two contrasting plume trajectories originating from the same multi-day fire in Ontario. The first plume trajectory on 16th July 2011 travels eastward from the fire and eventually mixes with anthropogenic emissions travelling up the east coast of the United States before outflow over the North Atlantic. The second plume trajectory we follow is three days later and travels eastward with a strong northeast component away from large anthropogenic sources. Both trajectories are influenced by downwind biogenic emissions. We generate a chemical reaction narrative for each plume trajectory, allowing is to quantify how mixing pyrogenic, biogenic and anthropogenic emissions influences downwind ozone photochemistry.

  12. Ozone Tendency in Biomass Burning Plumes: Influence of Biogenic and Anthropogenic Emissions Downwind of Forest Fires

    NASA Astrophysics Data System (ADS)

    Finch, D.; Palmer, P. I.

    2015-12-01

    Forest fires emit pollutants that can influence downwind surface concentrations of ozone, with potential implications for exceeding air quality regulations. The influence of emissions from biogenic and anthropogenic sources that are mixed into a biomass burning plume as it travels downwind is not well understood. Using the GEOS-Chem atmospheric chemistry transport model and a novel method to track the centre of biomass burning plumes, we identify the chemical reactions that determine ozone production and loss along the plume trajectory. Using a series of sensitivity runs, we quantify the role of biogenic and anthropogenic emissions on the importance of individual chemical reactions. We illustrate the method using data collected during the BORTAS aircraft campaign over eastern Canada during summer 2011. We focus on two contrasting plume trajectories originating from the same multi-day fire in Ontario. The first plume trajectory on 16th July 2011 travels eastward from the fire and eventually mixes with anthropogenic emissions travelling up the east coast of the United States before outflow over the North Atlantic. The second plume trajectory we follow is three days later and travels eastward with a strong northeast component away from large anthropogenic sources. Both trajectories are influenced by downwind biogenic emissions. We generate a chemical reaction narrative for each plume trajectory, allowing is to quantify how mixing pyrogenic, biogenic and anthropogenic emissions influences downwind ozone photochemistry.

  13. A pervasive role for biomass burning in tropical high ozone/low water structures.

    PubMed

    Anderson, Daniel C; Nicely, Julie M; Salawitch, Ross J; Canty, Timothy P; Dickerson, Russell R; Hanisco, Thomas F; Wolfe, Glenn M; Apel, Eric C; Atlas, Elliot; Bannan, Thomas; Bauguitte, Stephane; Blake, Nicola J; Bresch, James F; Campos, Teresa L; Carpenter, Lucy J; Cohen, Mark D; Evans, Mathew; Fernandez, Rafael P; Kahn, Brian H; Kinnison, Douglas E; Hall, Samuel R; Harris, Neil R P; Hornbrook, Rebecca S; Lamarque, Jean-Francois; Le Breton, Michael; Lee, James D; Percival, Carl; Pfister, Leonhard; Pierce, R Bradley; Riemer, Daniel D; Saiz-Lopez, Alfonso; Stunder, Barbara J B; Thompson, Anne M; Ullmann, Kirk; Vaughan, Adam; Weinheimer, Andrew J

    2016-01-01

    Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated. PMID:26758808

  14. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    NASA Technical Reports Server (NTRS)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  15. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts

    SciTech Connect

    Grell, G. A.; Freitas, Saulo; Stuefer, Martin; Fast, Jerome D.

    2011-06-06

    A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather forecasts using model resolutions of 10km and 2km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the final emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation led to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5) and the resulting large numbers of Cloud Condensation Nuclei (CCN) had a strong impact on clouds and microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 hours of the integration, but significantly stronger storms during the afternoon hours.

  16. Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia

    NASA Astrophysics Data System (ADS)

    Meinardi, Simone; Simpson, Isobel J.; Blake, Nicola J.; Blake, Donald R.; Rowland, F. Sherwood

    2003-05-01

    We identify dimethyl disulfide (DMDS) as the major reduced sulfur-containing gas emitted from bushfires in Australia's Northern Territory. Like dimethyl sulfide (DMS), DMDS is oxidized in the atmosphere to sulfur dioxide (SO2) and methane sulfonic acid (MSA), which are intermediates in the formation of sulfuric acid (H2SO4). The mixing ratios of DMDS and DMS were the highest we have ever detected, with maximum values of 113 and 35 ppbv, respectively, whereas background values were below the detection limit (10 pptv). Molar emission ratios relative to carbon monoxide (CO) were [1.6 +/- 0.1] × 10-5 and [6.2 +/- 0.3] × 10-6, for DMDS and DMS respectively, while molar emission ratios relative to carbon dioxide (CO2) were [4.7 +/- 0.4] × 10-6 and [1.4 +/- 0.4] × 10-7, respectively. Assuming these observations are representative of biomass burning, we estimate that biomass burning could yield up to 175 Gg/yr of DMDS (119 Gg S/yr) and 13 Gg/yr of DMS.

  17. Wavelength dependence of aerosol light absorption in urban and biomass burning impacted conditions: An integrative perspective

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Gyawali, M.; Lewis, K.; Moosmuller, H.

    2009-12-01

    Aerosol light absorption depends on aerosol size, morphology, mixing state, and composition. The wavelength dependence is often characterized with use of the Angstrom coefficient for absorption (AAE) determined from measurements at two or more wavelengths. Low fractal dimension black carbon (BC) particles are often expected to have an AAE near unity. Values of AAE significantly larger than unity are often attributed to the presence of an organic coating that absorbs strongly at lower wavelengths, though we have found that even non absorbing coatings on small, biomass burning related BC cores can have large AAE. Values of AAE significantly less than unity are often ascribed to experimental errors or large particle sizes, however, we find that they are most commonly associated with modest absorbing or non absorbing organic coatings that collapse the fractal soot BC core in urban aerosol to a dimension near that of a sphere. Photoacoustic measurements at 405 nm, 532 nm, 870 nm, and 1047 nm in urban Reno and Las Vegas NV, and for biomass burning experiments are used presented to illustrate the range of AAE possible, and coated sphere modeling results are presented to interpret the measurements.

  18. Measurement of mixed biomass burning and mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Koehler, C. H.; Trautmann, T.; Lindermeir, E.

    2009-03-01

    From January 19th to February 7th, 2008, we installed a Fourier transform infrared spectrometer (FTIR) at Praia Airport on the island of Santiago, Cape Verde. Our goal was to measure the combined radiative effect of biomass burning aerosol and mineral dust usually observed there during that time of the year, when mineral dust emerging from the Sahara mixes with biomass burning aerosol transported north-westwards from the Sahelian region. Our measurements were part of the Saharan Mineral Dwst Experiment 2 (SAMUM 2) funded by the German Research Foundation (DFG) as continuation of the SAMUM field experiment in Morocco in 2006. SAMUM 2 is a joint venture of several German research institutes and universities and included both ground based as well as airborne measurements with the DLR Falcon research aircraft. The ground based instrumentation included spectrometers for visible and thermal infrared downwelling radiation, sun photometers, LIDAR and particle impactors while the Falcon was equipped with LIDAR and several instruments for aerosol analysis and sample return. A comparison of the FTIR measurements with radiative transfer simulations yields the expected aerosol forcing in the atmospheric window region after application of a suitable calibration method.

  19. Novel application of a combustion chamber for experimental assessment of biomass burning emission

    NASA Astrophysics Data System (ADS)

    Lusini, Ilaria; Pallozzi, E.; Corona, P.; Ciccioli, P.; Calfapietra, C.

    2014-09-01

    Biomass burning is an important ecological factor in the Mediterranean ecosystem and a significant source of several atmospheric gases and particles. This paper demonstrates the performance of a recently developed combustion chamber, showing its capability in estimating the emission from wildland fire through a case study with dried leaf litter of Quercus robur. The combustion chamber was equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect volatile organic compounds (VOCs) and particles, and a portable analyzer to measure carbon monoxide (CO) and carbon dioxide (CO2) emission. VOCs were determined by gas chromatography-mass spectrometry (GC-MS) after enrichment on adsorption traps, but also monitored on-line with a proton-transfer-reaction mass spectrometer (PTR-MS). Preliminary qualitative analyses of emissions from burning dried leaf litter of Q. robur found CO and CO2 as the main gaseous species emitted during the flaming and smoldering stages. Aromatic VOCs, such as benzene and toluene, were detected together with several oxygenated VOCs, like acetaldehyde and methanol. Moreover, a clear picture of the carbon balance during the biomass combustion was obtained with the chamber used. The combustion chamber will allow to distinguish the contribution of different plant tissues to the emissions occurring during different combustion phases.

  20. A pervasive role for biomass burning in tropical high ozone/low water structures

    PubMed Central

    Anderson, Daniel C.; Nicely, Julie M.; Salawitch, Ross J.; Canty, Timothy P.; Dickerson, Russell R.; Hanisco, Thomas F.; Wolfe, Glenn M.; Apel, Eric C.; Atlas, Elliot; Bannan, Thomas; Bauguitte, Stephane; Blake, Nicola J.; Bresch, James F.; Campos, Teresa L.; Carpenter, Lucy J.; Cohen, Mark D.; Evans, Mathew; Fernandez, Rafael P.; Kahn, Brian H.; Kinnison, Douglas E.; Hall, Samuel R.; Harris, Neil R.P.; Hornbrook, Rebecca S.; Lamarque, Jean-Francois; Le Breton, Michael; Lee, James D.; Percival, Carl; Pfister, Leonhard; Pierce, R. Bradley; Riemer, Daniel D.; Saiz-Lopez, Alfonso; Stunder, Barbara J.B.; Thompson, Anne M.; Ullmann, Kirk; Vaughan, Adam; Weinheimer, Andrew J.

    2016-01-01

    Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300–700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated. PMID:26758808

  1. Contribution of Biomass Burning to Carbonaceous Aerosols in Mexico City during may 2013

    NASA Astrophysics Data System (ADS)

    Tzompa Sosa, Z. A.; Sullivan, A.; Kreidenweis, S. M.

    2014-12-01

    The Mexico City Metropolitan Area (MCMA) is one of the largest megacities in the world with a population of 20 million people. Emissions transported from outside the basin, such as wildfires and agricultural burning, represent a potentially large contribution to air quality degradation. This study analyzed PM10 filter samples from six different stations located across the MCMA from May, 2013, which represented the month with the most reported fire counts in the region between 2002-2013. Two meteorological regimes were established considering the number of satellite derived fire counts, changes in predominant wind direction, ambient concentrations of CO, PM10 and PM2.5, and precipitation patterns inside MCMA. The filter samples were analyzed for biomass burning tracers including levoglucosan (LEV), water-soluble potassium (WSK+); and water-soluble organic carbon (WSOC). Results of these analyses show that LEV concentrations correlated positively with ambient concentrations of PM2.5 and PM10 (R2=0.61 and R2=0.46, respectively). Strong correlations were also found between WSOC and LEV (R2=0.94) and between WSK+ and LEV (R2=0.75). An average LEV/WSOC ratio of 0.0147 was estimated for Regime 1 and 0.0062 for Regime 2. Our LEV concentrations and LEV/WSOC ratios are consistent with results found during the MILAGRO campaign (March, 2006). To the best of our knowledge, only total potassium concentrations have been measured in aerosol samples from MCMA. Therefore, this is the first study in MCMA to measure ambient concentrations of WSK+. Analysis of gravimetric mass concentrations showed that PM2.5 accounted for 60% of the PM10 mass concentration with an estimated PM10/PM2.5 ratio of 1.68. Estimates from our laboratory filter sample characterization indicated that we measured 37% of the total PM10 mass concentration. The missing mass is most likely crustal material (soil or dust) and carbonaceous aerosols that were not segregated into WSOC fraction. Assuming that LEV is

  2. Spatial and temporal variability in the ratio of trace gases emitted from biomass burning

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.

    2011-04-01

    Fires are a major source of trace gases and aerosols to the atmosphere. The amount of biomass burned is becoming better known, most importantly due to improved burned area datasets and a better representation of fuel consumption. The spatial and temporal variability in the partitioning of biomass burned into emitted trace gases and aerosols, however, has received relatively little attention. To convert estimates of biomass burned to trace gas and aerosol emissions, most studies have used emission ratios (or emission factors (EFs)) based on the arithmetic mean of field measurement outcomes, stratified by biome. However, EFs vary substantially in time and space, even within a single biome. In addition, it is unknown whether the available field measurement locations provide a representative sample for the various biomes. Here we used the available body of EF literature in combination with satellite-derived information on vegetation characteristics and climatic conditions to better understand the spatio-temporal variability in EFs. While focusing on CO, CH4, and CO2, our findings are also applicable to other trace gases and aerosols. We explored relations between EFs and different measurements of environmental variables that may correlate with part of the variability in EFs (tree cover density, vegetation greenness, temperature, precipitation, and the length of the dry season). Although reasonable correlations were found for specific case studies, correlations based on the full suite of available measurements were lower and explained about 33%, 38%, 19%, and 34% of the variability for respectively CO, CH4, CO2, and the Modified Combustion Efficiency (MCE). This may be partly due to uncertainties in the environmental variables, differences in measurement techniques for EFs, assumptions on the ratio between flaming and smoldering combustion, and incomplete information on the location and timing of EF measurements. We derived new mean EFs, using the relative importance of

  3. Influence of biomass burning plumes on HONO chemistry in eastern China

    NASA Astrophysics Data System (ADS)

    Nie, W.; Ding, A. J.; Xie, Y. N.; Xu, Z.; Mao, H.; Kerminen, V.-M.; Zheng, L. F.; Qi, X. M.; Huang, X.; Yang, X.-Q.; Sun, J. N.; Herrmann, E.; Petäjä, T.; Kulmala, M.; Fu, C. B.

    2015-02-01

    Nitrous acid (HONO) plays a key role in atmospheric chemistry by influencing the budget of hydroxyl radical (OH). In this study, a two-month measurement of HONO and related quantities were analyzed during a biomass burning season in 2012 at a suburban site in the western Yangtze River delta, eastern China. An overall high HONO concentration with the mean value of 0.76 ppbv (0.01 ppbv to 5.95 ppbv) was observed. During biomass burning (BB) periods, both HONO concentration and HONO/NO2 ratio were enhanced significantly (more than a factor of 2, p < 0.01) compared with non-biomass burning (non-BB) periods. A correlation analysis showed that the HONO in BB plumes was more correlated with nitrogen dioxide (NO2) than that with potassium (a tracer of BB). Estimation by the method of potassium tracing suggests a maximum contribution of 17 ± 12% from BB emission to the observed HONO concentrations, and the other over 80% of the observed nighttime HONO concentrations during BB periods were secondarily produced by the heterogeneous conversion of NO2. The NO2-to-HONO conversion rate (CHONO) in BB plumes was almost twice as that in non-BB plumes (0.0062 hr-1 vs. 0.0032 hr-1). Given that the residence time of the BB air masses was lower than that of non-BB air masses, these results suggest BB aerosols have higher NO2 conversion potentials to form HONO than non-BB aerosols. A further analysis based on comparing the surface area at similar particle mass levels and HONO/NO2 ratios at similar surface area levels suggested larger specific surface areas and higher NO2 conversion efficiencies of BB aerosols. A mixed plume of BB and anthropogenic fossil fuel (FF) emissions was observed on 10 June with even higher HONO concentrations and HONO/NO2 ratios. The strong HONO production potential (high HONO/NO2 to PM2.5 ratio) was accompanied with a high sulfate concentration in this plume, suggesting a promotion of mixed aerosols to the HONO formation. In summary, our study suggests an

  4. The contribution of biomass burning to PAH levels in PM10

    NASA Astrophysics Data System (ADS)

    Belis, Claudio; Larsen, Bo; Piazzalunga, Andrea; Vecchi, Roberta; Colombi, Cristina; Gianelle, Vorne

    2010-05-01

    The objective of the present study is to identify the contribution of wood burning and biomass burning to the levels of toxic polycyclic aromatic hydrocarbons (PAH) in the atmospheric particulate matter. Benzo(a)pyrene has been selected as a marker of PAHs since it is predominantly present in the solid phase and is the only isomer having a target value for its atmospheric concentrations in the European Union. The levels of BaP have been evaluated both as ambient air concentration (ng/m3) as required by directive 2007/104/EC and as mass fraction of PM10 (mg/g). The levels of BaP were estimated by computing multiple linear regression and non linear factorial regression. The model parameters were fitted using two independent datasets of PM10 samples collected between 2005 and 2007 in 3 urban sites located in the Po Valley and in the southern Alps. The explanatory variables used for estimating BaP were selected using forward selection based on F test from a pool of variables representing: biomass burning (levoglucosan), emissions from unspecified combustion processes (CO, NOx, EC, OC and trace elements) and atmospheric properties (wind speed, temperature, and height of the mixing layer). The uncertainty of the model was estimated by propagating the standard uncertainties of the corresponding variables. An analysis of sensitivity was conducted by evaluating the influence of the variation of the measured variables along a range comparable to their standard deviations on the model outputs. In the background sites levoglucosan explained between 55% (s.e. 16%) and 87% (s.e. 8 %) of the BaP contribution to the PM10 mass and between 53% (s.e.16%) and 84% (s.e.10%) of the BaP concentration. Levoglucosan was the most important single variable to explain BaP levels. Other variables explaning significant part of BaP variance were NOx, CO , OC, wind speed, and air temperature. In a kerbside site, the influence of levoglucosan on BaP variance decreased but was still relevant (44

  5. Burns

    MedlinePlus

    ... occur by direct or indirect contact with heat, electric current, radiation, or chemical agents. Burns can lead to ... is. The burn is caused by chemicals or electricity. The person shows signs of shock . The person ...

  6. Influence of agricultural biomass burning on aerosol size distribution and dry deposition in southeastern Brazil.

    PubMed

    Rocha, Gisele O; Allen, Andrew G; Cardoso, Arnaldo A

    2005-07-15

    The size distributed composition of ambient aerosols is used to explore seasonal differences in particle chemistry and to show that dry deposition fluxes of soluble species, including important plant nutrients, increase during periods of biomass (sugar cane trash) burning in São Paulo State, Brazil. Measurements were made at a single site centrally located in the State's sugar cane growing region but away from the immediate vicinity of burns, so that the airsampled was representative of the regional background. Calculation of ion equivalent balances showed that during burning periods smaller particles (Aitken and accumulation modes) were more acidic, containing higher concentrations of SO4(2-), oxalate, NO3-, HCOO-, CH3COO-, and CI-, but insufficient NH4+ and K+ to achieve neutrality. Larger particles showed an anion deficit due to the presence of unmeasured ions and comprised resuspended dusts modified by accumulation of nitrate, chloride, and organic anions. Increases of resuspended particles during the burning season were attributed to release of earlier deposits from the surfaces of burning vegetation as well as increased vehicle movement on unsurfaced roads. During winter months the relative contribution of combined emissions from road transport and industry diminished due to increased emissions from biomass combustion and other activities specifically associated with the harvest period. Positive increments in annual particulate dry deposition fluxes due to higher fluxes during the sugar cane harvest were 44.3% (NH4+), 42.1% (K+), 31.8% (Mg2+), 30.4% (HCOO-), 12.8% (CI-), 6.6% (CH3COO-), 5.2% (Ca2+), 3.8% (SO4(2-)), and 2.3% (NO3-). Na+ and oxalate fluxes were seasonally invariant. Annual aerosol dry deposition fluxes (kg ha(-1)) were 0.5 (Na+), 0.25 (NH4+), 0.39 (K+), 0.51 (Mg2+), 3.19 (Ca2+), 1.34 (Cl-), 4.47 (NO3-), 3.59 (SO4(2-)), 0.58 (oxalate), 0.71 (HCOO-), and 1.38 (CH3COO-). Contributions of this mechanism to combined aerosol dry deposition and

  7. Initial Composition, Transformations, and Transport of Particles and Trace Gases From Mexican Biomass Burning

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Christian, T. J.; Akagi, S.; Urbanski, S.; Wiedinmyer, C.; Crounse, J. D.; Decarlo, P.; Clarke, A. D.

    2008-12-01

    As part of the MILAGRO project we investigated the amount, transport, and chemical composition of emissions from biomass burning (BB) in Mexico. Up to 48 trace gas and particle species were measured. BB near Mexico City (MC) and in the Yucatan was sampled from the NCAR C-130 in March 2006. During the same month, a Twin Otter aircraft deployed by the University of Montana was used to sample fires in the above areas and also forest, grass, and agricultural fires throughout much of the rest of Mexico. BB adjacent to MC accounted for about 30% of the CO and half or more of the fine particle mass in the MC-area outflow. The Yucatan measurements now provide the most comprehensive data available on the emissions from BB in tropical dry forests: the ecosystem that accounts for the most biomass burned globally. Rapid changes in ozone and many other trace gas species were observed in one BB plume. The Δ PM2.5/Δ CO ratio increased by a factor of ~ 2.6 in < 2 hours after emission as measured by both light scattering and an aerosol mass spectrometer. This is the best field evidence to date of significant secondary aerosol formation in BB plumes. During April-May 2007, ground-based, portable FTIR and particle measuring systems were deployed throughout central Mexico to characterize the emissions from garbage burning, cooking fires, brick-making kilns, and other ubiquitous, but poorly characterized sources. The first detailed chemical speciation of garbage burning emissions included the observation of extremely high HCl levels (Δ HCl/Δ CO 3.5-18%). Thus, garbage burning could be an important source of atmospheric chlorine in some regions. In addition, the HCl results suggest that large amounts of other chlorinated compounds may be emitted. Further measurements are needed, especially for highly toxic chlorinated organic compounds. Cooking fires are the second largest global source of BB emissions. The measurements of trace gas and particle emissions from cooking fires included

  8. Modelled impacts of Amazonia Biomass Burning Aerosols (BBA) on weather during SAMBBA

    NASA Astrophysics Data System (ADS)

    Kolusu, S. R.; Marsham, J. H.; Mulcahy, J.; Dunning, C.; Dalvi, M.; Johnson, B. T.; Haywood, J.; Coe, H.; Marenco, F.

    2014-12-01

    The South America Biomass Burning Analysis (SAMBBA) took place from 14 September to 3 October 2012 during the biomass burning season. The Met Office Unified Model (MetUM), in a limited area configuration, is used to examine the impact of biomass burning aerosols (BBA) on South American weather during SAMBBA using three sensitivity experiments. The horizontal grid spacing used is 0.1o x 0.1o which corresponds to approximately 11km. Firstly we ran the MetUM without biomass emissions and aerosols, secondly with monthly mean aerosol climatologies and finally with fully prognostic aerosols modelled using the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC) scheme. The CLASSIC prognostic BBA scheme only was implemented in the LAM; all other aerosol-radiative interactions from other species come from a climatology. The prognostic CLASSIC aerosol scheme has improved BBA spatial representation compared with the observations during SAMBBA. Impacts of BBA on the net radiation at surface for clear sky conditions and the top of the atmosphere are found to be approximately 50 Wm-2 and 16 Wm-2, respectively. This leads to a significant surface and skin temperature cooling of approximately 2oC due to BBA. BBA cool the boundary layer (BL) and warms air above by around 0.2oC due to the absorption of shortwave radiation, reducing BL depth by around 150m. Due to the deeper BL in the east of the domain, this leads to a more cyclonic circulation at 700 hPa with BBA, with winds changing by around 1 ms-1. Locally, on a 150 km scale, changes in the precipitation reach around 4 mm day-1 due to impacts on the location of convection, but these localised changes average out to give little change in total precipitation over the Amazonian region. Case studies simulated at 1km and using the new UKCA aerosol scheme are being evaluated with SAMBBA flight observations and will be used to evaluate BBA impacts in detail for weather events during SAMBBA.

  9. Biomass burning contributions estimated by synergistic coupling of daily and hourly aerosol composition records.

    PubMed

    Nava, S; Lucarelli, F; Amato, F; Becagli, S; Calzolai, G; Chiari, M; Giannoni, M; Traversi, R; Udisti, R

    2015-04-01

    Biomass burning (BB) is a significant source of particulate matter (PM) in many parts of the world. Whereas numerous studies demonstrate the relevance of BB emissions in central and northern Europe, the quantification of this source has been assessed only in few cities in southern European countries. In this work, the application of Positive Matrix Factorisation (PMF) allowed a clear identification and quantification of an unexpected very high biomass burning contribution in Tuscany (central Italy), in the most polluted site of the PATOS project. In this urban background site, BB accounted for 37% of the mass of PM10 (particulate matter with aerodynamic diameter<10 μm) as annual average, and more than 50% during winter, being the main cause of all the PM10 limit exceedances. Due to the chemical complexity of BB emissions, an accurate assessment of this source contribution is not always easily achievable using just a single tracer. The present work takes advantage of the combination of a long-term daily data-set, characterized by an extended chemical speciation, with a short-term high time resolution (1-hour) and size-segregated data-set, obtained by PIXE analyses of streaker samples. The hourly time pattern of the BB source, characterised by a periodic behaviour with peaks starting at about 6 p.m. and lasting all the evening-night, and its strong seasonality, with higher values in the winter period, clearly confirmed the hypothesis of a domestic heating source (also excluding important contributions from wildfires and agricultural wastes burning). PMID:25525710

  10. Transboundary transport and deposition of Hg emission from springtime biomass burning in the Indo-China Peninsula

    NASA Astrophysics Data System (ADS)

    Wang, Xun; Zhang, Hui; Lin, Che-Jen; Fu, Xuewu; Zhang, Yiping; Feng, Xinbin

    2015-09-01

    Biomass burning from the Indo-China Peninsula region is an important source of atmospheric mercury (Hg). We isolated 18 unique transport events over 2 years using observations of Hg and CO at a high-altitude background site in southwestern China (Mount Ailao Observatory Station) to assess the transport and impact of Hg emissions from biomass burning. The quantity of Hg emission and the source regions were determined using ΔTGM/ΔCO slopes coupled with backward trajectory analysis and CO emission inventories. The slopes of ΔTGM/ΔCO appeared to be a useful chemical indicator for source identification. Industrial emission sources exhibited slopes in the range of 5.1-61.0 × 10-7 (parts per trillion by volume, pptv/pptv), in contrast to a slope of 2.0-6.0 × 10-7 for typical biomass burning. Transboundary transport of Hg from biomass burning led to episodically elevated atmospheric Hg concentrations during springtime. Hg emissions from biomass burning in the Indo-China Peninsula region from 2001 to 2008 were estimated to be 11.4 ± 2.1 Mg yr-1, equivalent to 40% of annual anthropogenic emissions in the region. In addition, Hg emissions from biomass burning contained a substantial fraction of particulate bound Hg (PBM). Assuming that PBM readily deposits locally (within 50 km), the local Hg deposition caused by the PBM was estimated to be 2.2 ± 0.4 Mg yr-1, up to 1 order of magnitude higher than the PBM deposition caused by anthropogenic emissions during springtime in the region. The strong springtime emissions potentially pose a threat to the ecosystems of the Indo-China Peninsula and southwest China.

  11. Interactions between fire weather and biomass burning during Santa Ana events in southern California

    NASA Astrophysics Data System (ADS)

    Veraverbeke, S.; Capps, S. B.; Randerson, J. T.; Hook, S. J.; Jin, Y.; Hall, A. D.

    2013-12-01

    Fires occurring during Santa Ana (SA) events in southern California are driven by extreme fire weather characterized by high temperatures, low humidities, and high wind speeds. We studied the controls on fire activity during two intensive SA burning periods in 2003 and 2007. We therefore used remote sensing data from Landsat, the Moderate Resolution Imaging Spectroradiometer and the Geostationary Operational Environmental Satellite (GOES). We characterized fuel types in and nearby fire perimeters using the Fuel Characteristic Classification System. Fire weather severity was estimated using Reanalysis meteorological data downscaled using the Weather and Regional Forecast model. Total carbon emissions were approximately 1800 Gg in 2003 and 900 Gg in 2007. More than half of the fires that occurred during the 2003 and 2007 SA events were limited in their growth since they ran out of fuels when they progressed into developed areas under the prevailing winds. The size of the other fires was directly related to the timing and location of the ignition relative to the spatio-temporal structure of the SA conditions. On a regional scale, relatively strong positive correlations were found between the daily Fosberg fire weather index and burned area/emissions (p < 0.01). Using observations from the GOES Wildfire Automated Biomass Burning Algorithm we found that the typical daytime peak in fire activity was extended and nighttime fire activity was distinctly high during SA fires. Landsat estimates of fire severity were uniformly high throughout the duration of the fires and we found no discernible control of the fire weather severity on post-fire severity, however, we found that fire intensity estimates from GOES were higher in the wind corridor areas which underwent more severe fire weather. Fire weather severity, as indicated by the Fosberg fire weather index, and burned area (white perimeters) during the peak fire day (Day of the year 295 = October 22) of the 2007 Santa Ana

  12. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0)

    NASA Astrophysics Data System (ADS)

    Pfeiffer, M.; Spessa, A.; Kaplan, J. O.

    2013-05-01

    Fire is the primary disturbance factor in many terrestrial ecosystems. Wildfire alters vegetation structure and composition, affects carbon storage and biogeochemical cycling, and results in the release of climatically relevant trace gases including CO2, CO, CH4, NOx, and aerosols. One way of assessing the impacts of global wildfire on centennial to multi-millennial timescales is to use process-based fire models linked to dynamic global vegetation models (DGVMs). Here we present an update to the LPJ-DGVM and a new fire module based on SPITFIRE that includes several improvements to the way in which fire occurrence, behaviour, and the effects of fire on vegetation are simulated. The new LPJ-LMfire model includes explicit calculation of natural ignitions, the representation of multi-day burning and coalescence of fires, and the calculation of rates of spread in different vegetation types. We describe a new representation of anthropogenic biomass burning under preindustrial conditions that distinguishes the different relationships between humans and fire among hunter-gatherers, pastoralists, and farmers. We evaluate our model simulations against remote-sensing-based estimates of burned area at regional and global scale. While wildfire in much of the modern world is largely influenced by anthropogenic suppression and ignitions, in those parts of the world where natural fire is still the dominant process (e.g. in remote areas of the boreal forest and subarctic), our results demonstrate a significant improvement in simulated burned area over the original SPITFIRE. The new fire model we present here is particularly suited for the investigation of climate-human-fire relationships on multi-millennial timescales prior to the Industrial Revolution.

  13. Selected organic compounds from biomass burning found in the atmospheric particulate matter over sugarcane plantation areas

    NASA Astrophysics Data System (ADS)

    dos Santos, Celeste Yara Moreira; Azevedo, Débora de Almeida; de Aquino Neto, Francisco Radler

    Atmospheric particulate matter, from three sites in the city of Campos dos Goytacazes, and smoke samples from the burning of sugarcane leaves and bagasse were analyzed for biomass burning emissions. Samples were acquired using a standard high-volume air sampler; extracts were prepared and fractionated into aromatic and polar compounds. These fractions were subjected to gas chromatography and gas chromatography-mass spectrometry analyses. Polar and aromatic fractions were identified and quantified. Compounds such as levoglucosan, galactosan, mannosan were found in the polar fractions, and some polycyclic aromatic hydrocarbons (PAHs) in the aromatic fractions. Concentrations of levoglucosan ranged from 0.15 to 1.65 ng/m 3, 0.36 to 6.83 ng/m 3 and 0.19 to 28.42 ng/m 3 at the downtown Corpo de Bombeiros, suburban (Universidade Estadual do Norte Fluminense) and countryside (Lake de Cima, LC) sites; and from 10.55 to 35.06 ng/m 3 and 2.7 ng/m 3 in the smoke samples from the burnt leaves and bagasse, respectively. The LC site is, at face value, a non-polluted countryside area, surrounded by sugarcane plantations. This fact explains why the highest concentrations of levoglucosan were detected there. Sugarcane burning is not the main source of toxic compounds, such as PAH, e.g. benzo( a)pyrene, in the atmospheric particulate matter. No or small concentrations of PAHs were found in the sugarcane leaves/bagasse burning samples. Their presence in the studied sites can be ascribed to vehicular exhaust. Therefore, these are the two major sources of atmospheric pollution in this area.

  14. Soil respiration and root biomass responses to burning in calabrian pine (Pinus brutia) stands in Edirne, Turkey.

    PubMed

    Tufekcioglu, Aydin; Kucuk, Mehmet; Bilmis, Tuncay; Altun, Lokman; Yilmaz, Murat

    2010-01-01

    In this study soil properties and root biomass responses to prescribed fire were investigated in 25-30 year-old calabrian pine (Pinus brutia Ten.) stands in Edirne, Turkey. The stands were established by planting and were subjected to prescribed burning in July 2005. Soil respiration rates were determined every two months using the soda-lime method over a two-year period. Fine (> or = 2 mm diameter) and small root (> 2-5 mm diameter) biomass were sampled approximately bimonthly using the sequential coring method. Soil respiration rates in burned sites were significantly higher than in control sites during the summer season but there was no significant difference in the other seasons. Soil respiration rates were correlated significantly with soil moisture and soil temperature. Fine and small root biomass were significantly lower in burned sites than in control sites. Mean fine root biomass values were 3204 kg ha(-1) for burned and 3772 kg ha(-1) for control sites. Annual soil CO2 releases totaled 515 g Cm(-2) for burned and 418 g C m(-2) for control sites. Our results indicate that, depending on site conditions, fire could be used successfully as a tool in the management of calabrian pine stands in the study area.

  15. Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Liu, Z.; Hennigan, C. J.; Huey, L. G.; Jimenez, J. L.; Cubison, M. J.; Vay, S.; Diskin, G. S.; Sachse, G. W.; Wisthaler, A.; Mikoviny, T.; Weinheimer, A. J.; Liao, J.; Knapp, D. J.; Wennberg, P. O.; Kürten, A.; Crounse, J. D.; St. Clair, J.; Wang, Y.; Weber, R. J.

    2011-12-01

    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes.

  16. Recent Progress and Emerging Issues in Measuring and Modeling Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Simpson, I. J.; Blake, D. R.; Alvarado, M.; Kreidenweis, S. M.; Robinson, A. L.; Akagi, S. K.; McMeeking, G. R.; Stone, E.; Gilman, J.; Warneke, C.; Sedlacek, A. J.; Kleinman, L. I.

    2013-12-01

    Nine recent multi-PI campaigns (6 airborne, 3 laboratory) have quantified biomass burning emissions and the subsequent smoke evolution in unprecedented detail. Among these projects were the Fourth Fire Lab at Missoula Experiment (FLAME-4) and the DOE airborne campaign BBOP (Biomass Burning Observation Project). Between 2009 and 2013 a large selection of fuels and ecosystems were probed including: (1) 21 US prescribed fires in pine forests, chaparral, and shrublands; (2) numerous wildfires in the Pacific Northwest of the US; (3) 77 lab fires burning fuels collected from the sites of the prescribed fires; and (4) 158 lab fires burning authentic fuels in traditional cooking fires and advanced stoves; peat from Indonesia, Canada, and North Carolina; savanna grasses from Africa; temperate grasses from the US; crop waste from the US; rice straw from Taiwan, China, Malaysia, and California; temperate and boreal forest fuels collected in Montana and Alaska; chaparral fuels from California; trash; and tires. Instrumentation for gases included: FTIR, PTR-TOF-MS, 2D-GC and whole air sampling. Particle measurements included filter sampling (with IC, elemental carbon (EC), organic carbon (OC), and GC-MS) and numerous real-time measurements such as: HR-AMS (high-resolution aerosol MS), SP-AMS (soot particle AMS), SP2 (single particle soot photometer), SP-MS (single particle MS), ice nuclei, CCN (cloud condensation nuclei), water soluble OC, size distribution, and optical properties in the UV-VIS. New data include: emission factors for over 400 gases, black carbon (BC), brown carbon (BrC), organic aerosol (OA), ions, metals, EC, and OC; and details of particle morphology, mixing state, optical properties, size distributions, and cloud nucleating activity. Large concentrations (several ppm) of monoterpenes were present in fresh smoke. About 30-70% of the initially emitted gas-phase non-methane organic compounds were semivolatile and could not be identified with current technology

  17. Assessing the regional impact of Indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    NASA Astrophysics Data System (ADS)

    Engling, G.; He, J.; Betha, R.; Balasubramanian, R.

    2014-01-01

    Biomass burning activities commonly occur in Southeast Asia (SEA), and are particularly intense in Indonesia during dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM) and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass back trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  18. Assessing the regional impact of indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    NASA Astrophysics Data System (ADS)

    Engling, G.; He, J.; Betha, R.; Balasubramanian, R.

    2014-08-01

    Biomass burning activities commonly occur in Southeast Asia (SEA), and are particularly intense in Indonesia during the dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM) and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and the diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass backward trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  19. Water-Soluble Organic Species in Biomass Burning Aerosols in Southern Africa: Their Chemical Identification and Spatial Distribution

    NASA Astrophysics Data System (ADS)

    Gao, S.; Hegg, D. A.; Hobbs, P. V.; Kirchstetter, T. W.; Magi, B.

    2001-12-01

    diacids, during aerosol upward transport and aging. It was also found that smoldering fires produced much more anhydrosugars and other tarry material than flaming fires. These results provide support for some earlier laboratory studies of biomass burning, but also pose new questions as to the complicated chemical reactions involved. Furthermore, it is evident that besides chemical reactions, fire types, meteorological conditions, and the properties of the reaction products, such as volatility, all play important and interconnected roles in aerosol formation in smokes. Implications of these results for the CCN activity of aerosols from biomass burning will be discussed briefly.

  20. Sources, Sinks and Cycling of Acetyl Radicals in Tobacco Smoke: A Model for Biomass Burning Chemistry

    NASA Astrophysics Data System (ADS)

    Hu, N.; Green, S. A.

    2012-12-01

    Smoke near the source of biomass burning contains high concentrations of reactive compounds, with NO and CH3CHO concentrations four to six orders of magnitude higher than those in the ambient atmosphere. Tobacco smoke represents a special case of biomass burning that is quite reproducible in the lab and may elucidate early processes in smoke from other sources. The origins, identities, and reactions of radical species in tobacco smoke are not well understood, despite decades of study on the concentrations and toxicities of the relatively stable compounds in smoke. We propose that reactions of NO2 and aldehydes are a primary source for transient free radicals in tobacco smoke, which contrasts with the long-surmised mechanism of reaction between NO2 and dienes. The objective of this study was to investigate the sources, sinks and cycling of acetyl radical in tobacco smoke. Experimentally, the production of acetyl radical was demonstrated both in tobacco smoke and in a simplified mixture of air combined with NO and acetaldehyde, both of which are significant components of smoke. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). The dynamic nature of radical cycling in smoke makes it impossible to define a fixed concentration of radical species; 2.15×e13-3.18×e14 molecules/cm3 of acetyl radicals were measured from different cigarette samples and smoking conditions. Matlab was employed to simulate reactions of NO, NO2, O2, and a simplified set of organic compounds known to be present in smoke, with a special emphasis on acetaldehyde and the acetyl radical. The NO2/acetaldehyde mechanism initiates a cascade of chain reactions, which accounts for the most prevalent known carbon-centered radicals found in

  1. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  2. Direct and semidirect aerosol effects of Southern African biomass burning aerosol

    SciTech Connect

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-21

    The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the

  3. Impact of biomass burning on cloud properties in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Nenes, A.; Seinfeld, J. H.; Andreae, M. O.

    2003-01-01

    We used a one-dimensional (1-D) cloud parcel model to assess the impact of biomass-burning aerosol on cloud properties in the Amazon Basin and to identify the physical and chemical properties of the aerosol that influence droplet growth. Cloud condensation nuclei (CCN) measurements were performed between 0.15% and 1.5% supersaturation at ground-based sites in the states of Amazonas and Rondônia, Brazil during several field campaigns in 1998 and 1999 as part of the Large-Scale Biosphere-Atmosphere (LBA) Experiment in Amazonia. CCN concentrations measured during the wet season were low and resembled concentrations more typical of marine conditions than most continental sites. During the dry season, smoke aerosol from biomass burning dramatically increased CCN concentrations. The modification of cloud properties, such as cloud droplet effective radius and maximum supersaturation, is most sensitive at low CCN concentrations. Hence, we could expect larger interannual variation of cloud properties during the wet season that the dry season. We found that differences between CCN spectra from forested and deforested regions during the wet season are modest and result in modifications of cloud properties that are small compared to those between wet and dry seasons. Our study suggests that the differences in surface albedo, rather than cloud albedo, between forested and deforested regions may dominate the impact of deforestation on the hydrological cycle and convective activity during the wet season. During the dry season, on the other hand, cloud droplet concentrations may increase by up to 7 times, which leads to a model-predicted decrease in cloud effective radius by a factor of 2. This could imply a maximum indirect radiative forcing due to aerosol as high as ca. -27 W m-2 for a nonabsorbing cloud. Light-absorbing substances in smoke darken the Amazonian clouds and reduce the net radiative forcing, and a comparison of the Advanced Very High Resolution Radiometer (AVHRR

  4. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.

    PubMed

    Duc, Hiep Nguyen; Bang, Ho Quoc; Quang, Ngo Xuan

    2016-02-01

    During the dry season, from November to April, agricultural biomass burning and forest fires especially from March to late April in mainland Southeast Asian countries of Myanmar, Thailand, Laos and Vietnam frequently cause severe particulate pollution not only in the local areas but also across the whole region and beyond due to the prevailing meteorological conditions. Recently, the BASE-ASIA (Biomass-burning Aerosols in South East Asia: Smoke Impact Assessment) and 7-SEAS (7-South-East Asian Studies) studies have provided detailed analysis and important understandings of the transport of pollutants, in particular, the aerosols and their characteristics across the region due to biomass burning in Southeast Asia (SEA). Following these studies, in this paper, we study the transport of particulate air pollution across the peninsular region of SEA and beyond during the March 2014 burning period using meteorological modelling approach and available ground-based and satellite measurements to ascertain the extent of the aerosol pollution and transport in the region of this particular event. The results show that the air pollutants from SEA biomass burning in March 2014 were transported at high altitude to southern China, Hong Kong, Taiwan and beyond as has been highlighted in the BASE-ASIA and 7-SEAS studies. There are strong evidences that the biomass burning in SEA especially in mid-March 2014 has not only caused widespread high particle pollution in Thailand (especially the northern region where most of the fires occurred) but also impacted on the air quality in Hong Kong as measured at the ground-based stations and in LulinC (Taiwan) where a remote background monitoring station is located. PMID:26797812

  5. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  6. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.

    PubMed

    Duc, Hiep Nguyen; Bang, Ho Quoc; Quang, Ngo Xuan

    2016-02-01

    During the dry season, from November to April, agricultural biomass burning and forest fires especially from March to late April in mainland Southeast Asian countries of Myanmar, Thailand, Laos and Vietnam frequently cause severe particulate pollution not only in the local areas but also across the whole region and beyond due to the prevailing meteorological conditions. Recently, the BASE-ASIA (Biomass-burning Aerosols in South East Asia: Smoke Impact Assessment) and 7-SEAS (7-South-East Asian Studies) studies have provided detailed analysis and important understandings of the transport of pollutants, in particular, the aerosols and their characteristics across the region due to biomass burning in Southeast Asia (SEA). Following these studies, in this paper, we study the transport of particulate air pollution across the peninsular region of SEA and beyond during the March 2014 burning period using meteorological modelling approach and available ground-based and satellite measurements to ascertain the extent of the aerosol pollution and transport in the region of this particular event. The results show that the air pollutants from SEA biomass burning in March 2014 were transported at high altitude to southern China, Hong Kong, Taiwan and beyond as has been highlighted in the BASE-ASIA and 7-SEAS studies. There are strong evidences that the biomass burning in SEA especially in mid-March 2014 has not only caused widespread high particle pollution in Thailand (especially the northern region where most of the fires occurred) but also impacted on the air quality in Hong Kong as measured at the ground-based stations and in LulinC (Taiwan) where a remote background monitoring station is located.

  7. Effect of 2,4-dichlorophenoxyacetic acid (2,4-D) on PCDD/F emissions from open burning of biomass.

    PubMed

    Muñoz, Maria; Gullett, Brian K; Touati, Abderrahmane; Font, Rafael

    2012-09-01

    To understand the effect of leaf-surface pesticides on emissions of PCDD/F during biomass burns, nine combustion experiments simulating the open burning of biomass were conducted. Needles and branches of Pinus taeda (Loblolly pine) were sprayed with the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) at 1 and 10 times the manufacturer's recommended application concentration. The biomass was then dried overnight, burned in an open burn test facility, and emission samples were collected, analyzed, and compared against emission samples from burning untreated biomass. Blank tests and analysis of PCDD/F in the raw biomass were also performed. Emission results from burning a water-sprayed control show a ~20-fold increase in PCDD/F levels above that of the raw biomass alone, implicating combustive formation versus simple volatilization. Results from burns of pine branches sprayed with pesticide showed a statistically significant increase in the PCDD/F TEQ emissions when burning biomass at ten times the recommended pesticide concentration (from 0.22 to 1.14 ng TEQ/kg carbon burned (C(b)), both ND = 0). Similarly, a 150-fold increase in the total PCDD/F congener mass (tetra- to octa-chlorinated D/F) above that of the control was observed (from 52 to 7800 ng/kg C(b)), confirming combustive formation of PCDD/F from 2,4-D. More replicate testing is needed to evaluate effects at lower pesticide concentrations.

  8. OBSTRUCTIVE LUNG DISEASE AND EXPOSURE TO BURNING BIOMASS FUEL IN THE INDOOR ENVIRONMENT

    PubMed Central

    Diette, Gregory B.; Accinelli, Roberto A.; Balmes, John R.; Buist, A. Sonia; Checkley, William; Garbe, Paul; Hansel, Nadia N.; Kapil, Vikas; Gordon, Stephen; Lagat, David K.; Yip, Fuyuen; Mortimer, Kevin; Perez-Padilla, Rogelio; Roth, Christa; Schwaninger, Julie M.; Punturieri, Antonello; Kiley, James

    2012-01-01

    It is estimated that up to half of the world’s population burns biomass fuel (wood, crop residues, animal dung and coal) for indoor uses such as cooking, lighting and heating. As a result, a large proportion of women and children are exposed to high levels of household air pollution (HAP). The short and long term effects of these exposures on the respiratory health of this population are not clearly understood. On May 9–11, 2011 NIH held an international workshop on the "Health Burden of Indoor Air Pollution on Women and Children," in Arlington, VA. To gather information on the knowledge base on this topic and identify research gaps, ahead of the meeting we conducted a literature search using PubMed to identify publications that related to HAP, asthma, and chronic obstructive pulmonary disease (COPD). Abstracts were all analyzed and we report on those considered by the respiratory sub study group at the meeting to be most relevant to the field. Many of the studies published are symptom-based studies (as opposed to objective measures of lung function or clinical examination etc.) and measurement of HAP was not done. Many found some association between indoor exposures to biomass smoke as assessed by stove type (e.g., open fire vs. liquid propane gas) and respiratory symptoms such as wheeze and cough. Among the studies that examined objective measures (e.g. spirometry) as a health outcome, the data supporting an association between biomass smoke exposure and COPD in adult women are fairly robust, but the findings for asthma are mixed. If an association was observed between the exposures and lung function, most data seemed to demonstrate mild to moderate reductions in lung function, the pathophysiological mechanisms of which need to be investigated. In the end, the group identified a series of scientific gaps and opportunities for research that need to be addressed to better understand the respiratory effects of exposure to indoor burning of the different forms of

  9. Effect of Smoke on Cloud Formation during the Biomass Burning Season over the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Koren, I.; Kaufman, Y. J.; Remer, L. A.

    2003-01-01

    Aerosol absorption of sunlight reduces surface irradiation and heats the aerosol layer. The consequent changes in the temperature and humidity profiles can affect cloud formation extent and life time, which is called the semi-direct effect. We evaluate this aerosol semi-direct effect using data collected during the 2002 biomass burning season over the Amazon basin from the MODIS instrument on the Aqua satellite. MODIS measures the cloud coverage and the aerosol optical thickness among the clouds. We found that the radiative heating of the atmosphere and cooling of the surface due to the presence of the smoke decreases the cloud coverage. A very clear negative correlation emerges between the cloud fraction and the smoke optical depth. The results are compared to calculations using 1-D radiation model (M.D. Chou), and used to calculate this regional semi direct effect on climate forcing.

  10. Satellite Estimates of Single Scattering Albedo and Optical Depth of Biomass Burning Carbonaceous Aerosols

    NASA Technical Reports Server (NTRS)

    Torres, O.; Herman, J. R.; Bhartia, P. K.; Hsu, N. C.

    1998-01-01

    Satellite based estimates of aerosol single scattering albedo (ssa), over both land and water surfaces, have been obtained for the first time using measurements of backscattered radiation in the near ultraviolet by the Total Ozone Mapping Spectrometer (TOMS). The retrieval of ssa and aerosol optical depth is based on the strong spectral contrast in the near-UV resulting from the interaction between the particle absorption and scattering (both Rayleigh and Mie) processes. We use the multi-year data set on backscattered radiances by the TOMS family of instruments to analyze the time and space variability of biomass burning generated carbonaceous aerosols. Results of a comparative analysis of satellite derived optical depth and available sunphotometer measurements will also be presented.

  11. Interactions between biomass-burning aerosols and clouds over Southeast Asia: current status, challenges, and perspectives.

    PubMed

    Lin, Neng-Huei; Sayer, Andrew M; Wang, Sheng-Hsiang; Loftus, Adrian M; Hsiao, Ta-Chih; Sheu, Guey-Rong; Hsu, N Christina; Tsay, Si-Chee; Chantara, Somporn

    2014-12-01

    The interactions between aerosols, clouds, and precipitation remain among the largest sources of uncertainty in the Earth's energy budget. Biomass-burning aerosols are a key feature of the global aerosol system, with significant annually-repeating fires in several parts of the world, including Southeast Asia (SEA). SEA in particular provides a "natural laboratory" for these studies, as smoke travels from source regions downwind in which it is coupled to persistent stratocumulus decks. However, SEA has been under-exploited for these studies. This review summarizes previous related field campaigns in SEA, with a focus on the ongoing Seven South East Asian Studies (7-SEAS) and results from the most recent BASELInE deployment. Progress from remote sensing and modeling studies, along with the challenges faced for these studies, are also discussed. We suggest that improvements to our knowledge of these aerosol/cloud effects require the synergistic use of field measurements with remote sensing and modeling tools. PMID:25085565

  12. The GOES-R ABI Wild Fire Automated Biomass Burning Algorithm

    NASA Astrophysics Data System (ADS)

    Hoffman, J.; Schmidt, C. C.; Prins, E. M.; Brunner, J. C.

    2011-12-01

    The global Wild Fire Automated Biomass Burning Algorithm (WF_ABBA) at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) provides fire detection and characterization using data from a global constellation of geostationary satellites, currently including GOES, MTSAT, and Meteosat. CIMSS continues to enhance the legacy of the WF_ABBA by adapting the algorithm to utilize the advanced spatial, spectral, and temporal capabilities of GOES-R ABI. A wide range of simulated ABI data cases have been generated and processed with the GOES-R fire detection and characterization algorithm. Simulated cases included MODIS derived projections as well as model derived simulations that span a variety of satellite zenith angles and ecosystems. The GOES-R ABI fire product development focuses on active fire detection and sub-pixel characterization, including fire radiative power (FRP) and instantaneous fire size and temperature. With the algorithm delivered to the system contractor, the focus has moved to developing innovative new validation techniques.

  13. Interactions between biomass-burning aerosols and clouds over Southeast Asia: current status, challenges, and perspectives.

    PubMed

    Lin, Neng-Huei; Sayer, Andrew M; Wang, Sheng-Hsiang; Loftus, Adrian M; Hsiao, Ta-Chih; Sheu, Guey-Rong; Hsu, N Christina; Tsay, Si-Chee; Chantara, Somporn

    2014-12-01

    The interactions between aerosols, clouds, and precipitation remain among the largest sources of uncertainty in the Earth's energy budget. Biomass-burning aerosols are a key feature of the global aerosol system, with significant annually-repeating fires in several parts of the world, including Southeast Asia (SEA). SEA in particular provides a "natural laboratory" for these studies, as smoke travels from source regions downwind in which it is coupled to persistent stratocumulus decks. However, SEA has been under-exploited for these studies. This review summarizes previous related field campaigns in SEA, with a focus on the ongoing Seven South East Asian Studies (7-SEAS) and results from the most recent BASELInE deployment. Progress from remote sensing and modeling studies, along with the challenges faced for these studies, are also discussed. We suggest that improvements to our knowledge of these aerosol/cloud effects require the synergistic use of field measurements with remote sensing and modeling tools.

  14. Convection links biomass burning to increased tropical ozone - However, models will tend to overpredict O3

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-01-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. The basic processes are illustrated with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale.

  15. Desert dust,Ocean spray,Volcanoes,Biomass burning: Pathways of nutrients into Andean rainforests

    NASA Astrophysics Data System (ADS)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.; Dominguez, G.; Brothers, L.; Thiemens, M.

    2009-04-01

    Regular rain and fogwater sampling in the Podocarpus National Park, along an altitude profile between 1800 and 3185 m, has been carried out since 2002.The research area located in southern Ecuador on the wet eastern slopes of the Andes is dominated by trade winds from easterly directions. The samples, generally accumulated over 1-week intervals, have been analysed for pH,conductivity and major ions(K+,Na+,NH4+,Ca2+,Mg 2+,SO42-,NO3-,PO43). For all components a strong seasonal variation is observed,while the altitudinal gradient is less pronounced. About 35 % of the weekly samples had very low ion contents,at or below the detection limit, with pH generally above 5 and conductivity below 10 uS/cm.10 days back trajectories (FLEXTRA) showed that respective air masses originated in pristine continental areas,with little or no obvious pollution sources. About 65 %,however,were significantly loaded with cations and anions,with pH often as low as 3.5 to 4.0 and conductivity up to 50 uS/cm.Back trajectories showed that respective air masses had passed over areas of intense biomass burning,volcanoes,and the ocean,with even episodic Sahara and/or Namib desert dust interference. Enhanced SO4 2-and NO3- were identified,by combining satellite-based fire pixels with back trajectories,as predominantly resulting from biomass burning. Analyses of oxygen isotopes 16O ,17O ,and 18O of nitrate show that nitrate in fog samples is a product of atmospheric conversion of precursors.For most cases,by using emission inventories, anthropogenic precursor sources other than forest fires could be ruled out,thus leaving biomass burning as the main source of nitrate and sulphate in rain and fogwater. Some SO4 2- ,about 10 % of the total input,could be identified to originate from active volcanoes, whose plumes were sometimes encountered by the respective back trajectories. Enhanced Na +, K + ,and Cl - was found to originate from ocean spray sources.They were associated with strong winds providing

  16. Aerosol optical properties in pristine and biomass burning areas in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Rizzo, L.; Lucca, S.; Paixao, M.; Sena, E. T.; Cirino, G.; Arana, A.

    2011-12-01

    Aerosol physical and chemical properties were measured in two sites in Amazonia. The clean site is at Central Amazonia, close to Manaus. A second sampling site is located in Porto Velho, Rondonia, an area strongly affected by biomass burning emissions. Long term measurements, from February 2008 are being carried out in these two sites. In the pristine central Amazonia, measurements were taken at the Cuieiras forest site, tower TT34, 55 Km North of Manaus under dry conditions (RH<40%). A MAAP 5012 absorption photometer in series with a nephelometer (TSI 3563) was used to measure aerosol absorption and scattering, respectively. Aerosol size distributions were measure using a TSI SMPS system. Aerosol composition, and several trace gases that helps to characterize aerosol sources were also measured. In Rondonia, a sampling station was installed close to the city of Porto Velho. Similar instrumentation as in Manaus was used in Rondonia. In the pristine Amazonian atmosphere, aerosol scattering coefficients ranged between 1 and 200 Mm-1 at 450 nm, while absorption ranged between 1 and 20 Mm-1 at 637 nm. A strong seasonal behavior was observed, with greater aerosol loadings during the dry season (Jul-Nov) as compared to the wet season (Dec-Jun). During the wet season in Manaus, aerosol scattering (450 nm) and absorption (637 nm) coefficients averaged, respectively, 14±22 and 0.9±0.8 Mm-1. Both optical coefficients were greatly increased during the dry season, averaging 58±35 Mm-1 and 4.1±3.8 Mm-1, correspondingly. Angstrom exponents for scattering were lower during the wet season (1.6±0.4) in comparison to the dry season (1.9±0.2), which is consistent with the shift from biomass burning aerosols. Single scattering albedo, calculated at 637 nm, did not show a significant seasonal variation, averaging 0.86 ± 0.06 and 0.86 ± 0.04, respectively for wet and dry season. In Rondonia, even in the wet season it was possible to observe a strong impact from anthropogenic

  17. Fire and man - reconstructing Holocene biomass burning in the central European lowlands

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Słowiński, Michał; Feurdean, Angelica; Dräger, Nadine; Obremska, Milena; Ott, Florian; Pieńczewska, Anna; Theuerkauf, Martin; Brauer, Achim

    2016-04-01

    Fire is an important earth surface process that interacts with climate and vegetation and influences global biogeochemical cycles and carbon budget. Moreover, fire is tightly connected to the evolution and distributions of human beings. Especially in the humid vegetation zones that naturally do not inflame easily, fire has been the major tool to convert forests to arable land. In the central European lowlands, naturally dominated by broad-leaved forests, palaeofires were strongly related to human impact during at least the last 6000 years. Hence, the detection of past biomass burning in the sedimentological record points to human activity. Charcoal (black carbon) is the classical and widely-used proxy to reconstruct past fire histories. Abundant sedimentary charcoal records exist around the globe, and many are included in the Global Charcoal Database (GCD, www.gpwg.org). Molecular fire markers, on the other hand, are now being developed as new proxies to detect past biomass burning. This study reviews classical and "new" fire-proxies in peat and lake sediments that allow to reconstruct the signals of human impact on a regional scale in the central European lowlands with high temporal resolution. Furthermore, the charcoal records from the GCD and other sources covering the central European lowlands and adjacent areas were integrated in a spatial synthesis to document the current state-of-knowledge on regional Holocene fire history. We show preliminary charcoal data from the annually-laminated sediments of lakes Tiefer See (northeastern Germany) and Czechowskie (northern Poland). Links to reconstructed local and European-wide vegetation successions will be provided, as in times with dry climate and the dominance of a certain fire-prone vegetation cover (e.g., Pinus spec.), wildfires might have played a further important role. However, the interpretation of charcoal records is not always straightforward. Hence, we also discuss the potentials of other palaeofire

  18. The impact of biomass burning on the environmental aerosol concentration in Gaborone, Botswana

    NASA Astrophysics Data System (ADS)

    Jayaratne, E. R.; Verma, T. S.

    Biomass burning, in the form of savanna fires and firewood for cooking and warmth, is widespread during the dry winter months in Southern Africa. This study was carried out to investigate its impact on the environment in Gaborone, Botswana, which is a small-sized city with very little pollution from industrial sources. Measurements of aerosol size and number concentrations were carried out at the University of Botswana campus in Gaborone from September 1999 to July 2000 using two automatic laser scattering particle counters. Particles were monitored in eight size ranges from 0.1 to 5.0 μm. The mean daily particle concentrations were found to vary from about 200 cm -3 on clear visibility days during the summer to a high of over 9000 cm -3 on cold winter evenings, when there was a significant smoke haze over the city. Particle concentrations were noticeably higher during the winter than in the summer. During a typical winter day, the total particle concentration peaked between 18 and 23 h, often showing an increase of over four-fold from mid-morning minimum values. The aerosol number size distributions under various conditions were investigated and the corresponding surface area and volume distributions were derived. In general, both the surface and volume distributions were bimodal with peaks close to 0.2 μm and at 5.0 μm or greater. A hand-held counter with a minimum detectable particle size of 0.3 μm was used to monitor the size and number concentrations of aerosols across the city. The results indicate a consistent pattern of maximum concentration in the highly populated areas close to the city centre, falling significantly in the sparsely populated outlying areas by up to an order of magnitude during peak biomass burning, suggesting that much of the smoke particles in the city are removed by wind.

  19. Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols

    NASA Astrophysics Data System (ADS)

    Fu, Pingqing; Zhuang, Guoshun; Sun, Yele; Wang, Qiongzhen; Chen, Jing; Ren, Lujie; Yang, Fan; Wang, Zifa; Pan, Xiaole; Li, Xiangdong; Kawamura, Kimitaka

    2016-04-01

    Biogenic primary organic aerosols (POA) and secondary organic aerosols (SOA) are important organic constituents of atmospheric particulate matter (PM). In order to better understand the atmospheric abundances, molecular compositions and sources of the desert aerosols, biomass-burning tracers (e.g. levoglucosan), primary saccharides including fungal spore tracers, and SOA tracers from the oxidation of biogenic volatile organic compounds (e.g. isoprene, monoterpenes and sesquiterpene) have been studied in ambient aerosols from the Taklimakan desert, using gas chromatography-mass spectrometry. Results showed that the total concentrations of biomass-burning tracers at Hetian (177-359 ng m-3, mean 233 ng m-3 in PM2.5) in the south rim of the desert were much higher than those at Tazhong (1.9-8.8 ng m-3 in PM2.5 and 5.9-32 ng m-3 in TSP) in the central Taklimakan desert. Molecular markers of fungal spores were also detected in all the desert aerosols, highlighting the importance of primary bioaerosols in the Asian dust particles. A specific pattern of the dominance of 2-methylglyceric acid over 2-methyltetrols and C5-alkene triols was found in the Taklimakan desert aerosols, especially during the dust storm events, which is different from the 2-methyltetrols-dominated pattern in other ambient aerosols. Our results provide direct evidence on the biogenic POA and SOA tracers in the Taklimakan desert region, which help to better understand their impact on the aerosol chemistry in the down-wind regions.

  20. Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols

    SciTech Connect

    Grant, K.E.; Chuang, C.C.; Grossman, A.S.; Penner, J.E.

    1997-09-01

    The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from offline calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99 percent. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 {micro}m and 4 {micro}m. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest albedo. A similar treatment was done for aerosols from biomass burning. In this case, size distributions were taken as having two carbonaceous size modes and a larger dust mode. The two carbonaceous modes were considered to be humidity dependent. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and Chandrasekhar averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity

  1. Sources and sinks of methane in the African savanna. CH sub 4 emissions from biomass burning

    SciTech Connect

    Delmas, R.A.; Marenco, A. ); Tathy, J.P.; Cros, B. ); Baudet, J.G.R. )

    1991-04-20

    Sources and sinks of atmospheric methane are studied in savanna regions of west and central Africa. Flux measured over dry savanna soils, using static chambers, is always negative, the average uptake rate being 2 {times} 10{sup 10} molecules/cm{sup 2}/s. In these regions, sources are linked to biomass burning. Methane and CO{sub 2} emission from combustion of savanna plants and wood is studied by both field experiments and laboratory experiments using a combustion chamber. For savanna plants most of the carbon (85%) contained in the biomaterial is volatilized as CO{sub 2} and 0.1 to 0.25% as methane. For graminaceous plants like loudetia simplex the ratio C-CH{sub 4}/C-CO{sub 2} is 0.11%; it is 0.28% for hyparrhenia the other main type of savanna plants and it attains 1.4% for the combustion of wood. In natural fire plumes this ratio is around 0.26% for savanna fires and 0.56 to 2.22% for forest fires. These results show that methane release is highly dependent on the type of combustion. Methane to CO{sub 2} ratios are also studied in vertical profiles in the troposphere taken during the TROPOZ I campaign, an aerial research expedition carried out over west Africa during the bushfire period. Within polluted layers, the average ratio of CH{sub 4} to CO{sub 2} excess over ambient air concentration is 0.34%. These results show that biomass burning in tropical Africa constitutes an important source of atmospheric methane estimated to about 9.2 {times} 10{sup 6} T (CH{sub 4})/yr.

  2. Regional biomass burning trends in India: Analysis of satellite fire data

    NASA Astrophysics Data System (ADS)

    Sahu, L. K.; Sheel, Varun; Pandey, Kumud; Yadav, Ravi; Saxena, P.; Gunthe, Sachin

    2015-10-01

    The results based on the analysis of satellite fire counts detected by the Along-Track Scanning Radiometer (ATSR) sensors over different regions of India during 1998-2009 have been presented. Generally, the activities of open biomass burning show large spatial and temporal variations in India. The highest and lowest values of monthly fire counts were detected during the periods of March-May and July-September, respectively over different regions of India. The activities of biomass burning in two central states of Madhya Pradesh and Maharashtra were the highest and together accounted for about 25-45% of total annual fire counts detected over India during the study period. However, in opposite phases, the rainfall and fire count data show strong seasonal variation. In addition to large regional and seasonal variations, the fire data also show significant year-to-year variation. The higher annual fire counts exceeding the mean of entire period by about 16% and 43% were detected during the two periods of 1998-2000 and 2007-2009, respectively. We have estimated normalized anomaly of annual fire count data which shows large positive departures from long-term mean for the years 1999, 2007, 2008 and 2009, while negative departures for the years 2002, 2003 and 2005. Consistently, the mixing ratio of carbon monoxide (CO) typical peaks during winter but extended to pre-monsoon season during extensive fire years. The annual data over the entire region of India show lesser positive trend of about 3% yr-1. The inter-annual variation of fire count over entire India follows the trend in the ENSO Precipitation Index (ESPI) but shows opposite trend to the multivariate ENSO Index (MEI).

  3. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions.

    PubMed

    Artaxo, Paulo; Rizzo, Luciana V; Brito, Joel F; Barbosa, Henrique M J; Arana, Andrea; Sena, Elisa T; Cirino, Glauber G; Bastos, Wanderlei; Martin, Scot T; Andreae, Meinrat O

    2013-01-01

    In the wet season, a large portion of the Amazon region constitutes one of the most pristine continental areas, with very low concentrations of atmospheric trace gases and aerosol particles. However, land use change modifies the biosphere-atmosphere interactions in such a way that key processes that maintain the functioning of Amazonia are substantially altered. This study presents a comparison between aerosol properties observed at a preserved forest site in Central Amazonia (TT34 North of Manaus) and at a heavily biomass burning impacted site in south-western Amazonia (PVH, close to Porto Velho). Amazonian aerosols were characterized in detail, including aerosol size distributions, aerosol light absorption and scattering, optical depth and aerosol inorganic and organic composition, among other properties. The central Amazonia site (TT34) showed low aerosol concentrations (PM2.5 of 1.3 +/- 0.7 microg m(-3) and 3.4 +/- 2.0 microg m(-3) in the wet and dry seasons, respectively), with a median particle number concentration of 220 cm(-3) in the wet season and 2200 cm(-3) in the dry season. At the impacted site (PVH), aerosol loadings were one order of magnitude higher (PM2.5 of 10.2 +/- 9.0 microg m(-3) and 33.0 +/- 36.0 microg m(-3) in the wet and dry seasons, respectively). The aerosol number concentration at the impacted site ranged from 680 cm(-3) in the wet season up to 20 000 cm(-3) in the dry season. An aerosol chemical speciation monitor (ACSM) was deployed in 2013 at both sites, and it shows that organic aerosol account to 81% to the non-refractory PM1 aerosol loading at TT34, while biomass burning aerosols at PVH shows a 93% content of organic particles. Three years of filter-based elemental composition measurements shows that sulphate at the impacted site decreases, on average, from 12% of PM2.5 mass during the wet season to 5% in the dry season. This result corroborates the ACSM finding that the biomass burning contributed overwhelmingly to the organic

  4. Radiocarbon-based impact assessment of open biomass burning on regional carbonaceous aerosols in North China.

    PubMed

    Zong, Zheng; Chen, Yingjun; Tian, Chongguo; Fang, Yin; Wang, Xiaoping; Huang, Guopei; Zhang, Fan; Li, Jun; Zhang, Gan

    2015-06-15

    Samples of total suspended particulates (TSPs) and fine particulate matter (PM2.5) were collected from 29th May to 1st July, 2013 at a regional background site in Bohai Rim, North China. Mass concentrations of particulate matter and carbonaceous species showed a total of 50% and 97% of the measured TSP and PM2.5 levels exceeded the first grade national standard of China, respectively. Daily concentrations of organic carbon (OC) and elemental carbon (EC) were detected 7.3 and 2.5 μg m(-3) in TSP and 5.2 and 2.0 μg m(-3) in PM2.5, which accounted 5.8% and 2.0% of TSP while 5.6% and 2.2% for PM2.5, respectively. The concentrations of OC, EC, TSP and PM2.5 were observed higher in the day time than those in the night time. The observations were associated with the emission variations from anthropogenic activities. Two merged samples representing from south and north source areas were selected for radiocarbon analysis. The radiocarbon measurements showed 74% of water-insoluble OC (WINSOC) and 59% of EC in PM2.5 derived from biomass burning and biogenic sources when the air masses were from south region, and 63% and 48% for the air masses from north, respectively. Combined with backward trajectories and daily burned area, open burning of agricultural wastes was found to be predominating, which was confirmed by the potential source contribution function (PSCF).

  5. Influence of plumes from biomass burning on atmospheric chemistry over the equatorial and tropical South Atlantic during CITE 3

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Anderson, B. E.; Blake, D. R.; Bradshaw, J. D.; Collins, J. E.; Gregory, G. L.; Sachse, G. W.; Shipham, M. C.

    1994-01-01

    During all eight flights conducted over the equatorial and tropical South Atlantic in the course of the Chemical Instrumentation Test and Evaluation (CITE 3) experiment, we observed haze layers with elevated concentrations of aerosols, O3, CO, and other trace gases related to biomass burning emissions. They occurred at altitudes between 1000 and 5200 m and were usually only some 100-300 m thick. These layers extended horizontally over several 100 km and were marked by the presence of visible brownish haze. Air mass trajectories indicate that these layers originate in the biomass burning regions of Africa and South America and typically have aged at least 10 days since the time of emission. In the haze layers, O3 and CO concentrations up to 90 and 210 ppb were observed, respectively. The two species were highly correlated. The ratio concentrations in plume minus background concentrations of O3/CO is typically in the range 0.2-0.7, much higher than the ratios in the less aged plumes investigated previously in Amazonia. In most cases, aerosol (0.12-3 micrometer diameter) number concentrations were also elevated by up to 400/cu cm in the layers; aerosol enrichments were also strongly correlated with elevated CO levels. Clear correlations between CO and NO(x) enrichments were not apparent due to the age of the plumes, in which most NO(x) would have already reacted away within 1-2 days. Only in some of the plumes could clear correlations between NO(y) and CO be identified; the absence of a general correlation between NO(y) and CO may be due to instrumental limitations and to variable sinks for NO(y). The average enrichment of the ratio concentrations in plume minus background concentrations of NO(y)/CO was quite high, consistent with the efficient production of ozone observed in the plumes. The chemical characteristics of the haze layers, together with remote sensing information and trajectory calculations, suggest that fire emissions (in Africa and/or South America) are

  6. Chemical and isotopic characterization of fatty acids and polycyclic aromatic hydrocarbons in aerosols - implications for biomass burning

    SciTech Connect

    Ballentine, D.C.

    1995-12-31

    Emissions of organic materials during biomass burning have been suggested to influence the biogeochemical distribution of nutrients in a range of ecosystems. Additionally, some organic components survive pyrolytic processes and are of regional and global biogeochemical significance because they may serve as tracers for transport of biomass burning products. Two classes of compounds that are of interest in determining the transport of these products are polycyclic aromatic hydrocarbons (PAH) and fatty acids. Polycyclic aromatic hydrocarbons are stable to biodegradation and are typically produced during natural and anthropogenic combustion processes. Fatty acids are also stable to atmospheric degradation and have been implicated as useful biomarkers for atmospheric transport. In this study, PAH and fatty acids emitted during controlled low and high temperature burns of sugar cane have been chemically and isotopically characterized using GC/MS and GC/IRMS, respectively. In order to determine if these species are suitable biomarkers for the transport of biomass burning materials, aerosols collected during sugar cane burning in South Africa have been similarly analyzed.

  7. Burns

    MedlinePlus

    ... are burns treated? In many cases, topical antibiotics (skin creams or ointments) are used to prevent infection. For third-degree burns and some second-degree ones, immediate blood transfusion and/or extra fluids ... is skin grafting? There are two types of skin grafts. ...

  8. [Influence of biomass burning in Central Asia on nitrate concentrations in Urumqi Glacier No. 1, eastern Tianshan Mountains, China].

    PubMed

    Wang, Sheng-Jie; Zhang, Ming-Jun; Wang, Fei-Teng; Li, Zhong-Qin

    2011-02-01

    Influence of biomass burning in Kazakhstan on nitrate concentrations in eastern Tianshan Mountains was studied. 52 samples of surface snow and snow pits were collected from Glacier No. 1 at the headwater of Urumqi River in eastern Tianshan Mountains, China. Nitrate concentrations in these samples were measured and atmospheric transmission was reconstructed with HYSPLIT air trajectory model. The objectives of this study were to identify the relationship between steppes fire and nitrate concentration in snow, and develop deposition process of nitrate caused by biomass burning in alpine glacier at high altitude. Results indicated that nitrate in surface snow could be regarded as a subsidiary indicator of biomass burning for long distance. Correlations for NO3- and K+ were 0.74 from mid September to late October 2002, which was obviously higher than mean concentration. It took 2-6 days from fire spots in Kazakhstan to sampling site. Whether the information in air mass with biomass burning products can be recorded or not, was mostly depend on local temperature and precipitation. Eluviation process was prominent at Glacier No. 1 in wet season, so postdepositional effect should be considered in paleoclimate reconstruction by ice core.

  9. Interactions and Feedbacks Between Biomass Burning and Water Cycle Dynamics Across the Northern Sub-Saharan African Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  10. Comparison of GFED3, QFED2 and FEER1 Biomass Burning Emissions Datasets in a Global Model

    NASA Technical Reports Server (NTRS)

    Pan, Xiaohua; Ichoku, Charles; Bian, Huisheng; Chin, Mian; Ellison, Luke; da Silva, Arlindo; Darmenov, Anton

    2015-01-01

    Biomass burning contributes about 40% of the global loading of carbonaceous aerosols, significantly affecting air quality and the climate system by modulating solar radiation and cloud properties. However, fire emissions are poorly constrained in models on global and regional levels. In this study, we investigate 3 global biomass burning emission datasets in NASA GEOS5, namely: (1) GFEDv3.1 (Global Fire Emissions Database version 3.1); (2) QFEDv2.4 (Quick Fire Emissions Dataset version 2.4); (3) FEERv1 (Fire Energetics and Emissions Research version 1.0). The simulated aerosol optical depth (AOD), absorption AOD (AAOD), angstrom exponent and surface concentrations of aerosol plumes dominated by fire emissions are evaluated and compared to MODIS, OMI, AERONET, and IMPROVE data over different regions. In general, the spatial patterns of biomass burning emissions from these inventories are similar, although the strength of the emissions can be noticeably different. The emissions estimates from QFED are generally larger than those of FEER, which are in turn larger than those of GFED. AOD simulated with all these 3 databases are lower than the corresponding observations in Southern Africa and South America, two of the major biomass burning regions in the world.

  11. Elemental Composition of Primary Aerosols Emitted from Burning of 21 Biomass Fuels Measured by Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Mack, L.; Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Jimenez, J. L.; Worsnop, D. R.

    2010-12-01

    Biomass burning emissions are an important contributor to regional aerosol loading and have a large impact of on air quality, visibility, and radiative forcing. However, the detailed chemical composition of the aerosols emitted during biomass burning is largely unknown. In order to gain a better understanding of the chemical and physical properties of these emissions, 92 burns were undertaken in the combustion chamber of the USDA/FS Fire Sciences Laboratory in Missoula, Montana, in well-defined laboratory conditions. A set of 21 different fuels was tested that represents biomass burned annually in the western and southeastern U.S. The chemical composition of the resulting biomass smoke aerosols was analyzed with a high-resolution aerosol mass spectrometer (Aerodyne HR-ToF-AMS). Simultaneous measurements of CO2 and CO concentrations allowed flaming and smoldering fire regimes to be distinguished. The elemental composition of the organic portion of the aerosols was extracted from the AMS measurements. Here we present the variation of O/C, H/C and organic mass to organic carbon ratios (OM/OC) versus fire regime and fuel type. We also discuss the influence on the organic aerosol chemical composition of various factors such as fuel moisture content and total aerosol loading, as well as the approach used to account for water vapor ions derived from water originally present in sampled particles versus water vapor ions produced by electron impact fragmentation of organic molecules.

  12. Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires

    NASA Astrophysics Data System (ADS)

    Le Breton, M.; Bacak, A.; Muller, J. B. A.; O'Shea, S. J.; Xiao, P.; Ashfold, M. N. R.; Cooke, M. C.; Batt, R.; Shallcross, D. E.; Oram, D. E.; Forster, G.; Bauguitte, S. J.-B.; Percival, C. J.

    2013-09-01

    A chemical ionisation mass spectrometer (CIMS) was developed for measuring hydrogen cyanide (HCN) from biomass burning events in Canada using I- reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere. A strong correlation between the HCN, carbon monoxide (CO) and acetonitrile (CH3CN) was observed, indicating the potential of HCN as a biomass burning (BB) marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume-defining techniques employing CO and CH3CN measurements. The 6-sigma technique produced the highest R2 values for correlations with CO. A normalised excess mixing ratio (NEMR) of 3.68 ± 0.149 pptv ppbv-1 was calculated, which is within the range quoted in previous research (Hornbrook et al., 2011). The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work, the emission total for HCN from BB was 0.92 Tg (N) yr-1.

  13. Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires

    NASA Astrophysics Data System (ADS)

    Le Breton, M.; Bacak, A.; Muller, J. B. A.; O'Shea, S. J.; Xiao, P.; Ashfold, M. N. R.; Cooke, M. C.; Batt, R.; Shallcross, D. E.; Oram, D. E.; Forster, G.; Bauguitte, S. J.-B.; Percival, C. J.

    2013-02-01

    A Chemical Ionisation Mass Spectrometer (CIMS) was developed for measuring hydrogen cyanide (HCN) from biomass burning events in Canada using I- reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere. A strong correlation between the HCN, carbon monoxide (CO) and acetonitrile (CH3CN) was observed, indicating the potential of HCN as a biomass burning (BB) marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume defining techniques employing CO and CH3CN measurements. The 6 sigma technique produced the highest R2 values for correlations with CO. A Normalised Excess Mixing Ratio (NEMR) of 3.76 ± 0.022 pptv ppbv-1 was calculated which is within the range quoted in previous research (Hornbrook et al., 2011). The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work the emission total for HCN from BB was 0.92 Tg (N) yr-1.

  14. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols

    NASA Astrophysics Data System (ADS)

    Urban, Roberta Cerasi; Lima-Souza, Michele; Caetano-Silva, Letícia; Queiroz, Maria Eugênia C.; Nogueira, Raquel F. P.; Allen, Andrew G.; Cardoso, Arnaldo A.; Held, Gerhard; Campos, Maria Lucia A. M.

    2012-12-01

    Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (São Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (<1.5 μm), and its concentration in total aerosol ranged from 25 to 1186 ng m-3. The highest values were found at night, when most of the biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 ± 2.97 μg m-3 (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p < 0.0001) confirmed that biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p < 0.0001) was indicative of the influence of other sources of potassium in the study region, such as soil resuspension and fertilizers. When only the fine particles (<1.5 μm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high

  15. Assessment of aerosol-cloud interactions during southern African biomass burning activity, employing cloud parameterizations

    NASA Astrophysics Data System (ADS)

    Wiston, Modise; McFiggans, Gordon; Schultz, David

    2015-04-01

    In this study, we perform a simulation of the spatial distributions of particle and gas concentrations from a significantly large source of pollution event during a dry season in southern Africa and their interactions with cloud processes. Specific focus is on the extent to which cloud-aerosol interactions are affected by various inputs (i.e. emissions) and parameterizations and feedback mechanisms in a coupled mesoscale chemistry-meteorology model -herein Weather Research and Forecasting model with chemistry (WRF-Chem). The southern African dry season (May-Sep) is characterised by biomass burning (BB) type of pollution. During this period, BB particles are frequently observed over the subcontinent, at the same time a persistent deck of stratocumulus covers the south West African coast, favouring long-range transport over the Atlantic Ocean of aerosols above clouds. While anthropogenic pollutants tend to spread more over the entire domain, biomass pollutants are concentrated around the burning areas, especially the savannah and tropical rainforest of the Congo Basin. BB is linked to agricultural practice at latitudes south of 10° N. During an intense burning event, there is a clear signal of strong interactions of aerosols and cloud microphysics. These species interfere with the radiative budget, and directly affect the amount of solar radiation reflected and scattered back to space and partly absorbed by the atmosphere. Aerosols also affect cloud microphysics by acting as cloud condensation nuclei (CCN), modifying precipitation pattern and the cloud albedo. Key area is to understand the role of pollution on convective cloud processes and its impacts on cloud dynamics. The hypothesis is that an environment of potentially high pollution enables the probability of interactions between co-located aerosols and cloud layers. To investigate this hypothesis, we outline an approach to integrate three elements: i) focusing on regime(s) where there are strong indications of

  16. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    NASA Technical Reports Server (NTRS)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were approx. 40- 60% smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq)/ and various biomass burning tracers (BBt/ across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be approx. 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/cu m and very high aerosol concentrations (2000- 3000/ cu cm in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W/sq m or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic.We lastly explore evidence suggesting that numerous northern

  17. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    NASA Technical Reports Server (NTRS)

    Zamora, Lauren; Kahn, R. A.; Cubison, M. C.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were 50 smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq))/ and various biomass burning tracers (BBt/ across the multi-campaign dataset, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACI, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be 0.12 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/ cu m) and very high aerosol concentrations (2000-3000 cu m) in the most polluted clouds, the estimated ACI value was only 0.06. In this case, competition for water vapor by the high concentration of CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease shortwave radiative flux by 2 and 4 W/sq or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly show evidence to suggest that numerous northern latitude background Aitken particles can interact with combustion particles

  18. Improving biomass burning pollution predictions in Singapore using AERONET and Lidar observations.

    NASA Astrophysics Data System (ADS)

    Hardacre, Catherine; Chew, Boon Ning; Gan, Christopher; Burgin, Laura; Hort, Matthew; Lee, Shao Yi; Shaw, Felicia; Witham, Claire

    2016-04-01

    Every year millions of people are affected by poor air quality from trans-boundary smoke haze emitted from large scale biomass burning in Asia. These fires are a particular problem in the Indonesian regions of Sumatra and Kalimantan where peat fires, lit to clear land for oil palm plantations and agriculture, typically result in high levels of particulate matter (PM) emissions. In June 2013 and from August-October 2015 the combination of widespread burning, meteorological and climatological conditions resulted in severe air pollution throughout Southeast Asia. The Met Office of the United Kingdom (UKMO) and the Hazard and Risk Impact Assessment Unit of the Meteorological Service of Singapore (MSS) have developed a quantitative haze forecast to provide a reliable, routine warning of haze events in the Singapore region. The forecast system uses the UKMO's Lagrangian particle dispersion model NAME (Numerical Atmosphere-dispersion Modelling Environment) in combination with high resolution, satellite based emission data from the Global Fire Emissions System (GFAS). The buoyancy of biomass burning smoke and it's rise through the atmosphere has a large impact on the amount of air pollution at the Earth's surface. This is important in Singapore, which is affected by pollution that has travelled long distances and that will have a vertical distribution influenced by meteorology. The vertical distribution of atmospheric aerosol can be observed by Lidar which provides information about haze plume structure. NAME output from two severe haze periods that occurred in June 2013 and from August-October 2015 was compared with observations of total column aerosol optical depth (AOD) from AERONET stations in Singapore and the surrounding region, as well as vertically resolved Lidar data from a station maintained by MSS and from MPLNET. Comparing total column and vertically resolved AOD observations with NAME output indicates that the model underestimates PM concentrations throughout

  19. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    NASA Astrophysics Data System (ADS)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 % over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ˜ 40-60 % smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ˜ 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content ( ˜ 0.02 g m-3) and very high aerosol concentrations (2000-3000 cm-3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W m-2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly explore evidence suggesting that numerous northern

  20. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    DOE PAGES

    Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; et al

    2016-01-21

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm–3) and very high aerosol concentrations (2000–3000 cm–3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm–2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that