Science.gov

Sample records for aged diabetic rats

  1. Physicochemical properties of the aging and diabetic sand rat intervertebral disc.

    PubMed

    Ziv, I; Moskowitz, R W; Kraise, I; Adler, J H; Maroudas, A

    1992-03-01

    Hydration, fixed charge density, (FCD) and hydration under various osmotic pressures were compared in young, old, and young diabetic sand rats. This rat is a desert animal that may develop diabetes when fed a regular diet; it is also known to have radiographic and histologic evidence of intervertebral disc (IVD) disease. Forty-five rats and 180 IVD were used in this study; they were divided into three equal groups: young healthy, old healthy, and young diabetics. IVD, cancellous bone, and muscle were sampled from distal lumbar spines. The young diabetic rats (YD) were considerably heavier than the age-matched controls, had higher insulin and glucose levels, and all YD had cataracts. The discs of the young diabetic animals demonstrated decreased hydration, FCD and ability to resist compression under osmotic pressures as compared with the young and healthy discs and were more similar to the discs from old rats. The IVD is the most affected musculoskeletal connective tissue in sand rats with aging and diabetes. The aged and diabetic discs in the sand rat demonstrated changes similar to human changes with regard to lower hydration, FCD, and ability to resist osmotic pressure. Therefore, the sand rat may be a suitable animal model for studying the pathogenesis of disc degeneration.

  2. Cavernous antioxidant effect of green tea, epigallocatechin-3-gallate with/without sildenafil citrate intake in aged diabetic rats.

    PubMed

    Mostafa, T; Sabry, D; Abdelaal, A M; Mostafa, I; Taymour, M

    2013-08-01

    This study aimed to assess the cavernous antioxidant effect of green tea (GT), epigallocatechin-3-gallate (EGCG) with/without sildenafil citrate intake in aged diabetic rats. One hundred and four aged male white albino rat were divided into controls that received ordinary chow, streptozotocin (STZ)-induced aged diabetic rats, STZ-induced diabetic rats on infused green tea, induced diabetic rats on epigallocatechin-3-gallate and STZ-induced diabetic rats on sildenafil citrate added to EGCG. After 8 weeks, dissected cavernous tissues were assessed for gene expression of eNOS, cavernous malondialdehyde (MDA), glutathione peroxidase (GPx), cyclic guanosine monophosphate (cGMP), and serum testosterone (T). STZ-induced diabetic rats on GT demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats. Diabetic rats on EGCG demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats or diabetic rats on GT. Diabetic rats on EGCG added to sildenafil showed significant increase in cavernous eNOS, cGMP and significant decrease in cavernous MDA compared with other groups. Serum T demonstrated nonsignificant difference between the investigated groups. It is concluded that GT and EGCG have significant cavernous antioxidant effects that are increased if sildenafil is added.

  3. Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats

    PubMed Central

    Zakaria, Mohamed Naguib; El-Bassossy, Hany M.; Barakat, Waleed

    2015-01-01

    Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs) is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE), AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE) and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS) complications in STZ-induced (50 mg/kg, IP) diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze), neuronal degeneration (Fluoro-Jade staining), AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde). These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications. PMID:26491434

  4. Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats.

    PubMed

    Zakaria, Mohamed Naguib; El-Bassossy, Hany M; Barakat, Waleed

    2015-01-01

    Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs) is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE), AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE) and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS) complications in STZ-induced (50 mg/kg, IP) diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze), neuronal degeneration (Fluoro-Jade staining), AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde). These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications. PMID:26491434

  5. Cardiac and renal function are progressively impaired with aging in Zucker diabetic fatty type II diabetic rats.

    PubMed

    Baynes, John; Murray, David B

    2009-01-01

    This study investigated the temporal relationship between cardiomyopathy and renal pathology in the type II diabetic Zucker diabetic fatty (ZDF) rat. We hypothesized that changes in renal function will precede the development of cardiac dysfunction in the ZDF rat. Animals (10 weeks old) were divided into four experimental groups: Lean Control (fa/?) LC(n = 7), untreated ZDF rats (n = 7) sacrificed at 16 weeks of age, and LC (n = 7) untreated ZDF rats (n = 9) sacrificed at 36 weeks of age. LV structural/functional parameters were assessed via Millar conductance catheter. Renal function was evaluated via markers of proteinuria and evidence of hydronephrosis. LV mass was significantly less in the ZDF groups at both time points compared to age-matched LC. End diastolic volume was increased by 16% at 16 weeks and by 37% at 36 weeks of age (p < 0.05 vs. LC). End diastolic pressure and end systolic volume were significantly increased (42% and 27%respectively) at 36 weeks of age in the ZDF compared to LC. Kidney weights were significantly increased at both 16 and 36 week in ZDF animals (p < 0.05 vs. LC). Increased urinary albumin and decreased urinary creatinine were paralleled by a marked progression in the severity of hydronephrosis from 16 to 36 weeks of age in the ZDF group. In summary, there is evidence of progressive structural and functional changes in both the heart and kidney, starting as early as 16 weeks,without evidence that one pathology precedes or causes the other in the ZDF model of type II diabetes.

  6. Histopathological lesions in the pancreas of the BB Wistar rat as a function of age and duration of diabetes.

    PubMed

    Wright, J; Yates, A; Sharma, H; Thibert, P

    1985-01-01

    Pancreatic histopathology was studied in 121 BBWd, 43 BBWnd, and 33 Wistar rats. Insulitis was the most common inflammatory lesion in both BBW and BBWnd rats. The incidence was inversely associated with age and with duration of diabetes in BBWd rats, but there was no age-related pattern in BBWnd rats. Small end-stage islets were typical of BBWd rats but were not seen in BBWnd rats. Several BBWd rats showed hyperplastic islets months after the onset of diabetes, a pattern that is also seen in a small percentage of human JOD patients. Several non-specific exocrine inflammatory lesions occurred in both BBWd and BBWnd rats: acute and/or chronic pancreatitis, eosinophilic infiltrates, granulomatous lesions and acute and/or chronic interstitial inflammation. Only chronic interstitial inflammation was seen in outbred Wistar rats. PMID:3882779

  7. Histopathological lesions in the pancreas of the BB Wistar rat as a function of age and duration of diabetes.

    PubMed

    Wright, J; Yates, A; Sharma, H; Thibert, P

    1985-01-01

    Pancreatic histopathology was studied in 121 BBWd, 43 BBWnd, and 33 Wistar rats. Insulitis was the most common inflammatory lesion in both BBW and BBWnd rats. The incidence was inversely associated with age and with duration of diabetes in BBWd rats, but there was no age-related pattern in BBWnd rats. Small end-stage islets were typical of BBWd rats but were not seen in BBWnd rats. Several BBWd rats showed hyperplastic islets months after the onset of diabetes, a pattern that is also seen in a small percentage of human JOD patients. Several non-specific exocrine inflammatory lesions occurred in both BBWd and BBWnd rats: acute and/or chronic pancreatitis, eosinophilic infiltrates, granulomatous lesions and acute and/or chronic interstitial inflammation. Only chronic interstitial inflammation was seen in outbred Wistar rats.

  8. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    PubMed Central

    Kim, Junghyun; Jo, Kyuhyung; Lee, Ik-Soo; Kim, Chan-Sik; Kim, Jin Sook

    2016-01-01

    Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs) are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE) against damage to retinal vascular cells were investigated in streptozotocin (STZ)-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB) and inducible nitric oxide synthase (iNOS) were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling)-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs) binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells. PMID:27657123

  9. Susceptibility of Diabetic Rats to Pulmonary and Systemic Effects of Inhaled Photochemically-Aged Atmosphere and Ozone (O3)

    EPA Science Inventory

    Susceptibility of Diabetic Rats to Pulmonary and Systemic Effects of Inhaled Photochemically-Aged Atmosphere and Ozone (O3)MC Schladweiler1, SJ Snow2, QT Krantz1, C King1, JD Krug2, N Modak2, A Henriquez3, V Bass4, DJ Miller3, JE Richards1, EH Boykin1, R Jaskot1, MI Gilmour1 and ...

  10. Effects of ageing and experimental diabetes on insulin-degrading enzyme expression in male rat tissues.

    PubMed

    Kochkina, Ekaterina G; Plesneva, Svetlana A; Vasilev, Dmitrii S; Zhuravin, Igor A; Turner, Anthony J; Nalivaeva, Natalia N

    2015-08-01

    Due to an increasing life expectancy in developing countries, cases of type 2 diabetes and Alzheimer's disease (AD) in the elderly are growing exponentially. Despite a causative link between diabetes and AD, general molecular mechanisms underlying pathogenesis of these disorders are still far from being understood. One of the factors leading to cell death and cognitive impairment characteristic of AD is accumulation in the brain of toxic aggregates of amyloid-β peptide (Aβ). In the normally functioning brain Aβ catabolism is regulated by a cohort of proteolytic enzymes including insulin-degrading enzyme (IDE) and their deficit with ageing can result in Aβ accumulation and increased risk of AD. The aim of this study was a comparative analysis of IDE expression in the brain structures involved in AD, as well as in peripheral organs (the liver and kidney) of rats, during natural ageing and after experimentally-induced diabetes. It was found that ageing is accompanied by a significant decrease of IDE mRNA and protein content in the liver (by 32 and 81%) and brain structures (in the cortex by 58 and 47% and in the striatum by 53 and 68%, respectively). In diabetic animals, IDE protein level was increased in the liver (by 36%) and in the striatum (by 42%) while in the brain cortex and hippocampus it was 20-30% lower than in control animals. No significant IDE protein changes were observed in the kidney of diabetic rats. These data testify that ageing and diabetes are accompanied by a deficit of IDE in the brain structures where accumulation of Aβ was reported in AD patients, which might be one of the factors predisposing to development of the sporadic form of AD in the elderly, and especially in diabetics.

  11. Immunohistochemical localization of GAP-43 in rat and human sympathetic nervous system--effects of aging and diabetes.

    PubMed

    Schmidt, R E; Spencer, S A; Coleman, B D; Roth, K A

    1991-06-28

    The neuronal 43 kDa growth associated peptide (GAP-43) is expressed in conditions of embryonic growth, axonal regeneration, and, to a limited degree, within the central nervous system as an indicator of synaptic plasticity. Although much is known about the expression of GAP-43 in cultured sympathetic neurons, information concerning the existence, immunolocalization and response of GAP-43 to experimental injury is not available for intact sympathetic ganglia in vivo. In this study we have characterized the in situ distribution and identity of GAP-43 in adult rat and human prevertebral and paravertebral sympathetic ganglia using immunohistochemical and biochemical methods. Antisera to GAP-43 intensely labeled intraganglionic presynaptic axons and synapses terminating on neurons of normal adult rat and human sympathetic ganglia in situ. There was minimal GAP-43 immunoreactivity of principal sympathetic neuron perikarya, proximal dendrites and initial axonal segments. The immunohistologic appearance of GAP-43 was unchanged in the ganglia of aged and diabetic rats and elderly humans, conditions in which presynaptic terminal axons and synapses show evidence of chronic degeneration, regeneration and neuroaxonal dystrophy, an unusual ultrastructural alteration which may represent disordered synaptic plasticity. Radioimmunoassay of ganglionic GAP-43 is comparable in young adult, aged and diabetic rat prevertebral or paravertebral sympathetic ganglia. Double immunolocalization of NPY (which labeled markedly swollen dystrophic axons) and GAP-43 in human sympathetic ganglia using a sequential immunogold-silver/fluorescence technique demonstrated that typical dystrophic axons contain little GAP-43.

  12. Soft-shelled turtle eggs inhibit the formation of AGEs in the serum and skin of diabetic rats

    PubMed Central

    Yamanaka, Mikihiro; Shirakawa, Jun-ichi; Ohno, Rei-ichi; Shinagawa, Masatoshi; Hatano, Kota; Sugawa, Hikari; Arakawa, Shoutaro; Furusawa, Chisato; Nagai, Mime; Nagai, Ryoji

    2016-01-01

    Although soft-shelled turtle eggs (STE) have been used as a folk medicine for revitalization and the prevention of lifestyle-related diseases, the scientific evidence to support the use of STE in this manner is scarce. To clarify the physiological evidence, STE was administered to diabetic rats and the inhibitory effects on the formation of advanced glycation end-products (AGEs), which are known to increase with the progression of lifestyle-related diseases, were examined. STE and citric acid were administered to diabetic rats for 3 months, and serum Nε-(carboxymethyl)lysine (CML) contents were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Although the administration of STE did not affect the body weight, glycoalbumin or ketone body levels, it significantly reduced the serum level of CML. The accumulation of AGEs, which was measured by fluorescence intensity in the auricle skin and the lower gums, was also reduced by the administration of STE to a similar extent to that observed with citric acid. This report provides the first evidence that the oral administration of STE reduces the formation of AGEs, suggesting that one of the health effects of STE may be the inhibition of AGEs formation. PMID:27013779

  13. Soft-shelled turtle eggs inhibit the formation of AGEs in the serum and skin of diabetic rats.

    PubMed

    Yamanaka, Mikihiro; Shirakawa, Jun-Ichi; Ohno, Rei-Ichi; Shinagawa, Masatoshi; Hatano, Kota; Sugawa, Hikari; Arakawa, Shoutaro; Furusawa, Chisato; Nagai, Mime; Nagai, Ryoji

    2016-03-01

    Although soft-shelled turtle eggs (STE) have been used as a folk medicine for revitalization and the prevention of lifestyle-related diseases, the scientific evidence to support the use of STE in this manner is scarce. To clarify the physiological evidence, STE was administered to diabetic rats and the inhibitory effects on the formation of advanced glycation end-products (AGEs), which are known to increase with the progression of lifestyle-related diseases, were examined. STE and citric acid were administered to diabetic rats for 3 months, and serum N (ε)-(carboxymethyl)lysine (CML) contents were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Although the administration of STE did not affect the body weight, glycoalbumin or ketone body levels, it significantly reduced the serum level of CML. The accumulation of AGEs, which was measured by fluorescence intensity in the auricle skin and the lower gums, was also reduced by the administration of STE to a similar extent to that observed with citric acid. This report provides the first evidence that the oral administration of STE reduces the formation of AGEs, suggesting that one of the health effects of STE may be the inhibition of AGEs formation. PMID:27013779

  14. Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62.

    PubMed

    Jung, Hyun-Jung; Kim, Yoon-Jeong; Eggert, Simone; Chung, Kwang Chul; Choi, Kyeong Sook; Park, Sun Ah

    2013-10-01

    Aging increases the co-incidence of Alzheimer's disease (AD) and type 2 diabetes (T2DM). However, the critical factors that contribute to the age-related increase in AD-T2DM comorbidity have yet to be clarified. In this study, aging effects and their relationship to AD-related pathology and T2DM as well as the underlying mechanisms of this process were investigated using obese rats with chronic T2DM. Tau pathology and its associated signaling pathways in the brain were compared between Otsuka Long-Evans Tokushima Fatty (OLETF) rats and corresponding non-diabetic controls at various ages. Tau phosphorylation at AD-related epitopes, including Thr212, Thr231, Ser262, and Ser396, increased with age in the soluble brain extracts of chronic OLETF rats and were accompanied by synaptic protein loss. There was also a marked age-dependent accumulation of polyubiquitinated substances in diabetic rats. Accordingly, tau proteins were highly polyubiquitinated in aged OLETF rats and a strong degree of co-localization existed between p-tau and ubiquitin in these neurons. In addition, the mRNA and protein levels of p62, a known cargo molecule that transports polyubiquitinated tau to proteasomal and autophagic degradation systems, decreased robustly with age in OLETF rats and there was an inverse correlation between protein levels of p62 and p-tau. The impaired degradation of polyubiquitinated p-tau due to age- and T2DM-dependent decreases in p62 transcription is a primary mechanism underlying increased AD-like pathology in a T2DM rat model as age increases. These results provide novel insight into the mechanisms supporting the age-related increase in AD-T2DM comorbidity.

  15. Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation.

    PubMed

    Rani, Neha; Bharti, Saurabh; Bhatia, Jagriti; Nag, T C; Ray, Ruma; Arya, Dharamvir Singh

    2016-04-25

    AGE-RAGE interaction mediated oxidative stress and inflammation is the key mechanism involved in the pathogenesis of cardiovascular disease in diabetes. Inhibition of AGE-RAGE axis by several PPAR-γ agonists has shown positive results in ameliorating cardio-metabolic disease conditions. Chrysin, a natural flavonoid has shown to possess PPAR-γ agonist activity along with antioxidant and anti-inflammatory effect. Therefore, the present study was designed to evaluate the effect of chrysin in isoproterenol-induced myocardial injury in diabetic rats. In male albino Wistar rats, diabetes was induced by single injection of streptozotocin (70 mg/kg, i.p.). After confirmation of the diabetes, rats were treated with vehicle (1.5 mL/kg, p.o.), chrysin (60 mg/kg, p.o.) or PPAR-γ antagonist GW9662 (1 mg/kg, i.p.) for 28 days. Simultaneously, on 27th and 28th day myocardial injury was induced by isoproterenol (85 mg/kg, s.c.). Chrysin significantly ameliorated cardiac dysfunction as reflected by improved MAP, ±LVdP/dtmax and LVEDP in diabetic rats. This improvement was associated with increased PPAR-γ expression and reduced RAGE expression in diabetic rats. Chrysin significantly decreased inflammation through inhibiting NF-κBp65/IKK-β expression and TNF-α level. Additionally, chrysin significantly reduced apoptosis as indicated by augmented Bcl-2 expression and decreased Bax and caspase-3 expressions. Furthermore, chrysin inhibited nitro-oxidative stress by normalizing the alteration in 8-OHdG, GSH, TBARS, NO and CAT levels and Nox4, MnSOD, eNOS and NT expressions. Co-administration of GW9662 significantly blunted the chrysin mediated cardioprotective effect as there was increase in oxidative stress, inflammation and apoptosis markers. Chrysin significantly ameliorated isoproterenol-induced myocardial injury in diabetic rats via PPAR-γ activation and inhibition of AGE-RAGE mediated oxidative stress and inflammation. PMID:26972669

  16. Attenuation of circadian rhythms of food intake and respiration in aging diabetes-prone BHE/Cdb rats.

    PubMed

    Mathews, C E; Wickwire, K; Flatt, W P; Berdanier, C D

    2000-07-01

    The hypothesis that BHE/Cdb rats with mutations in their mitochondrial genome might accommodate this mutation by changing their food intake patterns was tested. Four experiments were conducted. Experiments 1 and 2 examined food intake patterns of BHE/Cdb rats fed a stock diet or BHE/Cdb and Sprague-Dawley rats fed a high-fat diet from weaning. Experiment 3 examined the daily rhythms of respiration and heat production in these rats at 200 days of age. Experiment 4 examined the effects of diet composition on these measurements at 50-day intervals. The Sprague-Dawley rats, regardless of diet, had the typical day-night rhythms of feeding and respiration. In contrast, the BHE/Cdb rats fed the high-fat diet showed normal rhythms initially, but with age, these rhythms were attenuated. The changes in rhythms preceded the development of glucose intolerance.

  17. Aging and a long-term diabetes mellitus increase expression of 1 α-hydroxylase and vitamin D receptors in the rat liver.

    PubMed

    Vuica, Ana; Ferhatović Hamzić, Lejla; Vukojević, Katarina; Jerić, Milka; Puljak, Livia; Grković, Ivica; Filipović, Natalija

    2015-12-01

    Diabetes mellitus (DM) is a metabolic disorder associated with serious liver complications. As a metabolic chronic disease, DM is very common in the elderly. Recent studies suggest ameliorating effects of vitamin D on metabolic and oxidative stress in the liver tissue in an experimental model of DM. The aim of this study was to investigate the expression of vitamin D receptors (VDRs) and 1α-hydroxylase, the key enzyme for the production of active vitamin D form (calcitriol) in the liver during long-term diabetes mellitus type 1 (DM1) in aging rats. We performed immunohistochemical analysis of liver expression of 1α-hydroxylase and VDRs during aging in long-term streptozotocin-induced DM1. 1α-Hydroxylase was identified in the monocyte/macrophage system of the liver. In addition to the nuclear expression, we also observed the expression of VDR in membranes of lipid droplets within hepatocytes. Aging and long-term DM1 resulted in significant increases in the number of 1α-hydroxylase immunoreactive cells, as well as the percentage of strongly positive VDR hepatocytes. In conclusion, the liver has the capacity for active vitamin D synthesis in its monocyte/macrophage system that is substantially increased in aging and long-term diabetes mellitus. These conditions are also characterized by significant increases in vitamin D receptor expression in hepatocytes. The present study suggests that VDR signaling system could be a potential target in prevention of liver complications caused by diabetes and aging.

  18. Effects of niacin-bound chromium, Maitake mushroom fraction SX and (-)-hydroxycitric acid on the metabolic syndrome in aged diabetic Zucker fatty rats.

    PubMed

    Talpur, Nadeem; Echard, Bobby W; Yasmin, Taharat; Bagchi, Debasis; Preuss, Harry G

    2003-10-01

    Previous studies in our laboratories have demonstrated that niacin-bound chromium (NBC), Maitake mushroom and (-)-hydroxycitric acid (HCA-SX) can ameliorate hypertension, dyslipidemias and diabetes mellitus, and therefore may be useful in weight management. In the present study, we used aged, diabetic Zucker fatty rats (ZFR) (70-75 weeks) in order to determine whether NBC, fraction SX of Maitake mushroom (MSX) and 60% (-)-hydroxycitric acid (HCA-SX) from Garcinia cambogia, alone or in combination, can affect certain aspects of the metabolic syndrome. Syndrome X or metabolic syndrome has been described as a concurrence of disturbed glucose and insulin metabolism, overweight and abdominal fat distribution, mild dyslipidemia, and hypertension, which are associated with subsequent development of type 2 diabetes mellitus and cardiovascular disease. Four groups of eight ZFR were gavaged daily with different supplements. For the initial three weeks, the control group of ZFR received only water, the second group received NBC 40 mcg elemental chromium/day, the third group received MSX 100 mg/day and the last group received HCA-SX 200 mg/day. During weeks 4-6, the doses of each treatment were doubled. The control animals lost approximately 50 g body weight (BW) per rat over 6 weeks of treatment, which is characteristic of these animals in declining health. In contrast, eight ZFR receiving NBC lost approximately 9 g BW per rat, while rats consuming MSX lost 16 g BW per rat. However, ZFR receiving HCA-SX simulated the pattern in the control group because these animals lost approximately 46 g BW per rat. The wide individual variations resulted in a lack of statistical significance among groups. Nevertheless, 75% of the ZFR in the control group lost more than 50 g BW over the 6 weeks duration, whereas none of the ZFR receiving NBC, 25% of the ZFR receiving MSX and 57% of the ZFR receiving HCA-SX lost over 50 g BW over the 6 weeks of the study. ZFR in all 3 treatment groups

  19. Testicular atrophy in the spontaneously diabetic BB Wistar rat.

    PubMed Central

    Wright, J. R.; Yates, A. J.; Sharma, H. M.; Shim, C.; Tigner, R. L.; Thibert, P.

    1982-01-01

    Complete gross and microscopic postmortem examinations were performed on 100 BB Wistar diabetic rats, 27 BB Wistar nondiabetic siblings, and 41 Wistar rats, and the incidence of testicular lesions was tabulated. Testicular atrophy was the predominant finding in all three groups of rats, but atrophy occurred at a much younger age in the diabetic rats. There was a strong relationship between the duration of diabetes and the presence of atrophy, which was stronger than the relationship between age and atrophy. The testicular atrophy observed in the diabetic rats was morphologically similar to the senile testicular atrophy in the nondiabetic rats. Histologic findings that were associated with increasing severity of atrophy were multinucleated giant cells in the lumens of seminiferous tubules, increased interstitial connective tissue, Leydig cell hyperplasia, and thickening of the tunica albuginea. Testicular atrophy has also been reported in human diabetics. Therefore, the BB Wistar rat may be a useful model for investigating this aspect of diabetes mellitus. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:7091303

  20. Intermittent hypoxia maintains glycemia in streptozotocin-induced diabetic rats.

    PubMed

    Chen, Xiaofei; Zhao, Tong; Huang, Xin; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2016-05-01

    Increasing studies have shown protective effects of intermittent hypoxia on brain injury and heart ischemia. However, the effect of intermittent hypoxia on blood glucose metabolism, especially in diabetic conditions, is rarely observed. The aim of this study was to investigate whether intermittent hypoxia influences blood glucose metabolism in type 1 diabetic rats. Streptozotocin-induced diabetic adult rats and age-matched control rats were treated with intermittent hypoxia (at an altitude of 3 km, 4 h per day for 3 weeks) or normoxia as control. Fasting blood glucose, body weight, plasma fructosamine, plasma insulin, homeostasis model assessment of insulin resistance (HOMA-IR), pancreas β-cell mass, and hepatic and soleus glycogen were measured. Compared with diabetic rats before treatment, the level of fasting blood glucose in diabetic rats after normoxic treatment was increased (19.88 ± 5.69 mmol/L vs. 14.79 ± 5.84 mmol/L, p < 0.05), while it was not different in diabetic rats after hypoxic treatment (13.14 ± 5.77 mmol/L vs. 14.79 ± 5.84 mmol/L, p > 0.05). Meanwhile, fasting blood glucose in diabetic rats after hypoxic treatment was also lower than that in diabetic rats after normoxic treatment (13.14 ± 5.77 mmol/L vs. 19.88 ± 5.69 mmol/L, p<0.05). Plasma fructosamine in diabetic rats receiving intermittent hypoxia was significantly lower than that in diabetic rats receiving normoxia (1.28 ± 0.11 vs. 1.39 ± 0.11, p < 0.05), while there were no significant changes in body weight, plasma insulin and β-cell mass. HOMA-IR in diabetic rats after hypoxic treatment was also lower compared with diabetic rats after normoxic treatment (3.48 ± 0.48 vs. 3.86 ± 0.42, p < 0.05). Moreover, intermittent hypoxia showed effect on the increase of soleus glycogen but not hepatic glycogen. We conclude that intermittent hypoxia maintains glycemia in streptozotocin-induced diabetic rats and its regulation on muscular

  1. Protein glycation, diabetes, and aging.

    PubMed

    Ulrich, P; Cerami, A

    2001-01-01

    Biological amines react with reducing sugars to form a complex family of rearranged and dehydrated covalent adducts that are often yellow-brown and/or fluorescent and include many cross-linked structures. Food chemists have long studied this process as a source of flavor, color, and texture changes in cooked, processed, and stored foods. During the 1970s and 1980s, it was realized that this process, called the Maillard reaction or advanced glycation, also occurs slowly in vivo. Advanced glycation endproducts (AGEs) that form are implicated, causing the complications of diabetes and aging, primarily via adventitious and crosslinking of proteins. Long-lived proteins such as structural collagen and lens crystallins particularly are implicated as pathogenic targets of AGE processes. AGE formation in vascular wall collagen appears to be an especially deleterious event, causing crosslinking of collagen molecules to each other and to circulating proteins. This leads to plaque formation, basement membrane thickening, and loss of vascular elasticity. The chemistry of these later-stage, glycation-derived crosslinks is still incompletely understood but, based on the hypothesis that AGE formation involves reactive carbonyl groups, the authors introduced the carbonyl reagent aminoguanidine hydrochloride as an inhibitor of AGE formation in vivo in the mid 1980s. Subsequent studies by many researchers have shown the effectiveness of aminoguanidine in slowing or preventing a wide range of complications of diabetes and aging in animals and, recently, in humans. Since, the authors have developed a new class of agents, exemplified by 4,5-dimethyl-3-phenacylthiazolium chloride (DPTC), which can chemically break already-formed AGE protein-protein crosslinks. These agents are based on a new theory of AGE crosslinking that postulates that alpha-dicarbonyl structures are present in AGE protein-protein crosslinks. In studies in aged animals, DPTC has been shown to be capable of reverting

  2. Dorsal root ganglia microenvironment of female BB Wistar diabetic rats with mild neuropathy.

    PubMed

    Zochodne, D W; Ho, L T; Allison, J A

    1994-12-01

    Abnormalities in the microenvironment of dorsal root ganglia (DRG) might play a role in the pathogenesis of sensory abnormalities in human diabetic neuropathy. We examined aspects of DRG microenvironment by measuring local blood flow and oxygen tension in the L4 dorsal root ganglia of female BB Wistar (BBW) diabetic rats with mild neuropathy. The findings were compared with concurrent measurements of local sciatic endoneurial blood flow and oxygen tension. Diabetic rats were treated with insulin and underwent electrophysiological, blood flow and oxygen tension measurements at either 7-11 or 17-23 weeks after the development of glycosuria. Nondiabetic female BB Wistar rats from the same colony served as controls. At both ages, BBW diabetic rats had significant abnormalities in sensory, but not motor conduction compared to nondiabetic controls. Sciatic endoneurial blood flow in the diabetic rats of both ages was similar to control values, but the older (17-23 week diabetic) BBW diabetic rats had a selective reduction in DRG blood flow. Sciatic endoneurial oxygen tensions were not significantly altered in the diabetic rats. DRG oxygen tension appeared lowered in younger (7-11 week diabetic) but not older (17-23 week diabetic) BBW rats. Our findings indicate that there are important changes in the DRG microenvironment of diabetic rats with selective sensory neuropathy. PMID:7699389

  3. Dorsal root ganglia microenvironment of female BB Wistar diabetic rats with mild neuropathy.

    PubMed

    Zochodne, D W; Ho, L T; Allison, J A

    1994-12-01

    Abnormalities in the microenvironment of dorsal root ganglia (DRG) might play a role in the pathogenesis of sensory abnormalities in human diabetic neuropathy. We examined aspects of DRG microenvironment by measuring local blood flow and oxygen tension in the L4 dorsal root ganglia of female BB Wistar (BBW) diabetic rats with mild neuropathy. The findings were compared with concurrent measurements of local sciatic endoneurial blood flow and oxygen tension. Diabetic rats were treated with insulin and underwent electrophysiological, blood flow and oxygen tension measurements at either 7-11 or 17-23 weeks after the development of glycosuria. Nondiabetic female BB Wistar rats from the same colony served as controls. At both ages, BBW diabetic rats had significant abnormalities in sensory, but not motor conduction compared to nondiabetic controls. Sciatic endoneurial blood flow in the diabetic rats of both ages was similar to control values, but the older (17-23 week diabetic) BBW diabetic rats had a selective reduction in DRG blood flow. Sciatic endoneurial oxygen tensions were not significantly altered in the diabetic rats. DRG oxygen tension appeared lowered in younger (7-11 week diabetic) but not older (17-23 week diabetic) BBW rats. Our findings indicate that there are important changes in the DRG microenvironment of diabetic rats with selective sensory neuropathy.

  4. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    SciTech Connect

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-11-15

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  5. Hemodynamic alterations in chronically conscious unrestrained diabetic rats

    SciTech Connect

    Carbonell, L.F.; Salmon, M.G.; Garcia-Estan, J.; Salazar, F.J.; Ubeda, M.; Quesada, T.

    1987-05-01

    Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state and whether insulin treatment can avoid them, different hemodynamic parameters, obtained by the thermodilution method, were studied in STZ-induced (65 mg/kg) diabetic male Wistar rats, as well as in age-control, weight-control, and insulin-treated diabetic ones. Plasma volume was measured by dilution of radioiodinated (/sup 125/I) human serum albumin. All rats were examined in the conscious, unrestrained state 12 wk after induction of diabetes or acidified saline (pH 4.5) injection. At 12 wk of diabetic state most important findings were normotension, high blood volume, bradycardia, increase in stroke volume, cardiac output, and cardiosomatic ratio, and decrease in total peripheral resistance and cardiac contractility and relaxation (dP/dt/sub max/ and dP/dt/sub min/ of left ventricular pressure curves). The insulin-treated diabetic rats did not show any hemodynamic differences when compared with the control animals. These results suggest that important hemodynamic alterations are present in the chronic diabetic states, possibly conditioning congestive heart failure. These alterations can be prevented by insulin treatment.

  6. Total parenteral nutrition in diabetic rats

    SciTech Connect

    Norcross, E.D.; Stein, T.P.

    1986-03-01

    Parenteral Nutrition with hypertonic glucose is frequently given to diabetic patients. Large amounts of insulin can be required. The purpose of this investigation was to develop a totally parenterally nourished diabetic rat model. 200 g Female Sprague Dawley rats were made diabetic by i.v. injection of streptozotocin (50 mg/kg). Rats were then allowed to recover for at least 1 week before undergoing surgical insertion of a central venous catheter for parenteral feeding. TPN was begun 3 days after surgery. Prior to this they were allowed unlimited access to food and water. Control (non-streptozotocin treated) rats were run at the same time. Protein turnover was investigated by using /sup 15/N glycine. Preliminary results: diabetic rats given mostly fat as a calorie source survived well in the absence of exogenous insulin whereas those that were given glucose only as their non-protein calorie source showed poor survival even with exogenous insulin. N balance and protein turnover in the lipid treated diabetic rats were comparable to the non-diabetic control rats.

  7. Anti diabetic effect of cherries in alloxan induced diabetic rats.

    PubMed

    Lachin, Tahsini; Reza, Heydari

    2012-01-01

    Diabetes mellitus (DM) is a metabolic disorder in the endocrine system resulting from a defect in insulin secretion, insulin action or both of them. Adverse side effects of chemical drugs for treatment of diabetes persuaded the using of medical plants. Cherry as a traditionally used plant for treatment of diabetes, is packed with powerful plant pigments called anthocyanins. They give cherries their dark red color and are one of the richest antioxidant sources which lower the blood sugar and bear other beneficial health effects. The purpose of this study is to evaluate the effect of ethanolic extract of cherry fruit on alloxan induced diabetic rats. In this study 36 Male Wistar rats, body weight of 150-200gr were divided into 6 groups. Diabetes was induced by intra peritoneal injection of 120 mg/kg Alloxan. The duration of the cherries treatment was 30 days in which single dose of extracts (200mg/kg) were oral administered to diabetic rats. Blood glucose levels were estimated with glucometer before treatment, 2h and 1- 4 weeks after administration of extracts. Treatment with extracts of the cherries resulted in a significant reduction in blood glucose and urinary microalbumin and an increase in the creatinine secretion level in urea. Extract of this plant is useful in controlling the blood glucose level. Cherries appear to aid in diabetes control and diminution of the complications of the disease. Some relevant patents are also outlined in this article. PMID:22280223

  8. Effects of aspartame on diabetic rats and diabetic patients.

    PubMed

    Shigeta, H; Yoshida, T; Nakai, M; Mori, H; Kano, Y; Nishioka, H; Kajiyama, S; Kitagawa, Y; Kanatsuna, T; Kondo, M

    1985-10-01

    The effects of aspartame (L-aspartyl-L-phenylalanine methyl ester) on plasma glucose and insulin levels were investigated in diabetic rats and patients with non-insulin-dependent diabetes mellitus. The oral administration of 0.45 mg aspartame per 100g body weight, which is equivalent to 150 mg of glucose in sweetness, to streptozotocin-induced diabetic rats had no effect on the plasma glucose or insulin levels. Also, 225 mg oral aspartame loading, which is equivalent to 75 g of glucose in sweetness, to patients with non-insulin-dependent diabetes mellitus did not increase plasma glucose or insulin levels, although 75 g of oral glucose loading increased plasma glucose and insulin levels in diabetic patients as expected. Aspartame ingestion for three days at a dose of 24-48 mg per day and the intake of snacks flavored with 240 mg of aspartame also did not increase fasting plasma glucose levels. These results suggest that acute administration of aspartame has no influence on plasma glucose or insulin levels in diabetic rats and patients with non-insulin-dependent diabetes mellitus.

  9. Oxidative stress in normal and diabetic rats.

    PubMed

    Torres, M D; Canal, J R; Pérez, C

    1999-01-01

    Parameters related to oxidative stress were studied in a group of 10 Wistar diabetic rats and 10 control rats. The levels of total erythrocyte catalase activity in the diabetic animals were significantly (p<0.001) greater than the control levels. The diabetic animals presented an amount of vitamin E far greater (p<0.0001) than the controls, as was also the case for the vitaminE/polyunsaturated fatty acid (PUFA) and vitaminE/linoleic acid (C18:2) ratios. Greater vitaminE/triglyceride (TG) ratio, however, appeared in the control group. The corresponding vitamin A ratios (vitaminA/TG, vitaminA/PUFA, vitaminA/C 18:2) were higher in the control group. Our work corroborates the findings that fatty acid metabolism presents alterations in the diabetes syndrome and that the antioxidant status is affected. PMID:10523056

  10. Ozone partially prevents diabetic neuropathy in rats.

    PubMed

    Erken, H A; Genç, O; Erken, G; Ayada, C; Gündoğdu, G; Doğan, H

    2015-02-01

    Neuropathy is one of the most common complications of diabetes mellitus. Although the beneficial effects of good blood glucose control on diabetic neuropathy are known, this control cannot completely prevent the occurrence and progression of diabetic neuropathy. The aim of this study was to investigate whether ozone prevents diabetic neuropathy. 36 adult female Sprague-Dawley rats were randomly divided into 6 groups (n=6): control (C), ozone (O), diabetic (D), ozone-treated diabetic (DO), insulin-treated diabetic (DI), and ozone- and insulin-treated diabetic (DOI). Diabetes was induced by a single injection of streptozotocin (60 mg/kg, intraperitoneal [i.p.]), after which insulin was administered (3 IU, i.p.) to the DI and DOI groups for 28 days, and 1.1 mg/kg (50 µg/ml) ozone was given to the O, DO, and DOI groups for 15 days. 4 weeks after the induction of diabetes, the nerve conduction velocity (NCV), amplitude of the compound action potential (CAP), total oxidant status (TOS), and total antioxidant status (TAS) were measured, and the oxidative stress index (OSI) was calculated. The NCV, amplitude of CAP, and TAS of the DI and DOI groups were higher than those of the D group; the amplitudes of CAP and TAS of the DO group were higher than those of the D group; and the TOS and OSI of the DO, DI, and DOI groups were lower than those of the D group. These findings indicate that ozone partially prevents diabetic neuropathy in rats. It appears that the preventive effects of ozone are mediated through oxidant/antioxidant mechanisms.

  11. Effect of cinnamon and its procyanidin-B2 enriched fraction on diabetic nephropathy in rats.

    PubMed

    Muthenna, P; Raghu, G; Kumar, P Anil; Surekha, M V; Reddy, G Bhanuprakash

    2014-10-01

    Non-enzymatic protein glycation and resultant accumulation of advanced glycation endproducts (AGE) are implicated in the pathogenesis of diabetic complications including diabetic nephropathy (DN). It is considered that antiglycating agents offer protection against AGE mediated pathologies including DN. Earlier we characterized procyanidin-B2 (PCB2) as the active component from cinnamon (Cinnamomum zeylanicum) that inhibits AGE formation in vitro. In this study, we have investigated the potential of PCB2-enriched fraction of cinnamon to prevent in vivo accumulation of AGE and to ameliorate renal changes in diabetic rats. Streptozotocin-induced diabetic rats were fed with either 3% cinnamon or 0.002% PCB2-fraction in diet for 12weeks. Biochemical analysis of blood and urine was performed at the end of experiment. Evaluation of glomerular markers that serve as indicators of renal function was done by immunohistochemistry, immunoblotting and qRT-PCR. Supplementation of diabetic rats with cinnamon and PCB2-fraction prevented glycation mediated RBC-IgG cross-links and HbA1c accumulation in diabetes rats. Cinnamon and PCB2-fraction also inhibited the accumulation of N-carboxy methyl lysine (CML), a prominent AGE in diabetic kidney. Interestingly, cinnamon and its PCB2-fraction prevented the AGE mediated loss of expression of glomerular podocyte proteins; nephrin and podocin. Inhibition of AGE by cinnamon and PCB2-fraction ameliorated the diabetes mediated renal malfunction in rats as evidenced by reduced urinary albumin and creatinine. In conclusion, PCB2 from cinnamon inhibited AGE accumulation in diabetic rat kidney and ameliorated AGE mediated pathogenesis of DN.

  12. Evidence for increased peroxidative activity in muscles from streptozotocin-diabetic rats

    SciTech Connect

    Lammi-Keefe, C.J.; Swan, P.B.; Hegarty, P.V.J.

    1984-05-01

    The ability of cardiac and skeletal muscles from diabetic rats to metabolize superoxide and hydrogen peroxide was determined by the activities of superoxide dismutase (SOD) and catalase, respectively. Male and female Sprague-Dawley rats, 43 days old, were made diabetic with a single intravenous injection of streptozotocin (70 mg/kg body weight). On the 80th day after injection the blood glucose concentration of these rats was increased fourfold, and the plasma insulin concentration was decreased four- to fivefold compared to controls. Body weights of male diabetic rats were 61% and those of female diabetic rats were 66% of their ad libitum-fed controls. The seven different skeletal muscles examined weighed less in the diabetic rats than in controls of the same age and body weight. Comparison to the body weight controls allowed the distinction of specific effects due to lack of insulin from effects due to retardation in muscle growth. Increased catalase activity in all muscles examined from diabetic rats (plantaris, gastrocnemius, and heart) suggested a response in catalase activity similar to that of starved rats. SOD activity was not altered in the diabetic rat skeletal muscles and erythrocytes, but was somewhat decreased in the heart.

  13. Extract of the aerial parts of Aster koraiensis reduced development of diabetic nephropathy via anti-apoptosis of podocytes in streptozotocin-induced diabetic rats.

    PubMed

    Sohn, Eunjin; Kim, Junghyun; Kim, Chan-Sik; Kim, Young Sook; Jang, Dae Sik; Kim, Jin Sook

    2010-01-01

    Advanced glycation end products (AGEs) is produced from glycolysis in vivo, which may result in diabetic nephropathy. Podocyte loss has been implicated in the development of diabetic nephropathy. The aim of this study was to investigate the protective effects of Aster koraiensis extract (AKE), on the damage of renal podocytes in streptozotocin (STZ)-induced diabetic rats. AKE (100, 200mg/kg per day) was given to diabetic rats for 13weeks. Blood glucose, glycated haemoglobin (HbA1c), proteinuria and albuminuria were examined. Kidney histopathology, AGEs accumulation, apoptosis, and expression of Bax and Bcl-2 also were examined. In 20-week-old STZ-induced diabetic rats, severe hyperglycemia was developed, and proteinuria and albuminuria were markedly increased. TUNEL-positive signals were highly detected in glomeruli of STZ-induced diabetic rats. However, AKE reduced proteinuria and albuminuria in diabetic rats. AKE prevented AGEs deposition and podocyte apoptosis. Expression of Bax and Bcl-2 protein were restored by AKE treatment in the renal cortex. These results suggested that AKE has an inhibitory effect of AGE accumulation and anti-apoptotic effect in the glomeruli of diabetic rat. AKE could be beneficial in preventing the progression of diabetic nephropathy.

  14. Female spontaneously diabetic Torii fatty rats develop nonalcoholic steatohepatitis-like hepatic lesions

    PubMed Central

    Ishii, Yukihito; Motohashi, Yu; Muramatsu, Makoto; Katsuda, Yoshiaki; Miyajima, Katsuhiro; Sasase, Tomohiko; Yamada, Takahisa; Matsui, Tohru; Kume, Shinichi; Ohta, Takeshi

    2015-01-01

    AIM: To investigate the histological features of the liver in spontaneously diabetic Torii (SDT) fatty rats compared with age-matched Sprague-Dawley (SD) rats. METHODS: Female SDT Leprfa (SDT fatty) rats and age-matched SD rats were fed ad libitum. Body weight and biochemical parameters, such as serum glucose, triglyceride (TG), total cholesterol (TC), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels as well as fatty acid and TG accumulation in the liver were evaluated at 8 wk of age in the non-fasting state and at 8-wk intervals from 8 to 40 wk of age. Histopathological examinations of the liver were performed using hematoxylin and eosin and Sirius Red staining as well as double staining for ED-1 and toluidine blue. The expression of genes involved in TG synthesis, inflammation, and fibrosis was examined in the liver. RESULTS: SDT fatty rats showed significantly increased body weight compared with SD rats. Serum glucose, TG, and TC levels were significantly higher in SDT fatty rats compared with SD rats. The serum AST and ALT levels in SDT fatty rats were significantly elevated at 8 wk of age compared with the levels in SD rats. Hepatic TG content was marked in SDT fatty rats from 8 to 32 wk of age. Histopathologically, severe hepatosteatosis accompanied by inflammation was observed at 8 wk of age, and fibrosis started to occur at 32 wk of age. Furthermore, Sirius Red and ED-1 staining were increased in the liver at 32 wk of age. Hepatic gene expression related to TG synthesis, inflammation and fibrosis tended to increase in SDT fatty rats compared with SD rats, and the gene expression related to TG secretion was decreased in SDT fatty rats compared with SD rats. CONCLUSION: Female SDT fatty rats have the potential to become an important animal model of nonalcoholic steatohepatitis with type 2 diabetes and obesity. PMID:26290633

  15. Oral vanadyl sulfate in treatment of diabetes mellitus in rats.

    PubMed

    Ramanadham, S; Mongold, J J; Brownsey, R W; Cros, G H; McNeill, J H

    1989-09-01

    Recent reports have suggested that vanadium in the form of vanadyl (+IV) possesses insulin-like activity. Therefore, in the present study we examined the effects of administering oral vanadyl to diabetic animals. Wistar rats made diabetic with streptozotocin and age-matched controls were maintained for 10 wk in the absence and presence of vanadyl sulfate trihydrate in the drinking water. In the presence of vanadyl, decreases in rate of growth and circulating levels of insulin were the only significant alterations recorded in control animals. In contrast, diabetic animals treated with vanadyl, despite having lower body weights and insulin levels, had normal plasma concentrations of glucose, lipid, creatinine, and thyroid hormone. In addition, abnormalities in isolated working heart function and glycerol output from adipose tissue of diabetic animals were also corrected after vanadyl treatment. These results suggest that vanadium when used in the vanadyl form is effective in diminishing the diabetic state in the rat by substituting for and replacing insulin or possibly by enhancing the effects of endogenous insulin.

  16. Melatonin administration in diabetes: regulation of plasma Cr, V, and Mg in young male Zucker diabetic fatty rats.

    PubMed

    Navarro-Alarcon, Miguel; Ruiz-Ojeda, Francisco J; Blanca-Herrera, Rosa M; Kaki, Abdullah; Adem, Abdu; Agil, Ahmad

    2014-03-01

    The use of melatonin, a neurohormone present in plants, represents an exciting approach for the maintenance of optimum health conditions. Melatonin administration ameliorates glucose homeostasis in Zucker diabetic fatty (ZDF) rats. The objective of this study was to investigate the effects of melatonin in diabetes in relation to the levels and regulation of plasma chromium (Cr), vanadium (V), and magnesium (Mg) in Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats. At the age of 6 weeks, ZDF (n = 30) and ZL (n = 30) groups were each subdivided into three groups: control (C) (n = 10), vehicle-treated (V') (n = 10) and melatonin-treated (M) (10 mg kg(-1) per day; n = 10) groups for a 6 week period. After treatment, plasma mineral concentrations were measured by flame (Mg) and electrothermal (Cr and V) atomic absorption spectrometry. No significant differences were found between the C and V' groups (p > 0.05). Plasma Mg levels were significantly lower in C-ZDF vs. C-ZL rats, demonstrating the presence of hypomagnesemia in this diabetes mellitus model. Plasma V and Cr levels were significantly higher in M-ZDF vs. C-ZDF rats. Plasma Mg levels in ZDF rats were not affected by melatonin treatment (p > 0.05). Melatonin administration ameliorates the diabetic status of ZDF rats by enhancing plasma Cr and V concentrations. This appears to be the first report of a beneficial effect of melatonin treatment on plasma Cr and V regulation in ZDF rats.

  17. Pioglitazone reverses down-regulation of cardiac PPAR{gamma} expression in Zucker diabetic fatty rats

    SciTech Connect

    Pelzer, Theo . E-mail: pelzer_t@klinik.uni-wuerzburg.de; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-04-08

    Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPAR{gamma} in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPAR{gamma} agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPAR{gamma}, glucose transporter-4 and {alpha}-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPAR{gamma}, glut-4, and {alpha}-MHC expression levels in diabetic ZDF rats. Cardiac [{sup 18}F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPAR{gamma} agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPAR{gamma} expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.

  18. An early diagnostic tool for diabetic peripheral neuropathy in rats.

    PubMed

    Kambiz, Shoista; van Neck, Johan W; Cosgun, Saniye G; van Velzen, Marit H N; Janssen, Joop A M J L; Avazverdi, Naim; Hovius, Steven E R; Walbeehm, Erik T

    2015-01-01

    The skin's rewarming rate of diabetic patients is used as a diagnostic tool for early diagnosis of diabetic neuropathy. At present, the relationship between microvascular changes in the skin and diabetic neuropathy is unclear in streptozotocin (STZ) diabetic rats. The aim of this study was to investigate whether the skin rewarming rate in diabetic rats is related to microvascular changes and whether this is accompanied by changes observed in classical diagnostic methods for diabetic peripheral neuropathy. Computer-assisted infrared thermography was used to assess the rewarming rate after cold exposure on the plantar skin of STZ diabetic rats' hind paws. Peripheral neuropathy was determined by the density of intra-epidermal nerve fibers (IENFs), mechanical sensitivity, and electrophysiological recordings. Data were obtained in diabetic rats at four, six, and eight weeks after the induction of diabetes and in controls. Four weeks after the induction of diabetes, a delayed rewarming rate, decreased skin blood flow and decreased density of IENFs were observed. However, the mechanical hyposensitivity and decreased motor nerve conduction velocity (MNCV) developed 6 and 8 weeks after the induction of diabetes. Our study shows that the skin rewarming rate is related to microvascular changes in diabetic rats. Moreover, the skin rewarming rate is a non-invasive method that provides more information for an earlier diagnosis of peripheral neuropathy than the classical monofilament test and MNCV in STZ induced diabetic rats.

  19. Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat.

    PubMed

    Creecy, Amy; Uppuganti, Sasidhar; Merkel, Alyssa R; O'Neal, Dianne; Makowski, Alexander J; Granke, Mathilde; Voziyan, Paul; Nyman, Jeffry S

    2016-09-01

    Individuals with type 2 diabetes (T2D) have a higher fracture risk compared to non-diabetics, even though their areal bone mineral density is normal to high. Identifying the mechanisms whereby diabetes lowers fracture resistance requires well-characterized rodent models of diabetic bone disease. Toward that end, we hypothesized that bone toughness, more so than bone strength, decreases with the duration of diabetes in ZDSD rats. Bones were harvested from male CD(SD) control rats and male ZDSD rats at 16 weeks (before the onset of hyperglycemia), at 22 weeks (5-6 weeks of hyperglycemia), and at 29 weeks (12-13 weeks of hyperglycemia). There were at least 12 rats per strain per age group. At 16 weeks, there was no difference in either body weight or glucose levels between the two rat groups. Within 2 weeks of switching all rats to a diet with 48 % of kcal from fat, only the ZDSD rats developed hyperglycemia (>250 mg/dL). They also began to lose body weight at 21 weeks. CD(SD) rats remained normoglycemic (<110 mg/dL) on the high-fat diet and became obese (>600 g). From micro-computed tomography (μCT) analysis of a lumbar vertebra and distal femur, trabecular bone volume did not vary with age among the non-diabetic rats but was lower at 29 weeks than at 16 weeks or at 22 weeks for the diabetic rats. Consistent with that finding, μCT-derived intra-cortical porosity (femur diaphysis) was higher for ZDSD following ~12 weeks of hyperglycemia than for age-matched CD(SD) rats. Despite an age-related increase in mineralization in both rat strains (μCT and Raman spectroscopy), material strength of cortical bone (from three-point bending tests) increased with age only in the non-diabetic CD(SD) rats. Moreover, two other material properties, toughness (radius) and fracture toughness (femur), significantly decreased with the duration of T2D in ZDSD rats. This was accompanied by the increase in the levels of the pentosidine (femur). However, pentosidine was not

  20. Diabetes and Altered Glucose Metabolism with Aging

    PubMed Central

    Kalyani, Rita Rastogi; Egan, Josephine M.

    2013-01-01

    I. Synopsis Diabetes and impaired glucose tolerance affect a substantial proportion of older adults. While the aging process can be associated with alterations in glucose metabolism, including both relative insulin resistance and islet cell dysfunction, abnormal glucose metabolism is not a necessary component of aging. Instead, older adults with diabetes and altered glucose status likely represent a vulnerable subset of the population at high-risk for complications and adverse geriatric syndromes such as accelerated muscle loss, functional disability, frailty, and early mortality. Goals for treatment of diabetes in the elderly include control of hyperglycemia, prevention and treatment of diabetic complications, avoidance of hypoglycemia and preservation of quality of life. Given the heterogeneity of the elderly population with regards to the presence of comorbidities, life expectancy, and functional status, an individualized approach to diabetes management is often appropriate. A growing area of research seeks to explore associations of dysglycemia and insulin resistance with the development of adverse outcomes in the elderly and may ultimately inform guidelines on the use of future glucose-lowering therapies in this population. PMID:23702405

  1. The Relationship Between Inflammation and Impaired Wound Healing in a Diabetic Rat Burn Model.

    PubMed

    Tian, Ming; Qing, Chun; Niu, Yiwen; Dong, Jiaoyun; Cao, Xiaozan; Song, Fei; Ji, Xiaoyun; Lu, Shuliang

    2016-01-01

    Inflammation, initiated by polymorphonuclear neutrophil (PMNs) infiltration, is the first step in wound healing. The aim of this study is to investigate the function of neutrophils in a diabetes-impaired wound healing model and to explore the underlying mechanisms leading to neutrophil dysfunction. Superficial second-degree burns were created in the streptozotocin (STZ)-induced diabetic rat model, and the changes in the levels of advanced glycation end products (AGE), receptor of AGE (RAGE), inflammatory cytokines and oxidative markers, as well as cell apoptosis were determined. The effects of AGE on isolated PMNs were also determined in vitro. We found that deposition of AGE in diabetic rat skin activated the neutrophils before injury. However, the dense inflammatory band failed to form in the diabetic rats after injury. Compared with the controls, enhanced expression of RAGE and accelerated cell apoptosis were observed in the burned skin of diabetic rats. The altered expression pattern of inflammatory cytokines (tumor necrosis factor-alpha and interleukin-8) and oxidative markers (glutathione peroxidase, myeloperoxidase, hydrogen peroxide, and malondialdehyde) between burned skin of diabetic and control rats revealed delayed neutrophil chemotaxis and respiratory burst. Furthermore, the results in vitro showed that exposure to AGE inhibited the viability of PMNs, promoted RAGE production and cell apoptosis, and prevented the migration of PMNs, consistent with the findings in vivo. Besides, AGE-treated neutrophils showed increased secretion of inflammatory cytokines and increased oxidative stress. Combined, our results suggest that an interaction between AGE and its receptors inhibits neutrophil viability and function in the diabetic rat burn model. PMID:25407384

  2. Long-Term Type 1 Diabetes Enhances In-Stent Restenosis after Aortic Stenting in Diabetes-Prone BB Rats

    PubMed Central

    Onuta, Geanina; Groenewegen, Hendrik C.; Klatter, Flip A.; Walther Boer, Mark; Goris, Maaike; van Goor, Harry; Roks, Anton J. M.; Rozing, Jan; de Smet, Bart J. G. L.; Hillebrands, Jan-Luuk

    2011-01-01

    Type 1 diabetic patients have increased risk of developing in-stent restenosis following endovascular stenting. Underlying pathogenetic mechanisms are not fully understood partly due to the lack of a relevant animal model to study the effect(s) of long-term autoimmune diabetes on development of in-stent restenosis. We here describe the development of in-stent restenosis in long-term (~7 months) spontaneously diabetic and age-matched, thymectomized, nondiabetic Diabetes Prone BioBreeding (BBDP) rats (n = 6-7 in each group). Diabetes was suboptimally treated with insulin and was characterized by significant hyperglycaemia, polyuria, proteinuria, and increased HbA1c levels. Stented abdominal aortas were harvested 28 days after stenting. Computerized morphometric analysis revealed significantly increased neointima formation in long-term diabetic rats compared with nondiabetic controls. In conclusion, long-term autoimmune diabetes in BBDP rats enhances in-stent restenosis. This model can be used to study the underlying pathogenetic mechanisms of diabetes-enhanced in-stent restenosis as well as to test new therapeutic modalities. PMID:21331346

  3. A look inside the diabetic brain: Contributors to diabetes-induced brain aging.

    PubMed

    Wrighten, Shayna A; Piroli, Gerardo G; Grillo, Claudia A; Reagan, Lawrence P

    2009-05-01

    Central nervous system (CNS) complications resulting from diabetes is a problem that is gaining more acceptance and attention. Recent evidence suggests morphological, electrophysiological and cognitive changes, often observed in the hippocampus, in diabetic individuals. Many of the CNS changes observed in diabetic patients and animal models of diabetes are reminiscent of the changes seen in normal aging. The central commonalities between diabetes-induced and age-related CNS changes have led to the theory of advanced brain aging in diabetic patients. This review summarizes the findings of the literature as they relate to the relationship between diabetes and dementia and discusses some of the potential contributors to diabetes-induced CNS impairments.

  4. An Early Diagnostic Tool for Diabetic Peripheral Neuropathy in Rats

    PubMed Central

    Kambiz, Shoista; van Neck, Johan W.; Cosgun, Saniye G.; van Velzen, Marit H. N.; Janssen, Joop A. M. J. L.; Avazverdi, Naim; Hovius, Steven E. R.; Walbeehm, Erik T.

    2015-01-01

    The skin’s rewarming rate of diabetic patients is used as a diagnostic tool for early diagnosis of diabetic neuropathy. At present, the relationship between microvascular changes in the skin and diabetic neuropathy is unclear in streptozotocin (STZ) diabetic rats. The aim of this study was to investigate whether the skin rewarming rate in diabetic rats is related to microvascular changes and whether this is accompanied by changes observed in classical diagnostic methods for diabetic peripheral neuropathy. Computer-assisted infrared thermography was used to assess the rewarming rate after cold exposure on the plantar skin of STZ diabetic rats’ hind paws. Peripheral neuropathy was determined by the density of intra-epidermal nerve fibers (IENFs), mechanical sensitivity, and electrophysiological recordings. Data were obtained in diabetic rats at four, six, and eight weeks after the induction of diabetes and in controls. Four weeks after the induction of diabetes, a delayed rewarming rate, decreased skin blood flow and decreased density of IENFs were observed. However, the mechanical hyposensitivity and decreased motor nerve conduction velocity (MNCV) developed 6 and 8 weeks after the induction of diabetes. Our study shows that the skin rewarming rate is related to microvascular changes in diabetic rats. Moreover, the skin rewarming rate is a non-invasive method that provides more information for an earlier diagnosis of peripheral neuropathy than the classical monofilament test and MNCV in STZ induced diabetic rats. PMID:25984949

  5. Pharmacokinetics of salsalate and salicylic acid in normal and diabetic rats

    PubMed Central

    Cao, Yanguang; DuBois, Debra C.; Almon, Richard R.; Jusko, William J.

    2012-01-01

    The pharmacokinetics (PK) of salsalate (SS) and salicylic acid (SA) was assessed in normal Wistar and diabetic Goto-Kakizaki rats. Three PK studies were conducted: 1) PK of SA in normal rats after intravenous dosing of SA at 20, 40, 80 mg/kg. 2) PK of SS and SA in normal rats after oral dosing of SS at 28, 56, 112 mg/kg. 3) PK during 4 months feeding of SS-containing diet in both normal and diabetic rats. The disposition of SS and SA were simultaneously evaluated using a pharmacokinetic model comprised of several transit absorption steps and linear and nonlinear dual elimination pathways for SA. The results indicated that the nonlinear elimination pathway of SA only accounted for a small fraction of the total clearance (< 12%) at therapeutic concentrations. A flat profile of SA was observed after oral dosing SS, particularly at a high dose. The possible reasons for this flat profile were posed. During the SS-diet feeding, diabetic rats achieved lower blood concentrations of SA than normal rats with a higher apparent clearance (CL/F) possibly due to incomplete (47%) bioavailability. Such CL/F decreased with age in both diabetic and normal rats. The effect of diabetes on SA pharmacokinetics may necessitate increased dosing in future usage of SS in diabetes. PMID:22782506

  6. Boldine Prevents Renal Alterations in Diabetic Rats

    PubMed Central

    Hernández-Salinas, Romina; Vielma, Alejandra Z.; Arismendi, Marlene N.; Boric, Mauricio P.; Sáez, Juan C.; Velarde, Victoria

    2013-01-01

    Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects. PMID:24416726

  7. Neuroprotective Effects of Rutin in Streptozotocin-Induced Diabetic Rat Retina.

    PubMed

    Ola, Mohammad Shamsul; Ahmed, Mohammed M; Ahmad, Rehan; Abuohashish, Hatem M; Al-Rejaie, Salim S; Alhomida, Abdullah S

    2015-06-01

    Diabetic retinopathy is widely recognized as a neurodegenerative disease of the eye. Increased oxidative stress has been considered the central factor in damaging neural retina in diabetes. Flavonoids, being powerful antioxidants, play protective roles in several oxidative stress-mediated neurodegenerative diseases. In this study, we analyzed the neuroprotective effects of a potential flavonoid, rutin, in the diabetic rat retina. Diabetes was induced in male Wistar rats by single injection of streptozotocin (65 mg/kg). In age-matched control (non-diabetic) and 1 week of diabetic rats, rutin (100 mg/kg/day) was orally administered and continued for 5 weeks. In another group of diabetic rats, only saline was supplemented. After treatments, retinas from all the groups were isolated and analyzed for potential neurotrophic factors and apoptotic and oxidative stress markers using biochemical and immunoblotting techniques. Our results indicate that rutin possesses antidiabetic activity, as blood glucose level decreased and insulin level increased in diabetic rats. In the diabetic retina, rutin supplementation enhanced the reduced levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glutathione (GSH) (P < 0.05), and reduced the level of thiobarbituric acid-reactive substances (TBARS) (P < 0.05). In addition, rutin treatment showed antiapoptotic activity by decreasing the level of caspase-3 and increasing the level of Bcl-2 in the diabetic retina. These results suggest the effectiveness of rutin in ameliorating the levels of neuroprotective factors in diabetic retina. Therefore, rutin might be a potential flavonoid that can prevent the retinal damage and subsequently the development of diabetic retinopathy. PMID:25929832

  8. Diabetes alters the blood glucose response to ketamine in streptozotocin-diabetic rats

    PubMed Central

    Chen, Huayong; Li, Li; Xia, Hui

    2015-01-01

    Ketamine is a commonly used short-acting anesthetic and recently attempted to treat pain which is a complication of diabetes. In this study we investigated the effect of ketamine on glucose levels of normal rats and diabetic rats. The results showed that no significance between the glucose levels in ketamine treatment group and saline treatment group at all time points was observed in normal rats. Ketamine did not produce hyperglycemia in normal fasted rats. However, ketamine dose dependently elevated glucose in diabetic rats from 80 mg/kg to 120 mg/kg at 1 hour after injection. The glucose did not return to the levels before treatment in streptozotocin (STZ) induced diabetic rats. Insulin revealed a powerful potency in decreasing glucose levels in diabetic rats. Ketamine did not induce acute hyperglycemia any more after diabetic rats pretreated with insulin. Serum corticosterone was significantly increased in all treatment groups including saline group after 1 hour treatment compared with baseline values. Then the corticosterone declined in both saline treatment groups. However, ketamine induced a more significant increase in corticosterone at 1 hour after injection compared with that of saline control group of diabetic rats. And no decline trend of corticosterone was observed after ketamine treatment 2 hours. Insulin did not reduce the elevated corticosterone level induced by ketamine either. The results suggested that the diabetic rats had a risk of hyperglycaemia when they were treated with ketamine. Pretreatment with insulin is a good symptomatic treatment for hyperglycaemia induced by ketamine. PMID:26379948

  9. Glycerol reduces food intake in diabetic rats.

    PubMed

    Brief, D J; Davis, J D

    1982-10-01

    Streptozotocin diabetic rats received four daily subcutaneous injections of glycerol or a glycerol solution in place of water for a seven day period. Both night and total food intake in the subcutaneous glycerol group were significantly suppressed below untreated diabetic controls. The oral glycerol group showed a nonsignificant decrease in night foot intake and a significant reduction in day and total food intake. Consumption of additional fluid calories by the oral glycerol group contributed to the suppression of food intake in this group, but suppression in the subcutaneous group was unrelated to calculated calories obtained from glycerol. The oral glycerol group also consumed more of the glycerol solution than the other diabetic groups did of water. Results of this study support previous findings that subcutaneous and oral glycerol suppress food intake in normal rats although suppression with oral glycerol may have related to caloric intake, and suggest that low plasma concentrations of insulin do not interfere with the effects obtained with glycerol in normal animals.

  10. Comparison of the Development Diabetic Induced Renal Disease in Strains of Goto-Kakizaki Rats.

    PubMed

    Kojima, Naoki; Slaughter, Tiffani N; Paige, Adrienne; Kato, Sota; Roman, Richard J; Williams, Jan M

    2013-05-30

    This study compared temporal changes in renal hemodynamics, proteinuria and the development of renal disease in Goto-Kakizaki (GK) type II diabetic rats that are resistant to the development of diabetic nephropathy and a genetically modified GK substrain (T2DN) carrying the mitochondrial genome and other alleles from Fawn hooded-hypertensive (FHH) rats is more susceptible to the development of renal injury. Both GK and T2DN rats were diabetic (>250 mg/ dL) and blood glucose levels were not significantly different at 3, 6 and 18 months of age. Blood pressure was also similar in both strains at all 3 ages. Renal blood flow (RBF) was 45% higher in 3 month old T2DN rats than GK rats but glomerular filtration rate (GFR) was similar. T2DN rats exhibited a progressive increase in proteinuria from 41 ± 2 to 524 ± 50 mg/day and 57% fall in GFR as they aged from 3 to 18 months of age. In contrast, proteinuria only increased to 162 ± 31 mg/day in GK rats and GFR remained unaltered. The kidneys from 18 month old T2DN rats exhibited severe glomerulosclerosis, interstitial fibrosis and tubular necrosis while kidneys from GK rats did not. Plasma creatinine levels were 2.4 fold higher in 18 month old T2DN than in GK rats. These data demonstrate that T2DN rats develop most of the features of diabetic nephropathy including progressive proteinuria and chronic kidney disease whereas the closely related GK strain does not, even though blood pressure and the level of hyperglycemia are similar. PMID:24319624

  11. Merit of Ginseng in the Treatment of Heart Failure in Type 1-Like Diabetic Rats

    PubMed Central

    Tsai, Cheng-Chia; Chan, Paul; Chen, Li-Jen; Chang, Chen Kuei; Liu, Zhongmin

    2014-01-01

    The present study investigated the merit of ginseng in the improvement of heart failure in diabetic rats and the role of peroxisome proliferator-activated receptors δ (PPARδ). We used streptozotocin-induced diabetic rat (STZ-rat) to screen the effects of ginseng on cardiac performance and PPARδ expression. Changes of body weight, water intake, and food intake were compared in three groups of age-matched rats; the normal control (Wistar rats) received vehicle, STZ-rats received vehicle and ginseng-treated STZ-rats. We also determined cardiac performances in addition to blood glucose level in these animals. The protein levels of PPARδ in hearts were identified using Western blotting analysis. In STZ-rats, cardiac performances were decreased but the food intake, water intake, and blood glucose were higher than the vehicle-treated control. After a 7-day treatment of ginseng in STZ-rats, cardiac output was markedly enhanced without changes in diabetic parameters. This treatment with ginseng also increased the PPARδ expression in hearts of STZ-rats. The related signal of cardiac contractility, troponin I phosphorylation, was also raised. Ginseng-induced increasing of cardiac output was reversed by the cotreatment with PPARδ antagonist GSK0660. Thus, we suggest that ginseng could improve heart failure through the increased PPARδ expression in STZ-rats. PMID:24745017

  12. A2B Adenosine Receptor Agonist Improves Erectile Function in Diabetic Rats.

    PubMed

    Wen, Jiaming; Wang, Bohan; Du, Chuanjun; Xu, Gang; Zhang, Zhewei; Li, Yi; Zhang, Nan

    2015-01-01

    Diabetes is an important risk factor for erectile dysfunction (ED). Recent studies have indicated that A2B adenosine receptor (ADORA2B) signaling is essential for penile erection. Thus, we hypothesize that diabetic ED may be attributed to impaired A2B adenosine signaling. To test this hypothesis, we generated diabetic rats by injecting streptozocin as animal model. After 12 weeks, immunohistochemistry staining was used to localize the expression of ADORA2B. Western Blot and quantitative PCR were employed to determine ADORA2B expression level. Intracavernosal pressure (ICP) measurement was used to evaluate erectile function. Diabetic rats received a single intravenous injection of BAY 60-6583, an ADORA2B agonist, or vehicle solution, at 60 min before the ICP measurement. The results showed that ADORA2B expressed in the nerve bundle, smooth muscle, and endothelium in penile tissue of control mice. Western Blot and quantitative PCR results indicated that the expression levels of ADORA2B protein and mRNA were significantly reduced in penile tissues of diabetic rats. Functional studies showed that the erectile response induced by electrical stimulation was remarkably decreased in diabetic rats, compared with age-matched control rats. However, at 60 min after BAY 60-6583 treatment, the erectile function was improved in diabetic rats, suggesting that enhancement of ADORA2B signaling may improve erectile function in diabetic ED. This preclinical study has revealed a previously unrecognized therapeutic possibility of BAY 60-6583 as an effective and mechanism-based drug to treat diabetic ED. In conclusion, we propose that impaired A2B adenosine signaling is one of the pathological mechanisms of diabetic ED.

  13. A2B Adenosine Receptor Agonist Improves Erectile Function in Diabetic Rats.

    PubMed

    Wen, Jiaming; Wang, Bohan; Du, Chuanjun; Xu, Gang; Zhang, Zhewei; Li, Yi; Zhang, Nan

    2015-01-01

    Diabetes is an important risk factor for erectile dysfunction (ED). Recent studies have indicated that A2B adenosine receptor (ADORA2B) signaling is essential for penile erection. Thus, we hypothesize that diabetic ED may be attributed to impaired A2B adenosine signaling. To test this hypothesis, we generated diabetic rats by injecting streptozocin as animal model. After 12 weeks, immunohistochemistry staining was used to localize the expression of ADORA2B. Western Blot and quantitative PCR were employed to determine ADORA2B expression level. Intracavernosal pressure (ICP) measurement was used to evaluate erectile function. Diabetic rats received a single intravenous injection of BAY 60-6583, an ADORA2B agonist, or vehicle solution, at 60 min before the ICP measurement. The results showed that ADORA2B expressed in the nerve bundle, smooth muscle, and endothelium in penile tissue of control mice. Western Blot and quantitative PCR results indicated that the expression levels of ADORA2B protein and mRNA were significantly reduced in penile tissues of diabetic rats. Functional studies showed that the erectile response induced by electrical stimulation was remarkably decreased in diabetic rats, compared with age-matched control rats. However, at 60 min after BAY 60-6583 treatment, the erectile function was improved in diabetic rats, suggesting that enhancement of ADORA2B signaling may improve erectile function in diabetic ED. This preclinical study has revealed a previously unrecognized therapeutic possibility of BAY 60-6583 as an effective and mechanism-based drug to treat diabetic ED. In conclusion, we propose that impaired A2B adenosine signaling is one of the pathological mechanisms of diabetic ED. PMID:26447087

  14. Impaired endothelium-dependent relaxation in isolated resistance arteries of spontaneously diabetic rats.

    PubMed Central

    Heygate, K. M.; Lawrence, I. G.; Bennett, M. A.; Thurston, H.

    1995-01-01

    1. Previous studies have shown that endothelium-dependent relaxation in the aorta of spontaneously diabetic bio bred rats (BB) is impaired. 2. We have investigated noradrenaline (NA) contractility, endothelium-dependent acetylcholine (ACh) and bradykinin (BK) relaxation, and endothelium-independent sodium nitroprusside (SNP) relaxation in mesenteric resistance arteries of recent onset BB rats and established insulin treated BB rats, compared to their age-matched non diabetic controls. 3. There was no significant difference in the maximum contractile response or sensitivity to noradrenaline in either of the diabetic groups compared to their age-matched controls. 4. Incubation with the nitric oxide synthetase inhibitor NG-nitro-L-arginine (L-NOARG) resulted in a significant increase in maximum contractile response to noradrenaline in the recent onset age-matched control group (P < 0.05). Analysis of the whole dose-response curve (using ANOVA for repeated measures with paired t test) showed a significant left-ward shift following the addition of L-NOARG (P < 0.001). A similar but less marked shift (P < 0.01) was evident in vessels from recent onset diabetics. An overall shift in both sensitivity and maximum response was also evident in the age-matched non diabetic controls of the insulin-treated group (P < 0.05). However, by contrast, there was no significant change in sensitivity in the insulin-treated diabetic rats. 5. ACh-induced endothelium-dependent relaxation was significantly impaired in the recent onset diabetic rats compared to their age-matched controls (47 +/- 11% versus 92 +/- 2%, P < 0.05, n = 6), and in the insulin treated diabetic rats (34 +/- 5% versus 75 +/- 6%, P < 0.05, n = 6). The relaxation responses to BK also were significantly impaired in the diabetic rats compared to their age-matched controls (recent onset: 20 +/- 3% versus 72 +/- 7%, P < 0.05, n = 6; insulin treated: 12 +/- 9% versus 68 +/- 7%, P < 0.05, n = 7). 6. Incubation with either the

  15. Calcineurin and Akt expression in hypertrophied bladder in STZ-induced diabetic rat

    PubMed Central

    Liu, Guiming; Li, Mei; Daneshgari, Firouz

    2014-01-01

    Diabetes causes significant increases in bladder weight but the natural history and underlying mechanisms are not known. In this study, we observed the temporal changes of detrusor muscle cells (DMC) and the calcineurin (Cn) and Akt expressions in detrusor muscle in the diabetic rat. Male Sprague–Dawley rats were divided into 3 groups: streptozotocin-induced diabetics, 5% sucrose-induced diuretics, and age-matched controls. The bladders were removed 1, 2, or 9 weeks after disease induction and the extent of hypertrophy was examined by bladder weights and cross sectional area of DMC. Cn and Akt expression were evaluated by immunoblotting. Both diabetes and diuresis caused significant increases in bladder weight. The mean cross sectional areas of DMC were increased in both diabetic and diuretic animals 1, 2, or 9 weeks after disease induction. The expression levels of both the catalytic A (CnA) and regulatory B (CnB) subunits of Cn were increased at 1 and 2 weeks, but not at 9 weeks. Expression of Akt was similar among control, diabetic, and diuretic rat bladder at all time points. In conclusion, diabetes and diuresis induce similar hypertrophy of detrusor muscle during the first 9 weeks, indicating that bladder hypertrophy in the early stage of diabetes is in response to the presence of increased urine output in diabetes. Our results suggest that the Cn, but not the Akt signaling pathway may be involved in the development of bladder hypertrophy. PMID:22305959

  16. Androgen deficiency in male rats with prolonged neonatal streptozotocin diabetes.

    PubMed

    Derkach, K V; Moyseyuk, I V; Chistyakova, O V; Shpakov, A O

    2013-07-01

    We studied the diurnal dynamics of testosterone concentration in male rats with 240-day neonatal streptozotocin-induced diabetes mellitus, which is similar to human type 2 diabetes mellitus. We also studied the effects of intranasal administration of luliberin on testosterone level and the regulation of activities of adenylate cyclase and stimulatory G-proteins in the testicles of diabetic and intact animals by human chorionic gonadotropin. In rats with neonatal diabetes, a decrease in the mean diurnal level of testosterone and its morning rise were observed. The increase in testosterone level 30 min after luliberin administration was significantly reduced in diabetic animals, but no differences in the response to luliberin were observed in intact and diabetic rats 2-6 h after the treatment. The stimulatory effects of human chorionic gonadotropin on adenylate cyclase activity and binding of guanosine triphosphate by stimulatory G-proteins were reduced in the plasma membranes from the testicles of rats with neonatal diabetes in comparison with control specimens. Therefore, rats with neonatal diabetes were characterized by androgen deficiency, which can be related to the impairment of hypothalamic-pituitary-gonadal axis and reduced sensitivity of the adenylate cyclase system in the testicles of diabetic rats to human chorionic gonadotropin.

  17. Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats.

    PubMed

    Jagtap, A G; Patil, P B

    2010-01-01

    Cuminum cyminum is widely used as a spice in many countries. The aim of the present study was to investigate the effect of methanolic extract of seeds of C. cyminum (CC) on diabetes, oxidative stress and formation of advanced glycated end products (AGE) and obtain comparison with glibenclamide. In vitro studies indicated that CC inhibited free radicals and AGE formation. Treatment of streptozotocin-diabetic rats with CC and glibenclamide for 28 days caused a reduction in blood glucose, glycosylated hemoglobin, creatinine, blood urea nitrogen and improved serum insulin and glycogen (liver and skeletal muscle) content when compared to diabetic control rats. Significant reduction in renal oxidative stress and AGE was observed with CC when compared to diabetic control and glibenclamide. CC and glibenclamide improved antioxidant status in kidney and pancreas of diabetic rats. Diabetic rats showed increase in rat tail tendon collagen, glycated collagen, collagen linked fluorescence and reduction in pepsin digestion. Treatment with CC significantly improved these parameters when compared to diabetic control and glibenclamide group. Though the antidiabetic effect of CC was comparable to glibenclamide it had better effect in controlling oxidative stress and inhibiting the AGE formation, which are implicated in the pathogenesis of diabetic microvascular complications.

  18. Ozone Induces Glucose Intolerance and Systemic Metabolic Effects in Young and Aged Brown Norway Rats

    EPA Science Inventory

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone could impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in very young and aged rats. Brown Norway (BN) rats, 1,4, 12, and 24 months ol...

  19. Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type 1) diabetic rats.

    PubMed

    Nagai, Ryoji; Nagai, Mime; Shimasaki, Satoko; Baynes, John W; Fujiwara, Yukio

    2010-02-26

    Although many fruits such as lemon and orange contain citric acid, little is known about beneficial effects of citric acid on health. Here we measured the effect of citric acid on the pathogenesis of diabetic complications in streptozotocin-induced diabetic rats. Although oral administration of citric acid to diabetic rats did not affect blood glucose concentration, it delayed the development of cataracts, inhibited accumulation of advanced glycation end-products (AGEs) such as N(epsilon)-(carboxyethyl)lysine (CEL) and N(epsilon)-(carboxymethyl)lysine (CML) in lens proteins, and protected against albuminuria and ketosis. We also show that incubation of protein with acetol, a metabolite formed from acetone by acetone monooxygenase, generate CEL, suggesting that inhibition of ketosis by citric acid may lead to the decrease in CEL in lens proteins. These results demonstrate that the oral administration of citric acid ameliorates ketosis and protects against the development of diabetic complications in an animal model of type 1 diabetes.

  20. Epidemiology of diabetes mellitus in old age in Japan.

    PubMed

    Nakano, Tadasumi; Ito, Hideki

    2007-09-01

    Epidemiological studies on diabetes mellitus revealed that the number of patients with diabetes mellitus is gradually increasing in Japan along with development of car society and westernization of food intake. Since prevalence of diabetes mellitus increases with aging, proportion of individuals with diabetes mellitus aged over 60 has exceeded two-third of estimated total number of patients (7.40 million in 2002) in Japan where aging of society is rapidly progressing. Type 2 diabetes mellitus is common in diabetes mellitus in old age, and there are rarely elderly patients with type 1 diabetes mellitus. Prevalence of both diabetic microangiopathy and atherosclerotic vascular diseases is higher in the elderly with diabetes mellitus than in the middle-aged with diabetes mellitus. Furthermore, atherosclerotic vascular diseases (ischemic heart disease, cerebro-vascular disease and peripheral vascular disease) are more prevalent in the elderly with diabetes mellitus than in those without diabetes mellitus. Many studies demonstrated that functional declines, i.e. decreases in activities of daily living, physical activity and cognitive function, deteriorated quality of life in the elderly, and functional declines are more prominent in the elderly with diabetes mellitus than in those without diabetes mellitus. In order to clarify how the elderly patients with diabetes mellitus should be treated to maintain their quality of life, a nationwide randomized controlled intervention study using 1173 Japanese elderly patients with diabetes mellitus is now performing. In summary, number of elderly patients with diabetes mellitus is overwhelmingly increasing in Japan as well as in westernized countries. It is necessary for us to treat the elderly with diabetes mellitus to maintain their function and quality of life. PMID:17644210

  1. Diabetes disease progression in Goto-Kakizaki rats: effects of salsalate treatment

    PubMed Central

    Wang, Xi; DuBois, Debra C; Cao, Yanguang; Jusko, William J; Almon, Richard R

    2014-01-01

    This study investigates the antidiabetic effects of salsalate on disease progression of diabetes in non-obese diabetic Goto-Kakizaki (GK) rats, an experimental model of type 2 diabetes. Salsalate was formulated in rat chow (1,000 ppm) and used to feed rats from 5 to 21 weeks of age. At 5 weeks of age, GK and Wistar (WIS) control rats were subdivided into four groups, each composed of six rats: GK rats with standard diet (GK-C); GK rats with salsalate-containing diet (GK-S); WIS rats with standard diet (WIS-C); and WIS rats with salsalate-containing diet (WIS-S). The GK-C rats (167.2±11.6 mg/dL) showed higher blood glucose concentrations than WIS-C rats (133.7±4.9 mg/dL, P<0.001) at the beginning of the experiment, and had substantially elevated blood glucose from an age of 15 weeks until sacrifice at 21 weeks (341.0±133.6 mg/dL). The GK-S rats showed an almost flat profile of blood glucose from 4 weeks (165.1±11.0 mg/dL) until sacrifice at 21 weeks of age (203.7±22.2 mg/dL). While this difference in blood glucose between 4 and 21 weeks in GK-S animals was significant, blood glucose at 21 weeks was significantly lower in GK-S compared to GK-C animals. At sacrifice, salsalate decreased plasma insulin (GK-S =1.0±0.3; GK-C =2.0±0.3 ng/mL, P<0.001) and increased plasma adiponectin concentrations (GK-S =15.9±0.7; GK-C =9.7±2.0 μg/mL, P<0.001). Salsalate also lowered total cholesterol in GK-S rats (96.1±8.5 mg/dL) compared with GK-C rats (128.0±11.4 mg/dL, P<0.001). Inflammation-related genes (Ifit1 and Iigp1) exhibited much higher mRNA expression in GK-C rats than WIS-C rats in liver, adipose, and muscle tissues, while salsalate decreased the Ifit1 and Iigp1 mRNA only in adipose tissue. These results suggest that salsalate acts to both increase adiponectin and decrease adipose tissue-based inflammation while preventing type 2 diabetes disease progression in GK rats. PMID:25120374

  2. [Simvastatin's effect on insulin resistance in rats with diabetes mellitus].

    PubMed

    Iskakova, S; Zharmakhanova, G; Bekmukhambetov, Y; Dworacka, M; Dworacki, G

    2015-05-01

    The aim of this experimental study was to estimate the effect of Simvastatin on glycemic variability-related insulin resistance in the course of diabetes mellitus (DM) in rats. Fifty seven male Wistar rats were divided into four groups: I - rats with diabetes mellitus and glycemic variability treated with Simvastatin (20 mg/kg body weight, intragastral during 8 weeks); II - placebo-treated rats with DM and glycemic variability; III - placebo treated rats with DM and IV - nondiabetic control rats. DM was induced by feeding rats with high-fat diet (61%) during five weeks and low-dose of Streptozotocin (30 mg/kg, intraperitoneally). Daily glucose excursions were stimulated by feeding animals twice a day. We measured fasting blood glucose, glycated hemoglobin (HbA1c), insulin and HOMAIR was calculated. Higher insulin resistance in diabetic rats is related to greater daily glycemic variability. In our study was installed significant increasing HOMAIR in diabetics rats with glycemic excursions comparison with the control. Our results showed that the simvastatin-treatment decreases the indices glycemic variability and HOMA in diabetic rats with glycemic excursions.

  3. (Pre)diabetes, brain aging, and cognition.

    PubMed

    S Roriz-Filho, Jarbas; Sá-Roriz, Ticiana M; Rosset, Idiane; Camozzato, Ana L; Santos, Antonio C; Chaves, Márcia L F; Moriguti, Júlio César; Roriz-Cruz, Matheus

    2009-05-01

    Cognitive dysfunction and dementia have recently been proven to be common (and underrecognized) complications of diabetes mellitus (DM). In fact, several studies have evidenced that phenotypes associated with obesity and/or alterations on insulin homeostasis are at increased risk for developing cognitive decline and dementia, including not only vascular dementia, but also Alzheimer's disease (AD). These phenotypes include prediabetes, diabetes, and the metabolic syndrome. Both types 1 and 2 diabetes are also important risk factors for decreased performance in several neuropsychological functions. Chronic hyperglycemia and hyperinsulinemia primarily stimulates the formation of Advanced Glucose Endproducts (AGEs), which leads to an overproduction of Reactive Oxygen Species (ROS). Protein glycation and increased oxidative stress are the two main mechanisms involved in biological aging, both being also probably related to the etiopathogeny of AD. AD patients were found to have lower than normal cerebrospinal fluid levels of insulin. Besides its traditional glucoregulatory importance, insulin has significant neurothrophic properties in the brain. How can clinical hyperinsulinism be a risk factor for AD whereas lab experiments evidence insulin to be an important neurothrophic factor? These two apparent paradoxal findings may be reconciliated by evoking the concept of insulin resistance. Whereas insulin is clearly neurothrophic at moderate concentrations, too much insulin in the brain may be associated with reduced amyloid-beta (Abeta) clearance due to competition for their common and main depurative mechanism - the Insulin-Degrading Enzyme (IDE). Since IDE is much more selective for insulin than for Abeta, brain hyperinsulinism may deprive Abeta of its main clearance mechanism. Hyperglycemia and hyperinsulinemia seems to accelerate brain aging also by inducing tau hyperphosphorylation and amyloid oligomerization, as well as by leading to widespread brain microangiopathy

  4. Antihyperlipidemic and antidiabetic effects of umbelliferone in streptozotocin diabetic rats.

    PubMed Central

    Ramesh, B.; Pugalendi, K. V.

    2005-01-01

    The aim of the study was to evaluate blood glucose and lipid lowering effects of Umbelliferone (UMB) in streptozotocin (STZ) diabetic rats. Male albino Wistar rats (180 to 200 g) were induced diabetes by administration of STZ (40 mg/kg) intraperitonially. Normal and diabetic rats were treated with UMB in 10 percent dimethyl sulfoxide (DMSO) for 45 days. Diabetic rats had increased plasma glucose and decreased insulin, total proteins (TP), and albumin in addition to decreased food intake and body weight. Elevation in total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C), triglycerides (TG), free fatty acids (FFA), and phospholipids (PL), and reduction in high density lipoprotein cholesterol (HDL-C) in the plasma were observed. Liver and kidney tissues of diabetic rats had elevation in the levels of TC, TG, FFA, and PL. Treatment with UMB decreased plasma glucose and increased insulin, TP, and albumin apart from food intake and body weight. In UMB-treated diabetic rats, plasma and tissue TC, TG, PL and FFA, and plasma LDL-C, VLDL-C, and HDL-C reversed to near normal. Thus, reduction of blood glucose and lipid profiles indicates that UMB has antidiabetic and antihyperlipidemic effects in diabetic rats. PMID:16720013

  5. The Diabetic Nephropathy and the Development of Hypertension in Rats

    PubMed Central

    Zuccollo, Adriana; Navarro, Monica

    2001-01-01

    The present study was designed to examine the development of hypertension in diabetic rats treated with streptozotocin (STZ, 1mg/g bw). The rats were studied at 3, 6, 9, 12 and 15 weeks. From the third week the rats were divided in diabetic rats according their glycemias and controls, along 15 weeks. After the third week a group, of rats showed increased urinary protein excretion (93, 134, 155 and 191%) compared to controls. In this group of rats the urinary kallikrein excretion was lower than control and the systolic blood pressure became significantly elevated between 3 and 6 weeks and persisted up to 15 weeks. On the other hand a group of diabetic rats were normotensive with urinary protein excretion similar to controls and urinary kallikrein lower compared to control but significantly higher compared diabetic hypertensive rats. These data suggest that the association of progressive diabetic nephropathy with abnormal endothelium-dependent vasodilation may produce a high prevalence of hypertensive diabetes. PMID:12369707

  6. Beta-adrenoceptor-mediated vasodilation of retinal blood vessels is reduced in streptozotocin-induced diabetic rats.

    PubMed

    Nakazawa, Taisuke; Sato, Ayumi; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-01-01

    We investigated the effects of epinephrine and dopamine on retinal blood vessels in streptozotocin (STZ, 80 mg/kg, i.p.)-treated rats and age-matched control rats to determine whether diabetes mellitus alters the retinal vascular responses to circulating catecholamines. Experiments were performed 6-8 weeks after treatment with STZ or the vehicle. The fundus images were captured with the digital fundus camera system for small animals we developed and diameters of retinal blood vessels contained in the digital images were measured. Epinephrine increased the diameters of retinal blood vessels, but the vasodilator responses were reduced in diabetic rats. Dopamine produced a biphasic retinal vascular response with an initial vasoconstriction followed by a vasodilation. The vasoconstrictor effects of dopamine on retinal arterioles were enhanced in diabetic rats, whereas the difference between the two groups was abolished by treatment with propranolol. The vasodilator effect of isoproterenol, but not of the activator of adenylyl cyclase colforsin, on retinal blood vessels was reduced in diabetic rats. No difference in vasoconstriction of retinal blood vessels to phenylephrine between non-diabetic and diabetic rats was observed. The vasodilator responses of retinal blood vessels to 1,1-dimethyl-4-phenylpiperazinium, a ganglionic nicotinic receptor agonist, were also attenuated in diabetic rats. These results suggest that diabetes mellitus alters the retinal vascular responses to circulating catecholamines and the impairment of vasodilator responses mediated by beta-adrenoceptors contributes to the alteration.

  7. Immunization of AGE-modified albumin inhibits diabetic nephropathy progression in diabetic mice

    PubMed Central

    Mashitah, Musthika Wida; Azizah, Nurona; Samsu, Nur; Indra, Muhammad Rasjad; Bilal, Muhammad; Yunisa, Meti Verdian; Arisanti, Amildya Dwi

    2015-01-01

    Background Diabetic nephropathy (DN) is a serious vascular complication of diabetes and an important cause of end-stage renal disease. One mechanism by which hyperglycemia causes nephropathy is through the formation of advanced glycation end products (AGE). Development of vaccination would be a promising therapy for the future, while to date, anti-AGE therapy is based on medicines that are needed to be consumed lifelong. This study aimed to find out the effect of immunization of AGE-modified albumin against DN pathogenesis in streptozotocin-induced diabetic in mice. Methods We used 24 BALB/c male mice as experimental animals, which were divided into six groups, two nondiabetic groups (negative control and AGE-modified bovine serum albumin [BSA] preimmunized groups) and four streptozotocin-induced diabetic groups (diabetic control group and diabetic preimmunized groups for AGE-BSA, Keyhole limpet hemocyanin (KLH), and AGE-BSA-KLH, respectively). Results Diabetic preimmunized groups for AGE-BSA, KLH, and AGE-BSA-KLH showed amelioration in renal function and histopathology compared with the diabetic control group. Preimmunization also maintained nephrin intensity and decreased serum AGE level, kidney AGE deposition, and kidney cells apoptosis. Conclusion AGE-BSA and AGE-BSA-KLH immunizations inhibit the progression of DN. Our results strengthen the evidence that the anti-AGE antibodies have a protective role against diabetic vascular complication, especially DN. This study provides a basis for the development of DN-based immunotherapy with AGE immunization as a potential candidate. PMID:26346342

  8. Amelioration by the Ca2+ antagonist, nimodipine of an existing neuropathy in the streptozotocin-induced, diabetic rat.

    PubMed Central

    Kappelle, A. C.; Bravenboer, B.; van Buren, T.; Traber, J.; Erkelens, D. W.; Gispen, W. H.

    1993-01-01

    1. Neuropathy is a frequently diagnosed complication in diabetic patients but an effective treatment does not exist. 2. The development of neuropathy in streptozotocin-induced diabetic rats was monitored by measuring the motor and sensory nerve conduction velocity in the sciatic nerve. 3. A significant decrease in sensory and motor nerve conduction velocity was apparent in young, 14-week-old diabetic rats as compared to non-diabetic, age-matched controls 4 weeks after the induction of diabetes with streptozotocin. 4. Intraperitoneal treatment with the Ca2+ channel blocker, nimodipine, from week 4 onwards, in a dosage of 10 mg kg-1 or 20 mg kg-1 intraperitoneally per 48 h, resulted in a significant increase in sensory and motor nerve conduction velocity whereas treatment with 5 mg kg-1 intraperitoneally per 48 h was not effective. 5. One-year-old, adult, diabetic rats treated with nimodipine 20 mg kg-1 (treatment started again 4 weeks after induction of diabetes mellitus) also showed an increase of both sensory and motor nerve conduction velocity as compared to diabetic rats treated with placebo. 6. It is concluded that nimodipine ameliorates existing experimental diabetic neuropathy in streptozotocin-induced diabetic rats in both young and adult animals. PMID:8467365

  9. Role of Nitric Oxide in the Pathogenesis of Diabetic Nephropathy in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Choi, Ki Chul; Lee, Seong Cheol; Kim, Soo Wan; Kim, Nam Ho; Lee, Jong-Un; Kang, Young Joon

    1999-01-01

    Objectives Several reports suggest that enhanced generation or actions of nitric oxide (NO) have been implicated in the pathogenesis of glomerular hyperfiltration and hyperperfusion that occurs in early diabetes. However, the precise role of altered NO generation in the pathogenesis of diabetic nephropathy is unclear. The present study was aimed at investigating the role of nitric oxide in the pathogenesis of glomerular hyperfiltration and hyperperfusion in streptozotocin-induced diabetic rats. Methods To evaluate the role of NO in diabetic hyperfiltration, we measured plasma and urine concentrations of NO2−/NO3−, stable metabolic products of NO and protein expressions of three isoforms of nitric oxide synthase (NOS) in streptozotocin-induced diabetic rats. We also investigated renal hemodynamic changes, such as glomerular filtration rate (GFR) and renal plasma flow (RPF), in responses to acute and chronic administration of NO synthesis inhibitor, nitro-L-arginine methyl ester (L-NAME), in diabetic and control rats. Results Diabetic rats exhibited significantly elevated plasma and urinary NO2−/NO3− levels at 28 days after streptozotocin injection, and total excretion of NO2−/NO3− was approximately five-fold higher in diabetic rats than controls. Insulin and L-NAME treatment prevented the increases in plasma and urinary NO2−/NO3− concentrations in diabetic rats, respectively. The three isoforms of NOS (bNOS, iNOS, and ecNOS) were all increased in the renal cortex, whereas they remained unaltered in the renal medulla at day 28. GFR and RPF were significantly elevated in diabetic rats, and acute and chronic inhibition of NO synthesis by L-NAME attenuated the renal hemodynamic changes (increases in GFR and RPF) in diabetic rats, respectively. Conclusions NO synthesis was increased due to enhanced NOS expression in diabetic rats, and chronic NO blockade attenuated renal hyperfiltration and hyperperfusion in diabetic rats. In addition, diabetic rats

  10. Multimodal Highlighting of Structural Abnormalities in Diabetic Rat and Human Corneas

    PubMed Central

    Kowalczuk, Laura; Latour, Gaël; Bourges, Jean-Louis; Savoldelli, Michèle; Jeanny, Jean-Claude; Plamann, Karsten; Schanne-Klein, Marie-Claire; Behar-Cohen, Francine

    2013-01-01

    Purpose This study aimed to highlight structural corneal changes in a model of type 2 diabetes, using in vivo corneal confocal microscopy (CCM). The abnormalities were also characterized by transmission electron microscopy (TEM) and second harmonic generation (SHG) microscopy in rat and human corneas. Methods Goto-Kakizaki (GK) rats were observed at age 12 weeks (n = 3) and 1 year (n = 6), and compared to age-matched controls. After in vivo CCM examination, TEM and SHG microscopy were used to characterize the ultrastructure and the three-dimensional organization of the abnormalities. Human corneas from diabetic (n = 3) and nondiabetic (n = 3) patients were also included in the study. Results In the basal epithelium of GK rats, CCM revealed focal hyper-reflective areas, and histology showed proliferative cells with irregular basement membrane. In the anterior stroma, extracellular matrix modifications were detected by CCM and confirmed in histology. In the Descemet's membrane periphery of all the diabetic corneas, hyper-reflective deposits were highlighted using CCM and characterized as long-spacing collagen fibrils by TEM. SHG microscopy revealed these deposits with high contrast, allowing specific detection in diabetic human and rat corneas without preparation and characterization of their three-dimensional organization. Conclusion Pathologic findings were observed early in the development of diabetes in GK rats. Similar abnormalities have been found in corneas from diabetic patients. Translational Relevance This multidisciplinary study highlights diabetes-induced corneal abnormalities in an animal model, but also in diabetic donors. This could constitute a potential early marker for diagnosis of hyperglycemia-induced tissue changes. PMID:24049714

  11. Development of diabetes-induced acidosis in the rat retina.

    PubMed

    Dmitriev, Andrey V; Henderson, Desmond; Linsenmeier, Robert A

    2016-08-01

    We hypothesized that the retina of diabetic animals would be unusually acidic due to increased glycolytic metabolism. Acidosis in tumors and isolated retina has been shown to lead to increased VEGF. To test the hypothesis we have measured the transretinal distribution of extracellular H(+) concentration (H(+)-profiles) in retinae of control and diabetic dark-adapted intact Long-Evans rats with ion-selective electrodes. Diabetes was induced by intraperitoneal injection of streptozotocin. Intact rat retinae are normally more acidic than blood with a peak of [H(+)]o in the outer nuclear layer (ONL) that averages 30 nM higher than H(+) in the choroid. Profiles in diabetic animals were similar in shape, but diabetic retinae began to be considerably more acidic after 5 weeks of diabetes. In retinae of 1-3 month diabetics the difference between the ONL and choroid was almost twice as great as in controls. At later times, up to 6 months, some diabetics still demonstrated abnormally high levels of [H(+)]o, but others were even less acidic than controls, so that the average level of acidosis was not different. Greater variability in H(+)-profiles (both between animals and between profiles recorded in one animal) distinguished the diabetic retinae from controls. Within animals, this variability was not random, but exhibited regions of higher and lower H(+). We conclude that retinal acidosis begins to develop at an early stage of diabetes (1-3 months) in rats. However, it does not progress, and the acidity of diabetic rat retina was diminished at later stages (3-6 months). Also the diabetes-induced acidosis has a strongly expressed local character. As result, the diabetic retinas show much wider variability in [H(+)] distribution than controls. pH influences metabolic and neural processes, and these results suggest that local acidosis could play a role in the pathogenesis of diabetic retinopathy. PMID:27262608

  12. Dolichos biflorus Linn. ameliorates diabetic complications in streptozotocin induced diabetic rats

    PubMed Central

    Saxena, Yogesh; Purwar, Brijesh; Meena, Harsh; Sarthi, Parth

    2014-01-01

    Background: Horsegram (Dolichos biflorus Linn.) is a known antilithiatic, hypolipedemic and has free radical scavenging activity and increased production of reactive oxygen species play a role in pathophysiological mechanisms that trigger diabetic complications. Aim: To see the effect of daily oral feeding of D.biflorous on nephropathy and retinopathy in streptozotocin (STZ) induced-diabetic rats. Materials and Methods: A total of 24 healthy rats were randomly grouped into controls, diabetic and diabetic on Dolichos. Diabetes was induced by a single dose of STZ (55 mg/kg) and animals were given prepared food and water ad libitum. Dolichos was orally given at 300 mg/kg/day to rats in diabetic on Dolichos group for next 30 days. Fasting blood glucose levels was monitored at beginning and at the end of the experiment while assessment of serum creatinine levels and histopathological study of kidney and retina was carried only at the end of the experiment. Statistical differences between groups were analyzed using analysis of variance followed by, Bonferroni test as posthoc test. Results: Results indicated improvement in serum creatinine levels and reduced glomerular sclerosing and Bowman's space with interstitial alterations and significantly reduced renal hypertrophy in diabetic rat son Dolichos diabetic rats (P < 0.001). Retinal layers showed inconsistent improvement in the width of the neuronal layers and decreased vacuolization of plexiform layers and retinal vessel density. Conclusion: D. biflorus at doses of 300 mg/kg/day for 30 days resulted in gradual but significant decreased diabetic nephropathy. PMID:26195910

  13. The spontaneously diabetic torii rat: an animal model of nonobese type 2 diabetes with severe diabetic complications.

    PubMed

    Sasase, Tomohiko; Ohta, Takeshi; Masuyama, Taku; Yokoi, Norihide; Kakehashi, Akihiro; Shinohara, Masami

    2013-01-01

    The Spontaneously Diabetic Torii (SDT) rat is an inbred strain of Sprague-Dawley rat and recently is established as a nonobese model of type 2 diabetes (T2D). Male SDT rats show high plasma glucose levels (over 700 mg/dL) by 20 weeks. Male SDT rats show pancreatic islet histopathology, including hemorrhage in pancreatic islets and inflammatory cell infiltration with fibroblasts. Prior to the onset of diabetes, glucose intolerance with hypoinsulinemia is also observed. As a result of chronic severe hyperglycemia, the SDT rats develop profound complications. In eyes, retinopathy, cataract, and neovascular glaucoma are observed. Proliferative retinopathy, especially, resulting from retinal neovascular vessels is a unique characteristic of this model. In kidney, mesangial proliferation and nodular lesion are observed. Both peripheral neuropathy such as decreased nerve conduction velocity and thermal hypoalgesia and autonomic neuropathy such as diabetic diarrhea and voiding dysfunction have been reported. Osteoporosis is another complication characterized in SDT rat. Decreased bone density and low-turnover bone lesions are observed. Taking advantage of these features, SDT rat has been used for evaluating antidiabetic drugs and drugs/gene therapy for diabetic complications. In conclusion, the SDT rat is potentially a useful T2D model for studies on pathogenesis and treatment of diabetic complications in humans. PMID:23691526

  14. A study of myocardial muscarinic receptors in streptozotocin-induced diabetic rats using iodine-123 N-methyl-4-iododexetimide.

    PubMed

    Mardon, K; Kassiou, M; Katsifis, A; Najdovski, L

    1999-07-01

    In previous studies we have shown that iodine-123 N-methyl-4-iododexetimide ([123I]MIDEX) is a suitable single-photon emission tomography radiotracer for the characterisation of myocardial muscarinic acetylcholine receptors (m-AChR) in the normal state. It has been demonstrated that m-AChR are altered as a consequence of diabetes. The aim of the present study was to examine myocardial m-AChR density using [123I]MIDEX in streptozotocin (STZ)-induced diabetic rats. In vitro binding experiments were conducted on left and right ventricle and atrium homogenate membranes of 1-week, 5-week and 10-week STZ-induced diabetic and aged-matched normal rats. The m-AChR densities (Bmax values), as determined by saturation experiments with [123I]MIDEX, revealed no difference in left and right ventricles or atrium in 1-week and 5-week STZ-diabetic rats when compared with normal rats. However, the 10-week STZ-diabetic group revealed a 39% (P<0.001) decrease in m-AChR density in atrium with no change in left and right ventricles. The equilibrium dissociation constant (Kd values) was similar in all groups. In vitro binding autoradiography revealed a 40% decrease in m-AChR density in atrium in the same 10-week diabetic rats. No statistically significant difference was found in 1-week and 5-week diabetic rats compared with normals. Ex vivo autoradiography showed a 50% decrease in [123I]MIDEX uptake in atrium in 5-week diabetic rats and a 60% decrease in 10-week diabetic rats. These results demonstrate the ability of the single-photon agent [123I]MIDEX to measure in vitro and ex vivo alterations in myocardial m-AChR density observed in STZ-induced diabetic rats. PMID:10398822

  15. Studies on proteolytic activities in heart muscle of diabetic rats.

    PubMed

    Dahlmann, B; Metzinger, H; Reinauer, H

    1982-06-01

    Induction of diabetes mellitus in rats following injection of streptozotocin caused reduction in rate of gain of heart weight, of protein and of DNA content in the first two weeks. During the same time interval the overall activity of acid proteinases (cathepsin D), of alkaline proteinases and of proteinase inhibitors was measured in heart muscle homogenates. No statistically significant differences were detected compared with the proteinase activities in control rats. In contrast, total aminopeptidase activity in diabetic hearts was consistently lower than in control hearts. Earlier studies on rat skeletal muscles have shown that induction of diabetes mellitus is followed by a substantial increase of alkaline proteinase as well as aminopeptidase activities. These findings are contrasted by present data obtained with heart muscle of diabetic rats, suggesting that this tissue responds differently to insulin deficiency.

  16. UNDERNUTRITION IN EARLY LIFE DOES NOT IMPAIR LEARNING IN YOUNG OR AGING RATS.

    EPA Science Inventory

    Prenatal undernutrition is associated with increased incidence of obesity, heart disease, diabetes. Effects of pre- and post-natal undernutrition on nervous system function in middle-aged and aging male SD rats were examined. Intrauterine growth retardation (IUGR) was induced by ...

  17. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats.

    PubMed

    Yang, Peilang; Pei, Qing; Yu, Tianyi; Chang, Qingxuan; Wang, Di; Gao, Min; Zhang, Xiong; Liu, Yan

    2016-01-01

    Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8 weeks high fat diet (HFD) feeding regimen followed by multiple injections of streptozotocin (STZ) at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds.

  18. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats

    PubMed Central

    Yu, Tianyi; Chang, Qingxuan; Wang, Di; Gao, Min; Zhang, Xiong; Liu, Yan

    2016-01-01

    Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8weeks high fat diet (HFD) feeding regimen followed by multiple injections of streptozotocin (STZ) at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds. PMID:27028201

  19. Effect of renin inhibition on adipokines in diabetic rats.

    PubMed

    Hassanin, Amal; Malek, Hala Abdel

    2014-07-01

    Insulin resistance predicts development of type 2 diabetes mellitus (DM). Adipocytes release tumor Necrosis factor-alpha (TNF-α), and adiponectin. They modulate whole-body insulin sensitivity . The disturbance in the relationship between good and bad adipokines may cause insulin resistance. The renin-angiotensin aldosteron system (RAAS) plays a role in DM and the consequence of cardiovascular complications development. It is considered as a target for therapy. The present objective examined the relationship between renin angiotensin system and DM. There were, Group (1): Normal non obese rats, Group (2): Obese diabetic rats, Group (3): Obese diabetic rats with telmisartan, Group (4): Obese diabetic rats with enalapril, Group (5): Obese diabetic rats with aliskiren. There was a significant increase in serum glucose, lipid profile [triglycerides (TGs), low-density lipoprotein cholesterol (LDL), total serum cholesterol (TC)], tumor Necrosis factor-alpha (TNF-α), malondialdehyde (MDA) and a significant decrease in adiponectin associated with minor changes in superoxide dismutase (SOD) activity in the obese diabetic rats. Administration of telmisartan, enalapril and or aliskiren caused a significant improvement in serum lipid profile and adiponectin, a minor improvement in SOD activity, a decrease in TNF-α and or MDA. Renin angiotensin blockers significantly improve the metabolism and oxidative dysfunctions in Type 2 DM and aliskiren may show a promising powerful therapy. PMID:25015438

  20. Butea superba (Roxb.) improves penile erection in diabetic rats.

    PubMed

    Tocharus, C; Sooksaen, P; Shimbhu, D; Tocharus, J

    2012-05-01

    The objective of the present study was to investigate the effect of ethanolic extract of Butea superba (Roxb.) on erectile dysfunction in diabetic rats by the measurement of intracavernous pressure (ICP) and on cavernosal smooth muscle relaxation. Male Sprague-Dawley rats were induced to become diabetic by a single intravenous injection of Streptozotocin (55 mg kg(-1) body weight). The ethanolic extract at the concentration of 1, 10 and 100 mg kg(-1) BW was administered orally once a day to diabetic rats in each group for 4 weeks. Diabetic rats showed a significant decrease in both ICP and the relaxation of the cavernosal smooth muscle compared with the normal rats. The extract of B. superba significantly increased the ICP with the effective dose of 10 mg kg(-1) BW (61.00 ± 11.11 mmHg versus 39.61 ± 11.01 mmHg in the diabetic control group). Moreover, the B. superba-treated group also showed enhanced relaxation of the cavernosal smooth muscle with EC(50) of 1.17 mg ml(-1). These results suggest that the extract of B. superba enhanced penile erection in diabetic rats by increasing the ICP. This might be explained by the increased blood flow as a result of the relaxation of the cavernous smooth muscle.

  1. Early Renal Histological Changes in Alloxan-Induced Diabetic Rats

    PubMed Central

    Pourghasem, Mohsen; Nasiri, Ebrahim; Shafi, Hamid

    2014-01-01

    Diabetes mellitus is a progressive disease. Most investigators have focused on glomerular changes in diabetic kidney and non-glomerular alterations have been less attended. The present study has been conducted to find early non-glomerular histological changes in diabetic renal tissue. Twenty male Wistar rats weighting 200-250 g were used for the diabetic group. Diabetes mellitus was induced by single injection of Alloxan. After 8 weeks, paraffin embedded blocks of kidneys were prepared for evaluating the histological changes due to diabetes. Histological study showed the deposit of eosinophilic materials in the intermediate substantial of medulla and thickening of renal arterial wall in the kidney of 70% of diabetic rats. The average weight of kidneys increased when compared to non diabetic animals. Furthermore, the amount of blood flow in arteries of all diabetic kidneys has been enhanced. The present study demonstrates some early renal histological changes in diabetes mellitus which were earlier compared to those reported previously. Diabetic nephropathy is a progressive disease and renal care design can help better prognosis achievement. PMID:24551816

  2. Hepcidin and iron metabolism in non-diabetic obese and type 2 diabetic rats.

    PubMed

    Chen, Yue; Yin, Hui-qing; Liu, Hao-ling; Xiu, Lei; Peng, Xiao-yu

    2015-12-01

    The aim of this study was to investigate the changes of iron levels and hepatic regulatory molecules expression involved in iron metabolism in non-diabetic obese/type 2 diabetic rat models. Male Wistar rats were divided into 3 groups: control group, non-diabetic obese group and type 2 diabetic group (n=20 each). The rats were evaluated physiologically and biochemically. The hepatic histopathological changes were observed using haematoxylin and eosin (HE) staining. The mRNA expression patterns of hepcidin, interleukin-6 (IL-6), hypoxia-inducible factor (HIF) and ferroportin (Fpn) in the rat liver in control group, non-diabetic obese group and type 2 diabetic group were analyzed by real-time RT-PCR. The protein expression patterns of hepcidin in liver of each group were further analyzed by immunohistochemistry and Western blotting. As compared with control group, the ferritin in non-diabetic obese group and type 2 diabetic group was increased significantly (P<0.001). However, there was no significant difference in soluble transferring receptor (sTfR):ferritin ratio among the three groups (P>0.05). The real-time RT-PCR, immunohistochemistry and Western blotting results all revealed that the expression levels of hepcidin in non-diabetic obese group and type 2 diabetic group were elevated significantly as compared with those in control group (P<0.001). The expression levels of hepcidin mRNA between non-diabetic obese group and type 2 diabetic group showed no significant difference (P>0.05). However, the protein expression levels of hepcidin in type 2 diabetic group were significantly higher than those in non-diabetic obese group (P<0.05). Compared to control group, the expression levels of IL-6 mRNA in non-diabetic obese group and type 2 diabetic group were increased significantly and the expression levels of Fpn mRNA decreased (P<0.05). However, the expression levels of HIF mRNA had no significant difference among three groups. It is suggested that iron metabolism is

  3. Effects of parsley (Petroselinum crispum) on the liver of diabetic rats: a morphological and biochemical study.

    PubMed

    Bolkent, S; Yanardag, R; Ozsoy-Sacan, O; Karabulut-Bulan, O

    2004-12-01

    Parsley is used by diabetics in Turkey to reduce blood glucose. The present study aims to investigate both the morphological and biochemical effects of parsley on liver tissue. Rat hepatocytes were examined by light and electron microscopy. Degenerative changes were observed in the hepatocytes of diabetic rats. These degenerative changes were significantly reduced or absent in the hepatocytes of diabetic rats treated with parsley. Blood glucose levels, alanine transaminase and alkaline phosphatase were observed to be raised in diabetic rats. Diabetic rats treated with parsley demonstrated significantly lower levels of blood glucose, alanine transaminase and alkaline phosphatase. The present study suggests that parsley demonstrates a significant hepatoprotective effect in diabetic rats.

  4. Glyoxalase-1 overexpression partially prevents diabetes-induced impaired arteriogenesis in a rat hindlimb ligation model.

    PubMed

    Brouwers, Olaf; Yu, Liang; Niessen, Petra; Slenter, Jos; Jaspers, Karolien; Wagenaar, Allard; Post, Mark; Miyata, Toshio; Backes, Walter; Stehouwer, Coen; Huijberts, Maya; Schalkwijk, Casper

    2016-08-01

    We hypothesize that diabetes-induced impaired collateral formation after a hindlimb ligation in rats is in part caused by intracellular glycation and that overexpression of glyoxalase-I (GLO-I), i.e. the major detoxifying enzyme for advanced-glycation-endproduct (AGE) precursors, can prevent this. Wild-type and GLO-I transgenic rats with or without diabetes (induced by 55 mg/kg streptozotocin) were subjected to ligation of the right femoral artery. Laser Doppler perfusion imaging showed a significantly decreased blood perfusion recovery after 6 days in the diabetic animals compared with control animals, without any effect of Glo1 overexpression. In vivo time-of-flight magnetic resonance angiography at 7-Tesla showed a significant decrease in the number and volume of collaterals in the wild-type diabetic animals compared with the control animals. Glo1 overexpression partially prevented this decrease in the diabetic animals. Diabetes-induced impairment of arteriogenic adaptation can be partially rescued by overexpressing of GLO-I, indicating a role of AGEs in diabetes-induced impaired collateral formation.

  5. Prevention of diabetes in the BB rat by essential fatty acid deficiency. Relationship between physiological and biochemical changes

    PubMed Central

    1990-01-01

    Essential fatty acid (EFA) deficiency exerts a striking protective effect in several animal models of autoimmune disease. We now report that EFA deprivation prevents diabetes in the BB rat, an animal model of human insulin-dependent diabetes mellitus. In diabetes-prone (DP)-BB rats, the incidences of spontaneous diabetes and insulitis (the pathological substrate of autoimmune diabetes) were greatly reduced by EFA deficiency. This beneficial effect of the deficiency state was also seen in diabetes-resistant (DR)-BB rats that, after treatment with antibody to eliminate RT6+ T cells, would otherwise have become diabetic. The susceptibility of EFA-deprived DP-BB rats to spontaneous diabetes was restored when they were given dietary supplements of linoleate at 70 d of age (during the usual period of susceptibility), but not when they were repleted beginning at 120 d (after the peak incidence of diabetes). EFA deficiency did lead to growth retardation, but calorically restricted control rats demonstrated that the protective effect of the deficiency state was not a function of decreased weight. To examine the relationship between the biochemical changes of EFA deficiency and its physiological effects in this system, we compared the fatty acid changes that occurred in EFA-deficient animals that did and did not develop diabetes. Nondiabetic animals had significantly lower levels of (n-6) fatty acids (i.e., linoleate and arachidonate) and higher levels of oleate, an (n-9) fatty acid, than did diabetic animals. Levels of 20:3(n-9), the fatty acid that uniquely characterizes EFA deficiency, were similar in both groups, however. Among diabetic EFA-deficient rats, the age at onset of diabetes was found to correlate inversely with the level of (n-6) fatty acids, the least depleted animals becoming diabetic earliest, whereas there was no correlation with levels of 20:3(n-9). Among animals repleted with linoleate beginning at 70 d, restoration of susceptibility to diabetes

  6. Aminoguanidine cream ameliorates skin tissue microenvironment in diabetic rats

    PubMed Central

    Tian, Ming; Qing, Chun; Niu, Yiwen; Dong, Jiaoyun; Cao, Xiaozan; Song, Fei; Ji, Xiaoyun

    2016-01-01

    Introduction The aim of the study was to explore the effect of aminoguanidine cream on the skin tissue microenvironment in diabetic rats. Material and methods A total of 51 healthy male Sprague Dawley (SD) rats were randomly divided into three groups: the diabetes group (n = 18), the aminoguanidine group (n = 18) and the control group (n = 15). Rats in the diabetes group and aminoguanidine group were injected with 65 mg/kg streptozotocin to induce the diabetes model, and in the control group with citrate buffer. After successful induction of diabetes, the back hair of all rats was stripped by barium sulfide, and the aminoguanidine group was treated with aminoguanidine cream using disinfected cotton swabs twice every day for 40 days, while the diabetes and control groups were treated with the cream matrix. The pathological changes of skin were observed by HE staining, while the content of inflammatory cytokines (TNF-α, IL-8, ICAM and IL-1α) and the antioxidant indexes (T-AOC, GSH-PX, MPO MDA H2O2) were examined using commercial kits. Results After 40 days of treatment, the diabetes group manifested tissue lesions, whereas the aminoguanidine group seemed normal. Compared with the diabetes group, the content of inflammatory cytokines TNF-α, IL-8, ICAM and IL-1α was dramatically lower in the aminoguanidine group. T-AOC in all groups underwent dramatic changes and returned to normal finally. The activities of GSH-PX and MPO and content of H2O2 in the diabetes group were all higher than those in the aminoguanidine group. Conclusions Aminoguanidine may have a good systemic effect on alleviating the pathological changes of skin tissue in diabetic rats, which may be attributed to the regulation of GSH-PX, TNF-α, IL-8, ICAM and IL-1α. PMID:26925135

  7. The protective effect of vanadium against diabetic cataracts in diabetic rat model.

    PubMed

    Sun, Lei; Shi, De-Jing; Gao, Xiang-Chun; Mi, Shu-Yong; Yu, Ying; Han, Qing

    2014-05-01

    The present study was designed to investigate the effect of vanadium in alloxan-induced diabetes and cataract in rats. Different doses of vanadium was administered once daily for 8 weeks to alloxan-induced diabetic rats. To know the mechanism of action of vanadium, lens malondialdehyde (MDA), protein carbonyl content, activity of superoxide dismutase (SOD), activities of aldose reductase (AR), and sorbitol levels were assayed, respectively. Supplementation of vanadium to alloxan-induced diabetic rats decreased the blood glucose levels due to hyperglycemia, inhibited the AR activity, and delayed cataract progression in a dose-dependent manner. The observed beneficial effects may be attributed to polyol pathway activation but not decreased oxidative stress. Overall, the results of this study demonstrate that vanadium could effectively reduce the alloxan-induced hyperglycemia and diabetic cataracts in rats.

  8. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Akkoç, Tolga; Eraslan, Muhsin; Şahin, Özlem; Özkara, Selvinaz; Vardar Aker, Fugen; Subaşı, Cansu; Karaöz, Erdal; Akkoç, Tunç

    2016-01-01

    Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function. PMID:27300133

  9. Bladder and erectile dysfunctions in the Type 2 diabetic Goto-Kakizaki rat.

    PubMed

    Oger-Roussel, Stephanie; Behr-Roussel, Delphine; Caisey, Stephanie; Kergoat, Micheline; Charon, Christine; Audet, Annick; Bernabé, Jacques; Alexandre, Laurent; Giuliano, Francois

    2014-01-15

    Despite the fact that urogenito-sexual complications significantly impact the quality of life of diabetic patients, a robust in vivo experimental model is lacking. Bladder and erectile function in the Type 2 diabetic Goto-Kakizaki (GK) rat and responses to standard-of-care treatments for each disorder have been assessed. GK rats (n = 25, 18-wk-old, GK/Par colony) and age-matched Wistar rats (n = 23), characterized for their metabolic parameters, were used. Bladder function was assessed by cystometry in conscious rats treated by intravenous solifenacin (1 mg/kg). Subsequently, erectile function was assessed under anesthesia following electrical stimulation of the cavernous nerve in presence of intravenous sildenafil (0.3 mg/kg). GK rats displayed detrusor overactivity with a significant increase in frequency/amplitude of nonvoiding contractions during the filling phase, together with an increase in bladder capacity, intercontraction interval, voided volume, and maximal pressure of voiding contraction. Solifenacin significantly decreased parameters characterizing voiding contractions without modifying voiding efficiency. Erectile function in GK rats was markedly impaired and remained so after sildenafil treatment despite a significant improvement. GK rats display both bladder and erectile dysfunctions and respond at least partially to standard-of-care treatments for each disorder, thus representing a suitable model to investigate the pathophysiology and assess the efficacy of new therapeutic agents for Type 2 diabetes-associated bladder and erectile complications. PMID:24305064

  10. Bladder and erectile dysfunctions in the Type 2 diabetic Goto-Kakizaki rat.

    PubMed

    Oger-Roussel, Stephanie; Behr-Roussel, Delphine; Caisey, Stephanie; Kergoat, Micheline; Charon, Christine; Audet, Annick; Bernabé, Jacques; Alexandre, Laurent; Giuliano, Francois

    2014-01-15

    Despite the fact that urogenito-sexual complications significantly impact the quality of life of diabetic patients, a robust in vivo experimental model is lacking. Bladder and erectile function in the Type 2 diabetic Goto-Kakizaki (GK) rat and responses to standard-of-care treatments for each disorder have been assessed. GK rats (n = 25, 18-wk-old, GK/Par colony) and age-matched Wistar rats (n = 23), characterized for their metabolic parameters, were used. Bladder function was assessed by cystometry in conscious rats treated by intravenous solifenacin (1 mg/kg). Subsequently, erectile function was assessed under anesthesia following electrical stimulation of the cavernous nerve in presence of intravenous sildenafil (0.3 mg/kg). GK rats displayed detrusor overactivity with a significant increase in frequency/amplitude of nonvoiding contractions during the filling phase, together with an increase in bladder capacity, intercontraction interval, voided volume, and maximal pressure of voiding contraction. Solifenacin significantly decreased parameters characterizing voiding contractions without modifying voiding efficiency. Erectile function in GK rats was markedly impaired and remained so after sildenafil treatment despite a significant improvement. GK rats display both bladder and erectile dysfunctions and respond at least partially to standard-of-care treatments for each disorder, thus representing a suitable model to investigate the pathophysiology and assess the efficacy of new therapeutic agents for Type 2 diabetes-associated bladder and erectile complications.

  11. Effect of diabetes on glycogen metabolism in rat retina.

    PubMed

    Sánchez-Chávez, Gustavo; Hernández-Berrones, Jethro; Luna-Ulloa, Luis Bernardo; Coffe, Víctor; Salceda, Rocío

    2008-07-01

    Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation. PMID:18274898

  12. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats.

    PubMed

    Akhani, Sanjay P; Vishwakarma, Santosh L; Goyal, Ramesh K

    2004-01-01

    The fresh and dried rhizome of Zingiber officinale Roscoe (commonly known as ginger) is widely used in traditional medicine. We have studied the effect of the juice of Z. officinale (4 mL kg(-1), p.o. daily) for 6 weeks on streptozotocin (STZ)-induced type I diabetic rats with particular reference to the involvement of serotonin (5-hydroxytryptamine; 5-HT) receptors in glycaemic control. In normoglycaemic rats, 5-HT (1mg kg(-1), i.p.) produced hyperglycaemia and hypoinsulinaemia, which was significantly prevented by the juice of Z. officinale. STZ-diabetes produced a significant increase in fasting glucose levels that was associated with a significant decrease in serum insulin levels. Treatment with Z. officinale produced a significant increase in insulin levels and a decrease in fasting glucose levels in diabetic rats. In an oral glucose tolerance test, treatment with Z. officinale was found to decrease significantly the area under the curve of glucose and to increase the area under the curve of insulin in STZ-diabetic rats. Treatment with Z. officinale also caused a decrease in serum cholesterol, serum triglyceride and blood pressure in diabetic rats. Our data suggest a potential antidiabetic activity of the juice of Z. officinale in type I diabetic rats, possibly involving 5-HT receptors. PMID:14980006

  13. Beneficial effect of the Ca2+ antagonist, nimodipine, on existing diabetic neuropathy in the BB/Wor rat.

    PubMed Central

    Kappelle, A. C.; Biessels, G.; Bravenboer, B.; van Buren, T.; Traber, J.; de Wildt, D. J.; Gispen, W. H.

    1994-01-01

    1. Neuropathy is a frequently diagnosed complication of diabetes mellitus. Effective pharmacotherapy is not available. 2. The spontaneously diabetic BB/Wor rats develop secondary complications like neuropathy as do human diabetic patients. 3. BB/Wor rats treated with insulin via a subcutaneous implant show a significant impairment of sensory and motor nerve conduction velocity 6 weeks after the onset of diabetes mellitus. 4. Intraperitoneal treatment of diabetic BB/Wor rats with the Ca2+ antagonist, nimodipine (20 mg kg-1), from week 6 onwards every 48 h for a period of 6 weeks resulted in a significant increase of sensory and motor nerve conduction velocity. 5. Twelve weeks after the onset of diabetes mellitus BB/Wor rats show a 40% impairment of sciatic nerve blood flow as compared to the non-diabetic age-matched controls. Treatment with nimodipine (20 mg kg-1) from week 6 onwards significantly increased the sciatic nerve blood flow as compared to placebo-treated diabetic BB/Wor rats. 6. The adrenergic responsiveness of the vasa nervorum of the sciatic nerve to tyramine and phenylephrine was investigated as a parameter for autonomic neuropathy. 7. The fact that nimodipine treatment restored the reduced response to tyramine independently of the reduced postsynaptic phenylephrine responsiveness indicates that nimodipine improves adrenergic responsiveness mainly at the presynaptic level. PMID:8019766

  14. Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat

    PubMed Central

    Stabley, John N.; Prisby, Rhonda D.; Behnke, Bradley J.; Delp, Michael D.

    2015-01-01

    Bone health and cardiovascular function are compromised in individuals with type 2 diabetes mellitus (T2DM). The purpose of the present study was to determine whether skeletal vascular control mechanisms are altered during the progression of T2DM in the Zucker diabetic fatty (ZDF) rat. Responses of the principal nutrient artery (PNA) of the femur from obese ZDF rats with prediabetes, short-term diabetes, and long-term diabetes to endothelium-dependent (acetylcholine) and –independent (sodium nitroprusside) vasodilation, and KCl, norepinephrine and myogenic vasoconstrictor were determined in vitro. Few changes in the PNA vasomotor responses occurred in the pre-diabetic and short-term diabetic conditions. Endothelium-dependent and –independent vasodilation were reduced, and norepinephrine and myogenic vasoconstriction were enhanced in obese ZDF rats with long-term diabetes relative to lean age-matched controls. Differences in endothelium-dependent vasodilation of the femoral PNA between ZDF rats and controls were abolished by the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester. The passive pressure-diameter response of the femoral PNA was also lower across a range of intraluminal pressures with long-term T2DM. Regional bone and marrow perfusion and vascular conductance, measured in vivo using radiolabeled microspheres, were lower in obese ZDF rats with long-term diabetes. These findings suggest that the profound impairment of the bone circulation may contribute to the osteopenia found to occur in long bones with chronic T2DM. PMID:25817711

  15. Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats.

    PubMed

    Bai, Yu; Zang, Xueli; Ma, Jinshu; Xu, Guangyu

    2016-01-01

    Diabetes mellitus (DM) is a metabolic syndrome caused by multiple genetic and environmental factors. Traditional Chinese medicine preparations have shown a comprehensive and function-regulating characteristic. Purslane (Portulaca oleracea L.) is an annual succulent herb. Currently, there have been some related reports on the treatment of diabetes with purslane. The current study was designed to separate and purify the polysaccharide, a systematic study of its physical and chemical properties, antioxidant activity, and anti-diabetic mechanism, in order to provide a theoretical basis for the development of drugs of purslane. A crude water soluble polysaccharide extracted from purslane was named CPOP (crude Portulaca oleracea L. polysaccharide). Effects of CPOP on bodyweight, glucose tolerance test (GTT), fasting blood glucose (FBG), fasting serum insulin (FINS), insulin sensitivity index (ISI), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), methane dicarboxylic aldehyde (MDA), and superoxygen dehydrogenises (SOD) were investigated. The results indicate that the oral administration of CPOP could significantly increase the body weight and significantly improve the glucose tolerance in diabetic rats. Meanwhile, CPOP could significantly reduce the FBG level, and elevate the FINS level and ISI value in diabetic rats. In addition, CPOP could significantly reduce TNF-α and IL-6 levels in diabetic rats; CPOP could also reduce MDA and SOD activities in the liver tissue of diabetic rats. These results suggest that the anti-diabetic effect of CPOP may be associated with its antioxidant and anti-inflammatory effects. PMID:27463713

  16. Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats

    PubMed Central

    Bai, Yu; Zang, Xueli; Ma, Jinshu; Xu, Guangyu

    2016-01-01

    Diabetes mellitus (DM) is a metabolic syndrome caused by multiple genetic and environmental factors. Traditional Chinese medicine preparations have shown a comprehensive and function-regulating characteristic. Purslane (Portulaca oleracea L.) is an annual succulent herb. Currently, there have been some related reports on the treatment of diabetes with purslane. The current study was designed to separate and purify the polysaccharide, a systematic study of its physical and chemical properties, antioxidant activity, and anti-diabetic mechanism, in order to provide a theoretical basis for the development of drugs of purslane. A crude water soluble polysaccharide extracted from purslane was named CPOP (crude Portulaca oleracea L. polysaccharide). Effects of CPOP on bodyweight, glucose tolerance test (GTT), fasting blood glucose (FBG), fasting serum insulin (FINS), insulin sensitivity index (ISI), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), methane dicarboxylic aldehyde (MDA), and superoxygen dehydrogenises (SOD) were investigated. The results indicate that the oral administration of CPOP could significantly increase the body weight and significantly improve the glucose tolerance in diabetic rats. Meanwhile, CPOP could significantly reduce the FBG level, and elevate the FINS level and ISI value in diabetic rats. In addition, CPOP could significantly reduce TNF-α and IL-6 levels in diabetic rats; CPOP could also reduce MDA and SOD activities in the liver tissue of diabetic rats. These results suggest that the anti-diabetic effect of CPOP may be associated with its antioxidant and anti-inflammatory effects. PMID:27463713

  17. Effect of maternal diabetes on gliogensis in neonatal rat hippocampus

    PubMed Central

    Sadeghi, Akram; Esfandiary, Ebrahim; Hami, Javad; Khanahmad, Hossein; Hejazi, Zahra; Razavi, Shahnaz

    2016-01-01

    Background: Diabetes in pregnancy is a common metabolic disorder associated with various adverse outcomes in the offspring including impairments in attention and memory and alterations in social behavior. Glial cells are proven to have a critical role in normal function of neurons, and alteration in their activity could contribute to disturbance in the brain function. The aim of this study was to investigate the effect of maternal diabetes on hippocampal mRNA expression and distribution pattern of glial fibrillary acidic protein (GFAP) immunoreactive glial cells in the dentate gyrus (DG) of rat neonate at postnatal day 14 (P14). Materials and Methods: Wistar female rats were randomly allocated in control, diabetic, and insulin-treated diabetic groups. Diabetes was induced by injection of streptozotocin from 4 weeks before gestation until parturition. After delivery, the male offspring was euthanized at P14. Results: Our results showed a significant higher level of hippocampal GFAP expression and an increase in the mean number of GFAP positive cells in the DG of diabetic group offspring (P < 0.05). We also found an insignificant up-regulation in the expression of GFAP and the mean number of positive cells in the insulin-treated diabetic group neonates as compared to control group (P > 0.05). Conclusion: The present study revealed that diabetes during pregnancy strongly increased the glial cells production in the developing rat hippocampus. PMID:27656611

  18. Effect of maternal diabetes on gliogensis in neonatal rat hippocampus

    PubMed Central

    Sadeghi, Akram; Esfandiary, Ebrahim; Hami, Javad; Khanahmad, Hossein; Hejazi, Zahra; Razavi, Shahnaz

    2016-01-01

    Background: Diabetes in pregnancy is a common metabolic disorder associated with various adverse outcomes in the offspring including impairments in attention and memory and alterations in social behavior. Glial cells are proven to have a critical role in normal function of neurons, and alteration in their activity could contribute to disturbance in the brain function. The aim of this study was to investigate the effect of maternal diabetes on hippocampal mRNA expression and distribution pattern of glial fibrillary acidic protein (GFAP) immunoreactive glial cells in the dentate gyrus (DG) of rat neonate at postnatal day 14 (P14). Materials and Methods: Wistar female rats were randomly allocated in control, diabetic, and insulin-treated diabetic groups. Diabetes was induced by injection of streptozotocin from 4 weeks before gestation until parturition. After delivery, the male offspring was euthanized at P14. Results: Our results showed a significant higher level of hippocampal GFAP expression and an increase in the mean number of GFAP positive cells in the DG of diabetic group offspring (P < 0.05). We also found an insignificant up-regulation in the expression of GFAP and the mean number of positive cells in the insulin-treated diabetic group neonates as compared to control group (P > 0.05). Conclusion: The present study revealed that diabetes during pregnancy strongly increased the glial cells production in the developing rat hippocampus.

  19. Interleukin-2-dependent control of disease development in spontaneously diabetic BB rats.

    PubMed Central

    Zielasek, J; Burkart, V; Naylor, P; Goldstein, A; Kiesel, U; Kolb, H

    1990-01-01

    Long-term treatment with recombinant interleukin-2 (IL-2) of diabetes-prone BB rats had contrasting effects in two different BB rat sublines. Diabetes development was enhanced in the subline with a low intrinsic diabetes risk and suppressed in the subline with a high diabetes risk. IL-2 treatment started between 35 and 42 days of age and lasted for 3 months. In subline 1, diabetes incidence increased from 23% to 53% (P less than 0.01), in subline 2 it decreased from 73% to 32% (P less than 0.01). The two sublines differed in serum levels of factors controlling IL-2 synthesis and activity. Mean IL-2 inhibitory activity was higher in subline 2 (between 140% and 290% of levels in subline 1, P less than 0.01). Conversely, mean concentrations of thymosin alpha 1 and beta 4 were higher in subline 1 (between 140% and 200% of levels in subline 2, P less than 0.01). Thus the two sublines differ in their response to exogenous IL-2 and also in serum levels of mediators affecting availability of IL-2. We conclude that an internal network of hormonal factors, including IL-2, contributes to the control of diabetes development in the BB rat. Images Figure 2 PMID:2307481

  20. Hepatic expression of cytochrome P450 in Zucker diabetic fatty rats.

    PubMed

    Park, So Young; Kim, Chung Hyeon; Lee, Ji Yoon; Jeon, Jang Su; Kim, Min Ju; Chae, Song Hee; Kim, Hyoung Chin; Oh, Soo Jin; Kim, Sang Kyum

    2016-10-01

    In this study, the hepatic expression of cytochrome P450 (CYP) enzymes, including CYP1A1/2, 2B1, 2C11, 2E1, 3A1/2, and 4A, was investigated in 5-week-old (insulinresistant state) and 11-week-old (diabetic) Zucker diabetic fatty (ZDF) rats. Serum glucose and glycated hemoglobin levels were increased in 11-week-old ZDF rats, but not in 5-weekold ZDF rats. Hyperinsulinemia was observed in both age groups. The microsomal protein, total CYP, CYP reductase, CYP1A1/2, and CYP3A1 levels did not differ between 5- and 11-week-old ZDF rats and their respective control rats, while CYP4A was up-regulated in both groups. Hepatic levels of cytochrome b5, CYP2B1, CYP2C11, CYP2E1, and CYP3A2 were decreased in 5-week-old ZDF rats, but not in 11-week-old ZDF rats. Similarly, pentoxyresorufin O-depentylase, testosterone 2α- and 16α-hydroxylase, chlorzoxazone 6- hydroxylase, and midazolam 1'- and 4-hydroxylase activities were decreased only in 5-weekold ZDF rats. Based on these results, the 5-week-old ZDF rats exhibited down-regulation of the major CYP enzymes. These results suggest that hepatic expression of CYP enzymes may be dysregulated during development in ZDF rats. With the exception of CYP2B1 and CYP4A, the hepatic levels and activities of CYP were comparable between 11-week-old ZDF and control rats, suggesting that xenobiotic metabolism is normally regulated in the early diabetic state.

  1. Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats.

    PubMed

    Tzeng, Thing-Fong; Liou, Shorong-Shii; Tzeng, Yu-Cheng; Liu, I-Min

    2016-01-01

    Diabetic retinopathy (DR), the most ordinary and specific microvascular complication of diabetes, is a disease of the retina. Zerumbone (ZER) is a monocyclic sesquiterpene compound, and based on reports, it is the predominant bioactive compound from the rhizomes of Zingiber zerumbet. The aim of the current study is to evaluate the protective effect of zerumbone against DR in streptozotocin (STZ)-induced diabetic rats. STZ-diabetic rats were treated with ZER (40 mg/kg) once a day orally for 8 weeks. ZER administration significantly (p < 0.05) lowered the levels of plasma glucose (32.5% ± 5.7% lower) and glycosylated hemoglobin (29.2% ± 3.4% lower) in STZ-diabetic rats. Retinal histopathological observations indicated that disarrangement and reduction in thickness of retinal layers were reversed in ZER-treated diabetic rats. ZER downregulated both the elevated levels of advanced glycosylated end products (AGEs) and the higher levels of the receptors for AGEs (RAGE) in retinas of diabetic rats. What's more, ZER significantly (p < 0.05) ameliorated diabetes-induced upregulation of tumor necrosis factor-α, interleukin (IL)-1 and IL-6. ZER also attenuated overexpression of vascular endothelial growth factor and intercellular adhesion molecule-1, and suppressed activation of nuclear factor (NF)-κB and apoptosis in the retinas of STZ-diabetic rats. Our results suggest ZER possesses retinal protective effects, which might be associated with the blockade of the AGEs/RAGE/NF-κB pathway and its anti-inflammatory activity. PMID:27463726

  2. Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats

    PubMed Central

    Tzeng, Thing-Fong; Liou, Shorong-Shii; Tzeng, Yu-Cheng; Liu, I-Min

    2016-01-01

    Diabetic retinopathy (DR), the most ordinary and specific microvascular complication of diabetes, is a disease of the retina. Zerumbone (ZER) is a monocyclic sesquiterpene compound, and based on reports, it is the predominant bioactive compound from the rhizomes of Zingiber zerumbet. The aim of the current study is to evaluate the protective effect of zerumbone against DR in streptozotocin (STZ)-induced diabetic rats. STZ-diabetic rats were treated with ZER (40 mg/kg) once a day orally for 8 weeks. ZER administration significantly (p < 0.05) lowered the levels of plasma glucose (32.5% ± 5.7% lower) and glycosylated hemoglobin (29.2% ± 3.4% lower) in STZ-diabetic rats. Retinal histopathological observations indicated that disarrangement and reduction in thickness of retinal layers were reversed in ZER-treated diabetic rats. ZER downregulated both the elevated levels of advanced glycosylated end products (AGEs) and the higher levels of the receptors for AGEs (RAGE) in retinas of diabetic rats. What’s more, ZER significantly (p < 0.05) ameliorated diabetes-induced upregulation of tumor necrosis factor-α, interleukin (IL)-1 and IL-6. ZER also attenuated overexpression of vascular endothelial growth factor and intercellular adhesion molecule-1, and suppressed activation of nuclear factor (NF)-κB and apoptosis in the retinas of STZ-diabetic rats. Our results suggest ZER possesses retinal protective effects, which might be associated with the blockade of the AGEs/RAGE/NF-κB pathway and its anti-inflammatory activity. PMID:27463726

  3. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications.

    PubMed Central

    Wautier, J L; Wautier, M P; Schmidt, A M; Anderson, G M; Hori, O; Zoukourian, C; Capron, L; Chappey, O; Yan, S D; Brett, J

    1994-01-01

    Vascular complications are an important cause of morbidity and mortality in patients with diabetes. The extent of vascular complications has been linked statistically to enhanced adherence of diabetic erythrocytes to endothelial cells (ECs) and to the accumulation of a class of glycated proteins termed advanced glycation end products (AGEs). We hypothesized that formation of AGEs on the surface of diabetic erythrocytes could mediate their interaction with ECs leading to binding and induction of vascular dysfunction. Enhanced binding of diabetic erythrocytes to ECs was blocked by preincubation of erythrocytes with anti-AGE IgG or preincubation of ECs with antibodies to the receptor for AGE (RAGE). Immunoblotting of cultured human ECs and immunostaining of normal/diabetic human tissue confirmed the presence of RAGE in the vessel wall. Binding of diabetic erythrocytes to endothelium generated an oxidant stress, as measured by production of thiobarbituric acid-reactive substances (TBARS) and activation of the transcription factor NF-kappa B, both of which were blocked by probucol or anti-RAGE IgG. Erythrocytes from diabetic rats infused into normal rats had an accelerated, early phase of clearance that was prevented, in part, by antibody to RAGE. Liver tissue from rats infused with diabetic erythrocytes showed elevated levels of TBARS, which was prevented by pretreatment with anti-RAGE IgG or probucol. Thus, erythrocyte surface AGEs can function as ligands that interact with RAGE on endothelium. The extensive contact of diabetic erythrocytes bearing surface-associated AGEs with vessel wall RAGE could be important in the development of vascular complications. Images PMID:8052654

  4. AGE restriction in diabetes mellitus: a paradigm shift.

    PubMed

    Vlassara, Helen; Striker, Gary E

    2011-05-24

    Persistently elevated oxidative stress and inflammation precede or occur during the development of type 1 or type 2 diabetes mellitus and precipitate devastating complications. Given the rapidly increasing incidence of diabetes mellitus and obesity in the space of a few decades, new genetic mutations are unlikely to be the cause, instead pointing to environmental initiators. A hallmark of contemporary culture is a preference for thermally processed foods, replete with pro-oxidant advanced glycation endproducts (AGEs). These molecules are appetite-increasing and, thus, efficient enhancers of overnutrition (which promotes obesity) and oxidant overload (which promotes inflammation). Studies of genetic and nongenetic animal models of diabetes mellitus suggest that suppression of host defenses, under sustained pressure from food-derived AGEs, may potentially shift homeostasis towards a higher basal level of oxidative stress, inflammation and injury of both insulin-producing and insulin-responsive cells. This sequence promotes both types of diabetes mellitus. Reducing basal oxidative stress by AGE restriction in mice, without energy or nutrient change, reinstates host defenses, alleviates inflammation, prevents diabetes mellitus, vascular and renal complications and extends normal lifespan. Studies in healthy humans and in those with diabetes mellitus show that consumption of high amounts of food-related AGEs is a determinant of insulin resistance and inflammation and that AGE restriction improves both. This Review focuses on AGEs as novel initiators of oxidative stress that precedes, rather than results from, diabetes mellitus. Therapeutic gains from AGE restriction constitute a paradigm shift.

  5. Cardiac β-Adrenoceptor Expression Is Reduced in Zucker Diabetic Fatty Rats as Type-2 Diabetes Progresses

    PubMed Central

    Haley, James M.; Thackeray, James T.; Thorn, Stephanie L.; DaSilva, Jean N.

    2015-01-01

    Objectives Reduced cardiac β-adrenoceptor (β-AR) expression and cardiovascular dysfunction occur in models of hyperglycemia and hypoinsulinemia. Cardiac β-AR expression in type-2 diabetes models of hyperglycemia and hyperinsulinemia, remain less clear. This study investigates cardiac β-AR expression in type-2 diabetic Zucker diabetic fatty (ZDF) rats. Methods Ex vivo biodistribution experiments with [3H]CGP12177 were performed in Zucker lean (ZL) and ZDF rats at 10 and 16 weeks of age as diabetes develops. Blood glucose, body mass, and diet consumption were measured. Western blotting of β-AR subtypes was completed in parallel. Echocardiography was performed at 10 and 16 weeks to assess systolic and diastolic function. Fasted plasma insulin, free fatty acids (FFA), leptin and fed-state insulin were also measured. Results At 10 weeks, myocardial [3H]CGP12177 was normal in hyperglycemic ZDF (17±4.1mM) compared to ZL, but reduced 16-25% at 16 weeks of age as diabetes and hyperglycemia (22±2.4mM) progressed. Reduced β-AR expression not apparent at 10 weeks also developed by 16 weeks of age in ZDF brown adipose tissue. In the heart, Western blotting at 10 weeks indicated normal β1-AR (98±9%), reduced β2-AR (76±10%), and elevated β3-AR (108±6). At 16 weeks, β1-AR expression became reduced (69±16%), β2-AR expression decreased further (68±14%), and β3-AR remained elevated, similar to 10 weeks (112±9%). While HR was reduced at 10 and 16 weeks in ZDF rats, no significant changes were observed in diastolic or systolic function. Conclusions Cardiac β-AR are reduced over 6 weeks of sustained hyperglycemia in type-2 diabetic ZDF rats. This indicates cardiac [3H]CGP12177 retention and β1- and β2-AR expression are inversely correlated with the progression of type-2 diabetes. PMID:25996498

  6. Type 2 diabetic rats are sensitive to thioacetamide hepatotoxicity

    SciTech Connect

    Sawant, Sharmilee P.; Dnyanmote, Ankur V.; Warbritton, Alan; Latendresse, John R.; Mehendale, Harihara M. . E-mail: mehendale@ulm.edu

    2006-03-15

    Previously, we reported high hepatotoxic sensitivity of type 2 diabetic (DB) rats to three dissimilar hepatotoxicants. Additional work revealed that a normally nonlethal dose of CCl{sub 4} was lethal in DB rats due to inhibited compensatory tissue repair. The present study was conducted to investigate the importance of compensatory tissue repair in determining the final outcome of hepatotoxicity in diabetes, using another structurally and mechanistically dissimilar hepatotoxicant, thioacetamide (TA), to initiate liver injury. A normally nonlethal dose of TA (300 mg/kg, ip), caused 100% mortality in DB rats. Time course studies (0 to 96 h) showed that in the non-DB rats, liver injury initiated by TA as assessed by plasma alanine or aspartate aminotransferase and hepatic necrosis progressed up to 48 h and regressed to normal at 96 h resulting in 100% survival. In the DB rats, liver injury rapidly progressed resulting in progressively deteriorating liver due to rapidly expanding injury, hepatic failure, and 100% mortality between 24 and 48 h post-TA treatment. Covalent binding of {sup 14}C-TA-derived radiolabel to liver tissue did not differ from that observed in the non-DB rats, indicating similar bioactivation-based initiation of hepatotoxicity. S-phase DNA synthesis measured by [{sup 3}H]-thymidine incorporation, and advancement of cells through the cell division cycle measured by PCNA immunohistochemistry, were substantially inhibited in the DB rats compared to the non-DB rats challenged with TA. Thus, inhibited cell division and compromised tissue repair in the DB rats resulted in progressive expansion of liver injury culminating in mortality. In conclusion, it appears that similar to type 1 diabetes, type 2 diabetes also increases sensitivity to dissimilar hepatotoxicants due to inhibited compensatory tissue repair, suggesting that sensitivity to hepatotoxicity in diabetes occurs in the absence as well as presence of insulin.

  7. Infant formula ingestion is associated with the development of diabetes in the BB/Wor rat.

    PubMed

    Johnston, C S; Monte, W C

    2000-01-01

    The association between early exposure to cow's milk products in infancy and risk for insulin dependent diabetes mellitus (IDDM) is controversial. We examined whether the ingestion of cow's milk-based infant formula altered the expression of the diabetic syndrome in the BB/Wor rat, an animal model of IDDM. Pregnant BB/Wor dams were obtained from the NIH contract colony at the University of Massachusetts and housed under semi-barrier conditions. Rat pups were intubated with 1 to 2 ml of commercially available cow's milk-based infant formula (Enfamil or Nutramigen) or sham intubated (controls) daily from day 12 to day 25 of life. Pups were weaned at day 25 and monitored for glucosuria daily through 120 days of life. All rats including dams consumed a milk-free rat chow and acidified water ad libitum throughout the study. The mean age of disease onset was 4 to 10 days earlier in Nutramigen-fed and Enfamil-fed rats relative to controls (84+/-3, 78+/-2 and 88+/-4 days, respectively); the mean age of disease onset was significantly different between controls and Enfamil-fed animals (p<0.05). At 120 days, 60% (12/20) of control rats developed diabetes versus 100% of animals fed either type of infant formula prior to weaning (15/15:Enfamil-fed; 19/19:Nutramigen-fed) (p<0.05). These data indicate that direct, early ingestion of cow's milk-based formula was related to the expression of diabetes in the BB/Wor rat.

  8. Homocysteine Metabolism in ZDF (Type 2) Diabetic Rats

    PubMed Central

    Wijekoon, Enoka P.; Hall, Beatrice; Ratnam, Shobhitha; Brosnan, Margaret E.; Zeisel, Steven H.; Brosnan, John T.

    2008-01-01

    Mild hyperhomocysteinemia is a risk factor for many diseases, including cardiovascular disease. We determined the effects of insulin resistance and of type 2 diabetes on homocysteine (Hcy) metabolism using Zucker diabetic fatty rats (ZDF/Gmi fa/fa and ZDF/Gmi fa/?). Plasma total Hcy was reduced in ZDF fa/fa rats by 24% in the pre-diabetic insulin-resistant stage, while in the frank diabetic stage there was a 59% reduction. Hepatic activities of several enzymes that play a role in the removal of Hcy: cystathionine β-synthase (CBS), cystathionine γ-lyase, and betaine:Hcy methyltransferase (BHMT) were increased as was methionine adenosyltransferase. CBS and BHMT mRNA levels and the hepatic level of S-adenosylmethionine were also increased in the ZDF fa/fa rats. Studies with primary hepatocytes showed that Hcy export and the transsulfuration flux in cells from ZDF fa/fa rats were particularly sensitive to betaine. Interestingly, liver betaine concentration was found to be significantly lower in the ZDf fa/fa rats at both 5 and 11 weeks. These results emphasize the importance of betaine metabolism in determining plasma Hcy levels in type 2 diabetes. PMID:16249451

  9. Advanced glycation end products (AGEs) and diabetic vascular complications.

    PubMed

    Yamagishi, Sho-ichi; Nakamura, Kazuo; Imaizumi, Tsutomu

    2005-02-01

    Diabetic vascular complication is a leading cause of acquired blindness, end-stage renal failure, a variety of neuropathies and accelerated atherosclerosis, which could account for disabilities and high mortality rates in patients with diabetes. Chronic hyperglycemia is essentially involved in the development and progression of diabetic micro- and macroangiopathy. Among various metabolic derangements implicated in the pathogenesis of diabetic vascular complication, advanced glycation end product (AGE) hypothesis is most compatible with the theory of 'hyperglycemic memory'. In this review, we discuss the molecular mechanisms of diabetic vascular complication, specially focusing on AGEs and their receptor (RAGE) system. Several types of AGE inhibitors and their therapeutic implications in this devastating disorder are also discussed here. PMID:18220586

  10. Hydroxyl fasudil, an inhibitor of Rho signaling, improves erectile function in diabetic rats: a role for neuronal ROCK

    PubMed Central

    Sezen, Sena F.; Lagoda, Gwen; Musicki, Biljana; Burnett, Arthur L.

    2014-01-01

    Introduction The pathogenesis of diabetic erectile dysfunction (ED) includes neuropathy, but the molecular basis for neurogenic ED is incompletely understood. The RhoA/ROCK pathway has been implicated in diabetic neuropathy and in ED, but its role in diabetic neurogenic ED is not known. Aims The aim of this study was to determine whether hydroxyl fasudil, an ROCK inhibitor, affects diabetic neuropathy-related ED. Methods Type 1 diabetes mellitus was induced in male rats by streptozotocin (75 mg/kg, intraperitoneally). After 8 weeks, diabetic rats were administered hydroxyl fasudil, a selective ROCK inhibitor (10 mg/kg/day, intraperitoneally) or vehicle, for 4 weeks. Age-matched control, nondiabetic, rats were treated intraperitoneally for 4 weeks with saline. At week 12, after a 2 day wash-out, neuro-stimulated erectile function was evaluated. Major pelvic ganglia (MPG) were collected for western blot analysis of RhoA, ROCK-1, ROCK-2, phospho (P)-AKT (Ser473), and P-phosphatase and tensin homolog (P-PTEN) (Ser380/Thr382/383). Main outcome measures Effect of ROCK inhibitor hydroxyl fasudil on erectile function and ROCK/P-AKT/P-PTEN pathway in the MPG of diabetic rats. Results Erectile response was significantly (P<0.05) reduced in diabetic compared with nondiabetic rats, and was preserved (P<0.05) in diabetic rats treated with hydroxyl fasudil. In diabetic rats, RhoA and ROCK-2 protein expressions in MPG were increased (P<0.05) and remained increased in hydroxyl fasudil-treated rats. P-AKT (Ser473) expression was decreased (P<0.05), while P-PTEN (Ser380/Thr382/383) expression was increased (P<0.05) in MPG of diabetic compared to nondiabetic rats, and both were reversed (P<0.05) in diabetic rats treated with hydroxyl fasudil. Conclusion Improved erectile function and restored P-AKT and P-PTEN in the MPG with hydroxyl fasudil treatment suggest the role of Rho signaling via PTEN/AKT pathway in neurogenic diabetic ED. PMID:24919622

  11. Acetylsalicylic acid protects erectile function in diabetic rats.

    PubMed

    Hafez, G; Gonulalan, U; Kosan, M; Arioglu, E; Ozturk, B; Cetinkaya, M; Gur, S

    2014-01-01

    We aimed to evaluate the effect of acetylsalicylic acid (ASA) treatment on diabetes-induced erectile dysfunction. Adult male Sprague-Dawley rats were divided into four groups as follows: (i) control (C), (ii) diabetic (D), (iii) ASA-treated control (C+ASA) and (iv) ASA-treated diabetic (D+ASA) groups. In groups 2 and 4, diabetes was induced by injection of 35 mg kg(-1) streptozotocin. ASA (100 mg kg(-1) day(-1) , orally) was administrated to rats in groups 3 and 4 for 8 weeks. Both intracavernosal pressure (ICP) and mean arterial blood pressure (MAP) were measured in in vivo studies. In organ bath, the relaxation responses to acetylcholine (ACh), electrical field stimulation (EFS) and sodium nitroprusside were tested in corpus cavernosum (CC) strips. The mRNA expression for neuronal nitric oxide synthase (nNOS) was calculated using reverse transcription polymerase chain reaction technique. In in vivo experiments, diabetic rats displayed reduced ICP/MAP values, which were normalised with ASA treatment. The relaxant response to high-dose ACh and EFS at low frequencies (1-8 Hz) in CC strips from the D+ASA group were significantly higher when compared to the D group. Treatment with ASA normalised the raised mRNA expressions of nNOS in diabetic penile tissues. ASA may be involved in mRNA of protein synthesis of NO released from nonadrenergic and noncholinergic cavernosal nerve in diabetes.

  12. Evaluation of Protein Kinase Cβ and PPARγ Activity in Diabetic Rats Supplemented with Momordica charantia

    PubMed Central

    Chandru, Swetha; Devegowda, Devananda; Ramasamudra, Suresha Nagaraja; Prashant, Akila; Hathur, Basavanagowdappa

    2016-01-01

    Introduction The present study was taken up to compare and evaluate the effect of Momordica charantia supplementation with pioglitazone on PKC-β and PPAR-γ activity in kidneys of diabetic rats. The hypoglycaemic and lipid lowering effect of Momordica charantia were screened in laboratory animal model and its potency was compared with a Thiazolidinedione (TZD) group antidiabetic drug like pioglitazone. Materials and Methods Adult healthy albino rats of Wistar strain aged 3-4months, weighing between 170-250gm of either sex were divided into 4 groups; Group 1 (normal controls), Group 2 (diabetic controls), Group 3 (diabetic rats treated with pioglitazone) and Group 4 (diabetic rats treated with bitter melon juice). Type 1 Diabetes was induced in rats by intraperitoneal injection of streptozotocin at a dose of 55 mg/kg body weight, following which glucose levels were estimated by Accu chek- active glucometer on day 0, 7, 14, 21 and 28 days to assess the efficacy of Bitter Melon Juice (BMJ) and pioglitazone. After 28 days of treatment, the rats were sacrificed and blood collected from abdominal vena cava was used for estimation of triglycerides by Glycerol 3 phosphate oxidase phenol aminophenazone method and cholesterol by Cholestrol oxidase phenol aminophenazone method. PKC-β and PPAR-γ were estimated in the dissected kidneys by using double sandwich ELISA based kits on an automated plate reader. Results BMJ significantly reduced blood glucose levels in group 4 as compared to diabetic controls (p<0.001). Total cholesterol and triglycerides were significantly reduced in both group 3 and 4. In Group 4, there was reduction in PKC-β levels, when compared to Group 3(p=0.004). PPAR-γ levels were increased in both Group 3 and 4, when compared to Group 2. Conclusion The results suggest that BMJ has hypoglycaemic and lipid lowering effect in diabetic animal models. BMJ increases PPAR-γ activity and decreases PKC-β activity in kidneys of diabetic rats, thereby preventing

  13. Variation in characteristics of islets of Langerhans in insulin-resistant, diabetic and non-diabetic-rat strains

    PubMed Central

    Jones, Huw Bowen; Nugent, David; Jenkins, Richard

    2010-01-01

    Assessment of the histopathological and plasma biochemical characteristics of diabetic and non-diabetic rat strains [Han and AP Wistar, lean and obese Zucker Fatty (ZF), and lean and obese Zucker Diabetic Fatty (ZDF) rats] was performed at 6 or 14 weeks of age. Wistar and lean ZF and ZDF rats showed no or minimal islet pathology or plasma biochemical alterations at both timepoints. Obese ZFs were euglycaemic at both timepoints and mildly and severely hyperinsulinaemic at 6 and 14 weeks respectively. Islet morphology was normal at 6 weeks but at 14 weeks, islet hyperplasia was present with a minority showing degenerative changes namely, β-cell vacuolation, vascular congestion and haemorrhage with minimal mononuclear cell and T lymphocytic infiltration. Obese ZDFs were euglycaemic and moderately hyperinsulinaemic at 6 weeks and severely hyperglycaemic with minor hypoinsulinaemia at 14 weeks. Obese ZDFs at 6 weeks showed mainly normal islets with some displaying degeneration (ranging from β-cell vacuolation alone to the features described above). At 14 weeks, islet degeneration was more severe and widespread: β-cell death was present in numerous islets at low level. Islet β-cell numbers were reduced or absent (with associated reduction in insulin immunostaining) within the islets that now consisted predominantly of fibroblasts, collagen and mononuclear cells. Fibroproliferation consisting of smooth muscle actin-α-positive tissue was associated with mononuclear cell infiltration. Some fibrous scars were visible indicative of lost islets. Islet degeneration in obese ZF and ZDF rats was not accompanied by a reduction in β-cell proliferation or in compensatory proliferation of β-cell neogenic clusters. In the light of recent reports of adaptive and inflammation-mediated degenerative changes in human non-insulin dependent diabetes mellitus (NIDDM) islets, the hypertrophy/hyperplasia of β-cells and islet degeneration involving infiltration by monocyte/macrophages in

  14. Electrophysiological changes in optic neuropathy of streptozotocin induced diabetic rats

    PubMed Central

    Ghita, AM; Parvu, D; Sava, R; Georgescu, L; Zagrean, L

    2013-01-01

    The visually evoked potentials are electrical signals generated by the occipital cortex due to electrical stimulus. The clinical importance of VEP is to diagnose the functional changes of the optic nerve in different diseases such as diabetic mellitus. Our study sought latency of VEP changes depending on glycemic value and duration of diabetes in Wistar rats. Methods: this study evaluated the VEP of 25 rats in three groups: control group, diabetic group 1 with glycemic values between 200-400mg/dl and diabetic group 2 with glycemic values between 400 and 600mg/dl. These rats from diabetic group 2 were followed for 4 months and the ones in control group and diabetic group 1 for 5 months. Results: the latency of VEP shows slight changes without any statistical significance in the control group. In diabetic group 1 and 2 similar changes occurred, with statistical significance and the amplitude of the changes was proportional with the glycemic value. The rats had a rapid increase of VEP latency after the induction of diabetes and returned to a normal range in the first month. After a time, when the latencies of VEP were in normal range, a new growth appeared faster and larger as the glycemic values were higher. Conclusion: diabetes brings changes to the visual signal transmission and to the central processing, this being revealed by the examination of the visually evoked potential. Increased VEP latency is statistically correlated with the changes that occur at the level of the values of glucose in blood. A rapid growth in blood sugar lowers the visual signal transmission. This change is temporary despite the persistence of elevated blood glucose values, probably by adjusting to the new condition. However, maintaining high glycemic values remotely produces a progressive increase of the delay of the visual signal. This progressive increase is faster as blood glucose levels are higher. PMID:24155786

  15. Danhong Huayu Koufuye combined with metformin attenuated diabetic retinopathy in Zucker diabetic fatty rats

    PubMed Central

    Chen, Wen-Pei; Wang, Yan-Dong; Ma, Yan; Zhang, Zi-Yang; Hu, Lu-Yun; Lin, Jun-Li; Lin, Bao-Qin

    2015-01-01

    AIM To evaluate effects of Danhong Huayu Koufuye (DHK, a Chinese medicinal formulae) alone or combined with metformin on diabetic retinopathy (DR) in Zucker diabetic fatty (ZDF) rats, an animal model of obese type-2 diabetes, and then to investigate the mechanisms. METHODS ZDF (fa/fa) rats were administered with vehicle (distilled water), metformin, DHK, and DHK plus metformin. Electrophysiological and histological analysis were applied to evaluated effects of DHK alone or combined with metformin on DR. The levels of fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) in blood were measured to evaluate the antihyperglycemic activity of DHK. Furthermore, levels of nitric oxide (NO), malondialdehyde (MDA) and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) in serum were measured to study effects of DHK on oxidative stress in ZDF rats. In addition, body weight, lipidic indexes and insulin level were also assessed. RESULTS DHK combined with metformin significantly reversed the prolongation of latency times of flash electroretinogram (FERG) and oscillatory potentials (OPs) in diabetic rats. Furthermore, DHK alone or combined with metformin showed a remarkable suppression of retinal neovascularization and amelioration of retinal internal limiting membrane morphology. Moreover, DHK alone or plus metformin reduced FBG (P<0.05), HbA1c (P<0.01) and MDA (P<0.01) levels in diabetic rats. In addition, reductions in levels of triglycerides (TG) (P<0.01) and low density lipoprotein cholesterol (LDL-c) (P<0.01 and P<0.05, respectively) were also observed in diabetic rats treated with DHK alone or plus metformin. CONCLUSION DHK in combination with metformin had a preventive and therapeutic effect on DR in type-2 diabetic rats, and the possible mechanisms may be alleviating hyperglycemia, reducing oxidative stress and improving lipid metabolism. PMID:26682154

  16. Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rats.

    PubMed

    Brown, A A; Xu, T; Arroyo, E J; Levinson, S R; Brophy, P J; Peles, E; Scherer, S S

    2001-07-15

    We examined the organization of the molecular components of the nodal region in spontaneously diabetic BB-Wistar rats. Frozen sections and teased fibers from the sciatic nerves were immunostained for nodal (voltage-gated Na(+) channels, ankyrin(G), and ezrin), paranodal (contactin, Caspr, and neurofascin 155 kDa), and juxtaparanodal (Caspr2, the Shaker-type K(+) channels Kv1.1 and Kv1.2, and their associated subunit Kvbeta2) proteins. All of these proteins were properly localized in myelinated fibers from rats that had been diabetic for 15-44 days, compared to age-matched, nondiabetic animals. These results demonstrate that the axonal membrane is not reorganized, so nodal reorganization is not likely to be the cause of nerve conduction slowing in this animal model of acute diabetes. PMID:11438983

  17. Polydatin attenuates AGEs-induced upregulation of fibronectin and ICAM-1 in rat glomerular mesangial cells and db/db diabetic mice kidneys by inhibiting the activation of the SphK1-S1P signaling pathway.

    PubMed

    Chen, Cheng; Huang, Kaipeng; Hao, Jie; Huang, Junying; Yang, Zhiying; Xiong, Fengxiao; Liu, Peiqing; Huang, Heqing

    2016-05-15

    We previously demonstrated that activation of sphingosine kinase 1 (SphK1)- sphingosine 1- phosphate (S1P) signaling pathway by high glucose (HG) plays a pivotal role in increasing the expression of fibronectin (FN), an important fibrotic component, by promoting the DNA-binding activity of transcription factor activator protein 1 (AP-1) in glomerular mesangial cells (GMCs) under diabetic conditions. As a multi-target anti-oxidative drug, polydatin (PD) has been shown to have renoprotective effects on experimental diabetes. However, whether PD could resist diabetic nephropathy (DN) by regulating SphK1-S1P signaling pathway needs further investigation. Here, we found that PD significantly reversed the upregulated FN and ICAM-1 expression in GMCs exposed to AGEs. Simultaneously, PD dose-dependently inhibited SphK1 levels at the protein expression and kinase activity and attenuated S1P production under AGEs treatment conditions. In addition, PD reduced SphK activity in GMCs transfected with wild-type SphK(WT) plasmid and significantly suppressed SphK1-mediated increase of FN and ICAM-1 levels under normal conditions. Furthermore, we found that the AGEs-induced upregulation of phosphorylation of c-Jun at Ser63 and Ser73 and c-Fos at Ser32, DNA-binding activity and transcriptional activity of AP-1 were blocked by PD. In comparison with db/db model group, PD treatment suppressed SphK1 levels (mRNA, protein expression, and activity) and S1P production, reversed the upregulation of FN, ICAM-1, c-Jun, and c-Fos in the kidney tissues of diabetic mice, and finally ameliorated renal injury in db/db mice. These findings suggested that the downregulation of SphK1-S1P signaling pathway is probably a novel mechanism by which PD suppressed AGEs-induced FN and ICAM-1 expression and improved renal dysfunction of diabetic models. PMID:26948947

  18. Protein turnover in adipose tissue from fasted or diabetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  19. Attenuation of Diabetic Conditions by Sida rhombifolia in Moderately Diabetic Rats and Inability to Produce Similar Effects in Severely Diabetic in Rats

    PubMed Central

    Chaturvedi, Padmaja; Kwape, Tebogo Elvis

    2015-01-01

    Objectives: This study was done out to evaluate the effects of Sida rhombifolia methanol extract (SRM) on diabetes in moderately diabetic (MD) and severely diabetic (SD) Sprague-Dawley rats. Methods: SRM was prepared by soaking the powdered plant material in 70% methanol and rota evaporating the methanol from the extract. Effective hypoglycemic doses were established by performing oral glucose tolerance tests (OGTTs) in normal rats. Hourly effects of SRM on glucose were observed in the MD and the SD rats. Rats were grouped, five rats to a group, into normal control 1 (NC1), MD control 1 (MDC1), MD experimental 1 (MDE1), SD control 1 (SDC1), and SD experimental 1 (SDE1) groups. All rats in the control groups were administered 1 mL of distilled water (DW). The rats in the MDE1 and the SDE1 groups were administered SRM orally at 200 and 300 mg/kg body weight (BW), respectively, dissolved in 1 mL of DW. Blood was collected initially and at intervals of 1 hour for 6 hours to measure blood glucose. A similar experimental design was followed for the 30-day long-term trial. Finally, rats were sacrificed, and blood was collected to measure blood glucose, lipid profiles, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH). Results: OGTTs indicated that two doses (200 and 300 mg/kg BW) were effective hypoglycemic doses in normal rats. Both doses reduced glucose levels after 1 hour in the MDE1 and the SDE1 groups. A long-term trial of SRM in the MD group showed a reduced glucose level, a normal lipid profile, and normal GSH and TBARS levels. In SD rats, SRM had no statistically significant effects on these parameters. Normal weight was achieved in the MD rats, but the SD rats showed reduced BW. Conclusion: The study demonstrates that SRM has potential to alleviate the conditions of moderate diabetic, but not severe diabetes. PMID:26998385

  20. Glycemic control with insulin prevents progression of dental caries and caries-related periodontitis in diabetic WBN/KobSlc rats.

    PubMed

    Nakahara, Yutaka; Sano, Tomoya; Kodama, Yasushi; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2013-07-01

    We have previously reported that dental caries progress in spontaneously and chemically induced diabetic rodent models. The aim of this study was to clarify the relationship between hyperglycemia and dental caries by evaluating the preventive effect of glycemic control with insulin on the progression of the lesions in diabetic rats. Male WBN/KobSlc rats aged 15 weeks were divided into groups of spontaneously diabetic rats (intact group), spontaneously diabetic rats with insulin treatment (INS group), alloxan-induced prolonged diabetic rats (AL group), and alloxan-induced prolonged diabetic rats with insulin treatment (AL + INS group). The animals were killed at 90 weeks of age, and their oral tissue was examined. Dental caries and periodontitis were frequently detected in the intact group, and the lesions were enhanced in the AL group (in which there was an increased duration of diabetes). Meanwhile, glycemic control with insulin reduced the incidence and severity of dental caries and periodontitis in the INS group, and the effects became more pronounced in the AL + INS group. In conclusion, glycemic control by insulin prevented the progression of dental caries and caries-related periodontitis in the diabetic rats.

  1. Xiaokening stimulates endothelial nitric oxide release in diabetic rats

    PubMed Central

    Liu, Hong; Liu, Lei; Wei, Qunli; Cui, Jie; Yan, Changdong; Wang, Xin; Wu, Yongping

    2015-01-01

    INTRODUCTION Diabetes mellitus induces microangiopathic changes that lead to endothelial dysfunction. This study investigated the effect of Xiaokening, a type of Chinese compound medicine, on the mesenteric arteriolar endothelial cell function of diabetic rats and its underlying mechanism. METHODS Diabetes mellitus was induced in rat models via intraperitoneal injection of 60 mg/kg streptozotocin and observed over three weeks. Mesenteric arterioles, which were isolated in a cannulated and pressurised state, were incubated with intravascular injections of 1, 3 or 5 g/L Xiaokening for 24, 48 or 72 hours. The effects of Xiaokening on the release of nitric oxide (NO) on the mesenteric arterioles were detected under shear stress of 1, 10 and 20 dyn/cm2. Biochemical methods were used to determine the activities of superoxide dismutase (SOD) and xanthine oxidase (XO). The expressions of endothelial NO synthase (eNOS), SOD and XO in the mesenteric arterioles were assessed using Western blot. RESULTS Compared to normal rat arterioles, less NO was released in the mesenteric arterioles of diabetic rats. Xiaokening was found to have a concentration- and time-dependent effect on NO release; when the shear stress was increased, there was a gradual increase in the release of NO. Compared to normal arterioles, the expression of eNOS in the mesenteric arterioles of diabetic rats was lower. Incubation with Xiaokening increased SOD activity and expression, and decreased XO activity and expression in the mesenteric arterioles of the diabetic rats. CONCLUSION Xiaokening was able to significantly increase NO release and improve the endothelial function of mesenteric arterioles through antioxidative mechanisms. PMID:26243977

  2. [Mechanism of inhibition of hypothalamic pituitary-ovarian function in streptozotocin-diabetic mature female rats].

    PubMed

    Taniguchi, Y; Hasegawa, Y; Igarashi, M

    1984-04-01

    In order to clarify the mechanism of the failure of reproductive function in diabetic rats, the hypothalamic pituitary-ovarian function in streptozotocin-induced diabetic mature female rats was investigated. Estrous cycle patterns were disturbed in diabetic rats and these rats showed constant diestrus. In diabetic rats no preovulatory LH or FSH-surge were observed on presumed proestrus, and the number of ovulated ova and the weights of ovary and uterus were significantly less than those seen in control rats on presumed estrus. The response of the pituitary gland to LH-RH in diabetic rats and diabetic castrated rats was not significantly different from that in control rats on diestrous day and castrated control rats, respectively. However, the response of the hypothalamic-pituitary axis to steroidal feedback in diabetic castrated rats was significantly less than that in castrated control rats. The number of ovulated ova and ovarian growth induced by hCG in diabetic rats were also significantly lower than those in control rats. These results indicate that the impaired site in streptozotocin diabetic rats is not the pituitary gland, but the ovary and hypothalamic-pituitary function.

  3. Myenteric neurons and intestinal mucosa of diabetic rats after ascorbic acid supplementation

    PubMed Central

    de Freitas, Priscila; Natali, Maria Raquel Marçal; Pereira, Renata Virginia Fernandes; Neto, Marcilio Hubner Miranda; Zanoni, Jacqueline Nelisis

    2008-01-01

    AIM: To investigate the effect of ascorbic acid (AA) dietary supplementation on myenteric neurons and epithelial cell proliferation of the jejunum of adult rats with chronic diabetes mellitus. METHODS: Thirty rats at 90 d of age were divided into three groups: Non-diabetic, diabetic and diabetic treated with AA (DA) (1 g/L). After 120 d of treatment with AA the animals were killed. The myenteric neurons were stained for myosin-V and analyzed quantitatively in an area of 11.2 mm2/animal. We further measured the cellular area of 500 neurons per group. We also determined the metaphasic index (MI) of the jejunum mucosa layer of about 2500 cells in the intestinal crypts, as well as the dimensions of 30 villi and 30 crypts/animal. The data area was analyzed using the Olympus BX40 microscope. RESULTS: There was an increase of 14% in the neuronal density (792.6 ± 46.52 vs 680.6 ± 30.27) and 4.4% in the cellular area (303.4 ± 5.19 vs 291.1 ± 6.0) respectively of the diabetic group treated with AA when compared to control diabetic animals. There were no significant differences in MI parameters, villi height or crypt depths among the groups. CONCLUSION: Supplementation with AA in the diabetic animal promoted moderate neuroprotection. There was no observation of alteration of the cellular proliferation of the jejunum mucosa layer of rats with chronic diabetes mellitus with or without supplementation with AA. PMID:19030205

  4. Characterization of hearing loss in aged type II diabetics.

    PubMed

    Frisina, Susan T; Mapes, Frances; Kim, SungHee; Frisina, D Robert; Frisina, Robert D

    2006-01-01

    Presbycusis - age-related hearing loss - is the number one communicative disorder and a significant chronic medical condition of the aged. Little is known about how type II diabetes, another prevalent age-related medical condition, and presbycusis interact. The present investigation aimed to comprehensively characterize the nature of hearing impairment in aged type II diabetics. Hearing tests measuring both peripheral (cochlea) and central (brainstem and cortex) auditory processing were utilized. The majority of differences between the hearing abilities of the aged diabetics and their age-matched controls were found in measures of inner ear function. For example, large differences were found in pure-tone audiograms, wideband noise and speech reception thresholds, and otoacoustic emissions. The greatest deficits tended to be at low frequencies. In addition, there was a strong tendency for diabetes to affect the right ear more than the left. One possible interpretation is that as one develops presbycusis, the right ear advantage is lost, and this decline is accelerated by diabetes. In contrast, auditory processing tests that measure both peripheral and central processing showed fewer declines between the elderly diabetics and the control group. Consequences of elevated blood sugar levels as possible underlying physiological mechanisms for the hearing loss are discussed.

  5. Hypoglycaemic effect of galactooligosaccharides in alloxan-induced diabetic rats.

    PubMed

    Sangwan, Vikas; Tomar, Sudhir K; Ali, Babar; Singh, Ram R B; Singh, Ashish K

    2015-02-01

    This study was conducted to assess the effect of prebiotic galactooligosaccharides (GOS) on alloxan-induced diabetes in male Sprague-Dawley (SD) rats. Diabetes was induced by administration of alloxan (100 mg/kg) and rats were divided in 4 groups: normal control group (NCG), prebiotic control group (PCG), diabetic control group (DCG) and diabetic prebiotic group (DPG). While PCG and DPG were fed with GOS supplemented (10% w/w) diet, NCG and DCG were administered with basal diet. Rats were sacrificed after 42 d for collection of blood and liver. Faecal samples were collected at the interval of 7 d throughout the study for measurement of lactobacilli and coliform count. Feeding of GOS decreased or delayed the severity of diabetes by amelioration of diabetes associated markers including fasting blood glucose, haemoglobin, glycosylated haemoglobin triglycerides, total cholesterol, low density lipoproteins, creatinine and urea. GOS was also found to improve the levels of antioxidative enzymes (superoxide dismutase, catalase and glutathione peroxidase) in liver and blood. Improvement in lactobacilli count along with a concomitant decrease in coliform count was observed in GOS fed groups.

  6. Metabolic and neurochemical profiles in insulin-treated diabetic rats.

    PubMed

    Bellush, L L; Reid, S G

    1994-01-01

    Plasma glucose concentration was measured at 3-h intervals in streptozotocin-induced diabetic rats placed on various insulin replacement regimens using three different kinds of insulin. High insulin dosages produced at least periodic hypoglycemia, even though there were no overt signs of insulin overdose. Low- and single-dose regimens produced periods of hyperglycemia. Both high and low doses of protamine zinc insulin normalized diabetes-induced reductions in 5-hydroxyindole-3-acetic acid [5-HIAA; the principal metabolite of 5-hydroxytryptamine (5-HT)] and 5-HT turnover (5-HIAA/5-HT), despite the failure of the low-dose regimen to normalize plasma glucose. Diabetic rats evidenced continued hyperphagia and hyperdipsia during insulin treatment, and insulin treatment also induced hyperphagia and excessive weight gain in nondiabetic rats. Insulin treatment only partially normalized diabetes-induced adrenal hypertrophy. Adrenal hypertrophy is an indication of a continued stresslike physiological state in diabetes even during insulin therapy. This state may be involved in the enhanced risk in diabetic humans for development of anxiety disorders and clinical depression. PMID:7508209

  7. Centella asiatica Attenuates Diabetes Induced Hippocampal Changes in Experimental Diabetic Rats

    PubMed Central

    Srinivasarao, Nelli; Swapna Rekha, Somesula; Muniandy, Sekaran

    2014-01-01

    Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ-) induced adult male diabetic rats received 100 and 200 mg/kg/day body weight (b.w) C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na+/K+-, Ca2+- and Mg2+-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-α; interleukin, IL-6; and interleukin, IL-1β) and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx) were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition. PMID:25161691

  8. Anti-diabetic effect of Capparis spinosa L. root extract in diabetic rats

    PubMed Central

    Kazemian, Mostafa; Abad, Mansur; Haeri, Mohammad reza; Ebrahimi, Mansoor; Heidari, Reza

    2015-01-01

    Objective: Diabetes mellitus is the most common metabolic disorders with severe impact on quality of life. Reducing serum glucose levels and normalization of serum lipid is of great clinical importance for treating diabetes. To our knowledge, there are not any evidences about the anti-diabetic action of capparis spinosa root. In the present study the effects of the C. spinosa root extract on diabetic metabolic disorders have been studied in experimental diabetes. Materials and Methods: Rats were divided into six groups: normal control (NC), diabetic control (DC), diabetic rats receiving 0.2, 0.4 g/kg of plant extract or 0.6 mg/kg glibenclamide (groups D0.2, D0.4 or DG respectively). A normal group of rats was also designed to receive 0.2 g/kg of plant extract (N0.2). Rats were rendered diabetic (streptozotocin 60 mg/kg, i.p.) and treated with 0.2, 0.4 g/ kg of plant extract or glibenclamide for four weeks. At the end of the experiment, blood was drawn through heart puncture under deep anesthesia. Weight was measured weekly, glucose levels were measured at the first and fourth week and lipid profiles, insulin and liver enzymes at the end of the study. Results: Glucose levels significantly decreased after treating with plant extract (p=0.003). However, insulin levels did not increase in any treating groups. Plant extract could significantly raise HDL and reduce levels of LDL and liver enzymes (ALT and ALP). Conclusion: These results showed that C. spinosa root extract could improve diabetic related metabolic derangement such as hyperglycemia, dyslipidemia, and elevated liver markers in an insulin-independent manner. PMID:26445712

  9. Garlic and Resveratrol Attenuate Diabetic Complications, Loss of β-Cells, Pancreatic and Hepatic Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Kaur, Gagandeep; Padiya, Raju; Adela, Ramu; Putcha, Uday K.; Reddy, G. S.; Reddy, B. R.; Kumar, K. P.; Chakravarty, Sumana; Banerjee, Sanjay K.

    2016-01-01

    The study was aimed at finding the effect of garlic and resveratrol on loss of β-cells and diabetic complication in streptozotocin (STZ)-induced Type-I diabetic rats. Rats were injected with single dose STZ (50 mg/kg, i.p.) for induction of type 1 diabetes (Dia) and compared with control group. Rats from third (Dia+Gar), fourth (Dia+Resv), and fifth (Dia+Met) groups were fed raw garlic homogenate (250 mg/kg/day), resveratrol (25 mg/kg/day), and metformin (500 mg/kg/day) orally, respectively, for a period of 4 weeks. Diabetic group had decreased serum insulin and hydrogen sulfide levels along with increased blood glucose and glycated hemoglobin, triglyceride, uric acid, and nitric oxide levels. Significant (p < 0.05) increase in pancreatic and hepatic TBARS, conjugated dienes, nitric oxide, and AGE level and significant (p < 0.05) decrease in SOD, catalase, H2S, GSH level were observed in diabetic group. Administration of garlic, resveratrol, and metformin significantly (p < 0.05) normalized most of the altered metabolic and oxidative stress parameters as well as histopathological changes. Administration of garlic, resveratrol, and metformin in diabetic rat decreases pancreatic β-cell damage and hepatic injury. Our data concluded that administration of garlic showed more promising effect in terms of reducing oxidative stress and pathological changes when compared to resveratrol and metformin groups. PMID:27790139

  10. Microarray analysis of thioacetamide-treated type 1 diabetic rats

    SciTech Connect

    Devi, Sachin S.; Mehendale, Harihara M. . E-mail: mehendale@ulm.edu

    2006-04-01

    It is well known that diabetes imparts high sensitivity to numerous hepatotoxicants. Previously, we have shown that a normally non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats due to inhibited tissue repair allowing progression of liver injury. On the other hand, DB rats exposed to 30 mg TA/kg exhibit delayed tissue repair and delayed recovery from injury. The objective of this study was to investigate the mechanism of impaired tissue repair and progression of liver injury in TA-treated DB rats by using cDNA microarray. Gene expression pattern was examined at 0, 6, and 12 h after TA challenge, and selected mechanistic leads from microarray experiments were confirmed by real-time RT-PCR and further investigated at protein level over the time course of 0 to 36 h after TA treatment. Diabetic condition itself increased gene expression of proteases and decreased gene expression of protease inhibitors. Administration of 300 mg TA/kg to DB rats further elevated gene expression of proteases and suppressed gene expression of protease inhibitors, explaining progression of liver injury in DB rats after TA treatment. Inhibited expression of genes involved in cell division cycle (cyclin D1, IGFBP-1, ras, E2F) was observed after exposure of DB rats to 300 mg TA/kg, explaining inhibited tissue repair in these rats. On the other hand, DB rats receiving 30 mg TA/kg exhibit delayed expression of genes involved in cell division cycle, explaining delayed tissue repair in these rats. In conclusion, impaired cyclin D1 signaling along with increased proteases and decreased protease inhibitors may explain impaired tissue repair that leads to progression of liver injury initiated by TA in DB rats.

  11. Depot-Specific Changes in Fat Metabolism with Aging in a Type 2 Diabetic Animal Model.

    PubMed

    Park, Se Eun; Park, Cheol-Young; Choi, Jung Mook; Chang, Eugene; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki Won; Park, Sung Woo; Kang, Eun Seok; Lee, Hyun Chul; Cha, Bong Soo

    2016-01-01

    Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic dysfunction. PPARγ agonist was reported to improve insulin sensitivity by redistributing fat from visceral fat to subcutaneous fat. The purpose of this study was to investigate the underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 diabetic animal model and through which PPARγ activation modulates aging-related fat tissue distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2 diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcutaneous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous fat weight (V/S ratio) increased. Aging significantly increased the mRNA expression of genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin 1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than subcutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxidation were increased, whereas the mRNA levels of genes associated with energy expenditure showed no significant change during aging. PPARγ agonist treatment in OLETF rats resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance. The genes involved in lipogenesis decreased in visceral fat of the PPARγ agonist-treated rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation.

  12. Depot-Specific Changes in Fat Metabolism with Aging in a Type 2 Diabetic Animal Model

    PubMed Central

    Park, Se Eun; Choi, Jung Mook; Chang, Eugene; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki Won; Park, Sung Woo; Kang, Eun Seok; Lee, Hyun Chul

    2016-01-01

    Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic dysfunction. PPARγ agonist was reported to improve insulin sensitivity by redistributing fat from visceral fat to subcutaneous fat. The purpose of this study was to investigate the underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 diabetic animal model and through which PPARγ activation modulates aging-related fat tissue distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2 diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcutaneous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous fat weight (V/S ratio) increased. Aging significantly increased the mRNA expression of genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin 1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than subcutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxidation were increased, whereas the mRNA levels of genes associated with energy expenditure showed no significant change during aging. PPARγ agonist treatment in OLETF rats resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance. The genes involved in lipogenesis decreased in visceral fat of the PPARγ agonist-treated rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation. PMID:26894429

  13. Enzyme studies in the articular cartilage of diabetic rats and of rats bearing transplanted pancreatic islets.

    PubMed

    Silberberg, R; Hirshberg, G E; Lesker, P

    1977-08-01

    The articular cartilage of normal rats, of rats made diabetic with streptozotocin, and of rats made diabetic with streptozotocin and subsequently transplanted with isologous pancreatic islets was examined for the activities of enzymes engaged in the synthesis and degradation of glycosaminoglycans (mucopolysaccharides). The activities assayed were those of the degrading enzymes B-glucuronidase, B-acetyglucosaminidase, B-acetylgalactosaminidase, B-galactosidase, and those active in synthesis: uridine diphosphate dehydrogenase, glucose-6-phosphate dehyrogenase, and phosphofructokinase. In the diabetic animals all enzyme activities were increased, thos of the degrading enzymes more than those of the others. Implantation of pancreatic islets reversed the changes produced by diabetes, enzyme activities returning to near-normal levels. PMID:142034

  14. Modeling Diabetes Disease Progression and Salsalate Intervention in Goto-Kakizaki Rats

    PubMed Central

    Cao, Yanguang; DuBois, Debra C.; Sun, Hao; Almon, Richard R.

    2011-01-01

    Type 2 diabetes mellitus (T2DM) arises owing to insulin resistance and β-cell dysfunction. Chronic inflammation is widely identified as a cause of T2DM. The Goto-Kakizaki (GK) rat is a spontaneous rodent model for T2DM with chronic inflammation. The purpose of this study was to characterize diabetes progression in GK rats and evaluate the potential role of the anti-inflammatory agent salsalate. The GK rats were divided into control groups (n = 6) and salsalate treatment groups (n = 6), which were fed a salsalate-containing diet from 5 to 21 weeks of age. Blood glucose and salicylate concentrations were measured once a week. Glucose concentrations showed a biphasic increase in which the first phase started at approximately 5 weeks, resulting in an increase by 15 to 25 mg/dl and a second phase at 14 to 15 weeks with an upsurge of more than 100 mg/dl. A mechanism-based model was proposed to describe the natural diabetes progression and salsalate pharmacodynamics by using a population method in S-ADAPT. Two transduction cascades were applied to mimic the two T2DM components: insulin resistance and β-cell dysfunction. Salsalate suppressed both disease factors by a fraction of 0.622 on insulin resistance and 0.134 on β-cell dysfunction. The substantial alleviation of diabetes by salsalate supports the hypothesis that chronic inflammation is a pathogenic factor of diabetes in GK rats. In addition, body weight and food intake were measured and further modeled by a mechanism-based growth model. Modeling results suggest that salsalate reduces weight gain by enhancing metabolic rate and energy expenditure in both GK and Wister-Kyoto rats. PMID:21903749

  15. Comparison of Age of Onset and Frequency of Diabetic Complications in the Very Elderly Patients with Type 2 Diabetes

    PubMed Central

    2016-01-01

    Background The prevalence of type 2 diabetes in elderly people has increased dramatically in the last few decades. This study was designed to clarify the clinical characteristics of type 2 diabetes in patients aged ≥80 years according to age of onset. Methods We reviewed the medical records of 289 patients aged ≥80 years with type 2 diabetes at the outpatient diabetes clinics of Kangwon National University Hospital from September 2010 to June 2014. We divided the patients into middle-age-onset diabetes (onset before 65 years of age) and elderly-onset diabetes (onset at 65+ years of age). Results There were 141 male and 148 female patients. The patients had a mean age of 83.2±2.9 years and the mean duration of diabetes was 14.3±10.4 years. One hundred and ninety-nine patients had elderly-onset diabetes. The patients with elderly-onset diabetes had a significantly lower frequency of diabetic retinopathy and nephropathy, lower serum creatinine levels, lower glycated hemoglobin (HbA1c) levels, and similar coronary revascularization and cerebral infarction rates compared to those with middle-age-onset diabetes. There was no frequency difference in coronary revascularization and cerebral infarction and HbA1c levels between three subgroups (<5, 5 to 15, and ≥15 years) of diabetes duration in elderly onset diabetes. However, both in the elderly onset diabetes and middle-age-onset diabetes, the cumulative incidence of retinopathy was increasing rapidly according to the duration of diabetes. Conclusion We report that individuals with elderly-onset diabetes have a lower frequency of diabetic retinopathy and nephropathy and similar cardiovascular complications compared to those with middle-age-onset diabetes. PMID:27586451

  16. Lead exposure causes thyroid abnormalities in diabetic rats.

    PubMed

    Zadjali, Salah Al; Nemmar, Abderrahim; Fahim, Mohamed Abdelmonem Ay; Azimullah, Sheikh; Subramanian, Dhanasekaran; Yasin, Javed; Amir, Naheed; Hasan, Mohammed Yousif; Adem, Abdu

    2015-01-01

    Lead is a widely-spread environmental pollutant and a commonly-used industrial chemical that can cause multisystemic adverse health effects. However, the effects of lead exposure on diabetic animals have not been reported so far. The aim of this study is to evaluate the effects of lead exposure on thyroid, renal and oxidative stress markers in diabetic Wistar rats. Diabetes was induced with an intraperitoneal (i.p.) injection of streptozocin (STZ). Six weeks later, rats were exposed i.p. to either distilled water (control group) or 25, 50 and 100 mg/kg of lead acetate (treatment groups). We found a positive relationship between the administered doses of lead acetate and its measured levels in blood samples (P < 0.01). Treatment of diabetic animals with lead acetate resulted in significant weight loss (P < 0.001). It also caused an increase in thyroid stimulating hormone levels (P < 0.05) and reductions in thyroxine (P < 0.05) and triiodothyronine levels (P < 0.01), a clinical picture consistent with hypothyroidism. Lead acetate exposure increased urea levels (P < 0.05) and caused a significant decrease in creatinine (P < 0.05). Besides, while the concentrations of malondialdehyde were not affected, glutathione stores were depleted (P < 0.01); in response to lead exposure. In conclusion, exposure of diabetic rats to lead acetate resulted in weight loss, clinical hypothyroidism, renal damage and oxidative stress. PMID:26221254

  17. Acute and subchronic antihyperglycemic activities of Bowdichia virgilioides roots in non-diabetic and diabetic rats

    PubMed Central

    Silva, Ana Carolina Mazei; dos Santos, Maísa Pavani; de França, Suélem Aparecida; da Silva, Virginia Claudia; da Silva, Luiz Everson; de Figueiredo, Uir Santana; Dall’Oglio, Evandro Luiz; Júnior, Paulo Teixeira de Sousa; Lopes, Carbene França; Baviera, Amanda Martins; Kawashita, Nair Honda

    2015-01-01

    Aim: The present study was undertaken to evaluate the acute and subchronic antihyperglycemic effects of methanolic extract of Bowdichia virgilioides root bark of B. virgilioides in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: The extract (100, 250 or 500 mg/kg) was orally administered to male Wistar diabetic (STZ, 42 mg/kg i.v.) and non-diabetic rats into two main protocols: (i) subchronic experiments, where animals were treated for 21 days with B. virgilioides extract and the following parameters were evaluated: Body weight, fluid and food intake (determined daily), urinary glucose and urea (every 3 days) and glycemia (every 5 days). At the end of the experimental period, skeletal muscles (extensor digitorum longus [EDL] and soleus), retroperitoneal and epididymal white adipose tissues were collected and weighed; liver samples were used for the determination of the lipid and glycogen contents; (ii) acute experiments, which evaluated the alterations on fasting and post-prandial glycemia and on glucose tolerance using the oral glucose tolerance test (OGTT). Results: In subchronic experiments, the treatment with B. virgilioides extract did not change any parameter evaluated in diabetic and non-diabetic animals. On fasting and post-prandial glycemia, the extract treatment did not promote changes in the glycemia values in diabetic or non-diabetic animals. In OGTT, the treatment with 500 mg/kg B. virgilioides extract reduced the hyperglycemia peak after a glucose overload, when compared with non-treated diabetic animals, resulting in a lower area under curve. Conclusion: The results of our work indicate that B. virgilioides root extract promotes an acute antihyperglycemic effect in STZ-diabetic rats; this effect probably occurs through an inhibition of the intestinal glucose absorption. The continuity of the research is necessary to elucidate these possibilities. PMID:26401386

  18. The effect of food hardness on the development of dental caries in alloxan-induced diabetic rats.

    PubMed

    Nakahara, Yutaka; Sano, Tomoya; Kodama, Yasushi; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2013-01-01

    We have previously shown that dental caries may be produced in diabetic rodent models fed with noncariogenic standard diets; however, many studies usually add large amounts of sugar to the diet to induce dental caries. Moreover, the physical properties of cariogenic diets have been reported as an important factor in the formation of caries. The aim of this study was to clarify the effect of the hardness of non-cariogenic diets on the development of dental caries in diabetic rodents. Seven-week-old female F344 rats were divided into 4 groups: intact rats fed with a standard pelletized or powdered diet and alloxan-induced diabetic rats fed with a standard pelletized or powdered diet. All of the rats were sacrificed at 52 weeks of age for morphological examinations on their dental tissue. Dental caries had developed and extended to all the molars in the diabetic rats that were fed with both the pelletized and powdered diets. Moreover, the lesion was significantly enhanced in the powdered diet group compared to that in the pelletized diet group. In conclusion, food hardness is an important factor influencing the development of dental caries in diabetic rats.

  19. Effect of Melatonin Intake on Oxidative Stress Biomarkers in Male Reproductive Organs of Rats under Experimental Diabetes.

    PubMed

    Gobbo, Marina G; Costa, Carolina F Pereira; Silva, Danilo G Humberto; de Almeida, Eduardo A; Góes, Rejane M

    2015-01-01

    This study investigated the antioxidant system response of male reproductive organs during early and late phases of diabetes and the influence of melatonin treatment. Melatonin was administered to five-week-old Wistar rats throughout the experiment, in drinking water (10 μg/kg b.w). Diabetes was induced at 13 weeks of age by streptozotocin (4.5 mg/100 g b.w., i.p.) and animals were euthanized with 14 or 21 weeks old. Activities of catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx), and lipid peroxidation were evaluated in prostate, testis, and epididymis. The enzymes activities and lipid peroxidation were not affected in testis and epididymis after one or eight weeks of diabetes. Prostate exhibited a 3-fold increase in GPx activity at short-term diabetes and at long-term diabetes there were 2- and 3-fold increase in CAT and GST, respectively (p ≤ 0.01). Melatonin treatment to healthy rats caused a 47% increase in epididymal GPx activity in 14-week-old rats. In prostate, melatonin administration normalized GST activity at both ages and mitigated GPx at short-term and CAT at long-term diabetes. The testis and epididymis were less affected by diabetes than prostate. Furthermore, melatonin normalized the enzymatic disorders in prostate demonstrating its effective antioxidant role, even at low dosages.

  20. Incentive relativity in middle aged rats.

    PubMed

    Justel, N; Mustaca, A; Boccia, M; Ruetti, E

    2014-01-24

    Response to a reinforcer is affected by prior experience with different reward values of that reward, a phenomenon known as incentive relativity. Two different procedures to study this phenomenon are the incentive downshift (ID) and the consummatory anticipatory negative contrast (cANC), the former is an emotional-cognitive protocol and the latter cognitive one. Aged rodents, as also well described in aged humans, exhibit alterations in cognitive functions. The main goal of this work was to evaluate the effect of age in the incentive' assessment using these two procedures. The results indicated that aged rats had an adequate assessment of the rewards but their performance is not completely comparable to that of young subjects. They recover faster from the ID and they had a cognitive impairment in the cANC. The results are discussed in relation to age-related changes in memory and emotion.

  1. Genetic Control of Differential Acetylation in Diabetic Rats

    PubMed Central

    Kaisaki, Pamela J.; Otto, Georg W.; McGouran, Joanna F.; Toubal, Amine; Argoud, Karène; Waller-Evans, Helen; Finlay, Clare; Caldérari, Sophie; Bihoreau, Marie-Thérèse; Kessler, Benedikt M.; Gauguier, Dominique; Mott, Richard

    2014-01-01

    Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-Kakizaki (GK) rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3 is down-regulated in GK rats compared to normoglycemic Brown Norway (BN) rats. We show first that a promoter SNP causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of expression. PMID:24743600

  2. Self–reported diabetes education among Chinese middle–aged and older adults with diabetes

    PubMed Central

    Xu, Hanzhang; Luo, Jianfeng; Wu, Bei

    2016-01-01

    Background To compare self–reported diabetes education among Chinese middle–aged and older adults with diabetes in three population groups: urban residents, migrants in urban settings, and rural residents. Methods We used data from the 2011 China Health and Retirement Longitudinal Study. The sample included 993 participants age 45 and older who reported having diabetes diagnosed from a health professional. We performed multilevel regressions performed to examine the associations between characteristics and different aspects of diabetes education received. Findings Our study shows that 20.24% of the participants received no diabetes education at all. Among those who received information, 46.82% of respondents with diabetes received weight control advice from a health care provider, 90.97% received advice on exercise, 60.37% received diet advice, 35.12% were spoken to smoking control, and only 17.89% of persons were informed of foot care. After controlling socioeconomic factors, life style, number of comorbidities and community factors, we found that compared with migrant population and rural residents, urban residents were more likely to receive diabetes education on diet. Urban residents were also more likely to obtain diabetes education and more aspects of diabetes education comparison with migrants and rural residents. Conclusions Our study suggests diabetes education is a serious concern in China, and a significant proportion of the participants did not receive advice on smoking control and foot care. Rural residents and migrants from rural areas received much less diabetes education compared with urban residents. Efforts to improve diabetes educations are urgently needed in China.

  3. Effect of diabetic duration on hemorheological properties and platelet aggregation in streptozotocin-induced diabetic rats

    PubMed Central

    Yeom, Eunseop; Byeon, Hyeokjun; Lee, Sang Joon

    2016-01-01

    Diabetes mellitus with abnormal glucose concentration is associated with changes in hemorheological properties, endothelial function, and platelets hyperactivity. Disturbances may significantly be responsible for diabetes-related vascular complications. In this study, hemorheological and hemodynamic properties were measured according to diabetic duration after streptozotocin treatment in rats. For ex vivo measurements, an extracorporeal model was adopted. Flow rate and blood viscosity were measured using a microfluidic device. Erythrocyte aggregation and morphological parameters of erythrocytes were measured by modified erythrocyte sedimentation rate and the phase-contrast holography under in vitro conditions. The platelet aggregation and mean pressure in the femoral artery were estimated under ex vivo conditions. Hemorheological properties including blood viscosity, erythrocyte aggregation and shape parameters for the control group are significantly different with those for diabetic groups. The changes with respect to diabetic duration were relatively unnoticeable. However, the platelet aggregation is strongly dependent on the diabetic duration. Based on these results, hyperglycemia exposure may induce hemorheological variations in early stages of diabetes mellitus. High platelet aggregation may become more pronounced according to the diabetic duration caused by variations in hemorheological properties resulting in endothelial dysfunction. This study would be helpful in understanding the effects of diabetic duration on biophysical properties. PMID:26898237

  4. Effect of long-term oral administration of green tea extract on weight gain and glucose tolerance in Zucker diabetic (ZDF) rats.

    PubMed

    Janle, Elsa M; Portocarrero, Carla; Zhu, Yongxin; Zhou, Qin

    2005-01-01

    There have been some claims that green tea reduces weight and lowers blood glucose in diabetes. Intraperitoneal injections of green tea catechins in diabetic rats have shown beneficial effects. To determine if oral administration of green tea would prevent development of diabetes, young Zucker diabetic rats were dosed with green tea extract containing 50-125 mg/kg of Epigallocatechin gallate (EGCG) starting at 7 weeks of age, before the appearance of excessive weight gain and glucose elevation. While there was a trend toward lower weight gain and average daily glucose, there was no statistically significant difference.

  5. Protective effect of compound K on diabetic rats.

    PubMed

    Shao, Xiaotong; Li, Na; Zhan, Jinzhuo; Sun, Hui; An, Liping; Du, Peige

    2015-02-01

    Purpose: Compound K (CK), the metabolic product of protopanaxadiol saponin in vivo, has many pharmacological activities. In this study, we discuss the preparation of CK, and its protective effect on kidneys of diabetic rats. CK was prepared from ginsenoside Rbt after transformation by 3-glucosidase, separation and purification by silica gel column chromatography. In the present study, we established a rat model of diabetes mellitus using high-fat diet and streptozotocin (STZ). After seven weeks of treatment, the levels of fasting blood glucose (FBG), total cholesterol (TC), total glycerin (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), blood urea nitrogen (BUN), uric acid (UA), serum creatinine (Scr), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-PX) were evaluated in normal and diabetic rats. Also, renal pathomorphism changes were observed by HE stain, and TGF-β1 protein expression in the renal tissue was measured by Western blot. The yield of CK was 14.55 mg/mL, which was higher than that of other methods. After seven weeks, CK could decrease FBG, TC, TG, LDL-C, BUN, UA, Scr and MDA of diabetic rats, while CK also enhanced HDL-C and GSH, SOD and GSH-PX. Additionally, CK improved the pathological changes and decreased TGF-β1 protein expression in the renal tissue. CK improved the pathological changes in the renal tissue, enhanced the antioxidant capacity, reduced the damage of TGF-β1 to renal tissue, and protected the diabetic rats.

  6. Protective Effects of Fufang Xueshuantong on Diabetic Retinopathy in Rats

    PubMed Central

    Duan, Huihui; Huang, Jianmei; Li, Wei; Tang, Minke

    2013-01-01

    The aim of this study was to evaluate the protective effects of Fufang Xueshuantong (FXT) on diabetic retinopathy in rats induced by streptozotocin (STZ). Diabetes was induced in Sprague-Dawley rats by a single injection of 60 mg/kg STZ. One week after STZ, FXT 0.525 g/kg or 1.05 g/kg was administrated to the rats by intragastric gavage (ig) once daily consecutively for 24 weeks. The control rats and untreated STZ rats received vehicle the same way. At the end of the experiment, the erythrocyte aggregation and blood viscosity were assayed. The retina vessel morphology was observed in retinal digestive preparations. Expression of occludin and intercellular adhesion molecule-1 (ICAM-1) in retina was measured by western blotting. Expression of vascular endothelial growth factor (VEGF) and pigment epithelium derived factor (PEDF) in retina was detected by immunohistochemistry. The activity of aldose reductase in retina was investigated with a NADPH oxidation method. The results showed that, in STZ rats, there were distinct lesions in retinal vessel, including decrease of pericytes and increase of acellular capillaries, together with dilatation of retinal veins. The expression of VEGF and ICAM-1 increased, while the expression of PEDF and occludin decreased. The activity of aldose reductase elevated, and the whole blood viscosity, plasma viscosity, and erythrocyte aggregation also increased after STZ stimulation. FXT 0.525 g/kg and 1.05 g/kg demonstrated significant protective effects against STZ induced microvessel lesion in the retina with increased pericytes and reduced acellular capillaries. FXT also reduced the expression of VEGF and ICAM-1 and enhanced the expression of PEDF and occludin in STZ insulted rats. The activity of aldose reductase, the whole blood viscosity, plasma viscosity, and erythrocyte aggregation also decreased after FXT treatment. The results demonstrated that FXT has protective effect on STZ induced diabetic retinopathy in rats. PMID

  7. Anti-diabetic properties of rice-based herbal porridges in diabetic Wistar rats.

    PubMed

    Senadheera, Senadheera Pathirannehelage Anuruddhika Subhashinie; Ekanayake, Sagarika; Wanigatunge, Chandanie

    2014-10-01

    The present study aims to investigate anti-hyperglycaemic, anti-hyperlipidaemic and toxic effects of long-term consumption of selected green leafy porridges in a streptozotocin-induced diabetic Wistar rat model. Porridges made with Asparagus racemosus Willd. (AR), Hemidesmus indicus (L) R. Br. W. T. Aiton (HI), Scoparia dulcis L. (SD) and coconut milk porridge (CM) were incorporated into diets of diabetic Wistar rats. Diabetic control (DM) and normal control groups (NC) were provided with standard rat diet. Fasting blood glucose (FBG), HbA1c , C reactive protein (CRP), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), liver enzymes and creatinine were measured. Feed and water intake among diabetic groups were significantly high when compared with those of NC (p < 0.05). All rats in SD (mean = 39 ± 19 g) and NC (mean = 114 ± 7 g) groups gained weight, whereas most rats in other diabetic groups lost weight. Among the diabetic groups, SD group had the lowest mean FBG, FBG increment percentage (45%) and HbA1c (5.8 ± 2.1). FBG increment percentage and HbA1c of SD group were not significantly different to those of NC (38%; 4.7 ± 0.7) (p > 0.05). Among the diabetic groups, lowest TC (119 ± 20.6 mg/dL) and highest HDL-C (33 ± 6.3 mg/dL) were also detected in SD group. Alanine transaminase and creatinine were not significantly different (p > 0.05) among diabetic groups but significant when compared with those of NC. When compared with those of NC, aspartate transaminase levels were significantly (p < 0.05) high in SD, CM and DM groups. Body weight : liver weight and body weight : pancreas weight ratios and CRP were not significantly different among all groups. The study proved that SD porridge reduced weight loss, elicited hypoglycaemic and hypolipidaemic properties, and caused no toxicity in diabetes-induced Wistar rats. PMID:24840113

  8. Vanadyl sulfate has prolonged insulin-like effects in the streptozotocin-diabetic rat

    SciTech Connect

    McNeill, J.H.; Cam. M.C.; Pederson, R.A.; Faun, J. )

    1991-03-15

    The effects of vanadyl sulfate in vivo were examined after 3 (DT3), 10 (DT3), 10 (DT10) and 17 (DT17) days post onset of diabetes. Wistar rats were made diabetic with streptozotocin and age-matched controls were administered vanadyl sulfate trihydrate ad libitum in the drinking water. At the concentration given, euglycemia was achieved in 44% of total DT rats without any increase in plasma insulin. The response rate was 33% in DT3, 64% in DT10 and 38% in DT17, without apparent toxicity over 5 months. Plasma cholesterol and triglycerides in the DT rats did not differ from control and were significantly lower than untreated diabetics (D). Oral glucose tolerance test performed at 5 months of treatment showed an improved glucose tolerance in the DT groups without substantial insulin release. The response rate was observed to be greater at higher concentrations. Subsequent to sustained euglycemia for 10 weeks and withdrawal from treatment for 20 weeks, several animals from the various groups maintained a state of euglycemia with normal oral glucose tolerance. This is in accordance with previous results from the authors' lab. Thus, oral vanadyl sulfate increases tissue sensitivity to insulin in response to an oral glucose load and normalizes various aberrations in plasma parameters after a two-week long diabetic state, which appear to be maintained for a significant period after treatment is withdrawn.

  9. Expression of beta1 integrins in glomerular tissue of Streptozotocin-induced diabetic rats.

    PubMed

    Regoli, M; Bendayan, M

    1999-01-01

    Based upon the importance of integrins as receptors for extracellular matrix components as well as transducers of extracellular signals, and since major alterations take place in the renal extracellular matrix during diabetes, it is important to study the role played by integrins in the development of the diabetic glomerulosclerosis. Expression of the beta1 subunit by renal glomerular cells was evaluated by biochemical and morphological means in short- and long-term diabetic rats. Western blots of isolated rat renal glomeruli demonstrated that the expression of beta1 increases along with age as well as with the hyperglycaemic state. These changes were significant as early as 6 weeks of hyperglycaemia. This was further demonstrated by immunocytochemistry, which revealed the presence of the beta1 subunit at the level of the plasma membranes of endothelial, epithelial, and mesangial cells. Quantitation of the immunolabelings confirmed the increased expression of beta1 under diabetic conditions. Further to this, expression of the focal adhesion kinase (FAK) was evaluated by immunoblotting showing little increase in diabetic conditions. On the other hand, testing the tyrosine phosphorylation of FAK, revealed significant increases in diabetes. To recover the fraction of FAK associated with the beta1 subunit, immunoprecipitation of isolated glomeruli homogenates was carried out with the anti-beta1 antibody. This demonstrated that the amounts of FAK co-precipitated with beta1, as well as its tyrosine-phosphorylation, are in fact reduced in diabetic conditions. Since the changes reported were observed at time points prior to any morphological alteration of the renal extracellular matrix, it appears that modifications in integrins and in their intracellular relays constitute early events that precede the onset of the diabetic nephropathy and must then be associated with the hyperglycaemic condition.

  10. Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG).

    PubMed

    Prasad, K

    2000-06-01

    Secoisolariciresinol diglucoside (SDG) isolated from flaxseed has antioxidant activity and has been shown to prevent hypercholesterolemic atherosclerosis. An investigation was made of the effects of SDG on the development of diabetes in diabetic prone BioBreeding rats (BBdp rats), a model of human type I diabetes [insulin dependent diabetes mellitus (IDDM)] to determine if this type of diabetes is due to oxidative stress and if SDG can prevent the incidence of diabetes. The rats were divided into three groups: Group I, BioBreeding normal rats (BBn rats) (n = 10); group II, BBdp untreated (n = 11); and group III, BBdp treated with SDG 22 mg/kg body wt, orally) (n = 14). Oxidative stress was determined by measuring lipid peroxidation product malondialdehyde (MDA) an index of level of reactive oxygen species in blood and pancreas; and pancreatic chemiluminescence (Pancreatic-CL), a measure of antioxidant reserve. Incidence of diabetes was 72.7% in untreated and 21.4% in SDG-treated group as determined by glycosuria and hyperglycemia. SDG prevented the development of diabetes by approximately 71%. Development of diabetes was associated with an increase in serum and pancreatic MDA and a decrease in antioxidant reserve. Prevention in development of diabetes by SDG was associated with a decrease in serum and pancreatic-MDA and an increase in antioxidant reserve. These results suggest that IDDM is mediated through oxidative stress and that SDG prevents the development of diabetes.

  11. Protective effects of sodium selenite on lead nitrate-induced hepatotoxicity in diabetic and non-diabetic rats.

    PubMed

    Kalender, Suna; Apaydin, Fatma Gökçe; Baş, Hatice; Kalender, Yusuf

    2015-09-01

    In the present study, the effect of sodium selenite on lead induced toxicity was studied in Wistar rats. Sodium selenite and lead nitrate were administered orally for 28 days to streptozotocin induced diabetic and non-diabetic rats. Eight groups of rats were used in the study: control, sodium selenite, lead nitrate, lead nitrate+sodium selenite, streptozotocin-induced diabetic-control, diabetic-sodium selenite, diabetic-lead nitrate, diabetic-lead nitrate+sodium selenite groups. Serum biochemical parameters, lipid peroxidation, antioxidant enzymes and histopathological changes in liver tissues were investigated in all groups. There were statistically significant changes in liver function tests, antioxidant enzyme activities and lipid peroxidation levels in lead nitrate and sodium selenite+lead nitrate treated groups, also in diabetic and non-diabetic groups. Furthermore, histopathological alterations were demonstrated in same groups. In the present study we found that sodium selenite treatment did not show completely protective effect on diabetes mellitus caused damages, but diabetic rats are more susceptible to lead toxicity than non-diabetic rats.

  12. The pituitary - Aging and spaceflown rats

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.

    1991-01-01

    Decrements in growth hormone (GH) release we observed in two spaceflight experiments and four tail-suspended rat studies mimic age-associated changes in the mammalian pituitary GH system seen by Meites and others. The spaceflight data suggest that formation of high molecular weight bioactive disulfide-linked aggregates of the 20 and 22K monomeric GH forms may be reduced in microgravity, thereby, reducing target tissue activity. Correlative studies to confirm spaceflight as a model for pituitary GH system aging should include: (1) investigation of mechanisms of intracellular hormone packaging, (2) consequences to biological activity of the hormone molecule, and (3) study of intracellular microtubule dynamics.

  13. Effect of Biophytum sensitivum on streptozotocin and nicotinamide-induced diabetic rats

    PubMed Central

    Ananda, Prabu K; Kumarappan, CT; Sunil, Christudas; Kalaichelvan, VK

    2012-01-01

    Objective To investigate the effect of aqueous solution of Biophytum sensitivum leaf extract (BSEt) on normal and streptozotocin (STZ)-nicotinamide-induced diabetic rats. Methods Diabetes was induced in adult male Wistar rats by the administration of STZ-nicotinamide (40, 110 mg/kg b.w., respectively) intraperitoneally. BSEt (200 mg/kg) was administered to diabetic rats for 28 days. The effect of extract on blood glucose, plasma insulin, total haemoglobin, glycosylated haemoglobin, liver glycogen and carbohydrate metabolism regulating enzymes of liver was studied in diabetic rats. Results BSEt significantly reduced the blood glucose and glycosylated haemoglobin levels and significantly increased the total haemoglobin, plasma insulin and liver glycogen levels in diabetic rats. It also increased the hexokinase activity and decreased glucose-6-phosphatase, fructose-1, 6-bisphosphatase activities in diabetic rats. Conclusions The results of our study suggest that BSEt possesses a promising effect on STZ-nicotinamide-induced diabetes. PMID:23569830

  14. Protection by vanadium, a contemporary treatment approach to both diabetes and focal cerebral ischemia in rats.

    PubMed

    Liu, Zhenquan; Li, Pengtao; Zhao, Dan; Tang, Huiling; Guo, Jianyou

    2012-01-01

    There is now substantial epidemiological evidence that diabetes is a risk factor for cerebrovascular disease. The protection by vanadium from focal cerebral ischemia in diabetic rats was studied in this paper. Rats with streptozotocin-induced diabetes were subjected to middle cerebral artery occlusion followed by 4 weeks of administration of 0.6 mg/ml sodium orthovanadate in drinking water. Vanadium significantly improved the outcome in diabetic rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. Vanadium reduces brain damage in streptozotocin-induced diabetic rats by imitating action of insulin.

  15. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats.

    PubMed

    Alkaladi, Ali; Abdelazim, Aaser Mohamed; Afifi, Mohamed

    2014-01-01

    The use of nanoparticles in medicine is an attractive proposition. In the present study, zinc oxide and silver nanoparticles were evaluated for their antidiabetic activity. Fifty male albino rats with weight 120 ± 20 and age 6 months were used. Animals were grouped as follows: control; did not receive any type of treatment, diabetic; received a single intraperitoneal dose of streptozotocin (100 mg/kg), diabetic + zinc oxide nanoparticles (ZnONPs), received single daily oral dose of 10 mg/kg ZnONPs in suspension, diabetic + silver nanoparticles (SNPs); received a single daily oral dose of SNP of 10 mg/kg in suspension and diabetic + insulin; received a single subcutaneous dose of 0.6 units/50 g body weight. Zinc oxide and silver nanoparticles induce a significant reduced blood glucose, higher serum insulin, higher glucokinase activity higher expression level of insulin, insulin receptor, GLUT-2 and glucokinase genes in diabetic rats treated with zinc oxide, silver nanoparticles and insulin. In conclusion, zinc oxide and sliver nanoparticles act as potent antidiabetic agents. PMID:24477262

  16. Effects of High Fat Feeding on Adipose Tissue Gene Expression in Diabetic Goto-Kakizaki Rats

    PubMed Central

    Xue, Bai; Nie, Jing; Wang, Xi; DuBois, Debra C; Jusko, William J; Almon, Richard R

    2015-01-01

    Development and progression of type 2 diabetes is a complex interaction between genetics and environmental influences. High dietary fat is one environmental factor that is conducive to the development of insulin-resistant diabetes. In the present report, we compare the responses of lean poly-genic, diabetic Goto-Kakizaki (GK) rats to those of control Wistar-Kyoto (WKY) rats fed a high fat diet from weaning to 20 weeks of age. This comparison included a wide array of physiological measurements along with gene expression profiling of abdominal adipose tissue using Affymetrix gene array chips. Animals of both strains fed a high fat diet or a normal diet were sacrificed at 4, 8, 12, 16, and 20 weeks for this comparison. The microarray analysis revealed that the two strains developed different adaptations to increased dietary fat. WKY rats decrease fatty acid synthesis and lipogenic processes whereas GK rats increase lipid elimination. However, on both diets the major differences between the two strains remained essentially the same. Specifically relative to the WKY strain, the GK strain showed lipoatrophy, chronic inflammation, and insulin resistance. PMID:26309393

  17. Salvianolic acid A protects against vascular endothelial dysfunction in high-fat diet fed and streptozotocin-induced diabetic rats.

    PubMed

    Yang, Xiu-Ying; Qiang, Gui-Fen; Zhang, Li; Zhu, Xiao-Ming; Wang, Shou-Bao; Sun, Lan; Yang, Hai-Guang; Du, Guan-Hua

    2011-10-01

    Salvianolic acid A (SalA) is one of the main active ingredients of Salvia miltiorrhizae. The objective of this study was to evaluate the effect of SalA on the diabetic vascular endothelial dysfunction (VED). The rats were given a high-fat and high-sucrose diet for 1 month followed by intraperitoneal injection of streptozotocin (30 mg/kg). The diabetic rats were treated with SalA (1 mg/kg, 90% purity) orally for 10 weeks after modeling, and were given a high-fat diet. Contractile and relaxant responses of aorta rings as well as the serum indications were measured. Our results indicated that SalA treatment decreased the level of serum Von Willebrand factor and ameliorated acetylcholine-induced relaxation and KCl-induced contraction in aorta rings of the diabetic rats. SalA treatment also reduced the serum malondialdehyde, the content of aortic advanced glycation end products (AGEs), and the nitric oxide synthase (NOS) activity as well as the expression of endothelial NOS protein in the rat aorta. Exposure of EA.hy926 cells to AGEs decreased the cell viability and changed the cell morphology, whereas SalA had protective effect on AGEs-induced cellular vitality. Our data suggested that SalA could protect against vascular VED in diabetes, which might attribute to its suppressive effect on oxidative stress and AGEs-induced endothelial dysfunction. PMID:21972802

  18. Autoimmunity in type 1 diabetes mellitus: a rat model

    SciTech Connect

    Liu, Z.

    1987-01-01

    In this study, we have sought to isolate in vitro, from acutely diabetic BB rats, cytotoxic T lymphocytes, which exhibit specific cytotoxicity toward islet cells. Thoracic duct lymphocytes (TDL) from acutely diabetic BB rats cultured with irradiated MHC matched (RT1.u) islet cells and dendritic cells in vitro were shown to be specifically cytotoxic to MHC matched and mismatched allogeneic (RT1.1) and xenogeneic (hamster) islet target cells in a /sup 3/H-leucine release assay. Two cell lines (V1A8 and V1D11) derived from the TDL culture showed similar patterns of non-MHC restricted islet cell killing which could be blocked by islet cells and cultured rat insulinoma cells (RIN5mF) but not by non-islet cells of various tissue origins. Both V1A8 and V1D11 were not cytotoxic to Natural Killer (NK) sensitive target cells, G1TC and YAC-1. Conventional surface markers for rat helper and suppressor/cytotoxic T cells were not detectable on either cell lines. The V1D11 cell line was positive for W 3/13 (rat T/NK marker) on OX-19 (rat T/macrophage marker), whereas the V1A8 cell line was only positive for W 3/13.

  19. Short-term effects of vanadate treatment in diabetic rats

    SciTech Connect

    Oster, M.H.; Llobet, J.M.; Domingo, J.L.; Keen, C.L. Univ. of Barcelona )

    1991-03-11

    Based on findings that vanadium (V) can produce normoglycemia in diabetic rats, V has been proposed as a treatment for diabetics. However, since V is a strong prooxidant, its potential toxicity needs to be evaluated prior to human trials. STZ-induced diabetic (Diab) rats were given one of four water treatments: saline (S), or 0.12, 0.25, or 0.49 mM NaVO3 (V) in 80mM NaCl for one month. Six V rats, 2 from each group, died prior to one month. All V rats had lower plasma glucose and lower food and fluid intake compared to S rats. S rats had higher kidney Cu levels compared to V rats. RBC SOD activity decreased as the level of V increased. Liver TBAR production was evaluated with (+) and without (-) the addition of Fe. While homogenate -Fe TBARS were higher in the 0.12 V group compared to the S and 0.60 V groups, mitochondrial and microsomal -Fe TBARS were unaffected by V treatment. In the presence of Fe, homogenate and mitochondrial TBARS were higher in the 0.12 V group compared to other groups. Microsomal +Fe TBARS were similar among groups. To summarize, low levels of V may have a protective effect on membrane composition, possibly by altering PUFA content. However, higher levels of V may induce peroxidation causing conjugated diene formation which may alter membrane structure and function. Thus, V may have both prooxidant and antioxidant activity which depends on the V level, membrane integrity, and physiological state.

  20. Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life.

    PubMed

    Silva, Matthew J; Brodt, Michael D; Lynch, Michelle A; McKenzie, Jennifer A; Tanouye, Kristi M; Nyman, Jeffry S; Wang, Xiaodu

    2009-09-01

    People with diabetes have increased risk of fracture disproportionate to BMD, suggesting reduced material strength (quality). We quantified the skeletal effects of type 1 diabetes in the rat. Fischer 344 and Sprague-Dawley rats (12 wk of age) were injected with either vehicle (Control) or streptozotocin (Diabetic). Forelimbs were scanned at 0, 4, 8, and 12 wk using pQCT. Rats were killed after 12 wk. We observed progressive osteopenia in diabetic rats. Trabecular osteopenia was caused by bone loss: volumetric BMD decreased progressively with time in diabetic rats but was constant in controls. Cortical osteopenia was caused by premature arrest of cortical expansion: cortical area did not increase after 4-8 wk in diabetic rats but continued to increase in controls. Postmortem muCT showed a 60% reduction in proximal tibial trabecular BV/TV in diabetic versus control rats, whereas moments of inertia of the ulnar and femoral diaphysis were reduced approximately 30%. Monotonic bending tests indicated that ulna and femora from diabetic animals were approximately 25% less stiff and strong versus controls. Estimates of material properties indicated no changes in elastic modulus or ultimate stress but modest ( approximately 10%) declines in yield stress for diabetic bone. These changes were associated with a approximately 50% increase in the nonenzymatic collagen cross-link pentosidine. Last, cyclic testing showed diminished fatigue life in diabetic bones at the structural (force) level but not at the material (stress) level. In summary, type 1 diabetes, left untreated, causes trabecular bone loss and a reduction in diaphyseal growth. Diabetic bone has greatly increased nonenzymatic collagen cross-links but only modestly reduced material properties. The loss of whole bone strength under both monotonic and fatigue loading is attributed mainly to reduced bone size.

  1. Metformin restores endothelial function in aorta of diabetic rats

    PubMed Central

    Sena, Cristina M; Matafome, Paulo; Louro, Teresa; Nunes, Elsa; Fernandes, Rosa; Seiça, Raquel M

    2011-01-01

    BACKGROUND AND PURPOSE The effects of metformin, an antidiabetic agent that improves insulin sensitivity, on endothelial function have not been fully elucidated. This study was designed to assess the effect of metformin on impaired endothelial function, oxidative stress, inflammation and advanced glycation end products formation in type 2 diabetes mellitus. EXPERIMENTAL APPROACH Goto-Kakizaki (GK) rats, an animal model of nonobese type 2 diabetes, fed with normal and high-fat diet during 4 months were treated with metformin for 4 weeks before evaluation. Systemic oxidative stress, endothelial function, insulin resistance, nitric oxide (NO) bioavailability, glycation and vascular oxidative stress were determined in the aortic rings of the different groups. A pro-inflammatory biomarker the chemokine CCL2 (monocyte chemoattractant protein-1) was also evaluated. KEY RESULTS High-fat fed GK rats with hyperlipidaemia showed increased vascular and systemic oxidative stress and impaired endothelial-dependent vasodilatation. Metformin treatment significantly improved glycation, oxidative stress, CCL2 levels, NO bioavailability and insulin resistance and normalized endothelial function in aorta. CONCLUSION AND IMPLICATIONS Metformin restores endothelial function and significantly improves NO bioavailability, glycation and oxidative stress in normal and high-fat fed GK rats. This supports the concept of the central role of metformin as a first-line therapeutic to treat diabetic patients in order to protect against endothelial dysfunction associated with type 2 diabetes mellitus. PMID:21250975

  2. Naringin ameliorates cognitive deficits in streptozotocin-induced diabetic rats

    PubMed Central

    Liu, Xianchu; Liu, Ming; Mo, Yanzhi; Peng, Huan; Gong, Jingbo; Li, Zhuang; Chen, Jiaxue; Xie, Jingtao

    2016-01-01

    Objective(s): Previous research demonstrated that diabetes is one of the leading causes of learning and memory deficits. Naringin, a bioflavonoid isolated from grapefruits and oranges, has potent protective effects on streptozotocin (STZ)-induced diabetic rats. Recently, the effects of naringin on learning and memory performances were monitored in many animal models of cognitive impairment. However, to date, no studies have investigated the ameliorative effects of naringin on diabetes-associated cognitive decline (DACD). In this study, we investigated the effects of naringin, using a STZ-injected rat model and explored its potential mechanism. Materials and Methods: Diabetic rats were treated with naringin (100 mg/kg/d) for 7 days. The learning and memory function were assessed by Morris water maze test. The oxidative stress indicators [superoxide dismutase (SOD) and malondialdehyde (MDA)] and inflammatory cytokines (TNF-a, IL-1β, and IL-6) were measured in hippocampus using corresponding commercial kits. The mRNA and protein levels of PPARγ were evaluated by real time (RT)-PCR and Western blot analysis. Results: The results showed that supplementation of naringin improved learning and memory performances compared with the STZ group. Moreover, naringin supplement dramatically increased SOD levels, reduced MDA levels, and alleviated TNF-α, IL-1β, and IL-6 compared with the STZ group in the hippocampus. The pretreatment with naringin also significantly increased PPARγ expression. Conclusion: Our results showed that naringin may be a promising therapeutic agent for improving cognitive decline in DACD. PMID:27279986

  3. Skin tumors in aging Long Evans rats.

    PubMed

    Esfandiari, Adeleh; Loya, Theresa; Lee, Jeffrey L

    2002-06-01

    We report 25 cases of skin neoplasm observed among 30 Long Evans rats serving as controls in a psychosocial behavioral study conducted in the Vivarium at Charles R. Drew University, Los Angeles, CA. The animals were 10 weeks old at the beginning of the study. All the skin tumors developed at 18 to 26 months of age and slowly enlarged over a period of 9 months. Multiple nodules occurred in 8 males and 6 females. None of the tumors regressed. The tumors were located around the hind leg and dorso-medial area and measured 1 to 2 cm. Physical examination revealed firm well demarcated dermal masses. Most of the tumor nodules were intradermal, and some had a central ulcerated or keratin-filled core. Microscopic examination performed on some of the tumors showed findings of classic Keratoacanthoma, whereas others showed histologic features suggestive of squamous cell carcinoma. These findings indicate a high rate (83%) of spontaneous skin neoplasms among aging Long Evans rats. To our knowledge, such a high rate of skin neoplasms in aged rodents has not been described in the literature. Furthermore, further studies should be undertaken to confirm these findings and to assess whether these rodents might serve as a model for studying the alterations in the immune system with aging.

  4. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    PubMed Central

    Peres, G.B.; Juliano, M.A.; Aguiar, J.A.K.; Michelacci, Y.M.

    2014-01-01

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver. PMID:24820066

  5. Comparison of effect of resveratrol and vanadium on diabetes related dyslipidemia and hyperglycemia in streptozotocin induced diabetic rats

    PubMed Central

    Mohamad Shahi, Majid; Haidari, Fatemeh; Shiri, Mohamad Reza

    2011-01-01

    Purpose: Resveratrol a natural polyphenolicstilbene derivative has wide variety of biological activities. There is also a large body of evidence demonstrating positive effect of resveratrol in treatment of various metabolic complications including metabolic syndrome, obesity, diabetes and dyslipidemia in adults. The purpose of this study was to investigate anti-hyperglycemic and anti-dyslipidemic effects of resveratrol. Methods: We used 40 diabetic streptozotocin Wistar rats. Rats were randomly divided into 5 treatment groups (n=8 in each) including normal control, normal treated with resveratrol, diabetic control, diabetic treated with vanadium , diabetic treated with resveratrol . Resveratrol (25 mg/kgbw) and vanadate (0.2 mg/kgbw) was orally gavaged for 40 days and blood samples were directly collected from heart. Results: Diabetic rats treated with resveratrol in comparison to control diabetic rats demonstrated a significant (p = 0.001) decline in serum glucose concentration, and high plasma concentrations of total cholesterol and LDL-c were reduced (p = 0.031, p = 0.004 respectively). Furthermore, body weight loss trend that observed in diabetic rats alleviated by resveratrol and vanadate. However triglyceride, VLDL-c and HDL-c levels did not changed significantly. Conclusion: In conclusion Resveratrol ameliorated dyslipidemia and hyperglycemia in diabetic rats. However further investigations in peculiar human studies are required. PMID:24312761

  6. Antidiabetic activity of Terminalia pallida fruit in alloxan induced diabetic rats.

    PubMed

    Kameswara Rao, B; Renuka Sudarshan, P; Rajasekhar, M D; Nagaraju, N; Appa Rao, Ch

    2003-03-01

    Different doses of ethanolic fraction of fruits of Terminalia pallida were evaluated for hypoglycemic and antihyperglycemic activity in normal and alloxan diabetic rats. The oral administration of ethanolic extract at a dosage of 0.5 g/kg body weight exhibited a significant antihyperglycemic activity in alloxan diabetic rats, whereas in normal rats no hypoglycemic activity was observed.

  7. Antidiabetic activity of Terminalia pallida fruit in alloxan induced diabetic rats.

    PubMed

    Kameswara Rao, B; Renuka Sudarshan, P; Rajasekhar, M D; Nagaraju, N; Appa Rao, Ch

    2003-03-01

    Different doses of ethanolic fraction of fruits of Terminalia pallida were evaluated for hypoglycemic and antihyperglycemic activity in normal and alloxan diabetic rats. The oral administration of ethanolic extract at a dosage of 0.5 g/kg body weight exhibited a significant antihyperglycemic activity in alloxan diabetic rats, whereas in normal rats no hypoglycemic activity was observed. PMID:12576217

  8. Renal and hepatic transporter expression in type 2 diabetic rats.

    PubMed

    Nowicki, Michael T; Aleksunes, Lauren M; Sawant, Sharmilee P; Dnyanmote, Ankur V; Mehendale, Harihara M; Manautou, José E

    2008-01-01

    Membrane transporters are critical for the uptake as well as elimination of chemicals and by-products of metabolism from the liver and kidneys. Since these proteins are important determinants of chemical disposition, changes in their expression in different disease states can modulate drug pharmacokinetics. The present study investigated alterations in the renal and hepatic expression of organic anion and cation transporters (Oats/Octs), multidrug resistance-associated proteins (Mrps), breast cancer resistance protein (Bcrp), P-glycoprotein (Pgp), and hepatic Na(+)-taurocholate cotransporting polypeptide (Ntcp) in type 2 diabetic rats. For this purpose, type 2 diabetes was induced by feeding male Sprague-Dawley rats a high fat diet followed by a single dose of streptozotocin (45 mg/kg, i.p., in 0.01 M citrate buffer pH 4.3) on day 14. Controls received normal diet and vehicle. Kidney and liver samples were collected on day 24 for generation of crude plasma membrane fractions and Western blot analysis of Oat, Oct, Mrp, Bcrp, Pgp, and Ntcp proteins. With regards to renal uptake transporters, type 2 diabetes increased levels of Oat2 (2.3-fold) and decreased levels of Oct2 to 50% of control kidneys. Conversely, efflux transporters Mrp2, Mrp4, and Bcrp were increased 5.4-fold, 2-fold, and 1.6-fold, respectively in type 2 diabetic kidneys with no change in levels of Mrp1, Mrp5, or Pgp. Studies of hepatic transporters in type 2 diabetic rats reveal that the protein level of Mrp5 was reduced to 4% of control livers with no change in levels of Bcrp, Mrp1, Mrp2, Mrp4, Ntcp, or Pgp. The changes reported in this study may have implications in type 2 diabetic patients.

  9. Puerarin ameliorates cognitive deficits in streptozotocin-induced diabetic rats.

    PubMed

    Liu, Xianchu; Mo, Yanzhi; Gong, Jingbo; Li, Zhuang; Peng, Huan; Chen, Jiaxue; Wang, Qichao; Ke, Zhaowen; Xie, Jingtao

    2016-04-01

    Previous research has indicated that Diabetes is a high risk of learning and memory deficits. Puerarin, an isoflavonoid extracted from Kudzu roots, has been reported to possess antioxidant, anti-inflammatory, anti-apoptotic and anti-diabetic properties which are useful in the treatment of various diseases. Recently, Puerarin was found to have the effects on learning and memory performances in humans and animal models. However, up to now, there is no detailed evidence on the effect of Puerarin on diabetes-associated cognitive decline (DACD). In this study, we designed to assess the effects of Puerarin on diabetes-associated cognitive decline (DACD) using a streptozotocin (STZ)-injected rat model and exploring its potential mechanism. Diabetic rats were treated with Puerarin (100 mg/kg per d) for 7 days. The learning and memory function was evaluated by morris water maze test. The acetylcholinesterase (AChE), choline acetylase (ChAT), oxidative indicators [malondialdehyde (MDA) and superoxide dismutase (SOD)] and inflammatory cytokine (TNF-a, IL-1β and IL-6) were measured in hippocampus by using corresponding commercial kits. mRNA and Protein levels of Bcl-2 were analyzed by RT-PCR and Westernblot. The results showed that supplementation of Puerarin improved the learning and memory performances compared with the STZ group by the morris water maze test. In addition, Puerarin supplement significantly prevented AChE and MDA activities, increased ChAT and SOD activities, and alleviated the protein level of TNF-α, IL-1β and IL-6 in the hippocampus compared with the STZ group. Moreover, the pretreatment with Puerarin also significantly increased the Bcl-2 expression. It is concluded that Puerarin possesses neuroprotection to ameliorate cognitive deficits in streptozotocin-induced diabetic rats by anti-inflammatory, antioxidant and antiapototic effects. PMID:26686502

  10. Repercussions of mild diabetes on pregnancy in Wistar rats and on the fetal development

    PubMed Central

    2010-01-01

    Background Experimental models are necessary to elucidate diabetes pathophysiological mechanisms not yet understood in humans. Objective: To evaluate the repercussions of the mild diabetes, considering two methodologies, on the pregnancy of Wistar rats and on the development of their offspring. Methods In the 1st induction, female offspring were distributed into two experimental groups: Group streptozotocin (STZ, n = 67): received the β-cytotoxic agent (100 mg STZ/kg body weight - sc) on the 1st day of the life; and Non-diabetic Group (ND, n = 14): received the vehicle in a similar time period. In the adult life, the animals were mated. After a positive diagnosis of pregnancy (0), female rats from group STZ presenting with lower glycemia than 120 mg/dL received more 20 mg STZ/kg (ip) at day 7 of pregnancy (2nd induction). The female rats with glycemia higher than 120 mg/dL were discarded because they reproduced results already found in the literature. In the mornings of days 0, 7, 14 and 21 of the pregnancy glycemia was determined. At day 21 of pregnancy (at term), the female rats were anesthetized and killed for maternal reproductive performance and fetal development analysis. The data were analyzed using Student-Newman-Keuls, Chi-square and Zero-inflated Poisson (ZIP) Tests (p < 0.05). Results STZ rats presented increased rates of pre (STZ = 22.0%; ND = 5.1%) and post-implantation losses (STZ = 26.1%; ND = 5.7%), reduced rates of fetuses with appropriate weight for gestational age (STZ = 66%; ND = 93%) and reduced degree of development (ossification sites). Conclusion Mild diabetes led a negative impact on maternal reproductive performance and caused intrauterine growth restriction and impaired fetal development. PMID:20416073

  11. [Ameliorative effects on retinal disorder in diabetic SHRSP (stroke-prone spontaneously hypertensive rat)].

    PubMed

    Nagisa, Yasutaka; Shintani, Asae; Nakagawa, Shizue

    2002-10-01

    The results of the EUCLID highlighted the importance of the renin-angiotensin system in the pathogenesis of diabetic retinopathy. We aimed to evaluate the effectiveness of candesartan cilexetil(TCV-116), a potent angiotensin II receptor antagonist, in ameliorating retinal disorders in stroke-prone spontaneously hypertensive rats(SHRSP) with storeptozotocin(STZ)-induced diabetes. Retinal VEGF mRNA expression was significantly higher and the latencies of oscillatory potentials were significantly elongated in STZ-treated SHRSP compared with a non-treated SHRSP group matched for age. Treatment with TCV-116(3 mg/kg) significantly diminished retinal VEGF mRNA expression and the latencies of oscillatory potentials, but had no effect on plasma glucose concentrations. These results suggest that TCV-116 is effective in preventing the development of diabetic retinopathy already in the early stages.

  12. In Vivo Evaluation of Anti Diabetic, Hypolipidemic, Antioxidative Activities of Saudi Date Seed Extract on Streptozotocin Induced Diabetic Rats

    PubMed Central

    Mohieldein, Abdelmarouf

    2016-01-01

    Introduction Phoenix dactylifera (date palm) is major fruit of gulf region. In folk medicine; dates have been traditionally use. The date seed is used as hypoglycaemic, expectorant, tonic, aphrodisiac, antidiarrheic and mouth hygiene. Aim This study intended to evaluate the anti-diabetic, hypolipidaemic and antioxidative activities of date seed extract in diabetes-induced rats. Materials and Methods Total of seven groups of rats, consisting of control rats and streptozotocin induced diabetic rats treated with aqueous seed extract in concentration of 100g/L in dosage of 10ml/day/rat. To evaluate the anti-diabetic property, glucose and weight was analysed weekly and at the end of eight week all rats were sacrificed. To evaluate the hypolipidaemic and antioxidative activities, serum cholesterol, triglyceride, malondialdehyde, superoxide dismutase, 8-hydroxy-2’-deoxyguanosine were estimated. Liver enzymes and kidney function tests were performed. Moreover to verify the glycaemic effect; glycated haemoglobin and serum insulin was performed. Results Aqueous seed extract in concentration of 100 gm/L in dosage of 10ml/day/rat brings a significant reduction of blood glucose levels in diabetic rats in comparison of control rats. There were significant differences in the investigated clinical chemistry and oxidative stress parameters between control and diabetic rats with both seed extract of Ajwa and Sukkari dates. Conclusion Present study verifies the antidiabetic property, of aqueous seed extracts of two different varieties of dates namely Ajwa and Sukkari of Kingdom of Saudi on streptozotocin induced Diabetic rats. Prolong treatments with the extract restores the function of liver and kidney and balance the oxidative stress condition in diabetic treated rats. PMID:27134893

  13. Aging effects on oxidative phosphorylation in rat adrenocortical mitochondria.

    PubMed

    Solinas, Paola; Fujioka, Hisashi; Radivoyevitch, Tomas; Tandler, Bernard; Hoppel, Charles L

    2014-06-01

    Does aging in itself lead to alteration in adrenocortical mitochondrial oxidative phosphorylation? Mitochondria from Fischer 344 (F344) rats (6 and 24 months old), Brown Norway rats (6 and 32 months old) and F344-Brown Norway hybrid rats (6 and 30 months old) were compared. Mitochondria were isolated from extirpated adrenal cortex. The yields of mitochondria were quantitatively similar in all rat strains irrespective of age. In order to assess the activity of each mitochondrial complex, several different substrates were tested and the rate of oxidative phosphorylation measured. Aging does not affect mitochondrial activity except in the F344 rat adrenal cortex where the maximal ADP-stimulated oxidative phosphorylation decreased with age. We hypothesize that impaired synthesis of steroid hormones by the adrenal cortex with age in F344 rats might be due to decreased adrenocortical mitochondrial oxidative phosphorylation. We conclude that aging results in adrenocortical mitochondria effects that are non-uniform across different rat strains.

  14. Ameliorative Potentials of Ginger (Z. officinale Roscoe) on Relative Organ Weights in Streptozotocin induced Diabetic Rats

    PubMed Central

    Eleazu, C. O.; Iroaganachi, M.; Okafor, P. N.; Ijeh, I. I.; Eleazu, K. C.

    2013-01-01

    The ameliorating potentials of ginger incorporated feed (10%) on the relative organ weights of Streptozotocin (STZ) induced diabetic rats was investigated. The experiment lasted for three weeks. Results show that administration of 10% ginger feed to the diabetic rats of group 3, resulted in a 29.81% decrease in their resulting hyperglycemia with a corresponding amelioration of elevated urinary protein, sugars, specific gravity as well as renal growth. In addition, administration of the ginger incorporated feeds to the diabetic rats of group 3, resulted in 9.88% increase in body weight with a corresponding 60.24% increase in growth compared with the non-diabetic rats administered standard rat pellets that had 6.21% increase in weight with a corresponding 60.14% increase in growth unlike the diabetic control rats that recorded 28.62% decrease in body weight with a corresponding 239.9% decrease in growth rates. Analysis of the chemical composition of the flour of the ginger incorporated feed indicated that it contained moderate amounts of moisture, crude fibre, alkaloids, saponins, tannins, Fe and Zn but considerable amounts of proteins, lipids, carbohydrates, ash, flavonoids, calcium, magnesium, potassium, phosphorous and energy value. There was no significant difference (P>0.05) in the liver and relative liver weights of the diabetic control rats and the diabetic -ginger treated rats. In addition, there were no significant differences in the kidney weights of the non-diabetic, diabetic control and diabetic treated rats (P>0.05) while there were significant differences in the relative kidney weights of the non-diabetic rats and the diabetic rats treated with ginger feeds (P<0.05). Results show that the use of ginger in the dietary management of diabetes mellitus could be a breakthrough in the search for novel plants that could prevent the development of diabetic glomerular hypertrophy. PMID:23847458

  15. Synaptic transmission changes in the pyramidal cells of the hippocampus in streptozotocin-induced diabetes mellitus in rats.

    PubMed

    Kamal, Amer; Biessels, Geert-Jan; Gispen, Willem Hendrik; Ramakers, Geert M J

    2006-02-16

    The central nervous system complications of diabetes mellitus (DM) include defects in hippocampal synaptic plasticity induction and difficulties in learning and memory. DM was induced by streptozotocin (STZ) injection in rats. After 12 weeks of DM duration, the rats were decapitated, and hippocampal slices were prepared for in vitro study. Field excitatory postsynaptic potentials (fEPSP) were recorded after repeated stimulations with 50 impulses given either in 10 or 20 Hz. The responses were significantly smaller in the diabetic animals than in the age-matched control rats. The summation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) responses was tested in both groups by stimulating the synapses with five consecutive stimuli given in 50-Hz frequency. Intracellular recording from the pyramidal hippocampal cells of the AMPA summation responses from diabetic and aged-matched control animals revealed a significant lower summation in the diabetic animals compared to the control. It is concluded that responses evoked by high-frequency stimulation (HFS) were significantly higher in the control animals. The defects in diabetic slices could be related to pre- as well as postsynaptic changes, and these defects play an important role in the synaptic plasticity changes seen in STZ-induced diabetic animals.

  16. Histochemical assessment of nitric oxide synthase activity in aortic endothelial cells of streptozotocin-induced diabetic rats.

    PubMed

    Shafiei, M; Nobakht, M; Fattahi, M; Kohneh-Shahri, L; Mahmoudian, M

    2003-12-01

    Impaired endothelium-dependent relaxation of blood vessels is a common feature in diabetes, but the exact underlying mechanisms have not yet been clarified. In present study, endothelium-dependent vasorelaxation of aortic rings were evaluated in vitro in streptozotocin (STZ)-induced diabetic and age-matched control rats. Moreover, nitric oxide synthase (NOS) activity of aortic endothelial cells was assessed in both diabetic and healthy rats using histochemical staining for nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity. The results showed a significant decrease of endothelium-dependent relaxation in response to acetylcholine (ACh) in diabetic rings, compared with controls, that was accompanied by a remarkable attenuation of NOS activity in diabetic sections of rat aorta stained for NADPH-diaphorase. Furthermore, a membrane disruption of some endothelial cells was also observed in all diabetic sections. It can be concluded that a decrease in NOS activity together with a disruption of endothelial cell membrane play a major role in endothelial dysfunction observed in diabetes.

  17. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist

    NASA Astrophysics Data System (ADS)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev

    1982-02-01

    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  18. Antihyperglycemic and antihyperlipidemic effects of guar gum on streptozotocin-induced diabetes in male rats

    PubMed Central

    Saeed, Samarghandian; Mosa-Al-Reza, Hadjzadeh; Fatemeh, Amin Nya; Saeideh, Davoodi

    2012-01-01

    Background: Herbal medicine is widely used in the treatment of diseases like diabetes mellitus. We investigated the effects of guar gum in diabetic rats for the reduction of the risk of diabetes and cardiovascular disease. Dietary pattern emphasizing foods high in complex carbohydrates and fiber are associated with low blood glucose and cholesterol levels. Materials and Methods: Diet containing 0%, 5%, 10% and 20% (w/w) guar gum was fed to diabetic rats for 28 days. Blood serum glucose, triglycerides, cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol levels, atherogenic index levels, body weights and food intake were monitored at 0, 7.14 and 28 days after induction of diabetes. Results: In spite of the fact that diabetes elevated blood lipids in all rats after 14 days, the guar gum diet significantly decreased the serum concentration of cholesterol, triacylglicerols and LDL-C and atherogenic index. The most significant result in this study was the reduction of blood glucose in diabetic rats treated with the guar gum diet after 28 days versus non- and glibenclamide-treated rats. The gum promoted a general improvement in the condition of the diabetic rats in body weight and food intake in comparison with nontreated rats. Conclusion: The results of this research suggest that guar gum was significantly effective in comparison with glibenclamide in the treatment of hyperlipidemia and hyperglycemia in diabetes rats. Therefore, it may be suggested as a reliable fiber in diabetic regimes in diabetic patients. PMID:22438666

  19. Reduced platelet-mediated and enhanced leukocyte-mediated fibrinolysis in experimentally induced diabetes in rats

    SciTech Connect

    Winocour, P.D.; Colwell, J.A.

    1985-05-01

    Studies of fibrinolytic activity in diabetes mellitus have produced conflicting results. This may be a result of methodologic insensitivity or of variable contributions of the different blood components to whole blood fibrinolysis. To explore these two possibilities, the authors used a sensitive solid-phase radiometric assay to examine the fibrinolytic activity of whole blood, platelet-rich plasma, leukocytes, and platelet- and leukocyte-poor plasma prepared from control rats and rats with streptozocin-induced diabetes at various times after induction of diabetes. Fibrinolytic activity of whole blood from diabetic rats after 7 days was significantly reduced, and remained reduced after longer durations of diabetes up to 28 days. Platelet-rich plasma from diabetic rats had decreased fibrinolytic activity, which followed the same time course of changes as in whole blood. The platelet contribution to whole blood fibrinolysis was further reduced in vivo after 14 days of diabetes by a reduced whole blood platelet count. In contrast, fibrinolytic activity of leukocytes from diabetic rats became enhanced after 7 days of diabetes. After 49 days of diabetes, the whole blood leukocyte count was reduced, and in vivo would offset the enhanced activity. Plasma fibrinolytic activity was small compared with that of whole blood and was unaltered in diabetic rats. The authors conclude that altered platelet function contributes to decreased fibrinolytic activity of whole blood in diabetic rats, and that this may be partially offset by enhanced leukocyte-mediated fibrinolysis.

  20. Exercise and spirulina control non-alcoholic hepatic steatosis and lipid profile in diabetic Wistar rats

    PubMed Central

    2011-01-01

    Background Diabetes mellitus is associated with metabolic dysfunctions, including alterations in circulating lipid levels and fat tissue accumulation, which causes, among other pathologies, non-alcoholic fatty liver disease (NAFLD). Aim of the study The objective of this study was to analyse the effects of physical exercise and spirulina intake on the control of NAFLD in diabetic Wistar rats. Methods Diabetes was induced in the animals through intravenous administration of alloxan. The rats were divided into four groups: Diabetic Control (DC) - diabetic rats fed with a control diet and no physical exercise; Diabetic Spirulina (DS) - diabetic rats fed with a diet that included spirulina; Diabetic Spirulina and Exercise (DSE) - diabetic rats fed with a diet that included Spirulina and that exercised; and Diabetic Exercise (DE) - diabetic rats fed with a control diet and that exercised. Results The groups DS, DSE, and DE presented lower plasma concentrations of LDL cholesterol than DC, as well as lower levels of total liver lipids in groups DS, DSE, and DE in comparison to DC. Conclusion Thus, spirulina appears to be effective in reducing total circulating levels of LDL-cholesterol and hepatic lipids, alone or in conjunction with physical exercise in diabetic rats. PMID:21569626

  1. Age, race, diabetes, blood pressure, and mortality among hemodialysis patients.

    PubMed

    Myers, Orrin B; Adams, Christopher; Rohrscheib, Mark R; Servilla, Karen S; Miskulin, Dana; Bedrick, Edward J; Zager, Philip G

    2010-11-01

    Observational studies involving hemodialysis patients suggest a U-shaped relationship between BP and mortality, but the majority of these studies followed large, heterogeneous cohorts. To examine whether age, race, and diabetes status affect the association between systolic BP (SBP; predialysis) and mortality, we studied a cohort of 16,283 incident hemodialysis patients. We constructed a series of multivariate proportional hazards models, adding age and BP to the analyses as cubic polynomial splines to model potential nonlinear relationships with mortality. Overall, low SBP associated with increased mortality, and the association was more pronounced among older patients and those with diabetes. Higher SBP associated with increased mortality among younger patients, regardless of race or diabetes status. We observed a survival advantage for black patients primarily among older patients. Diabetes associated with increased mortality mainly among older patients with low BP. In conclusion, the design of randomized clinical trials to identify optimal BP targets for patients with ESRD should take age and diabetes status into consideration.

  2. Altered magnesium transport in slices of kidney cortex from chemically-induced diabetic rats

    SciTech Connect

    Hoskins, B.

    1981-10-01

    The uptake of magnesium-28 was measured in slices of kidney cortex from rats with alloxan-diabetes and from rats with streptozotocin-diabetes of increasing durations. In both forms of chemically-induced diabetes, magnesium-28 uptake by kidney cortex slices was significantly increased over uptake measured in kidney cortex slices from control rats. Immediate institution of daily insulin therapy to the diabetic rats prevented the diabetes-induced elevated uptake of magnesium without controlling blood glucose levels. Late institution of daily insulin therapy was ineffective in restoring the magnesium uptake to control values. These alterations in magnesium uptake occurred prior to any evidence of nephropathy (via the classic indices of proteinuria and increased BUN levels). The implications of these findings, together with our earlier demonstrations of altered calcium transport by kidney cortex slices from chemically-induced diabetic rats, are discussed in terms of disordered divalent cation transport being at least part of the basic pathogenesis underlying diabetic nephropathy.

  3. Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats

    PubMed Central

    Anand Swarup, Kolla R. L.; Sattar, Munavvar A.; Abdullah, Nor A.; Abdulla, Mohammed H.; Salman, Ibrahim M.; Rathore, Hassaan A.; Johns, Edward J.

    2010-01-01

    Cardiovascular complications are consistently observed in diabetic patients across all age groups. The objective of the present study was to investigate the effect of aqueous extract of the fruit pulp of Hylocereus undatus (DFE) on aortic stiffness and oxidative stress in streptozotocin (STZ)-induced diabetes in rats. Twenty-four male, Sprague-Dawley rats were randomized into four groups: I (control), II (diabetic), III (DFE, 250 mg/kg) and IV (DFE 500 mg/kg). Diabetes was induced in groups II, III and IV by intraperitoneal (i.p.) injection of STZ (40 mg/kg). After confirmation of diabetes, group III and IV received DFE for 5 weeks. Pulse wave velocity (PWV) was used as a marker of aortic stiffness and was determined at the end of 5 weeks. DFE significantly decreased (P < 0.05) the fasting blood glucose levels in diabetic rats, but not to normal levels. Systolic blood pressure, pulse pressure and PWV were significantly increased (P < 0.05) in diabetic rats at the end of 5 weeks in comparison with control group. DFE treatment significantly decreased (P < 0.05) these elevations. Oxidative damage was observed in group II after 5 weeks. Plasma malondialdehyde levels significantly decreased (P < 0.05), while superoxide dismutase and total antioxidant capacity significantly increased (P < 0.05) with DFE treatment in comparison with group II. These data demonstrate that DFE treatment was effective in controlling oxidative damage and decreasing the aortic stiffness measured by PWV in STZ-induced diabetes in rats. PMID:21808536

  4. Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats.

    PubMed

    Anand Swarup, Kolla R L; Sattar, Munavvar A; Abdullah, Nor A; Abdulla, Mohammed H; Salman, Ibrahim M; Rathore, Hassaan A; Johns, Edward J

    2010-01-01

    Cardiovascular complications are consistently observed in diabetic patients across all age groups. The objective of the present study was to investigate the effect of aqueous extract of the fruit pulp of Hylocereus undatus (DFE) on aortic stiffness and oxidative stress in streptozotocin (STZ)-induced diabetes in rats. Twenty-four male, Sprague-Dawley rats were randomized into four groups: I (control), II (diabetic), III (DFE, 250 mg/kg) and IV (DFE 500 mg/kg). Diabetes was induced in groups II, III and IV by intraperitoneal (i.p.) injection of STZ (40 mg/kg). After confirmation of diabetes, group III and IV received DFE for 5 weeks. Pulse wave velocity (PWV) was used as a marker of aortic stiffness and was determined at the end of 5 weeks. DFE significantly decreased (P < 0.05) the fasting blood glucose levels in diabetic rats, but not to normal levels. Systolic blood pressure, pulse pressure and PWV were significantly increased (P < 0.05) in diabetic rats at the end of 5 weeks in comparison with control group. DFE treatment significantly decreased (P < 0.05) these elevations. Oxidative damage was observed in group II after 5 weeks. Plasma malondialdehyde levels significantly decreased (P < 0.05), while superoxide dismutase and total antioxidant capacity significantly increased (P < 0.05) with DFE treatment in comparison with group II. These data demonstrate that DFE treatment was effective in controlling oxidative damage and decreasing the aortic stiffness measured by PWV in STZ-induced diabetes in rats. PMID:21808536

  5. Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats.

    PubMed

    Anand Swarup, Kolla R L; Sattar, Munavvar A; Abdullah, Nor A; Abdulla, Mohammed H; Salman, Ibrahim M; Rathore, Hassaan A; Johns, Edward J

    2010-01-01

    Cardiovascular complications are consistently observed in diabetic patients across all age groups. The objective of the present study was to investigate the effect of aqueous extract of the fruit pulp of Hylocereus undatus (DFE) on aortic stiffness and oxidative stress in streptozotocin (STZ)-induced diabetes in rats. Twenty-four male, Sprague-Dawley rats were randomized into four groups: I (control), II (diabetic), III (DFE, 250 mg/kg) and IV (DFE 500 mg/kg). Diabetes was induced in groups II, III and IV by intraperitoneal (i.p.) injection of STZ (40 mg/kg). After confirmation of diabetes, group III and IV received DFE for 5 weeks. Pulse wave velocity (PWV) was used as a marker of aortic stiffness and was determined at the end of 5 weeks. DFE significantly decreased (P < 0.05) the fasting blood glucose levels in diabetic rats, but not to normal levels. Systolic blood pressure, pulse pressure and PWV were significantly increased (P < 0.05) in diabetic rats at the end of 5 weeks in comparison with control group. DFE treatment significantly decreased (P < 0.05) these elevations. Oxidative damage was observed in group II after 5 weeks. Plasma malondialdehyde levels significantly decreased (P < 0.05), while superoxide dismutase and total antioxidant capacity significantly increased (P < 0.05) with DFE treatment in comparison with group II. These data demonstrate that DFE treatment was effective in controlling oxidative damage and decreasing the aortic stiffness measured by PWV in STZ-induced diabetes in rats.

  6. The Therapeutic Effect of Zuogui Wan in Gestational Diabetes Mellitus Rats

    PubMed Central

    Feng, Qianjin; Niu, Xin; Liu, Xinshe; Xu, Kaixia; Yang, Xiangzhu; Wang, Huifeng

    2014-01-01

    In this experiment, we established an animal model of gestational diabetes mellitus rats using streptozotocin. Using the rat model of GDM, the pregnant rats in 1-19d were divided into three groups: (1) Zuogui Wan gestational diabetes mellitus group (group I, n = 12), (2) gestational diabetes mellitus rats as the control group (group II, n = 11), and (3) rats of normal pregnancy group (group III, n = 11). Compared with gestational diabetes mellitus rats as the control group, Zuogui Wan can change the indexes of fasting blood glucose, body weight, total cholesterol, insulin, and metabolism cage index significantly in Zuogui Wan gestational diabetes mellitus group. We can conclude that Zuogui Wan has the therapeutic effect on gestational diabetes mellitus. PMID:25136475

  7. Lysozyme enhances renal excretion of advanced glycation endproducts in vivo and suppresses adverse age-mediated cellular effects in vitro: a potential AGE sequestration therapy for diabetic nephropathy?

    PubMed Central

    Zheng, F.; Cai, W.; Mitsuhashi, T.; Vlassara, H.

    2001-01-01

    BACKGROUND: Lysozyme (LZ), a host-defense protein, contains an 18 amino-acid domain with high affinity binding for sugar-derived proteins or lipids, called advanced glycation endproducts (AGE), that are implicated in diabetes- and age-dependent complications (DC). MATERIALS AND METHODS: A) The effects of LZ on AGE- removal were tested in vivo. LZ was injected (200 ug/day, i.p., X2 weeks) in non-obese diabetic (NOD), db/db (+/+) mice, and non-diabetic, AGE-infused Sprague-Dawley rats. B) LZ: AGE interactions with macrophage-like T1B-183 cells (Mf) and mesangial cells (MC) were tested in vitro. RESULTS: A) In NOD mice, LZ reduced the elevated basal serum AGE (sAGE) (p < 0.05), enhanced urinary AGE (uAGE) excretion by approximately 2-fold (p < 0.01), while it reduced albuminuria (UA), p < 0.005. In db/db mice, LZ infusion also reduced the elevated sAGE (p < 0.05), doubled uAGE excretion (p < 0.05), and decreased UA (p < 0.01). In addition, LZ maintained normal sAGE in normal rats infused with AGE-BSA, as it doubled the urinary AGE (uAGE) clearance (p < 0.01). B) LZ stimulated the uptake and degradation of (125) I-labeled AGE-BSA and (25) I-human serum AGE by Mf, while suppressing AGE-induced TNFalpha and IGF-I production. In MC, LZ suppressed the AGE-promoted PDGF-B, alpha1 type IV collagen, and tenascin mRNA levels, and restored the AGE-suppressed expression and activity of MMP-9, but not MMP-2. CONCLUSION: LZ may act to: a) accelerate renal in-vivo AGE clearance, b) suppress macrophage and mesangial cell- specific gene activation in vitro, and c) improve albuminuria due to diabetes. These data suggest that LZ by sequestering AGEs may protect against diabetic renal damage. PMID:11788787

  8. Efficiency of noopept in streptozotocin-induced diabetes in rats.

    PubMed

    Ostrovskaya, R U; Ozerova, I V; Gudascheva, T A; Kapitsa, I G; Ivanova, E A; Voronina, T A; Seredenin, S B

    2013-01-01

    We studied the effects of new nootropic and neuroprotective drug Noopept (N-phenylacetyl-L-prolylglycine ethyl ester) in various dosage regimens on the dynamics of glycemia, body weight, and pain sensitivity in rats receiving diabetogenic toxin streptozotocin. In experimental diabetic rats, Noopept alleviated glycemia and weight loss and normalized enhanced pain sensitivity. The normalizing effect of Noopept was most pronounced when it was administered as a preventive agent prior to injection of the toxin. Both preventive and therapeutic administration of Noopept (delayed injections included) significantly weakened the examined metabolic effects of diabetogenic toxin. Possible mechanisms of the antidiabetic action of Noopept are analyzed. PMID:23484194

  9. Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats.

    PubMed

    Akhtar, Muhammad Tayyab; Bin Mohd Sarib, Mohamad Syakir; Ismail, Intan Safinar; Abas, Faridah; Ismail, Amin; Lajis, Nordin Hj; Shaari, Khozirah

    2016-01-01

    Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM). Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM). Proton Nuclear Magnetic Resonance (¹H-NMR) spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese-diabetic (obdb) rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract. PMID:27517894

  10. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    PubMed

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  11. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    PubMed Central

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R.; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨm), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  12. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    PubMed

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  13. Altered expression of mitofusin 2 in penile tissues of diabetic rats.

    PubMed

    Yang, J; Wang, T; Zhang, Y; Li, R; Wang, S; Xu, H; Liu, J; Ye, Z

    2014-06-01

    Diabetic erectile dysfunction (ED) is a common complication in diabetes mellitus, and the efficacy of first-line therapies is not satisfactory. Recent studies revealed that corporal apoptosis was responsible for the nonresponsiveness of severe ED to phosphodiesterase type 5 inhibitors. Mitofusin 2 (Mfn2) is a versatile protein, regulating mitochondrial morphology and playing an important role in apoptosis. Several studies showed that expression of Mfn2 was decreased in STZ-induced diabetic rats' kidney, myocardium and retina, which was associated with diabetic nephropathy, cardiomyopathy and retinopathy respectively. In this study, our aim was to explore the expression of Mfn2 and apoptosis in diabetic rats' penes. We found that erectile function (ICP/MAP) elicited by electrical stimulation of cavernous nerve was markedly impaired in diabetic rats compared with the normal rats. The mRNA and protein levels of Mfn2 were found to be significantly reduced in diabetic rats' penile tissues. Compared with normal rats, the content of smooth muscle and B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio were dramatically decreased, and penile apoptotic index and expression of activated-caspase-3 were dramatically increased in diabetic rats. This data indicated that repression of Mfn2 in diabetic rats' penes might be associated with excessive apoptosis in diabetes-induced severe ED.

  14. Altered expression of mitofusin 2 in penile tissues of diabetic rats.

    PubMed

    Yang, J; Wang, T; Zhang, Y; Li, R; Wang, S; Xu, H; Liu, J; Ye, Z

    2014-06-01

    Diabetic erectile dysfunction (ED) is a common complication in diabetes mellitus, and the efficacy of first-line therapies is not satisfactory. Recent studies revealed that corporal apoptosis was responsible for the nonresponsiveness of severe ED to phosphodiesterase type 5 inhibitors. Mitofusin 2 (Mfn2) is a versatile protein, regulating mitochondrial morphology and playing an important role in apoptosis. Several studies showed that expression of Mfn2 was decreased in STZ-induced diabetic rats' kidney, myocardium and retina, which was associated with diabetic nephropathy, cardiomyopathy and retinopathy respectively. In this study, our aim was to explore the expression of Mfn2 and apoptosis in diabetic rats' penes. We found that erectile function (ICP/MAP) elicited by electrical stimulation of cavernous nerve was markedly impaired in diabetic rats compared with the normal rats. The mRNA and protein levels of Mfn2 were found to be significantly reduced in diabetic rats' penile tissues. Compared with normal rats, the content of smooth muscle and B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio were dramatically decreased, and penile apoptotic index and expression of activated-caspase-3 were dramatically increased in diabetic rats. This data indicated that repression of Mfn2 in diabetic rats' penes might be associated with excessive apoptosis in diabetes-induced severe ED. PMID:23682852

  15. Attenuation of erythrocyte membrane oxidative stress by Sesbania grandiflora in streptozotocin-induced diabetic rats.

    PubMed

    Sureka, Chandrabose; Ramesh, Thiyagarajan; Begum, Vavamohaideen Hazeena

    2015-08-01

    The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190-220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications.

  16. Attenuation of erythrocyte membrane oxidative stress by Sesbania grandiflora in streptozotocin-induced diabetic rats.

    PubMed

    Sureka, Chandrabose; Ramesh, Thiyagarajan; Begum, Vavamohaideen Hazeena

    2015-08-01

    The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190-220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications. PMID:26176361

  17. Diabetes prevention: Reproductive age women affected by insulin resistance.

    PubMed

    Rezai, Shadi; LoBue, Stephen; Henderson, Cassandra E

    2016-07-01

    In the United States, 29.1 million people are affected by diabetes, of which 95% have type 2 diabetes. There has been a fivefold increase in type 2 diabetes in the latter half of the 20th century, an increase strongly linked to the obesity epidemic in the United States. In addition, insulin resistance affects 86 million Americans, or more than one-third of the adult population, as manifested by impaired fasting glucose tolerance with random glucose values ranging from ⩾100 to <126 mg/dL. In all, 90% of those affected by impaired fasting glucose tolerance or pre-diabetes are unaware of their metabolic derangement. Although impaired fasting glucose tolerance increases one's risk of developing type 2 diabetes, once identified, application of lifestyle changes by affected individuals may avoid or delay the onset of type 2 diabetes. For reproductive age women who are found to have impaired fasting glucose tolerance, lifestyle changes may be an effective tool to diminish the reproductive health consequences of insulin resistance related diseases. PMID:27638898

  18. Effects of training and nitric oxide on diabetic nephropathy progression in type I diabetic rats.

    PubMed

    Rodrigues, Adelson M; Bergamaschi, Cássia T; Araújo, Ronaldo C; Mouro, Margaret G; Rosa, Thiago S; Higa, Elisa M S

    2011-10-01

    The aim of the paper is to assess nitric oxide (NO) production during aerobic training and its role on the progression of diabetic nephropathy in rats. Induction of diabetes mellitus (DM) was achieved in adult male Wistar rats with streptozotocin. Half of the animals underwent training on a treadmill and the others (sedentary) stayed on a turned-off treadmill for the same period according to the following groups: sedentary control (CTL + SE); training control (CTL + EX); sedentary diabetic (DM + SE); and training diabetic (DM + EX) (n = 9 for all groups). The training on treadmill was carried out at a work rate of 16 m/min, 60 min/d, 5 d/week for eight weeks. Before and after the exercises, rats were placed in individual metabolic cages with standard chow and water ad libitum, for 24-h urine collection, followed by three hours' fasting blood sample withdrawal from the retro-orbital plexus, under anesthesia. Diabetic animals showed reduction of body weight, creatinine and urea depurations and NO excretion, increased blood glucose concentrations, albuminuria and thiobarbituric acid reactive substance (TBARS) excretion, when compared with the respective controls. All these alterations induced by DM were attenuated in the DM + EX versus DM + SE group. Analysis of insulin concentrations at the end of the protocol showed no significant change between the DM + SE and DM + EX groups. In conclusion, our data show that a routine physical exercise resulted in a better control of glycemia with an increased NO bioavailability and oxidative stress control, associated with an amelioration of renal function. We suggest aerobic training and the control of oxidative and nitrosative stress as useful non-pharmacological tools to delay the progression of diabetic nephropathy. PMID:21930716

  19. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    EPA Science Inventory

    The Brown Norway (BN) rat is a popular strain for aging studies. There is little information on effects of age on baseline cardiac and thermoregulatory parameters in undisturbed BN rats even though cardiac and thermal homeostasis is linked to many pathological deficits in the age...

  20. Decreased catecholamine secretion from the adrenal medullae of chronically diabetic BB-Wistar rats

    NASA Technical Reports Server (NTRS)

    Wilke, R. A.; Riley, D. A.; Lelkes, P. I.; Hillard, C. J.

    1993-01-01

    Many humans with IDDM eventually lose the capacity to secrete epinephrine from their adrenal medullae. The mechanism for this pathological change is unknown. We hypothesized that this abnormality is attributable to neuropathic changes in the greater splanchnic nerves or in the chromaffin cells that they innervate. To study this hypothesis, we isolated rat adrenal glands, perfused them ex vivo, and measured the epinephrine content of the perfusate under various conditions of stimulation. We used transmural electrical stimulation (20-80 V, at 10 Hz) to induce epinephrine secretion indirectly by selectively activating residual splanchnic nerve terminals within the isolated glands. Under these conditions, epinephrine secretion was severely attenuated in glands from female BB-Wistar rats with diabetes of 4 mo duration compared with their age-matched, nondiabetic controls. These perfused diabetic adrenal medullae also demonstrated decreased catecholamine release in response to direct chromaffin cell depolarization with 20 mM K+, evidence that a functional alteration exists within the chromaffin cells themselves. Nonetheless, total catecholamine content of adrenal medullae from these diabetic rats was not significantly different from controls, indicating that the secretory defect was not simply attributable to a difference in the amount of catecholamines stored and available for release. Herein, we also provide histological evidence of degenerative changes within the cholinergic nerve terminals that innervate these glands.

  1. Camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats.

    PubMed

    Meena, Sunita; Rajput, Yudhishthir S; Pandey, Amit K; Sharma, Rajan; Singh, Raghvendar

    2016-08-01

    This study was designed to assess anti-diabetic potential of goat, camel, cow and buffalo milk in streptozotocin (STZ) induced type 1 diabetic albino wistar rats. A total of 48 rats were taken for the study where one group was kept as non-diabetic control group (8 rats) while others (40 rats) were made diabetic by STZ (50 mg/kg of body weight) injection. Among diabetic rats, a control group (8 rats) was kept and referred as diabetic control whereas other four groups (8 rats each) of diabetic rats were fed on 50 ml of goat or camel or cow or buffalo milk for 4 weeks. All the rats (non-diabetic and diabetic) were maintained on standard diet for four weeks. STZ administration resulted in enhancement of glucose, total cholesterol, triglyceride, low density lipoprotein, HbA1c and reduction in high density lipoprotein in plasma and lowering of antioxidative enzymes (catalase, glutathione peroxidase and superoxide dismutase) activities in pancreas, kidney, liver and RBCs, coupled with enhanced levels of TBARS and protein carbonyls in pancreas, kidney, liver and plasma. OGTT carried out at the end of 4 week milk feeding indicated that all milks helped in early maintenance of glucose level. All milks reduced atherogenic index. In camel milk fed diabetic group, insulin concentration enhanced to level noted for non-diabetic control while goat, cow and buffalo milk failed to restore insulin level. HbA1c level was also restored only in camel milk fed diabetic group. The level of antioxidative enzymes (catalase, GPx and SOD) in pancreas enhanced in all milk fed groups. Camel milk and to a reasonable extent goat milk reduced formation of TBARS and PCs in tissues and blood. It can be concluded that camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats. Further, only camel milk completely ameliorated oxidative damage in pancreas and normalised insulin level. PMID:27600979

  2. Modeling the Disease Progression from Healthy to Overt Diabetes in ZDSD Rats.

    PubMed

    Choy, Steve; de Winter, Willem; Karlsson, Mats O; Kjellsson, Maria C

    2016-09-01

    Studying the critical transitional phase between healthy to overtly diabetic in type 2 diabetes mellitus (T2DM) is of interest, but acquiring such clinical data is impractical due to ethical concerns and would require a long study duration. A population model using Zucker diabetic Sprague-Dawley (ZDSD) rats was developed to describe this transition through altering insulin sensitivity (IS, %) as a result of accumulating excess body weight and β-cell function (BCF, %) to affect glucose-insulin homeostasis. Body weight, fasting plasma glucose (FPG), and fasting serum insulin (FSI) were collected biweekly over 24 weeks from ZDSD rats (n = 23) starting at age 7 weeks. A semi-mechanistic model previously developed with clinical data was adapted to rat data with BCF and IS estimated relative to humans. Non-linear mixed-effect model estimation was performed using NONMEM. Baseline IS and BCF were 41% compared to healthy humans. BCF was described with a non-linear rise which peaked at 14 weeks before gradually declining to a negligible level. A component for excess growth reflecting obesity was used to affect IS, and a glucose-dependent renal effect exerted a two- to sixfold increase on the elimination of glucose. A glucose-dependent weight loss effect towards the end of experiment was implemented. A semi-mechanistic model to describe the dynamics of glucose and insulin was successfully developed for a rat population, transitioning from healthy to advanced diabetes. It is also shown that weight loss can be modeled to mimic the glucotoxicity phenomenon seen in advanced hyperglycemia. PMID:27245226

  3. Effect of magnesium ion supplementation on obesity and diabetes mellitus in Otsuka Long-Evans Tokushima Fatty (OLETF) rats under excessive food intake.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa

    2013-01-01

    Several epidemiologic studies have found that magnesium ion (Mg²⁺) is related to obesity and type 2 diabetes mellitus. However, there have been almost no reports on the effects of a combination of excessive food intake and Mg²⁺ supplementation on metabolic syndrome and various blood tests values for diabetes mellitus. In this study, we investigated changes in body weight and blood test values for diabetes mellitus of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model for human type 2 diabetes mellitus via metabolic syndrome, under conditions of combined excessive food intake and Mg²⁺ supplementation. The rats received Mg²⁺ supplementation by drinking magnesium water (Mg²⁺; 200 mg/l). No significant differences were observed in the levels of food or water intake between OLETF rats drinking purified water (PW) or magnesium water (MW). Type 2 diabetes mellitus with metabolic syndrome developed at 30 weeks of age, and the body weights and plasma insulin levels of OLETF rats at 60 weeks of age were lower than those of normal rats. The plasma glucose (PG) levels in 38-week-old OLETF rats drinking MW were significantly lower than in those of rats drinking PW, while the body weights and the levels of triglycerides (TG) and insulin of 38-week-old MW-drinking OLETF rats were significantly higher than those of their PW-drinking counterparts. On the other hand, the decreases in body weight and insulin levels in 60-week-old OLETF rats were suppressed by MW supplementation. The present study demonstrates that Mg²⁺ supplementation delays the development of diabetes mellitus in OLETF rats under conditions of excessive food intake. In addition, obesity and high blood TG levels were observed in OLETF rats receiving Mg²⁺ supplementation in conjunction with excessive food intake.

  4. Environmental enrichment restores neurogenesis and rapid acquisition in aged rats.

    PubMed

    Speisman, Rachel B; Kumar, Ashok; Rani, Asha; Pastoriza, Jessica M; Severance, Jamie E; Foster, Thomas C; Ormerod, Brandi K

    2013-01-01

    Strategies combatting cognitive decline among the growing aging population are vital. We tested whether environmental enrichment could reverse age-impaired rapid spatial search strategy acquisition concomitantly with hippocampal neurogenesis in rats. Young (5-8 months) and aged (20-22 months) male Fischer 344 rats were pair-housed and exposed to environmental enrichment (n = 7 young, 9 aged) or housed individually (n = 7 young, 7 aged) for 10 weeks. After 5 weeks, hidden platform trials (5 blocks of 3 trials; 15 m inter-block interval), a probe trial, and then visible platform trials (5 blocks of 3 trials; 15 m inter-block interval) commenced in the water maze. One week after testing, rats were given 5 daily intraperitoneal bromodeoxyuridine (50 mg/kg) injections and perfused 4 weeks later to quantify neurogenesis. Although young rats outperformed aged rats, aged enriched rats outperformed aged individually housed rats on all behavioral measures. Neurogenesis decreased with age but enrichment enhanced new cell survival, regardless of age. The novel correlation between new neuron number and behavioral measures obtained in a rapid water maze task among aged rats, suggests that environmental enrichment increases their ability to rapidly acquire and flexibly use spatial information along with neurogenesis.

  5. Comparison of the effects of levocetirizine and losartan on diabetic nephropathy and vascular dysfunction in streptozotocin-induced diabetic rats.

    PubMed

    Anbar, Hanan S; Shehatou, George S G; Suddek, Ghada M; Gameil, Nariman M

    2016-06-01

    This work was designed to investigate the effects of levocetirizine, a histamine H1 receptor antagonist, on diabetes-induced nephropathy and vascular disorder, in comparison to an angiotensin II receptor antagonist, losartan. Diabetes was induced in male Sprague Dawley rats by a single intraperitoneal injection of streptozotocin (50mg/kg). Diabetic rats were divided into three groups; diabetic, diabetic-levocetirizine (0.5mg/kg/day) and diabetic-losartan (25mg/kg/day). Treatments were started two weeks following diabetes induction and continued for additional eight weeks. At the end of the experiment, urine was collected and serum was separated for biochemical measurements. Tissue homogenates of kidney and aorta were prepared for measuring oxidative stress, nitric oxide (NO), transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α). Moreover, histological analyses were conducted and aortic vascular reactivity was investigated. Levocetirizine improved renal function in diabetic rats (evidenced by mitigation of diabetes-induced changes in kidney to body weight ratio, serum albumin, urinary proteins and creatinine clearance). Moreover, levocetirizine attenuated the elevated renal levels of TNF-α and TGF-β1, ameliorated renal oxidative stress and restored NO bioavailability in diabetic kidney. These effects were comparable to or surpassed those produced by losartan. Moreover, levocetirizine, similar to losartan, reduced the enhanced responsiveness of diabetic aorta to phenylephrine. Histological evaluation of renal and aortic tissues further confirmed the beneficial effects of levocetirizine on diabetic nephropathy and revealed a greater attenuation of diabetes-induced vascular hypertrophy by levocetirizine than by losartan. In conclusion, levocetirizine may offer comparable renoprotective effect to, and possibly superior vasculoprotective effects than, losartan in streptozotocin-diabetic rats. PMID:27012991

  6. Altered glucose kinetics in diabetic rats during Gram-negative infection

    SciTech Connect

    Lang, C.H.; Dobrescu, C.; Bagby, G.J.; Spitzer, J.J. )

    1987-08-01

    The present study examined the purported exacerbating effect of sepsis on glucose metabolism in diabetes. Diabetes was induced in rats by an intravenous injection of 70 or 45 mg/kg streptozotocin. The higher dose produced severe diabetes, whereas the lower dose of streptozotocin produced a miler, latent diabetes. After a chronic diabetic state had developed for 4 wk, rats had catheters implanted and sepsis induced by intraperitoneal injections of live Escherichia coli. After 24 h of sepsis the blood glucose concentration was unchanged in nondiabetics and latent diabetics, but glucose decreased from 15 to 8 mM in the septic severe diabetic group. This decrease in blood glucose was not accompanied by alterations in the plasma insulin concentration. Glucose turnover, assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, was elevated in the severe diabetic group, compared with either latent diabetics or nondiabetics. Sepsis increased the rate of glucose disappearance in nondiabetic rats but had no effect in either group of diabetic animals. Sepsis also failed to alter the insulinogenic index, used to estimate the insulin secretory capacity, in diabetic rats. Thus the present study suggests that the imposition of nonlethal Gram-negative sepsis on severe diabetic animals does not further impair glucose homeostasis and that the milder latent diabetes was not converted to a more severe diabetic state by the septic challenge.

  7. Antihyperlipidemic effect of fisetin, a bioflavonoid of strawberries, studied in streptozotocin-induced diabetic rats.

    PubMed

    Prasath, Gopalan Sriram; Subramanian, Sorimuthu Pillai

    2014-10-01

    Chronic hyperglycemia in diabetes is associated with profound changes in lipid and lipoprotein metabolism, with resultant alterations in particle distribution within lipoprotein classes. In the present study, an attempt has been made to explore the antihyperlipidemic effect of fisetin in streptozotocin-induced experimental diabetes in rats. Upon fisetin treatment to diabetic rats, the levels of blood glucose were significantly reduced with an improvement in plasma insulin. The increased levels of lipid contents in serum, hepatic, and renal tissues observed in diabetic rats were normalized upon fisetin administration. Also, the decreased levels of high-density lipoprotein cholesterol, and increased levels of low-density lipoprotein (LDL) and very LDL (VLDL) cholesterol in serum of diabetic rats were normalized. Oil Red O staining established a large number of intracellular lipid droplets accumulation in the diabetic rats. Fisetin treatment exacerbated the degree of lipid accumulation. The results of the present study exemplify the antihyperlipidemic property of the fisetin.

  8. Eucommia bark (Du-Zhong) improves diabetic nephropathy without altering blood glucose in type 1-like diabetic rats

    PubMed Central

    Niu, Ho-Shan; Liu, I-Min; Niu, Chiang-Shan; Ku, Po-Ming; Hsu, Chao-Tien; Cheng, Juei-Tang

    2016-01-01

    Background Eucommia bark, Eucommia ulmoides Oliver barks (Du-Zhong in Mandarin), is an herb used for renal dysfunction in Chinese traditional medicine. In an attempt to develop this herb as a treatment for diabetic nephropathy (DN), we investigated the effects of Du-Zhong on renal dysfunction in type 1-like diabetic rats. Methods Streptozotocin (STZ) was used to induce type 1-like diabetes in rats (STZ-diabetic rats). In addition to hyperglycemia, STZ-diabetic rats showed significant nephropathy, including higher plasma levels of blood urea nitrogen, creatinine, and renal fibrosis. Western blot analysis of renal cortical tissue was applied to characterize the changes in potential signals related to nephropathy. Results Oral administration of Du-Zhong (1 g/kg/day) to STZ-diabetic rats for 20 days not only decreased the plasma levels of blood urea nitrogen and creatinine but also improved renal fibrosis, whereas the plasma glucose level was not changed. The higher expressions of protein levels of transforming growth factor-beta (TGF-β) and connective tissue growth factor in diabetic rats were markedly attenuated by Du-Zhong. The increased phosphorylation of Smad2/3 in STZ-diabetic rats was also reduced by Du-Zhong. However, Du-Zhong cannot reverse the hyperglycemia-induced overproduction of signal transducers and activators of transcription 3 in the diabetic kidney. Conclusion Oral administration of Du-Zhong improves STZ-induced DN in rats by inhibiting TGF-β/Smad signaling and suppressing TGF-β/connective tissue growth factor expression. Therefore, active principle from Du-Zhong is suitable to develop as new agent for DN in the future. PMID:27041999

  9. CARBONYLATION OF MYOSIN HEAVY CHAINS IN RAT HEARTS DURING DIABETES

    PubMed Central

    Shao, Chun-Hong; Rozanski, George J.; Nagai, Ryoji; Stockdale, Frank E.; Patel, Kaushik P.; Wang, Mu; Singh, Jaipaul; Mayhan, William G.; Bidasee, Keshore R.

    2010-01-01

    Cardiac inotropy progressively declines during diabetes mellitus. To date, the molecular mechanisms underlying this defect remain incompletely characterized. This study tests the hypothesis that ventricular myosin heavy chains (MHC) undergo carbonylation by reactive carbonyl species (RCS) during diabetes and these modifications contribute to the inotropic decline. Male Sprague-Dawley rats were injected with streptozotocin (STZ). Fourteen days later animals were divided into two groups: one group was treated with the RCS blocker aminoguanidine for six weeks, while the other group received no treatment. After eight weeks of diabetes, cardiac ejection fraction, fractional shortening, left ventricular pressure development (+dP/dt) and myocyte shortening were decreased by 9%, 16%, 34% and 18%, respectively. Ca2+- and Mg2+-actomyosin ATPase activities and peak actomyosin syneresis were also reduced by 35%, 28%, and 72%. MHC-α to MHC-β ratio was 12:88. Mass spectrometry and Western blots revealed the presence of carbonyl adducts on MHC-α and MHC-β. Aminoguandine treatment did not alter MHC composition, but it blunted formation of carbonyl adducts and decreases in actomyosin Ca2+-sensitive ATPase activity, syneresis, myocyte shortening, cardiac ejection fraction, fractional shortening and +dP/dt induced by diabetes. From these new data it can be concluded that in addition to isozyme switching, modification of MHC by RCS also contributes to the inotropic decline seen during diabetes. PMID:20359464

  10. Carbonylation of myosin heavy chains in rat heart during diabetes.

    PubMed

    Shao, Chun-Hong; Rozanski, George J; Nagai, Ryoji; Stockdale, Frank E; Patel, Kaushik P; Wang, Mu; Singh, Jaipaul; Mayhan, William G; Bidasee, Keshore R

    2010-07-15

    Cardiac inotropy progressively declines during diabetes mellitus. To date, the molecular mechanisms underlying this defect remain incompletely characterized. This study tests the hypothesis that ventricular myosin heavy chains (MHC) undergo carbonylation by reactive carbonyl species (RCS) during diabetes and these modifications contribute to the inotropic decline. Male Sprague-Dawley rats were injected with streptozotocin (STZ). Fourteen days later the animals were divided into two groups: one group was treated with the RCS blocker aminoguanidine for 6 weeks, while the other group received no treatment. After 8 weeks of diabetes, cardiac ejection fraction, fractional shortening, left ventricular pressure development (+dP/dt) and myocyte shortening were decreased by 9%, 16%, 34% and 18%, respectively. Ca(2+)- and Mg(2+)-actomyosin ATPase activities and peak actomyosin syneresis were also reduced by 35%, 28%, and 72%. MHC-alpha to MHC-beta ratio was 12:88. Mass spectrometry and Western blots revealed the presence of carbonyl adducts on MHC-alpha and MHC-beta. Aminoguanidine treatment did not alter MHC composition, but it blunted formation of carbonyl adducts and decreases in actomyosin Ca(2+)-sensitive ATPase activity, syneresis, myocyte shortening, cardiac ejection fraction, fractional shortening and +dP/dt induced by diabetes. From these new data it can be concluded that in addition to isozyme switching, modification of MHC by RCS also contributes to the inotropic decline seen during diabetes.

  11. Antidiabetic Effect of Sida cordata in Alloxan Induced Diabetic Rats

    PubMed Central

    Shah, Naseer Ali; Khan, Muhammad Rashid

    2014-01-01

    Medicinal plants are efficient ameliorator of oxidative stress associated with diabetes mellitus. In this study, ethyl acetate fraction (SCEE) of Sida cordata was investigated for scientific validation of its folk use in diabetes. Antidiabetic effect of SCEE was confirmed by antihyperglycemic activity in normal glucose loaded and diabetic glucose loaded animals as well as normal off feed animals. Confirmation of antidiabetic activity and toxicity ameliorative role of S. cordata was investigated in a chronic multiple dose treatment study of fifteen days. A single dose of alloxan (120 mg/kg) produced a decrease in insulin level, hyperglycemia, elevated total lipids, triglycerides, and cholesterol and decreased the high-density lipoproteins. Concurrent with these changes, there was an increase in the concentration of lipid peroxidation (TBARS), H2O2, and nitrite in pancreas, liver, and testis. This oxidative stress was related to a decrease in glutathione content (GSH) and antioxidant enzymes. Administration of SCEE for 15 days after diabetes induction ameliorated hyperglycemia, restored lipid profile, blunted the increase in TBARS, H2O2, and nitrite content, and stimulated the GSH production in the organs of alloxan-treated rats. We suggested that SCEE could be used as antidiabetic component in case of diabetes mellitus. This may be related to its antioxidative properties. PMID:25114914

  12. Antidiabetic effect of Sida cordata in alloxan induced diabetic rats.

    PubMed

    Shah, Naseer Ali; Khan, Muhammad Rashid

    2014-01-01

    Medicinal plants are efficient ameliorator of oxidative stress associated with diabetes mellitus. In this study, ethyl acetate fraction (SCEE) of Sida cordata was investigated for scientific validation of its folk use in diabetes. Antidiabetic effect of SCEE was confirmed by antihyperglycemic activity in normal glucose loaded and diabetic glucose loaded animals as well as normal off feed animals. Confirmation of antidiabetic activity and toxicity ameliorative role of S. cordata was investigated in a chronic multiple dose treatment study of fifteen days. A single dose of alloxan (120 mg/kg) produced a decrease in insulin level, hyperglycemia, elevated total lipids, triglycerides, and cholesterol and decreased the high-density lipoproteins. Concurrent with these changes, there was an increase in the concentration of lipid peroxidation (TBARS), H2O2, and nitrite in pancreas, liver, and testis. This oxidative stress was related to a decrease in glutathione content (GSH) and antioxidant enzymes. Administration of SCEE for 15 days after diabetes induction ameliorated hyperglycemia, restored lipid profile, blunted the increase in TBARS, H2O2, and nitrite content, and stimulated the GSH production in the organs of alloxan-treated rats. We suggested that SCEE could be used as antidiabetic component in case of diabetes mellitus. This may be related to its antioxidative properties.

  13. Telmisartan ameliorates neurotrophic support and oxidative stress in the retina of streptozotocin-induced diabetic rats.

    PubMed

    Ola, M Shamsul; Ahmed, Mohammed M; Abuohashish, Hatem M; Al-Rejaie, Salim S; Alhomida, Abdullah S

    2013-08-01

    Neurodegeneration is an early event in the diabetic retina which may lead to diabetic retinopathy. One of the potential pathways in damaging retinal neurons is the activation of renin angiotensin system including angiotensin II type 1 receptor (AT1R) in the diabetic retina. The purpose of this study was to determine the effect of telmisartan, an AT1R blocker on retinal level of brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and tyrosine hydroxylase (TH), glutathione (GSH) and caspase activity in the diabetic rats. The dysregulated levels of these factors are known to cause neurodegeneration in diabetic retina. Three weeks streptozotocin induced diabetic rats were orally treated or untreated with telmisartan (10 mg/kg/day). After 4 weeks of treatments, the levels of BDNF and GSH were found to be increased systemically in the sera as well as in the retina of diabetic rats compared to untreated rats as measured by enzyme-linked immunosorbent assay and biochemical techniques (p < 0.05). The caspase-3 activity in the telmisartan treated diabetic retina was decreased compared to untreated diabetic rats (p < 0.05). Western blotting experiments showed the expression levels of BDNF, CNTF and TH were increased compared to untreated diabetic rats (p < 0.05). Thus, our findings show a beneficial effect of AT1R blocker telmisartan in efficiently increasing neurotrophic support, endogenous antioxidant GSH content, and decreasing signs of apoptosis in diabetic retina. PMID:23624827

  14. Oxidative stress status and placental implications in diabetic rats undergoing swimming exercise after embryonic implantation.

    PubMed

    Volpato, Gustavo Tadeu; Damasceno, Débora Cristina; Sinzato, Yuri Karen; Ribeiro, Viviane Maria; Rudge, Marilza Vieira Cunha; Calderon, Iracema Mattos Paranhos

    2015-05-01

    The potential benefits and risks of physical exercise on fetal development during pregnancy remain unclear. The aim was to analyze maternal oxidative stress status and the placental morphometry to relate to intrauterine growth restriction (IUGR) from diabetic female rats submitted to swimming program after embryonic implantation. Pregnant Wistar rats were distributed into 4 groups (11 animals/group): control-nondiabetic sedentary rats, control exercised-nondiabetic exercised rats, diabetic-diabetic sedentary rats, and diabetic exercised-diabetic exercised rats. A swimming program was used as an exercise model. At the end of pregnancy, the maternal oxidative stress status, placental morphology, and fetal weight were analyzed. The swimming program was not efficient to reduce the hyperglycemia-induced oxidative stress. This fact impaired placental development, resulting in altered blood flow and energy reserves, which contributed to a deficient exchange of nutrients and oxygen for the fetal development, leading to IUGR. PMID:25361551

  15. ER stress and ER stress-induced apoptosis are activated in gastric SMCs in diabetic rats

    PubMed Central

    Chen, Xia; Fu, Xiang-Sheng; Li, Chang-Ping; Zhao, Hong-Xian

    2014-01-01

    AIM: To investigate the gastric muscle injury caused by endoplasmic reticulum (ER) stress in rats with diabetic gastroparesis. METHODS: Forty rats were randomly divided into two groups: a control group and a diabetic group. Diabetes was induced by intraperitoneal injection of 60 mg/kg of streptozotocin. Gastric emptying was determined at the 4th and 12th week. The ultrastructural changes in gastric smooth muscle cells (SMCs) were investigated by transmission electron microscopy. TdT-mediated dUTP nick end labeling (TUNEL) assay was performed to assess apoptosis of SMCs. Expression of the ER stress marker, glucose-regulated protein 78 (GRP78), and the ER-specific apoptosis mediator, caspase-12 protein, was determined by immunohistochemistry. RESULTS: Gastric emptying was significantly lower in the diabetic rats than in the control rats at the 12th wk (40.71% ± 2.50%, control rats vs 54.65% ± 5.22%, diabetic rats; P < 0.05). Swollen and distended ER with an irregular shape was observed in gastric SMCs in diabetic rats. Apoptosis of gastric SMCs increased in the diabetic rats in addition to increased expression of GRP78 and caspase-12 proteins. CONCLUSION: ER stress and ER stress-mediated apoptosis are activated in gastric SMCs in diabetic rats with gastroparesis. PMID:25009401

  16. Chronic Oral Pelargonidin Alleviates Learning and Memory Disturbances in Streptozotocin Diabetic Rats

    PubMed Central

    Mirshekar, Mohammadali; Roghani, Mehrdad; Khalili, Mohsen; Baluchnejadmojarad, Tourandokht

    2011-01-01

    Diabetes mellitus is accompanied with disturbances in learning, memory, and cognitive skills in the humans and experimental animals. Due to the anti-diabetic and antioxidant activity of pelargonidin (PG), this research study was conducted to evaluate the efficacy of chronic oral PG on alleviating learning and memory disturbance in streptozotocin-diabetic rats. Male Wistar rats were divided into control, diabetic, PG-treated control and PG (single-and/or multiple-dose)-treated diabetic groups. PG was administered p.o. once at a dose of 10 mg/kg and/or multiple doses on alternate days for 8 weeks. For induction of diabetes, streptozotocin (STZ) was injected IP in a single dose of 60 mg/kg. For the evaluation of learning and memory, initial latency (IL) and step-through latency (STL) were determined at the end of study using a passive avoidance test. Meanwhile, spatial memory was assessed in a Y-maze task. It was found that the alternation score of the diabetic rats was lower than the control (p < 0.05) and that single dose PG-treated diabetic rats (p < 0.05) showed a higher alternation score in comparison with the diabetic group. Regarding initial latency, there was no significant difference among the groups. In addition, diabetic and single-dose PG-treated diabetic rats developed a significant impairment in retention and recall in the passive avoidance test (p < 0.01), as was evident by a lower STL. Furthermore, the retention and recall of multiple-dose PG-treated diabetic rats was significantly higher in comparison with diabetic rats (p < 0.05). Therefore, it can be concluded that single-dose oral PG may attenuate spatial memory in the Y maze paradigm and multiple-dose chronic PG could improve retention and recall capability in the passive avoidance test in STZ-diabetic rats. PMID:24250390

  17. Effect of aging on islet beta-cell function and its mechanisms in Wistar rats.

    PubMed

    Gu, Zhaoyan; Du, Yingzhen; Liu, Yu; Ma, Lichao; Li, Lin; Gong, Yanping; Tian, Hui; Li, Chunlin

    2012-12-01

    Type 2 diabetes mellitus is characterized by islet β-cell dysfunction and its incidence increases with age. However, the mechanisms underlying the effect of aging on islet β-cell function are not fully understood. We characterized β-cell function in 4-month-old (young), 14-month-old (adult), and 24-month-old (old) male Wistar rats, and found that islet β-cell function decreased gradually with age. Old rats displayed oral glucose intolerance and exhibited a decrease in glucose-stimulated insulin release (GSIR) and palmitic acid-stimulated insulin release (PSIR). Furthermore, total superoxide dismutase (T-SOD), CuZn superoxide dismutase (CuZn-SOD), and glutathione peroxidase (GSH-Px) activity decreased, whereas serum malondialdehyde (MDA) levels increased in the older rats. Moreover, we detected a significant reduction in β-cell proliferation and an increase in the frequency of apoptotic β-cells in the islets of rats in the old group. Finally, Anxa1 expression in the islets of old rats was significantly upregulated. These data provide new insights into the development of age-related β-cell dysfunction in rats.

  18. Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats.

    PubMed

    Sun, Jin-Shan; Yang, Yu-Jie; Zhang, Yong-Zhen; Huang, Wen; Li, Zhao-Shen; Zhang, Yong

    2015-08-01

    The mechanisms associated with diabetes-induced neuropathic pain are complex and poorly understood. In order to understand the involvement of spinal microglia activity in diabetic pain, the present study investigated whether minocycline treatment is able to attenuate diabetic pain using a rat model. Diabetes was induced using a single intraperitoneal injection of streptozotocin (STZ). Minocycline was then intrathecally administered to the rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were tested weekly. The expression of OX-42, Iba-1, phospho-p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS), were examined in the spinal cord in order to evaluate the activation of microglia. The present study demonstrated that rats with STZ-induced diabetes exhibited increased mean plasma glucose concentration, decreased mean body weight and significant pain hypersensitivity compared with control rats. PWT and PWL values of rats with STZ-induced diabetes increased following treatment with minocycline. No differences were observed in expression levels of the microglial activity markers (OX-42, Iba-1 and phospho-p38 MAPK) between rats with STZ-induced diabetes and control rats. However, TNF-α, IL-1β and iNOS expression levels were higher in rats with STZ-induced diabetes compared with control rats. Following treatment with minocycline markers of microglial activation, including cytokines and iNOS, were downregulated in rats with STZ-induced diabetes. The results of the present study indicated that minocycline treatment may inhibit spinal microglial activation and attenuate diabetic pain in rats with STZ-induced diabetes.

  19. Anti-diabetic properties of chromium citrate complex in alloxan-induced diabetic rats.

    PubMed

    Li, Fang; Wu, Xiangyang; Zhao, Ting; Zhang, Min; Zhao, Jiangli; Mao, Guanghua; Yang, Liuqing

    2011-12-01

    The chromium citrate complex [CrCIT] was synthesized and its structure was determined by infrared, UV-visible and atomic absorption spectroscopy, elemental and thermodynamic analysis. Anti-diabetic activity, oxidative DNA damage capacity and acute oral toxicity of [CrCIT] were investigated and compared with that of chromium trichloride hexahydrate. [CrCIT] was synthesized in a single step reaction by chelating chromium(III) with citric acid in aqueous solution. The molecular formula of [CrCIT] was inferred as CrC(6)H(5)O(7)·4H(2)O. The anti-diabetic activity of the complex [CrCIT] was assessed in alloxan-diabetic rats by daily oral gavage for 3 weeks. The biological activity results showed that the complex at the dose of 0.25-0.75 mg Cr/kg body weight could decrease the blood glucose level and increase liver glycogen level in alloxan-diabetic rats. [CrCIT] had more beneficial influences on the improvement of controlling blood glucose, serum lipid and liver glycogen levels compared with CrCl(3)·6H(2)O. Furthermore, [CrCIT] did not cause oxidative DNA damage under physiologically relevant conditions, and [CrCIT] did not produce any hazardous symptoms or deaths in acute oral toxicity test, showing the LD(50) value for female and male rats were higher than 15.1 g/kg body weight. The results suggested that [CrCIT] might represent a novel and proper chromium supplement with potential therapeutic value to control blood glucose in diabetes.

  20. Pentamethylquercetin protects against diabetes-related cognitive deficits in diabetic Goto-Kakizaki rats.

    PubMed

    Li, Xian-Hui; Xin, Xin; Wang, Yan; Wu, Jian-zhao; Jin, Zhen-dong; Ma, Li-na; Nie, Chun-jie; Xiao, Xiao; Hu, Yan; Jin, Man-wen

    2013-01-01

    Diabetic patients have a signifiantly higher risk of developing all forms of dementia. Pentamethylquercetin (PMQ) has been proven to have potential as an anti-diabetic agent. Nevertheless, whether PMQ can improve diabetes-induced cognitive dysfunction has not been investigated. To address this, we evaluated the effectiveness and underlying mechanisms of PMQ for ameliorating diabetes-related cognitive dysfunction in vivo and in vitro. Our results showed that Goto-Kakizaki (GK) rats displayed impairment in their learning abilities and memory capabilities. Furthermore, GK rats reflected cognitive dysfunction in proportion to the intensity of insulin resistance index. In addition, dendritic spine density and the % cell viability significantly decreased in hippocampus neurons. High glucose conditions induced hippocampal neurons damage, inflicted dendritic spine dysontogenesis, and reduced Akt/cAMP response element-binding protein activation. Treatment with PMQ in GK rats significantly ameliorated cognitive deficits and neuronal damage and increased dendritic spine density, at least in part, by improving insulin resistance and metabolic disorders. Furthermore, PMQ significantly activated the Akt/cAMP response element-binding protein pathway and increased the expression of memory-related proteins in the downstream part of the Akt/cAMP response element-binding protein pathway, such as synaptophysin and glutamate receptor 1. In addition, PMQ inhibited high glucose-induced cellular toxicity. LY294002 appeared to partly inhibit PMQ-mediated protective effects in hippocampal neurons. The results suggest that insulin resistance could predominantly reduce Akt/cAMP response element-binding protein activation in the brain, which is associated with a higher risk of cognitive dysfunction. PMQ could provide a new potential option for the prevention of cognitive dysfunction in diabetes.

  1. Rosiglitazone ameliorates abnormal expression and activity of protein tyrosine phosphatase 1B in the skeletal muscle of fat-fed, streptozotocin-treated diabetic rats

    PubMed Central

    Wu, Yong; Ouyang, Jing Ping; Wu, Ke; Wang, Shi Shun; Wen, Chong Yuan; Xia, Zheng Yuan

    2005-01-01

    Protein tyrosine phosphatase 1B (PTP1B) acts as a physiological negative regulator of insulin signaling by dephosphorylating the activated insulin receptor (IR). Here we examine the role of PTP1B in the insulin-sensitizing action of rosiglitazone (RSG) in skeletal muscle and liver. Fat-fed, streptozotocin-treated rats (10-week-old), an animal model of type II diabetes, and age-matched, nondiabetic controls were treated with RSG (10 μmol kg−1 day−1) for 2 weeks. After RSG treatment, the diabetic rats showed a significant decrease in blood glucose and improved insulin sensitivity. Diabetic rats showed significantly increased levels and activities of PTP1B in the skeletal muscle (1.6- and 2-fold, respectively) and liver (1.7- and 1.8-fold, respectively), thus diminishing insulin signaling in the target tissues. We found that the decreases in insulin-stimulated glucose uptake (55%), tyrosine phosphorylation of IRβ-subunits (48%), and IR substrate-1 (IRS-1) (39%) in muscles of diabetic rats were normalized after RSG treatment. These effects were associated with 34 and 30% decreases in increased PTP1B levels and activities, respectively, in skeletal muscles of diabetic rats. In contrast, RSG did not affect the increased PTP1B levels and activities or the already reduced insulin-stimulated glycogen synthesis and tyrosine phosphorylation of IRβ-subunits and IRS-2 in livers of diabetic rats. RSG treatment in normal rats did not significantly change PTP1B activities and levels or protein levels of IRβ, IRS-1, and -2 in diabetic rats. These data suggest that RSG enhances insulin activity in skeletal muscle of diabetic rats possibly by ameliorating abnormal levels and activities of PTP1B. PMID:15997237

  2. Colonic Hypersensitivity and Sensitization of Voltage-gated Sodium Channels in Primary Sensory Neurons in Rats with Diabetes

    PubMed Central

    Hu, Ji; Song, Zhen-Yuan; Zhang, Hong-Hong; Qin, Xin; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2016-01-01

    Background/Aims Patients with long-standing diabetes often demonstrate intestinal dysfunction and abdominal pain. However, the pathophysiology of abdominal pain in diabetic patients remains elusive. The purpose of study was to determine roles of voltage-gated sodium channels in dorsal root ganglion (DRG) in colonic hypersensitivity of rats with diabetes. Methods Diabetic models were induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in adult female rats, while the control rats received citrate buffer only. Behavioral responses to colorectal distention were used to determine colonic sensitivity in rats. Colon projection DRG neurons labeled with DiI were acutely dissociated for measuring excitability and sodium channel currents by whole-cell patch clamp recordings. Western blot analysis was employed to measure the expression of NaV1.7 and NaV1.8 of colon DRGs. Results STZ injection produced a significantly lower distention threshold than control rats in responding to colorectal distention. STZ injection also depolarized the resting membrane potentials, hyperpolarized action potential threshold, decreased rheobase and increased frequency of action potentials evoked by 2 and 3 times rheobase and ramp current stimulation. Furthermore, STZ injection enhanced neuronal sodium current densities of DRG neurons innervating the colon. STZ injection also led to a significant upregulation of NaV1.7 and NaV1.8 expression in colon DRGs compared with age and sex-matched control rats. Conclusions Our results suggest that enhanced neuronal excitability following STZ injection, which may be mediated by upregulation of NaV1.7 and NaV1.8 expression in DRGs, may play an important role in colonic hypersensitivity in rats with diabetes. PMID:26459453

  3. 6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation

    PubMed Central

    Ghareib, Salah A; El-Bassossy, Hany M; Elberry, Ahmed A; Azhar, Ahmad; Watson, Malcolm L; Banjar, Zainy Mohammed

    2015-01-01

    The aim of the present study is to investigate the effect and potential mechanism of action of 6-gingerol on alterations of vascular reactivity in the isolated aorta from diabetic rats. Male Wistar rats were divided into two experimental groups, control and diabetics. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg kg−1), and the rats were left for 10 weeks to develop vascular complications. The effect of in vitro incubation with 6-gingerol (0.3–3 μM) on the vasoconstrictor response of the isolated diabetic aortae to phenylephrine and the vasodilator response to acetylcholine was examined. Effect of 6-gingerol was also examined on aortae incubated with methylglyoxal as an advanced glycation end product (AGE). To investigate the mechanism of action of 6-gingerol, the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride (100 μM), guanylate cyclase inhibitor methylene blue (5 μM), calcium-activated potassium channel blocker tetraethylammonium chloride (10 mM), and cyclooxygenase inhibitor indomethacin (5 μM) were added 30 minutes before assessing the direct vasorelaxant effect of 6-gingerol. Moreover, in vitro effects of 6-gingerol on NO release and the effect of 6-gingerol on AGE production were examined. Results showed that incubation of aortae with 6-gingerol (0.3–10 μM) alleviated the exaggerated vasoconstriction of diabetic aortae to phenylephrine in a concentration-dependent manner with no significant effect on the impaired relaxatory response to acetylcholine. Similar results were seen in the aortae exposed to methylglyoxal. In addition, 6-gingerol induced a direct vasodilation effect that was significantly inhibited by Nω-nitro-l-arginine methyl ester hydrochloride and methylene blue. Furthermore, 6-gingerol stimulated aortic NO generation but had no effect on AGE formation. In conclusion, 6-gingerol ameliorates enhanced vascular contraction in diabetic aortae, which may be partially

  4. Goshajinkigan (Chinese herbal medicine niu-che-sen-qi-wan) improves insulin resistance in diabetic rats via the nitric oxide pathway.

    PubMed

    Hu, Xiaochen; Sato, Juichi; Bajotto, Gustavo; Khookhor, Oyun; Ohsawa, Isao; Oshida, Yoshiharu; Sato, Yuzo

    2010-02-01

    Goshajinkigan (GJG), an aqueous extract of a combination of 10 herbal medicines, is widely used for the treatment of diabetic neuropathy in Japan. In this study, the effect of GJG on insulin-induced glucose disposal in normal and streptozotocin (STZ) diabetic rats was analyzed using the euglycemic clamp technique. Male Wistar rats, aged 9 weeks, were randomly assigned to six groups: group NS, normal rats receiving saline; group NG, normal rats receiving GJG (800 mg x kg(-1) x day(-1), p.o.); group NGL, normal rats receiving GJG + N(G)-monomethyl-L-arginine (L-NMMA, 1 mg x kg(-1) x min(-1), i.v.); group DS, diabetic rats receiving saline; group DG, diabetic rats receiving GJG; group DGL, diabetic rats receiving GJG + L-NMMA. After daily oral administrations of saline or GJG for one week, euglycemic clamp experiments were performed. The metabolic clearance rates of glucose (MCR) in the DS, DG, and DGL groups (8.7 +/- 2.9, 18.2 +/- 2.5, and 8.1 +/- 1.8 ml x kg(-1) x min(-1), respectively) were significantly lower than those in the NS, NG, and NGL groups (24.1 +/- 4.5, 24.5 +/- 3.1, and 22.2 +/- 2.1 ml x kg(-1) x min(-1), respectively). In addition, the MCR in the DG group was significantly higher than that in the DS and DGL groups, while no significant difference was detected among the NS, NG, and NGL groups. Furthermore, the amelioration of insulin resistance by GJG in diabetic rats was hampered by L-NMMA infusion. These results suggest that daily GJG administrations ameliorate insulin resistance in STZ-diabetic rats, and that the nitric oxide pathway may mediate the effect of GJG.

  5. Mechanistic population modeling of diabetes disease progression in Goto-Kakizaki rat muscle

    PubMed Central

    Nie, Jing; DuBois, Debra C.; Jusko, William J.; Almon, Richard R.

    2010-01-01

    Pyruvate dehydrogenase kinase 4 (PDK4) is a lipid status responsive gene involved in muscle fuel selection. Evidence is mounting in support of the therapeutic potential of PDK4 inhibitors to treat diabetes. Factors that regulate PDK4 mRNA expression include plasma corticosterone, insulin and free fatty acids. Our objective was to determine the impact of those plasma factors on PDK4 mRNA and to develop and validate a population mathematical model to differentiate aging, diet and disease effects on muscle PDK4 expression. The Goto-Kakizaki (GK) rat, a polygenic non-obese model of type 2 diabetes, was used as the diabetic animal model. We examined muscle PDK4 mRNA expression by real-time QRTPCR. Groups of GK rats along with controls fed with either a normal or high fat diet were sacrificed at 4, 8, 12, 16, and 20 weeks of age. Plasma corticosterone, insulin and free fatty acid were measured. The proposed mechanism-based model successfully described the age, disease and diet effects and the relative contribution of these plasma regulators on PDK4 mRNA expression. Muscle growth reduced the PDK4 mRNA production rate by 14% per gram increase. High fat diet increased the initial production rate constant in GK rats by 2.19-fold. The model indicated that corticosterone had a moderate effect and PDK4 was more sensitive to free fatty acid than insulin fluxes, which was in good agreement with the literature data. PMID:21162119

  6. Comparison of the enhancement of plasma glucose levels in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats by oral administration of sucrose or maple syrup.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Taga, Atsushi

    2013-01-01

    Maple syrup is used as a premium natural sweeter, and is known for being good for human health. In the present study, we investigate whether maple syrup is suitable as a sweetener in the management of type 2 diabetes using Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus. OLETF rats develop type 2 diabetes mellitus by 30 weeks of age, and 60-week-old OLETF rats show hyperglycemia and hypoinsulinemia via pancreatic β-cell dysfunction. The administration of sucrose or maple syrup following an OGT test increased plasma glucose (PG) levels in OLETF rats, but the enhancement in PG following the oral administration of maple syrup was lower than in the case of sucrose administration in both 30- and 60-week-old OLETF rats. Although, the insulin levels in 30-week-old OLETF rats also increased following the oral administration of sucrose or maple syrup, no increase in insulin levels was seen in 60-week-old OLETF rats following the oral administration of either sucrose or maple syrup. No significant differences were observed in insulin levels between sucrose- and maple syrup-administered OLETF rats at either 30 or 60 weeks of age. The present study strongly suggests that the maple syrup may have a lower glycemic index than sucrose, which may help in the prevention of type 2 diabetes.

  7. Vitamin D supplement improved testicular function in diabetic rats.

    PubMed

    Ding, Chenzhao; Wang, Qinzhu; Hao, Yue; Ma, Xiaojun; Wu, Lina; du, Mengmeng; Li, Wen; Wu, Yang; Guo, Feng; Ma, Siyuan; Huang, Fengjuan; Qin, Guijun

    2016-04-22

    This study was designed to investigate the role that 1,25(OH)2D3 plays against testicular lesion in diabetic rats and try to find its possible mechanism of the steroidogenesis and the spermatogenesis. In diabetic rats, prolonged hyperglycemia evaluated inflammatory cytokines, damaged sperm production function and redox balance, diminished serum testosterone. After treated with 1,25(OH)2D3 at two different doses respectively for 12 months, all the alternations were effectively normalized. 1,25(OH)2D3 showed inhibitory effect on excessive inflammatory biomarkers and adjusted the expression reproductive genes and testicular androgen synthesis. It also upregulated Bcl-2 expression, decreased Bax and COX-2 expression and inhibited active caspase cascade (caspase 8 and caspase 3), which may preserved the testicular cells under diabetic condition. It revealed that vitamin D supplement may protect the cells through suppressing inflammation factors and alleviating cell apoptotic death, as well as upregulating the expression of genes related to reproductive and testosterone synthesis. PMID:27003251

  8. Differential hippocampal protein expression between normal aged rats and aged rats with postoperative cognitive dysfunction: A proteomic analysis.

    PubMed

    Li, Yang; Wang, Saiying; Ran, Ke; Hu, Zhonghua; Liu, Zhaoqian; Duan, Kaiming

    2015-08-01

    The aim of the present study was to investigate the differences in the expression of hippocampal proteins between normal control aged rats and aged rats with postoperative cognitive dysfunction (POCD). A total of 24 aged rats were randomly divided into a surgery group (n=12) and a control group (n=12). The rats in the surgery group were treated with 2 h isoflurane anesthesia and splenectomy, while the rats in the control group received 40% oxygen for 2 h without surgery. The cognitive functions of the two groups were examined using a Y-maze test. The protein expression profiles of the hippocampus of six aged rats (three rats with POCD and three from the normal control group) were assessed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. A total of three differential proteins were further confirmed between the POCD rats and normal rats using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression levels of 21 proteins in the rats with POCD were significantly different compared with the normal control rats. These proteins were functionally clustered to synaptic plasticity (three proteins), oxidative stress (four proteins), energy production (six proteins), neuroinflammation (three proteins) and glutamate metabolism (two proteins). In addition, three proteins (fatty acid binding protein 7, brain, glutamate dehydrogenase 1 and glutamine synthetase), associated with astrocytic function, were significantly different in the rats with POCD compared with those in the normal control (P<0.05). Similar changes in the mRNA expression levels of the three proteins in the hippocampi of POCD rats were also detected using RT-qPCR. Neuroinflammation, glutamate toxicity and oxidative stress were possibly involved in the pathological mechanism underlying POCD in aged rats. In addition, astrocytes may also be important in POCD in aged rats. PMID:25936412

  9. Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats

    PubMed Central

    2012-01-01

    Background Traditional plant treatment for diabetes has shown a surging interest in the last few decades. Therefore, the purpose of this study was to assess the hypoglycemic effect of the aqueous extract of C. papaya leaves in diabetic rats. Several studies have reported that some parts of the C. papaya plant exert hypoglycemic effects in both animals and humans. Methods Diabetes was induced in rats by intraperitoneal administration of 60 mg/kg of streptozotocin (STZ). The aqueous extract of C. papaya was administered in three different doses (0.75, 1.5 and 3 g/100 mL) as drinking water to both diabetic and non-diabetic animals during 4 weeks. Results The aqueous extract of Carica papaya (0.75 g and 1.5 g/100 mL) significantly decreased blood glucose levels (p<0.05) in diabetic rats. It also decreased cholesterol, triacylglycerol and amino-transferases blood levels. Low plasma insulin levels did not change after treatment in diabetic rats, but they significantly increased in non-diabetic animals. Pancreatic islet cells were normal in non-diabetic treated animals, whereas in diabetic treated rats, C. papaya could help islet regeneration manifested as preservation of cell size. In the liver of diabetic treated rats, C. papaya prevented hepatocyte disruption, as well as accumulation of glycogen and lipids. Finally, an antioxidant effect of C. papaya extract was also detected in diabetic rats. Conclusions This study showed that the aqueous extract of C. papaya exerted a hypoglycemic and antioxidant effect; it also improved the lipid profile in diabetic rats. In addition, the leaf extract positively affected integrity and function of both liver and pancreas. PMID:23190471

  10. Transplantation of adipose tissue protects BB/OK rats from type 1 diabetes development.

    PubMed

    Bahr, Jeanette; Klöting, Nora; Klöting, Ingrid; Follak, Niels

    2011-05-01

    B(io) B(reedding)/O(ttawa) K(alsburg) rats spontaneously develop insulin-dependent type 1 diabetes. Days before BB/OK rats become diabetic, their body seems to be flabby which may be attributed to loss of subcutaneous fat. However, the rats are normoglycemic and manifest 3-4 days later. This observation prompted us to search for possibilities to avoid the loss of adipose tissue. BB/OK rats were subcutaneously grafted with visceral adipose tissue. In total, 34 (71%) out of 48 male and 23 (49%) out of 47 female BB/OK rats grafted with adipose tissue developed type 1 diabetes so that significantly more females than males were protected from diabetes development (p=0.03). In the control group, 17 (85%) out of 20 male and 20 (95%) out of 21 female BB/OK rats were diabetic. Adipose tissue transplantation can protect BB/OK rats from type 1 diabetes development in a sex specific manner. One could conclude that the manipulations have influenced fat accumulation and/or fat metabolism which prevent type 1 diabetes development in about 50% of BB/OK rats. This idea is supported by the finding that a mutation in the leptin receptor of NOD mice suppresses type 1 diabetes progression.

  11. Metabolic disturbances and defects in insulin secretion in rats with streptozotocin-nicotinamide-induced diabetes.

    PubMed

    Szkudelski, T; Zywert, A; Szkudelska, K

    2013-01-01

    Rats with diabetes induced by streptozotocin (STZ) and nicotinamide (NA) are often used in animal studies concerning various aspects of diabetes. In this experimental model, the severity of diabetes is different depending on doses of STZ and NA. Moreover, diabetic changes in rats with STZ-NA-induced diabetes are not fully characterized. In our present study, metabolic changes and insulin secretion were investigated in rats with diabetes induced by administration of 60 mg of STZ and 90 mg of NA per kg body weight. Four to six weeks after diabetes induction, insulin, glucagon and some metabolic parameters were determined to evaluate the severity of diabetes. Moreover, insulin secretory capacity of pancreatic islets isolated from control and diabetic rats was compared. It was demonstrated that administration of 60 mg of STZ and 90 mg of NA per kg body weight induced relatively mild diabetes, since insulin, glucagon and other analyzed parameters were only slightly affected in diabetic rats compared with control animals. In vitro studies revealed that insulin secretory response was preserved in pancreatic islets of diabetic rats, however, was lower than in islets of control animals. This effect was observed in the presence of different stimuli. Insulin secretion induced by 6.7 and 16.7 mmol/l glucose was moderately reduced in islets of diabetic rats compared with control islets. In the presence of leucine with glutamine, insulin secretion appeared to be also decreased in islets of rats with STZ-NA-induced diabetes. Insulinotropic action of 6.7 mmol/l glucose with forskolin was also deteriorated in diabetic islets. Moreover, it was demonstrated that at a non-stimulatory glucose, pharmacological depolarization of plasma membrane with a concomitant activation of protein kinase C evoked significant rise in insulin release in islets of control and diabetic rats. However, in diabetic islets, this effect was attenuated. These results indicate that impairment in insulin

  12. Functional and biochemical characteristics of urinary bladder muscarinic receptors in long-term alloxan diabetic rats

    PubMed Central

    Rocha, Jeová Nina

    2015-01-01

    Objective To re-examine the function of the urinary bladder in vivo as well as to determine the functional and biochemical characteristics of bladder muscarinic receptors in long-term alloxan-induced diabetes rats. Methods Two-month-old male Wistar rats were injected with alloxan and the animals showing blood glucose levels >300mg/dL together with age-paired untreated animals were kept for 11 months. Body weight, bladder weight, blood glucose, and urinary volume over a period of 24 hours were determined in both groups of animals. A voiding cystometry in conscious control and diabetic rats was performed to determine maximal micturition pressure, micturition contraction interval and duration as well as voided and post-voiding residual volume. In addition, concentration-response curves for bethanechol in isolated bladder strips, as well as [3H]-N methyl-scopolamine binding site characteristics in bladder homogenates were determined. Results Mean bladder weight was 162.5±21.2mg versus 290±37.9mg in control and treated animals, respectively (p<0.05). Micturition contraction amplitude (34.6±4.7mmHg versus 49.6±2.5mmHg), duration (14.5±1.7 seconds versus 23.33±4.6 seconds) and interval (87.5±17.02 seconds versus 281.11±20.24 seconds) were significantly greater in alloxan diabetic rats. Voided urine volume per micturition contraction was also significantly higher in diabetic animals. However the post-voiding residual volume was not statistically different. Bethanechol potency (EC50 3µM versus 5µM) and maximal effect (31.2±5.9g/g versus 36.1±6.8g/g) in isolated bladder strips as well as number (169±4fmol/mg versus 176±3fmol/mg protein) and affinity (0.69±0.1nM versus 0.57±0.1nM) of bladder muscarinic receptors were also not statistically different. Conclusion Bladder function in vivo is altered in chronic alloxan-induced diabetes rats without changes in functional and biochemical characteristics of bladder muscarinic receptors. PMID:26466064

  13. Potential mechanism for osseointegration of dental implants in Zucker diabetic fatty rats.

    PubMed

    Liu, Zhonghao; Zhou, Wenjuan; Tangl, Stefan; Liu, Shutai; Xu, Xin; Rausch-Fan, Xiaohui

    2015-10-01

    Our aim was to investigate the impact of diabetes mellitus and different durations of glycaemic control on early osseointegration of dental implants, and to explore possible mechanisms by measuring the expression of integrin α5β1 and fibronectin in bone around the implant. We divided 33 male Zucker diabetic fatty (ZDF) rats aged 3 months into 3 groups. The first group comprised diabetic rats with dental implants (controls); the second group was treated with insulin and implants were placed simultaneously (exenatide alone group); and the third group was treated with insulin until the serum glucose was at a constant concentration (< 16 mmol/L), and implants were then inserted (exenatide+normal glucose group). Rats were killed 7, 14, 30, and 60 days after implants had been inserted. The expression of integrin α5β1 and fibronectin in bone around the implants was detected by immunohistochemical analysis in each group. The expression in the exenatide+normal glucose group was stronger than in the other 2 groups. Fourteen days after implantation, expression of integrin α5β1 in the exenatide alone group was significantly stronger than that in the control group (p=0.027), and 60 days after implantation the expression of fibronectin in the exenatide alone group was also significantly stronger than that among the controls (p=0.001). Both fibronectin and integrin α5β1 participate in the adhesion of osteoblasts and act as signals at the bone/implant interface. Diabetes interferes with the osseointegration of implants by deferring expression of fibronectin and integrin α5β1.

  14. Effect of Vanadate on Elevated Blood Glucose and Depressed Cardiac Performance of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Heyliger, Clayton E.; Tahiliani, Arun G.; McNeill, John H.

    1985-03-01

    The trace element vanadium has an unclear biological function. Vanadate, an oxidized form of vanadium, appears to have an insulin-like action. The effect of vanadate on blood glucose and cardiac performance was assessed in female Wistar rats 6 weeks after they were made diabetic with streptozotocin. When vanadate was administered for a 4-week period to the diabetic rats, their blood glucose was not significantly different from that of nondiabetic controls despite a low serum insulin. In contrast, blood glucose was increased about threefold in the diabetic rats that were not treated with vanadate; these rats also had low insulin levels. Cardiac performance was depressed in the untreated diabetic animals, but the cardiac performance of the vanadate-treated diabetic animals was not significantly different from that of nondiabetic controls. Thus vanadate controlled the high blood glucose and prevented the decline in cardiac performance due to diabetes.

  15. The Protective Effect of Fucoidan in Rats with Streptozotocin-Induced Diabetic Nephropathy

    PubMed Central

    Wang, Jing; Liu, Huaide; Li, Ning; Zhang, Quanbin; Zhang, Hong

    2014-01-01

    Diabetic nephropathy (DN) has long been recognized as the leading cause of end-stage renal disease, but the efficacy of available strategies for the prevention of DN remains poor. The aim of this study was to investigate the possible beneficial effects of fucoidan (FPS) in streptozotocin (STZ)-induced diabetes in rats. Wistar rats were made diabetic by injection of STZ after removal of the right kidney. FPS was administered to these diabetic rats for 10 weeks. Body weight, physical activity, renal function, and renal morphometry were measured after 10 weeks of treatment. In the FPS-treated group, the levels of blood glucose, BUN, Ccr and Ucr decreased significantly, and microalbumin, serum insulin and the β2-MG content increased significantly. Moreover, the FPS-treated group showed improvements in renal morphometry. In summary, FPS can ameliorate the metabolic abnormalities of diabetic rats and delay the progression of diabetic renal complications. PMID:24886867

  16. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats

    PubMed Central

    Qinna, Nidal A; Badwan, Adnan A

    2015-01-01

    Streptozotocin (STZ) is currently the most used diabetogenic agent in testing insulin and new antidiabetic drugs in animals. Due to the toxic and disruptive nature of STZ on organs, apart from pancreas, involved in preserving the body’s normal glucose homeostasis, this study aims to reassess the action of STZ in inducing different glucose response states in diabetic rats while testing insulin. Diabetic Sprague-Dawley rats induced with STZ were classified according to their initial blood glucose levels into stages. The effect of randomizing rats in such a manner was investigated for the severity of interrupting normal liver, pancreas, and kidney functions. Pharmacokinetic and pharmacodynamic actions of subcutaneously injected insulin in diabetic and nondiabetic rats were compared. Interruption of glucose homeostasis by STZ was challenged by single and repeated administrations of injected insulin and oral glucose to diabetic rats. In diabetic rats with high glucose (451–750 mg/dL), noticeable changes were seen in the liver and kidney functions compared to rats with lower basal glucose levels. Increased serum levels of recombinant human insulin were clearly indicated by a significant increase in the calculated maximum serum concentration and area under the concentration–time curve. Reversion of serum glucose levels to normal levels pre- and postinsulin and oral glucose administrations to STZ diabetic rats were found to be variable. In conclusion, diabetic animals were more responsive to insulin than nondiabetic animals. STZ was capable of inducing different levels of normal glucose homeostasis disruption in rats. Both pharmacokinetic and pharmacodynamic actions of insulin were altered when different initial blood glucose levels of STZ diabetic rats were selected for testing. Such findings emphasize the importance of selecting predefined and unified glucose levels when using STZ as a diabetogenic agent in experimental protocols evaluating new antidiabetic agents

  17. Measurement of Retinal Blood Flow Rate in Diabetic Rats: Disparity Between Techniques Due to Redistribution of Flow

    PubMed Central

    Leskova, Wendy; Watts, Megan N.; Carter, Patsy R.; Eshaq, Randa S.; Harris, Norman R.

    2013-01-01

    Purpose. Reports of altered retinal blood flow in experimental models of type I diabetes have provided contrasting results, which leads to some confusion as to whether flow is increased or decreased. The purpose of our study was to evaluate early diabetes-induced changes in retinal blood flow in diabetic rats, using two distinctly different methods. Methods. Diabetes was induced by injection of streptozotocin (STZ), and retinal blood flow rate was measured under anesthesia by a microsphere infusion technique, or by an index of flow based on the mean circulation time between arterioles and venules. Measurements in STZ rats were compared to age-matched nondiabetic controls. In addition, the retinal distribution of fluorescently-labeled red blood cells (RBCs) was viewed by confocal microscopy in excised flat mounts. Results. Retinal blood flow rate was found to decrease by approximately 33% in the STZ rats compared to controls (P < 0.001) as assessed by the microsphere technique. However, in striking contrast, the mean circulation time through the retina was found to be almost 3× faster in the STZ rats (P < 0.01). This contradiction could be explained by flow redistribution through the superficial vessels of the diabetic retina, with this possibility supported by our observation of significantly fewer RBCs flowing through the deeper capillaries. Conclusions. We conclude that retinal blood flow rate is reduced significantly in the diabetic rat, with a substantial decrease of flow through the capillaries due to shunting of blood through the superficial layer, allowing rapid transit from arterioles to venules. PMID:23572104

  18. Diabetic nephropathy and long-term treatment effects of rosiglitazone and enalapril in obese ZSF1 rats.

    PubMed

    Bilan, Victor P; Salah, Eman M; Bastacky, Sheldon; Jones, Huw B; Mayers, Rachel M; Zinker, Bradley; Poucher, Simon M; Tofovic, Stevan P

    2011-09-01

    Diabetic nephropathy (DN) is a major cause of end-stage renal disease. Yet the pathogenic mechanisms underlying the development of DN are not fully defined, partially due to lack of suitable models that mimic the complex pathogenesis of renal disease in diabetic patients. In this study, we describe early and late renal manifestations of DN and renal responses to long-term treatments with rosiglitazone or high-dose enalapril in ZSF1 rats, a model of metabolic syndrome, diabetes, and chronic renal disease. At 8 weeks of age, obese ZSF1 rats developed metabolic syndrome and diabetes (hyperglycemia, glucosuria, hyperlipidemia, and hypertension) and early signs of renal disease (proteinuria, glomerular collagen IV deposition, tubulointerstitial inflammation, and renal hypertrophy). By 32 weeks of age, animals developed renal histopathology consistent with DN, including mesangial expansion, glomerulosclerosis, tubulointerstitial inflammation and fibrosis, tubular dilation and atrophy, and arteriolar thickening. Rosiglitazone markedly increased body weight but reduced food intake, improved glucose control, and attenuated hyperlipidemia and liver and kidney injury. In contrast, rosiglitazone markedly increased cardiac hypertrophy via a blood pressure-independent mechanism. High-dose enalapril did not improve glucose homeostasis, but normalized blood pressure, and nearly prevented diabetic renal injury. The ZSF1 model thus detects the clinical observations seen with rosiglitazone and enalapril in terms of primary and secondary endpoints of cardiac and renal effects. This and previous reports indicate that the obese ZSF1 rat meets currently accepted criteria for progressive experimental diabetic renal disease in rodents, suggesting that this may be the best available rat model for simulation of human DN. PMID:21680617

  19. Delay of diabetic cataract in rats by the antiglycating potential of cumin through modulation of alpha-crystallin chaperone activity.

    PubMed

    Kumar, Pasupulati Anil; Reddy, Paduru Yadagiri; Srinivas, P N B S; Reddy, Geereddy Bhanuprakash

    2009-07-01

    alpha-Crystallin, a molecular chaperone of the eye lens, plays an important role in maintaining the transparency of the lens by preventing the aggregation/inactivation of several proteins and enzymes in addition to its structural role. alpha-Crystallin is a long-lived protein and is susceptible to several posttranslational modifications during aging, more so in certain clinical conditions such as diabetes. Nonenzymatic glycation of lens proteins and decline in the chaperone-like function of alpha-crystallin have been reported in diabetic conditions. Therefore, inhibitors of nonenzymatic protein glycation appear to be a potential target to preserve the chaperone activity of alpha-crystallin and to combat cataract under hyperglycemic conditions. In this study, we investigated the antiglycating potential of cumin in vitro and its ability to modulate the chaperone-like activity of alpha-crystallin vis-à-vis the progression of diabetic cataract in vivo. Aqueous extract of cumin was tested for its antiglycating ability against fructose-induced glycation of goat lens total soluble protein (TSP), alpha-crystallin from goat lens and a nonlenticular protein bovine serum albumin (BSA). The antiglycating potential of cumin was also investigated by feeding streptozotocin (STZ)-induced diabetic rats with diet containing 0.5% cumin powder. The aqueous extract of cumin prevented in vitro glycation of TSP, alpha-crystallin and BSA. Slit lamp examination revealed that supplementation of cumin delayed progression and maturation of STZ-induced cataract in rats. Cumin was effective in preventing glycation of TSP and alpha-crystallin in diabetic lens. Interestingly, feeding of cumin to diabetic rats not only prevented loss of chaperone activity but also attenuated the structural changes of alpha-crystallin in lens. These results indicated that cumin has antiglycating properties that may be attributed to the modulation of chaperone activity of alpha-crystallin, thus delaying cataract in

  20. Evaluation of neonatally-induced mild diabetes in rats: Maternal and fetal repercussions

    PubMed Central

    2010-01-01

    Many experimental studies have been performed to evaluate mild diabetes effects. However, results are divergent regarding glycemia and insulin measurement, fetal macrossomia, and placental weights. The aim was to investigate repercussions of neonatally-induced mild diabetes on the maternal organism and presence of congenital defects in their offspring in other mild diabetes model. On the day of birth, female offspring were distributed into two groups: Group streptozotocin (STZ): received 100 mg STZ/kg body weight, and Control Group: received vehicle in a similar time period. Maternal weights and glycemias were determined at days 0, 7, 14 and 21 of pregnancy. At day 21 of pregnancy, the rats were anesthetized and a laparotomy was performed to weigh and analyze living fetuses and placentas. The fetuses were classified as small (SPA), appropriate (APA) and large (LPA) for pregnancy age. Fetuses were also analyzed for the presence of external anomalies and processed for skeletal anomaly and ossification sites analysis. Statistical significance was considered as p < 0.05. In STZ group, there was increased glycemia at 0 and 14 days of pregnancy, lower weights throughout pregnancy, higher placental weight and index, an increased proportion of fetuses classified as SPA and LPA, and their fetuses presented with an increased frequency of abnormal sternebra, and absent cervical nuclei, which were not enough to cause the emergence of skeletal anomalies. Thus, this study shows that mild diabetes altered fetal development, characterized by intrauterine growth restriction. Further, the reached glycemia does not lead to any major congenital defects in the fetuses of streptozotocin-induced mild diabetic rats. PMID:20529353

  1. Increased Expression of Pyloric ERβ Is Associated With Diabetic Gastroparesis in Streptozotocin-Induced Male Diabetic Rats

    PubMed Central

    Crimmins, Stephen; Smiley, Rebecca; Preston, Kerry; Yau, Amy; Mccallum, Richard; Ali, Mohammed Showkat

    2016-01-01

    Background Gastroparesis is a significant co-morbidity affecting up to 50% of patients with diabetes and is disproportionately found in women. Prior studies have suggested that loss of interstitial cells of Cajal, hyperglycemia, and nitric oxide dysfunction are potential causes of gastroparesis. Since diabetic gastroparesis affects more women than men, we performed an exploratory study with a diabetic rat model to determine if sex hormone signaling is altered in those where gastroparesis develops. Methods We injected male rats with streptozotocin (STZ) to model type I diabetes, as confirmed by blood glucose levels. Gastroparesis was determined by acetaminophen gavage and serum acetaminophen levels. Rats were grouped based on acetaminophen and blood glucose data: diabetic (DM), diabetic and gastroparetic (DM + GP), and control (CM). Serum levels of testosterone, estrogen, and insulin were determined as well as aromatase expression in pyloric tissue and serum. Androgen receptor and estrogen receptor α (ERα) and β (ERβ) were also measured in the pylorus. Results Compared to CM, estrogen increased and testosterone decreased in both DM and DM + GP rats. Sex hormone levels were not different between DM and DM + GP. Serum aromatase was increased in DM and DM + GP rats; however, pyloric tissue levels were not significantly different from controls. ERα was unchanged and androgen receptor decreased in DM and DM + GP. ERβ was increased only in DM + GP animals. Conclusion Our study implicates increased pyloric ERβ in the development of gastroparesis in STZ-induced male diabetic rats. Increased serum aromatase is likely responsible for altered sex hormone levels. Our study supports the implication of sex hormone signaling in diabetic development and demonstrates a potential unique role for pyloric ERβ in male diabetic gastroparesis. PMID:27785323

  2. Protective effects of tocotrienols against lipid-induced nephropathy in experimental type-2 diabetic rats by modulation in TGF-β expression

    SciTech Connect

    Siddiqui, Shabeena; Ahsan, Haseeb; Khan, Mohammad Rashid; Siddiqui, Waseem A.

    2013-12-01

    Dyslipidemia is common in patients with diabetes mellitus (DM) and is considered a risk factor for the progression of diabetic nephropathy (DN). Hyperlipidemia and hyperglycemia act synergistically to induce renal injury. The present study was designed to investigate the protective effects of tocotrienols as tocotrienol-rich fraction (TRF) extracted from palm (PO) and rice bran oils (RBO) against lipid induced nephropathy in type-2 diabetic rats and its probable molecular mechanism. Male Wistar rats (175–200 g) were divided into four groups. The first group served as diabetic control, while the second and third groups received PO-TRF and RBO-TRF, respectively by gavage over a period of sixteen weeks post-induction of diabetes. The fourth group comprised of age-matched rats that served as normal control. The effects of TRF on serum lipid profile, oxidative stress markers, expression of TGF-β, fibronectin and collagen type IV were analyzed in the kidney of diabetic rats. Treatment with PO-TRF and RBO-TRF significantly improved glycemic status, serum lipid profile and renal function in type-2 diabetic rats. In addition, TRF supplementation down-regulated the expression of TGF-β, fibronectin and collagen type IV in the kidney of diabetic rats. Transforming growth factor-β (TGF-β) plays a critical role in progression of DN, but its modulation by tocotrienols in DN remains unexplored. TRF ameliorated lipid induced nephropathy in type-2 diabetes by its hypoglycemic, hypolipidemic and antioxidant activities as well as by modulation of TGF-β to prevent increased expression of collagen type IV and fibrinogen. We finally propose a mechanism for the expression of molecular markers that are significant in the events leading to diabetic nephropathy and its modulation by tocotrienols/TRF. - Highlights: • The nephroprotective effect of TRF in type-2 diabetic rats was investigated. • Treatment with TRF improved glycemic status, lipid profile and renal functions in rats

  3. Comparative pharmacokinetics of arctigenin in normal and type 2 diabetic rats after oral and intravenous administration.

    PubMed

    Zeng, Xiao-yan; Dong, Shu; He, Nan-nan; Jiang, Chun-jie; Dai, Yue; Xia, Yu-feng

    2015-09-01

    Arctigenin is the main active ingredient of Fructus Arctii for the treatment of type 2 diabetes. In this study, the pharmacokinetics of arctigenin in normal and type 2 diabetic rats following oral and intravenous administration was investigated. As compared to normal rats, Cmax and AUC(0-10h) values of oral arctigenin in diabetic rats increased by 356.8% and 223.4%, respectively. In contrast, after intravenous injection, the Cmax and AUC(0-10h) values of arctigenin showed no significant difference between diabetic and normal rats. In order to explore how the bioavailability of oral arctigenin increased under diabetic condition, the absorption behavior of arctigenin was evaluated by in situ single-pass intestinal perfusion (SPIP). The results indicated that arctigenin was a substrate of P-glycoprotein (P-gp). The absorption difference of arctigenin in the normal and diabetic rats could be eliminated by the pretreatment of classic P-gp inhibitor verapamil, suggesting that P-gp might be the key factor causing the absorption enhancement of arctigenin in diabetic rats. Further studies revealed that the uptake of rhodamine 123 (Rho123) in diabetic rats was significantly higher, indicating that diabetes mellitus might impair P-gp function. Consistently, a lower mRNA level of P-gp in the intestine of diabetic rats was found. In conclusion, the absorption of arctigenin after oral administration was promoted in diabetic rats, which might be partially attribute to the decreased expression and impaired function of P-gp in intestines.

  4. Comparative pharmacokinetics of arctigenin in normal and type 2 diabetic rats after oral and intravenous administration.

    PubMed

    Zeng, Xiao-yan; Dong, Shu; He, Nan-nan; Jiang, Chun-jie; Dai, Yue; Xia, Yu-feng

    2015-09-01

    Arctigenin is the main active ingredient of Fructus Arctii for the treatment of type 2 diabetes. In this study, the pharmacokinetics of arctigenin in normal and type 2 diabetic rats following oral and intravenous administration was investigated. As compared to normal rats, Cmax and AUC(0-10h) values of oral arctigenin in diabetic rats increased by 356.8% and 223.4%, respectively. In contrast, after intravenous injection, the Cmax and AUC(0-10h) values of arctigenin showed no significant difference between diabetic and normal rats. In order to explore how the bioavailability of oral arctigenin increased under diabetic condition, the absorption behavior of arctigenin was evaluated by in situ single-pass intestinal perfusion (SPIP). The results indicated that arctigenin was a substrate of P-glycoprotein (P-gp). The absorption difference of arctigenin in the normal and diabetic rats could be eliminated by the pretreatment of classic P-gp inhibitor verapamil, suggesting that P-gp might be the key factor causing the absorption enhancement of arctigenin in diabetic rats. Further studies revealed that the uptake of rhodamine 123 (Rho123) in diabetic rats was significantly higher, indicating that diabetes mellitus might impair P-gp function. Consistently, a lower mRNA level of P-gp in the intestine of diabetic rats was found. In conclusion, the absorption of arctigenin after oral administration was promoted in diabetic rats, which might be partially attribute to the decreased expression and impaired function of P-gp in intestines. PMID:26102179

  5. Therapeutic Effects of Tangshen Formula on Diabetic Nephropathy in Rats

    PubMed Central

    Zhao, TingTing; Sun, SiFan; Zhang, HaoJun; Huang, XiaoRu; Yan, MeiHua; Dong, Xi; Wen, YuMin; Wang, Hua; Lan, Hui Yao; Li, Ping

    2016-01-01

    Objective Inflammation and fibrosis are essential promoters in the pathogenesis of diabetic nephropathy (DN) in type 2 diabetes. The present study examined the anti-inflammation and anti-fibrosis effect of Tangshen Formula (TSF), a traditional Chinese medicine, on DN. Research Design and Methods Protective role of TSF in DN was examined in a rat model of type 2 DN that was established by high-fat diet-fed and low-dose-streptozotocin injection. TSF was suspended in 0.5% CMC-Na solution and delivered by oral gavage at a dosage of 1.67g/Kg body weight/day. The therapeutic effects and mechanisms of TSF on diabetic kidney injury were examined. Results We found that TSF treatment for 20 weeks attenuated DN by significantly inhibiting urinary excretion of albumin and renal histological injuries. These beneficial effects were associated with an inactivation of NF-κB signaling, thereby blocking the upregulation of pro-inflammatory cytokines (IL-1β, TNFα), chemokine (MCP-1), and macrophage infiltration in the TSF-treated rats with type 2 DN. In addition, TSF treatment also inactivated TGF-β/Smad3 signaling and therefore suppressed renal fibrosis including expressions of fibronectin, collagen I, and collagen IV. Further studies revealed that the inhibitory effect of TSF on TGF-β/Smad3 and NF-κB signaling in DN was associated with inhibition of Smurf2-dependent ubiquitin degradation of Smad7. Conclusions The present study reveals that TSF has therapeutic potential for type 2 DN in rats. Blockade of NF-κB-driven renal inflammation and TGF-β/Smad3-mediated renal fibrosis by preventing the Smurf2-mediated Smad7 degradation pathway may be mechanisms through which TSF inhibits type 2 DN. PMID:26807792

  6. Diabetes-induced alterations of reproductive and adrenal function in the female rat.

    PubMed

    Valdes, C T; Elkind-Hirsch, K E; Rogers, D G

    1990-04-01

    Diabetes interferes with reproductive function in laboratory animals. Previous studies in female diabetic rats have not resolved if the reproductive abnormalities observed are at the hypothalamic, pituitary and/or ovarian level. The interaction of the gonadal and adrenal axes has not been studied in the diabetic female rat. The purpose of this study is twofold: first, to determine the level of dysfunction in the hypothalamic-pituitary axis caused by diabetes in the adult female rat controlling for stage of the estrous cycle, and, second, to evaluate basal corticosterone secretion in female diabetic rats. Sixty cycling 40-day-old female rats were randomly assigned to 3 groups; control (n = 32), diabetic (n = 14), and diabetic insulin-replaced animals (n = 14). The level of hyperglycemia in each group was documented by glycosylated hemoglobin levels and biweekly blood glucoses. Three weeks after induction of diabetes, pituitary luteinizing hormone (LH) responsiveness following an i.v. injection of gonadotropin-releasing hormone (GnRH) was assessed in representative diestrous rats from each group. All animals were sacrificed in either diestrus or proestrus for determination of GnRH concentration in the hypothalamus, LH and follicle-stimulating hormone (FSH) content in pituitary and LH, FSH, estradiol and corticosterone in serum. Uterine weight to body weight ratios (a bioassay for estrogen) were also calculated. Hypothalamic GnRH concentration was significantly lower in diabetic versus control diestrous rats. Basal pituitary and serum gonadotropin levels were not different between any groups. GnRH-stimulated serum LH levels were higher in diabetic vs. control and diabetic insulin-treated animals. LH surges occurred in the control and diabetic insulin-replaced but not the diabetic group.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Protective effects of Piper nigrum and Vinca rosea in alloxan induced diabetic rats.

    PubMed

    Kaleem, M; Sheema; Sarmad, H; Bano, B

    2005-01-01

    In the present study aqueous extract of Piper nigrum seeds and Vinca rosea flowers were administered orally to alloxan induced diabetic rats once a day for 4 weeks. These treatments lead to significant lowering of blood sugar level and reduction in serum lipids. The levels of antioxidant enzymes, catalase and glutathione peroxidase decreased in alloxan induced diabetic rats however these levels returned to normal in insulin, P. nigrum and V. rosea treated rats. There was no significant difference in superoxide dismutase activity in all groups compared to controls. Lipid peroxidation levels were significantly higher in diabetic rats and it was slightly increased in insulin, P. nigrum and V. rosea treated rats as compared to control rat. These results suggest that oxidative stress plays a key role in diabetes, and treatment with P. nigrum and V. rosea are useful in controlling not only the glucose and lipid levels but these components may also be helpful in strengthening the antioxidants potential.

  8. Oxidative Stress Status and Placental Implications in Diabetic Rats Undergoing Swimming Exercise After Embryonic Implantation

    PubMed Central

    Damasceno, Débora Cristina; Sinzato, Yuri Karen; Ribeiro, Viviane Maria; Rudge, Marilza Vieira Cunha; Calderon, Iracema Mattos Paranhos

    2015-01-01

    The potential benefits and risks of physical exercise on fetal development during pregnancy remain unclear. The aim was to analyze maternal oxidative stress status and the placental morphometry to relate to intrauterine growth restriction (IUGR) from diabetic female rats submitted to swimming program after embryonic implantation. Pregnant Wistar rats were distributed into 4 groups (11 animals/group): control—nondiabetic sedentary rats, control exercised—nondiabetic exercised rats, diabetic—diabetic sedentary rats, and diabetic exercised—diabetic exercised rats. A swimming program was used as an exercise model. At the end of pregnancy, the maternal oxidative stress status, placental morphology, and fetal weight were analyzed. The swimming program was not efficient to reduce the hyperglycemia-induced oxidative stress. This fact impaired placental development, resulting in altered blood flow and energy reserves, which contributed to a deficient exchange of nutrients and oxygen for the fetal development, leading to IUGR. PMID:25361551

  9. Suggested mechanism for the selective excretion of glucosylated albumin. The effects of diabetes mellitus and aging on this process and the origins of diabetic microalbuminuria.

    PubMed

    Kowluru, A; Kowluru, R; Bitensky, M W; Corwin, E J; Solomon, S S; Johnson, J D

    1987-11-01

    In previous studies in the Sprague-Dawley rat, Williams and coworkers reported the phenomenon of selective urinary excretion of glucosylated albumin (editing, i.e., the percent glucosylation of urinary albumin is more than that of plasma albumin) by the mammalian kidney. Ghiggeri and coworkers subsequently found that the extent of editing is reduced in human diabetics. Moreover, the reduction in editing in diabetes correlates inversely with levels of microalbuminuria. We also find reduction in the extent of editing in diabetic humans. We find a striking inverse correlation not only with the magnitude of microalbuminuria but also with the extent of plasma albumin glucosylation. In contrast, we found little correlation between the reduction in editing and the duration of diabetes in human subjects. Stz induced diabetes in the Sprague-Dawley rat is associated with a striking and rapid reduction in editing which develops virtually with the same kinetics exhibited by the appearance of hyperglycemia. This loss of editing is rapidly reversed by daily administration of insulin but not by aldose reductase inhibitors. Mannitol infusion in anesthetized Wistar rats resulted in an increase in urine volume, GFR, and microalbuminuria, and was also accompanied by a marked reduction in editing. This reduction was rapidly reversed by a cessation of mannitol infusion. We propose here that glucosylated albumin (in contrast to unmodified albumin) is not reabsorbed by the proximal tubule, and thus, is preferentially excreted in the urine. We postulate that the increase in GFR which emerges as a consequence of increased plasma osmolality in diabetes mellitus delivers more albumin to the proximal tubule than can be reabsorbed. This results in a dilution of excreted glucosylated albumin molecules by excreted unmodified albumin, which appears as the early microscopic albuminuria of diabetes. Paradoxically, the fall in apparent editing is accompanied by an absolute increase in the total

  10. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    SciTech Connect

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  11. [Impaired insulin secretion in isolated islets of Goto-Kakizaki rats, an animal model of non obese type 2 diabetes, is a primary event].

    PubMed

    Seiça, Raquel M; Suzuki, K I; Santos, Rosa M; Do Rosário, Luis M

    2004-01-01

    The development of type 2 diabetes is associated with the impairment of insulin secretion. To evaluate the evolution of the secretory response, a chronological study comparing normal Wistar (W) vs Goto-Kakizaki (GK) rats, an animal model of non obese type 2 diabetes, was done. Glucose and arginine were tested in collagenase isolated islets of Langerhans with perfusion and ELISA immunoassay techniques. Fasting glycaemia and insulinemia and glucose tolerance were also evaluated. We have seen, in W rats, a mild glucose intolerance in the first two weeks of age. GK rats were always glucose intolerant with hyperglycaemia and hyperinsulinemia at fasten after one month old. Wistar islets had a characteristic biphasic response to glucose after the first two weeks of age. GK islets were always glucose irresponsive. Arginine induced an increase in insulin secretion in both animal models, independent of age, although GK rats had always a smaller response when compared to W rats. We concluded that 1) in W rats, a biphasic insulin secretion in response to glucose is observed after the first two weeks of age, simultaneously with glycaemia stabilization 2) in GK rats, both first and second phases of glucose-induced insulin release are significantly reduced and a smaller reduction in response to arginine is observed. This beta-cell disfunction is a primary event in this model of type 2 diabetes, preceding fasting hyperglycaemia and hyperinsulinemia.

  12. S-Allyl cysteine improves nonalcoholic fatty liver disease in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats via regulation of hepatic lipogenesis and glucose metabolism.

    PubMed

    Takemura, Shigekazu; Minamiyama, Yukiko; Kodai, Shintaro; Shinkawa, Hiroji; Tsukioka, Takuma; Okada, Shigeru; Azuma, Hideki; Kubo, Shoji

    2013-09-01

    It is important to prevent and improve diabetes mellitus and its complications in a safe and low-cost manner. S-Allyl cysteine, an aged garlic extract with antioxidant activity, was investigated to determine whether S-allyl cysteine can improve type 2 diabetes in Otsuka Long-Evans Tokushima Fatty rats with nonalcoholic fatty liver disease. Male Otsuka Long-Evans Tokushima Fatty rats and age-matched Long-Evans Tokushima Otsuka rats were used and were divided into two groups at 29 weeks of age. S-Allyl cysteine (0.45% diet) was administered to rats for 13 weeks. Rats were killed at 43 weeks of age, and detailed analyses were performed. S-Allyl cysteine improved hemoglobinA1c, blood glucose, triglyceride, and low-density lipoprotein cholesterol levels. Furthermore, S-allyl cysteine normalized plasma insulin levels. S-Allyl cysteine activated the mRNA and protein expression of both peroxisome proliferator-activated receptor α and γ, as well as inhibiting pyruvate dehydrogenase kinase 4 in Otsuka Long-Evans Tokushima Fatty rat liver. Sterol regulatory element-binding protein 1c and forkhead box O1 proteins were normalized by S-allyl cysteine in Otsuka Long-Evans Tokushima Fatty rat liver. In conclusions, these findings support the hypothesis that S-allyl cysteine has diabetic and nonalcoholic fatty liver disease therapeutic potential as a potent regulating agent against lipogenesis and glucose metabolism. PMID:24062606

  13. Dietary resistant maltodextrin ameliorates testicular function and spermatogenesis in streptozotocin-nicotinamide-induced diabetic rats.

    PubMed

    Liu, C-Y; Hsu, Y-J; Chien, Y-W E; Cha, T-L; Tsao, C-W

    2016-05-01

    This study investigated the effect of resistant maltodextrin (RMD) on reproduction in streptozotocin (STZ)-nicotinamide-induced type 2 diabetic male rats. Forty male rats were induced with diabetes by a single intraperitoneal injection of STZ (50 mg kg(-1)) and nicotinamide (100 mg kg(-1)). Five groups were analysed in total: normal, diabetic rats without RMD, diabetic rats with RMD 1.2 g per 100 g diet (1×), with RMD 2.4 g per 100 g (2×), and with RMD 6.0 g per 100 g (5×). The groups of diabetic rats with the RMD supplement, compared to those without supplement, showed improved plasma glucose control, attenuated insulin resistance and recovery of testosterone level and spermatogenesis stage. The STZ-nicotinamide-induced diabetes mellitus (DM) caused a significant reduction in serum testosterone, testis androgen receptor (AR), steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) protein, but a statistical recovery in each of these was observed in the 5× group. TUNEL-positive cells were observed in the diabetic without RMD group, and RMD treatment reduced apoptotic germ cells. The expression of Bax/Bcl2 was induced in the diabetic group and also significantly reduced in the 5× group. Dietary RMD may improve metabolic control in STZ-nicotinamide-induced diabetic rats and attenuate hyperglycaemia-related impaired male reproduction and testicular function.

  14. Inhibition of protein glycation by procyanidin-B2 enriched fraction of cinnamon: delay of diabetic cataract in rats.

    PubMed

    Muthenna, Puppala; Raghu, Ganugula; Akileshwari, Chandrasekhar; Sinha, Sukesh Narayana; Suryanarayana, Palla; Reddy, Geereddy Bhanuprakash

    2013-11-01

    Accumulation of advanced glycation endproducts (AGE) from nonenzymatic glycation of proteins has been implicated in several diabetic complications including diabetic cataract. Previously, we have reported that extracts of dietary agents such as cinnamon have the potential to inhibit AGE formation. In this study, we have shown procyanidin-B2 as the active component of cinnamon that is involved in AGE inhibition using bioassay-guided fractionation of eye lens proteins under in vitro conditions. The data indicate that procyanidin-B2 enriched fraction scavenges dicarbonyls. Further, procyanidin-B2 fraction of cinnamon inhibited the formation of glycosylated hemoglobin in human blood under ex vivo conditions. We have also demonstrated the physiological significance of procyanidin-B2 fraction in terms of delay of diabetic cataract through inhibition of AGE in diabetic rats. These findings establish the antiglycating potential of procyanidin-B2 fraction of cinnamon which suggests a scope for controlling AGE-mediated diabetic complications by food sources that are rich in proanthocyanidins like procyanidin-B2.

  15. Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats.

    PubMed

    Gupta, S; Kataria, M; Gupta, P K; Murganandan, S; Yashroy, R C

    2004-02-01

    Effect of petroleum ether extracts of kernel (NSK) and husk (NSH) of neem (Azadirachta indica A. Juss, Meliaceae) seeds on the prevention of oxidative stress caused by streptozotocin (STZ) was investigated. Diabetes mellitus was induced in adult male Wistar rats after administration of STZ (55 mg/kg b.wt., i.p., tail vein). The effect of NSK (2 gm/kg, b.wt.) and NSH (0.9 gm/kg, b.wt.) orally for 28 days was investigated in diabetic rats. Insulin-treated diabetic rats (6 U/kg, i.p., 28 days.) served as positive control. Diabetic rats given normal saline served as diabetic control. Rats that neither received STZ nor drugs served as normal control. Serum creatine phosphokinase (CPK) increased in diabetic rats was significantly decreased on insulin, NSK, and NSH treatments. The decrease in activities of superoxide dismutase (SOD) and catalase (CAT) and increase in lipid peroxidation (LPO) of erythrocytes as observed in diabetes was regained after insulin, NSH, and NSK treatments. However, there was insignificant improvement in SOD, CAT, and LPO of kidney on NSK and NSH treatment. In spite of increased CAT and SOD activities in liver and heart, LPO was also increased in diabetic rats. Insulin, NSH, and NSK treatments significantly protected animals from cardiac damage but not hepatic. Results suggest that NSH and NSK prevent oxidative stress caused by STZ in heart and erythrocytes. However, no such preventive effect was observed on renal and hepatic toxicity. PMID:15013179

  16. FT011, a Novel Cardiorenal Protective Drug, Reduces Inflammation, Gliosis and Vascular Injury in Rats with Diabetic Retinopathy

    PubMed Central

    Deliyanti, Devy; Zhang, Yuan; Khong, Fay; Berka, David R.; Stapleton, David I.; Kelly, Darren J.; Wilkinson-Berka, Jennifer L.

    2015-01-01

    Diabetic retinopathy features inflammation as well as injury to glial cells and the microvasculature, which are influenced by hypertension and overactivity of the renin-angiotensin system. FT011 is an anti-inflammatory and anti-fibrotic agent that has been reported to attenuate organ damage in diabetic rats with cardiomyopathy and nephropathy. However, the potential therapeutic utility of FT011 for diabetic retinopathy has not been evaluated. We hypothesized that FT011 would attenuate retinopathy in diabetic Ren-2 rats, which exhibit hypertension due to an overactive extra-renal renin-angiotensin system. Diabetic rats were studied for 8 and 32 weeks and received intravitreal injections of FT011 (50 μM) or vehicle (0.9% NaCl). Comparisons were to age-matched controls. In the 8-week study, retinal inflammation was examined by quantitating vascular leukocyte adherence, microglial/macrophage density and the expression of inflammatory mediators. Macroglial Müller cells, which exhibit a pro-inflammatory and pro-angiogenic phenotype in diabetes, were evaluated in the 8-week study as well as in culture following exposure to hyperglycaemia and FT011 (10, 30, 100 μM) for 72 hours. In the 32-week study, severe retinal vasculopathy was examined by quantitating acellular capillaries and extracellular matrix proteins. In diabetic rats, FT011 reduced retinal leukostasis, microglial density and mRNA levels of intercellular adhesion molecule-1 (ICAM-1). In Müller cells, FT011 reduced diabetes-induced gliosis and vascular endothelial growth factor (VEGF) immunolabeling and the hyperglycaemic-induced increase in ICAM-1, monocyte chemoattractant protein-1, CCL20, cytokine-induced neutrophil chemoattractant-1, VEGF and IL-6. Late intervention with FT011 reduced acellular capillaries and the elevated mRNA levels of collagen IV and fibronectin in diabetic rats. In conclusion, the protective effects of FT011 in cardiorenal disease extend to key elements of diabetic retinopathy and

  17. The effect of diabetes mellitus on rat mandibular bone formation and microarchitecture.

    PubMed

    Abbassy, Mona A; Watari, Ippei; Soma, Kunimichi

    2010-08-01

    The aim of this study was to assess the effect of type 1 diabetes mellitus (DM) on the structure of mandibular bone and on the changes of alveolar/jaw bone formation. Experimental DM was induced in 3-wk-old male Wistar rats by a single dose of 60 mg/kg body weight of streptozotocin. All rats were injected with calcein on days 21 and 28. The rats were killed when 8 wk of age. Bone structure was analyzed by bone histomorphometry, microcomputed tomography (micro-CT), and histological section. Histomorphometric analysis showed that the mineral apposition and the bone formation rates in most of the mandibular regions were significantly decreased in the DM group compared with the control group. Micro-CT analysis showed significant deterioration of the bone quality in rats with DM. For a histometric measure of bone resorption, the number of osteoclasts along the distal surface of the alveolar wall was counted. The number of osteoclasts was significantly lower in the rats with DM than in the controls. These findings suggest that uncontrolled DM decreases mandibular bone formation, reduces the rate of bone turnover in the alveolar wall surrounding the root, and affects the quality of bone structure resulting in retardation of its skeletal development.

  18. GP-1447, an inhibitor of aldose reductase, prevents the progression of diabetic cataract in rats.

    PubMed

    Kawakubo, Ken; Mori, Asami; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2012-01-01

    We examined the effects of GP-1447 (3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]-5-methylphenyl acetic acid) on existing cataracts and sorbitol content in the lens in rats with streptozotocin-induced diabetes. GP-1447 is an inhibitor of aldose reductase, which is the first enzyme in the polyol pathway. Cataracts in the central region of the lens were observed in 7 of 14 eyes (50%) by the fifth week after induction of diabetes, and development of mature cataracts was observed in most lenses by the ninth week. In diabetic rats that received GP-1447 treatment beginning in the fifth week after induction of diabetes, progression of cataracts was observed for 1 week after initiation of treatment. Thereafter, the severity of cataracts did not change substantially. Sorbitol levels in the lens peaked during the first week of diabetes, and this increase was maintained during the 9-week observation period. Elevated sorbitol levels in the lenses of diabetic rats gradually declined after GP-1447 treatment was started on the fifth week after induction of diabetes. Cataracts and sorbitol elevation were not observed in the lenses of controls or diabetic rats treated with GP-1447 immediately after induction of diabetes. These results suggest that the polyol pathway plays an important role in both the appearance and progression of cataracts in diabetic rats. Inhibition of aldose reductase could significantly prevent progression of existing cataracts. PMID:22687477

  19. Anti-diabetic effect of a preparation of vitamins, minerals and trace elements in diabetic rats: a gender difference

    PubMed Central

    2014-01-01

    Background Although multivitamin products are widely used as dietary supplements to maintain health or as special medical food in certain diseases, the effects of these products were not investigated in diabetes mellitus, a major cardiovascular risk factor. Therefore, here we investigated if a preparation of different minerals, vitamins, and trace elements (MVT) for human use affects the severity of experimental diabetes. Methods Two days old neonatal Wistar rats from both genders were injected with 100 mg/kg of streptozotocin or its vehicle to induce diabetes. At week 4, rats were fed with an MVT preparation or vehicle for 8 weeks. Well established diagnostic parameters of diabetes, i.e. fasting blood glucose and oral glucose tolerance test were performed at week 4, 8 and 12. Moreover, serum insulin and blood HbA1c were measured at week 12. Results An impaired glucose tolerance has been found in streptozotocin-treated rats in both genders at week 4. In males, fasting blood glucose and HbA1c were significantly increased and glucose tolerance and serum insulin was decreased at week 12 in the vehicle-treated diabetic group as compared to the vehicle-treated non-diabetic group. All of the diagnostic parameters of diabetes were significantly improved by MVT treatment in male rats. In females, streptozotocin treatment resulted in a less severe prediabetic-like phenotype as only glucose tolerance and HbA1c were altered by the end of the study in the vehicle-treated diabetic group as compared to the vehicle-treated non-diabetic group. MVT treatment failed to improve the diagnostic parameters of diabetes in female streptozotocin-treated rats. Conclusion This is the first demonstration that MVT significantly attenuates the progression of diabetes in male rats with chronic experimental diabetes. Moreover, we have confirmed that females are less sensitive to STZ-induced diabetes and MVT preparation did not show protection against prediabetic state. This may suggest a gender

  20. Age-related responses to mild restraint in the rat.

    PubMed

    Rattner, B A; Michael, S D; Altland, P D

    1983-11-01

    Immature, postpubertal, young adult, and middle-aged rats were lightly restrained for 4 h. Relative to untreated controls, restraint uniformly reduced body weight and plasma luteinizing hormone concentration and elevated plasma corticosterone concentration in all age groups. However, restraint increased activities of plasma alanine and aspartate aminotransferase, creatine phosphokinase, and fructose-diphosphate aldolase in only immature and middle-aged animals. This age-related release of tissue enzymes is hypothesized to reflect enhanced responsiveness to catecholamines in immature rats, and possible ischemia related to diminished vasodilatory activity in middle-aged rats. On the basis of these changes, tolerance to restraint in postpubertal and young adults appears to be slightly greater than that of immature and middle-aged rats.

  1. Antiapoptotic and antioxidant effects of carvedilol and vitamin E protect against diabetic nephropathy and cardiomyopathy in diabetic Wistar albino rats.

    PubMed

    Abdel-Raheem, M H; Salim, S U; Mosad, E; Al-Rifaay, A; Salama, H S; Hasan-Ali, H

    2015-02-01

    Carvedilol is a novel β-adrenoreceptor blocker, with antioxidant properties inhibiting lipid peroxidation and preventing the depletion of endogenous antioxidants. Moreover, carvedilol was reported to enhance the expression of Bcl-2 gene, which has antioxidant and antiapoptotic effects. There are few researches testing the protective effect of carvedilol on the development of diabetic cardiomyopathy and nephropathy. In this study, we induced diabetes mellitus in male Wistar albino rats. We investigated carvedilol, as well as vitamin E, administrated in healthy and diabetic rats for 6 weeks to compare their effects on biochemical parameters and the expression of Bcl-2 protein in both myocardial and renal tissues by immunohistochemistry. The study showed that the diabetic rats not only had renal dysfunction and more myocardial damage, but also showed lower expression of Bcl-2 protein. Carvedilol and vitamin E treatments were associated with better renal function and less myocardial damage, lower blood glucose, and lipid peroxidation, higher antioxidant capacity, better serum lipids, and higher expression of Bcl-2 protein in diabetic rats. These results indicate that carvedilol and vitamin E treatments partly protect against myocardial and renal damage probably via their antioxidant and antiapoptotic properties in diabetic rats.

  2. Anti-diabetic activity of methanolic extract of Alpinia galanga Linn. aerial parts in streptozotocin induced diabetic rats

    PubMed Central

    Verma, Ramesh Kumar; Mishra, Garima; Singh, Pradeep; Jha, Keshri K.; Khosa, Ratan L.

    2015-01-01

    Introduction: Alpinia galanga Linn. belongs to the family Zingiberaceae has been used as a traditional medicine in China for relieving stomach ache, treating cold, invigorating the circulatory systems, diabetes, and reducing swelling. Aim: To evaluate the antidiabetic activity of methanolic extract of A. galanga aerial parts on streptozotocin (STZ) induced diabetic rats. Materials and Methods: Diabetes was induced by single intraperitoneal injection of STZ at a dose of 60 mg/kg bodyweight. Test drug methanolic extract of A. galanga (200 and 400 mg/kg b.w.) and glibenclamide (10 mg/kg b.w.) as standard drug was administered orally for 21 consecutive days in STZ-induced diabetic rats. Fasting blood glucose level, serum lipid profiles, as well as initial and final changes in body weight were assessed along with histopathology. All the parameters were statistically analyzed by using one-way ANOVA followed by Bonferroni t-test. Results: Experimental findings showed significant dose dependent antidiabetic potential of methanolic extract in terms of reduction of fasting blood glucose level and various biochemical parameters in diabetic rats when compared with that of the diabetic control group, which might be due to the stimulatory effect of methanolic extracts on the regenerating β-cells and also on the surviving β-cells. Conclusion: Methanolic extract of aerial parts of A. galanga was effective in controlling blood glucose level and improve lipid profile in euglycemic as well as diabetic rats. PMID:26730146

  3. Melatonin improves mitochondrial function in inguinal white adipose tissue of Zücker diabetic fatty rats.

    PubMed

    Jimenéz-Aranda, Aroa; Fernández-Vázquez, Gumersindo; Mohammad A-Serrano, María; Reiter, Russel J; Agil, Ahmad

    2014-08-01

    Mitochondrial dysfunction in adipose tissue may contribute to obesity-related metabolic derangements such as type 2 diabetes mellitus (T2DM). Because mitochondria are a target for melatonin action, the goal of this study was to investigate the effects of melatonin on mitochondrial function in white (WAT) and beige inguinal adipose tissue of Zücker diabetic fatty (ZDF) rats, a model of obesity-related T2DM. In this experimental model, melatonin reduces obesity and improves the metabolic profile. At 6 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control (C-ZDF and C-ZL) and treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk (M-ZDF and M-ZL). After the treatment period, animals were sacrificed, tissues dissected, and mitochondrial function assessed in isolated organelles. Melatonin increased the respiratory control ratio (RCR) in mitochondria from white fat of both lean (by 26.5%, P < 0.01) and obese (by 34.5%, P < 0.01) rats mainly through a reduction of proton leaking component of respiration (state 4) (28% decrease in ZL, P < 0.01 and 35% in ZDF, P < 0.01). However, melatonin treatment lowered the RCR in beige mitochondria of both lean (by 7%, P < 0.05) and obese (by 13%, P < 0.05) rats by maintaining high rates of uncoupled respiration. Melatonin also lowered mitochondrial oxidative status by reducing nitrite levels and by increasing superoxide dismutase activity. Moreover, melatonin treatment also caused a profound inhibition of Ca-induced opening of mPTP in isolated mitochondria from both types of fat, white and beige, in both lean and obese rats. These results demonstrate that chronic oral melatonin improves mitochondrial respiration and reduces the oxidative status and susceptibility to apoptosis in white and beige adipocytes. These melatonin effects help to prevent mitochondrial dysfunction and thereby to improve obesity-related metabolic disorders such as

  4. Evaluation of Δ9-tetrahydrocannabinol metabolites and oxidative stress in type 2 diabetic rats

    PubMed Central

    Coskun, Zeynep Mine; Bolkent, Sema

    2016-01-01

    Objective(s): The object of the study is to examine the effects of Δ9-tetrahydrocannabinol (THC) against oxidative stress in the blood and excretion of THC metabolites in urine of type 2 diabetic rats. Materials and Methods: The control (n=8), THC control (n=6), diabetes (n=8) and diabetes + THC (n=7) groups were created. Type 2 diabetes was induced by nicotinamide (NA, 85 mg/kg) + streptozotocin (STZ, 65 mg/kg). THC was administered intraperitoneally for seven days. The glutathione (GSH) level in erythrocytes and malondialdehyde (MDA) level, superoxide dismutase (SOD) and catalase (CAT) enzyme activities in plasma were measured. THC metabolites were analyzed in urine. Results: The results showed that the erythrocyte GSH levels were significantly increased (P<0.05), but plasma MDA levels were non-significantly decreased in diabetes group treated with THC when compared with the diabetes group. The CAT activity was non-significantly reduced and SOD was significantly increased (P<0.01) in the plasma of diabetes induced by THC in comparison with the diabetic group. The excretion of THC metabolites was higher in the urine of diabetes + THC rats as compared to the THC control rats. Conclusion: These findings highlight that THC treatment may attenuate slightly the oxidative stress in diabetic rats. The excretion rate of THC may vary in the type 2 diabetes mellitus status. PMID:27081459

  5. Effect of edaravone in diabetes mellitus-induced nephropathy in rats.

    PubMed

    Varatharajan, Rajavel; Lim, Li Xin; Tan, Kelly; Tay, Chai Sze; Teoh, Yi Leng; Akhtar, Shaikh Sohrab; Rupeshkumar, Mani; Chung, Ivy; Abdullah, Nor Azizan; Banik, Urmila; Dhanaraj, Sokkalingam A; Balakumar, Pitchai

    2016-07-01

    Edaravone, a synthetic-free radical scavenger, has been reported to reduce ischemia-reperfusion-induced renal injury by improving tubular cell function, and lowering serum creatinine and renal vascular resistance. The present study investigated the effect of edaravone in diabetes mellitus-induced nephropathy in rats. A single administration of streptozotocin (STZ, 55 mg/kg, i.p.) was employed to induce diabetes mellitus in rats. The STZ-administered diabetic rats were allowed for 10 weeks to develop nephropathy. Mean body weight, lipid alteration, renal functional and histopathology were analysed. Diabetic rats developed nephropathy as evidenced by a significant increase in serum creatinine and urea, and marked renal histopathological abnormalities like glomerulosclerosis and tubular cell degeneration. The kidney weight to body weight ratio was increased. Moreover, diabetic rats showed lipid alteration as evidenced by a signifi cant increase in serum triglycerides and decrease in serum high-density lipoproteins. Edaravone (10 mg/kg, i.p., last 4-weeks) treatment markedly prevented the development of nephropathy in diabetic rats by reducing serum creatinine and urea and preventing renal structural abnormalities. In addition, its treatment, without significantly altering the elevated glucose level in diabetic rats, prevented diabetes mellitus-induced lipid alteration by reducing serum triglycerides and increasing serum high-density lipoproteins. Interestingly, the renoprotective effect of edaravone was comparable to that of lisinopril (5 mg/kg, p.o, 4 weeks, standard drug). Edaravone prevented renal structural and functional abnormalities and lipid alteration associated with experimental diabetes mellitus. Edaravone has a potential to prevent nephropathy without showing an anti-diabetic action, implicating its direct renoprotection in diabetic rats. PMID:27382349

  6. Effect of edaravone in diabetes mellitus-induced nephropathy in rats

    PubMed Central

    Lim, Li Xin; Tan, Kelly; Tay, Chai Sze; Teoh, Yi Leng; Akhtar, Shaikh Sohrab; Rupeshkumar, Mani; Chung, Ivy; Abdullah, Nor Azizan; Banik, Urmila; Dhanaraj, Sokkalingam A.; Balakumar, Pitchai

    2016-01-01

    Edaravone, a synthetic-free radical scavenger, has been reported to reduce ischemia-reperfusion-induced renal injury by improving tubular cell function, and lowering serum creatinine and renal vascular resistance. The present study investigated the effect of edaravone in diabetes mellitus-induced nephropathy in rats. A single administration of streptozotocin (STZ, 55 mg/kg, i.p.) was employed to induce diabetes mellitus in rats. The STZ-administered diabetic rats were allowed for 10 weeks to develop nephropathy. Mean body weight, lipid alteration, renal functional and histopathology were analysed. Diabetic rats developed nephropathy as evidenced by a significant increase in serum creatinine and urea, and marked renal histopathological abnormalities like glomerulosclerosis and tubular cell degeneration. The kidney weight to body weight ratio was increased. Moreover, diabetic rats showed lipid alteration as evidenced by a signifi cant increase in serum triglycerides and decrease in serum high-density lipoproteins. Edaravone (10 mg/kg, i.p., last 4-weeks) treatment markedly prevented the development of nephropathy in diabetic rats by reducing serum creatinine and urea and preventing renal structural abnormalities. In addition, its treatment, without significantly altering the elevated glucose level in diabetic rats, prevented diabetes mellitus-induced lipid alteration by reducing serum triglycerides and increasing serum high-density lipoproteins. Interestingly, the renoprotective effect of edaravone was comparable to that of lisinopril (5 mg/kg, p.o, 4 weeks, standard drug). Edaravone prevented renal structural and functional abnormalities and lipid alteration associated with experimental diabetes mellitus. Edaravone has a potential to prevent nephropathy without showing an anti-diabetic action, implicating its direct renoprotection in diabetic rats. PMID:27382349

  7. Effects of spinal cord stimulation on peripheral blood circulation in rats with streptozotocin-induced diabetes.

    PubMed

    Wu, Mingyuan; Thorkilsen, Marielouise Muus; Qin, Chao; Farber, Jay P; Linderoth, Bengt; Foreman, Robert D

    2007-07-01

    Objective.  The aim of this study was to investigate the effects of spinal cord stimulation (SCS) on peripheral circulation in rats with streptozotocin (STZ)-induced diabetes. Materials and Methods.  Four weeks after streptozotocin or vehicle was injected (i.p.) in male Sprague-Dawley rats, SCS-induced vasodilation was examined. Results.  Plasma glucose concentration was significantly higher in diabetic rats than in the control animals. Motor threshold (MT) was significantly higher in diabetic rats than in control rats. SCS-induced vasodilation was attenuated at 90% of the MT, but not at 30% and 60% of MT in diabetic rats when compared to control rats (p < 0.001, N = 13). Furthermore, increasing SCS from 30% to 90% of MT typically produced a progressive increase in blood flow in control rats but not in diabetic rats (p < 0.01, N = 13). Conclusion.  This study suggested that SCS-induced vasodilation improves peripheral blood flow, although the pathways were partially impaired in the diabetic condition.

  8. Persistent cerebrovascular damage after stroke in type two diabetic rats measured by MRI

    PubMed Central

    Ding, Guangliang; Yan, Tao; Chen, Jieli; Chopp, Michael; Li, Lian; Li, Qingjiang; Cui, Chengcheng; Ning, Ruizhuo; Jiang, Quan

    2014-01-01

    Background and purpose Diabetes is a disease with vascular components. Consequently, the BBB disruption post stroke may differ between diabetic and non-diabetic animals. However, few studies have documented the longitudinal BBB disruption post stroke in diabetic animals. In this study, using MRI, we non-invasively evaluated the BBB damage after MCAo in diabetic and non-diabetic rats. Methods T2DM was induced in adult male Wistar rats by administration of a high fat diet in combination with a single intraperitoneal injection (35mg/kg) of Streptozotocin. T2DM rats (n=9) and non-diabetic wild-type (WT) rats (n=9) were subjected to MCAo for 2h using the filament model. MRI was performed one day and then weekly for 5 weeks post MCAo for all rats. Results The ischemic lesion volumes post stroke as measured using T2 maps were not significantly different between the T2DM and WT rats. Compared to the WT rats, the volumes of BBB disruption evaluated using CE-T1WI with Gd-DTPA, and the cerebral hemorrhagic volumes measured with SWI were significantly (p<0.05) larger in the T2DM rats from 1w to 5w after stroke; values of diffusion fractional anisotropy (FA) were significant lower in T2DM rats (p<0.03) than in WT rats after stroke. These MRI measurements were consistent with histological data. Conclusions Using MRI, T2WI did not detect significant differences of the ischemic lesion volumes between T2DM and WT rats. In contrast to the WT rats, however, CE-T1WI and SWI identified much more severe ischemic vascular damage, while FA demonstrated lower axonal density in the T2DM rats after stroke. PMID:25523056

  9. Antioxidant-Rich Extract from Plantaginis Semen Ameliorates Diabetic Retinal Injury in a Streptozotocin-Induced Diabetic Rat Model.

    PubMed

    Tzeng, Thing-Fong; Liu, Wayne Young; Liou, Shorong-Shii; Hong, Tang-Yao; Liu, I-Min

    2016-01-01

    Plantaginis semen, the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd. (Plantaginaceae), has been traditionally used to treat blurred vision in Asia. The aim of this work was to investigate the effect of plantaginis semen ethanol extract (PSEE) on the amelioration of diabetic retinopathy (DR) in streptozotocin (STZ)-diabetic rats. PSEE has abundant polyphenols with strong antioxidant activity. PSEE (100, 200 or 300 mg/kg) was oral administrated to the diabetic rats once daily consecutively for 8 weeks. Oral administration of PSEE resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and retinal vascular permeability and leukostasis in diabetic rats. In addition, PSEE administration increased the activities of superoxidase dismutase (SOD) and catalase (CAT), and glutathione peroxidase (GSH) level in diabetic retinae. PSEE treatment inhibited the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) and the phosphorylation of Akt without altering the Akt protein expression in diabetic retinae. PSEE not only down-regulated the gene expression of hypoxia-inducible factor-1α (TNF-α) and interleukin-1β (IL-1β), but also reduced ICAM-1 and VCAM-1 expression in diabetic retinae. Moreover, PSEE reduced the nuclear factor-κB (NF-κB) activation and corrected imbalance between histone deacetylases (HDAC) and histone acetyltransferases (HAT) activities in diabetic retinae. In conclusion, phenolic antioxidants extract from plantaginis semen has potential benefits in the prevention and/or progression of DR. PMID:27649243

  10. Antioxidant-Rich Extract from Plantaginis Semen Ameliorates Diabetic Retinal Injury in a Streptozotocin-Induced Diabetic Rat Model

    PubMed Central

    Tzeng, Thing-Fong; Liu, Wayne Young; Liou, Shorong-Shii; Hong, Tang-Yao; Liu, I-Min

    2016-01-01

    Plantaginis semen, the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd. (Plantaginaceae), has been traditionally used to treat blurred vision in Asia. The aim of this work was to investigate the effect of plantaginis semen ethanol extract (PSEE) on the amelioration of diabetic retinopathy (DR) in streptozotocin (STZ)-diabetic rats. PSEE has abundant polyphenols with strong antioxidant activity. PSEE (100, 200 or 300 mg/kg) was oral administrated to the diabetic rats once daily consecutively for 8 weeks. Oral administration of PSEE resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and retinal vascular permeability and leukostasis in diabetic rats. In addition, PSEE administration increased the activities of superoxidase dismutase (SOD) and catalase (CAT), and glutathione peroxidase (GSH) level in diabetic retinae. PSEE treatment inhibited the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) and the phosphorylation of Akt without altering the Akt protein expression in diabetic retinae. PSEE not only down-regulated the gene expression of hypoxia-inducible factor-1α (TNF-α) and interleukin-1β (IL-1β), but also reduced ICAM-1 and VCAM-1 expression in diabetic retinae. Moreover, PSEE reduced the nuclear factor-κB (NF-κB) activation and corrected imbalance between histone deacetylases (HDAC) and histone acetyltransferases (HAT) activities in diabetic retinae. In conclusion, phenolic antioxidants extract from plantaginis semen has potential benefits in the prevention and/or progression of DR. PMID:27649243

  11. Ischemia-induced Angiogenesis is Attenuated in Aged Rats.

    PubMed

    Tang, Yaohui; Wang, Liuqing; Wang, Jixian; Lin, Xiaojie; Wang, Yongting; Jin, Kunlin; Yang, Guo-Yuan

    2016-08-01

    To study whether focal angiogenesis is induced in aged rodents after permanent distal middle cerebral artery occlusion (MCAO), young adult (3-month-old) and aged (24-month-old) Fisher 344 rats underwent MCAO and sacrificed up to two months after MCAO. Immunohistochemistry and synchrotron radiation microangiography were performed to examine the number of newly formed blood vessels in both young adult and aged rats post-ischemia. We found that the number of capillaries and small arteries in aged brain was the same as young adult brain. In addition, we found that after MCAO, the number of blood vessels in the peri-infarct region of ipsilateral hemisphere in aged ischemic rats was significantly increased compared to the aged sham rats (p<0.05). We also confirmed that ischemia-induced focal angiogenesis occurred in young adult rat brain while the blood vessel density in young adult ischemic brain was significantly higher than that in the aged ischemic brain (p<0.05). Our data suggests that focal angiogenesis in aged rat brain can be induced in response to ischemic brain injury, and that aging impedes brain repairing and remodeling after ischemic stroke, possible due to the limited response of angiogenesis. PMID:27493831

  12. Antidiabetic effect of hydroalcoholic extract of Carthamus tinctorius L. in alloxan-induced diabetic rats

    PubMed Central

    Asgary, Sedigheh; Rahimi, Parivash; Mahzouni, Parvin; Madani, Hossein

    2012-01-01

    Background: Carthamus tinctorius L. (Compositae) has been used in Iranian traditional medicine for treatment of diabetes. In this study, anti-diabetic effect of its hydroalcoholic extract was compared with that of glibenclamide. Methods: Male white Wistar rats were randomly allocated into four groups of six each: nondiabetic control; diabetic control; diabetic treated with hydroalcoholic extract of Carthamus tinctorius (200 mg kg-1 BW); diabetic rats treated with glibenclamide (0.6 mg kg-1 BW). Alloxan was administered (120 mg kg-1 BW), intraperitoneally to induce diabetes. Fasting blood samples were collected three times, before injection of alloxan, two weeks and six weeks after injection of alloxan and fasting blood sugar (FBS), Hb A1C, insulin, cholesterol, LDL-C, HDL-C, VLDL-C, triglyceride, alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured each time. Results: FBS, triglyceride, cholesterol, LDL-C and VLDL-C had a meaningful decrease in diabetic rats treated with Carthamus tinctorius and diabetic rats treated with glibenclamide as compared with diabetic rats with no treatment. Insulin level increased significantly in diabetic groups received treatment (glibenclamide or Carthamus tinctorius L) in comparison with diabetic group with no treatment. The histological study revealed size of islets of Langerhans enlarged significantly consequentially as compared with diabetic rats with no treatment. The extract appeared non toxic as evidenced by normal levels of AST, ALP and ALT. Effects of administrating glibenclamide or extract of Carthamus tinctorius L on all biochemical parameters discussed above showed no difference and both tend to bring the values to near normal. Conclusion: These results suggested that the hydroalcoholic extract of Carthamus tinctorius possesses beneficial effect on treatment of diabetes. PMID:23267403

  13. Therapeutic effect of sunitinib on diabetes mellitus related ovarian injury: an experimental rat model study.

    PubMed

    Erbas, Oytun; Pala, Halil Gursoy; Pala, Emel Ebru; Artunc Ulkumen, Burcu; Akman, Levent; Akman, Tulay; Oltulu, Fatih; Aktug, Huseyin; Yavasoglu, Altug

    2015-05-01

    The aim of our study is to investigate the effect of sunitinib on diabetes mellitus related-ovarian injury and fibrosis in rat models. An experimental diabetes mellitus model was created in 16 rats, and eight rats with normal blood glucose levels were included in control group (Group-1). The diabetic rats were divided into two groups:diabetic control group (water given) - Group-2 and sunitinib treatment group - Group-3. After four weeks, bilateral oophorectomy was performed and ovaries were examined histologically. The groups were compared by Student's t-test, analysis of variance (ANOVA) and Mann-Whitney's U-test. There was a significant increase in no-medication (water given) diabetic rat's ovary (Group-2) in terms of follicular degeneration, stromal degeneration, stromal fibrosis and NF-kappaB immune-expression compared with control group normal rats' ovary (Group-1) (p < 0.0001). Stromal degeneration (p = 0.04), stromal fibrosis (p = 0.01), follicular degeneration (p = 0.02), NF-kappaB immune-expression (p = 0.001) significantly decreased in sunitinib-treated diabetic rat's ovary (Group-3) when compared with no-medication (water given) diabetic rat's ovary (Group-2) (p < 0.05). When we used sunitinib in the treatment of diabetic rats, ovarian injury, fibrosis and NF-kappaB immunoexpression decreased significantly. The effects of sunitinib in rat models give hope to the improved treatment of premature ovarian failure due to diabetes mellitus in humans.

  14. The effect of levosimendan on myocardial ischemia–reperfusion injury in streptozotocin-induced diabetic rats

    PubMed Central

    Kiraz, Hasan Ali; Poyraz, Fatih; Kip, Gülay; Erdem, Özlem; Alkan, Metin; Arslan, Mustafa; Özer, Abdullah; Şivgin, Volkan; Çomu, Faruk Metin

    2015-01-01

    Objective Ischemia/reperfusion (I/R) injury is an important cause of myocardial damage by means of oxidative, inflammatory, and apoptotic mechanisms. The aim of the present study was to examine the potential cardio protective effects of levosimendan in a diabetic rat model of myocardial I/R injury. Methods A total of 18 streptozotocin-induced diabetic Wistar Albino rats (55 mg/kg) were randomly divided into three equal groups as follows: the diabetic I/R group (DIR) in which myocardial I/R was induced following left thoracotomy, by ligating the left anterior descending coronary artery for 60 min, followed by 2 h of reperfusion; the diabetic I/R levosimendan group (DIRL), which underwent I/R by the same method while taking levosimendan intraperitoneal 12 µg kg−1; and the diabetic control group (DC) which underwent sham operations without tightening of the coronary sutures. As a control group (C), six healthy age-matched Wistar Albino rats underwent sham operations similar to the DC group. Two hours after the operation, the rats were sacrificed and the myocardial tissue samples were examined by light microscopy for evidence of myonecrosis and inflammatory cell infiltration. Results Myonecrosis findings were significantly different among groups (p=0.008). Myonecrosis was more pronounced in the DIR group compared with the C, DC, and DIRL groups (p=0.001, p=0.007 and p=0.037, respectively). Similarly, the degree of inflammatory cell infiltration showed significant difference among groups (p<0.0001). Compared with C, DC, and DIRL groups, the inflammatory cell infiltration was significantly higher among the DIR group (p<0.0001, p<0.0001, and p=0.020, respectively). Also, myocardial tissue edema was significantly different among groups (p=0.006). The light microscopic myocardial tissue edema levels were significantly higher in the DIR group than the C, DC, and DIRL groups (p=0.001, p=0.037, and p=0.014, respectively). Conclusion Taken together, our data indicate that

  15. Glucose cycling in islets from healthy and diabetic rats

    SciTech Connect

    Khan, A.; Chandramouli, V.; Ostenson, C.G.; Loew, H.L.; Landau, B.R.; Efendic, S. )

    1990-04-01

    Pancreatic islets from healthy (control) and neonatally streptozocin-induced diabetic (STZ-D) rats, a model for non-insulin-dependent diabetes mellitus, were incubated with {sup 3}H{sub 2}O and 5.5 or 16.7 mM glucose. At 5.5 mM glucose, no detectable ({sup 3}H)glucose was formed. At 16.7 mM, 2.2 patom.islet-1.h-1 of {sup 3}H was incorporated into glucose by the control islets and 5.4 patom.islet-1.h-1 by STZ-D islets. About 75% of the {sup 3}H was bound to carbon-2 of the glucose. Glucose utilization was 35.3 pmol.islet-1.h-1 by the control and 19.0 pmol.islet-1.h-1 by the STZ-D islets. Therefore, 4.5% of the glucose-6-phosphate formed by the control islets and 15.7% by the STZ-D islets was dephosphorylated. This presumably occurred in the beta-cells of the islets catalyzed by glucose-6-phosphatase. An increased glucose cycling, i.e., glucose----glucose-6-phosphate----glucose, in islets of STZ-D rats may contribute to the decreased insulin secretion found in these animals.

  16. Early Treatment With Olmesartan Prevents Juxtamedullary Glomerular Podocyte Injury and the Onset of Microalbuminuria in Type 2 Diabetic Rats

    PubMed Central

    Sofue, Tadashi; Kiyomoto, Hideyasu; Kobori, Hiroyuki; Urushihara, Maki; Nishijima, Yoko; Kaifu, Kumiko; Hara, Taiga; Matsumoto, Sachiko; Ichimura, Atsuhiko; Ohsaki, Hiroyuki; Hitomi, Hirofumi; Kawachi, Hiroshi; Hayden, Melvin R.; Whaley-Connell, Adam; Sowers, James R.; Ito, Sadayoshi; Kohno, Masakazu; Nishiyama, Akira

    2012-01-01

    Background Studies were performed to determine if early treatment with an angiotensin II (Ang II) receptor blocker (ARB), olmesartan, prevents the onset of microalbuminuria by attenuating glomerular podocyte injury in Otsuka Long-Evans Tokushima Fatty (OLETF) rats with type 2 diabetes mellitus. Methods OLETF rats were treated with either a vehicle, olmesartan (10 mg/kg/day) or a combination of nonspecific vasodilators (hydralazine 15 mg/kg/day, hydrochlorothiazide 6 mg/kg/day, and reserpine 0.3 mg/kg/day; HHR) from the age of 7–25 weeks. Results OLETF rats were hypertensive and had microalbuminuria from 9 weeks of age. At 15 weeks, OLETF rats had higher Ang II levels in the kidney, larger glomerular desmin-staining areas (an index of podocyte injury), and lower gene expression of nephrin in juxtamedullary glomeruli, than nondiabetic Long-Evans Tokushima Otsuka (LETO) rats. At 25 weeks, OLETF rats showed overt albuminuria, and higher levels of Ang II in the kidney and larger glomerular desmin-staining areas in superficial and juxtamedullary glomeruli compared to LETO rats. Reductions in mRNA levels of nephrin were also observed in superficial and juxtamedullary glomeruli. Although olmesartan did not affect glucose metabolism, it decreased blood pressure and prevented the renal changes in OLETF rats. HHR treatment also reduced blood pressure, but did not affect the renal parameters. Conclusions This study demonstrated that podocyte injury occurs in juxtamedullary glomeruli prior to superficial glomeruli in type 2 diabetic rats with microalbuminuria. Early treatment with an ARB may prevent the onset of albuminuria through its protective effects on juxtamedullary glomerular podocytes. PMID:22318512

  17. Ultrastructural investigations on protective effects of NCX 4016 (nitroaspirin) on macrovascular endothelium in diabetic Wistar rats.

    PubMed

    Ambrosini, M V; Mariucci, G; Rambotti, M G; Tantucci, M; Covarelli, C; De Angelis, L; Del Soldato, P

    2005-08-01

    The effect of a nitric oxide-donating aspirin derivative, 2-acetoxy-benzoate 3-(nitroxy-methyl)phenyl ester (NCX 4016), and aspirin on the aortic endothelium of diabetic rats was investigated by using scanning and transmission electron microscopy. Control and streptozotocin-treated rats were used. Metabolic control was assessed by measuring blood and urine metabolites, and 24-h urine volume. The ultrastructural study was performed after 7 weeks of diabetes and 6 weeks of therapy. Streptozotocin treatment induced a persistent hyperglycemia which was not influenced by the pharmacological treatments. Values of blood metabolites were in line with the diabetic status. Both scanning and transmission electron microscopy revealed that aortic endothelium was severely damaged in all diabetic rats except for the NCX 4016 treated ones. Our data document the protective effects of NCX 4016 on the vascular endothelium of diabetic rats. Since aspirin had no protective action, NCX 4016 may have exerted its beneficial action by releasing nitric oxide. PMID:16335593

  18. Ganoderma atrum polysaccharide improves aortic relaxation in diabetic rats via PI3K/Akt pathway.

    PubMed

    Zhu, Ke-Xue; Nie, Shao-Ping; Li, Chuan; Gong, Deming; Xie, Ming-Yong

    2014-03-15

    A newly identified polysaccharide (PSG-1) has been purified from Ganoderma atrum. The study was to investigate the protective effect of PSG-1 on diabetes-induced endothelial dysfunction in rat aorta. Rats were fed a high fat diet for 8 weeks and then injected with a low dose of streptozotocin to induce type 2 diabetes. The diabetic rats were orally treated with PSG-1 for 4 weeks. It was found that administration of PSG-1 significantly reduced levels of fasting blood glucose, improved endothelium-dependent aortic relaxation, increased levels of phosphoinositide 3-kinase (PI3K), phospho-Akt (p-Akt), endothelial nitric oxide synthase (eNOS) and nitric oxide in the aorta from diabetic rats, compared to un-treated diabetics. These results suggested that the protective effects of PSG-1 against endothelial dysfunction may be related to activation of the PI3K/Akt/eNOS pathway.

  19. Hypoglycemic effect of Rehmannie Radix Preparata (Sookjihwang) extract in streptozotocin-induced diabetic rats

    PubMed Central

    Kang, Shin-Jyung; Bao, Cun Liu; Park, Soojin

    2010-01-01

    Rhemannie Radix Preparata (RRP) has been previously employed in traditional oriental medicine as a treatment for diabetic thirst and improving blood flow. The aim of this study was to evaluate its hypoglycemic control by assaying the activities of key enzymes of carbohydrate metabolism in streptozotocin-(STZ)-induced diabetic rats. Further, RRP extracts were prepared in water (RRPW), in 50% ethanol (RRP50), and in 100% ethanol (RRP100), respectively, and compared for their actions in diabetic rats. The oral treatment of RRP (5 mg/kg b.w./d) to diabetic rats for 21 days resulted in a significant decline in blood glucose by 67% compared to diabetic control rats (P < 0.05). The altered activities of glucokinase, glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and acetyl CoA carboxylase (ACC) in the livers of diabetic rats were reversed significantly to near-normal levels by the administration of RRP (P < 0.05). Among the three RRP extracts, RRP100 was the most effective in terms of hypoglycemic action. However, the administration of RRP to diabetic rats did not improve insulin production. The modulatory effects of RRP100 on the attenuation of carbohydrate enzyme activities appear to hold promise for widespread use for the treatment of diabetes in the future. PMID:21103092

  20. Antidiabetic Activity of Artemisia amygdalina Decne in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Ganai, Bashir A.; Akbar, Seema; Mubashir, Khan; Dar, Showkat Ahmad; Dar, Mohammad Younis; Tantry, Mudasir A.

    2014-01-01

    Artemisia species have been extensively used for the management of diabetes in folklore medicine. The current study was designed to investigate the antidiabetic and antihyperlipidemic effects of Artemisia amygdalina. Petroleum ether, ethyl acetate, methanol, and hydroethanolic extracts of Artemisia amygdalina were tested for their antidiabetic potentials in diabetic rats. The effect of extracts was observed by checking the biochemical, physiological, and histopathological parameters in diabetic rats. The hydroethanolic and methanolic extracts each at doses of 250 and 500 mg/kg b. w significantly reduced glucose levels in diabetic rats. The other biochemical parameters like cholesterol, triglycerides, low density lipoproteins (LDL), serum creatinine, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), and alkaline phosphatise (ALP), were found to be reduced by the hydroethanolic and methanolic extracts. The extracts also showed reduction in the feed and water consumption of diabetic rats when compared with the diabetic control. The histopathological results of treated groups showed the regenerative/protective effect on β-cells of pancreas in diabetic rats. The current study revealed the antidiabetic potential of Artemisia amygdalina being effective in hyperglycemia and that it can effectively protect against other metabolic aberrations caused by diabetes in rats, which seems to validate its therapeutic traditional use. PMID:24967338

  1. Effect of Urtica dioica L. (Urticaceae) on testicular tissue in STZ-induced diabetic rats.

    PubMed

    Ghafari, S; Balajadeh, B Kabiri; Golalipour, M J

    2011-08-15

    Urtica dioica L. (Stinging nettle) has already been known for a long time as a medicinal plant in the world. This histopathological and morphometrical study was conducted to determine the effects of the hydroalcoholic extract of Urtica dioica leaves on testis of streptozotocin-induced diabetic rats. Eighteen male Wistar rats were allocated to equally normal, diabetic and treatment groups. Hyperglycemia was induced by Streptozotocin (80 mg kg(-1)) in animals of diabetic and treatment groups. One week after STZ injection (80 mg kg(-1)), the rats of treatment group received the extract of U. dioica (100 mg/kg/day) IP for 28 days. After 5 weeks of study, all the rats were sacrificed and testes were removed and fixed in bouin and after tissue processing stained with H and E technique. Tubular cell disintegration, sertoli and spermatogonia cell vacuolization and decrease in sperm concentration in seminiferous tubules were seen in diabetic and treatment groups group in comparison with control. External Seminiferous Tubular Diameter (STD) and Seminiferous Epithelial Height (SEH) significantly reduced (p < 0.05) in the diabetic rats compared with controls and these parameters in the treatment group were similar to diabetics animals. This study showed that hydroalcoholic extract of Urtica dioica leaves, after induction of diabetes; has no treatment effect on seminiferous tubules alterations in streptozotocin-induced diabetic rats. PMID:22545354

  2. Sitagliptin attenuates cardiomyopathy by modulating the JAK/STAT signaling pathway in experimental diabetic rats.

    PubMed

    Al-Rasheed, Nouf M; Al-Rasheed, Nawal M; Hasan, Iman H; Al-Amin, Maha A; Al-Ajmi, Hanaa N; Mahmoud, Ayman M

    2016-01-01

    Sitagliptin, a dipeptidyl peptidase-4 inhibitor, has been reported to promote cardioprotection in diabetic hearts by limiting hyperglycemia and hyperlipidemia. However, little is known about the involvement of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway modulation in the cardioprotective effects of sitagliptin. The current study aimed to investigate the protective effects of sitagliptin against diabetic cardiomyopathy (DCM), focusing on the modulation of the JAK/STAT pathway. Diabetes was induced by streptozotocin injection, and rats received sitagliptin orally and daily for 90 days. Diabetic rats exhibited hyperglycemia, hyperlipidemia, and a significant increase in heart-to-body weight (HW/BW) ratio. Serum troponin I and creatine kinase MB, cardiac interleukin-6 (IL-6), lipid peroxidation, and nitric oxide levels showed significant increase in diabetic rats. In contrast, both enzymatic and nonenzymatic antioxidant defenses were significantly declined in the heart of diabetic rats. Histopathological study revealed degenerations, increased collagen deposition in the heart of diabetic rats. Sitagliptin alleviated hyperglycemia, hyperlipidemia, HW/BW ratio, histological architecture, oxidative stress, and inflammation, and rejuvenated the antioxidant defenses. In addition, cardiac levels of pJAK2 and pSTAT3 were increased in diabetic rats, an effect which was remarkably decreased after sitagliptin treatment. In conclusion, these results confer an evidence that sitagliptin has great therapeutic potential on DCM through down-regulation of the JAK/STAT signaling pathway. PMID:27418808

  3. Sitagliptin attenuates cardiomyopathy by modulating the JAK/STAT signaling pathway in experimental diabetic rats

    PubMed Central

    Al-Rasheed, Nouf M; Al-Rasheed, Nawal M; Hasan, Iman H; Al-Amin, Maha A; Al-Ajmi, Hanaa N; Mahmoud, Ayman M

    2016-01-01

    Sitagliptin, a dipeptidyl peptidase-4 inhibitor, has been reported to promote cardioprotection in diabetic hearts by limiting hyperglycemia and hyperlipidemia. However, little is known about the involvement of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway modulation in the cardioprotective effects of sitagliptin. The current study aimed to investigate the protective effects of sitagliptin against diabetic cardiomyopathy (DCM), focusing on the modulation of the JAK/STAT pathway. Diabetes was induced by streptozotocin injection, and rats received sitagliptin orally and daily for 90 days. Diabetic rats exhibited hyperglycemia, hyperlipidemia, and a significant increase in heart-to-body weight (HW/BW) ratio. Serum troponin I and creatine kinase MB, cardiac interleukin-6 (IL-6), lipid peroxidation, and nitric oxide levels showed significant increase in diabetic rats. In contrast, both enzymatic and nonenzymatic antioxidant defenses were significantly declined in the heart of diabetic rats. Histopathological study revealed degenerations, increased collagen deposition in the heart of diabetic rats. Sitagliptin alleviated hyperglycemia, hyperlipidemia, HW/BW ratio, histological architecture, oxidative stress, and inflammation, and rejuvenated the antioxidant defenses. In addition, cardiac levels of pJAK2 and pSTAT3 were increased in diabetic rats, an effect which was remarkably decreased after sitagliptin treatment. In conclusion, these results confer an evidence that sitagliptin has great therapeutic potential on DCM through down-regulation of the JAK/STAT signaling pathway. PMID:27418808

  4. Antidiabetic activity of Artemisia amygdalina Decne in streptozotocin induced diabetic rats.

    PubMed

    Ghazanfar, Khalid; Ganai, Bashir A; Akbar, Seema; Mubashir, Khan; Dar, Showkat Ahmad; Dar, Mohammad Younis; Tantry, Mudasir A

    2014-01-01

    Artemisia species have been extensively used for the management of diabetes in folklore medicine. The current study was designed to investigate the antidiabetic and antihyperlipidemic effects of Artemisia amygdalina. Petroleum ether, ethyl acetate, methanol, and hydroethanolic extracts of Artemisia amygdalina were tested for their antidiabetic potentials in diabetic rats. The effect of extracts was observed by checking the biochemical, physiological, and histopathological parameters in diabetic rats. The hydroethanolic and methanolic extracts each at doses of 250 and 500 mg/kg b. w significantly reduced glucose levels in diabetic rats. The other biochemical parameters like cholesterol, triglycerides, low density lipoproteins (LDL), serum creatinine, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), and alkaline phosphatise (ALP), were found to be reduced by the hydroethanolic and methanolic extracts. The extracts also showed reduction in the feed and water consumption of diabetic rats when compared with the diabetic control. The histopathological results of treated groups showed the regenerative/protective effect on β -cells of pancreas in diabetic rats. The current study revealed the antidiabetic potential of Artemisia amygdalina being effective in hyperglycemia and that it can effectively protect against other metabolic aberrations caused by diabetes in rats, which seems to validate its therapeutic traditional use.

  5. Assessment of the antidiabetic activity of Myrcia uniflora extracts in streptozotocin diabetic rats.

    PubMed

    Pepato, M T; Oliveira, J R; Kettelhut, I C; Migliorini, R H

    1993-01-01

    Several metabolic parameters were used to determine the evolution of the diabetic state of streptozotocin diabetic rats treated with aqueous leaf extracts from Myricia uniflora, a plant widely used in northern Brazil for treatment of diabetes. The effect of the extracts on the intestinal absorption of glucose and on the evolution of diabetes of diabetic rats adapted to a high protein, carbohydrate-free diet were also investigated. Treated rats received twice a day, by gavage, during three weeks, 7.5 mg of lyophilized powder, corresponding to about 60 mg of dried leaves, prepared from percolations with boiled water, Treatment of diabetic rats fed a stock, balanced diet did not affect body weight gain but reduced the hyperglycemia, polyphagia, polydipsia, urine volume and the urinary excretion of glucose and urea. Myrcia administration for 3 weeks had no effect on the weight of epididymal and retroperitoneal adipose tissue, or on the concentrations of pancreatic and serum insulin. The intestinal absorption of glucose, measured with a perfusion technique in situ, was markedly inhibited by Myrcia (7.5 mg of lyophilized powder per ml of perfusion solution). The effects of Myrcia treatment on diabetic rats adapted to a carbohydrate-free diet were similar to those obtained in rats fed the stock diet. The data show that aqueous extracts of Myrcia has a beneficial effect on the diabetic state, mainly by improving metabolic parameters of glucose homeostasis.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats.

    PubMed

    El-Demerdash, F M; Yousef, M I; El-Naga, N I Abou

    2005-01-01

    The present study was carried out to investigate the effects of onion (Allium cepa Linn) and garlic (Allium sativum Linn) juices on biochemical parameters, enzyme activities and lipid peroxidation in alloxan-induced diabetic rats. Alloxan was administered as a single dose (120 mg/kg BW) to induce diabetes. A dose of 1 ml of either onion or garlic juices/100 g body weight (equivalent to 0.4 g/100 g BW) was orally administered daily to alloxan-diabetic rats for four weeks. The levels of glucose, urea, creatinine and bilirubin were significantly (p<0.05) increased in plasma of alloxan-diabetic rats compared to the control group. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and alkaline and acid phosphatases (AlP, AcP) activities were significantly (p<0.05) increased in plasma and testes of alloxan-diabetic rats, while these activities were decreased in liver compared with the control group. Brain LDH was significantly (p<0.05) increased. The concentration of thiobarbituric acid reactive substances and the activity of glutathione S-transferase in plasma, liver, testes, brain, and kidney were increased in alloxan-diabetic rats. Treatment of the diabetic rats with repeated doses of either garlic or onion juices could restore the changes of the above parameters to their normal levels. The present results showed that garlic and onion juices exerted antioxidant and antihyperglycemic effects and consequently may alleviate liver and renal damage caused by alloxan-induced diabetes. PMID:15582196

  7. Aqueous Extract of Garcinia Indica Choisy Restores Glutathione in Type 2 Diabetic Rats

    PubMed Central

    Kirana, H; Srinivasan, BP

    2010-01-01

    Significant depletion of glutathione (GSH-reduced form) was observed in type 2 diabetes due to oxidative stress. Hence the present study was aimed to investigate a drug which restores GSH along with its anti-diabetic activity. Aqueous extract of Garcinia indica at a dose of 100 mg/kg and 200 mg/kg was given orally to streptozotocin-induced type 2 diabetic rats for a period of 4 weeks. At the end, parameters such as fasting blood glucose, postprandial blood glucose, and GSH in blood were analyzed. Aqueous extract of G. indica significantly decreased both the fasting and postprandial blood glucose in type 2 diabetic rats. The extract also restored the erythrocyte GSH in type 2 diabetic rats. Drug at higher dose, i.e. 200 mg/kg, had a more pronounced effect. Restoring the erythrocyte GSH, an intracellular anti-oxidant in diabetes, will be beneficial specially by preventing the risk of developing complications. PMID:21042483

  8. Neurofunctional Evaluation of Young Male Offspring of Rat Dams with Diabetes Induced by Streptozotocin

    PubMed Central

    Delascio Lopes, Carla; Sinigaglia-Coimbra, Rita; Mazzola, Jacqueline; Camano, Luiz; Mattar, Rosiane

    2011-01-01

    Diabetes mellitus (DM) is a complex disease, being one of the most prevalent diseases worldwide. As a consequence, pregnancy-associated diabetes is increasingly common. Given the numerous studies about the influence of diabetes on offspring of diabetic rat dams, the neurological outcome is of outmost importance. This paper aimed at evaluating the neurofunctional performance of young male offspring of rat dams with diabetes induced by streptozotocin. Diabetes was induced in Wistar female rats by streptozotocin administration, while control groups received vehicle injection. At two-month survival period, male offspring from each group were randomized to the water maze Morris test, in order to assess their neurofunctional status. There was no significant difference between the groups as assessed by the Morris water maze test for spatial reference task. Our results point to the need of further investigation on the offspring neurofunctional performance. PMID:22363880

  9. Effect of dietary manganese on tissue antioxidants in STZ diabetic rats

    SciTech Connect

    Thompson, K.H.; Lee, M. )

    1991-03-15

    The objective of this experiment was to investigate the effect of Mn deficiency on tissue antioxidant levels under conditions of STZ (streptozotocin)-induced diabetes. Weanling, male Sprague-Dawley rats were assigned randomly to 1 of 6 groups: (1) Mn+ (manganese-sufficient), nondiabetic; (2) Mn{minus} (manganese-deficient), nondiabetic; (3) Mn+, diabetic for 4 weeks; (4) Mn{minus}, diabetic for 4 weeks; (5) Mn+, diabetic for 8 weeks; and (6) Mn{minus}, diabetic for 8 weeks. Decreased Mn levels in all tissues of Mn{minus} rats were accompanied by decreased MnSOD activity in kidney and heart, but not in liver or pancreas. Hepatic vitamin E was progressively increased in 4 and 8-week diabetic rats. Overall, diabetogenic effects of STZ were not amplified by manganese deficiency.

  10. Metabolic and biochemical changes in streptozotocin induced obese-diabetic rats treated with Phyllanthus niruri extract.

    PubMed

    Mediani, Ahmed; Abas, Faridah; Maulidiani, M; Khatib, Alfi; Tan, Chin Ping; Ismail, Intan Safinar; Shaari, Khozirah; Ismail, Amin; Lajis, N H

    2016-09-01

    Herbal medicine has been proven to be an effective therapy offering a variety of benefits, such as moderate reduction in hypoglycemia, in the treatment and prevention of obesity and diabetes. Phyllanthus niruri has been used as a treatment for diabetes mellitus. Herein, the induction of type 2 diabetes in Sprague-Dawley rats was achieved by a low dose of streptozotocin (STZ) (25mg/kgbw). Here, we evaluated the in vivo antidiabetic properties of two concentrations (250 and 500mg/kg bw) of P. niruri via metabolomics approach. The administration of 500mg/kgbw of P. niruri extract caused the metabolic disorders of obese diabetic rats to be improved towards the normal state. The extract also clearly decreased the serum glucose level and improved the lipid profile in obese diabetic rats. The results of this study may contribute towards better understanding the molecular mechanism of this medicinal plant in managing diabetes mellitus. PMID:27318080

  11. Arginine rich coconut kernel protein modulates diabetes in alloxan treated rats.

    PubMed

    Salil, G; Nevin, K G; Rajamohan, T

    2011-01-15

    Diabetes mellitus is a syndrome characterized by the loss of glucose homeostasis due to several reasons. In spite of the presence of known anti-diabetic medicines in the pharmaceutical market, remedies from natural resources are used with success to treat this disease. The present study was undertaken to investigate the effect of coconut kernel protein (CKP) on alloxan induced diabetes in Sprague-Dawley rats. Diabetes was induced by injecting a single dose of alloxan (150mg/kg body weight) intraperitoneally. After inducing diabetes, purified CKP isolated from dried coconut kernel was administered to rats along with a semi synthetic diet for 45 days. After the experimental period, serum glucose, insulin, activities of different key enzymes involved in glucose metabolism, liver glycogen levels and the histopathology of the pancreas were evaluated. The amount of individual amino acids of CKP was also determined using HPLC. Results showed that CKP has significant amount of arginine. CKP feeding attenuated the increase in the glucose and insulin levels in diabetic rats. Glycogen levels in the liver and the activities of carbohydrate metabolizing enzymes in the serum of treated diabetic rats were reverted back to the normal levels compared to that of control. Histopathology revealed that CKP feeding reduced the diabetes related pancreatic damage in treated rats compared to the control. These results clearly demonstrated the potent anti-diabetic activity of CKP which may be probably due to its effect on pancreatic β cell regeneration through arginine.

  12. Polarized light improves cutaneous healing on diabetic rats

    NASA Astrophysics Data System (ADS)

    Ramalho, Luciana Maria Pedreira; Oliveira, Priscila Chagas; Marques, Aparecida Maria Cordeiro; Barbosa Pinheiro, Antonio L.

    2010-02-01

    The aim of this study was to evaluate the healing of 3rd degree burn on diabetic rats submitted or not to treatment with Polarized Light. Diabetes mellitus (Streptozotocin, 60mg/kg) was induced on 45 male Wistar albinus rats and a third degree burn (1.5× 1.5cm) was created in the dorsum of each animal under general anesthesia. After a regular quarantine period, the animals were randomly distributed into three groups as follows: G1: control (no treatment, n =15); G2: Polarized Light (λ=400-2000nm, 20J/cm2) and G3: Polarized Light (λ=400-2000nm, 40J/cm2). The phototherapy performed on group G2 was Polarized Light dose 20J/cm2 and G3 was Polarized Light dose 40J/cm2 (Bioptron®, λ400-2000 nm, 40mW; 2.4J/cm2 per minute; Φ +/- 5.5 cm; Bioptron AG, Monchaltorf, Switzerland). The phototherapy started immediately post-burning and was repeated daily until the day before the animal death. The energy was applied transcutaneously respecting the focal distance of 10cm as recommended by the manufacturer. The dose was 20 or 40J/cm2 (4min 15s or 8min.and 30s). At each time point chosen (7, 14, and 21 days post-burning) and following macroscopic examination, each animal was killed by an overdose of general anesthesia. Slides were stained with HE, Sirius Red, and CK AE1/AE3 antibody. Qualitative and semi-quantitative analyses were performed under light microscopy. The animals submitted to phototherapy (20J/cm2) showed significant differences on regards revascularization and epithelialization. The use of 20J/cm2 was effective on improving the healing of third degree buns on diabetic animals at both early and late stages of the repair.

  13. Impact of Ellagic Acid in Bone Formation after Tooth Extraction: An Experimental Study on Diabetic Rats

    PubMed Central

    Al-Obaidi, Mazen M. Jamil; Al-Bayaty, Fouad Hussain; Hussaini, Jamal; Khor, Goot Heah

    2014-01-01

    Objectives. To estimate the impact of ellagic acid (EA) towards healing tooth socket in diabetic animals, after tooth extraction. Methods. Twenty-four Sprague Dawley male rats weighing 250–300 g were selected for this study. All animals were intraperitoneally injected with 45 mg/kg (b.w.) of freshly prepared streptozotocin (STZ), to induce diabetic mellitus. Then, the animals were anesthetized, and the upper left central incisor was extracted and the whole extracted sockets were filled with Rosuvastatin (RSV). The rats were separated into three groups, comprising 8 rats each. The first group was considered as normal control group and orally treated with normal saline. The second group was regarded as diabetic control group and orally treated with normal saline, whereas the third group comprised diabetic rats, administrated with EA (50 mg/kg) orally. The maxilla tissue stained by eosin and hematoxylin (H&E) was used for histological examinations and immunohistochemical technique. Fibroblast growth factor (FGF-2) and alkaline phosphatase (ALP) were used to evaluate the healing process in the extracted tooth socket by immunohistochemistry test. Results. The reactions of immunohistochemistry for FGF-2 and ALP presented stronger expression, predominantly in EA treated diabetic rat, than the untreated diabetic rat. Conclusion. These findings suggest that the administration of EA combined with RSV may have accelerated the healing process of the tooth socket of diabetic rats, after tooth extraction. PMID:25485304

  14. Nicorandil attenuates endothelial VCAM-1 expression via thioredoxin production in diabetic rats induced by streptozotocin.

    PubMed

    Liu, Lihua; Liu, Yun; Qi, Benling; Wu, Qinqin; Li, Yuanyuan; Wang, Zhaohui

    2014-06-01

    The anti-angina agent nicorandil has been reported to be beneficial even in patients who have angina with diabetes. However, the mechanism underlying the effect of nicorandil in patients with diabetes remains to be elucidated. In this study, the protective effect of nicorandil on thioredoxin (TRX) protein was investigated, as TRX is a multifunctional endogenous redox regulator that protects cells against various types of cellular and tissue stress. This study was conducted to examine whether nicorandil induces the expression of TRX for the protection against diabetic damage in the vascular tissue of rats. Diabetes was induced in rats by intraperitoneal injection of streptozotocin (STZ) (fasting glucose levels in STZ-induced rats were >14 mmol/l). Diabetic rats were divided into a diabetic control and a nicorandil-treated group. Nicorandil was administered at a dosage of 15 mg/kg/day by gavage feeding. After five weeks of nicorandil administration, blood samples were obtained from the angular vein to measure levels of stress markers, serum superoxide dismutase and malondialdehyde, using the ELISA. The expression of TRX in STZ-induced rat vascular tissue was analyzed by immunohistochemistry, quantitative polymerase chain reaction (qPCR) and western blot analysis. The oral administration of nicorandil induced TRX protein and mRNA expression in the vascular tissue of STZ-induced diabetic rats. In the diabetic control group, the levels of stress were markedly higher than those in the nicorandil-treated group, indicating that nicorandil reduces oxidative stress in serum. In addition to inducing TRX expression, nicorandil attenuated the expression of the vascular cell adhesion molecule-1 (VCAM-1) in diabetic rat vascular endothelial cells. In conclusion, nicorandil attenuates the formation of reactive oxygen species and induces TRX protein expression, consequently resulting in the suppression of VCAM-1 secretion in the vascular endothelial cells of STZ-induced diabetic

  15. Converting enzyme inhibition and the glomerular hemodynamic response to glycine in diabetic rats.

    PubMed

    Slomowitz, L A; Peterson, O W; Thomson, S C

    1999-07-01

    GFR normally increases during glycine infusion. This response is absent in humans and rats with established diabetes mellitus. In diabetic patients, angiotensin-converting enzyme inhibition (ACEI) restores the effect of glycine on GFR. To ascertain the glomerular hemodynamic basis for this effect of ACEI, micropuncture studies were performed in male Wistar-Froemter rats after 5 to 6 wk of insulin-treated streptozotocin diabetes. The determinants of single-nephron GFR (SNGFR) were assessed in each rat before and during glycine infusion. Studies were performed in diabetics, diabetics after 5 d of ACEI (enalapril in the drinking water), and weight-matched controls. Diabetic rats manifest renal hypertrophy and glomerular hyperfiltration but not glomerular capillary hypertension. ACEI reduced glomerular capillary pressure, increased glomerular ultrafiltration coefficient, and did not mitigate hyperfiltration. In controls, glycine increased SNGFR by 30% due to increased nephron plasma flow. In diabetics, glycine had no effect on any determinant of SNGFR. In ACEI-treated diabetics, the SNGFR response to glycine was indistinguishable from nondiabetics, but the effect of glycine was mediated by greater ultrafiltration pressure rather than by greater plasma flow. These findings demonstrate that: (1) The absent response to glycine in established diabetes does not indicate that renal functional reserve is exhausted by hyperfiltration; and (2) ACEI restores the GFR response to glycine in established diabetes, but this response is mediated by increased ultrafiltration pressure rather than by increased nephron plasma flow.

  16. Myocardial impulse propagation is impaired in right ventricular tissue of Zucker Diabetic Fatty (ZDF) rats

    PubMed Central

    2013-01-01

    Background Diabetes increases the risk of cardiovascular complications including arrhythmias, but the underlying mechanisms remain to be established. Decreased conduction velocity (CV), which is an independent risk factor for re-entry arrhythmias, is present in models with streptozotocin (STZ) induced type 1 diabetes. Whether CV is also disturbed in models of type 2 diabetes is currently unknown. Methods We used Zucker Diabetic Fatty (ZDF) rats, as a model of type 2 diabetes, and their lean controls Zucker Diabetic Lean (ZDL) rats to investigate CV and its response to the anti-arrhythmic peptide analogue AAP10. Gap junction remodeling was examined by immunofluorescence and western blotting. Cardiac histomorphometry was examined by Masson`s Trichrome staining and intracellular lipid accumulation was analyzed by Bodipy staining. Results CV was significantly slower in ZDF rats (56±1.9 cm/s) compared to non-diabetic controls (ZDL, 66±1.6 cm/s), but AAP10 did not affect CV in either group. The total amount of Connexin43 (C×43) was identical between ZDF and ZDL rats, but the amount of lateralized C×43 was significantly increased in ZDF rats (42±12 %) compared to ZDL rats (30±8%), p<0.04. Judged by electrophoretic mobility, C×43 phosphorylation was unchanged between ZDF and ZDL rats. Also, no differences in cardiomyocyte size or histomorphometry including fibrosis were observed between groups, but the volume of intracellular lipid droplets was 4.2 times higher in ZDF compared to ZDL rats (p<0.01). Conclusion CV is reduced in type 2 diabetic ZDF rats. The CV disturbance may be partly explained by increased lateralization of C×43, but other factors are likely also involved. Our data indicates that lipotoxicity potentially may play a role in development of conduction disturbances and arrhythmias in type 2 diabetes. PMID:23327647

  17. Aging attenuates acquired heat tolerance and hypothalamic neurogenesis in rats.

    PubMed

    Matsuzaki, Kentaro; Katakura, Masanori; Inoue, Takayuki; Hara, Toshiko; Hashimoto, Michio; Shido, Osamu

    2015-06-01

    This study investigated age-dependent changes in heat exposure-induced hypothalamic neurogenesis and acquired heat tolerance in rats. We previously reported that neuronal progenitor cell proliferation and neural differentiation are enhanced in the hypothalamus of long-term heat-acclimated (HA) rats. Male Wistar rats, 5 weeks (Young), 10-11 months (Adult), or 22-25 months (Old) old, were subjected to an ambient temperature of 32°C for 40-50 days (HA rats). Rats underwent a heat tolerance test. In HA rats, increases in abdominal temperature (Tab ) in the the Young, Adult, and Old groups were significantly smaller than those in their respective controls. However, the increase in Tab of HA rats became greater with advancing age. The number of hypothalamic bromodeoxyuridine (BrdU)-immunopositive cells double stained with a mature neuron marker, neuronal nuclei (NeuN), of HA rats was significantly higher in the Young group than that in the control group. In Young HA, BrdU/NeuN-immunopositive cells of the preoptic area/anterior hypothalamus appeared to be the highest among regions examined. Large numbers of newborn neurons were also located in the ventromedial and dorsomedial nuclei, as well as the posterior hypothalamic area, whereas heat exposure did not increase such numbers in the Adult and Old groups. Aging may interfere with heat exposure-induced hypothalamic neurogenesis and acquired heat tolerance in rats.

  18. Anti-diabetic and anti-oxidative activity of fixed oil extracted from Ocimum sanctum L. leaves in diabetic rats

    PubMed Central

    SUANARUNSAWAT, THAMOLWAN; ANANTASOMBOON, GUN; PIEWBANG, CHUTCHAI

    2016-01-01

    Ocimum sanctum L. (OS) leaves have been shown to exert diverse potential benefits in a variety of stress conditions. The present study was conducted to elucidate the effects of the fixed oil extracted from OS leaves on the blood glucose levels and serum lipid profile of streptozotocin-induced diabetic rats. In addition, the anti-oxidative activity of OS leaves to protect various organs including the liver, kidney and heart was investigated. The fixed oil of the OS leaves was extracted using hexane, and the various fatty acid contents of the oil were determined using gas chromatography-mass spectrometry. Male Wistar rats were allocated into three groups (n=7 per group): Normal control rats, diabetic rats and diabetic rats fed daily with the fixed oil for three weeks. The results showed that α-linolenic acid was the primary fatty acid contained in the fixed oil of OS. After 3 weeks of diabetic induction, the rats exhibited increased blood glucose levels and serum lipid profile, in addition to elevated serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatine kinase MB subunit (CK-MB), creatinine and blood urea nitrogen (BUN). The fixed oil significantly decreased the elevated levels of blood glucose, the serum lipid profile and the levels of serum creatinine and BUN (P<0.001), without exerting significant effects on the elevated serum levels of AST, ALT, LDH and CK-MB. Furthermore, the fixed oil increased the diabetically-reduced levels of serum insulin and decreased the rat kidney weight. Fixed oil suppressed the elevated thiobarbituric acid reactive substances (TBARS) level and increased the activity of various antioxidative enzymes in the rat renal tissue. By contrast, the fixed oil had no effect on the elevated TBARS level and the inhibited activity of the antioxidative enzymes in the rat liver and cardiac tissues. Histopathological results indicated that the fixed oil preserved the renal tissue

  19. Effect of caffeine on erectile function via up-regulating cavernous cyclic guanosine monophosphate in diabetic rats.

    PubMed

    Yang, Rong; Wang, Jiuling; Chen, Yun; Sun, Zeyu; Wang, Run; Dai, Yutian

    2008-01-01

    Erectile dysfunction (ED) is a common complication of diabetes mellitus. Phosphodiesterase-5 (PDE5) inhibitors, which inhibit the breakdown of intracellular cyclic guanosine monophosphate (cGMP), are used to treat diabetic ED. Caffeine, a nonselective PDE inhibitor used in our daily diet, is controversial regarding its effect on erectile function. To investigate the effect of caffeine on erectile function in diabetic rat models and explore the mechanism, male Sprague-Dawley rats were injected with streptozotocin to induce diabetes mellitus. The rats with blood glucose levels above 300 mg/dL were selected for the study. The rats were divided into 4 groups: group A (normal control rats), group B (diabetic rats treated with normal saline), group C (diabetic rats treated with caffeine, 10 mg/kg per day), and group D (diabetic rats treated with caffeine, 20 mg/kg per day). After 8 weeks of treatment, intracavernous pressure (ICP) was measured to assess erectile function. The radioimmunoassay was used to evaluate the level of cGMP in the cavernosum. The ICP and the cavernous cGMP decreased significantly in the diabetic rats compared with normal controls. An 8-week administration of caffeine at the given dosages increased the ICP and cavernous cGMP in diabetic rats. Caffeine consumption improved the erectile function of diabetic rats by up-regulating cavernous cGMP.

  20. Central nervous system complications of diabetes in streptozotocin-induced diabetic rats: a histopathological and immunohistochemical examination.

    PubMed

    Guven, Aysel; Yavuz, Ozlem; Cam, Meryem; Comunoglu, Cem; Sevi'nc, Ozdemi'r

    2009-01-01

    Diabetes mellitus is a common, potentially serious metabolic disorder. Over the long term, diabetes leads to serious consequences in a number of tissues, especially those that are insulin insensitive (retina, neurons, kidneys). It also causes a variety of functional and structural disorders in the central and peripheral nervous systems. We investigated whether neurodegenerative changes were observable in the hippocampus, cortex, and cerebellum after 4 weeks of streptozotocin (STZ)-induced diabetes in rats and the effect(s) of melatonin. Male Wistar rats (n = 32) were divided into four groups (n = 8 each): untreated controls, melatonin-treated controls, untreated diabetics, and melatonin-treated diabetics. Experimental diabetes was induced by a single dose of STZ (60 mg/kg, intraperitoneal (ip)). For 3 days before the administration of STZ, melatonin (200 microg/kg/day, ip) was injected and continued for 4 weeks. Sections of hippocampus, cortex, and cerebellum were stained with hematoxylin and eosin and examined using light microscopy. In addition, brain tissues were examined immunohistochemically for the expression of glial and neuronal markers, including glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), and heat shock protein-70 (HSP-70). No neurodegenerative changes were observed in the hippocampus, cortex, or cerebellum of the untreated diabetic group after 4 weeks compared with the other groups. We did not observe any change in GFAP, NSE, or HSP-70 immunostaining in the brain tissues of STZ-induced diabetic rats. In summary, after 4 weeks of STZ-induced diabetes in rats, no degenerative or immunohistochemical changes were detected in the hippocampus, cortex, or cerebellum.

  1. Hypolipidemic Activity of Eryngium carlinae on Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Noriega-Cisneros, Ruth; Ortiz-Ávila, Omar; Esquivel-Gutiérrez, Edgar; Clemente-Guerrero, Mónica; Manzo-Avalos, Salvador; Salgado-Garciglia, Rafael; Cortés-Rojo, Christian; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2012-01-01

    Diabetes mellitus (DM) is a significant risk factor for the development of cardiovascular complications. This study was undertaken to investigate the effect of chronic administration of ethanolic extract of Eryngium carlinae on glucose, creatinine, uric acid, total cholesterol, and triglycerides levels in serum of streptozotocin- (STZ-) induced diabetic rats. Triglycerides, total cholesterol, and uric acid levels increased in serum from diabetic rats. The treatment with E. carlinae prevented these changes. The administration of E. carlinae extract reduced the levels of creatinine, uric acid, total cholesterol, and triglycerides. Thus administration of E. carlinae is able to reduce hyperlipidemia related to the cardiovascular risk in diabetes mellitus. PMID:22162811

  2. Effects of zinc supplementation on the element distribution in kidney tissue of diabetic rats subjected to acute swimming.

    PubMed

    Sivrikaya, Abdullah; Bicer, Mursel; Akil, Mustafa; Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim

    2012-06-01

    In this study, we report the effect of zinc supplementation on the distribution of elements in kidney tissue of diabetic rats subjected to acute swimming exercise. Diabetes was induced by two subcutaneous injections of 40 mg/kg of streptozotocin within a 24-h period. Zinc was given intraperitoneally at a dose of 6 mg/kg per day for a period of 4 weeks. The rats (n = 80) were equally divided into eight study groups: controls, zinc-supplemented, swimming, diabetic, zinc-supplemented diabetic, zinc-supplemented swimming, diabetic swimming, and zinc-supplemented diabetic swimming. The levels of lead, cobalt, molybdenum, chromium, boron, magnesium, iron, copper, calcium, zinc, and selenium were determined in the kidney tissue samples by ICP-AES. Higher molybdenum, calcium, zinc, and selenium values were found in both swimming and nonswimming diabetic rats. Significantly higher iron values were found in swimming, diabetic, diabetic swimming, and zinc-supplemented diabetic swimming rats (p < 0.001). Diabetic, zinc-supplemented diabetic, diabetic swimming, and zinc-supplemented diabetic swimming rats had the highest copper values. These results show that zinc supplementation normalized the higher levels of molybdenum, calcium, selenium, and iron levels seen in diabetic rats, indicating that zinc may have a regulatory effect on element metabolism in kidney tissue. PMID:22161314

  3. The Effect of Butter Oil on Avoidance Memory in Normal and Diabetic Rats

    PubMed Central

    Zare, Khadije; Tabatabaei, Seyed Reza Fatemi; Shahriari, Ali; Jafari, Ramezan Ali

    2012-01-01

    Objective(s): Since diabetes mellitus is accompanied by cognitive impairment in diabetic patient and animal models and since lipids play important roles in neuronal membrane composition, structure and function; we intended to evaluate the effect of dietary butter oil on passive avoidance memory of streptoztosin (STZ)-induced diabetic rats in this study. Materials and Methods: Thirty six adult male rats were randomly allocated to four equal groups: normal (N) and diabetic control (D) groups with free access to regular rat diet; but the diet of normal butter oil (NB) and diabetic butter oil (DB) groups was supplemented with 10% butter oil. Diabetes in D and DB groups was induced by intravenous (i.v.) injection of 50 mg/kg.bw of STZ. Passive avoidance memory and cholesterol of brain and hippocampal tissues has been measured six weeks after diabetes confirmation. Results: Diabetes, especially in diabetic butter oil group decreased the abilities of learning and memory. The level of cholesterol in hippocampus was higher in NB (P< 0.05) and DB (P< 0.01) groups. Conclusion: We suggest consumption of butter oil may worsen cognitive impairment of diabetic animal. This may be related to the higher elevation of cholesterol in the hippocampus of diabetic animals. PMID:23492733

  4. Hypoglycemic Activity of Fumaria parviflora in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Fathiazad, Fatemeh; Hamedeyazdan, Sanaz; Khosropanah, Mohamad Karim; Khaki, Arash

    2013-01-01

    Purpose: Fumaria parviflora Lam (Fumariaceae) has been used in traditional medicine in the treatment of several diseases such as diabetes. The present work was designed to evaluate the hypoglycaemic effects of methanolic extract (ME) of F. parviflora in normal and streptozotocin-induced diabetic rats. Methods: The rats used were allocated in six (I, II, III, IV, V and VI) experimental groups (n=5). Group I rats served as ‘normal control’ animals received distilled water and group II rats served as ‘diabetic control’ animals. Diabetes mellitus was induced in groups II, V and VI rats by intraperitoneal single injection of streptozotocin (STZ, 55 mg kg-1). Group V and VI rats were addi-tionally treated with ME (150 mg kg-1 day-1 and 250 mg kg-1 day-1, i.p. respectively) 24 hour post STZ injection, for seven consecutive days. Groups III and IV rats received only ME 150 mg kg-1 day-1 and 250 mg kg-1 day-1, i.p. respectively for seven days. The levels of blood glucose were determined using a Glucometer. Results: Administra-tion of F. parviflora extract showed a potent glucose lowering effect only on streptozo-tocin (STZ) induced diabetic rats below 100 mg/dl (P<0.001). However, no significant differences in the blood glucose levels were recorded between diabetic rats received 125 or 250 mg/kg of plant extracts. Conclusion: The findings of the study indicated that F. parviflora has significant hypoglycemic effect on STZ-induced diabetic rats with no effects on blood glucose levels of normal rats. PMID:24312837

  5. Efficacy of Female Rat Models in Translational Cardiovascular Aging Research

    PubMed Central

    Rice, K. M.; Fannin, J. C.; Gillette, C.; Blough, E. R.

    2014-01-01

    Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging. PMID:25610649

  6. An Observational Assessment Method for Aging Laboratory Rats

    PubMed Central

    Phillips, Pamela M; Jarema, Kimberly A; Kurtz, David M; MacPhail, Robert C

    2010-01-01

    The rapid growth of the aging human population highlights the need for laboratory animal models to study the basic biologic processes of aging and susceptibility to disease, drugs, and environmental pollutants. Methods are needed to evaluate the health of aging animals over time, particularly methods for efficiently monitoring large research colonies. Here we describe an observational assessment method that scores appearance, posture, mobility, and muscle tone on a 5-point scale that can be completed in about 1 min. A score of 1 indicates no deterioration, whereas a score of 5 indicates severe deterioration. Tests were applied to male Brown Norway rats between 12 and 36 mo of age (n = 32). The rats were participating concurrently in experiments on the behavioral effects of intermittent exposure (approximately every 4 mo) to short-acting environmental chemicals. Results demonstrated that aging-related signs of deterioration did not appear before 18 mo of age. Assessment scores and variability then increased with age. Body weights increased until approximately 24 mo, then remained stable, but decreased after 31 mo for the few remaining rats. The incidence of death increased slightly from 20 to 28 mo of age and then rose sharply; median survival age was approximately 30 mo, with a maximum of 36 mo. The results indicate that our observational assessment method supports efficient monitoring of the health of aging rats and may be useful in studies on susceptibility to diseases, drugs, and toxicants during old age. PMID:21205442

  7. Molecular basis of bilirubin UDP-glucuronosyltransferase induction in spontaneously diabetic rats, acetone-treated rats and starved rats.

    PubMed Central

    Braun, L; Coffey, M J; Puskás, F; Kardon, T; Nagy, G; Conley, A A; Burchell, B; Mandl, J

    1998-01-01

    The co-ordinated induction of several hepatic drug-metabolizing enzymes is a common feature in the regulation of drug biotransformation under normal and pathological conditions. In the present study the activity and expression of bilirubin UDP-glucuronosyltransferase (UGT1A1) were investigated in livers of BioBreeding/Worcester diabetic, fasted and acetone-treated rats. Bilirubin glucuronidation was stimulated by all three treatments; this was correlated with an increase in the UGT1A1 protein concentration in hepatic microsomes. Transcriptional induction of UGT1A1 was also observed in diabetes and starvation but not with acetone treatment, which apparently caused translational stabilization of the enzyme protein. The hormonal/metabolic alterations in diabetes and starvation might be a model for postnatal development. The sudden interruption of maternal glucose supply signals the enhanced expression of UGT1A1, giving a novel explanation for the physiological induction of bilirubin glucuronidation in newborn infants. PMID:9841869

  8. Young adult-specific hyperphagia in diabetic Goto-kakizaki rats is associated with leptin resistance and elevation of neuropeptide Y mRNA in the arcuate nucleus.

    PubMed

    Maekawa, F; Fujiwara, K; Kohno, D; Kuramochi, M; Kurita, H; Yada, T

    2006-10-01

    The present study aimed to examine whether hyperphagia, which is frequently observed in type 1 diabetic patients and model animals, also occurs in type 2 diabetic Goto-Kakizaki (GK) rats and, if so, to explore underlying abnormalities in the hypothalamus. GK rats at postnatal weeks 6-12, compared to control Wistar rats, exhibited hyperphagia, hyperglycaemia, hyperleptinemia and increased visceral fat accumulation, whereas body weight was unaltered. The ability of leptin to suppress feeding was reduced in GK rats compared to Wistar rats of these ages. In GK rats, leptin-induced phosphorylation of signal transducer and activator of transcription 3 was significantly reduced in the cells of the hypothalamic arcuate nucleus (ARC), but not of the ventromedial hypothalamus, whereas the mRNA level of functional leptin receptor was unaltered. By real-time polymerase chain reaction and in situ hybridisation, mRNA levels of neuropeptide Y, but not pro-opiomelanocortin and galanin-like peptide, were significantly increased in the ARC of GK rats at 11 weeks, but not 26 weeks. Following i.c.v. injection of a NPY Y1 antagonist, 1229U91, the amount of food intake in GK rats was indistinguishable from that in Wistar rats, thus eliminating the hyperphagia of GK rats. These results demonstrate that young adult GK rats display hyperphagia in association with leptin resistance and increased NPY mRNA level in the ARC.

  9. Procyanidins extracted from the lotus seedpod ameliorate age-related antioxidant deficit in aged rats.

    PubMed

    Xu, Jiqu; Rong, Shuang; Xie, Bijun; Sun, Zhida; Zhang, Li; Wu, Hailei; Yao, Ping; Hao, Liping; Liu, Liegang

    2010-03-01

    The alleviative effect of procyanidins extracted from the lotus seedpod (LSPC) on oxidative stress in various tissues was evaluated by determining the activities of the antioxidant enzymes and the content of reduced glutathione (GSH) in heart, liver, lung, kidney, skeletal muscle, and serum in aged rats. Aging led to antioxidant deficit in various tissues in this study, which is confirmed by remarkable increased lipid peroxidation, whereas the change patterns of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and GSH were diverse in various tissues of aged rats. LSPC treatment (50 and 100 mg/kg body weight) modified the activity of SOD, CAT, and GPx as well as GSH content alteration in these tissues, which reversed the age-related antioxidant deficit in aged rats. However, the regulatory patterns on the activities of these enzymes and GSH content by LSPC treatment were different according to the tissues in aged rats.

  10. Short- and Longterm Glycemic Control of Streptozotocin-Induced Diabetic Rats Using Different Insulin Preparations.

    PubMed

    Luippold, Gerd; Bedenik, Jessica; Voigt, Anke; Grempler, Rolf

    2016-01-01

    The chemical induction of diabetes with STZ has gained popularity because of the relative ease of rendering normal animals diabetic. Insulin substitution is required in STZ-rats in long-term studies to avoid ketoacidosis and consequently loss of animals. Aim of the present studies was to test different insulin preparations and different ways of administration in their ability to reduce blood glucose in STZ-induced diabetic rats. Single dosing of the long-acting insulin analogue glargine was able to dose-dependently reduce blood glucose over 4 h towards normoglycemia in STZ-treated rats. However, this effect was not sustained until 8 h post injection. A more sustained glucose-lowering effect was achieved using insulin-releasing implants. In STZ-rats, 1 insulin implant moderately lowered blood glucose levels 10 days after implantation, while 2 implants induced normoglycemia over the whole day. According to the glucose-lowering effect 1 as well as 2 insulin implants significantly reduced HbA1c measured after 26 days of implantation. In line with the improved glucose homeostasis due to the implants, urinary glucose excretion was also blunted in STZ-treated rats with 2 implants. Since diabetic nephropathy is one of the complications of longterm diabetes, renal function was characterized in the STZ-rat model. Increases in creatinine clearance and urinary albumin excretion resemble early signs of diabetic nephropathy. These functional abnormalities of the kidney could clearly be corrected with insulin-releasing implants 27 days after implantation. The data show that diabetic STZ-rats respond to exogenous insulin with regard to glucose levels as well as kidney parameters and a suitable dose of insulin implants for glucose control was established. This animal model together with the insulin dosing regimen is suitable to address diabetes-induced early diabetic nephropathy and also to study combination therapies with insulin for the treatment of type 1 diabetes. PMID:27253523

  11. Tocotrienol-Rich Fraction from Palm Oil Prevents Oxidative Damage in Diabetic Rats

    PubMed Central

    Matough, Fatmah A.; Budin, Siti B.; Hamid, Zariyantey A.; Abdul-Rahman, Mariati; Al-Wahaibi, Nasar; Mohammed, Jamaludine

    2014-01-01

    Objectives: This study was carried out to determine the effects of tocotrienol-rich fraction (TRF) (200 mg/Kg) on biomarkers of oxidative stress on erythrocyte membranes and leukocyte deoxyribonucleic acid (DNA) damage in streptozotocin (STZ)-induced diabetic rats. Methods: Male rats (n = 40) were divided randomly into four groups of 10: a normal group; a normal group with TRF; a diabetic group, and a diabetic group with TRF. Following four weeks of treatment, fasting blood glucose (FBG) levels, oxidative stress markers and the antioxidant status of the erythrocytes were measured. Results: FBG levels for the STZ-induced diabetic rats were significantly increased (P <0.001) when compared to the normal group and erythrocyte malondialdehyde levels were also significantly higher (P <0.0001) in this group. Decreased levels of reduced glutathione and increased levels of oxidised glutathione (P <0.001) were observed in STZ-induced diabetic rats when compared to the control group and diabetic group with TRF. The results of the superoxide dismutase and glutathione peroxidase activities were significantly lower in the STZ-induced diabetic rats than in the normal group (P <0.001). The levels of DNA damage, measured by the tail length and tail moment of the leukocyte, were significantly higher in STZ-induced diabetic (P <0.0001). TRF supplementation managed to normalise the level of DNA damage in diabetic rats treated with TRF. Conclusion: Daily supplementation with 200 mg/Kg of TRF for four weeks was found to reduce levels of oxidative stress markers by inhibiting lipid peroxidation and increasing the levels of antioxidant status in a prevention trial for STZ-induced diabetic rats. PMID:24516761

  12. Antihyperglycemic effect of the alcoholic seed extract of Swietenia macrophylla on streptozotocin-diabetic rats

    PubMed Central

    Kalaivanan, Kalpana; Pugalendi, Kodukkur Vishwanthan

    2011-01-01

    Background: Streptozotocin (STZ) selectively destroys the pancreatic insulin secreting cells, leaving less active cells and resulting in a diabetic state. The present study was designed to investigate the antihyperglycemic effect of the ethanolic seed extract of Swietenia macrophylla (SME) in normal and STZ-diabetic rats. Materials and Methods: The experimental groups were rendered diabetic by intraperitoneal injection of a single dose of STZ (40 mg/kg body weight [BW]). Rats with glucose levels > 200 mg/dL were considered diabetic and were divided into 5 groups. Three groups of diabetic animals were orally administered, daily with seed extract at a dosage of 50, 100, and 200 mg/kg BW. One group of STZ rats was treated as diabetic control and the other group was orally administered 600 μg/kg BW glibenclamide daily. Results: Graded doses of seed extract and glibenclamide showed a significant reduction in blood glucose levels and improvement in serum insulin levels. The extract also improved body weight and promoted liver glycogen content. After treatment, hemoglobin (Hb) level increased and glycosylated Hb level significantly decreased in diabetic rats. The activities of the carbohydrate metabolic enzymes showed significant changes in the rats. Of the 3 doses, 100 mg dose showed maximum activity. Histological investigations of pancreas also supported the biochemical findings. Conclusions: Thus, our findings indicate the folklore use of the seed for diabetes and the mechanism seems to be insulin secretion. PMID:21731399

  13. Effects of Lonicera japonica Thunb. on Type 2 Diabetes via PPAR-γ Activation in Rats.

    PubMed

    Han, Jae Min; Kim, Mi Hye; Choi, You Yeon; Lee, Haesu; Hong, Jongki; Yang, Woong Mo

    2015-10-01

    Lonicera japonica Thunb. (Caprifoliaceae) is a traditional herbal medicine and has been used to treat diabetic symptoms. Notwithstanding its use, the scientific basis on anti-diabetic properties of L. japonica is not yet established. This study is designed to investigate anti-diabetic effects of L. japonica in type 2 diabetic rats. L. japonica was orally administered at the dose of 100 mg/kg in high-fat diet-fed and low-dose streptozotocin-induced rats. After the treatment of 4 weeks, L. japonica reduced high blood glucose level and homeostatic model assessment of insulin resistance in diabetic rats. In addition, body weight and food intake were restored by the L. japonica treatment. In the histopathologic examination, the amelioration of damaged β-islet in pancreas was observed in L. japonica-treated diabetic rats. The administration of L. japonica elevated peroxisome proliferator-activated receptor gamma and insulin receptor subunit-1 protein expressions. The results demonstrated that L. japonica had anti-diabetic effects in type 2 diabetic rats via the peroxisome proliferator-activated receptor gamma regulatory action of L. japonica as a potential mechanism.

  14. Altered synthesis of some secretory proteins in pancreatic lobules isolated from streptozotocin-induced diabetic rats

    SciTech Connect

    Duan, R.D.; Erlanson-Albertsson, C. )

    1990-03-01

    The in vitro incorporation of (35S)cysteine into lipase, colipase, amylase, procarboxypeptidase A and B, and the serine proteases and total proteins was studied in pancreatic lobules isolated from normal and diabetic rats with or without insulin treatment. The incorporation of (35S)cysteine into total proteins was 65% greater in pancreatic lobules from diabetic animals than from normal rats. The increased incorporation was partly reversed by insulin treatment (2 U/100 g/day for 5 days) of diabetic rats. The relative rates of biosynthesis for amylase and the procarboxypeptidases in diabetic pancreatic lobules were decreased by 75 and 25%, respectively, after 1 h of incubation, while those for lipase, colipase, and the serine proteases were increased by 90, 85, and 35%, respectively. The absolute rates of synthesis for these enzymes changed in the same direction as the relative rates in diabetic lobules, except that for the procarboxypeptidases, which did not change. The changed rates of biosynthesis for the pancreatic enzymes were reversed by insulin treatment of the diabetic rats. Kinetic studies showed that the incorporation of (35S)cysteine into amylase, lipase, and colipase was linear until up to 2 h of incubation in normal pancreatic lobules, while in the diabetic lobules the incorporation into lipase and colipase was accelerated, reaching a plateau level already after 1 h of incubation. It is concluded that the biosynthesis of pancreatic secretory proteins in diabetic rats is greatly changed both in terms of quantity and kinetics.

  15. Effect of sodium tungstate on visual evoked potentials in diabetic rats

    PubMed Central

    Bulut, Mehmet; Dönmez, Barış Özgür; Öztürk, Nihal; Başaranlar, Göksun; Kencebay Manas, Ceren; Derin, Narin; Özdemir, Semir

    2016-01-01

    AIM To evaluate the effect of sodium tungstate on visual evoked potentials (VEPs) in diabetic rats. METHODS Wistar rats were randomly divided into three groups as normal control, diabetic control and diabetic rats treated with sodium tungstate. Diabetes was induced by single intraperitoneal injection of streptozotocin (50 mg/kg). Sodium tungstate [40 mg/(kg·d)] was administered for 12wk and then VEPs were recorded. Additionally, thiobarbituric acid reactive substance (TBARS) levels were measured in brain tissues. RESULTS The latencies of P1, N1, P2, N2 and P3 waves were significantly prolonged in diabetic rats compared with control group. Diabetes mellitus caused an increase in the lipid peroxidation process that was accompanied by changes in VEPs. However, prolonged latencies of VEPs for all components returned to control levels in sodium tungstate-treated group. The treatment of sodium tungstate significantly decreased brain TBARS levels and depleted the prolonged latencies of VEP components compared with diabetic control group. CONCLUSION Sodium tungstate shows protective effects on visual pathway in diabetic rats, and it can be worthy of further study for potential use. PMID:27275420

  16. Effects of Lonicera japonica Thunb. on Type 2 Diabetes via PPAR-γ Activation in Rats.

    PubMed

    Han, Jae Min; Kim, Mi Hye; Choi, You Yeon; Lee, Haesu; Hong, Jongki; Yang, Woong Mo

    2015-10-01

    Lonicera japonica Thunb. (Caprifoliaceae) is a traditional herbal medicine and has been used to treat diabetic symptoms. Notwithstanding its use, the scientific basis on anti-diabetic properties of L. japonica is not yet established. This study is designed to investigate anti-diabetic effects of L. japonica in type 2 diabetic rats. L. japonica was orally administered at the dose of 100 mg/kg in high-fat diet-fed and low-dose streptozotocin-induced rats. After the treatment of 4 weeks, L. japonica reduced high blood glucose level and homeostatic model assessment of insulin resistance in diabetic rats. In addition, body weight and food intake were restored by the L. japonica treatment. In the histopathologic examination, the amelioration of damaged β-islet in pancreas was observed in L. japonica-treated diabetic rats. The administration of L. japonica elevated peroxisome proliferator-activated receptor gamma and insulin receptor subunit-1 protein expressions. The results demonstrated that L. japonica had anti-diabetic effects in type 2 diabetic rats via the peroxisome proliferator-activated receptor gamma regulatory action of L. japonica as a potential mechanism. PMID:26174209

  17. Antihyperlipidemic Effect of Peucedanum Pastinacifolium Extract in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Movahedian, Ahmad; Zolfaghari, Behzad; Sajjadi, S. Ebrahim; Moknatjou, Reza

    2010-01-01

    INTRODUCTION: Dyslipidemia is one of the most common complications of diabetes mellitus, significantly contributing to cardiovascular morbidity and mortality in diabetic patients. Peucedanum pastinacifolium Boiss. & Hausskn. is commonly used as an antihyperlipidemic vegetable in Iranian folk medicine. MATERIAL AND METHODS: In this study, we examined a hydroalcoholic extract of the aerial parts of Peucedanum pastinacifolium to determine its lipid-lowering activity in normal and streptozotocin (STZ)-induced diabetic rats. Experimental diabetes mellitus was induced by a single intraperitoneal administration of streptozotocin. Normal and streptozotocin-induced diabetic rats were separated into four groups. The groups were fed with 0, 125, 250 or 500 mg/kg body weight of Peucedanum Pastinacifolium hydroalcoholic Extract (PPE) in aqueous solution for 30 days. RESULTS: The results show that there were significant (P < 0.05) increases in total serum cholesterol, triglyceride and low-density lipoprotein cholesterol (LDL-C) and a decrease in high-density lipoprotein cholesterol (HDL-C) in streptozotocin-induced diabetic rats. Treatment of diabetic rats with PPE over a period of a month returned these levels close to control levels. CONCLUSION: These results suggest that PPE has hypolipidemic effects in streptozotocin-induced diabetic rats. PMID:20613940

  18. Effect of glycation of albumin on its renal clearance in normal and diabetic rats

    SciTech Connect

    Layton, G.J.; Jerums, G.

    1988-03-01

    Two independent techniques have been used to study the renal clearances of nonenzymatically glycated albumin and nonglycated albumin in normal and streptozotocin-induced diabetic rats, 16 to 24 weeks after the onset of diabetes. In the first technique, serum and urinary endogenous glycated and nonglycated albumin were separated using m-aminophenylboronate affinity chromatography and subsequently quantified by radioimmunoassay. Endogenous glycated albumin was cleared approximately twofold faster than nonglycated albumin in normal and diabetic rats. However, no difference was observed in the glycated albumin/nonglycated albumin clearance ratios (Cga/Calb) in normal and diabetic rats, respectively (2.18 +/- 0.39 vs 1.83 +/- 0.22, P greater than 0.05). The second technique measured the renal clearance of injected 125I-labelled glycated albumin and 125I-labelled albumin. The endogenous results were supported by the finding that 125I-labelled glycated albumin was cleared more rapidly than 125I-labelled albumin in normal (P less than 0.01) and diabetic (P less than 0.05) rats. The Cga/Calb ratio calculated for the radiolabelled albumins was 1.4 and 2.0 in normal and diabetic rats, respectively. This evidence suggests that nonenzymatic glycation of albumin increases its renal clearance to a similar degree in normal and diabetic rats.

  19. Cardioprotective Activity of Pongamia pinnata in Streptozotocin-Nicotinamide Induced Diabetic Rats

    PubMed Central

    Badole, Sachin L.; Chaudhari, Swapnil M.; Jangam, Ganesh B.; Kandhare, Amit D.; Bodhankar, Subhash L.

    2015-01-01

    Pongamia pinnata (L.) Pierre has been used in traditional medicine for the treatment for diabetes and metabolic disorder. The aim of this study was to investigate the effect of petroleum ether extract of the stem bark of P. pinnata (known as PPSB-PEE) on cardiomyopathy in diabetic rats. Diabetes was induced in overnight fasted Sprague-Dawley rats by using injection of streptozotocin (55 mg/kg, i.p.). Nicotinamide (100 mg/kg, i.p.) was administered 20 min before administration of streptozotocin. Rats were divided into group I: nondiabetic, group II: diabetic control (tween 80, 2%; 10 mL/kg, p.o.) as vehicle, and group III: PPSB-PEE (100 mg/kg, p.o.). The blood glucose level, ECG, hemodynamic parameters, cardiotoxic and antioxidant biomarkers, and histology of heart were carried out after 4 months after STZ with nicotinamide injection. PPSB-PEE treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters; and histological changes in STZ induced diabetic rats. PPSB-PEE (100 mg/kg, p.o.) decreased blood glucose level, improved electrocardiographic parameters (QRS, QT, and QTc intervals) and hemodynamic parameters (SBP, DBP, EDP, max dP/dt, contractility index, and heart rate), controlled levels of cardiac biomarkers (CK-MB, LDH, and AST), and improved oxidative stress (SOD, MDA, and GSH) in diabetic rats. PPSB-PEE is a promising remedy against cardiomyopathy in diabetic rats. PMID:25954749

  20. Cardioprotective Activity of Pongamia pinnata in Streptozotocin-Nicotinamide Induced Diabetic Rats.

    PubMed

    Badole, Sachin L; Chaudhari, Swapnil M; Jangam, Ganesh B; Kandhare, Amit D; Bodhankar, Subhash L

    2015-01-01

    Pongamia pinnata (L.) Pierre has been used in traditional medicine for the treatment for diabetes and metabolic disorder. The aim of this study was to investigate the effect of petroleum ether extract of the stem bark of P. pinnata (known as PPSB-PEE) on cardiomyopathy in diabetic rats. Diabetes was induced in overnight fasted Sprague-Dawley rats by using injection of streptozotocin (55 mg/kg, i.p.). Nicotinamide (100 mg/kg, i.p.) was administered 20 min before administration of streptozotocin. Rats were divided into group I: nondiabetic, group II: diabetic control (tween 80, 2%; 10 mL/kg, p.o.) as vehicle, and group III: PPSB-PEE (100 mg/kg, p.o.). The blood glucose level, ECG, hemodynamic parameters, cardiotoxic and antioxidant biomarkers, and histology of heart were carried out after 4 months after STZ with nicotinamide injection. PPSB-PEE treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters; and histological changes in STZ induced diabetic rats. PPSB-PEE (100 mg/kg, p.o.) decreased blood glucose level, improved electrocardiographic parameters (QRS, QT, and QTc intervals) and hemodynamic parameters (SBP, DBP, EDP, max dP/dt, contractility index, and heart rate), controlled levels of cardiac biomarkers (CK-MB, LDH, and AST), and improved oxidative stress (SOD, MDA, and GSH) in diabetic rats. PPSB-PEE is a promising remedy against cardiomyopathy in diabetic rats. PMID:25954749

  1. Study on The Effect of Royal Jelly on Reproductive Parameters in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Ghanbari, Elham; Nejati, Vahid; Najafi, Gholamreza; Khazaei, Mozafar; Babaei, Mohammad

    2015-01-01

    Background Diabetes mellitus has a variety of structural and functional effects on the male reproductive system. Diabetes results in reduced sperm parameters and libido. The present study aims to investigate the effects of royal jelly (RJ) on reproductive parameters of testosterone and malondialdehyde (MDA) production in diabetic rats. Materials and Methods This experimental study was conducted on adult male Wistar rats. The animals were divided into four groups (n=8 per group): control, RJ, diabetic and diabetic treated with RJ. Diabetes was induced by intraperitoneal injection of 60 mg/kg body weight (BW) of streptozotocin (STZ). RJ, at a dose of 100 mg/kg BW was given by gavage. The duration of treatment was six weeks. After the treatment period the rats were sacrificed. The testes were weighed and changes in sperm count, motility, viability, deformity, DNA integrity and chromatin quality were analyzed. Serum testosterone and MDA concentrations of testicular tissue were determined. Data were analyzed by oneway ANOVA with p<0.05 as the significant level. Results STZ-induced diabetes decreased numerous reproductive parameters in rats. Testicular weight, sperm count, motility, viability and serum testosterone levels increased in the diabetic group treated with RJ. There was a significant decrease observed in sperm deformity, DNA integrity, chromatin quality, and tissue MDA levels in diabetic rats treated with RJ compared to the diabetic group (p<0.05). Conclusion RJ improved reproductive parameters such as testicular weight, sperm count, viability, motility, deformity, DNA integrity, chromatin quality, serum testosterone and testicular tissue MDA levels in diabetic rats. PMID:25918599

  2. Mitochondrial function assessed by 31P MRS and BOLD MRI in non-obese type 2 diabetic rats.

    PubMed

    Liu, Yuchi; Mei, Xunbai; Li, Jielei; Lai, Nicola; Yu, Xin

    2016-08-01

    The study aims to characterize age-associated changes in skeletal muscle bioenergetics by evaluating the response to ischemia-reperfusion in the skeletal muscle of the Goto-Kakizaki (GK) rats, a rat model of non-obese type 2 diabetes (T2D). (31)P magnetic resonance spectroscopy (MRS) and blood oxygen level-dependent (BOLD) MRI was performed on the hindlimb of young (12 weeks) and adult (20 weeks) GK and Wistar (control) rats. (31)P-MRS and BOLD-MRI data were acquired continuously during an ischemia and reperfusion protocol to quantify changes in phosphate metabolites and muscle oxygenation. The time constant of phosphocreatine recovery, an index of mitochondrial oxidative capacity, was not statistically different between GK rats (60.8 ± 13.9 sec in young group, 83.7 ± 13.0 sec in adult group) and their age-matched controls (62.4 ± 11.6 sec in young group, 77.5 ± 7.1 sec in adult group). During ischemia, baseline-normalized BOLD-MRI signal was significantly lower in GK rats than in their age-matched controls. These results suggest that insulin resistance leads to alterations in tissue metabolism without impaired mitochondrial oxidative capacity in GK rats. PMID:27511984

  3. Effects of light on the circadian rhythm of diabetic rats under restricted feeding.

    PubMed

    Wu, Tao; ZhuGe, Fen; Zhu, Yali; Wang, Nan; Jiang, Qianru; Fu, Haoxuan; Li, Yongjun; Fu, Zhengwei

    2014-03-01

    The aim of this study was to investigate whether the entrainment of light cue is affected or not in diabetic animals. We found that the individual light/dark (LD) reversal showed a tissue- and gene-specific effect on the circadian phases of peripheral clock genes, which was generally similar between the control and diabetic rats. In the liver and heart, the peak phases of examined clock genes (Bmal1, Rev-erbα, Per1, and Per2) were slightly shifted by 0∼4 h in the liver and heart of control and diabetic rats. However, we found that the peak phases of these clock genes were greatly shifted by 8∼12 h after the LD reversal for 7 days in the pineal gland of both control and diabetic rats. However, the activity rhythm was greatly different between two groups. After the individual LD reversal, the activity rhythm was completely shifted in the control rats but retained in the diabetic rats. These observations suggested that the behavioral rhythm of diabetic rats may be uncoupled from the master clock after the individual LD reversal. Moreover, we also found that the serum glucose levels of diabetic rats kept equally high throughout the whole day without any shift of peak phase after the individual reversal of LD cycle. While the serum glucose levels of control rats were tightly controlled during the normal and LD reversal conditions. Thus, the impaired insulin secretion induced uncontrollable serum glucose level may result in uncoupled activity rhythm in the diabetic rats after the individual LD reversal.

  4. Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats

    PubMed Central

    Sabitha, V.; Ramachandran, S.; Naveen, K. R.; Panneerselvam, K.

    2011-01-01

    Objectives: The present investigation was aimed to study the antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus peel and seed powder (AEPP and AESP) in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: Acute toxicity of AEPP and AESP was studied in rats at 2000 mg/kg dose and diabetes was induced in rats by administration of STZ (60 mg/kg, i.p.). After 14 days of blood glucose stabilization, diabetic rats received AEPP, AESP, and glibenclamide up to 28 days. The blood samples were collected on day 28 to estimate the hemoglobin (Hb), glycosylated hemoglobin (HbA1c), serum glutamate-pyruvate transferase (SGPT), total protein (TP), and lipid profile levels. Results: In acute toxicity study, AESP and AESP did not show any toxicity or death up to a dose of 2000 mg/kg. Therefore, to assess the antidiabetic action, one by fifth and one by tenth dose of both powders were selected. Administration of AEPP and AESP at 100 and 200 mg/kg dose in diabetic rats showed significant (P < 0.001) reduction in blood glucose level and increase in body weight than diabetic control rats. A significant (P < 0.001) increased level of Hb, TP, and decreased level of HbA1c, SGPT were observed after the treatment of both doses of AEPP and AESP. Also, elevated lipid profile levels returned to near normal in diabetic rats after the administration of AEPP and AESP, 100 and 200 mg/kg dose, compared to diabetic control rats. Conclusion: The present study results, first time, support the antidiabetic and antihyperlipidemic potential of A. esculentus peel and seed powder in diabetic rats. PMID:21966160

  5. Repopulation of the atrophied thymus in diabetic rats by insulin-like growth factor I.

    PubMed Central

    Binz, K; Joller, P; Froesch, P; Binz, H; Zapf, J; Froesch, E R

    1990-01-01

    Atrophy of the thymus is one of the consequences of severe insulin deficiency. We describe here that the weight and the architecture of the thymus of diabetic rats is restored towards normal not only by insulin but also by insulin-like growth factor I (IGF-I) treatment. In contrast to insulin, this effect of IGF-I occurs despite persisting hyperglycemia and adrenal hyperplasia. We also investigated the in vivo effect of IGF-I on replication and differentiation of thymocytes from streptozotocin-induced diabetic rats. Thymocytes from diabetic rats incorporated less [3H]thymidine than did thymocytes from healthy rats. Insulin, as well as IGF-I treatment of diabetic rats increased [3H]thymidine incorporation by thymocytes. Flow cytometry of thymocytes labeled with monoclonal antibodies revealed a decreased expression of the Thy-1 antigen in diabetic rats compared with control rats. In addition, a major deficiency of thymocytes expressing simultaneously the W3/25 and the Ox8 antigens (corresponding to immature human CD4+/CD8+ thymocytes) was observed. These changes were restored towards normal by insulin as well as by IGF-I treatment. The antibody response to a T cell-dependent antigen (bovine serum albumin) was comparable in normal and diabetic rats. We conclude that IGF-I has important effects on the thymocyte number and the presence of CD4+/CD8+ immature cells in the thymus of diabetic rats despite persisting hyperglycemia. However, helper T-cell function for antibody production appears to be preserved even in the severely diabetic state. Images PMID:2187189

  6. The possible counteractive effect of gold nanoparticles against streptozotocin-induced type 1 diabetes in young male albino rats.

    PubMed

    Selim, Manar E; Hendi, Awatif A; Alfallaj, Ebtesam

    2016-05-01

    The current study was performed to study the effect of biologically synthesised gold nanoparticles (AuNPs) to control hyperglycaemic conditions in streptozotocin (STZ)-induced diabetic mice. In this study, the rats were divided into four groups: Group I normal control rats (non-diabetic, untreated); Group II diabetes-induced rats used as diabetic controls DC (diabetic, untreated). Group III diabetes-induced rats treated with AuNPs DT; Group IV normal rats treated with AuNPs NT. Diabetes was induced by administering an intraperitoneal injection of a freshly prepared solution of STZ (50mg/kg body weight (bw)). The glucose level was significantly increased in the diabetic control rats compared with the controls (P<0.001). Decreased liver function and kidney function were detected in the diabetic treated rats and normal treated rats after AuNP administration compared with the controls. The present study is the first to demonstrate that AuNPs significantly enhance antioxidant production in STZ-induced diabetic rats, a recognised model of type 1 diabetes mellitus (T1DM). PMID:27166528

  7. Light adaptation does not prevent early retinal abnormalities in diabetic rats

    PubMed Central

    Kur, Joanna; Burian, Michael A.; Newman, Eric A.

    2016-01-01

    The aetiology of diabetic retinopathy (DR), the leading cause of blindness in the developed world, remains controversial. One hypothesis holds that retinal hypoxia, exacerbated by the high O2 consumption of rod photoreceptors in the dark, is a primary cause of DR. Based on this prediction we investigated whether early retinal abnormalities in streptozotocin-induced diabetic rats are alleviated by preventing the rods from dark adapting. Diabetic rats and their non-diabetic littermates were housed in a 12:12 hour light-dim light photocycle (30 lux during the day and 3 lux at night). Progression of early retinal abnormalities in diabetic rats was assessed by monitoring the ERG b-wave and oscillatory potentials, Müller cell reactive gliosis, and neuronal cell death, as assayed by TUNEL staining and retinal thickness at 6 and 12 weeks after diabetes induction. Maintaining diabetic animals in a dim-adapting light did not slow the progression of these neuronal and glial changes when compared to diabetic rats maintained in a standard 12:12 hour light-dark photocycle (30 lux during the day and 0 lux at night). Our results indicate that neuronal and glial abnormalities in early stages of diabetes are not exacerbated by rod photoreceptor O2 consumption in the dark. PMID:26852722

  8. Light adaptation does not prevent early retinal abnormalities in diabetic rats.

    PubMed

    Kur, Joanna; Burian, Michael A; Newman, Eric A

    2016-01-01

    The aetiology of diabetic retinopathy (DR), the leading cause of blindness in the developed world, remains controversial. One hypothesis holds that retinal hypoxia, exacerbated by the high O2 consumption of rod photoreceptors in the dark, is a primary cause of DR. Based on this prediction we investigated whether early retinal abnormalities in streptozotocin-induced diabetic rats are alleviated by preventing the rods from dark adapting. Diabetic rats and their non-diabetic littermates were housed in a 12:12 hour light-dim light photocycle (30 lux during the day and 3 lux at night). Progression of early retinal abnormalities in diabetic rats was assessed by monitoring the ERG b-wave and oscillatory potentials, Müller cell reactive gliosis, and neuronal cell death, as assayed by TUNEL staining and retinal thickness at 6 and 12 weeks after diabetes induction. Maintaining diabetic animals in a dim-adapting light did not slow the progression of these neuronal and glial changes when compared to diabetic rats maintained in a standard 12:12 hour light-dark photocycle (30 lux during the day and 0 lux at night). Our results indicate that neuronal and glial abnormalities in early stages of diabetes are not exacerbated by rod photoreceptor O2 consumption in the dark.

  9. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats

    PubMed Central

    Fathollah, Sara; Mirpour, Shahriar; Mansouri, Parvin; Dehpour, Ahmad Reza; Ghoranneviss, Mahmood; Rahimi, Nastaran; Safaie Naraghi, Zahra; Chalangari, Reza; Chalangari, Katalin Martits

    2016-01-01

    It is estimated that 15 percent of individuals with diabetes mellitus suffer from diabetic ulcers worldwide. The aim of this study is to present a non-thermal atmospheric plasma treatment as a novel therapy for diabetic wounds. The plasma consists of ionized helium gas that is produced by a high-voltage (8 kV) and high-frequency (6 kHz) power supply. Diabetes was induced in rats via an intravascular injection of streptozotocin. The plasma was then introduced to artificial xerograph wounds in the rats for 10 minutes. Immunohistochemistry assays was performed to determine the level of transforming growth factor (TGF-β1) cytokine. The results showed a low healing rate in the diabetic wounds compared with the wound-healing rate in non-diabetic animals (P < 0.05). Moreover, the results noted that plasma enhanced the wound-healing rate in the non-diabetic rats (P < 0.05), and significant wound contraction occurred after the plasma treatment compared with untreated diabetic wounds (P < 0.05). Histological analyses revealed the formation of an epidermis layer, neovascularization and cell proliferation. The plasma treatment also resulted in the release of TGF-β1 cytokine from cells in the tissue medium. The findings of this study demonstrate the effect of plasma treatment for wound healing in diabetic rats. PMID:26902681

  10. Dysregulations of intestinal and colonic UDP-glucuronosyltransferases in rats with type 2 diabetes.

    PubMed

    Xie, Hao; Sun, Shiqing; Cheng, Xuefang; Yan, Tingting; Zheng, Xiao; Li, Feiyan; Qi, Qu; Wang, Guangji; Hao, Haiping

    2013-01-01

    Diabetes mellitus is a chronic disease of complex metabolic disorder associated with various types of complications. UDP-glucuronosyltransferases (UGTs), the major phase II conjugation enzymes, mediate the metabolism of both drugs and endogenous metabolites that may raise great concerns in the condition of diabetes. The aim of this study was to determine whether diabetes could affect UGTs in the intestinal and colonic tract. A high-fat diet combined with low-dose streptozotocin was used to induce a type 2 diabetic model in rats. The mRNA levels and enzymatic activities of UGT1A1, -1A6, and -1A7 in the diabetic intestine and colon were higher than those in nondiabetic rats. In contrast, both the activity and mRNA level of UGT2B1 in diabetic rats were lower than those in nondiabetic rats. Notably, the diabetic intestine and colon exhibited an inflammatory state with increased pro-inflammatory cytokines. Various transcriptional factors involved in UGT regulation were unanimously upregulated in the diabetic intestine and colon. These findings strongly suggest that the regulating pathways of the UGT1 family are adaptively upregulated in the diabetic gastrointestinal tract. Given the essential regulatory role of the gastrointestinal site in drug disposition, such changes in UGTs may have a dynamic and complex impact on therapeutic drugs and endogenous metabolomes. PMID:23545594

  11. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats

    NASA Astrophysics Data System (ADS)

    Fathollah, Sara; Mirpour, Shahriar; Mansouri, Parvin; Dehpour, Ahmad Reza; Ghoranneviss, Mahmood; Rahimi, Nastaran; Safaie Naraghi, Zahra; Chalangari, Reza; Chalangari, Katalin Martits

    2016-02-01

    It is estimated that 15 percent of individuals with diabetes mellitus suffer from diabetic ulcers worldwide. The aim of this study is to present a non-thermal atmospheric plasma treatment as a novel therapy for diabetic wounds. The plasma consists of ionized helium gas that is produced by a high-voltage (8 kV) and high-frequency (6 kHz) power supply. Diabetes was induced in rats via an intravascular injection of streptozotocin. The plasma was then introduced to artificial xerograph wounds in the rats for 10 minutes. Immunohistochemistry assays was performed to determine the level of transforming growth factor (TGF-β1) cytokine. The results showed a low healing rate in the diabetic wounds compared with the wound-healing rate in non-diabetic animals (P < 0.05). Moreover, the results noted that plasma enhanced the wound-healing rate in the non-diabetic rats (P < 0.05), and significant wound contraction occurred after the plasma treatment compared with untreated diabetic wounds (P < 0.05). Histological analyses revealed the formation of an epidermis layer, neovascularization and cell proliferation. The plasma treatment also resulted in the release of TGF-β1 cytokine from cells in the tissue medium. The findings of this study demonstrate the effect of plasma treatment for wound healing in diabetic rats.

  12. Antihyperglycemic and antihyperlipidemic activity of plectranthus amboinicus on normal and alloxan-induced diabetic rats.

    PubMed

    Viswanathaswamy, A H M; Koti, B C; Gore, Aparna; Thippeswamy, A H M; Kulkarni, R V

    2011-03-01

    The present study was undertaken to investigate the antihyperglycemic and antihyperlipidemic effects of ethanol extract of Plectranthus amboinicus in normal and alloxan-induced diabetic rats. Diabetes was induced in Wistar rats by single intraperitoneal administration of alloxan monohydrate (150 mg/kg). Normal as well as diabetic rats were divided into groups (n=6) receiving different treatments. Graded doses (200 mg/kg and 400 mg/kg) of ethanol extract of Plectranthus amboinicus were studied in both normal and alloxan-induced diabetic rats for a period of 15 days. Glibenclamide (600 μg/kg) was used as a reference drug. Oral administration with graded doses of ethanol extract of Plectranthus amboinicus exhibited hypoglycemic effect in normal rats and significantly reduced the peak glucose levels after 120 min of glucose loading. In alloxan-induced diabetic rats, the daily oral treatment with ethanol extract of Plectranthus amboinicus showed a significant reduction in blood glucose. Besides, administration of ethanol extract of Plectranthus amboinicus for 15 days significantly decreased serum contents of total cholesterol, triglycerides whereas HDL-cholesterol, total proteins and calcium were effectively increased. Furthermore, effect of ethanol extract of Plectranthus amboinicus showed profound elevation of serum amylase and reduction of serum lipase. Histology examination showed ethanol extract of Plectranthus amboinicus exhibited almost normalization of damaged pancreatic architecture in rats with diabetes mellitus. Studies clearly demonstrated that ethanol extract of Plectranthus amboinicus leaves possesses hypoglycemic and antihyperlipidemic effects mediated through the restoration of the functions of pancreatic tissues and insulinotropic effect. PMID:22303055

  13. Antihyperglycemic and Antihyperlipidemic Activity of Plectranthus Amboinicus on Normal and Alloxan-Induced Diabetic Rats

    PubMed Central

    Viswanathaswamy, A. H. M.; Koti, B. C.; Gore, Aparna; Thippeswamy, A. H. M.; Kulkarni, R. V.

    2011-01-01

    The present study was undertaken to investigate the antihyperglycemic and antihyperlipidemic effects of ethanol extract of Plectranthus amboinicus in normal and alloxan-induced diabetic rats. Diabetes was induced in Wistar rats by single intraperitoneal administration of alloxan monohydrate (150 mg/kg). Normal as well as diabetic rats were divided into groups (n=6) receiving different treatments. Graded doses (200 mg/kg and 400 mg/kg) of ethanol extract of Plectranthus amboinicus were studied in both normal and alloxan-induced diabetic rats for a period of 15 days. Glibenclamide (600 μg/kg) was used as a reference drug. Oral administration with graded doses of ethanol extract of Plectranthus amboinicus exhibited hypoglycemic effect in normal rats and significantly reduced the peak glucose levels after 120 min of glucose loading. In alloxan-induced diabetic rats, the daily oral treatment with ethanol extract of Plectranthus amboinicus showed a significant reduction in blood glucose. Besides, administration of ethanol extract of Plectranthus amboinicus for 15 days significantly decreased serum contents of total cholesterol, triglycerides whereas HDL-cholesterol, total proteins and calcium were effectively increased. Furthermore, effect of ethanol extract of Plectranthus amboinicus showed profound elevation of serum amylase and reduction of serum lipase. Histology examination showed ethanol extract of Plectranthus amboinicus exhibited almost normalization of damaged pancreatic architecture in rats with diabetes mellitus. Studies clearly demonstrated that ethanol extract of Plectranthus amboinicus leaves possesses hypoglycemic and antihyperlipidemic effects mediated through the restoration of the functions of pancreatic tissues and insulinotropic effect. PMID:22303055

  14. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose

    SciTech Connect

    Craven, P.A.; DeRubertis, F.R.

    1989-05-01

    Glomerular inositol content and the turnover of polyphosphoinositides was reduced by 58% in 1-2 wk streptozotocin diabetic rats. Addition of inositol to the incubation medium increased polyphosphoinositide turnover in glomeruli from diabetic rats to control values. Despite the reduction in inositol content and polyphosphoinositide turnover, protein kinase C was activated in glomeruli from diabetic rats, as assessed by an increase in the percentage of enzyme activity associated with the particulate cell fraction. Total protein kinase C activity was not different between glomeruli from control and diabetic rats. Treatment of diabetic rats with insulin to achieve near euglycemia prevented the increase in particulate protein kinase C. Moreover, incubation of glomeruli from control rats with glucose (100-1,000 mg/dl) resulted in a progressive increase in labeled diacylglycerol production and in the percentage of protein kinase C activity which was associated with the particulate fraction. These results support a role for hyperglycemia per se in the enhanced state of activation of protein kinase C seen in glomeruli from diabetic rats. Glucose did not appear to increase diacylglycerol by stimulating inositol phospholipid hydrolysis in glomeruli. Other pathways for diacylglycerol production, including de novo synthesis and phospholipase C mediated hydrolysis of phosphatidylcholine or phosphatidyl-inositol-glycan are not excluded.

  15. The Laboratory Rat: Relating Its Age With Human's

    PubMed Central

    Sengupta, Pallav

    2013-01-01

    By late 18th or early 19th century, albino rats became the most commonly used experimental animals in numerous biomedical researches, as they have been recognized as the preeminent model mammalian system. But, the precise correlation between age of laboratory rats and human is still a subject of debate. A number of studies have tried to detect these correlations in various ways, But, have not successfully provided any proper association. Thus, the current review attempts to compare rat and human age at different phases of their life. The overall findings indicate that rats grow rapidly during their childhood and become sexually mature at about the sixth week, but attain social maturity 5-6 months later. In adulthood, every day of the animal is approximately equivalent to 34.8 human days (i.e., one rat month is comparable to three human years). Numerous researchers performed experimental investigations in albino rats and estimated, in general, while considering their entire life span, that a human month resembles every-day life of a laboratory rat. These differences signify the variations in their anatomy, physiology and developmental processes, which must be taken into consideration while analyzing the results or selecting the dose of any research in rats when age is a crucial factor. PMID:23930179

  16. The effects of regular aerobic exercise on renal functions in streptozotocin induced diabetic rats.

    PubMed

    Kurdak, Hatice; Sandikci, Sunay; Ergen, Nilay; Dogan, Ayşe; Kurdak, Sanli Sadi

    2010-01-01

    Diabetic nephropathy is a feared complication of diabetes since it can lead to end-stage renal failure and also it is a risk factor of cardiovascular disease. The important clinical problems caused by diabetic nephropathy are proteinuria and decreased renal function. Exercise is a cornerstone of diabetes management, along with diet and medication. Since acute exercise causes proteinuria and decreases glomerular filtration rate, the effect of exercise on diabetic nephropathy is controversial. The aim of this study was to investigate the effect of regular aerobic exercise on microalbuminuria and glomerular filtration rate in diabetic rats. Moderate diabetes was induced by streptozotocin (45 mg/kg IV) in rats and an aerobic exercise- training program on a treadmill was carried out for 8 weeks. Four groups of rats; control sedentary (CS), control exercise (CE), diabetic sedentary (DS) and diabetic exercise (DE) were included in the study. Blood glucose levels were determined from the plasma samples taken at the end of 4 weeks of stabilization period and 8 weeks of training program. Creatinine clearance (CCr) and microalbuminuria (MA) levels were determined to evaluate renal functions. The analyzed data revealed that regular aerobic exercise: 1) significantly decreased the plasma glucose level of the DE group compared to the DS group (p < 0.05), 2) significantly decreased the microalbuminuria level of the DE group compared to those of DS group (p < 0.01), 3) significantly decreased the creatinine clearance levels of the DE and CE groups compared to those of CS group (p < 0.05). The results of this study suggest that despite of decreasing creatinine clearance, regular submaximal aerobic exercise has a preventive effect on development of microalbuminuria and thus may retard nephropathy in diabetic rats. Key pointsRegular submaximal aerobic exercise can facilitate the control of blood glucose level in diabetic rats.Streptozotocin induced diabetes may cause microalbuminuria

  17. The effects of vanadium (V) absorbed by Coprinus comatus on bone in streptozotocin-induced diabetic rats.

    PubMed

    Pei, Yi; Fu, Qin

    2011-09-01

    The purpose of this study was to evaluate the effects of vanadium absorbed by Coprinus comatus (VACC) treatment on bone in streptozotocin (STZ)-induced diabetic rats. Forty-five Wistar female rats used were divided into three groups: (1) normal rats (control), (2) diabetic rats, and (3) diabetic rats treated with VACC. Normal and diabetic rats were given physiological saline, and VACC-treated rats were administered VACC intragastrically at doses of 0.18 mg vanadium/kg body weight once daily. Treatments were performed over a 12-week period. At sacrifice, one tibia and one femur were removed, subjected to micro computed tomography (micro-CT) for determination of trabecular bone structure, and then processed for histomorphometry to assess bone turnover. Another femoral was used for mechanical testing. In addition, bone samples were collected to evaluate the content of mineral substances in bones. Treatment with VACC increased trabecular bone volume fraction in diabetic rats. Vanadium-treated animals had significant increases in ultimate load, trabecular thickness, and osteoblast surface. However, vanadium treatment did not seem to affect bone stiffness, bone energy absorption, trabecular separation, and osteoclast number. P levels in the femurs of diabetic rats treated with VACC were significantly higher than those of diabetic animals. Ca levels in diabetic and diabetic rats treated with vanadium showed no obvious changes. In conclusion, our results provide an important proof of concept that VACC may represent a powerful approach to treating or reversing diabetic osteopathy in humans.

  18. Importance of Maternal Diabetes on the Chronological Deregulation of the Intrauterine Development: An Experimental Study in Rat

    PubMed Central

    Salazar García, Marcela; Reyes Maldonado, Elba; Revilla Monsalve, María Cristina; Villavicencio Guzmán, Laura; Reyes López, Alfonso; Sánchez-Gómez, Concepción

    2015-01-01

    We investigated whether maternal diabetes induced in rats using streptozotocin (STZ) on Day 5 of pregnancy affects the intrauterine developmental timeline. A total of 30 pregnant Sprague-Dawley diabetic rats (DRs) and 20 control rats (CRs) were used to obtain 21-day fetuses (F21) and newborn (NB) pups. Gestational age, weight, and body size were recorded as were the maxillofacial morphometry and morphohistological characteristics of the limbs. In DRs, pregnancy continued for ∼1.7 days, and delivery occurred 23 days postcoitus (DPC). In this group, the number of pups was lower, and 13% had maxillofacial defects. F21 in the DR group had lower weights and were smaller; moreover, the morphological characteristics of the maxillofacial structures, derived from the neural crest, were discordant with their chronological gestational age, resembling 18- to 19-day-old fetuses. These deficiencies were counterbalanced in NB pups. We conclude that hyperglycemia, which results from maternal diabetes and precedes embryo implantation, deregulates the intrauterine developmental timeline, restricts embryo-fetal growth, and primarily delays the remodeling and maturation of the structures derived from neural crest cells. PMID:25756053

  19. Diabetes.

    PubMed

    2014-09-23

    Essential facts Type 1 and type 2 diabetes affect 3.2 million people in the UK. Diabetes is associated with serious complications, including heart disease and stroke, which can lead to disability and premature death. It is the leading cause of preventable sight loss in people of working age in the UK. A quarter of people with diabetes will have kidney disease at some point in their lives, and the condition increases the risk of amputation. Good diabetes management has been shown to reduce the incidence of these serious complications. PMID:25227362

  20. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    PubMed

    Gordon, Christopher J

    2008-12-01

    The cardiovascular and thermoregulatory systems are considered to be susceptible in the aged population, but little is known about baseline cardiac and thermoregulatory homeostasis in rodent models of aging. Radiotransmitters were implanted in male, Brown Norway rats obtained at 4, 12, and 24 months to monitor the electrocardiogram (ECG), interbeat interval (IBI), heart rate (HR), core temperature (Tc), and motor activity (MA). There was no significant effect of age on resting HR and MA. Daytime Tc of the 24-month-old rats was significantly elevated above those of the 4- and 12-month-old groups. Variability of the IBI was highest in the 24-month-old rats. The elevation in daytime Tc beginning around 8 months of age may be a physiological biomarker of aging and may be an important factor to consider in studies using caloric restriction-induced hypothermia to increase longevity. PMID:19126843

  1. Berberine in Combination with Insulin Has Additive Effects on Titanium Implants Osseointegration in Diabetes Mellitus Rats

    PubMed Central

    Lu, Li; Zhijian, Huang; Lei, Li; Wenchuan, Chen; Zhimin, Zhu

    2015-01-01

    This study evaluated the effects of berberine in combination with insulin on early osseointegration of implants in diabetic rats. Fifty male Sprague-Dawley rats were randomly divided into 5 groups: healthy rats were used as control (HC), and streptozotocin-induced diabetic rats were treated with insulin, berberine, berberine + insulin (IB), or no treatment. Each rat received one machined-surface cp-Ti implant into the right tibia and was given insulin injection and/or gavage feeding with berberine daily for 8 weeks until being sacrificed. Serum levels of alkaline phosphatase (ALP) and bone gamma-carboxyglutamic acid-containing protein (BGP) were analyzed in each group. Peri-implant mineral apposition was marked by fluorochrome double-labeling and osseointegration was histomorphologically examined. The ALP and BGP levels decreased in diabetic rats but were successfully corrected by insulin and berberine combined treatment. Moreover, untreated diabetic rats had less labeled mineral apposition and impaired osseointegration. In contrast, Groups I, B, and IB were observed with increased peri-implant bone formation. The combination treatment of insulin and berberine was more effective than each administrated as a monotherapy. These results suggest that berberine combined with insulin could promote osseointegration in diabetic rats, thereby highlighting its potential application to patients, though further studies are needed. PMID:26783411

  2. Antidiabetic, antioxidant and antihyperlipidemic status of Heliotropium zeylanicum extract on streptozotocin-induced diabetes in rats.

    PubMed

    Murugesh, Kandasamy; Yeligar, Veerendra; Dash, Deepak Kumar; Sengupta, Pinaki; Maiti, Bhim Chandra; Maity, Tapan Kumar

    2006-11-01

    The potential role of the methanolic extract of Heliotropium zeylanicum (BURM.F) LAMK (MEHZ) in the treatment of diabetes along with its antioxidant and antihyperlipidemic effects was studied in streptozotocin-induced diabetic rats. Oral administration of (MEHZ) 150 and 300 mg/kg/d for 14 d significantly decreased the blood glucose level and considerably increased the body weight, food intake, and liquid intake of diabetic-induced rats. MEHZ significantly decreased thiobarbituric acid reactive substances and significantly increased reduced glutathione, superoxide dismutase and catalase in streptozotocin-induced diabetic rats at the end of 14 d of treatment. The study also investigated the antihyperlipidemic potential of MEHZ. The results show that the active fraction of MEHZ is promising for development of a standardized phytomedicine for the treatment of diabetes mellitus.

  3. GLP-1(7-36)amide binding in skeletal muscle membranes from streptozotocin diabetic rats.

    PubMed

    Villanueva-Peñacarrillo, M L; Delgado, E; Vicent, D; Mérida, E; Alcántara, A I; Valverde, I

    1995-09-01

    A higher specific binding of GLP-1(7-36)amide is found in skeletal muscle plasma membranes from adult streptozotocin (STZ)-treated rats (insulin-dependent diabetes mellitus model) and from neonatal STZ-treated rats (non insulin-dependent diabetes mellitus model), as compared to that in normal controls; no apparent change in the affinity was observed, that indicating the presence in both diabetic models of an increased number of high affinity binding sites for the peptide. The maximal specific GLP-1(7-16)amide binding in the non insulin-dependent diabetes mellitus model was found to be significantly higher than that in the insulin-dependent diabetes mellitus model. As GLP-1(7-36)amide exerts a glycogenic effect in the rat skeletal muscle, the present data suggest that the action of the peptide in the muscle glucose metabolism may be increased in states of insulin deficiency accompanied or not by insulin resistance.

  4. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats

    PubMed Central

    Embaby, Mohamed A.; Doleib, Nada M.; Taha, Mona M.

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p < 0.001), in addition to improving immune functions by decreasing total IgE approaching to the normal control level. Also, inflammatory cytokine (IL-6, IL-1β and TNF) levels, as well as total blood count decreased in diabetic rats as compared to the control group. Thus, cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes. PMID:27536197

  5. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats.

    PubMed

    Moubarz, Gehan; Embaby, Mohamed A; Doleib, Nada M; Taha, Mona M

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p < 0.001), in addition to improving immune functions by decreasing total IgE approaching to the normal control level. Also, inflammatory cytokine (IL-6, IL-1β and TNF) levels, as well as total blood count decreased in diabetic rats as compared to the control group. Thus, cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes.

  6. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats.

    PubMed

    Moubarz, Gehan; Embaby, Mohamed A; Doleib, Nada M; Taha, Mona M

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p < 0.001), in addition to improving immune functions by decreasing total IgE approaching to the normal control level. Also, inflammatory cytokine (IL-6, IL-1β and TNF) levels, as well as total blood count decreased in diabetic rats as compared to the control group. Thus, cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes. PMID:27536197

  7. Anti-diabetic effect of Wen-pi-tang-Hab-Wu-ling-san extract in streptozotocin-induced diabetic rats

    PubMed Central

    Jung, Hyo Won; Jung, Jin Ki; Ramalingam, Mahesh; Yoon, Cheol-Ho; Bae, Hyo Sang; Park, Yong-Ki

    2012-01-01

    Objectives: Wen-pi-tang-Hab-Wu-ling-san (WHW) is an oriental herbal prescription formulated using 14 herbs and has been used to cure chronic renal failure in Korean oriental medicine. In this study, we investigated the anti-diabetic effect of WHW in the streptozotocin-induced diabetic rats. Materials and Methods: Diabetes was induced by streptozotocin (STZ, 60 mg/kg, i.p.) in rats. WHW extract (100 mg/kg) was orally dosed once a day for four weeks. The results were compared with standard antidiabetic drug, glibenclamide (3 mg/kg, p.o). Results: Significant decrease in body weight and insulin levels and increase in blood glucose, triglycerides, urea nitrogen (BUN), and creatinine were detected in STZ-induced diabetic rats with disruption and disappearance of pancreatic and kidney cells and decrease in insulin producing beta cells. However, these diabetic changes were significantly inhibited by treatment with WHW extract. In the oral glucose tolerance test, the extract produced a significant decrease in glycemia 60 minutes after the glucose pulse. Conclusions: Based on these results, we suggest that WHW extract has favorable effects in protecting the STZ-induced hyperglycemia, renal damage, and beta-cell damage in rats. PMID:22345879

  8. Role of GABAB Receptor and L-Arg in GABA-Induced Vasorelaxation in Non-diabetic and Streptozotocin-Induced Diabetic Rat Vessels

    PubMed Central

    Kharazmi, Fatemah; Soltani, Nepton; Rezaei, Sana; Keshavarz, Mansoor; Farsi, Leila

    2015-01-01

    Background: Hypertension is considered an independent risk factor for cardiovascular mortality in diabetic patients. The present study was designed to determine the role of gamma amino butyric acid B (GABAB) receptor and L-arginine (L-Arg) in GABA-induced vasorelaxation in normal and streptozotocin-induced diabetic rat vessels. Methods: Diabetes was induced by a single i.p. injection of streptozotocin (STZ, 60 mg/kg). Eight weeks later, superior mesenteric arteries of all groups were isolated and perfused according to the McGregor method. Results: Baseline perfusion pressure of STZ diabetic rats was significantly higher than non-diabetic rats in both intact and denuded endothelium. In the presence of faclofen, a selective GABAB receptor blocker, GABA-induced relaxation in intact and denuded endothelium mesenteric beds of STZ diabetic rats was suppressed, but this response in non-diabetic rats was not suppressed. Our results showed that in the presence of L-Arg, a nitric oxide precursor, GABA induced vasorelaxation in both diabetic and non-diabetic vessels. Conclusion: From the results of this study, it may be concluded that the vasorelaxatory effect of GABA in diabetic vessel is mediated by the GABAB receptor and nitric oxide, but it seems that in non-diabetic vessel GABAB receptor does not play any role in GABA-induced vasorelaxation, but nitric oxide induced GABA relaxation in non-diabetic vessel. PMID:25864813

  9. Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats

    PubMed Central

    Fukao, Mitsuhiro; Hattori, Yuichi; Kanno, Morio; Sakuma, Ichiro; Kitabatake, Akira

    1997-01-01

    The aim of this study was to determine whether endothelium-dependent hyperpolarization and relaxation are altered during experimental diabetes mellitus. Membrane potentials were recorded in mesenteric arteries from rats with streptozotocin-induced diabetes and age-matched controls. The resting membrane potentials were not significantly different between control and diabetic mesenteric arteries (−55.3±0.5 vs −55.6±0.4 mV). However, endothelium-dependent hyperpolarization produced by acetylcholine (ACh; 10−8–10−5 M) was significantly diminished in amplitude in diabetic arteries compared with that in controls (maximum −10.4±1.1 vs −17.2±0.8 mV). Furthermore, the hyperpolarizing responses of diabetic arteries were more transient. ACh-induced hyperpolarization observed in control and diabetic arteries remained unaltered even after treatment with 3×10−4 M NG-nitro-L-arginine (L-NOARG), 10−5 M indomethacin or 60 u ml−1 superoxide dismutase. Endothelium-dependent hyperpolarization with 10−6 M A23187, a calcium ionophore, was also decreased in diabetic arteries compared to controls (−8.3±1.4 vs −18.0±1.9 mV). However, endothelium-independent hyperpolarizing responses to 10−6 M pinacidil, a potassium channel opener, were similar in control and diabetic arteries (−20.0±1.4 vs −19.2±1.1 mV). The altered endothelium-dependent hyperpolarizations in diabetic arteries were almost completely prevented by insulin therapy. Endothelium-dependent relaxations by ACh in the presence of 10−4 M L-NOARG and 10−5 M indomethacin in diabetic arteries were also reduced and more transient compared to controls. These data indicate that endothelium-dependent hyperpolarization is reduced by diabetes, and this would, in part, account for the impaired endothelium-dependent relaxations in mesenteric arteries from diabetic rats. PMID:9257918

  10. Rapid Determination of the Thermal Nociceptive Threshold in Diabetic Rats

    PubMed Central

    Alshahrani, Saeed; Fernandez-Conti, Filipe; Araujo, Amanda; DiFulvio, Mauricio

    2012-01-01

    Painful diabetic neuropathy (PDN) is characterized by hyperalgesia i.e., increased sensitivity to noxious stimulus, and allodynia i.e., hypersensitivity to normally innocuous stimuli1. Hyperalgesia and allodynia have been studied in many different rodent models of diabetes mellitus2. However, as stated by Bölcskei et al, determination of "pain" in animal models is challenging due to its subjective nature3. Moreover, the traditional methods used to determine behavioral responses to noxious thermal stimuli usually lack reproducibility and pharmacological sensitivity3. For instance, by using the hot-plate method of Ankier4, flinch, withdrawal and/or licking of either hind- and/or fore-paws is quantified as reflex latencies at constant high thermal stimuli (52-55 °C). However, animals that are hyperalgesic to thermal stimulus do not reproducibly show differences in reflex latencies using those supra-threshold temperatures3,5. As the recently described method of Bölcskei et al.6, the procedures described here allows for the rapid, sensitive and reproducible determination of thermal nociceptive thresholds (TNTs) in mice and rats. The method uses slowly increasing thermal stimulus applied mostly to the skin of mouse/rat plantar surface. The method is particularly sensitive to study anti-nociception during hyperalgesic states such as PDN. The procedures described bellow are based on the ones published in detail by Almási et al5 and Bölcskei et al3. The procedures described here have been approved the Laboratory Animal Care and Use Committee (LACUC), Wright State University. PMID:22643870

  11. Aging and the disposition and toxicity of mercury in rats.

    PubMed

    Bridges, Christy C; Joshee, Lucy; Zalups, Rudolfs K

    2014-05-01

    Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg(2+)), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg(2+) in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5μmol·kg(-1) non-nephrotoxic or a 2.5μmol·kg(-1) nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. PMID:24548775

  12. Aging and the Disposition and Toxicity of Mercury in Rats

    PubMed Central

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2014-01-01

    Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg2+), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg2+ in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5 μmol • kg−1 non-nephrotoxic or a 2.5 μmol • kg−1 nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. PMID:24548775

  13. Age-related changes in the rat hippocampus.

    PubMed

    Is, Merih; Comunoglu, Nil Ustundag; Comunoglu, Cem; Eren, Bulent; Ekici, Isin Dogan; Ozkan, Ferda

    2008-05-01

    The human brain is uniquely powerful in its cognitive abilities, yet the hippocampal and neocortical circuits that mediate these complex functions are highly vulnerable during aging. In this study, we analyzed age-related changes in the rat hippocampus by studying newborn (1 month), middle-aged (12 months), and older (24 months) male and female Sprague-Dawley rats. We evaluated neuronal dystrophy, neuron scattering, and granulovacuolar degeneration in the hippocampal area using light microscopy, according to age and gender. We detected significant neuronal dystrophy in the CA1, CA2, and CA3 areas in male rats, and in the CA1, CA3, and CA4 areas in female rats. Degenerative changes, indicated by neuron scattering, were observed in the CA1, CA2, and CA3 areas of male and the CA2 and CA4 areas of female rats. Changes in all areas of the hippocampus were observed with increasing age; these changes included neuronal dystrophy and neuron scattering and did not differ significantly between male and female rats.

  14. Stimulation of autophagy promotes functional recovery in diabetic rats with spinal cord injury

    PubMed Central

    Zhou, Kai-liang; Zhou, Yi-fei; Wu, Kai; Tian, Nai-feng; Wu, Yao-sen; Wang, Yong-li; Chen, De-heng; Zhou, Bin; Wang, Xiang-yang; Xu, Hua-zi; Zhang, Xiao-lei

    2015-01-01

    In this study we examined the relationship between autophagy and apoptosis in diabetic rats after spinal cord injury (SCI), also we determined the role of autophagy in diabetes-aggravated neurological injury in vivo and in vitro. Our results showed that diabetes decreased the survival of neurons, promoted astrocytes proliferation, increased inflammatory cells infiltration and inhibited functional recovery after SCI. Diabetes was shown to confer increased activation of apoptotic pathways, along with an increase in autophagy; similar effects were also observed in vitro in neuronal PC12 cells. Treatment with rapamycin, an autophagy activator, partially abolished the adverse effect of diabetes, suggesting that diabetes may enhance neurological damage and suppress locomotor recovery after SCI, in addition to its effects on apoptosis and autophagy. In contrast, further stimulation of autophagy improved neurological function via inhibition of apoptosis. These results explained how diabetes exacerbates SCI in cellular level and suggested autophagy stimulation to be a new therapeutic strategy for diabetic SCI. PMID:26597839

  15. Neuroprotective effect of berberine is mediated by MAPK signaling pathway in experimental diabetic neuropathy in rats.

    PubMed

    Zhou, Jiyin; Du, Xiaohuang; Long, Min; Zhang, Zuo; Zhou, Shiwen; Zhou, Jianyun; Qian, Guisheng

    2016-03-01

    The mechanisms leading to diabetic neuropathy are complex. As an active component in several traditional Chinese medicines, berberine has a beneficial effect in the treatment of diabetes with hyperlipidemia. This study evaluated the protective effects of berberine on diabetic neuropathy induced by streptozotocin and a high-carbohydrate/high-fat diet in rats. Diabetic neuropathy was induced in rats by intraperitoneal injection of 35 mg/kg streptozotocin and a high-carbohydrate/high-fat diet. Two weeks after diabetes induction, rats were treated with berberine (100 mg/kg) and rosiglitazone (4 mg/kg) for 24 weeks. Rats were studied using evoked potentials, the Morris water maze, transmission electron microscopy, real-time PCR, and Western blotting. Blood glucose, glycated hemoglobin, lipid profile, body weight, evoked potentials, and memory were altered in diabetic rats, as was the hippocampal expression of neuritin mRNA, p38 mitogen-activated protein kinase mRNA, c-Jun N-terminal kinase (JNK) mRNA, extracellular signal-regulated kinase mRNA and the phospho-proteins of p38, JNK, and extracellular signal-regulated kinase. In diabetic rats, berberine decreased body weight and the blood levels of glucose, glycated hemoglobin, triglyceride, and total cholesterol, improved memory and affected evoked potential by decreasing latency. Berberine decreased the mRNA expression of neuritin, p38, and JNK and the protein expression of neuritin, p-p38, and p-JNK. Slight micropathological changes were observed in the hippocampus of berberine-treated diabetic rats. These findings suggest that berberine has a beneficial effect against diabetic neuropathy by improving micropathology and increasing neuritin expression via the mitogen-activated protein kinase signaling pathway.

  16. Neuroprotective effect of berberine is mediated by MAPK signaling pathway in experimental diabetic neuropathy in rats.

    PubMed

    Zhou, Jiyin; Du, Xiaohuang; Long, Min; Zhang, Zuo; Zhou, Shiwen; Zhou, Jianyun; Qian, Guisheng

    2016-03-01

    The mechanisms leading to diabetic neuropathy are complex. As an active component in several traditional Chinese medicines, berberine has a beneficial effect in the treatment of diabetes with hyperlipidemia. This study evaluated the protective effects of berberine on diabetic neuropathy induced by streptozotocin and a high-carbohydrate/high-fat diet in rats. Diabetic neuropathy was induced in rats by intraperitoneal injection of 35 mg/kg streptozotocin and a high-carbohydrate/high-fat diet. Two weeks after diabetes induction, rats were treated with berberine (100 mg/kg) and rosiglitazone (4 mg/kg) for 24 weeks. Rats were studied using evoked potentials, the Morris water maze, transmission electron microscopy, real-time PCR, and Western blotting. Blood glucose, glycated hemoglobin, lipid profile, body weight, evoked potentials, and memory were altered in diabetic rats, as was the hippocampal expression of neuritin mRNA, p38 mitogen-activated protein kinase mRNA, c-Jun N-terminal kinase (JNK) mRNA, extracellular signal-regulated kinase mRNA and the phospho-proteins of p38, JNK, and extracellular signal-regulated kinase. In diabetic rats, berberine decreased body weight and the blood levels of glucose, glycated hemoglobin, triglyceride, and total cholesterol, improved memory and affected evoked potential by decreasing latency. Berberine decreased the mRNA expression of neuritin, p38, and JNK and the protein expression of neuritin, p-p38, and p-JNK. Slight micropathological changes were observed in the hippocampus of berberine-treated diabetic rats. These findings suggest that berberine has a beneficial effect against diabetic neuropathy by improving micropathology and increasing neuritin expression via the mitogen-activated protein kinase signaling pathway. PMID:26849937

  17. Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus.

    PubMed

    Jiang, Shuang; Ren, Dayong; Li, Jianrui; Yuan, Guangxin; Li, Hongyu; Xu, Guangyu; Han, Xiao; Du, Peige; An, Liping

    2014-06-01

    Compound K (CK) is a final metabolite of panaxadiol ginsenosides from Panax ginseng. Although anti-diabetic activity of CK has been reported in recent years, the molecular mechanism of CK in the treatment of diabetes mellitus remains unclear. In the present investigation, we established a rat model of type 2 diabetes mellitus (T2DM) with insulin resistance using high-fat diet (HFD) and streptozotocin (STZ), and attempted to verify more details and exact mechanisms in the treatment of T2DM. CK was administered orally at three doses [300, 100 and 30 mg/kg bodyweight (b.w.)] to the diabetic rats. Bodyweight, food-intake, fasting blood glucose (FBG), fasting serum insulin (FINS), insulin sensitivity (ISI), total glycerin (TG), total cholesterol (TC), as well as oral glucose tolerance test (OGTT) were evaluated in normal and diabetic rats. According to our results, CK could improve bodyweight and food-intake of diabetic rats. CK exhibited dose-dependent reduction of FBG, TG and TC of diabetic rats. CK treatment also enhanced FINS and ISI. Meanwhile, the glucose tolerance observed in the present study was improved significantly by CK. It is concluded from the results that CK may have improving effects on hyperglycemia and insulin resistance of diabetic rats. Furthermore, research showed that CK could promote the expression of InsR, IRS1, PI3Kp85, pAkt and Glut4 in skeletal muscle tissue of diabetic rats. These results indicate that the hypoglycemic activity of CK is mediated by improvement of insulin sensitivity, which is closely related to PI3K/Akt signaling pathway.

  18. The calcium-sensing receptor participates in testicular damage in streptozotocin-induced diabetic rats

    PubMed Central

    Kong, Wei-Yuan; Tong, Li-Quan; Zhang, Hai-Jun; Cao, Yong-Gang; Wang, Gong-Chen; Zhu, Jin-Zhi; Zhang, Feng; Sun, Xue-Ying; Zhang, Tie-Hui; Zhang, Lin-Lin

    2016-01-01

    Male infertility caused by testicular damage is one of the complications of diabetes mellitus. The calcium-sensing receptor (CaSR) is expressed in testicular tissues and plays a pivotal role in calcium homeostasis by activating cellular signaling pathways, but its role in testicular damage induced by diabetes remains unclear. A diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ, 40 mg kg−1) in Wistar rats. Animals then received GdCl3 (an agonist of CaSR, 8.67 mg kg−1), NPS-2390 (an antagonist of CaSR, 0.20 g kg−1), or a combination of both 2 months after STZ injection. Diabetic rats had significantly lower testes weights and serum levels of testosterone compared to healthy rats, indicating testicular damage and dysfunction in STZ-induced diabetic rats. Compared with healthy controls, the testicular tissues of diabetic rats overexpressed the CaSR protein and had higher levels of malondialdehyde (MDA), lower superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and higher numbers of apoptotic germ cells. The testicular tissues from diabetic rats also expressed lower levels of Bcl-2 and higher levels of Bax and cleaved caspase-3 in addition to higher phosphorylation rates of c-Jun NH2-terminal protein kinase (JNK), p38, and extracellular signaling-regulated kinase (ERK) 1/2. The above parameters could be further increased or aggravated by the administration of GdCl3, but could be attenuated by injection of NPS-2390. In conclusion, the present results indicate that CaSR activation participates in diabetes-induced testicular damage, implying CaSR may be a potential target for protective strategies against diabetes-induced testicular damage and could help to prevent infertility in diabetic men. PMID:26387585

  19. Potentiation of carbon tetrachloride hepatotoxicity and lethality in type 2 diabetic rats.

    PubMed

    Sawant, Sharmilee P; Dnyanmote, Ankur V; Shankar, Kartik; Limaye, Pallavi B; Latendresse, John R; Mehendale, Harihara M

    2004-02-01

    There is a need for well characterized and economical type 2 diabetic model that mimics the human disease. We have developed a type 2 diabetes rat model that closely resembles the diabetic patients and takes only 24 days to develop robust diabetes. Nonlethal doses of allyl alcohol (35 mg/kg i.p.), CCl(4) (2 ml/kg i.p.), or thioacetamide (300 mg/kg i.p.) yielded 80 to 100% mortality in diabetic rats. The objective of the present study was to investigate two hypotheses: higher CCl(4) bioactivation and/or inhibited compensatory tissue repair were the underlying mechanisms for increased CCl(4) hepatotoxicity in diabetic rats. Diabetes was induced by feeding high fat diet followed by a single dose of streptozotocin on day 14 (45 mg/kg i.p.) and was confirmed on day 24 by hyperglycemia, normoinsulinemia, and oral glucose intolerance. Time course studies (0-96 h) of CCl(4) (2 ml/kg i.p.) indicated that although initial liver injury was the same in nondiabetic and diabetic rats, it progressed only in the latter, culminating in hepatic failure, and death. Hepatomicrosomal CYP2E1 protein and activity, lipid peroxidation, glutathione, and (14)CCl(4) covalent binding to liver tissue were the same in both groups, suggesting that higher bioactivation-based injury is not the mechanism. Inhibited tissue repair resulted in progression of injury and death in diabetic rats, whereas in the nondiabetic rats robust tissue repair resulted in regression of injury and survival after CCl(4) administration. These studies show high sensitivity of type 2 diabetes to model hepatotoxicants and suggest that CCl(4) hepatotoxicity is potentiated due to inhibited tissue repair. PMID:14610242

  20. Potentiation of carbon tetrachloride hepatotoxicity and lethality in type 2 diabetic rats.

    PubMed

    Sawant, Sharmilee P; Dnyanmote, Ankur V; Shankar, Kartik; Limaye, Pallavi B; Latendresse, John R; Mehendale, Harihara M

    2004-02-01

    There is a need for well characterized and economical type 2 diabetic model that mimics the human disease. We have developed a type 2 diabetes rat model that closely resembles the diabetic patients and takes only 24 days to develop robust diabetes. Nonlethal doses of allyl alcohol (35 mg/kg i.p.), CCl(4) (2 ml/kg i.p.), or thioacetamide (300 mg/kg i.p.) yielded 80 to 100% mortality in diabetic rats. The objective of the present study was to investigate two hypotheses: higher CCl(4) bioactivation and/or inhibited compensatory tissue repair were the underlying mechanisms for increased CCl(4) hepatotoxicity in diabetic rats. Diabetes was induced by feeding high fat diet followed by a single dose of streptozotocin on day 14 (45 mg/kg i.p.) and was confirmed on day 24 by hyperglycemia, normoinsulinemia, and oral glucose intolerance. Time course studies (0-96 h) of CCl(4) (2 ml/kg i.p.) indicated that although initial liver injury was the same in nondiabetic and diabetic rats, it progressed only in the latter, culminating in hepatic failure, and death. Hepatomicrosomal CYP2E1 protein and activity, lipid peroxidation, glutathione, and (14)CCl(4) covalent binding to liver tissue were the same in both groups, suggesting that higher bioactivation-based injury is not the mechanism. Inhibited tissue repair resulted in progression of injury and death in diabetic rats, whereas in the nondiabetic rats robust tissue repair resulted in regression of injury and survival after CCl(4) administration. These studies show high sensitivity of type 2 diabetes to model hepatotoxicants and suggest that CCl(4) hepatotoxicity is potentiated due to inhibited tissue repair.

  1. Altered hypothalamic-pituitary function in the adult female rat with streptozotocin-induced diabetes.

    PubMed

    Spindler-Vomachka, M; Johnson, D C

    1985-01-01

    Infertility associated with anovulation and loss of regular oestrous cyclicity is a consequence of diabetes mellitus in the rat. In an attempt to define loci of altered function, studies were undertaken to examine various aspects of hypothalamic-pituitary function in rats treated with streptozotocin. Medial basal hypothalamic fragments from adult female diabetic rats contained the same amount of gonadotrophin-releasing hormone but, with depolarization, released slightly but insignificantly (p greater than 0.05) more than did those from control animals. Furthermore, release of luteinizing hormone from pituitaries exposed to hypothalamic gonadotrophin-releasing hormone was not altered by diabetes. Removal of the negative feedback effect of gonadal steroids upon the hypothalamic-pituitary axis produced an increase in luteinizing hormone and follicle stimulating hormone concentrations in the serum of normal rats within 6h (p less than 0.05), whereas 24h were required for similar increases in diabetic rats. However, the same concentrations of gonadotrophins were found in diabetic and control animals 120 h after ovariectomy. The inhibitory action of oestradiol benzoate on the secretion of gonadotrophins was more pronounced in ovariectomized diabetic than in control rats. A 74% depression in serum luteinizing hormone (p less than 0.01) was produced by 0.5 microgram oestradiol benzoate per day in diabetic rats, while 5 micrograms was required in control animals. Similar reductions in follicle stimulating hormone concentrations (50%, p less than 0.05) were obtained by injecting 5 micrograms of the oestrogen into diabetic or 50 micrograms into control rats. Increases in serum prolactin were greater in the control animals however.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Simvastatin, atorvastatin, and pravastatin equally improve the hemodynamic status of diabetic rats

    PubMed Central

    Crespo, María J; Quidgley, José

    2015-01-01

    AIM: To investigate if the effect of statins improving cardiovascular (CV) status of diabetics is drug-specific or class-dependent, and the underlying mechanisms involved. METHODS: We compared the results of daily administration over a four-week period of a low dose (10 mg/kg per day) of atorvastatin (AV), simvastatin (SV), and pravastatin (PV) on cardiac performance in diabetic rats. Echocardiographic variables were tested, as well as systolic blood pressure (SBP), acetylcholine (ACh)-induced relaxation, plasma cholesterol levels, and perivascular fibrosis. Malondialdehyde (MDA) and 4-hydroxyalkenal (4-HAE), and endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) protein levels were also measured in cardiac and aortic homogenates. RESULTS: In untreated diabetic rats, cholesterol levels were higher than in control rats (CT; n = 8, P < 0.05), and the low dose of statins used did not modify these levels. In diabetic rats, SBP was higher than in CT, and was significantly reduced by all three statins (n = 10, P < 0.05). Echocardiographic parameters (EF, SV, and COI) were all lower in untreated diabetic rats than in CT (n = 10, P < 0.05). These CV parameters were equally improved by all three statins. The maximal relaxation (EMax) induced by ACh in aortic ring from diabetic rats was also improved. Moreover, this relaxation was abolished by 1 mmol/L NG-nitro-L-arginine methyl ester, suggesting the involvement of a NO-dependent mechanism. CONCLUSION: AV, SV, and PV are equally effective in improving CV performance in diabetic rats. All tree statins decreased media thickness, perivascular fibrosis, and both MDA and 4-HAE in the aortas of diabetic rats, without affecting eNOS and iNOS protein levels. The observed hemodynamic benefits are cholesterol-independent. These benefits appear to be secondary to the improved endothelial function, and to the reduced vascular tone and remodeling that result from decreased oxidative stress. PMID:26322162

  3. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes

    PubMed Central

    Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    Background The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. Methods A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. Results The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. Conclusions STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients. PMID:26176548

  4. Magnetic resonance imaging (MRI) and pathophysiology of the rat kidney in streptozotocin-induced diabetes.

    PubMed

    Lohr, J; Mazurchuk, R J; Acara, M A; Nickerson, P A; Fiel, R J

    1991-01-01

    Proton magnetic resonance imaging was performed on rats before induction of diabetes with streptozotocin (STZ) and at 2 and 12 days postinduction. Images revealed an increase in maximal longitudinal and axial dimensions of the kidneys at 2 days and a further increase at 12 days. Similarly, an increase in the size of the remaining kidney was seen in a rat which underwent uninephrectomy as a positive control. Two major differences were observed between the kidney undergoing compensatory hypertrophy and those developing diabetic nephropathy: (i) Expansion of the renal vasculature was seen only in images of the diabetic rat; (ii) A loss in conspicuity of the normal corticomedullary junction was seen in the T2-weighted images of the diabetic rat but not in the uninephrectomized rat. Histologic examination revealed that the medulla increased to a size greater than the cortex during diabetic nephropathy whereas the medullary volume was less than that of the cortex during compensatory hypertrophy. In vitro T1 relaxation times in cortex, outer medulla and inner medulla of kidneys from control rats were measured and compared with the same respective regions in diabetic rats. When these values were correlated with tissue water content, a linear increase in relaxation rate versus percent water content from cortex to inner medulla was found in the control kidneys, but this correlation was absent in diabetic nephropathy. These studies demonstrate that MRI is an effective noninvasive tool for studying the course of renal hypertrophy and hydration changes in the development of renal disease in STZ-induced diabetes in the rat.

  5. Beneficial effects of quercetin on sperm parameters in streptozotocin-induced diabetic male rats.

    PubMed

    Khaki, Arash; Fathiazad, Fatemeh; Nouri, Mohammad; Khaki, Amirafshin; Maleki, Navid A; Khamnei, Hossein Jabbari; Ahmadi, Porya

    2010-09-01

    Quercetin (QR) is a strong antioxidant and has been shown to reduce oxidative stress in the long-term treatment of streptozotocin (STZ)-induced diabetes in animal models. Antioxidants have significant effects on spermatogenesis, sperm biology and oxidative stress, and changes in antioxidant capacity are considered to be involved in the pathogenesis of chronic diabetes mellitus. The present study aims to examine the influence of QR on spermatogenesis in STZ-induced diabetes in male Wistar rats. Animals (n = 50) were allocated into five groups: Group 1: Control rats given 0.5 ml of 20% glycerol in 0.9% normal saline. Group 2: Control rats given buffer (pH4.0).Group 3: diabetic controls. Group 4: rats given QR 15 mg/kg/day (i.p.). Group 5: STZ + QR rats. Animals were kept in standard conditions. At the end of the experiment (28th day), blood samples were taken for determination of testosterone, total antioxidant capacity, and levels of malondialdehyde and oxidized low-density lipoprotein. All rats were euthanized, testes were dissected out and spermatozoa were collected from the epididymis for analysis. Sperm numbers, percentages of sperm viability and motility, and total serum testosterone increased significantly in QR-treated diabetic rats (P < 0.05) compared with control groups. In histopathology, degeneration and inflammation in testes cells associated with diabetes were improved and testes weights in the QR-treated diabetic group decreased significantly in comparison with controls (P < 0.05). We conclude that QR has significant beneficial effects on the sperm viability, motility, and serum total testosterone and could be effective for maintaining healthy sperm parameters and male reproductive function in diabetic rats.

  6. Evaluation of wound healing activity of ferulic acid in diabetic rats.

    PubMed

    Ghaisas, Mahesh M; Kshirsagar, Shashank B; Sahane, Rajkumari S

    2014-10-01

    In diabetic patients, there is impairment in angiogenesis, neovascularisation and failure in matrix metalloproteineases (MMPs), keratinocyte and fibroblast functions, which affects wound healing mechanism. Hence, diabetic patients are more prone to infections and ulcers, which finally result in gangrene. Ferulic acid (FA) is a natural antioxidant found in fruits and vegetables, such as tomatoes, rice bran and sweet corn. In this study, wound healing activity of FA was evaluated in streptozotocin-induced diabetic rats using excision wound model. FA-treated wounds were found to epithelise faster as compared with diabetic wound control group. The hydroxyproline and hexosamine content increased significantly when compared with diabetic wound control. FA effectively inhibited the lipid peroxidation and elevated the catalase, superoxide dismutase, glutathione and nitric oxide levels along with the increase in the serum zinc and copper levels probably aiding the wound healing process. Hence, the results indicate that FA significantly promotes wound healing in diabetic rats.

  7. Myocardin restores erectile function in diabetic rats: phenotypic modulation of corpus cavernosum smooth muscle cells.

    PubMed

    He, S; Zhang, T; Liu, Y; Liu, L; Zhang, H; Chen, F; Wei, A

    2015-04-01

    This study aimed to investigate whether gene transfer of myocardin to the penis of diabetic rats can modulate corpus cavernosum smooth muscle (CCSM) cells phenotype and restore erectile function. Five normal control rats, and 22 diabetic rats were randomly divided into four groups: rats transfected with adCMV-myocardin (N = 6), treated with empty vector (N = 6), injected with medium (N = 5), and sham-operated rats (N = 5). The erectile response was measured 7 days after transfection. The percent of smooth muscle and the expressions of SMα-actin, smooth muscle myosin heavy chain (SMMHC), calponin were evaluated. The increases in intracorporal pressure(ICP)/mean arterial pressure and total ICP in response to nerve stimulation in the adCMV-myocardin treated rats were significantly greater than those in the empty vector (P < 0.001 and P < 0.001), medium only (P < 0.001 and P < 0.001), and sham-operated rats (P < 0.001 and P < 0.001). The suppressed expressions of SMα-actin, SMMHC and calponin were completely restored, and the amount of smooth muscle in diabetic rats were not restored after treatment. It is concluded that myocardin ameliorated erectile responses in diabetic rats mainly via promoting phenotypic modulation of CCSM cells from a proliferative to a contractile state.

  8. Diabetes Promotes DMH-Induced Colorectal Cancer by Increasing the Activity of Glycolytic Enzymes in Rats

    PubMed Central

    Jia, Yanglei; Xu, Gang; Zhou, Wenjing; Wang, Zhenzheng; Meng, Linlin; Zhou, Songnan; Xu, Xia; Yuan, Huiqing; Tian, Keli

    2014-01-01

    The objective of the present study was to investigate the association between diabetes mellitus and colorectal carcinogenesis as well as the possible mechanism involved in this interaction. Diabetes rat models were induced with a low dose of STZ followed by a low dose of DMH to induce colorectal cancer. The formation of ACF in the colon and the incidence, number and size of tumors were measured. The activity of glycolytic enzymes in colonic tissues was also measured. The results demonstrated that both the total number of ACF and the number of foci that contain a different number of crypts were increased in diabetic rats. At the end of the experimental treatment, the incidence, number and size of tumors were also increased in diabetic rats. Overall, these data indicated that diabetes increased the risk of colorectal cancer. The activity of HK and PK in colonic tissues was increased in diabetic rats, whereas the activity of PDH was decreased. In addition, the activities of these enzymes in intratumor were higher than that of in peritumor. These data indicated that the high rate of glycolysis may play a role in colorectal carcinogenesis in diabetic rats. PMID:25329503

  9. Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Raza, Haider; Prabu, Subbuswamy K; John, Annie; Avadhani, Narayan G

    2011-01-01

    We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ)-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks). These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively) production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III) and cytochrome c oxidase (Complex IV) were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I) and succinate:ubiquinone oxidoreductase (Complex II) were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.

  10. Impaired mitochondrial metabolism and protein synthesis in streptozotocin diabetic rat hepatocytes

    SciTech Connect

    Memon, R.A.; Bessman, S.P.; Mohan, C. )

    1990-02-26

    Isolated hepatocytes prepared from control, streptozotocin diabetic rats were incubated at 30{degrees}C in Krebs-Henseleit bicarbonate buffer, pH 7.4, containing 0.5 mM concentration of each of the 20 natural amino acids. Effect of insulin on the oxidation of 2,3-{sup 14}C and 1,4-{sup 14}C succinate (suc) carbons and their incorporation into hepatocyte protein, lipid and various metabolic intermediates was studied. Mitochondrial oxidation of suc carbons and their incorporation into protein and lipid was significantly lower in diabetic and insulin treated diabetic rats. Diabetic rats failed to exhibit any significant insulin effect on the oxidation of either 2,3 or 1,4-{sup 14}C suc carbons. Amphibolic channeling of 2,3-{sup 14}C suc carbons into amino acids was significantly reduced in hepatocytes of diabetic rats, however, more of these carbons were diverted into the gluconeogenesis pathway. Diabetes caused a far greater decrease in the oxidation of 2,3-{sup 14}C suc carbons as compared to 1,4-{sup 14}C suc. Based on an earlier report that insulin stimulates only the intramitochondrial Krebs cycle reactions, the authors conclude that the diminished level of anabolic activities in the diabetic rat hepatocytes is due to the subsequent reduction in amphibolic channeling of metabolic intermediates.

  11. Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats.

    PubMed

    Tuzcu, Mehmet; Baydas, Giyasettin

    2006-05-10

    Previous studies indicate that diabetes mellitus might be accompanied by a certain erosion of brain function such as cognitive impairment. The aim of this study was to examine and compare the effects of melatonin and vitamin E on cognitive functions in diabetic rats. Diabetes was induced in male albino rats via intraperitoneal streptozotocin injection. Learning and memory behaviors were investigated using a spatial version of the Morris water maze test. The levels of lipid peroxidation and glutathione were detected in hippocampus and frontal cortex. The diabetic rats developed significant impairment in learning and memory behaviors as indicated by the deficits in water maze tests as compared to control rats. Furthermore, lipid peroxidation levels increased and glutathione concentration decreased in diabetic rats. Treatment with melatonin and vitamin E significantly ameliorated learning and memory performance. Furthermore, both antioxidants reversed lipid peroxidation and glutathione levels toward their control values. These results suggest that oxidative stress may contribute to learning and memory deficits in diabetes and further suggest that antioxidant melatonin and vitamin E can improve cognitive impairment in streptozotocin-induced diabetes.

  12. Terbufos-sulfone exacerbates cardiac lesions in diabetic rats: a sub-acute toxicity study.

    PubMed

    Nurulain, Syed M; Shafiullah, Mohamed; Yasin, Javed; Adem, Abdu; Kaabi, Juma Al; Tariq, Saeed; Adeghate, Ernest; Ojha, Shreesh

    2016-06-01

    Organophosphorus compounds (OPCs) have a wide range of applications, from agriculture to warfare. Exposure to these brings forward a varied kind of health issues globally. Terbufos is one of the leading OPCs used worldwide. The present study investigates the cardiac effect of no observable dose of a metabolite of terbufos, terbufos-sulfone (TS), under non-diabetic and streptozotocin-induced diabetic condition. One hundred nanomoles per rat (1/20 of LD50) was administered intraperitoneally to adult male Wister rats daily for fifteen days. The left ventricle was collected for ultrastructural changes by transmission electron microscopy. The blood samples were collected for biochemical tests including RBC acetylcholinesterase, creatinine kinase (CK), lactate dehydrogenase (LDH), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides, ALT, AST, and GGT. The study revealed about 10 % inhibition of RBC-AChE in two weeks of TS treatment in non-diabetic rats whereas RBC-AChE activity was significantly decreased in diabetic TS treated rats. CK, LDH, and triglycerides were significantly higher in diabetic TS treated rats. Electron microscopy of the heart showed derangement and lesions of the mitochondria of cardiomyocytes in the TS treated groups. The present study concludes that a non-lethal dose of TS causes cardiac lesions which exacerbate under diabetic condition. Biochemical tests confirmed the ultrastructural changes. It is concluded that a non-lethal dose of TS may be a risk factor for a cardiovascular disease, which may be fatal under diabetic condition. PMID:27331300

  13. Gum Arabic extracts protect against hepatic oxidative stress in alloxan induced diabetes in rats.

    PubMed

    Ahmed, Abdelkareem A; Fedail, Jaafar S; Musa, Hassan H; Kamboh, Asghar Ali; Sifaldin, Amal Z; Musa, Taha H

    2015-12-01

    Gum Arabic (GA) from Acacia seyal and Acacia senegal is a branched-chain polysaccharide which has strong antioxidant properties, and has been used to reduce the experimental toxicity. Yet, the effects of GA on oxidative stress in type I diabetic rats have not been reported. The aim of the study was to investigate the effects of GA on oxidative stress in Alloxan induced diabetes in rats. The rats were divided into 3 groups (n=20 of each): control group, diabetic group injected with allaoxan, and diabetic group given 15% GA in drinking water for 8 weeks. Oxidative damage to liver tissue was evaluated by measurement of key hepatic enzymes, lipid peroxidation, antioxidant enzymes and expression of oxidative stress genes. Activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were significantly (P<0.05) increased in GA group compared to diabetic and control groups. Treatment of GA decreased liver malondialdehyde (MDA), and increased glutathione (GSH). In addition, GA was significantly (P<0.05) reduced the activities of key liver enzymes, including alanine transaminase (ALT) and aspartate transaminase (AST). SOD, GPx and heat shock protein 70 (HSP70) mRNA were significantly increased in GA group compared to control and diabetic groups. Liver of all diabetic rats showed marked degeneration whereas slight degeneration was observed in GA treated rats compared to control. The results suggest that GA may protect liver by modulating the expression of oxidative stress genes, and thus can improve antioxidant status. PMID:26321624

  14. The effects of Tremella aurantia on testosterone and corticosterone productions in normal and diabetic rats.

    PubMed

    Lo, Hui-Chen; Yang, Jyuer-Ger; Liu, Bi-Ching; Chen, Yen-Wen; Huang, Yuan-Li; Poon, Song Ling; Liu, Ming-Yie; Huang, Bu-Miin

    2004-01-01

    Tremella aurantia (TA) has been traditionally used as food and crude medicine in Chinese society. The polysaccharide isolated from the fruiting bodies of TA exhibits significant hypoglycemic activity in diabetic mouse models of insulin-dependent diabetes mellitus (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM). Diabetes will cause sexual dysfunction in patients. In the present study, we examined if the treatment of TA on IDDM and NIDDM rats will restore steroidogenesis and then the reproductive function. The fruiting bodies (FB), mycelium (TM) and polysaccharide (GX) of TA were fed to the IDDM and NIDDM rats, and testosterone and corticosterone levels in plasma, the weight of steroidogenic organs, and the expression of steroidogenic acute regulatory (StAR) protein and P450scc enzyme were determined. Plasma testosterone productions were significantly suppressed with the feeding of FB or TM in normal rat (p < 0.05). Testosterone productions were also significantly suppressed in IDDM diabetes rats (p <0.05), and FB or TM could not restore the inhibitory effects (p > 0.05). There was no significant difference of the testosterone production between normal and NIDDM rats (p > 0.05). In plasma corticosterone production, there were no differences among control, FB- or TM-fed normal rats (p > 0.05). Corticosterone levels were reduced in IDDM rats compared to control, and FB or TM could restore its level. Corticosterone levels were induced in NIDDM rats compared to control (p <0.05), but FB, TM or GX significantly brought the corticosterone back (p < 0.05) to the control levels. Considering steroidogenic organs, IDDM rats with or without TA treatments had heavier testis and adrenal glands, but not epididymis, than normal rats with or without TA treatments. There were no effects of TA on the weight of steroidogenic organs among normal and NIDDM rats. However, GX feeding in NIDDM rat had lesser testis weight compared to NIDDM rats. The expression of StAR protein and

  15. Na+/H+ exchanger 1 inhibition reverses manifestation of peripheral diabetic neuropathy in type 1 diabetic rats

    PubMed Central

    Lupachyk, Sergey; Watcho, Pierre; Shevalye, Hanna; Vareniuk, Igor; Obrosov, Alexander; Obrosova, Irina G.

    2013-01-01

    Evidence for an important role for Na+/H+ exchangers in diabetic complications is emerging. The aim of this study was to evaluate whether Na+/H+ exchanger 1 inhibition reverses experimental peripheral diabetic neuropathy. Control and streptozotocin-diabetic rats were treated with the specific Na+/H+ exchanger 1 inhibitor cariporide for 4 wk after 12 wk without treatment. Neuropathy end points included sciatic motor and sensory nerve conduction velocities, endoneurial nutritive blood flow, vascular reactivity of epineurial arterioles, thermal nociception, tactile allodynia, and intraepidermal nerve fiber density. Advanced glycation end product and markers of oxidative stress, including nitrated protein levels in sciatic nerve, were evaluated by Western blot. Rats with 12-wk duration of diabetes developed motor and sensory nerve conduction deficits, thermal hypoalgesia, tactile allodynia, and intraepidermal nerve fiber loss. All these changes, including impairment of nerve blood flow and vascular reactivity of epineurial arterioles, were partially reversed by 4 wk of cariporide treatment. Na+/H+ exchanger 1 inhibition was also associated with reduction of diabetes-induced accumulation of advanced glycation endproduct, oxidative stress, and nitrated proteins in sciatic nerve. In conclusion, these findings support an important role for Na+/H+ exchanger 1 in functional, structural, and biochemical manifestations of peripheral diabetic neuropathy and provide the rationale for development of Na+/H+ exchanger 1 inhibitors for treatment of diabetic vascular and neural complications. PMID:23736542

  16. Na+/H+ exchanger 1 inhibition reverses manifestation of peripheral diabetic neuropathy in type 1 diabetic rats.

    PubMed

    Lupachyk, Sergey; Watcho, Pierre; Shevalye, Hanna; Vareniuk, Igor; Obrosov, Alexander; Obrosova, Irina G; Yorek, Mark A

    2013-08-01

    Evidence for an important role for Na(+)/H(+) exchangers in diabetic complications is emerging. The aim of this study was to evaluate whether Na(+)/H(+) exchanger 1 inhibition reverses experimental peripheral diabetic neuropathy. Control and streptozotocin-diabetic rats were treated with the specific Na(+)/H(+) exchanger 1 inhibitor cariporide for 4 wk after 12 wk without treatment. Neuropathy end points included sciatic motor and sensory nerve conduction velocities, endoneurial nutritive blood flow, vascular reactivity of epineurial arterioles, thermal nociception, tactile allodynia, and intraepidermal nerve fiber density. Advanced glycation end product and markers of oxidative stress, including nitrated protein levels in sciatic nerve, were evaluated by Western blot. Rats with 12-wk duration of diabetes developed motor and sensory nerve conduction deficits, thermal hypoalgesia, tactile allodynia, and intraepidermal nerve fiber loss. All these changes, including impairment of nerve blood flow and vascular reactivity of epineurial arterioles, were partially reversed by 4 wk of cariporide treatment. Na(+)/H(+) exchanger 1 inhibition was also associated with reduction of diabetes-induced accumulation of advanced glycation endproduct, oxidative stress, and nitrated proteins in sciatic nerve. In conclusion, these findings support an important role for Na(+)/H(+) exchanger 1 in functional, structural, and biochemical manifestations of peripheral diabetic neuropathy and provide the rationale for development of Na(+)/H(+) exchanger 1 inhibitors for treatment of diabetic vascular and neural complications. PMID:23736542

  17. Evaluation of Antidiabetic and Antihyperlipidemic Effects of Peganum harmala Seeds in Diabetic Rats

    PubMed Central

    Komeili, Gholamreza; Hashemi, Mohammad; Bameri-Niafar, Mohsen

    2016-01-01

    The present study was carried out to investigate the antidiabetic and antihyperlipidemic properties of hydroalcoholic extract of Peganum harmala in streptozotocin-induced diabetic male rats. In an experimental study, 64 normal Wistar albino male rats (200–230 g) were randomly divided into 8 groups. Control and diabetic rats were treated with normal saline and three different doses (30, 60, and 120 mg/kg) of hydroalcoholic extract of Peganum harmala seeds for 4 weeks orally. At the end of treatment, blood samples were taken and glucose, triglycerides, total cholesterol, LDL-c, HDL-c, malondialdehyde (MDA), total antioxidant capacity (TCA), ALT, AST, GGT, bilirubin, and glycosylated hemoglobin (HbA1C) were determined. STZ-induced diabetic rats showed significant changes in the values of glucose, triglycerides, total cholesterol, LDL-c, MDA, TAC, ALT, AST, GGT, bilirubin, and HbA1C in comparison with normal rats. Administration of the extract to diabetic rats resulted in a remarkable decrease in glucose, lipid profiles, MDA, ALT, AST, GGT, bilirubin, and HbA1C levels and increase in TAC relative to diabetic group. The results of this study indicated that hydroalcoholic extract of Peganum harmala seeds possesses antidiabetic and hypolipidemic activities and could be useful in treatment of diabetes. PMID:27190643

  18. Evaluation of Topical Tocopherol Cream on Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Lin, Teoh Seong; Abd Latiff, Azian; Abd Hamid, Noor Aini; Wan Ngah, Wan Zurinah bt; Mazlan, Musalmah

    2012-01-01

    Diabetes is a common cause of delayed wound healing. The aim of the study was to determine the effect of topical administration of tocopherol cream on the wound healing process in diabetic rats. The study was conducted using 18 male Sprague Dawley rats which were divided into three groups: (I) diabetic rats receiving control cream (n = 6), (II) diabetic rats receiving 0.06% tocopherol cream (n = 6), and (III) diabetic rats receiving 0.29% tocopherol cream (n = 6). Four cutaneous wounds were created at the dorsal region of the rats. Wound healing was assessed by total protein content, rate of wound closure estimation, and histological studies on the tenth day after wounding. Tocopherol treatment enhanced the wound healing process by increasing rate of wound closure and total protein content significantly (P < 0.05) compared to the control group. Histological observation also showed better organized epithelium and more collagen fibers in the tocopherol treated groups. Application of tocopherol cream enhances wound healing process in diabetic condition which is known to cause delay in wound healing. PMID:23097676

  19. Antidiabetic effect of Merremia emarginata Burm. F. in streptozotocin induced diabetic rats

    PubMed Central

    Gandhi, G Rajiv; Sasikumar, P

    2012-01-01

    Objective To investigate the antidiabetic property of Merremia emarginata (M. emarginata) Burm. F. plant in streptozotocin induced diabetic rats. Methods The dose dependent effects of 28 days oral treatment with methanol extract (100, 200 and 400 mg/kg) from the plant of M. emarginata on blood glucose level, body weight, insulin, total hemoglobin, glycosylated haemoglobin (HbA1C), total protein, serum urea, serum creatinine and carbohydrate metabolizing enzymes were evaluated in streptozotocin induced diabetic rats. Histology of pancreas was also studied. Results A significant decrease in blood glucose, serum urea and serum creatinine and significant increase in body weight, insulin and protein level were observed in diabetic rats treated with M. emarginata. Treatment with M. emarginata resulted in a significant reduction of HbA1C and an increase in total hemoglobin level. The activities of carbohydrate metabolizing enzymes such as hexokinase were significantly increased whereas glucose-6-phosphatase, fructose-1, 6-bisphosphatase were significantly decreased by the administration of M. emarginata in diabetic rats. Histology of diabetic rats treated with M. emarginata showed the pancreatic β-cells regeneration. Conclusions These findings suggest that M. emarginata has potent antidiabetic activity in streptozotocin induced diabetic rats. PMID:23569914

  20. Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model.

    PubMed

    Li, Yue; Zhang, Yong; Liu, De-bao; Liu, Hai-ying; Hou, Wu-gang; Dong, Yu-shu

    2013-01-01

    The mechanisms involved in diabetic neuropathic pain are complex and involve peripheral and central pathophysiological phenomena. Proinflammatory tumour necrosis factor α (TNF-α) and TNF-α receptor 1, which are markers of inflammation, contribute to neuropathic pain. The purpose of this experimental study was to evaluate the effect of curcumin on diabetic pain in rats. We tested 24 rats with diabetes induced by a single intraperitoneal injection of streptozotocin and 24 healthy control rats. Twelve rats in each group received 60 mg/kg oral curcumin daily for 28 days, and the other 12 received vehicle. On days 7, 14, 21, and 28, we tested mechanical allodynia with von Frey hairs and thermal hyperalgesia with radiant heat. Markers of inflammation in the spinal cord dorsal horn on day 28 were estimated with a commercial assay and Western blot analysis. Compared to control rats, diabetic rats exhibited increased mean plasma glucose concentration, decreased mean body weight, and significant pain hypersensitivity, as evidenced by decreased paw withdrawal threshold to von Frey hairs and decreased paw withdrawal latency to heat. Curcumin significantly attenuated the diabetes-induced allodynia and hyperalgesia and reduced the expression of both TNF-α and TNF-α receptor 1. Curcumin seems to relieve diabetic hyperalgesia, possibly through an inhibitory action on TNF-α and TNF-α receptor 1. PMID:23471081

  1. Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats.

    PubMed

    Bhandari, Uma; Kanojia, Raman; Pillai, K K

    2005-02-28

    The lipid lowering and antioxidant potential of ethanolic extract of Zingiber officinale Roscoe (family, Zingiberaceae) was evaluated in streptozotocin (STZ)-induced diabetes in rats. Ethanolic extract of Zingiber officinale (200 mg/kg) fed orally for 20 days produced, significant antihyperglycaemic effect (P < 0.01) in diabetic rats. Further, the extract treatment also lowered serum total cholesterol, triglycerides and increased the HDL-cholesterol levels when compared with pathogenic diabetic rats (P < 0.01). STZ-treatment also induced a statistically significant increase in liver and pancreas lipid peroxide levels (P < 0.01) as compared to normal healthy control rats. Zingiber officinale extract treatment lowered the liver and pancreas thiobarbituric acid reactive substances (TBARS) values (P < 0.01) as compared to pathogenic diabetic rats. The results of test drug were comparable to gliclazide (25 mg/kg, orally), a standard antihyperglycaemic agent. The results indicate that ethanolic extract of Zingiber officinale Roscoe can protect the tissues from lipid peroxidation. The extract also exhibit significant lipid lowering activity in diabetic rats. The present study is the first pilot study to assess the potential of Zingiber officinale in diabetic dyslipidaemia. PMID:15707757

  2. RNA sequencing reveals retinal transcriptome changes in STZ-induced diabetic rats.

    PubMed

    Liu, Yuan-Jie; Lian, Zhi-Yun; Liu, Geng; Zhou, Hong-Ying; Yang, Hui-Jun

    2016-03-01

    The present study aimed to investigate changes in retinal gene expression in streptozotocin (STZ)‑induced diabetic rats using next‑generation sequencing, utilize transcriptome signatures to investigate the molecular mechanisms of diabetic retinopathy (DR), and identify novel strategies for the treatment of DR. Diabetes was chemically induced in 10‑week‑old male Sprague‑Dawley rats using STZ. Flash‑electroretinography (F‑ERG) was performed to evaluate the visual function of the rats. The retinas of the rats were removed to perform high throughput RNA sequence (RNA‑seq) analysis. The a‑wave, b‑wave, oscillatory potential 1 (OP1), OP2 and ∑OP amplitudes were significantly reduced in the diabetic group, compared with those of the control group (P<0.05). Furthermore, the implicit b‑wave duration 16 weeks post‑STZ induction were significantly longer in the diabetic rats, compared with the control rats (P<0.001). A total of 868 genes were identified, of which 565 were upregulated and 303 were downregulated. Among the differentially expressed genes (DEGs), 94 apoptotic genes and apoptosis regulatory genes, and 19 inflammatory genes were detected. The results of the KEGG pathway significant enrichment analysis revealed enrichment in cell adhesion molecules, complement and coagulation cascades, and antigen processing and presentation. Diabetes alters several transcripts in the retina, and RNA‑seq provides novel insights into the molecular mechanisms underlying DR. PMID:26781437

  3. Polysaccharides from Enteromorpha prolifera Improve Glucose Metabolism in Diabetic Rats

    PubMed Central

    Lin, Wenting; Wang, Wenxiang; Liao, Dongdong; Chen, Damiao; Zhu, Pingping; Cai, Guoxi; Kiyoshi, Aoyagi

    2015-01-01

    This study investigated the effects of polysaccharides from Enteromorpha prolifera (PEP) on glucose metabolism in a rat model of diabetes mellitus (DM). PEP (0, 150, 300, and 600 mg/kg) was administered intragastrically to rats for four weeks. After treatment, fasting blood glucose (FBG) and insulin (INS) levels were measured, and the insulin sensitivity index (ISI) was calculated. The morphopathological changes in the pancreas were observed. Serum samples were collected to measure the oxidant-antioxidant status. The mRNA expression levels of glucokinase (GCK) and insulin receptor (InsR) in liver tissue and glucose transporter type 4 (GLUT-4) and adiponectin (APN) in adipose tissue were determined. Compared with the model group, the FBG and INS levels were lower, the ISI was higher, and the number of islet β-cells was significantly increased in all the PEP groups. In the medium- and high-dose PEP groups, MDA levels decreased, and the enzymatic activities of SOD and GSH-Px increased. The mRNA expression of InsR and GCK increased in all the PEP groups; APN mRNA expression increased in the high-dose PEP group, and GLUT-4 mRNA expression increased in adipose tissue. These findings suggest that PEP is a potential therapeutic agent that can be utilized to treat DM. PMID:26347892

  4. Heat stress attenuates skeletal muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic rats.

    PubMed

    Nonaka, K; Une, S; Akiyama, J

    2015-09-01

    To investigate whether heat stress attenuates skeletal muscle atrophy of the extensor digitorum longus (EDL) muscle in streptozotocin-induced diabetic rats, 12-week-old male Wistar rats were randomly assigned to four groups (n = 6 per group): control (Con), heat stress (HS), diabetes mellitus (DM), and diabetes mellitus/heat stress (DM + HS). Diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg). Heat stress was induced in the HS and DM + HS groups by immersion of the lower half of the body in hot water at 42 °C for 30 min; it was initiated 7 days after injection of streptozotocin, and was performed once a day, five times a week for 3 weeks. The muscle fiber cross-sectional area of EDL muscles from diabetic and non-diabetic rats was determined; heat stress protein (HSP) 72 and HSP25 expression levels were also analyzed by western blotting. Diabetes-induced muscle fiber atrophy was attenuated upon heat stress treatment in diabetic rats. HSP72 and HSP25 expression was upregulated in the DM + HS group compared with the DM group. Our findings suggest that heat stress attenuates atrophy of the EDL muscle by upregulating HSP72 and HSP25 expression. PMID:26551745

  5. [Effect and mechanism of icariin on myocardial ischemia-reperfusion injury model in diabetes rats].

    PubMed

    Hu, Yan-wu; Liu, Kai; Yan, Meng-tong

    2015-11-01

    To study the therapeutic effect and possible mechanism of icariin on myocardial ischemia-reperfusion injury ( MIRI) model in diabetes rats. The model of diabetic rats were induced by Streptozotocin (STZ), then the model of MIRI was established by ligating the reversible left anterior descending coronary artery for 30 min, and then reperfusing for 120 min. totally 40 male SD were randomly divided into five groups: the control group (NS), the ischemia reperfusion group (NIR), the diabetes control group (MS), the diabetic ischemia reperfusion group (MIR) and the diabetic ischemia reperfusion with icariin group (MIRI). The changes in blood glucose, body weight and living status were observed; the enzyme activity of serum CK-MB, LDH, GSH-Px and myocardium SOD and the content MDA and NO in myocardium were detected; the myocardial pathological changes were observed by HE staining; the myocardial Caspase-3, the Bcl-2, Bax protein expressions were detected by Western blot. The result showed that the diabetes model was successfully replicated; myocardial ischemia-reperfusion injury was more serious in diabetes rats; icariin can increase NO, SOD, GSH-Px, Bcl-2 protein expression, decrease MDA formation, CK-MB and LDH activities and Caspase-3 and Bcl-2 protein expressions and myocardial damage. The result suggested that icariin may play a protective role against ischemia reperfusion myocardial injury in diabetes rats by resisting oxidative stress and inhibiting cell apoptosis. PMID:27071263

  6. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function.

    PubMed

    Picke, Ann-Kristin; Salbach-Hirsch, Juliane; Hintze, Vera; Rother, Sandra; Rauner, Martina; Kascholke, Christian; Möller, Stephanie; Bernhardt, Ricardo; Rammelt, Stefan; Pisabarro, M Teresa; Ruiz-Gómez, Gloria; Schnabelrauch, Matthias; Schulz-Siegmund, Michaela; Hacker, Michael C; Scharnweber, Dieter; Hofbauer, Christine; Hofbauer, Lorenz C

    2016-07-01

    Bone fractures in patients with diabetes mellitus heal poorly and require innovative therapies to support bone regeneration. Here, we assessed whether sulfated hyaluronan included in collagen-based scaffold coatings can improve fracture healing in diabetic rats. Macroporous thermopolymerized lactide-based scaffolds were coated with collagen including non-sulfated or sulfated hyaluronan (HA/sHA3) and inserted into 3 mm femoral defects of non-diabetic and diabetic ZDF rats. After 12 weeks, scaffolds coated with collagen/HA or collagen/sHA3 accelerated bone defect regeneration in diabetic, but not in non-diabetic rats as compared to their non-coated controls. At the tissue level, collagen/sHA3 promoted bone mineralization and decreased the amount of non-mineralized bone matrix. Moreover, collagen/sHA3-coated scaffolds from diabetic rats bound more sclerostin in vivo than the respective controls. Binding assays confirmed a high binding affinity of sHA3 to sclerostin. In vitro, sHA3 induced BMP-2 and lowered the RANKL/OPG expression ratio, regardless of the glucose concentration in osteoblastic cells. Both sHA3 and high glucose concentrations decreased the differentiation of osteoclastic cells. In summary, scaffolds coated with collagen/sHA3 represent a potentially suitable biomaterial to improve bone defect regeneration in diabetic conditions. The underlying mechanism involves improved osteoblast function and binding sclerostin, a potent inhibitor of Wnt signaling and osteoblast function. PMID:27131598

  7. Hypolipidemic, Hepatoprotective and Renoprotective Effects of Cydonia Oblonga Mill. Fruit in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Mirmohammadlu, Mansur; Hosseini, Seyed Hojjat; Kamalinejad, Mohammad; Esmaeili Gavgani, Majid; Noubarani, Maryam; Eskandari, Mohammad Reza

    2015-01-01

    Diabetes mellitus is associated with complications in several different systems of the body, and the incidence of diabetes is rapidly increasing worldwide. The objective of the present study was to evaluate the effect of aqueous extract of Cydonia oblonga Mill. Fruit on lipid profile and some biochemical parameters in streptozotocin-induced diabetic rats. The extract showed anti hyper lipidemic activity as evidenced by significant decreases in serum triglyceride, total cholesterol, and low density lipoprotein cholesterol (LDL-C) levels along with the elevation of high density lipoprotein cholesterol (HDL-C) in the diabetic rats. The biochemical liver functional tests were also analyzed and it was shown that serum biomarkers of liver dysfunction, including alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) were significantly reduced in aqueous extract of Cydonia oblonga Mill. treated diabetic rats. In addition, our results showed that the oral administration of the extract prevented diabetes-induced increase in serum urea and creatinine levels as the markers of renal dysfunction. In conclusion, the present study indicates that aqueous extract of Cydonia oblonga Mill. Is able to improve some of the symptoms associated with diabetes and possesses hypolipidemic, hepatoprotective, and renoprotective effects in streptozotocin-induced diabetic rats. PMID:26664388

  8. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function.

    PubMed

    Picke, Ann-Kristin; Salbach-Hirsch, Juliane; Hintze, Vera; Rother, Sandra; Rauner, Martina; Kascholke, Christian; Möller, Stephanie; Bernhardt, Ricardo; Rammelt, Stefan; Pisabarro, M Teresa; Ruiz-Gómez, Gloria; Schnabelrauch, Matthias; Schulz-Siegmund, Michaela; Hacker, Michael C; Scharnweber, Dieter; Hofbauer, Christine; Hofbauer, Lorenz C

    2016-07-01

    Bone fractures in patients with diabetes mellitus heal poorly and require innovative therapies to support bone regeneration. Here, we assessed whether sulfated hyaluronan included in collagen-based scaffold coatings can improve fracture healing in diabetic rats. Macroporous thermopolymerized lactide-based scaffolds were coated with collagen including non-sulfated or sulfated hyaluronan (HA/sHA3) and inserted into 3 mm femoral defects of non-diabetic and diabetic ZDF rats. After 12 weeks, scaffolds coated with collagen/HA or collagen/sHA3 accelerated bone defect regeneration in diabetic, but not in non-diabetic rats as compared to their non-coated controls. At the tissue level, collagen/sHA3 promoted bone mineralization and decreased the amount of non-mineralized bone matrix. Moreover, collagen/sHA3-coated scaffolds from diabetic rats bound more sclerostin in vivo than the respective controls. Binding assays confirmed a high binding affinity of sHA3 to sclerostin. In vitro, sHA3 induced BMP-2 and lowered the RANKL/OPG expression ratio, regardless of the glucose concentration in osteoblastic cells. Both sHA3 and high glucose concentrations decreased the differentiation of osteoclastic cells. In summary, scaffolds coated with collagen/sHA3 represent a potentially suitable biomaterial to improve bone defect regeneration in diabetic conditions. The underlying mechanism involves improved osteoblast function and binding sclerostin, a potent inhibitor of Wnt signaling and osteoblast function.

  9. Red raspberries can improve motor function in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Many foods rich in antioxidant and anti-inflammatory compounds have been shown to increase health and reduce markers of aging. A number of berry fruits high in polyphenols are known to ameliorate age-related declines in cellular, cognitive and behavioral function in rats. OBJECTIVES: Thi...

  10. Tart cherries improve working memory in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show impaired performance on cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various dark-colored berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and...

  11. Maternal age, reproduction and chromosomal aberrations in Wistar derived rats.

    PubMed

    Niggeschulze, A; Kast, A

    1994-01-01

    The fertility of rats ranges from one to 18 months. In standard teratogenicity testing young, mature females are used which may not reflect the situation in women above 35 years old. Reproduction among different age groups of Wistar ats (strain Chbb: THOM) was compared at 3, 6, 9, 12, 15 and 18 months. At least 20 virgin females were inseminated per age group. The copulation rate did not differ between the groups. From the maternal age of 12 months, the pregnancy rate was significantly decreased, from the age of 9 months, the litter values were significantly lowered and the resorption rates were increased. Maternal age did not influence the incidence of fetal variations and malformations. Additionally, the chromosomal aberration rate in the bone marrow was evaluated in male and female rats. Twelve animals of each sex were scheduled per group, and studied at the age of 1, 3, 6, 12, 15, 18, 21 or 24 months. In males, the aberration rate increased continuously from 0.18 through 3%, while in females the increase continued from 0.33 to 2.29% at 15 months old when a plateau was reached. When testing new compounds for embryotoxicity or genotoxicity in female rats, the animals should be of comparable age to man in order to avoid a misinterpretation of spontaneous abnormalities. From these studies, however, it was concluded that the use of higher age groups of female rats in teratogenicity studies would not improve the risk assessment.

  12. Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats.

    PubMed

    Stefanello, Naiara; Schmatz, Roberta; Pereira, Luciane Belmonte; Rubin, Maribel A; da Rocha, João Batista Teixeira; Facco, Graziela; Pereira, Maria Ester; Mazzanti, Cinthia Melazzo de Andrade; Passamonti, Sabina; Rodrigues, Marília Valvassori; Carvalho, Fabiano Barbosa; da Rosa, Michelle Melgarejo; Gutierres, Jessie Martins; Cardoso, Andréia Machado; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2014-03-01

    Diabetes mellitus (DM) is associated with brain alterations that may contribute to cognitive dysfunctions. Chlorogenic acid (CGA) and caffeine (CA), abundant in coffee (CF), are natural compounds that have showed important actions in the brain. The present study aimed to evaluate the effect of CGA, CA, and CF on acetylcholinesterase (AChE), Na(+), K(+)-ATPase, aminolevulinate dehydratase (δ-ALA-D) activities and TBARS levels from cerebral cortex, as well as memory and anxiety in streptozotocin-induced diabetic rats. Animals were divided into eight groups (n = 5-10): control; control/CGA 5 mg/kg; control/CA 15 mg/kg; control/CF 0.5 g/kg; diabetic; diabetic/CGA 5 mg/kg; diabetic/CA 15 mg/kg; and diabetic/CF 0.5 g/kg. Our results demonstrated an increase in AChE activity and TBARS levels in cerebral cortex, while δ-ALA-D and Na(+), K(+)-ATPase activities were decreased in the diabetic rats when compared to control water group. Furthermore, a memory deficit and an increase in anxiety in diabetic rats were observed. The treatment with CGA and CA prevented the increase in AChE activity in diabetic rats when compared to the diabetic water group. CGA, CA, and CF intake partially prevented cerebral δ-ALA-D and Na(+), K(+)-ATPase activity decrease due to diabetes. Moreover, CGA prevented diabetes-induced TBARS production, improved memory, and decreased anxiety. In conclusion, among the compounds studied CGA proved to be a compound which acts better in the prevention of brain disorders promoted by DM. PMID:24370728

  13. Diabetes death rates among youths aged ≤ 19 years--United States, 1968-2009.

    PubMed

    2012-11-01

    Although diabetes mellitus most often is diagnosed in adulthood, it remains one of the most common serious chronic diseases of childhood. Youths with diabetes are at risk for diabetes-related mortality because of acute complications that can result from the condition, including diabetic ketoacidosis and hypoglycemia. In the United States in 2010, an estimated 215,000 persons aged ≤ 19 years had diagnosed diabetes. Medical care for diabetes has improved considerably in recent decades, leading to improved survival rates. However, recent trends in diabetes death rates among youths aged <10 years and 10-19 years in the United States have not been reported. To assess these trends, CDC analyzed data from the National Vital Statistics System for deaths in the United States with diabetes listed as the underlying cause during 1968-2009. This report highlights the results of that analysis, which found that diabetes-related mortality decreased 61%, from an annual rate of 2.69 per million for the period 1968-1969 to a rate of 1.05 per million in 2008-2009. The percentage decrease was greater among youths aged <10 years (78%) than among youths aged 10-19 years (52%). These findings demonstrate improvements in diabetes mortality among youths but also indicate a need for continued improvement in diabetes diagnosis and care. PMID:23114253

  14. Advanced glycation end products (AGEs) and their receptor (RAGE) system in diabetic retinopathy.

    PubMed

    Yamagishi, Sho-ichi; Nakamura, Kazuo; Matsui, Takanori

    2006-03-01

    Vascular complications are a leading cause of blindness, end-stage renal failure, a variety of neuropathies and accelerated atherosclerosis, which could account for disabilities and high mortality rates in patients with diabetes. There is a growing body of evidence that formation and accumulation of advanced glycation end products (AGEs) progress during normal aging, and at an extremely accelerated rate in diabetes, thus being involved in the pathogenesis of diabetic vascular complications. Furthermore, the interaction by AGEs of their receptor, RAGE, activates down-stream signaling and evokes inflammatory responses in vascular wall cells. Therefore, inhibition of AGE formation or blockade of the RAGE signaling may be a promising target for therapeutic intervention to prevent diabetic vascular complications. This review discusses the molecular mechanisms of diabetic retinopathy, especially focusing on the AGE-RAGE system. Several types of inhibitors of the AGE-RAGE system and their therapeutic implications are also reviewed here. PMID:16712466

  15. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  16. Evaluation of anti-diabetic activity of Glucova Active Tablet on Type I and Type II diabetic model in rats

    PubMed Central

    Soni, Hardik; Patel, Sejal; Patel, Ghanshyam; Paranjape, Archana

    2014-01-01

    Background: Glucova Active Tablet is a proprietary Ayurvedic formulation with ingredients reported for anti-hyperglycemic, anti-hyperlipidemic activity and antioxidant properties. Objective: Evaluation of anti-diabetic activity of Glucova Active Tablet on Type I and Type II diabetic model in rats. Materials and Methods: Experimental Type I diabetes was induced in 24 albino rats with intra-peritoneal injection of streptozotocin (50 mg/kg). Type II diabetes was induced in 18 albino rats by intra-peritoneal injection of streptozotocin (35 mg/kg) along with high fat diet. The rats were divided in 5 groups for Type I model and 4 groups for Type II model. Normal control group was kept common for both experimental models. Glucova Active Tablet (108 mg/kg) treatment was provided for 28 days twice daily orally. Fasting blood glucose level, serum lipid profile and liver anti-oxidant parameters like superoxide dismutase and reduced glutathione was carried out in both experimental models. Pancreas histopathology was also done. Statistical analysis were done by ‘analysis of variance’ test followed by post hoc Tukey's test, with significant level of P < 0.05. Results and Discussion: Glucova Active Tablet showed significant effect on fasting blood glucose level. It also showed significant alteration in lipid profile and antioxidant parameters. Histopathology study revealed restoration of beta cells in pancreas in Glucova Active Tablet treated group. Conclusion: Finding of this study concludes that Glucova Active Tablet has shown promising anti-diabetic activity in Type I and Type II diabetic rats. It was also found showing good anti-hyperlipidemic activity and anti-oxidant property. PMID:24948860

  17. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications.

    PubMed

    Nagai, Ryoji; Murray, David B; Metz, Thomas O; Baynes, John W

    2012-03-01

    This article outlines evidence that advanced glycation end product (AGE) inhibitors and breakers act primarily as chelators, inhibiting metal-catalyzed oxidation reactions that catalyze AGE formation. We then present evidence that chelation is the most likely mechanism by which ACE inhibitors, angiotensin receptor blockers, and aldose reductase inhibitors inhibit AGE formation in diabetes. Finally, we note several recent studies demonstrating therapeutic benefits of chelators for diabetic cardiovascular and renal disease. We conclude that chronic, low-dose chelation therapy deserves serious consideration as a clinical tool for prevention and treatment of diabetes complications.

  18. Anti-diabetic activity of traditional Indian gold containing preparation: Shadguna Balijarita Makaradhwaja on streptozotocin induced diabetic rats

    PubMed Central

    Khedekar, Sanjay; Rukkudin, Galib; Ravishankar, Basavaiah; Prajapati, Pradeepkumar

    2016-01-01

    Background: Makaradhwaja a gold containing mercurial preparation used for diabetes mellitus in indigenous system of medicine. It is a popular aphrodisiac and rejuvenator traditional medicine. It is prepared by using processed gold, mercury and sulfur in different ratios by applying intermittent heating pattern in Valuka Yantra. Objectives: The aim of the study was to evaluate anti-diabetic effect of Shadguna Balijarita Makaradhwaja (SBM) on streptozotocin (STZ) induced diabetic rats. Materials and Methods: Diabetes was induced to normal rats by injecting STZ in dose 40 mg/kg. Powdered SBM and dried extract of Tinospora cordifolia were mixed with honey and administered orally for 20 days at dose 2.63 mg/kg and 42.34 mg/kg body weight, respectively. The effects of treatment on body weight changes and blood glucose levels were quantified on day 1, 5, 10, 15 and 21 of the experiments. On the 21st day, animals were sacrificed and gross histopathological changes in liver, kidney and pancreas were illustrated. Blood sugar level, glyacated hemoglobin, blood urea, serum cholesterol, serum creatinine, serum triglyceride and serum protein were estimated with standard methods. The study was conducted in the year 2011. Results: Test drug observed significant decrease (P < 0.001) in glyacated hemoglobin level compared to diabetic control rats. Blood sugar level of test drug group shown a significant decrease (279.11 ± 57.95) compared with diabetic rats. Conclusion: The present study demonstrates that SBM and dried extract of T. cordifolia with honey significantly reduces the blood glucose level and shows anti-diabetic effect. PMID:27104037

  19. Activation of Retinoid Receptor-Mediated Signaling Ameliorates Diabetes-Induced Cardiac Dysfunction in Zucker Diabetic Rats

    PubMed Central

    Guleria, Rakeshwar S.; Singh, Amar B.; Nizamutdinova, Irina T.; Souslova, Tatiana; Mohammad, Amin A.; Kendall, Jonathan A.; Baker, Kenneth M.; Pan, Jing

    2013-01-01

    Diabetic cardiomyopathy (DCM) is a significant contributor to the morbidity and mortality associated with diabetes and metabolic syndrome. Retinoids, through activation of retinoic acid receptor (RAR) and retinoid×receptor (RXR), have been linked to control of glucose and lipid homeostasis, with effects on obesity and diabetes. However, the functional role of RAR and RXR in the development of DCM remains unclear. Zucker diabetic fatty (ZDF) and lean rats were treated with Am580 (RARα agonist) or LGD1069 (RXR agonist) for 16 weeks, and cardiac function and metabolic alterations were determined. Hyperglycemia, hyperlipidemia and insulin resistance were observed in ZDF rats. Diabetic cardiomyopathy was characterized in ZDF rats by increased oxidative stress, apoptosis, fibrosis, inflammation, activation of MAP kinases and NF-κB signaling and diminished Akt phosphorylation, along with decreased glucose transport and increased cardiac lipid accumulation, and ultimately diastolic dysfunction. Am580 and LGD1069 attenuated diabetes-induced cardiac dysfunction and the pathological alterations, by improving glucose tolerance and insulin resistance; facilitating Akt activation and glucose utilization, and attenuating oxidative stress and interrelated MAP kinase and NF-κB signaling pathways. Am580 inhibited body weight gain, attenuated the increased cardiac fatty acid uptake, β-oxidation and lipid accumulation in the hearts of ZDF rats. However, LGD1069 promoted body weight gain, hyperlipidemia and cardiac lipid accumulation. In conclusion, our data suggest that activation of RAR and RXR may have therapeutic potential in the treatment of diabetic cardiomyopathy. However, further studies are necessary to clarify the role of RAR and RXR in the regulation of lipid metabolism and homeostasis. PMID:23395853

  20. Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats.

    PubMed

    Guleria, Rakeshwar S; Singh, Amar B; Nizamutdinova, Irina T; Souslova, Tatiana; Mohammad, Amin A; Kendall, Jonathan A; Baker, Kenneth M; Pan, Jing

    2013-04-01

    Diabetic cardiomyopathy (DCM) is a significant contributor to the morbidity and mortality associated with diabetes and metabolic syndrome. Retinoids, through activation of retinoic acid receptor (RAR) and retinoid x receptor (RXR), have been linked to control glucose and lipid homeostasis, with effects on obesity and diabetes. However, the functional role of RAR and RXR in the development of DCM remains unclear. Zucker diabetic fatty (ZDF) and lean rats were treated with Am580 (RARα agonist) or LGD1069 (RXR agonist) for 16 weeks, and cardiac function and metabolic alterations were determined. Hyperglycemia, hyperlipidemia and insulin resistance were observed in ZDF rats. Diabetic cardiomyopathy was characterized in ZDF rats by increased oxidative stress, apoptosis, fibrosis, inflammation, activation of MAP kinases and NF-κB signaling and diminished Akt phosphorylation, along with decreased glucose transport and increased cardiac lipid accumulation, and ultimately diastolic dysfunction. Am580 and LGD1069 attenuated diabetes-induced cardiac dysfunction and the pathological alterations, by improving glucose tolerance and insulin resistance; facilitating Akt activation and glucose utilization, and attenuating oxidative stress and interrelated MAP kinase and NF-κB signaling pathways. Am580 inhibited body weight gain, attenuated the increased cardiac fatty acid uptake, β-oxidation and lipid accumulation in the hearts of ZDF rats. However, LGD1069 promoted body weight gain, hyperlipidemia and cardiac lipid accumulation. In conclusion, our data suggest that activation of RAR and RXR may have therapeutic potential in the treatment of diabetic cardiomyopathy. However, further studies are necessary to clarify the role of RAR and RXR in the regulation of lipid metabolism and homeostasis.

  1. Diabetes-induced alterations in tissue collagen and carboxymethyllysine in rat kidneys: Association with increased collagen-degrading proteinases and amelioration by Cu(II)-selective chelation.

    PubMed

    Brings, Sebastian; Zhang, Shaoping; Choong, Yee S; Hogl, Sebastian; Middleditch, Martin; Kamalov, Meder; Brimble, Margaret A; Gong, Deming; Cooper, Garth J S

    2015-08-01

    Advanced glycation end-products (AGEs) comprise a group of non-enzymatic post-translational modifications of proteins and are elevated in diabetic tissues. AGE-modification impairs the digestibility of collagen in vitro but little is known about its relation to collagen-degrading proteinases in vivo. N(ε)-carboxymethyllysine (CML) is a stable AGE that forms on lysyl side-chains in the presence of glucose, probably via a transition metal-catalysed mechanism. Here, rats with streptozotocin-induced diabetes and non-diabetic controls were treated for 8weeks with placebo or the Cu(II)-selective chelator, triethylenetetramine (TETA), commencing 8weeks after disease induction. Actions of diabetes and drug treatment were measured on collagen and collagen-degrading proteinases in kidney tissue. The digestibility and CML content of collagen, and corresponding levels of mRNAs and collagen, were related to changes in collagen-degrading-proteinases. Collagen-degrading proteinases, cathepsin L (CTSL) and matrix metalloproteinase-2 (MMP-2) were increased in diabetic rats. CTSL-levels correlated strongly and positively with increased collagen-CML levels and inversely with decreased collagen digestibility in diabetes. The collagen-rich mesangium displayed a strong increase of CTSL in diabetes. TETA treatment normalised kidney collagen content and partially normalised levels of CML and CTSL. These data provide evidence for an adaptive proteinase response in diabetic kidneys, affected by excessive collagen-CML formation and decreased collagen digestibility. The normalisation of collagen and partial normalisation of CML- and CTSL-levels by TETA treatment supports the involvement of Cu(II) in CML formation and altered collagen metabolism in diabetic kidneys. Cu(II)-chelation by TETA may represent a treatment option to rectify collagen metabolism in diabetes independent of alterations in blood glucose levels.

  2. Inhibition of α-Glucosidase by Thiosulfinate as a Target for Glucose Modulation in Diabetic Rats

    PubMed Central

    2016-01-01

    Postprandial hyperglycemia is a predisposing factor for vascular dysfunction and organ damage. α-glucosidase is a hydrolytic enzyme that increases the glucose absorption rate and subsequently elevates blood glucose levels. Garlic (Allium sativum L.) is a rich source of several phytonutrients, including thiosulfinate (THIO). The aim of this study was to evaluate the ability of THIO, a potent inhibitor of intestinal α-glucosidase, to reduce postprandial blood glucose. Male albino rats were randomly assigned to five different groups (n = 10/group). Group 1 served as the control group. Groups 2–5 were injected intraperitoneally with a single dose of streptozotocin (STZ) to induce diabetes. Group 2 comprised untreated diabetic rats. Groups 3 and 4 contained diabetic rats that were given THIO orally (20 mg/kg body weight/day and 40 mg/kg body weight/day, resp.). Group 5 was the positive control having diabetic rats treated orally with acarbose (10 mg/kg body weight/day; positive control). Diabetic rats treated with THIO displayed a significant blood glucose reduction (p < 0.001 and < 0.01 by analysis of variance, resp.) and a significant elevation in insulin compared with that of untreated rats. THIO is an effective noncompetitive intestinal α-glucosidase inhibitor that promotes hypoglycemic action (p < 0.001) in STZ-injected rats. THIO is a promising agent for the management of postprandial hyperglycemia. PMID:27051452

  3. Protection against Myocardial Ischemia-Reperfusion Injury at Onset of Type 2 Diabetes in Zucker Diabetic Fatty Rats Is Associated with Altered Glucose Oxidation

    PubMed Central

    Povlsen, Jonas Agerlund; Løfgren, Bo; Dalgas, Christian; Birkler, Rune Isak Dupont; Johannsen, Mogens; Støttrup, Nicolaj Brejnholt; Bøtker, Hans Erik

    2013-01-01

    Background Inhibition of glucose oxidation during initial reperfusion confers protection against ischemia-reperfusion (IR) injury in the heart. Mitochondrial metabolism is altered with progression of type 2 diabetes (T2DM). We hypothesized that the metabolic alterations present at onset of T2DM induce cardioprotection by metabolic shutdown during IR, and that chronic alterations seen in late T2DM cause increased IR injury. Methods Isolated perfused hearts from 6 (prediabetic), 12 (onset of T2DM) and 24 (late T2DM) weeks old male Zucker diabetic fatty rats (ZDF) and their age-matched heterozygote controls were subjected to 40 min ischemia/120 min reperfusion. IR injury was assessed by TTC-staining. Myocardial glucose metabolism was evaluated by glucose tracer kinetics (glucose uptake-, glycolysis- and glucose oxidation rates), myocardial microdialysis (metabolomics) and tissue glycogen measurements. Results T2DM altered the development in sensitivity towards IR injury compared to controls. At late diabetes ZDF hearts suffered increased damage, while injury was decreased at onset of T2DM. Coincident with cardioprotection, oxidation of exogenous glucose was decreased during the initial and normalized after 5 minutes of reperfusion. Metabolomic analysis of citric acid cycle intermediates demonstrated that cardioprotection was associated with a reversible shutdown of mitochondrial glucose metabolism during ischemia and early reperfusion at onset of but not at late type 2 diabetes. Conclusions The metabolic alterations of type 2 diabetes are associated with protection against IR injury at onset but detrimental effects in late diabetes mellitus consistent with progressive dysfunction of glucose oxidation. These findings may explain the variable efficacy of cardioprotective interventions in individuals with type 2 diabetes. PMID:23704975

  4. Baking, ageing, diabetes: a short history of the Maillard reaction.

    PubMed

    Hellwig, Michael; Henle, Thomas

    2014-09-22

    The reaction of reducing carbohydrates with amino compounds described in 1912 by Louis-Camille Maillard is responsible for the aroma, taste, and appearance of thermally processed food. The discovery that non-enzymatic conversions also occur in organisms led to intensive investigation of the pathophysiological significance of the Maillard reaction in diabetes and ageing processes. Dietary Maillard products are discussed as "glycotoxins" and thus as a nutritional risk, but also increasingly with regard to positive effects in the human body. In this Review we give an overview of the most important discoveries in Maillard research since it was first described and show that the complex reaction, even after over one hundred years, has lost none of its interdisciplinary actuality. PMID:25044982

  5. Effects of isoeugenol on oxidative stress pathways in normal and streptozotocin-induced diabetic rats.

    PubMed

    Rauscher, F M; Sanders, R A; Watkins, J B

    2001-01-01

    Because some complications of diabetes mellitus may result from oxidative damage, we investigated the effects of subacute treatment (10mg/kg/day, intraperitoneal [ip], for 14 days) with the antioxidant isoeugenol on the oxidant defense system in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free radical-detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with isoeugenol reversed diabetic effects on hepatic glutathione peroxidase activity and on oxidized glutathione concentration in brain. Treatment with the lipophilic compound isoeugenol also decreased lipid peroxidation in both liver and heart of normal animals and decreased hepatic oxidized glutathione content in both normal and diabetic rats. Some effects of isoeugenol treatment, such as decreased activity of hepatic superoxide dismutase and glutathione reductase in diabetic rats, were unrelated to the oxidative effects of diabetes. In heart of diabetic animals, isoeugenol treatment resulted in an exacerbation of already elevated activities of catalase. These results indicate that isoeugenol therapy may not reverse diabetic oxidative stress in an overall sense.

  6. URB597, an inhibitor of fatty acid amide hydrolase, reduces hyperalgesia in diabetic rats.

    PubMed

    Hasanein, Parisa; Parviz, Mohsen; Keshavarz, Mansoor; Roohbakhsh, Ali

    2009-06-01

    Diabetic rats display increased pain responses after injection of formalin into the paw or thermal stimulation of the tail, suggesting the presence of hyperalgesia. In this study, we investigated the efficacy of URB597 (0.1, 0.3, and 0.5 mg/kg, i.p.), an inhibitor of endocannabinoids metabolism, on 2 models of experimental hyperalgesia in streptozotocin (STZ)-induced diabetic rats. Animals were divided into control, URB597-treated control (0.1, 0.3, and 0.5 mg/kg), diabetic, and URB597-treated diabetic (0.1, 0.3, and 0.5 mg/kg) groups. Formalin and tail-flick tests were performed 4 and 8 weeks after the onset of hyperglycemia, respectively. Diabetes caused significant hyperalgesia during these tests. URB597 (0.3 and 0.5 mg/kg) reversed chemical and thermal hyperalgesia in diabetic rats. Administration of URB597 at a dose of 0.1 mg/kg did not alter pain-related behaviors in control and diabetic groups compared with those of the respective control groups. URB597 treatment did not affect body weight or plasma glucose level of treated animals compared with nontreated animals. This study shows that increasing endocannabinoid neurotransmission with URB597 displays efficacy in chemical and thermal models of diabetic hyperalgesia. It also suggests that URB597 is a promising tool for treatment of painful diabetic neuropathy.

  7. Protective effect of yacon leaves decoction against early nephropathy in experimental diabetic rats.

    PubMed

    Honoré, Stella M; Cabrera, Wilfredo M; Genta, Susana B; Sánchez, Sara S

    2012-05-01

    Nephropathy is the most common cause of morbidity and mortality in diabetic patients. Prevention of this complication has a major relevance. Smallanthus sonchifolius (yacon) leaves have been shown to ameliorate hyperglycemia in streptozotocin-induced diabetic rats. We examined the beneficial effects of yacon leaves decoction on diabetic nephropathy and explored the possible underlying action mechanism. Streptozotocin-diabetic rats were orally administered 10% yacon leaves water decoction (70mg dry extract/kg body weight) once a day for 4weeks. Biochemical parameters in blood and urine were analyzed and immunohistochemistry staining, western immunoblotting and qRT-PCR were assessed. Yacon decoction significantly decreased high blood glucose level in diabetic rats and improved insulin production. Diabetic-dependent alterations in urinary albumin excretion, creatinine clearance, kidney hypertrophy and basement membrane thickening were attenuated by yacon decoction. These findings were associated with a marked decrease in TGF-β1/Smad2/3 signaling. The expression of molecular markers of diabetic nephropathy such as collagen IV, laminin-1, fibronectin and collagen III were also diminished in the yacon-treated group compared to control diabetic group. These results suggest that yacon leaves decoction is a protective agent against renal damage in diabetic nephropathy, whose action can be mediated by TGF-β/Smads signals. PMID:22406203

  8. Nigella sativa seed decreases endothelial dysfunction in streptozotocin-induced diabetic rat aorta

    PubMed Central

    Abbasnezhad, Abbasali; Niazmand, Saeed; Mahmoudabady, Maryam; Soukhtanloo, Mohammad; Rezaee, Seyed Abdolrahim; Mousavi, Seyed Mojtaba

    2016-01-01

    Objective: Diabetes is an important risk factor for cardiovascular events. The great percent of morbidity in patients with diabetes is due to endothelial dysfunction. The present study investigated the effects of hydroalcholic extract of Nigella sativa (N. sativa) on contractile and dilatation response of isolated aorta in streptozotocin (STZ)-induced diabetic rat. Materials and Methods: Rats were divided into six experimental groups (control, untreated STZ-diabetic, and N. sativa hydroalcholic extract or metformin-treated diabetic rats). Treated rats received N. sativa extract (100, 200, and 400 mg/kg) or metformin (300 mg/kg) by gavage, daily for 6 weeks. Isolated rat thoracic rings were mounted in an organ bath system then contractile and dilatation responses induced by phenylephrine (PE), acetylcholine (ACh), potassium chloride (KCl), and sodium nitroprusside (SNP) were evaluated in different situations. Results: The lower concentrations of N. sativa seed extract (DE 100 and DE 200) and metformin significantly reduced the contractile responses to higher concentrations of PE (10-6 - 10-5 M) compared to diabetic group (p<0.05 to p<0.01). The relaxation response to Ach 10-8 M, was increased in DE 200 and metformin groups compared to diabetic group (p<0.05). The relaxation responses to Ach 10-7 - 10-5 M were significantly higher in all treated groups compared to diabetic group (p<0.05 to p<0.001). Conclusion: Chronic administration of N. sativa seed extract has a significant hypoglycemic effect and improves aortic reactivity to vasoconstrictor and vasodilator agents in STZ-induced diabetic rats. PMID:27247923

  9. Tinospora cordifolia consumption ameliorates changes in kidney chondroitin sulphate/dermatan sulphate in diabetic rats

    PubMed Central

    Joladarashi, Darukeshwara; Chilkunda, Nandini D.; Salimath, Paramahans V.

    2012-01-01

    Diabetes is known to alter kidney extracellular matrix (ECM) components. Chondroitin sulphate (CS)/dermatan sulphate (DS), an ECM component, which plays an essential role in kidney is altered during diabetes. The focus of this study has been to examine the effect of Tinospora cordifolia (TC) consumption, a potent plant widely used to treat diabetes, on kidney CS/DS. Experimentally induced diabetic rats were fed with diet containing TC at 2·5 and 5 % levels and the effect of it on kidney CS/DS was examined. The CS/DS content and CS:heparan sulphate ratio which was decreased during diabetic condition were ameliorated in TC-fed groups. Disaccharide composition analysis of CS/DS by HPLC showed that decreases in ‘E’ units and degree of sulphation were modulated in 5 % TC-fed groups. Apparent molecular weight of purified CS/DS from the control rat kidney was found to be 38 kDa which was decreased to 29 kDa in diabetic rat kidney. Rats in 5 % TC-fed groups showed chain length of 38 kDa akin to control rats. Expression of chondroitin 4-O-sulfotransferase-1, dermatan 4-O-sulfotransferase-1 and N-acetylgalactosamine 4 sulphate 6-O-sulfotransferase, enzymes involved in the synthesis of ‘E’ units which was reduced during diabetic condition, was significantly contained in the 5 % TC-fed group. Purified CS/DS from 5 % TC-fed group was able to bind higher amounts of ECM components, namely type IV collagen and laminin, when compared with untreated diabetic rats. The present results demonstrate that consumption of a diet containing TC at the 5 % level modulates changes in kidney CS/DS which were due to diabetes. PMID:25191554

  10. Response of thymus lymphocytes to streptozotocin-induced diabetes and exogenous vitamin C administration in rats.

    PubMed

    Ozerkan, Dilşad; Ozsoy, Nesrin; Cebesoy, Suna

    2014-12-01

    Diabetes causes oxidative stress, which in turn generates excessive free radicals resulting in cellular damage. Vitamin C is an antioxidant that protects tissues and organs from oxidative stress. The thymus is one of the most important lymphoid organs, which regulates T-lymphocyte proliferation and maturation. The aim of this study is to investigate the protective effects of vitamin C on the thymus of streptozotoci