Science.gov

Sample records for aged human skin

  1. Skin mirrors human aging.

    PubMed

    Nikolakis, Georgios; Makrantonaki, Evgenia; Zouboulis, Christos C

    2013-12-01

    Abstract Aged skin exhibits disturbed lipid barrier, angiogenesis, production of sweat, immune functions, and calcitriol synthesis as well as the tendency towards development of certain benign or malignant diseases. These complex biological processes comprise endogenous and exogenous factors. Ethnicity also markedly influences the phenotype of skin aging. The theories of cellular senescence, telomere shortening and decreased proliferative capacity, mitochondrial DNA single mutations, the inflammation theory, and the free radical theory try to explain the biological background of the global aging process, which is mirrored in the skin. The development of advanced glycation end-products and the declining hormonal levels are major factors influencing intrinsic aging. Chronic photodamage of the skin is the prime factor leading to extrinsic skin aging. The deterioration of important skin functions, due to intrinsic and extrinsic aging, leads to clinical manifestations, which mirror several internal age-associated diseases such as diabetes, arterial hypertension and malignancies.

  2. [Experimental models of human skin aging].

    PubMed

    Nikolakis, G; Zoschke, C; Makrantonaki, E; Hausmann, C; Schäfer-Korting, M; Zouboulis, C C

    2016-02-01

    The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research.

  3. [Experimental models of human skin aging].

    PubMed

    Nikolakis, G; Zoschke, C; Makrantonaki, E; Hausmann, C; Schäfer-Korting, M; Zouboulis, C C

    2016-02-01

    The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research. PMID:26743051

  4. Melatonin and human skin aging

    PubMed Central

    Kleszczynski, Konrad; Fischer, Tobias W.

    2012-01-01

    Like the whole organism, skin follows the process of aging during life-time. Additional to internal factors, several environmental factors, such as solar radiation, considerably contribute to this process. While fundamental mechanisms regarding skin aging are known, new aspects of anti-aging agents such as melatonin are introduced. Melatonin is a hormone produced in the glandula pinealis that follows a circadian light-dependent rhythm of secretion. It has been experimentally implicated in skin functions such as hair cycling and fur pigmentation, and melatonin receptors are expressed in many skin cell types including normal and malignant keratinocytes, melanocytes and fibroblasts. It possesses a wide range of endocrine properties as well as strong antioxidative activity. Regarding UV-induced solar damage, melatonin distinctly counteracts massive generation of reactive oxygen species, mitochondrial and DNA damage. Thus, there is considerable evidence for melatonin to be an effective anti-skin aging compound, and its various properties in this context are described in this review. PMID:23467217

  5. Stiffening of Human Skin Fibroblasts with Age

    PubMed Central

    Schulze, Christian; Wetzel, Franziska; Kueper, Thomas; Malsen, Anke; Muhr, Gesa; Jaspers, Soeren; Blatt, Thomas; Wittern, Klaus-Peter; Wenck, Horst; Käs, Josef A.

    2010-01-01

    Changes in mechanical properties are an essential characteristic of the aging process of human skin. Previous studies attribute these changes predominantly to the altered collagen and elastin organization and density of the extracellular matrix. Here, we show that individual dermal fibroblasts also exhibit a significant increase in stiffness during aging in vivo. With the laser-based optical cell stretcher we examined the viscoelastic biomechanics of dermal fibroblasts isolated from 14 human donors aged 27 to 80. Increasing age was clearly accompanied by a stiffening of the investigated cells. We found that fibroblasts from old donors exhibited an increase in rigidity of ∼60% with respect to cells of the youngest donors. A FACS analysis of the content of the cytoskeletal polymers shows a shift from monomeric G-actin to polymerized, filamentous F-actin, but no significant changes in the vimentin and microtubule content. The rheological analysis of fibroblast-populated collagen gels demonstrates that cell stiffening directly results in altered viscoelastic properties of the collagen matrix. These results identify a new mechanism that may contribute to the age-related impairment of elastic properties in human skin. The altered mechanical behavior might influence cell functions involving the cytoskeleton, such as contractility, motility, and proliferation, which are essential for reorganization of the extracellular matrix. PMID:20959083

  6. Age-related differences in human skin proteoglycans

    PubMed Central

    Carrino, David A; Calabro, Anthony; Darr, Aniq B; Dours-Zimmermann, Maria T; Sandy, John D; Zimmermann, Dieter R; Sorrell, J Michael; Hascall, Vincent C; Caplan, Arnold I

    2011-01-01

    Previous work has shown that versican, decorin and a catabolic fragment of decorin, termed decorunt, are the most abundant proteoglycans in human skin. Further analysis of versican indicates that four major core protein species are present in human skin at all ages examined from fetal to adult. Two of these are identified as the V0 and V1 isoforms, with the latter predominating. The other two species are catabolic fragments of V0 and V1, which have the amino acid sequence DPEAAE as their carboxyl terminus. Although the core proteins of human skin versican show no major age-related differences, the glycosaminoglycans (GAGs) of adult skin versican are smaller in size and show differences in their sulfation pattern relative to those in fetal skin versican. In contrast to human skin versican, human skin decorin shows minimal age-related differences in its sulfation pattern, although, like versican, the GAGs of adult skin decorin are smaller than those of fetal skin decorin. Analysis of the catabolic fragments of decorin from adult skin reveals the presence of other fragments in addition to decorunt, although the core proteins of these additional decorin catabolic fragments have not been identified. Thus, versican and decorin of human skin show age-related differences, versican primarily in the size and the sulfation pattern of its GAGs and decorin in the size of its GAGs. The catabolic fragments of versican are detected at all ages examined, but appear to be in lower abundance in adult skin compared with fetal skin. In contrast, the catabolic fragments of decorin are present in adult skin, but are virtually absent from fetal skin. Taken together, these data suggest that there are age-related differences in the catabolism of proteoglycans in human skin. These age-related differences in proteoglycan patterns and catabolism may play a role in the age-related changes in the physical properties and injury response of human skin. PMID:20947661

  7. Oxidative stress in aging human skin.

    PubMed

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-04-21

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.

  8. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  9. Electrical properties of human skin as aging biomarkers.

    PubMed

    Simić-Krstić, Jovana B; Kalauzi, Aleksandar J; Ribar, Srdjan N; Matija, Lidija R; Misevic, Gradimir N

    2014-09-01

    A non-invasive bioimpedance spectroscopy (BIS) and Cole-Cole impedance model parameters (R0, R∞, τ and α) were used to analyze electrical properties of intact and stripped human skin for both gender subjects divided into younger and older age groups. R0, R∞ and τ significantly increased while α significantly decreased with age in stripped skin for both genders (p<0.031). Using pooled data with respect to age, gender and skin stripping, R0, R∞ and τ values were shown to increase with age (p<0.0034), R0, τ and α were different between genders (p<0.024) and R0, R∞ and τ decreased with skin stripping (p<0.000008). All of four Cole-Cole parameters were age dependent with specific differences observed for genders and intact and stripped skin layers. Therefore, Cole-Cole parameters, obtained by non-invasive BIS measurements, are a new type of age dependent biomarkers.

  10. Skin Aging

    MedlinePlus

    ... too. Sunlight is a major cause of skin aging. You can protect yourself by staying out of ... person has smoked. Many products claim to revitalize aging skin or reduce wrinkles, but the Food and ...

  11. Glycated Reconstructed Human Skin as a Platform to Study the Pathogenesis of Skin Aging.

    PubMed

    Pennacchi, Paula Comune; de Almeida, Maíra Estanislau Soares; Gomes, Octávio Luís Alves; Faião-Flores, Fernanda; de Araújo Crepaldi, Maria Clara; Dos Santos, Marinilce Fagundes; de Moraes Barros, Silvia Berlanga; Maria-Engler, Silvya Stuchi

    2015-09-01

    The advanced glycation end products (AGEs) of proteins are common factors in the pathophysiology of a number of disorders related to aging. The skin generation of AGEs occurs mainly through nonenzymatic glycation reactions of extracellular matrix (ECM) proteins in the dermis. The AGEs have been touted as one of the factors responsible for healing impairment and loss of elasticity of healing skin, affecting growth, differentiation, and cellular motility, as well as cytokines response, metalloproteinases expression, and vascular hemostasis. In this study, we generated an in vitro full-thickness reconstructed skin based on a glycated collagen matrix dermal compartment to evaluate the effects of glycation on dermal ECM and ultimately on the epidermis. Epidermal differentiation and stratification patterns and the glycation-induced ECM changes were evaluated by histology, immunohistochemistry, and mRNA levels. In this study, we reported for the first time that changes in the dermal matrix caused by collagen I in vitro glycation processes also affect the epidermal compartment. We demonstrated that glycation of collagen induces expression of carboxymethyllysine in dermal and epidermal compartments and, consequently, an aging phenotype consisting of poor stratification of epidermal layers and vacuolization of keratinocyte cytoplasm. Increased expression of cell-cell adhesion markers, such as desmoglein and E-cadherin in glycated skins, is observed in the stratum spinosum, as well as an increased compression of dermal collagen matrix. We also submitted our 3D model of reconstructed glycated skin to screening of anti-AGE molecules, such as aminoguanidine, which prevented the glycated morphological status. Controlled human studies investigating the effects of anti-AGE strategies against skin aging are largely missing. In this context, we proposed the use of skin equivalents as an efficient model to investigate cellular interactions and ECM changes in the aging skin, and to

  12. Glycated Reconstructed Human Skin as a Platform to Study the Pathogenesis of Skin Aging.

    PubMed

    Pennacchi, Paula Comune; de Almeida, Maíra Estanislau Soares; Gomes, Octávio Luís Alves; Faião-Flores, Fernanda; de Araújo Crepaldi, Maria Clara; Dos Santos, Marinilce Fagundes; de Moraes Barros, Silvia Berlanga; Maria-Engler, Silvya Stuchi

    2015-09-01

    The advanced glycation end products (AGEs) of proteins are common factors in the pathophysiology of a number of disorders related to aging. The skin generation of AGEs occurs mainly through nonenzymatic glycation reactions of extracellular matrix (ECM) proteins in the dermis. The AGEs have been touted as one of the factors responsible for healing impairment and loss of elasticity of healing skin, affecting growth, differentiation, and cellular motility, as well as cytokines response, metalloproteinases expression, and vascular hemostasis. In this study, we generated an in vitro full-thickness reconstructed skin based on a glycated collagen matrix dermal compartment to evaluate the effects of glycation on dermal ECM and ultimately on the epidermis. Epidermal differentiation and stratification patterns and the glycation-induced ECM changes were evaluated by histology, immunohistochemistry, and mRNA levels. In this study, we reported for the first time that changes in the dermal matrix caused by collagen I in vitro glycation processes also affect the epidermal compartment. We demonstrated that glycation of collagen induces expression of carboxymethyllysine in dermal and epidermal compartments and, consequently, an aging phenotype consisting of poor stratification of epidermal layers and vacuolization of keratinocyte cytoplasm. Increased expression of cell-cell adhesion markers, such as desmoglein and E-cadherin in glycated skins, is observed in the stratum spinosum, as well as an increased compression of dermal collagen matrix. We also submitted our 3D model of reconstructed glycated skin to screening of anti-AGE molecules, such as aminoguanidine, which prevented the glycated morphological status. Controlled human studies investigating the effects of anti-AGE strategies against skin aging are largely missing. In this context, we proposed the use of skin equivalents as an efficient model to investigate cellular interactions and ECM changes in the aging skin, and to

  13. CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts.

    PubMed

    Quan, Taihao; Qin, Zhaoping; Robichaud, Patrick; Voorhees, John J; Fisher, Gary J

    2011-08-01

    Dermal connective tissue collagen is the major structural protein in skin. Fibroblasts within the dermis are largely responsible for collagen production and turnover. We have previously reported that dermal fibroblasts, in aged human skin in vivo, express elevated levels of CCN1, and that CCN1 negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation (Quan et al. Am J Pathol 169:482-90, 2006, J Invest Dermatol 130:1697-706, 2010). In further investigations of CCN1 actions, we find that CCN1 alters collagen homeostasis by promoting expression of specific secreted proteins, which include matrix metalloproteinases and proinflammatory cytokines. We also find that CCN1-induced secretory proteins are elevated in aged human skin in vivo. We propose that CCN1 induces an "Age-Associated Secretory Phenotype", in dermal fibroblasts, which mediates collagen reduction and fragmentation in aged human skin.

  14. Attenuated noradrenergic sensitivity during local cooling in aged human skin

    PubMed Central

    Thompson, Caitlin S; Holowatz, Lacy A; Kenney, W. Larry

    2005-01-01

    Reflex-mediated cutaneous vasoconstriction (VC) is impaired in older humans; however, it is unclear whether this blunted VC also occurs during local cooling, which mediates VC through different mechanisms. We tested the hypothesis that the sensitization of cutaneous vessels to noradrenaline (NA) during direct skin cooling seen in young skin is blunted in aged skin. In 11 young (18–30 years) and 11 older (62–76 years) men and women, skin blood flow was monitored at two forearm sites with laser Doppler (LD) flowmetry while local skin temperature was cooled and clamped at 24°C. Cutaneous vascular conductance (CVC; LD flux/mean arterial pressure) was expressed as percentage change from baseline (%ΔCVCbase). At one site, five doses of NA (10−10–10−2m) were sequentially infused via intradermal microdialysis during cooling while the other 24°C site served as control (Ringer solution + cooling). At control sites, VC due to cooling alone was similar in young versus older (−54 ± 5 versus −56 ± 3%ΔCVCbase, P= 0.46). In young, NA infusions induced additional dose-dependent VC (10−8, 10−6, 10−4 and 10−2m: −70 ± 2, −72 ± 3, −78 ± 3 and −79 ± 4%ΔCVCbase; P < 0.05 versus control). In older subjects, further VC did not occur until the highest infused dose of NA (10−2m: −70 ± 5%ΔCVCbase; P < 0.05 versus control). When cutaneous arterioles are sensitized to NA by direct cooling, young skin exhibits the capacity to further constrict to NA in a dose-dependent manner. However, older skin does not display enhanced VC capacity until treated with saturating doses of NA, possibly due to age-associated decrements in Ca2+ availability or α2C-adrenoceptor function. PMID:15705648

  15. Chronologic and actinically induced aging in human facial skin

    SciTech Connect

    Gilchrest, B.A.; Szabo, G.; Flynn, E.; Goldwyn, R.M.

    1983-06-01

    Clinical and histologic stigmata of aging are much more prominent in habitually sun-exposed skin than in sun-protected skin, but other possible manifestations of actinically induced aging are almost unexplored. We have examined the interrelation of chronologic and actinic aging using paired preauricular (sun-exposed) and postauricular (sun-protected) skin specimens. Keratinocyte cultures derived from sun-exposed skin consistently had a shorter in vitro lifespan but increased plating efficiency compared with cultures derived from adjacent sun-protected skin of the same individual, confirming a previous study of different paired body sites. Electron microscopic histologic sections revealed focal abnormalities of keratinocyte proliferation and alignment in vitro especially in those cultures derived from sun-exposed skin and decreased intercellular contact in stratified colonies at late passage, regardless of donor site. One-micron histologic sections of the original biopsy specimens revealed no striking site-related keratinocyte alterations, but sun-exposed specimens had fewer epidermal Langerhans cells (p less than 0.001), averaging approximately 50 percent the number in sun-protected skin, a possible exaggeration of the previously reported age-associated decrease in this cell population. These data suggest that sun exposure indeed accelerates aging by several criteria and that, regardless of mechanism, environmental factors may adversely affect the appearance and function of aging skin in ways amenable to experimental quantitation.

  16. Estrogens and aging skin

    PubMed Central

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity. Its protective function becomes compromised and aging is associated with impaired wound healing, hair loss, pigmentary changes and skin cancer.   Skin aging can be significantly delayed by the administration of estrogen. This paper reviews estrogen effects on human skin and the mechanisms by which estrogens can alleviate the changes due to aging. The relevance of estrogen replacement, selective estrogen receptor modulators (SERMs) and phytoestrogens as therapies for diminishing skin aging is highlighted. Understanding estrogen signaling in skin will provide a basis for interventions in aging pathologies. PMID:24194966

  17. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin.

    PubMed

    Waldera Lupa, Daniel M; Kalfalah, Faiza; Safferling, Kai; Boukamp, Petra; Poschmann, Gereon; Volpi, Elena; Götz-Rösch, Christine; Bernerd, Francoise; Haag, Laura; Huebenthal, Ulrike; Fritsche, Ellen; Boege, Fritz; Grabe, Niels; Tigges, Julia; Stühler, Kai; Krutmann, Jean

    2015-08-01

    Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging

  18. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin.

    PubMed

    Waldera Lupa, Daniel M; Kalfalah, Faiza; Safferling, Kai; Boukamp, Petra; Poschmann, Gereon; Volpi, Elena; Götz-Rösch, Christine; Bernerd, Francoise; Haag, Laura; Huebenthal, Ulrike; Fritsche, Ellen; Boege, Fritz; Grabe, Niels; Tigges, Julia; Stühler, Kai; Krutmann, Jean

    2015-08-01

    Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging.

  19. Polarized Light for Measuring a Human Skin Feature Indicating Aging

    NASA Astrophysics Data System (ADS)

    Son, Jung-Young; Vashpanov, Yuriy A.; Jung, Dae-Hyun; Lee, Dong-Su; Kwack, Kae-Dal; Kim, Shin-Hwan

    2009-09-01

    The textures of skin on the back of the hand of many men of different ages are analyzed to determine their changes with age. The analysis shows that the textures are segmented by many lines of different lengths and orientations, and the size and number of segments in the skin surface change with age; that is the size increases while the number decreases. As a result, the texture becomes less complex with age. However, the addition of wrinkles from the age of 50 onwards for certain groups of people makes the texture appear somewhat complex.

  20. Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin.

    PubMed

    Rittié, Laure; Stoll, Stefan W; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2009-12-01

    Skin hair follicles (HF) contain bulge stem cells (SC) that regenerate HFs during hair cycles, and repair skin epithelia following injury. As natural aging is associated with decreased skin repair capacity in humans, we have investigated the impact of age on human scalp HF bulge cell number and function. Here, we isolated human bulge cells, characterized as CD200+/KRT15+/KRT19+ cells of the HF, by dissection-combined CD200 selection in young and aged human skin. Targeted transcriptional profiling indicates that KRT15, KRT19, Dkk3, Dkk4, Tcf3, S100A4, Gas1, EGFR and CTGF/CCN2 are also preferentially expressed by human bulge cells, compared to differentiated HF keratinocytes (KC). Our results demonstrate that aging does not alter expression or localization of these HF SC markers. In addition, we could not detect significant differences in HF density or bulge cell number between young and aged human scalp skin. Interestingly, hedgehog (Hh) signaling is activated in human bulge cells in vivo, and down-regulated in differentiated HF KCs, both in young and aged skin. In addition, activation of Hh signaling by lentivirus-mediated overexpression of transcription factor Gli1 induces transcription of HF SC markers KRT15, KRT19, and Gas1, in cultured KCs. Together with previously reported knock-out mouse results, these data suggest a role for Hh signaling in maintaining bulge cell phenotype in young and aged human skin.

  1. Raman spectroscopy of human skin: looking for a quantitative algorithm to reliably estimate human age

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe; Boffelli, Marco; Miyamori, Daisuke; Uemura, Takeshi; Marunaka, Yoshinori; Zhu, Wenliang; Ikegaya, Hiroshi

    2015-06-01

    The possibility of examining soft tissues by Raman spectroscopy is challenged in an attempt to probe human age for the changes in biochemical composition of skin that accompany aging. We present a proof-of-concept report for explicating the biophysical links between vibrational characteristics and the specific compositional and chemical changes associated with aging. The actual existence of such links is then phenomenologically proved. In an attempt to foster the basics for a quantitative use of Raman spectroscopy in assessing aging from human skin samples, a precise spectral deconvolution is performed as a function of donors' ages on five cadaveric samples, which emphasizes the physical significance and the morphological modifications of the Raman bands. The outputs suggest the presence of spectral markers for age identification from skin samples. Some of them appeared as authentic "biological clocks" for the apparent exactness with which they are related to age. Our spectroscopic approach yields clear compositional information of protein folding and crystallization of lipid structures, which can lead to a precise identification of age from infants to adults. Once statistically validated, these parameters might be used to link vibrational aspects at the molecular scale for practical forensic purposes.

  2. Raman spectroscopy of human skin: looking for a quantitative algorithm to reliably estimate human age.

    PubMed

    Pezzotti, Giuseppe; Boffelli, Marco; Miyamori, Daisuke; Uemura, Takeshi; Marunaka, Yoshinori; Zhu, Wenliang; Ikegaya, Hiroshi

    2015-06-01

    The possibility of examining soft tissues by Raman spectroscopy is challenged in an attempt to probe human age for the changes in biochemical composition of skin that accompany aging. We present a proof-of-concept report for explicating the biophysical links between vibrational characteristics and the specific compositional and chemical changes associated with aging. The actual existence of such links is then phenomenologically proved. In an attempt to foster the basics for a quantitative use of Raman spectroscopy in assessing aging from human skin samples, a precise spectral deconvolution is performed as a function of donors' ages on five cadaveric samples, which emphasizes the physical significance and the morphological modifications of the Raman bands. The outputs suggest the presence of spectral markers for age identification from skin samples. Some of them appeared as authentic "biological clocks" for the apparent exactness with which they are related to age. Our spectroscopic approach yields clear compositional information of protein folding and crystallization of lipid structures, which can lead to a precise identification of age from infants to adults. Once statistically validated, these parameters might be used to link vibrational aspects at the molecular scale for practical forensic purposes.

  3. Rejuvenation of Gene Expression Pattern of Aged Human Skin by Broadband Light Treatment: A Pilot Study

    PubMed Central

    Chang, Anne Lynn S; Bitter, Patrick H; Qu, Kun; Lin, Meihong; Rapicavoli, Nicole A; Chang, Howard Y

    2013-01-01

    Studies in model organisms suggest that aged cells can be functionally rejuvenated, but whether this concept applies to human skin is unclear. Here we apply 3′-end sequencing for expression quantification (“3-seq”) to discover the gene expression program associated with human photoaging and intrinsic skin aging (collectively termed “skin aging”), and the impact of broadband light (BBL) treatment. We find that skin aging was associated with a significantly altered expression level of 2,265 coding and noncoding RNAs, of which 1,293 became “rejuvenated” after BBL treatment; i.e., they became more similar to their expression level in youthful skin. Rejuvenated genes (RGs) included several known key regulators of organismal longevity and their proximal long noncoding RNAs. Skin aging is not associated with systematic changes in 3′-end mRNA processing. Hence, BBL treatment can restore gene expression pattern of photoaged and intrinsically aged human skin to resemble young skin. In addition, our data reveal, to our knowledge, a previously unreported set of targets that may lead to new insights into the human skin aging process. PMID:22931923

  4. Basal level of autophagy is increased in aging human skin fibroblasts in vitro, but not in old skin.

    PubMed

    Demirovic, Dino; Nizard, Carine; Rattan, Suresh I S

    2015-01-01

    Intracellular autophagy (AP) is a stress response that is enhanced under conditions of limitation of amino acids, growth factors and other nutrients, and also when macromolecules become damaged, aggregated and fibrillated. Aging is generally accompanied by an increase in intracellular stress due to all the above factors. Therefore, we have compared the basal levels of AP in serially passaged human facial skin fibroblasts undergoing aging and replicative senescence in vitro, and ex vivo in the skin biopsies from the photo-protected and photo-exposed area of the arms of 20 healthy persons of young and old ages. Immunofluorescence microscopy, employing antibodies against a specific intracellular microtubule-associated protein-1 light chain-3 (LC3) as a well established marker of AP, showed a 5-fold increase in the basal level of LC3 in near senescent human skin fibroblasts. However, no such age-related increase in LC3 fluorescence and AP could be detected in full thickness skin sections from the biopsies obtained from 10 healthy young (age 25 to 30 yr) and 10 old (age 60 to 65 yr) donors. Furthermore, there was no difference in the basal level of LC3 in the skin sections from photo-protected and photo-exposed areas of the arm. Thus, in normal conditions, the aging phenotype of the skin cells in culture and in the body appears to be different in the case of AP.

  5. Basal Level of Autophagy Is Increased in Aging Human Skin Fibroblasts In Vitro, but Not in Old Skin

    PubMed Central

    Demirovic, Dino; Nizard, Carine; Rattan, Suresh I. S.

    2015-01-01

    Intracellular autophagy (AP) is a stress response that is enhanced under conditions of limitation of amino acids, growth factors and other nutrients, and also when macromolecules become damaged, aggregated and fibrillated. Aging is generally accompanied by an increase in intracellular stress due to all the above factors. Therefore, we have compared the basal levels of AP in serially passaged human facial skin fibroblasts undergoing aging and replicative senescence in vitro, and ex vivo in the skin biopsies from the photo-protected and photo-exposed area of the arms of 20 healthy persons of young and old ages. Immunofluorescence microscopy, employing antibodies against a specific intracellular microtubule-associated protein-1 light chain-3 (LC3) as a well established marker of AP, showed a 5-fold increase in the basal level of LC3 in near senescent human skin fibroblasts. However, no such age-related increase in LC3 fluorescence and AP could be detected in full thickness skin sections from the biopsies obtained from 10 healthy young (age 25 to 30 yr) and 10 old (age 60 to 65 yr) donors. Furthermore, there was no difference in the basal level of LC3 in the skin sections from photo-protected and photo-exposed areas of the arm. Thus, in normal conditions, the aging phenotype of the skin cells in culture and in the body appears to be different in the case of AP. PMID:25950597

  6. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  7. The effect of skin aging on the percutaneous penetration of chemicals through human skin

    SciTech Connect

    Roskos, K.V.

    1989-01-01

    Despite much research into the mechanisms of cutaneous aging and the identification of significant age-associated biological and biophysical changes within the skin, the question how does aging affect percutaneous absorption (PA) in vivo remains unanswered. The author has made in vivo measurements of PA in young (18-40 years) and old (> 65 years) subjects. Standard radiotracer methodology was employed and PA was quantified from the urinary excretion profiles of {sup 14}C radiolabel (corrected for incomplete renal elimination). Testosterone (TST), estradiol (EST), hydrocortisone (HC), benzoic acid (BA), acetylsalicylic acid (ASA) and caffeine (CAFF) have been studied. Penetration of HC, BA, ASA, and CAFF were significantly lower in aged subjects whereas TST and EST absorption were not distinguishable from the young controls. Thus it appears that aging can affect PA in vivo and that relatively hydrophilic compounds may be most sensitive. Work was done to elucidate whether the observations were related to documented skin aging changes. Cutaneous microcirculation efficiency suspected to decline with increasing age, could not be correlated with the observed penetration changes. However, in vivo infrared spectroscopic studies of aged stratum corneum (SC) reveal a decreased amount of epidermal lipid. The diminished lipid content implies a diminished dissolution medium for compounds administered to the skin surface. They hypothesize that the compounds most affected by a loss of SC lipids would be those compounds whose overall solubility is lowest (compounds with lower octanol-water partition coefficients, eg., HC, BA, ASA and CAFF). Conversely, a diminished lipid content may not affect dissolution into the SC of highly lipophilic compounds (e.g., TST and EST).

  8. Detection of advanced glycation end products (AGEs) on human skin by in vivo confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, A. A.; Pereira, L.; Ali, S. M.; Pizzol, C. D.; Tellez, C. A.; Favero, P. P.; Santos, L.; da Silva, V. V.; Praes, C. E. O.

    2016-03-01

    The aging process involves the reduction in the production of the major components of skin tissue. During intrinsic aging and photoaging processes, in dermis of human skin, fibroblasts become senescent and have decreased activity, which produce low levels of collagen. Moreover, there is accumulation of advanced glycation end products (AGEs). AGEs have incidence in the progression of age-related diseases, principally in diabetes mellitus and in Alzheimer's diseases. AGEs causes intracellular damage and/or apoptosis leading to an increase of the free radicals, generating a crosslink with skin proteins and oxidative stress. The aim of this study is to detect AGEs markers on human skin by in vivo Confocal Raman spectroscopy. Spectra were obtained by using a Rivers Diagnostic System, 785 nm laser excitation and a CCD detector from the skin surface down to 120 μm depth. We analyzed the confocal Raman spectra of the skin dermis of 30 women volunteers divided into 3 groups: 10 volunteers with diabetes mellitus type II, 65-80 years old (DEW); 10 young healthy women, 20-33 years old (HYW); and 10 elderly healthy women, 65-80 years old (HEW). Pentosidine and glucosepane were the principally identified AGEs in the hydroxyproline and proline Raman spectral region (1000-800 cm-1), in the 1.260-1.320 cm-1 region assignable to alpha-helical amide III modes, and in the Amide I region. Pentosidine and glucosepane calculated vibrational spectra were performed through Density Functional Theory using the B3LYP functional with 3-21G basis set. Difference between the Raman spectra of diabetic elderly women and healthy young women, and between healthy elderly women and healthy young women were also obtained with the purpose of identifying AGEs Raman bands markers. AGEs peaks and collagen changes have been identified and used to quantify the glycation process in human skin.

  9. Effects of infrared radiation and heat on human skin aging in vivo.

    PubMed

    Cho, Soyun; Shin, Mi Hee; Kim, Yeon Kyung; Seo, Jo-Eun; Lee, Young Mee; Park, Chi-Hyun; Chung, Jin Ho

    2009-08-01

    Sunlight damages human skin, resulting in a wrinkled appearance. Since natural sunlight is polychromatic, its ultimate effects on the human skin are the result of not only the action of each wavelength separately, but also interactions among the many wavelengths, including UV, visible light, and infrared (IR). In direct sunlight, the temperature of human skin rises to about 40 degrees C following the conversion of absorbed IR into heat. So far, our knowledge of the effects of IR radiation or heat on skin aging is limited. Recent work demonstrates that IR and heat exposure each induces cutaneous angiogenesis and inflammatory cellular infiltration, disrupts the dermal extracellular matrix by inducing matrix metalloproteinases, and alters dermal structural proteins, thereby adding to premature skin aging. This review provides a summary of current research on the effects of IR radiation and heat on aging in human skin in vivo.Journal of Investigative Dermatology Symposium Proceedings (2009) 14, 15-19; doi:10.1038/jidsymp.2009.7.

  10. Peripheral mechanisms of thermoregulatory control of skin blood flow in aged humans

    PubMed Central

    Kenney, W. Larry

    2010-01-01

    Human skin blood flow is controlled via dual innervation from the sympathetic nervous system. Reflex cutaneous vasoconstriction and vasodilation are both impaired with primary aging, rendering the aged more vulnerable to hypothermia and cardiovascular complications from heat-related illness. Age-related alterations in the thermoregulatory control of skin blood flow occur at multiple points along the efferent arm of the reflex, including 1) diminished sympathetic outflow, 2) altered presynaptic neurotransmitter synthesis, 3) reduced vascular responsiveness, and 4) impairments in downstream (endothelial and vascular smooth muscle) second-messenger signaling. This mechanistic review highlights some of the recent findings in the area of aging and the thermoregulatory control of skin blood flow. PMID:20413421

  11. Nested PCR-denaturing gradient gel electrophoresis analysis of human skin microbial diversity with age.

    PubMed

    Li, Wei; Han, Lei; Yu, Pengbo; Ma, Chaofeng; Wu, Xiaokang; Xu, Jiru

    2014-01-01

    To determine whether the composition and structure of skin microbiota differ with age, cutaneous bacteria were isolated from the axillary fossa of 37 healthy human adults in two age groups (old people and young adults). Bacterial genomic DNA was extracted and characterized by nested PCR-denaturing gradient gel electrophoresis (PCR-DGGE) with primers specifically targeting V3 region of the 16S rRNA gene. The excised gel bands were sequenced to identify bacterial categories. The total bacteria, Staphylococcus spp., Staphylococcus epidermidis and Corynebacterium spp. were further enumerated by quantitative PCR. There were no significant differences in the species diversity profiles between age groups. The similarity index was lower across age groups than that it was intra-group. This indicates that the composition of skin flora is more similar to others of the same age than across age groups. While Staphylococcus spp. and Corynebacterium spp. were the dominant bacteria in both groups, sequencing and quantitative PCR revealed that skin bacterial composition differed by age. The copy number of total bacteria and Corynebacterium spp. were significantly lower in younger subjects, whereas there were no statistical differences in the quantity of Staphylococcus spp. and Staphylococcus epidermidis. These results suggest that the skin flora undergo both quantitative and qualitative changes related to aging. PMID:24656938

  12. Collagen cross-linking in sun-exposed and unexposed sites of aged human skin

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Prisayanh, P.; Haque, Z.; Woodley, D. T.

    1991-01-01

    A recently described nonreducible, acid-heat stable compound, histidinohydroxylysinonorleucine (HHL), is a collagen cross-link isolated from mature skin tissue. Its abundance is related to chronologic aging of skin. The present communication describes the quantity of HHL from aged human skin of the same individuals in sun-exposed (wrist) and unexposed (buttock) sites. Punch biopsies were obtained from these sites from nine people of age 60 or older. HHL contents (moles/mole of collagen) at these sites were for wrist 0.13 +/- 0.07 and for buttock 0.69 +/- 0.17 (mean +/- SD, p less than 0.001). In addition, it was found that acute irradiation of the cross-linked peptides with UVA (up to 250 J/cm2) and UVB (up to 1 J/cm2) had no effect on HHL structure. The same treatment significantly degraded another nonreducible, stable collagen cross-link, pyridinoline. The results suggest that chronic sunlight exposure may be associated with an impediment to normal maturation of human dermal collagen resulting in tenuous amount of HHL. Thus, the process of photoaging in dermal collagen is different from that of chronologic aging in human skin.

  13. Proteomic profiling reveals a catalogue of new candidate proteins for human skin aging.

    PubMed

    Laimer, Martin; Kocher, Thomas; Chiocchetti, Andreas; Trost, Andrea; Lottspeich, Friedrich; Richter, Klaus; Hintner, Helmut; Bauer, Johann W; Onder, Kamil

    2010-10-01

    Studies of skin aging are usually performed at the genomic level by investigating differentially regulated genes identified through subtractive hybridization or microarray analyses. In contrast, relatively few studies have investigated changes in protein expression of aged skin using proteomic profiling by two-dimensional (2-D) gel electrophoresis and mass spectrometry, although this approach at the protein level is suggested to reflect more accurately the aging phenotype. We undertook such a proteomic analysis of intrinsic human skin aging by quantifying proteins extracted and fluorescently labeled from sun-protected human foreskin samples pooled from 'young' and 'old' men. In addition, we analyzed these candidate gene products by 1-D and 2-D western blotting to obtain corroborative protein expression data, and by both real-time PCR (RT-PCR) and microarray analyses to confirm expression at the mRNA level. We discovered 30 putative proteins for skin aging, including previously unrecognized, post-translationally regulated candidates such as phosphatidyl-ethanolamine binding protein (PEBP) and carbonic anhydrase 1 (CA1).

  14. Sympathetic modulation of sensory nerve activity with age: human and rodent skin models.

    PubMed

    Khalil, Z; LeVasseur, S; Merhi, M; Helme, R D

    1997-11-01

    1. Sensory nerves serve an afferent role and mediate neurogenic components of inflammation and tissue repair via an axon reflex release of sensory peptides at sites of injury. Dysfunction of these nerves with age could contribute to delayed tissue healing. 2. Complementary animal and human skin models were used in the present studies to investigate changes in the modulation of sensory nerve function by sympathetic efferents during ageing. Laser Doppler flowmetry was used to monitor neurogenic skin vascular responses. 3. The animal model used skin of the hind footpad of anaesthetized rats combined with electrical stimulation of the sciatic nerve, while the human model comprised capsaicin electrophoresis to the volar surface of the forearm. Sympathetic modulation was effected by systemic phentolamine pretreatment in animals and local application in the human model. 4. The results obtained from the human model confirmed the reported decline in sensory nerve function and showed no change in sympathetic modulation with age. The results from the animal model confirm and expand results obtained from the human model. 5. The use of low (5 Hz) and high (15 Hz) frequency electrical stimulation (20 V, 2 ms for 1 min) revealed a preferential response of aged sensory nerves to low-frequency electrical stimulation parameters with differential sympathetic modulation that is dependent on the frequency of stimulation.

  15. Novel aspects of intrinsic and extrinsic aging of human skin: beneficial effects of soy extract.

    PubMed

    Südel, Kirstin M; Venzke, Kirsten; Mielke, Heiko; Breitenbach, Ute; Mundt, Claudia; Jaspers, Sören; Koop, Urte; Sauermann, Kirsten; Knussman-Hartig, Elke; Moll, Ingrid; Gercken, Günther; Young, Anthony R; Stäb, Franz; Wenck, Horst; Gallinat, Stefan

    2005-01-01

    Biochemical and structural changes of the dermal connective tissue substantially contribute to the phenotype of aging skin. To study connective tissue metabolism with respect to ultraviolet (UV) exposure, we performed an in vitro (human dermal fibroblasts) and an in vivo complementary DNA array study in combination with protein analysis in young and old volunteers. Several genes of the collagen metabolism such as Collagen I, III and VI as well as heat shock protein 47 and matrix metalloproteinase-1 are expressed differentially, indicating UV-mediated effects on collagen expression, processing and degradation. In particular, Collagen I is time and age dependently reduced after a single UV exposure in human skin in vivo. Moreover, older subjects display a lower baseline level and a shorter UV-mediated increase in hyaluronan (HA) levels. To counteract these age-dependent changes, cultured fibroblasts were treated with a specific soy extract. This treatment resulted in increased collagen and HA synthesis. In a placebo-controlled in vivo study, topical application of an isoflavone-containing emulsion significantly enhanced the number of dermal papillae per area after 2 weeks. Because the flattening of the dermal-epidermal junction is the most reproducible structural change in aged skin, this soy extract appears to rejuvenate the structure of mature skin.

  16. Skin Care and Aging

    MedlinePlus

    ... Age Spots and Skin Tags Click for more information Age spots, once called "liver spots," are flat, brown ... surface. They are a common occurrence as people age, especially for women. They are ... options, specific conditions, and related issues. ...

  17. Consistency of the Proteome in Primary Human Keratinocytes With Respect to Gender, Age, and Skin Localization*

    PubMed Central

    Sprenger, Adrian; Weber, Sebastian; Zarai, Mostafa; Engelke, Rudolf; Nascimento, Juliana M.; Gretzmeier, Christine; Hilpert, Martin; Boerries, Melanie; Has, Cristina; Busch, Hauke; Bruckner-Tuderman, Leena; Dengjel, Jörn

    2013-01-01

    Keratinocytes account for 95% of all cells of the epidermis, the stratified squamous epithelium forming the outer layer of the skin, in which a significant number of skin diseases takes root. Immortalized keratinocyte cell lines are often used as research model systems providing standardized, reproducible, and homogenous biological material. Apart from that, primary human keratinocytes are frequently used for medical studies because the skin provides an important route for drug administration and is readily accessible for biopsies. However, comparability of these cell systems is not known. Cell lines may undergo phenotypic shifts and may differ from the in vivo situation in important aspects. Primary cells, on the other hand, may vary in biological functions depending on gender and age of the donor and localization of the biopsy specimen. Here we employed metabolic labeling in combination with quantitative mass spectrometry-based proteomics to assess A431 and HaCaT cell lines for their suitability as model systems. Compared with cell lines, comprehensive profiling of the primary human keratinocyte proteome with respect to gender, age, and skin localization identified an unexpected high proteomic consistency. The data were analyzed by an improved ontology enrichment analysis workflow designed for the study of global proteomics experiments. It enables a quick, comprehensive and unbiased overview of altered biological phenomena and links experimental data to literature. We guide through our workflow, point out its advantages compared with other methods and apply it to visualize differences of cell lines compared with primary human keratinocytes. PMID:23722187

  18. Oral sapropterin acutely augments reflex vasodilation in aged human skin through nitric oxide-dependent mechanisms.

    PubMed

    Stanhewicz, Anna E; Alexander, Lacy M; Kenney, W Larry

    2013-10-01

    Functional constitutive nitric oxide synthase (NOS) and its cofactor tetrahydrobiopterin (BH4) are required for full reflex cutaneous vasodilation and are attenuated in primary aging. Acute, locally administered BH4 increases reflex vasodilation through NO-dependent mechanisms in aged skin. We hypothesized that oral sapropterin (Kuvan, shelf-stable pharmaceutical formulation of BH4) would augment reflex vasodilation in aged human skin during hyperthermia. Nine healthy human subjects (76 ± 1 yr) ingested sapropterin (10 mg/kg) or placebo in a randomized double-blind crossover design. Venous blood samples were collected prior to, and 3 h following, ingestion of sapropterin for measurement of plasma BH4. Three intradermal microdialysis fibers were placed in the forearm skin for local delivery of 1) lactated Ringer's solution, 2) 10 mM BH4, and 3) 20 mM N(G)-nitro-l-arginine methyl ester (l-NAME) to inhibit NOS. Red cell flux was measured at each site by laser-Doppler flowmetry (LDF) as reflex vasodilation was induced using a water-perfused suit. At 1°C rise in oral temperature, mean body temperature was clamped and 20 mM l-NAME was perfused at each site. Cutaneous vascular conductance was calculated (CVC = LDF/MAP) and expressed as a percentage of maximum (%CVCmax 28 mM sodium nitroprusside and local heat 43°C). Plasma concentrations of BH4 were significantly elevated 3 h after ingestion of sapropterin (0 h: 19.1 ± 2 pmol/ml vs. 3 h: 43.8 ± 3 pmol/ml; P < 0.001). Sapropterin increased NO-dependent vasodilation at control site (placebo: 14 ± 1 %CVCmax vs. sapropterin: 25 ± 4 %CVCmax; P = 0.004). Local BH4 administration increased NO-dependent vasodilation compared with control in placebo trials only (control: 14 ± 1 %CVCmax vs. BH4-treated: 24 ± 3 %CVCmax; P = 0.02). These data suggest oral sapropterin increases bioavailable BH4 in aged skin microvasculature sufficiently to increase NO synthesis through NOS and that sapropterin may be a viable intervention to

  19. Oral sapropterin augments reflex vasoconstriction in aged human skin through noradrenergic mechanisms.

    PubMed

    Stanhewicz, Anna E; Alexander, Lacy M; Kenney, W Larry

    2013-10-01

    Reflex vasoconstriction is attenuated in aged skin due to a functional loss of adrenergic vasoconstriction. Bioavailability of tetrahydrobiopterin (BH4), an essential cofactor for catecholamine synthesis, is reduced with aging. Locally administered BH4 increases vasoconstriction through adrenergic mechanisms in aged human skin. We hypothesized that oral sapropterin (Kuvan, a pharmaceutical BH4) would augment vasoconstriction elicited by whole-body cooling and tyramine perfusion in aged skin. Ten healthy subjects (age 75 ± 2 yr) ingested sapropterin (10 mg/kg) or placebo in a randomized, double-blind crossover design. Venous blood samples were collected prior to, and 3 h following ingestion. Three intradermal microdialysis fibers were placed in the forearm skin for local delivery of 1) lactated Ringer, 2) 5 mM BH4, and 3) 5 mM yohimbine + 1 mM propranolol (Y+P; to inhibit adrenergic vasoconstriction). Red cell flux was measured at each site by laser-Doppler flowmetry (LDF) as reflex vasoconstriction was induced by lowering and then clamping whole-body skin temperature (Tsk) using a water-perfused suit. Following whole-body cooling, subjects were rewarmed and 1 mM tyramine was perfused at each site to elicit endogenous norepinephrine release from the perivascular nerve terminal. Cutaneous vascular conductance was calculated as CVC = LDF/mean arterial pressure and expressed as change from baseline (ΔCVC). Plasma BH4 was elevated 3 h after ingestion of sapropterin (43.8 ± 3 vs. 19.1 ± 2 pmol/ml; P < 0.001). Sapropterin increased reflex vasoconstriction at the Ringer site at Tsk ≤ 32.5°C (P < 0.05). Local BH4 perfusion augmented reflex vasoconstriction at Tsk ≤ 31.5°C with placebo treatment only (P < 0.05). There was no treatment effect on reflex vasoconstriction at the BH4-perfused or Y+P-perfused sites. Sapropterin increased pharmacologically induced vasoconstriction at the Ringer site (-0.19 ± 0.03 vs. -0.08 ± 0.02 ΔCVC; P = 0.01). There was no

  20. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity

    PubMed Central

    Jadoon, Saima; Karim, Sabiha; Asad, Muhammad Hassham Hassan Bin; Akram, Muhammad Rouf; Kalsoom Khan, Abida; Malik, Arif; Chen, Chunye; Murtaza, Ghulam

    2015-01-01

    The exposure to ultraviolet radiations (UVR) is the key source of skin sunburn; it may produce harmful entities, reactive oxygen species (ROS), leading to aging. The skin can be treated and protected from the injurious effects of ROS by using various pharmaceutical formulations, such as cream. Cream can be loaded with antioxidants to quench ROS leading to photo-protective effects. Moreover, modern medicines depend on ethnobotanicals for protection or treatment of human diseases. This review article summarizes various in vivo antioxidant studies on herbal creams loaded with phyto-extracts. These formulations may serve as cosmeceuticals to protect skin against injurious effects of UVR. The botanicals studied for dermatologic use in cream form include Acacia nilotica, Benincasa hispida, Calendula officinalis, Camellia sinensis, Camellia sinensis, Nelumbo nucifera, Capparis decidua, Castanea sativa, Coffea arabica, Crocus sativus, Emblica officinalis Gaertn, Foeniculum vulgare, Hippophae rhamnoides, Lithospermum erythrorhizon, Malus domestica, Matricaria chamomilla L., Moringa oleifera, Morus alba, Ocimum basilicum, Oryza sativa, Polygonum minus, Punica granatum, Silybum marianum, Tagetes erecta Linn., Terminalia chebula, Trigonella foenum-graecum, and Vitis vinifera. The observed anti-aging effects of cream formulations could be an outcome of a coordinating action of multiple constituents. Of numerous botanicals, the phenolic acids and flavonoids appear effective against UVR-induced damage; however the evidence-based studies for their anti-aging effects are still needed. PMID:26448818

  1. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity.

    PubMed

    Jadoon, Saima; Karim, Sabiha; Bin Asad, Muhammad Hassham Hassan; Akram, Muhammad Rouf; Khan, Abida Kalsoom; Malik, Arif; Chen, Chunye; Murtaza, Ghulam

    2015-01-01

    The exposure to ultraviolet radiations (UVR) is the key source of skin sunburn; it may produce harmful entities, reactive oxygen species (ROS), leading to aging. The skin can be treated and protected from the injurious effects of ROS by using various pharmaceutical formulations, such as cream. Cream can be loaded with antioxidants to quench ROS leading to photo-protective effects. Moreover, modern medicines depend on ethnobotanicals for protection or treatment of human diseases. This review article summarizes various in vivo antioxidant studies on herbal creams loaded with phyto-extracts. These formulations may serve as cosmeceuticals to protect skin against injurious effects of UVR. The botanicals studied for dermatologic use in cream form include Acacia nilotica, Benincasa hispida, Calendula officinalis, Camellia sinensis, Camellia sinensis, Nelumbo nucifera, Capparis decidua, Castanea sativa, Coffea arabica, Crocus sativus, Emblica officinalis Gaertn, Foeniculum vulgare, Hippophae rhamnoides, Lithospermum erythrorhizon, Malus domestica, Matricaria chamomilla L., Moringa oleifera, Morus alba, Ocimum basilicum, Oryza sativa, Polygonum minus, Punica granatum, Silybum marianum, Tagetes erecta Linn., Terminalia chebula, Trigonella foenum-graecum, and Vitis vinifera. The observed anti-aging effects of cream formulations could be an outcome of a coordinating action of multiple constituents. Of numerous botanicals, the phenolic acids and flavonoids appear effective against UVR-induced damage; however the evidence-based studies for their anti-aging effects are still needed.

  2. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity.

    PubMed

    Jadoon, Saima; Karim, Sabiha; Bin Asad, Muhammad Hassham Hassan; Akram, Muhammad Rouf; Khan, Abida Kalsoom; Malik, Arif; Chen, Chunye; Murtaza, Ghulam

    2015-01-01

    The exposure to ultraviolet radiations (UVR) is the key source of skin sunburn; it may produce harmful entities, reactive oxygen species (ROS), leading to aging. The skin can be treated and protected from the injurious effects of ROS by using various pharmaceutical formulations, such as cream. Cream can be loaded with antioxidants to quench ROS leading to photo-protective effects. Moreover, modern medicines depend on ethnobotanicals for protection or treatment of human diseases. This review article summarizes various in vivo antioxidant studies on herbal creams loaded with phyto-extracts. These formulations may serve as cosmeceuticals to protect skin against injurious effects of UVR. The botanicals studied for dermatologic use in cream form include Acacia nilotica, Benincasa hispida, Calendula officinalis, Camellia sinensis, Camellia sinensis, Nelumbo nucifera, Capparis decidua, Castanea sativa, Coffea arabica, Crocus sativus, Emblica officinalis Gaertn, Foeniculum vulgare, Hippophae rhamnoides, Lithospermum erythrorhizon, Malus domestica, Matricaria chamomilla L., Moringa oleifera, Morus alba, Ocimum basilicum, Oryza sativa, Polygonum minus, Punica granatum, Silybum marianum, Tagetes erecta Linn., Terminalia chebula, Trigonella foenum-graecum, and Vitis vinifera. The observed anti-aging effects of cream formulations could be an outcome of a coordinating action of multiple constituents. Of numerous botanicals, the phenolic acids and flavonoids appear effective against UVR-induced damage; however the evidence-based studies for their anti-aging effects are still needed. PMID:26448818

  3. Characterizing facial skin ageing in humans: disentangling extrinsic from intrinsic biological phenomena.

    PubMed

    Trojahn, Carina; Dobos, Gabor; Lichterfeld, Andrea; Blume-Peytavi, Ulrike; Kottner, Jan

    2015-01-01

    Facial skin ageing is caused by intrinsic and extrinsic mechanisms. Intrinsic ageing is highly related to chronological age. Age related skin changes can be measured using clinical and biophysical methods. The aim of this study was to evaluate whether and how clinical characteristics and biophysical parameters are associated with each other with and without adjustment for chronological age. Twenty-four female subjects of three age groups were enrolled. Clinical assessments (global facial skin ageing, wrinkling, and sagging), and biophysical measurements (roughness, colour, skin elasticity, and barrier function) were conducted at both upper cheeks. Pearson's correlations and linear regression models adjusted for age were calculated. Most of the measured parameters were correlated with chronological age (e.g., association with wrinkle score, r = 0.901) and with each other (e.g., residual skin deformation and wrinkle score, r = 0.606). After statistical adjustment for age, only few associations remained (e.g., mean roughness (R z ) and luminance (L (*)),  β = -0.507, R (2) = 0.377). Chronological age as surrogate marker for intrinsic ageing has the most important influence on most facial skin ageing signs. Changes in skin elasticity, wrinkling, sagging, and yellowness seem to be caused by additional extrinsic ageing.

  4. Genetics and skin aging

    PubMed Central

    Makrantonaki, Evgenia; Bekou, Vassiliki; Zouboulis, Christos C.

    2012-01-01

    Skin aging is a complex process and underlies multiple influences with the probable involvement of heritable and various environmental factors. Several theories have been conducted regarding the pathomechanisms of aged skin, however fundamental mechanisms still remain poorly understood. This article addresses the influence of genetics on skin aging and in particular deals with the differences observed in ethnic populations and between both genders. Recent studies indicate that male and female aged skin differs as far as the type, the consistency and the sensitivity to external factors is concerned. The same has been also documented between elderly people of different origin. Consequently, the aging process taking place in both genders and in diverse ethnic groups should be examined separately and products specialized to each population should be developed in order to satisfy the special needs. PMID:23467395

  5. Instrumental evaluation of anti-aging effects of cosmetic formulations containing palmitoyl peptides, Silybum marianum seed oil, vitamin E and other functional ingredients on aged human skin

    PubMed Central

    Hahn, Hyung Jin; Jung, Ho Jung; Schrammek-Drusios, Med Christine; Lee, Sung Nae; Kim, Ji-Hyun; Kwon, Seung Bin; An, In-Sook; An, Sungkwan; Ahn, Kyu Joong

    2016-01-01

    Anti-aging cosmetics are widely used for improving signs of aged skin such as skin wrinkles, decreased elasticity, low dermal density and yellow skin tone. The present study evaluated the effects of cosmetic formulations, eye cream and facial cream, containing palmitoyl peptides, Silybum marianum (S. marianum) seed oil, vitamin E and other functional ingredients on the improvement of facial wrinkles, elasticity, dermal density and skin tone after 4 weeks period of application on aged human skin. Healthy volunteers (n=20) with aged skin were recruited to apply the test materials facially twice per day for 4 weeks. Skin wrinkles, elasticity, dermal density and skin tone were measured instrumentally for assessing the improvement of skin aging. All the measurements were conducted prior to the application of test materials and at 2 and 4 weeks of treatment. Crow's feet wrinkles were decreased 5.97% after 2 weeks of test material application and 14.07% after 4 weeks of application in comparison of pre-application. Skin elasticity was increased 6.81% after 2 weeks and 8.79% after 4 weeks. Dermal density was increased 16.74% after 2 weeks and 27.63% after 4 weeks. With the L* value indicating skin brightness and the a* value indicating erythema (redness), the results showed that brightness was increased 1.70% after 2 weeks and 2.14% after 4 weeks, and erythema was decreased 10.45% after 2 weeks and 22.39% after 4 weeks. Hence, the test materials appear to exert some degree of anti-aging effects on aged human skin. There were no abnormal skin responses from the participants during the trial period. We conclude that the facial and eye cream containing palmitoyl peptides and S. marianum seed oil, vitamin E and other ingredients have effects on the improvement of facial wrinkles, elasticity, dermal density and skin tone. PMID:27446338

  6. Age-Associated Increase in Skin Fibroblast-Derived Prostaglandin E2 Contributes to Reduced Collagen Levels in Elderly Human Skin.

    PubMed

    Li, Yong; Lei, Dan; Swindell, William R; Xia, Wei; Weng, Shinuo; Fu, Jianping; Worthen, Christal A; Okubo, Toru; Johnston, Andrew; Gudjonsson, Johann E; Voorhees, John J; Fisher, Gary J

    2015-09-01

    Production of type I collagen declines during aging, leading to skin thinning and impaired function. Prostaglandin E2 (PGE2) is a pleiotropic lipid mediator that is synthesized from arachidonic acid by the sequential actions of cyclooxygenases (COX) and PGE synthases (PTGES). PGE2 inhibits collagen production by fibroblasts in vitro. We report that PTGES1 and COX2 progressively increase with aging in sun-protected human skin. PTGES1 and COX2 mRNA were increased 3.4-fold and 2.7-fold, respectively, in the dermis of elderly (>80 years) versus young (21-30 years) individuals. Fibroblasts were the major cell source of both enzymes. PGE2 levels were increased 70% in elderly skin. Fibroblasts in aged skin display reduced spreading due to collagen fibril fragmentation. To investigate the relationship between spreading and PGE2 synthesis, fibroblasts were cultured on micropost arrays or hydrogels of varying mechanical compliance. Reduced spreading/mechanical force resulted in increased expression of both PTGES1 and COX2 and elevated levels of PGE2. Inhibition of PGE2 synthesis by diclofenac enhanced collagen production in skin organ cultures. These data suggest that reduced spreading/mechanical force of fibroblasts in aged skin elevates PGE2 production, contributing to reduced collagen production. Inhibition of PGE2 production may be therapeutically beneficial for combating age-associated collagen deficit in human skin.

  7. Skin anti-aging strategies

    PubMed Central

    Ganceviciene, Ruta; Liakou, Aikaterini I.; Theodoridis, Athanasios; Makrantonaki, Evgenia; Zouboulis, Christos C.

    2012-01-01

    Skin aging is a complex biological process influenced by a combination of endogenous or intrinsic and exogenous or extrinsic factors. Because of the fact that skin health and beauty is considered one of the principal factors representing overall “well-being” and the perception of “health” in humans, several anti-aging strategies have been developed during the last years. It is the intention of this article to review the most important anti-aging strategies that dermatologists have nowadays in hand, including including preventive measurements, cosmetological strategies, topical and systemic therapeutic agents and invasive procedures. PMID:23467476

  8. Skin aging and photoaging alter fatty acids composition, including 11,14,17-eicosatrienoic acid, in the epidermis of human skin.

    PubMed

    Kim, Eun Ju; Kim, Min-Kyoung; Jin, Xing-Ji; Oh, Jang-Hee; Kim, Ji Eun; Chung, Jin Ho

    2010-06-01

    We investigated the alterations of major fatty acid components in epidermis by natural aging and photoaging processes, and by acute ultraviolet (UV) irradiation in human skin. Interestingly, we found that 11,14,17-eicosatrienoic acid (ETA), which is one of the omega-3 polyunsaturated acids, was significantly increased in photoaged human epidermis in vivo and also in the acutely UV-irradiated human skin in vivo, while it was significantly decreased in intrinsically aged human epidermis. The increased ETA content in the epidermis of photoaged human skin and acute UV-irradiated human skin is associated with enhanced expression of human elongase 1 and calcium-independent phosphodiesterase A(2). We demonstrated that ETA inhibited matrix metalloproteinase (MMP)-1 expression after UV-irradiation, and that inhibition of ETA synthesis using EPTC and NA-TCA, which are elongase inhibitors, increased MMP-1 expression. Therefore, our results suggest that the UV increases the ETA levels, which may have a photoprotective effect in the human skin.

  9. The aging skin.

    PubMed

    Bergfeld, W F

    1997-01-01

    In the past, sun exposure has been an integral part of the American life style. Along with increased leisure time, outdoor recreational sports, and sun bathing has come greater exposure to the sun. The cumulative effects of unprotected sun exposure coupled with the changes in the ozone layer have resulted in a large photodamaged population and an epidemic of the most dangerous skin cancer, malignant melanoma. Photodamage begins early, with a child's first unprotected sun exposure. Clinical studies show that 50% of an individual's ultraviolet light exposure occurs before the age of 18 years. This damage from acute and chronic ultraviolet light exposure has produced the explosion of skin cancers. Over the next 4 years, it is expected that skin cancer will become the most common type of cancer, and malignant melanoma will become the leading cause of death from skin cancer. This growing hazard to the public has profound medical and psychological ramifications. This paper will focus on prevention, identification, evaluation and treatment of photodamage to skin, as well as skin cancer. Special emphasis will be given to the National Skin Cancer Prevention Education Program.

  10. Dicarbonyl-induced accelerated aging in vitro in human skin fibroblasts.

    PubMed

    Sejersen, Henrik; Rattan, Suresh I S

    2009-04-01

    Dicarbonyls glyoxal (GO) and methylglyoxal (MGO) produced during the autoxidation of reducing sugars are a source of macromolecular damage in cells. Since an accumulation of damaged macromolecules is a universal characteristic of aging, we have tested whether GO and MGO which cause oxidative damage to proteins and other macromolecules can bring about accelerated aging in normal human skin fibroblasts in vitro. A treatment of cells with 1.0 mM GO or 400 microM MGO leads to the appearance of senescent phenotype within 3 days, as judged by the following criteria: morphological phenotype, irreversible growth arrest and G2 arrest, increased senescence-associated beta-galactosidase (SABG) activity, increased H2O2 level, increased Nxi-(carboxymethyl)-lysine (CML) protein level, and altered activities of superoxide dismutase and catalase antioxidant enzymes. This experimental model of accelerated cellular aging in vitro can be useful for studies on testing the effects of various physical, chemical and biological conditions, including natural and synthetic molecules, for the modulation of aging.

  11. Elevated cysteine-rich protein 61 (CCN1) promotes skin aging via upregulation of IL-1β in chronically sun-exposed human skin.

    PubMed

    Qin, Zhaoping; Okubo, Toru; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-02-01

    Chronic exposure of human skin to solar ultraviolet (UV) irradiation causes premature skin aging, which is characterized by reduced type I collagen production and increased fragmentation of the dermal collagenous extracellular matrix. This imbalance of collagen homeostasis is mediated, in part, by elevated expression of the matricellular protein cysteine-rich protein 61 (CCN1), in dermal fibroblasts, the primary collagen producing cell type in human skin. Here, we report that the actions of CCN1 are mediated by induction of interleukin 1β (IL-1β). CCN1 and IL-1β are strikingly induced by acute UV irradiation, and constitutively elevated in sun-exposed prematurely aged human skin. Elevated CCN1 rapidly induces IL-1β, inhibits type I collagen production, and upregulates matrix metalloproteinase-1, which degrades collagen fibrils. Blockade of IL-1β actions by IL-1 receptor antagonist largely prevents the deleterious effects of CCN1 on collagen homeostasis. Furthermore, knockdown of CCN1 significantly reduces induction of IL-1β by UV irradiation, and thereby partially prevents collagen loss. These data demonstrate that elevated CCN1promotes inflammaging and collagen loss via induction of IL-1β and thereby contributes to the pathophysiology of premature aging in chronically sun-exposed human skin.

  12. Age-associated decrease in GDNF and its cognate receptor GFRα-1 protein expression in human skin.

    PubMed

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk Abdelwahed

    2016-06-01

    Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are expressed in normal human skin. They are involved in murine hair follicle morphogenesis and cycling control. We hypothesize that 'GDNF and GFRα-1 protein expression in human skin undergoes age-associated alterations. To test our hypothesis, the expression of these proteins was examined in human skin specimens obtained from 30 healthy individuals representing three age groups: children (5-18 years), adults (19-60 years) and the elderly (61-81 years). Immunofluorescent and light microscopic immunohistologic analyses were performed using tyramide signal amplification and avidin-biotin complex staining methods respectively. GDNF mRNA expression was examined by RT-PCR analysis. GDNF mRNA and protein as well as GFRα-1 protein expressions were detected in normal human skin. We found significantly reduced epidermal expression of these proteins with ageing. In the epidermis, the expression was strong in the skin of children and declined gradually with ageing, being moderate in adults and weak in the elderly. In children and adults, the expression of both GDNF and GFRα-1 proteins was strongest in the stratum basale and decreased gradually towards the surface layers where it was completely absent in the stratum corneum. In the elderly, GDNF and GFRα-1 protein expression was confined to the stratum basale. In the dermis, both GDNF and GFRα-1 proteins had strong expressions in the fibroblasts, sweat glands, sebaceous glands, hair follicles and blood vessels regardless of the age. Thus there is a decrease in epidermal GDNF and GFRα-1 protein expression in normal human skin with ageing. Our findings suggest that the consequences of this is that GFRα-1-mediated signalling is altered during the ageing process. The clinical and therapeutic ramifications of these observations mandate further investigations.

  13. Age-associated decrease in GDNF and its cognate receptor GFRα-1 protein expression in human skin.

    PubMed

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk Abdelwahed

    2016-06-01

    Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are expressed in normal human skin. They are involved in murine hair follicle morphogenesis and cycling control. We hypothesize that 'GDNF and GFRα-1 protein expression in human skin undergoes age-associated alterations. To test our hypothesis, the expression of these proteins was examined in human skin specimens obtained from 30 healthy individuals representing three age groups: children (5-18 years), adults (19-60 years) and the elderly (61-81 years). Immunofluorescent and light microscopic immunohistologic analyses were performed using tyramide signal amplification and avidin-biotin complex staining methods respectively. GDNF mRNA expression was examined by RT-PCR analysis. GDNF mRNA and protein as well as GFRα-1 protein expressions were detected in normal human skin. We found significantly reduced epidermal expression of these proteins with ageing. In the epidermis, the expression was strong in the skin of children and declined gradually with ageing, being moderate in adults and weak in the elderly. In children and adults, the expression of both GDNF and GFRα-1 proteins was strongest in the stratum basale and decreased gradually towards the surface layers where it was completely absent in the stratum corneum. In the elderly, GDNF and GFRα-1 protein expression was confined to the stratum basale. In the dermis, both GDNF and GFRα-1 proteins had strong expressions in the fibroblasts, sweat glands, sebaceous glands, hair follicles and blood vessels regardless of the age. Thus there is a decrease in epidermal GDNF and GFRα-1 protein expression in normal human skin with ageing. Our findings suggest that the consequences of this is that GFRα-1-mediated signalling is altered during the ageing process. The clinical and therapeutic ramifications of these observations mandate further investigations. PMID:27346872

  14. Recovery of Aging-Related Size Increase of Skin Epithelial Cells: In vivo Mouse and In vitro Human Study

    PubMed Central

    Sokolov, Igor; Guz, Natali V.; Iyer, Swaminathan; Hewitt, Amy; Sokolov, Nina A.; Erlichman, Joseph S.; Woodworth, Craig D.

    2015-01-01

    The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment). An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8). A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20–40% for cells of older passage (6–8 passages) whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin. PMID:25807526

  15. Neuromodulators for Aging Skin

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  16. Age-dependent variation in cytokines, chemokines, and biologic analytes rinsed from the surface of healthy human skin.

    PubMed

    Kinn, Patrick M; Holdren, Grant O; Westermeyer, Brittney A; Abuissa, Mousa; Fischer, Carol L; Fairley, Janet A; Brogden, Kim A; Brogden, Nicole K

    2015-06-02

    In the skin, aging is associated with overall epidermal thinning, decreased barrier function, and gradual deterioration of the epidermal immune response. However, the presence and role of cytokines, chemokines, and biologic analytes (CCBAs) in immunosenescence are not known. Here we identified age-related changes in skin properties and CCBAs from stratum corneum of healthy human subjects, providing a means to utilize CCBAs as benchmarks for aging skin health. Transepidermal water loss and a(*) (skin redness) decreased in an age-dependent manner, and were significantly lower (p < 0.05) in Groups 2 (56.6 ± 4.6 years) and 3 (72.9 ± 3.0 years) vs. Group 1 (24.3 ± 2.8 years). In skin wash fluid, 48 CCBAs were detected; seven were significantly lower (p < 0.05) in Groups 2 and 3: EGF, FGF-2, IFNα2, IL-1RA, HSA, keratin-6, and involucrin; cortisol was significantly higher (p < 0.05) in Groups 2 and 3. Our results correspond with the pro-inflammatory shift that occurs with immunosenescence and also provides basis for understanding the inflammatory changes in normal aging skin.

  17. Could aging human skin use a connective tissue growth factor boost to increase collagen content?

    PubMed

    Oliver, Noelynn; Sternlicht, Mark; Gerritsen, Karin; Goldschmeding, Roel

    2010-02-01

    The roles of connective tissue growth factor (CTGF) and transforming growth factor-beta (TGF-beta), both well-known collagen production stimulators, were examined in skin aging. Aged skin and fibroblasts exhibited a coordinate decrease in CTGF, TGF-beta, and type I procollagen expression and content. CTGF knockdown and TGF-beta blockade in normal dermal fibroblasts reduced procollagen expression, whereas overexpressing CTGF increased procollagen by a TGF-beta/Smad signaling-dependent mechanism without involving Smad2/3.

  18. Age-related regional variations of human skin blood flow response to histamine

    NASA Astrophysics Data System (ADS)

    Tur, Ethel; Brenner, Sarah

    1996-12-01

    The aim of the present study was to assess age-related regional variations in skin function, by measuring the cutaneous microvascular response to histamine. Histamine was topically applied to the back and forearm of young and aged volunteers, and the response was quantified utilizing laser Doppler flowmetry. Each group comprised of 14 volunteers. The cutaneous vascular response to histamine was significantly greater on the back than on the forearm of young healthy volunteers, whereas in aged ones the response over these two sites did not significantly differ. These observations indicate anatomical or functional differences between old and young skin as relates to regional variations. They may underlie some of the differences in the manifestations of disease processes in various age groups.

  19. Free radical scavenging systems and the effect of peroxide damage in aged human skin fibroblasts.

    PubMed

    Gutman, R L; Cohen, M R; McAmis, W; Ramchand, C N; Sailer, V

    1987-01-01

    One prominent theory of aging postulates an accumulation of cell damage resulting from nonenzymatic chemical reactions between important cellular components and free radicals. Fibroblast lines derived from skin biopsies of psychiatric patients ranging in age from 22 to 70 were evaluated soon after adaptation to culture. No significant correlation was found between donor age and the detoxification enzyme activities of superoxide dismutase (SOD) or aryl hydrocarbon hydroxylase (AHH) or susceptibility to damage by oxygen metabolites as measured by cell viability or lactate dehydrogenase (LDH) leakage.

  20. Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo.

    PubMed

    Quan, Taihao; Wang, Frank; Shao, Yuan; Rittié, Laure; Xia, Wei; Orringer, Jeffrey S; Voorhees, John J; Fisher, Gary J

    2013-03-01

    The dermal extracellular matrix (ECM) provides strength and resiliency to skin. The ECM consists mostly of type I collagen fibrils, which are produced by fibroblasts. Binding of fibroblasts to collagen fibrils generates mechanical forces, which regulate cellular morphology and function. With aging, collagen fragmentation reduces fibroblast-ECM binding and mechanical forces, resulting in fibroblast shrinkage and reduced function, including collagen production. Here, we report that these age-related alterations are largely reversed by enhancing the structural support of the ECM. Injection of dermal filler, cross-linked hyaluronic acid, into the skin of individuals over 70 years of age stimulates fibroblasts to produce type I collagen. This stimulation is associated with localized increase in mechanical forces, indicated by fibroblast elongation/spreading, and mediated by upregulation of type II TGF-β receptor and connective tissue growth factor. Interestingly, enhanced mechanical support of the ECM also stimulates fibroblast proliferation, expands vasculature, and increases epidermal thickness. Consistent with our observations in human skin, injection of filler into dermal equivalent cultures causes elongation of fibroblasts, coupled with type I collagen synthesis, which is dependent on the TGF-β signaling pathway. Thus, fibroblasts in aged human skin retain their capacity for functional activation, which is restored by enhancing structural support of the ECM.

  1. Influence of age and sun exposure on the biophysical properties of the human skin: an in vivo study.

    PubMed

    Adhoute, H; de Rigal, J; Marchand, J P; Privat, Y; Leveque, J L

    1992-06-01

    The physical properties of the skin were measured by using noninvasive methods on 72 people displaying various levels of solar elastosis on the neck. The physical parameters measured were the skin extensibility, the elastic recovery, the skin colour, the skin thickness and the electrical conductance. The correlation between the above parameters, the clinical grades of elastosis and the chronological age of each subject were studied using two different statistical approaches. They both showed that elastotic skin is less elastic, dryer, darker, more erythematous and less yellowish than the nonexposed skin. The similarities and differences between the properties of elastotic skin and purely chronologically aged skin are discussed. PMID:1300143

  2. Age-Dependent Decrease of Mitochondrial Complex II Activity in Human Skin Fibroblasts.

    PubMed

    Bowman, Amy; Birch-Machin, Mark A

    2016-05-01

    The mitochondrial theory of aging remains one of the most widely accepted aging theories and implicates mitochondrial electron transport chain dysfunction with subsequent increasing free radical generation. Recently, complex II of the electron transport chain appears to be more important than previously thought in this process, suggested predominantly by nonhuman studies. We investigated the relationship between complex II and aging using human skin as a model tissue. The rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes cultured from skin covering a wide age range. Complex II activity significantly decreased with age in fibroblasts (P = 0.015) but not in keratinocytes. This was associated with a significant decline in transcript expression (P = 0.008 and P = 0.001) and protein levels (P = 0.0006 and P = 0.005) of the succinate dehydrogenase complex subunit A and subunit B catalytic subunits of complex II, respectively. In addition, there was a significant decrease in complex II activity with age (P = 0.029) that was specific to senescent skin cells. There was no decrease in complex IV activity with increasing age, suggesting possible locality to complex II. PMID:26829036

  3. Lipid peroxidation-derived 4-hydroxynonenal-modified proteins accumulate in human facial skin fibroblasts during ageing in vitro.

    PubMed

    Jørgensen, Peter; Milkovic, Lidija; Zarkovic, Neven; Waeg, Georg; Rattan, Suresh I S

    2014-02-01

    The reactive aldehyde, 4-hydroxynonenal (HNE), is recognized as a product of lipid peroxidation, which binds to macromolecules, in particular proteins. HNE-modified proteins (HNE-MP) have been shown to accumulate during ageing, generally by using polyclonal antibodies, which increase the possibility of detecting false positives. Therefore, we have used a genuine monoclonal antibody specific for HNE-His adducts of proteins/peptides, which were revealed by immunoblotting method for whole-cell HNE-MP measurements in serially passaged human facial skin fibroblasts undergoing ageing in vitro. There was a significant increase in the levels of HNE-MP in serially passaged cells approaching a near senescent state at high passage level (P-61), as compared with low passage level (P-11) young and middle-aged (P-27) cells. However, if the cells were analyzed soon after re-initiation from the frozen samples with little further passaging, the amount of HNE-MP was low even in relatively high passage level (P-37) cells, which is an indication of selective elimination of cells with high molecular damage during the process of thawing and re-initiation in culture. This pilot study on normal human facial skin fibroblasts shows that HNE-MP detection by monoclonal antibody-based dot blot method can be used as a marker for age-related accumulation of lipid peroxidative molecular damage, and could be useful for testing and monitoring the effects of potential skin care products on ageing parameters.

  4. Detection of galectin-3 and localization of advanced glycation end products (AGE) in human chronic skin wounds.

    PubMed

    Pepe, Daniel; Elliott, Christopher G; Forbes, Thomas L; Hamilton, Douglas W

    2014-02-01

    The matricellular protein galectin-3 (Gal-3) is upregulated in excisional skin repair in rats where it has been shown to modulate the inflammatory phase of repair. Recent research into kidney pathology has implicated Gal-3 as a receptor for advanced glycation end products (AGE), resulting in the binding and clearance of these molecules. AGEs are thought to contribute to defective skin repair in diabetic patients as well as a result of the normal aging process. However, the distribution and localization of Gal-3 and AGEs has never been performed in human chronic skin wound tissue. Using immunohistochemistry, the localization of Gal-3 and AGEs in tissue isolated from chronic wounds and non-involved skin from the same patient was investigated. Of the 16 patients from which tissue was isolated, 13 had type II diabetes, one had type I diabetes and 2 patients without diabetes were also examined. In non-involved dermis, Gal-3 was detected strongly in the epidermis and in the vasculature. However, at the wound edge and in the wound bed, the level of Gal-3 labelling was greatly reduced in both the epidermis and vasculature. Labelling of serial sections for Gal-3 and AGE demonstrated that where Gal-3 immunoreactivity is reduced in the epidermis and vasculature, there is a concomitant increase in the level of AGE staining. Interestingly, similar labelling patterns were evident in diabetic and non-diabetic patients. The results from our study demonstrate an inverse correlation between Gal-3 and AGEs localization, suggesting that Gal-3 may protect against accumulation of AGEs in wound healing.

  5. Variations of the histomorphological characteristics of human skin of different body regions in subjects of different age.

    PubMed

    Kakasheva-Mazhenkovska, L; Milenkova, L; Gjokik, G; Janevska, V

    2011-01-01

    The aim of this paper was to create a reference model for the qualitative and quantitative characteristics of healthy human skin in different body regions and different life periods. For this purpose we have taken skin biopsy specimens from 15 different body regions: capillitium, forehead, cheeks, anterior neck, thorax, axilla, abdomen, back, gluteus, anterior arm, anterior forearm, palm, anterior leg, anterior lower leg and sole. The biopsies were histologically elaborated according to a standard paraffin technique, and the obtained histological slides were qualitatively and quantitatively analysed with the use of a computer system for image processing and analysis (Lucia M, Version 3, System for Image Processing and Analysis). The examinees were divided by age into five groups: from full-term infants up to the age of 1 year; from the age of 2 up to the age of 12 years; from the age of 13 up to the age of 22; from the age of 23 up to the age of 55; from the age of 56 up to the age of 73. In each exemplar were determined: the total skin thickness in each region at each age group, total thickness of the epidermis, total thickness of the corium, thickness of the papillary and reticular layers of the corium. In this period the thickening is about 4-4.5 times. The growth of the thickness comes as a result of the growth of the thickness of the reticular corium, values of which grow by 4-5 times. The height of the epidermis in newborns shows higher values than the second group (childhood). In the third and fourth group the values of the epidermis are from 1.5 to 2.5 times higher on those parts of the body which are uncovered and exposed to externalities. The essence of the changes that happen to the skin is structural final formation, which is turbulent and targeted in youth (in order to harmonize structural and functional abilities of the human organism) and in mature age to synchronize the function of the skin with the other systems of the organism.

  6. Characteristics of the Aging Skin

    PubMed Central

    Farage, Miranda A.; Miller, Kenneth W.; Elsner, Peter; Maibach, Howard I.

    2013-01-01

    Significance Although most researches into the changes in skin with age focus on the unwelcome aesthetic aspects of the aging skin, skin deterioration with age is more than a merely cosmetic problem. Although mortality from skin disease is primarily restricted to melanoma, dermatological disorders are ubiquitous in older people with a significant impact on quality of life. The structural and functional deterioration of the skin that occurs with age has numerous clinical presentations, ranging from benign but potentially excruciating disorders like pruritus to the more threatening carcinomas and melanomas. Recent Advances The degenerative changes that occur in the aging skin are increasingly understood at both the molecular and cellular level, facilitating a deeper understanding of the structural and functional deterioration that these changes produce. Critical Issues A loss of both function and structural stability in skin proceeds unavoidably as individuals age, which is the result of both intrinsic and extrinsic processes, which contribute simultaneously to a progressive loss of skin integrity. Intrinsic aging proceeds at a genetically determined pace, primarily caused by the buildup of damaging products of cellular metabolism as well as an increasing biological aging of the cells. Estrogen levels strongly influence skin integrity in women as well; falling levels in midlife, therefore, produce premature aging as compared with similarly aged men. Extrinsic insults from the environment add to the dermatological signs of aging. Future Directions A deeper understanding of the physiological basis of skin aging will facilitate progress in the treatment of the unwelcome sequelae of aging skin, both cosmetic and pathogenic. PMID:24527317

  7. Reduced DNA methylation patterning and transcriptional connectivity define human skin aging.

    PubMed

    Bormann, Felix; Rodríguez-Paredes, Manuel; Hagemann, Sabine; Manchanda, Himanshu; Kristof, Boris; Gutekunst, Julian; Raddatz, Günter; Haas, Rainer; Terstegen, Lara; Wenck, Horst; Kaderali, Lars; Winnefeld, Marc; Lyko, Frank

    2016-06-01

    Epigenetic changes represent an attractive mechanism for understanding the phenotypic changes associated with human aging. Age-related changes in DNA methylation at the genome scale have been termed 'epigenetic drift', but the defining features of this phenomenon remain to be established. Human epidermis represents an excellent model for understanding age-related epigenetic changes because of its substantial cell-type homogeneity and its well-known age-related phenotype. We have now generated and analyzed the currently largest set of human epidermis methylomes (N = 108) using array-based profiling of 450 000 methylation marks in various age groups. Data analysis confirmed that age-related methylation differences are locally restricted and characterized by relatively small effect sizes. Nevertheless, methylation data could be used to predict the chronological age of sample donors with high accuracy. We also identified discontinuous methylation changes as a novel feature of the aging methylome. Finally, our analysis uncovered an age-related erosion of DNA methylation patterns that is characterized by a reduced dynamic range and increased heterogeneity of global methylation patterns. These changes in methylation variability were accompanied by a reduced connectivity of transcriptional networks. Our findings thus define the loss of epigenetic regulatory fidelity as a key feature of the aging epigenome.

  8. Reflex vasoconstriction in aged human skin increasingly relies on Rho kinase-dependent mechanisms during whole body cooling

    PubMed Central

    Jennings, John D.; Holowatz, Lacy A.; Kenney, W. Larry

    2009-01-01

    Primary human aging may be associated with augmented Rho kinase (ROCK)-mediated contraction of vascular smooth muscle and ROCK-mediated inhibition of nitric oxide synthase (NOS). We hypothesized that the contribution of ROCK to reflex vasoconstriction (VC) is greater in aged skin. Cutaneous VC was elicited by 1) whole body cooling [mean skin temperature (Tsk) = 30.5°C] and 2) local norepinephrine (NE) infusion (1 × 10−6 M). Four microdialysis fibers were placed in the forearm skin of eight young (Y) and eight older (O) subjects for infusion of 1) Ringer solution (control), 2) 3 mM fasudil (ROCK inhibition), 3) 20 mM NG-nitro-l-arginine methyl ester (NOS inhibition), and 4) both ROCK + NOS inhibitors. Red cell flux was measured by laser-Doppler flowmetry over each site. Cutaneous vascular conductance (CVC) was calculated as flux/mean arterial pressure and normalized to baseline CVC (%ΔCVCbaseline). VC was reduced at the control site in O during cooling (Y, −34 ± 3; and O, −18 ± 3%ΔCVCbaseline; P < 0.001) and NE infusion (Y, −53 ± 4, and O, −41 ± 9%ΔCVCbaseline; P = 0.006). Fasudil attenuated VC in both age groups during mild cooling; however, this reduction remained only in O but not in Y skin during moderate cooling (Y, −30 ± 5; and O, −7 ± 1%ΔCVCbaseline; P = 0.016) and was not altered by NOS inhibition. Fasudil blunted NE-mediated VC in both age groups (Y, −23 ± 4; and O, −7 ± 3%ΔCVCbaseline; P < 0.01). Cumulatively, these data indicate that reflex VC is more reliant on ROCK in aged skin such that approximately half of the total VC response to whole body cooling is ROCK dependent. PMID:19717729

  9. Endothelial nitric oxide synthase mediates cutaneous vasodilation during local heating and is attenuated in middle-aged human skin.

    PubMed

    Bruning, Rebecca S; Santhanam, Lakshmi; Stanhewicz, Anna E; Smith, Caroline J; Berkowitz, Dan E; Kenney, W Larry; Holowatz, Lacy A

    2012-06-01

    Local skin heating is used to assess microvascular function in clinical populations because NO is required for full expression of the response; however, controversy exists as to the precise NO synthase (NOS) isoform producing NO. Human aging is associated with attenuated cutaneous vasodilation but little is known about the middle aged, an age cohort used for comparison with clinical populations. We hypothesized that endothelial NOS (eNOS) is the primary isoform mediating NO production during local heating, and eNOS-dependent vasodilation would be reduced in middle-aged skin. Vasodilation was induced by local heating (42°C) and during acetylcholine dose-response (ACh-DR: 0.01, 0.1, 1.0, 5.0, 10.0, 50.0, 100.0 mmol/l) protocols. Four microdialysis fibers were placed in the skin of 24 men and women; age cohorts were 12 middle-aged (53 ± 1 yr) and 12 young (23 ± 1 yr). Sites served as control, nonselective NOS inhibited [N(G)-nitro-l-arginine methyl ester (l-NAME)], inducible NOS (iNOS) inhibited (1400W), and neuronal NOS (nNOS) inhibited (N(ω)-propyl-l-arginine). After full expression of the local heating response, l-NAME was perfused at all sites. Cutaneous vascular conductance was measured and normalized to maximum (%CVC(max): Nitropress). l-NAME reduced %CVCmax at baseline, all phases of the local heating response, and at all ACh concentrations compared with all other sites. iNOS inhibition reduced the initial peak (53 ± 2 vs. 60 ± 2%CVC(max); P < 0.001); however, there were no other differences between control, nNOS-, and iNOS-inhibited sites during the phases of local heating or ACh-DR. When age cohorts were compared, NO-dependent vasodilation during local heating (52 ± 6 vs. 68 ± 4%CVC(max); P = 0.013) and ACh perfusion (50 mmol/l: 83 ± 3 vs. 93 ± 2%CVC(max); 100 mmol/l: 83 ± 4 vs. 92 ± 3%CVC(max); both P = 0.03) were reduced in middle-aged skin. There were no differences in NOS isoform expression obtained from skin biopsy samples between groups (all

  10. Aging Differences in Ethnic Skin

    PubMed Central

    Buainain De Castro Maymone, Mayra; Kundu, Roopal V.

    2016-01-01

    Aging is an inevitable and complex process that can be described clinically as features of wrinkles, sunspots, uneven skin color, and sagging skin. These cutaneous effects are influenced by both intrinsic and extrinsic factors and often are varied based on ethnic origin given underlying structural and functional differences. The authors sought to provide updated information on facets of aging and how it relates to ethnic variation given innate differences in skin structure and function. Publications describing structural and functional principles of ethnic and aging skin were primarily found through a PubMed literature search and supplemented with a review of textbook chapters. The most common signs of skin aging despite skin type are dark spots, loss of elasticity, loss of volume, and rhytides. Skin of color has many characteristics that make its aging process unique. Those of Asian, Hispanic, and African American descent have distinct facial structures. Differences in the concentration of epidermal melanin makes darkly pigmented persons more vulnerable to dyspigmentation, while a thicker and more compact dermis makes facial lines less noticeable. Ethnic skin comprises a large portion of the world population. Therefore, it is important to understand the unique structural and functional differences among ethnicities to adequately treat the signs of aging. PMID:26962390

  11. Aging Differences in Ethnic Skin.

    PubMed

    Vashi, Neelam A; de Castro Maymone, Mayra Buainain; Kundu, Roopal V

    2016-01-01

    Aging is an inevitable and complex process that can be described clinically as features of wrinkles, sunspots, uneven skin color, and sagging skin. These cutaneous effects are influenced by both intrinsic and extrinsic factors and often are varied based on ethnic origin given underlying structural and functional differences. The authors sought to provide updated information on facets of aging and how it relates to ethnic variation given innate differences in skin structure and function. Publications describing structural and functional principles of ethnic and aging skin were primarily found through a PubMed literature search and supplemented with a review of textbook chapters. The most common signs of skin aging despite skin type are dark spots, loss of elasticity, loss of volume, and rhytides. Skin of color has many characteristics that make its aging process unique. Those of Asian, Hispanic, and African American descent have distinct facial structures. Differences in the concentration of epidermal melanin makes darkly pigmented persons more vulnerable to dyspigmentation, while a thicker and more compact dermis makes facial lines less noticeable. Ethnic skin comprises a large portion of the world population. Therefore, it is important to understand the unique structural and functional differences among ethnicities to adequately treat the signs of aging. PMID:26962390

  12. Aging changes in skin

    MedlinePlus

    ... sun exposure with areas that are protected from sunlight. Natural pigments seem to provide some protection against ... Exposures to industrial and household chemicals Indoor heating Sunlight can cause: Loss of elasticity (elastosis) Noncancerous skin ...

  13. Archaea on human skin.

    PubMed

    Probst, Alexander J; Auerbach, Anna K; Moissl-Eichinger, Christine

    2013-01-01

    The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin.

  14. Changes in the redox state and endogenous fluorescence of in vivo human skin due to intrinsic and photo-aging, measured by multiphoton tomography with fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Sanchez, Washington Y.; Obispo, Clara; Ryan, Elizabeth; Grice, Jeffrey E.; Roberts, Michael S.

    2013-06-01

    Ultraviolet radiation from solar exposure is a key extrinsic factor responsible for premature skin aging (i.e., photo-aging). Recent advances using in vivo multiphoton tomography (MPT) demonstrate the efficacy of this approach to assess intrinsic and extrinsic skin aging as an alternative to existing invasive techniques. In this study, we measured changes in epidermal autofluorescence, dermal collagen second harmonic generation (SHG), and the redox state of solar-exposed and solar-protected human skin by MPT with fluorescence lifetime imaging (MPT-FLIM). Twenty-four volunteers across four age categories (20 to 29, 30 to 39, 40 to 49, and 50 to 59 years old; six volunteers each) were recruited for MPT-FLIM imaging of the dorsal (solar-exposed; photo-damaged) and volar (solar-protected) forearm. We demonstrate a higher intensity of dermal collagen SHG within the volar forearm compared to dorsal solar-exposed skin. Redox imaging of each epidermal skin stratum by FLIM demonstrates an increase in fluorescence lifetime in the solar-exposed dorsal forearm that is more apparent in aged skin. The results of this study suggest the redox state of the viable epidermis is a key marker in assessing intrinsic and photo-damage skin aging, in combination with changes in autofluorescence and SHG.

  15. Chromophores in human skin

    NASA Astrophysics Data System (ADS)

    Young, Antony R.

    1997-05-01

    Human skin, especially the epidermis, contains several major solar ultraviolet-radiation- (UVR-) absorbing endogenous chromophores including DNA, urocanic acid, amino acids, melanins and their precursors and metabolites. The lack of solubility of melanins prevents their absorption spectra being defined by routine techniques. Indirect spectroscopic methods show that their spectral properties depend on the stimulus for melanogenesis. The photochemical consequences of UVR absorption by some epidermal chromophores are relatively well understood whereas we lack a detailed understanding of the consequent photobiological and clinical responses. Skin action spectroscopy is not a reliable way of relating a photobiological outcome to a specific chromophore but is important for UVR hazard assessment. Exogenous chromophores may be administered to the skin in combination with UVR exposure for therapeutic benefit, or as sunscreens for the prevention of sunburn and possibly skin cancer.

  16. Differential translocation of heat shock factor-1 after mild and severe stress to human skin fibroblasts undergoing aging in vitro.

    PubMed

    Demirovic, Dino; de Toda, Irene Martinez; Nizard, Carine; Rattan, Suresh I S

    2014-12-01

    Repeated exposure to mild heat shock (HS) has been shown to induce a wide range of health promoting hormetic effects in various biological systems, including human cells undergoing aging in vitro. In order to understand how cells distinguish between mild and severe stress, we have investigated the extent of early and immediate HS response by analyzing the nuclear translocation of the transcription factor heat shock factor-1 (HSF1), in serially passaged normal adult human facial skin fibroblasts exposed to mild (41 °C) or severe (43 °C) HS. Cells respond differently when exposed to mild and severe HS at different passage levels in terms of the extent of HSF1 translocation. In early passage young cells there was a 5-fold difference between mild and severe HS in the extent of HSF1 translocation. However, in near senescent late passage cells, the difference between mild and severe stress in terms of the extent of HSF1 translocation was reduced to less than 2-fold. One of the reasons for this age-related attenuation of heat shock response is due to the fact there was a higher basal level of HSF1 in the nuclei of late passage cells, which is indicative of increased intrinsic stress during cellular aging. These observations are consistent with previously reported data that whereas repeated mild stress given at younger ages can slow down aging and increase the lifespan, the same level of stress given at older ages may not provide the same benefits. Therefore, elucidating the early and immediate steps in the induction of stress response can be useful in deciding whether a particular level of stress is potentially hormetically beneficial or not.

  17. Skin aging, gene expression and calcium.

    PubMed

    Rinnerthaler, Mark; Streubel, Maria Karolin; Bischof, Johannes; Richter, Klaus

    2015-08-01

    The human epidermis provides a very effective barrier function against chemical, physical and microbial insults from the environment. This is only possible as the epidermis renews itself constantly. Stem cells located at the basal lamina which forms the dermoepidermal junction provide an almost inexhaustible source of keratinocytes which differentiate and die during their journey to the surface where they are shed off as scales. Despite the continuous renewal of the epidermis it nevertheless succumbs to aging as the turnover rate of the keratinocytes is slowing down dramatically. Aging is associated with such hallmarks as thinning of the epidermis, elastosis, loss of melanocytes associated with an increased paleness and lucency of the skin and a decreased barrier function. As the differentiation of keratinocytes is strictly calcium dependent, calcium also plays an important role in the aging epidermis. Just recently it was shown that the epidermal calcium gradient in the skin that facilitates the proliferation of keratinocytes in the stratum basale and enables differentiation in the stratum granulosum is lost in the process of skin aging. In the course of this review we try to explain how this calcium gradient is built up on the one hand and is lost during aging on the other hand. How this disturbed calcium homeostasis is affecting the gene expression in aged skin and is leading to dramatic changes in the composition of the cornified envelope will also be discussed. This loss of the epidermal calcium gradient is not only specific for skin aging but can also be found in skin diseases such as Darier disease, Hailey-Hailey disease, psoriasis and atopic dermatitis, which might be very helpful to get a deeper insight in skin aging. PMID:25262846

  18. Factors of skin ageing share common mechanisms.

    PubMed

    Giacomoni, P U; Rein, G

    2001-01-01

    Ageing has been defined as the accumulation of molecular modifications which manifest as macroscopic clinical changes. Human skin, unique among mammalians insofar as it is deprived of fur, is particularly sensitive to environmental stress. Major environmental factors have been recognized to induce modifications of the morphological and biophysical properties of the skin. Metabolites from ingested or inhaled substances do affect skin, which is also sensitive to endogenous hormone levels. Factors as diverse as ultraviolet radiation, atmospheric pollution, wounds, infections, traumatisms, anoxya, cigarette smoke, and hormonal status have a role in increasing the rate of accumulation of molecular modifications and have thus been termed 'factors of ageing'. All these factors share as a common feature, the capability to directly or indirectly induce one of the steps of the micro-inflammatory cycle, which includes the expression of ICAM-1 in endothelial cells. This triggers a process leading to the accumulation of damages in the skin resulting in skin ageing since ICAM-1 expression provokes recruitment and diapedesis of circulating immune cells, which digest the extracellular matrix (ECM) by secreting collagenases, myeloperoxidases and reactive oxygen species. The activation of these lytic processes provokes random damage to resident cells, which in turn secrete prostaglandines and leukotrienes. These signaling molecules induce the degranulation of resident mast cells which release the autacoid histamine and the cytokine TNF-alpha thus activating endothelial cells lining adjacent capillaries which release P-selectin and synthesize ICAM-1. This closes a self-maintained micro-inflammatory cycle, which results in the accumulation of ECM damage, i.e. skin aging. In this paper we review the evidence that two factors able to induce macroscopical and molecular modifications in the skin, protein glycation and stretch, activate the micro-inflammatory cycle. We further present

  19. Biological effects of rutin on skin aging.

    PubMed

    Choi, Seong Jin; Lee, Sung-Nae; Kim, Karam; Joo, Da Hye; Shin, Shanghun; Lee, Jeongju; Lee, Hyun Kyung; Kim, Jihyun; Kwon, Seung Bin; Kim, Min Jung; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Cha, Hwa Jun

    2016-07-01

    Rutin, a quercetin glycoside is a member of the bioflavonoid family which is known to possess antioxidant properties. In the present study, we aimed to confirm the anti‑aging effects of rutin on human dermal fibroblasts (HDFs) and human skin. We examined the effects of rutin using a cell viability assay, senescence-associated-β-galactosidase assay, reverse transcription-quantitative polymerase chain reaction, and by measuring reactive oxygen species (ROS) scavenging activity in vitro. To examine the effects of rutin in vivo, rutin‑containing cream was applied to human skin. A double-blind clinical study was conducted in 40 subjects aged between 30-50 years and divided into control and experimental groups. The test material was applied for 4 weeks. After 2 and 4 weeks, dermal density, skin elasticity, the length and area of crow's feet, and number of under-eye wrinkles following the application of either the control or the rutin-containing cream were analyzed. Rutin increased the mRNA expression of collagen, type I, alpha 1 (COL1A1) and decreased the mRNA expression of matrix metallopeptidase 1 (MMP1) in HDFs. We verified that ROS scavenging activity was stimulated by rutin in a dose‑dependent manner and we identified that rutin exerted protective effects under conditions of oxidative stress. Furthermore, rutin increased skin elasticity and decreased the length, area and number of wrinkles. The consequences of human aging are primarily visible on the skin, such as increased wrinkling, sagging and decreased elasticity. Overall, this study demonstrated the biological effects of rutin on ROS-induced skin aging. PMID:27220601

  20. In vivo confocal Raman microspectroscopy of the human skin: highlighting of spectral markers associated to aging via a research of correlation between Raman and biometric mechanical measurements.

    PubMed

    Eklouh-Molinier, Christophe; Gaydou, Vincent; Froigneux, Emmanuel; Barlier, Pascale; Couturaud, Virginie; Manfait, Michel; Piot, Olivier

    2015-11-01

    Skin plays a protective role against the loss of water and external aggression, including mechanical stresses. These crucial functions are ensured by different cutaneous layers, particularly the stratum corneum (SC). During aging, the human skin reveals some apparent modifications of functionalities such as a loss of elasticity. Our investigations aimed at demonstrating that Raman microspectroscopy, as a label-free technique with a high molecular specificity, is efficient to assess in vivo the molecular composition of the skin and the alterations underwent during aging. Our approach was based on a search for correlation between Raman data collected on healthy female volunteers of different ages (from 21 to 70 years old) by means of a remote confocal Raman and skin firmness measurements used as a reference method. Raman and biometric data were then submitted to a partial least square (PLS)-based data processing. Our experiments demonstrated the potential of Raman microspectroscopy to provide an objective in vivo assessment of the skin "biological age" that can be very different from the "chronological age" of the person. In addition, Raman features sensitive to the elasticity and the fatigability of the SC were highlighted. Thereafter, calibration transfer functions were constructed to show the possibility to compare the results obtained during two distinct measurement campaigns conducted with two Raman probes of the same conception. This approach could lead to several interesting prospects, in particular by objectifying the effects of dermocosmetic products on the superficial layers of the skin and by accessing some underlying molecular mechanisms.

  1. In vivo confocal Raman microspectroscopy of the human skin: highlighting of spectral markers associated to aging via a research of correlation between Raman and biometric mechanical measurements.

    PubMed

    Eklouh-Molinier, Christophe; Gaydou, Vincent; Froigneux, Emmanuel; Barlier, Pascale; Couturaud, Virginie; Manfait, Michel; Piot, Olivier

    2015-11-01

    Skin plays a protective role against the loss of water and external aggression, including mechanical stresses. These crucial functions are ensured by different cutaneous layers, particularly the stratum corneum (SC). During aging, the human skin reveals some apparent modifications of functionalities such as a loss of elasticity. Our investigations aimed at demonstrating that Raman microspectroscopy, as a label-free technique with a high molecular specificity, is efficient to assess in vivo the molecular composition of the skin and the alterations underwent during aging. Our approach was based on a search for correlation between Raman data collected on healthy female volunteers of different ages (from 21 to 70 years old) by means of a remote confocal Raman and skin firmness measurements used as a reference method. Raman and biometric data were then submitted to a partial least square (PLS)-based data processing. Our experiments demonstrated the potential of Raman microspectroscopy to provide an objective in vivo assessment of the skin "biological age" that can be very different from the "chronological age" of the person. In addition, Raman features sensitive to the elasticity and the fatigability of the SC were highlighted. Thereafter, calibration transfer functions were constructed to show the possibility to compare the results obtained during two distinct measurement campaigns conducted with two Raman probes of the same conception. This approach could lead to several interesting prospects, in particular by objectifying the effects of dermocosmetic products on the superficial layers of the skin and by accessing some underlying molecular mechanisms. PMID:26297464

  2. The Influence of Age and Gender on Skin-Associated Microbial Communities in Urban and Rural Human Populations

    PubMed Central

    Ying, Shi; Zeng, Dan-Ning; Chi, Liang; Tan, Yuan; Galzote, Carlos; Cardona, Cesar; Lax, Simon; Gilbert, Jack; Quan, Zhe-Xue

    2015-01-01

    Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random. PMID:26510185

  3. The Influence of Age and Gender on Skin-Associated Microbial Communities in Urban and Rural Human Populations.

    PubMed

    Ying, Shi; Zeng, Dan-Ning; Chi, Liang; Tan, Yuan; Galzote, Carlos; Cardona, Cesar; Lax, Simon; Gilbert, Jack; Quan, Zhe-Xue

    2015-01-01

    Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random. PMID:26510185

  4. Can proton pump inhibitors accentuate skin aging?

    PubMed

    Namazi, Mohammad Reza; Jowkar, Farideh

    2010-02-01

    Skin aging has long been important to human beings and in recent years this field has received tremendous attention by both researchers and the general population. Cutaneous aging includes two distinct phenomena, intrinsic aging and photoaging, and is characterized mainly by the loss of collagen fibers from dermis. Proton pump inhibitors (PPIs) are widely prescribed gastric acid-reducing agents that are usually consumed for long periods in some conditions such as gastroesophageal reflux disease. We suggest that PPIs can accentuate skin aging by two mechanisms. First, through increasing intralysosomal PH, PPIs can suppress transforming growth factor-beta (TGFbeta) processing and consequently decrease its secretion. Second, through inhibiting MNK, a P-type ATPase with steady-state localization at the trans-Golgi network, PPIs can hamper copper transport and consequently curb lysyl oxidase activity. PMID:20470945

  5. What Causes Our Skin to Age?

    MedlinePlus

    ... Find a dermatologist What causes our skin to age? Many things cause our skin to age. Some ... Us Media contacts Advertising contacts AAD logo Advertising, marketing and sponsorships Legal notice Copyright © 2016 American Academy ...

  6. P16INK4a Positive Cells in Human Skin Are Indicative of Local Elastic Fiber Morphology, Facial Wrinkling, and Perceived Age.

    PubMed

    Waaijer, Mariëtte E C; Gunn, David A; Adams, Peter D; Pawlikowski, Jeff S; Griffiths, Christopher E M; van Heemst, Diana; Slagboom, P Eline; Westendorp, Rudi G J; Maier, Andrea B

    2016-08-01

    Senescent cells are more prevalent in aged human skin compared to young, but evidence that senescent cells are linked to other biomarkers of aging is scarce. We counted cells positive for the tumor suppressor and senescence associated protein p16INK4a in sun-protected upper-inner arm skin biopsies from 178 participants (aged 45-81 years) of the Leiden Longevity Study. Local elastic fiber morphology, facial wrinkles, and perceived facial age were compared to tertiles of p16INK4a counts, while adjusting for chronological age and other potential confounders.The numbers of epidermal and dermal p16INK4a positive cells were significantly associated with age-associated elastic fiber morphologic characteristics, such as longer and a greater number of elastic fibers. The p16INK4a positive epidermal cells (identified as primarily melanocytes) were also significantly associated with more facial wrinkles and a higher perceived age. Participants in the lowest tertile of epidermal p16INK4a counts looked 3 years younger than those in the highest tertile, independently of chronological age and elastic fiber morphology.In conclusion, p16INK4a positive cell numbers in sun-protected human arm skin are indicative of both local elastic fiber morphology and the extent of aging visible in the face.

  7. Aging skin is functionally anaerobic: importance of coenzyme Q10 for anti aging skin care.

    PubMed

    Prahl, S; Kueper, T; Biernoth, T; Wöhrmann, Y; Münster, A; Fürstenau, M; Schmidt, M; Schulze, C; Wittern, K-P; Wenck, H; Muhr, G-M; Blatt, T

    2008-01-01

    The functional loss of mitochondria represents an inherent part in modern theories trying to explain the cutaneous aging process. The present study shows significant age-dependent differences in mitochondrial function of keratinocytes isolated from skin biopsies of young and old donors. Our data let us postulate that energy metabolism shifts to a predominantly non-mitochondrial pathway and is therefore functionally anaerobic with advancing age. CoQ10 positively influences the age-affected cellular metabolism and enables to combat signs of aging starting at the cellular level. As a consequence topical application of CoQ10 is beneficial for human skin as it rapidly improves mitochondrial function in skin in vivo. PMID:19096122

  8. Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-κB.

    PubMed

    Haustead, Daniel J; Stevenson, Andrew; Saxena, Vishal; Marriage, Fiona; Firth, Martin; Silla, Robyn; Martin, Lisa; Adcroft, Katharine F; Rea, Suzanne; Day, Philip J; Melton, Phillip; Wood, Fiona M; Fear, Mark W

    2016-01-01

    Age is well-known to be a significant factor in both disease pathology and response to treatment, yet the molecular changes that occur with age in humans remain ill-defined. Here, using transcriptome profiling of healthy human male skin, we demonstrate that there is a period of significantly elevated, transcriptome-wide expression changes occurring predominantly in middle age. Both pre and post this period, the transcriptome appears to undergo much smaller, linear changes with increasing age. Functional analysis of the transient changes in middle age suggest a period of heightened metabolic activity and cellular damage associated with NF-kappa-B and TNF signaling pathways. Through meta-analysis we also show the presence of global, tissue independent linear transcriptome changes with age which appear to be regulated by NF-kappa-B. These results suggest that aging in human skin is associated with a critical mid-life period with widespread transcriptome changes, both preceded and proceeded by a relatively steady rate of linear change in the transcriptome. The data provides insight into molecular changes associated with normal aging and will help to better understand the increasingly important pathological changes associated with aging. PMID:27229172

  9. Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-κB

    PubMed Central

    Haustead, Daniel J.; Stevenson, Andrew; Saxena, Vishal; Marriage, Fiona; Firth, Martin; Silla, Robyn; Martin, Lisa; Adcroft, Katharine F.; Rea, Suzanne; Day, Philip J.; Melton, Phillip; Wood, Fiona M.; Fear, Mark W.

    2016-01-01

    Age is well-known to be a significant factor in both disease pathology and response to treatment, yet the molecular changes that occur with age in humans remain ill-defined. Here, using transcriptome profiling of healthy human male skin, we demonstrate that there is a period of significantly elevated, transcriptome-wide expression changes occurring predominantly in middle age. Both pre and post this period, the transcriptome appears to undergo much smaller, linear changes with increasing age. Functional analysis of the transient changes in middle age suggest a period of heightened metabolic activity and cellular damage associated with NF-kappa-B and TNF signaling pathways. Through meta-analysis we also show the presence of global, tissue independent linear transcriptome changes with age which appear to be regulated by NF-kappa-B. These results suggest that aging in human skin is associated with a critical mid-life period with widespread transcriptome changes, both preceded and proceeded by a relatively steady rate of linear change in the transcriptome. The data provides insight into molecular changes associated with normal aging and will help to better understand the increasingly important pathological changes associated with aging. PMID:27229172

  10. Human skin surface evaluation by image processing

    NASA Astrophysics Data System (ADS)

    Zhu, Liangen; Zhan, Xuemin; Xie, Fengying

    2003-12-01

    Human skin gradually lose its tension and becomes very dry as time flies by. Use of cosmetics is effective to prevent skin aging. Recently, there are many choices of products of cosmetics. To show their effects, It is desirable to develop a way to evaluate quantificationally skin surface condition. In this paper, An automatic skin evaluating method is proposed. The skin surface has the pattern called grid-texture. This pattern is composed of the valleys that spread vertically, horizontally, and obliquely and the hills separated by them. Changes of the grid are closely linked to the skin surface condition. They can serve as a good indicator for the skin condition. By measuring the skin grid using digital image processing technologies, we can evaluate skin surface about its aging, health, and alimentary status. In this method, the skin grid is first detected to form a closed net. Then, some skin parameters such as Roughness, tension, scale and gloss can be calculated from the statistical measurements of the net. Through analyzing these parameters, the condition of the skin can be monitored.

  11. The role of cytokines in skin aging.

    PubMed

    Borg, M; Brincat, S; Camilleri, G; Schembri-Wismayer, P; Brincat, M; Calleja-Agius, J

    2013-10-01

    Cutaneous aging is one of the major noticeable menopausal complications that most women want to fight in their quest for an eternally youthful skin appearance. It may contribute to some maladies that occur in aging which, despite not being life-threatening, affect the well-being, psychological state and quality of life of aged women. Skin aging is mainly affected by three factors: chronological aging, decreased levels of estrogen after menopause, and environmental factors. Aged skin is characterized by a decrease in collagen content and skin thickness which result in dry, wrinkled skin that is easily bruised and takes a longer time to heal. Cytokines play a crucial role in the manifestation of these features of old skin. The pro-inflammatory cytokine tumor necrosis factor-alpha inhibits collagen synthesis and enhances collagen degradation by increasing the production of MMP-9. It also lowers the skin immunity and thus increases the risk of cutaneous infections in old age. Deranged levels of several interleukins and interferons also affect the aging process. The high level of CCN1 protein in aged skin gives dermal fibroblasts an 'age-associated secretory phenotype' that causes abnormal homeostasis of skin collagen and leads to the loss of the function and integrity of skin. Further research is required especially to establish the role of cytokines in the treatment of cutaneous aging.

  12. Age-dependent biomechanical properties of the skin

    PubMed Central

    Lelonkiewicz, Monika; Wieczorowski, Michał

    2013-01-01

    The skin fulfills one of its most important functions, that is protection from mechanical injuries, due to the mechanism of reversible deformation of the structure. Human skin is a complex living material but in biomechanical tests it reveals its homogeneous nature. Biomechanical skin parameters change with time. Results of thickness measurements, where the skin was subjected to pressure, revealed that the Young's modulus increased linearly with age. The process of ageing is the reason why the skin becomes thinner, stiffer, less tense and less flexible. Skin tension measured during in vivo uniaxial load and the elasticity modulus are higher in children than in elderly adults. Furthermore, mean ultimate skin deformation before bursting is 75% for newborns and 60% for the elderly. Several types of the main lines were distinguished on the skin. The static lines, described by Langer, correspond to the lines of maximum tension, the Kraissl's lines correspond to the movements of the skin during muscle work, whereas the Borges lines are the relaxed skin tension lines. Biomechanical tests of the human skin help to quantify the effectiveness of dermatological products, detect skin diseases, schedule and plan surgical and dermatological interventions and treatments. PMID:24353490

  13. Airborne particle exposure and extrinsic skin aging.

    PubMed

    Vierkötter, Andrea; Schikowski, Tamara; Ranft, Ulrich; Sugiri, Dorothea; Matsui, Mary; Krämer, Ursula; Krutmann, Jean

    2010-12-01

    For decades, extrinsic skin aging has been known to result from chronic exposure to solar radiation and, more recently, to tobacco smoke. In this study, we have assessed the influence of air pollution on skin aging in 400 Caucasian women aged 70-80 years. Skin aging was clinically assessed by means of SCINEXA (score of intrinsic and extrinsic skin aging), a validated skin aging score. Traffic-related exposure at the place of residence was determined by traffic particle emissions and by estimation of soot in fine dust. Exposure to background particle concentration was determined by measurements of ambient particles at fixed monitoring sites. The impact of air pollution on skin aging was analyzed by linear and logistic regression and adjusted for potential confounding variables. Air pollution exposure was significantly correlated to extrinsic skin aging signs, in particular to pigment spots and less pronounced to wrinkles. An increase in soot (per 0.5 × 10(-5) per m) and particles from traffic (per 475  kg per year and square km) was associated with 20% more pigment spots on forehead and cheeks. Background particle pollution, which was measured in low residential areas of the cities without busy traffic and therefore is not directly attributable to traffic but rather to other sources of particles, was also positively correlated to pigment spots on face. These results indicate that particle pollution might influence skin aging as well.

  14. A light and electron microscopic evaluation of Zyderm collagen and Zyplast implants in aging human facial skin. A pilot study.

    PubMed

    Stegman, S J; Chu, S; Bensch, K; Armstrong, R

    1987-12-01

    Four patients received Zyderm collagen implant (ZCI) or Zyplast implant (ZI) in preauricular and infraauricular regions of facial skin periodically between one and nine months. Both materials were identified microscopically in the mid- to deep dermis at all points of the study and, in 60% to 70% of the injected sites, some material was also present subdermally. A slow, gradual colonization of ZCI by fibroblasts was noted compared with a delayed intense interaction of these cells with ZI. Also, there was some new collagen deposition associated with remodeling of the ZI, while no demonstrable synthetic activity occurred in relationship to ZCI. The results suggest that ZCI and ZI "migrate" deeper and eventually move into the subcutaneous plane. This movement could explain the loss of correction at six to nine months that is noted when this implant is used for age-related changes.

  15. Human skin volatiles: a review.

    PubMed

    Dormont, Laurent; Bessière, Jean-Marie; Cohuet, Anna

    2013-05-01

    Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.

  16. Autophagy in human skin fibroblasts: Comparison between young and aged cells and evaluation of its cellular rhythm and response to Ultraviolet A radiation.

    PubMed

    Pernodet, Nadine; Dong, Kelly; Pelle, Edward

    2016-01-01

    Autophagic mechanisms play critical roles in cell maintenance. Damaged organelles that are not removed by autophagosomes, which act by engulfing and degrading these cellular components, have been linked to various pathologies. Recently, the progression of aging has also been correlated to a compromised autophagic response. Here, we report for the first time a significant reduction in autophagic levels in synchronized aged normal human skin fibroblasts as compared to young fibroblasts. We measured a 77.9% reduction in autophagy as determined by reverse transcription-polymerase chain reaction for LC3B expression, a microtubule-associated protein correlated to late stage autophagosome formation. In addition, we visualized these same changes by immunocytofluorescence with antibodies directed against LC3B. By harvesting synchronized, as well as unsynchronized cells over time, we were also able to measure for the first time a nighttime peak in autophagy that was present in young but absent in aged fibroblasts. Finally, since human skin is constantly subjected to environmentally induced oxidative stress from sunlight, we exposed fibroblasts to 10 J/cm2 ultraviolet A and found, in good agreement with current literature, not only that irradiation could partially reactivate autophagy in the aged cells, but also that this increase was phase shifted earlier from its endogenous temporal pattern because of its loss of synchronization with circadian rhythm.

  17. Skin aging: are adipocytes the next target?

    PubMed

    Kruglikov, Ilja L; Scherer, Philipp E

    2016-07-01

    Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as "adipocyte-myofibroblast transition" (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging. PMID:27434510

  18. Skin aging: are adipocytes the next target?

    PubMed Central

    Kruglikov, Ilja L.; Scherer, Philipp E.

    2016-01-01

    Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as “adipocyte-myofibroblast transition” (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging. PMID:27434510

  19. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms.

    PubMed

    Lephart, Edwin D

    2016-11-01

    Oxygen in biology is essential for life. It comes at a cost during normal cellular function, where reactive oxygen species (ROS) are generated by oxidative metabolism. Human skin exposed to solar ultra-violet radiation (UVR) dramatically increases ROS production/oxidative stress. It is important to understand the characteristics of human skin and how chronological (intrinsic) aging and photo-aging (extrinsic aging) occur via the impact of ROS production by cascade signaling pathways. The goal is to oppose or neutralize ROS insults to maintain good dermal health. Botanicals, as active ingredients, represent one of the largest categories used in dermatology and cosmeceuticals to combat skin aging. An emerging botanical is equol, a polyphenolic/isoflavonoid molecule found in plants and food products and via gastrointestinal metabolism from precursor compounds. Introductory sections cover oxygen, free radicals (ROS), oxidative stress, antioxidants, human skin aging, cellular/molecular ROS events in skin, steroid enzymes/receptors/hormonal actions and genetic factors in aging skin. The main focus of this review covers the characteristics of equol (phytoestrogenic, antioxidant and enhancement of extracellular matrix properties) to reduce skin aging along with its anti-aging skin influences via reducing oxidative stress cascade events by a variety of biochemical/molecular actions and mechanisms to enhance human dermal health. PMID:27521253

  20. Understanding metabolic pathways for skin anti-aging.

    PubMed

    Osborne, Rosemarie; Mullins, Lisa A; Jarrold, Bradley B

    2009-07-01

    Global gene expression profiling provides a useful means to identify key aspects of the skin aging process, and provides information to help develop new skin technologies. Important aspects of skin aging that can be addressed include skin hydration, barrier, matrix, pigmentation and antioxidant capacity. Human skin equivalent cultures allow topical application of test compounds, combinations and products to their stratum corneum surface and measurement of predictive biomarkers. Using this in vitro biomarker approach, it is possible to detect skin barrier enhancement in response to the compounds niacinamide and hexamidine, matrix effects to the peptides Pal-KT and Pal-KTTKS, and hydration and matrix responses to niacinamide and N-acetylglucosamine. PMID:19623777

  1. The electric field near human skin wounds declines with age and provides a non-invasive indicator of wound healing

    PubMed Central

    Nuccitelli, Richard; Nuccitelli, Pamela; Li, Changyi; Narsing, Suman; Pariser, David M.; Lui, Kaying

    2011-01-01

    Due to the transepidermal potential of 15-50 mV, inside positive, an injury current is driven out of all human skin wounds. The flow of this current generates a lateral electric field within the epidermis that is more negative at the wound edge than at regions more lateral from the wound edge1. Electric fields in this region could be as large as 40 mV/mm2, and electric fields of this magnitude have been shown to stimulate human keratinocyte migration toward the wounded region3. After flowing out of the wound, the current returns through the space between the epidermis and stratum corneum, generating a lateral field above the epidermis in the opposite direction. Here we report the results from the first clinical trial designed to measure this lateral electric field adjacent to human skin wounds non-invasively. Using a new instrument, the Dermacorder®, we found that the mean lateral electric field in the space between the epidermis and stratum corneum adjacent to a lancet wound in 18-25 year olds is 107-148 mV/mm, 48% larger on average than that in 65-80 year olds. We also conducted extensive measurements of the lateral electric field adjacent to mouse wounds as they healed and compared this field with histological sections through the wound to determine the correlation between the electric field and the rate of epithelial wound closure. Immediately after wounding the average lateral electric field was 122 ± 9 mV/mm. When the wound is filled in with a thick, disorganized epidermal layer, the mean field falls to 79 ± 4 mV/mm. Once this epidermis forms a compact structure with only three cell layers, the mean field is 59 ± 5 mV/mm. Thus, the peak-to-peak spatial variation in surface potential is largest in fresh wounds and slowly declines as the wound closes. The rate of wound healing is slightly greater when wounds are kept moist as expected but we could find no correlation between the amplitude of the electric field and the rate of wound healing. PMID:22092802

  2. Skin Diseases: Cross-section of human skin

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  3. Age related efficiency of the leishmanin skin test as a marker of immunity to human visceral leishmaniasis.

    PubMed

    Sassi, A; Ben Salah, A; Hamida, N Bel Haj; Zaatour, A

    2012-01-01

    This study aimed at investigating whether the efficiency of the leishmanin skin test (LST) to evaluate the immune status of individuals exposed to Leishmania (L.) infantum is age-related. It was conducted in two districts of the governorate of Kairouan, an endemic region for L. infantum infection in Tunisia. Healthy individuals (n = 119) were selected according to two criteria: no current or past history of visceral or cutaneous leishmaniasis, and their age range: 1-6 years (group I), 7-14 years (group II), and 20-66 years old (group III). Assessments comprised LSTs, in vitro lymphoproliferative response, and interferon-gamma (IFN-gamma) productions induced by soluble leishmanial antigens (SLA). LST recorded an overall of 89.07% and 89.9% concordance with T cell proliferation and IFN-gamma production induced by SLA, respectively. Using in vitro tests as gold standards, LST was found more sensitive for screening individuals from group I (96% and 100%, considering T cell proliferation and IFN-gamma production results, respectively), than group II (91% and 97%) and group III (70% and 74%,). Conversely, LST was less specific in group I (84% and 77%) than group II (100% and 94%) and group III (100% for both in vitro tests). Our results suggested that the strength of LST resided in its higher sensitivity, to unravel asymptomatic injections and cell mediated immunity to L. infantum parasite in infants and its higher specificity for screening adult individuals. Negative LST in adults and positive LST in children < 5 years, the population at risk of developing visceral leishmaniasis, remain the weaknesses of LST and should be interpreted with caution.

  4. In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser

    NASA Astrophysics Data System (ADS)

    Yasui, Takeshi; Yonetsu, Makoto; Tanaka, Ryosuke; Tanaka, Yuji; Fukushima, Shu-ichiro; Yamashita, Toyonobu; Ogura, Yuki; Hirao, Tetsuji; Murota, Hiroyuki; Araki, Tsutomu

    2013-03-01

    In vivo visualization of human skin aging is demonstrated using a Cr:Forsterite (Cr:F) laser-based, collagen-sensitive second harmonic generation (SHG) microscope. The deep penetration into human skin, as well as the specific sensitivity to collagen molecules, achieved by this microscope enables us to clearly visualize age-related structural changes of collagen fiber in the reticular dermis. Here we investigated intrinsic aging and/or photoaging in the male facial skin. Young subjects show dense distributions of thin collagen fibers, whereas elderly subjects show coarse distributions of thick collagen fibers. Furthermore, a comparison of SHG images between young and elderly subjects with and without a recent life history of excessive sun exposure show that a combination of photoaging with intrinsic aging significantly accelerates skin aging. We also perform image analysis based on two-dimensional Fourier transformation of the SHG images and extracted an aging parameter for human skin. The in vivo collagen-sensitive SHG microscope will be a powerful tool in fields such as cosmeceutical sciences and anti-aging dermatology.

  5. In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser.

    PubMed

    Yasui, Takeshi; Yonetsu, Makoto; Tanaka, Ryosuke; Tanaka, Yuji; Fukushima, Shu-ichiro; Yamashita, Toyonobu; Ogura, Yuki; Hirao, Tetsuji; Murota, Hiroyuki; Araki, Tsutomu

    2013-03-01

    In vivo visualization of human skin aging is demonstrated using a Cr:Forsterite (Cr:F) laser-based, collagen-sensitive second harmonic generation (SHG) microscope. The deep penetration into human skin, as well as the specific sensitivity to collagen molecules, achieved by this microscope enables us to clearly visualize age-related structural changes of collagen fiber in the reticular dermis. Here we investigated intrinsic aging and/or photoaging in the male facial skin. Young subjects show dense distributions of thin collagen fibers, whereas elderly subjects show coarse distributions of thick collagen fibers. Furthermore, a comparison of SHG images between young and elderly subjects with and without a recent life history of excessive sun exposure show that a combination of photoaging with intrinsic aging significantly accelerates skin aging. We also perform image analysis based on two-dimensional Fourier transformation of the SHG images and extracted an aging parameter for human skin. The in vivo collagen-sensitive SHG microscope will be a powerful tool in fields such as cosmeceutical sciences and anti-aging dermatology. PMID:23212157

  6. Variables influencing the frictional behaviour of in vivo human skin.

    PubMed

    Veijgen, N K; Masen, M A; van der Heide, E

    2013-12-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables. This study has used a large dataset to identify the effect of variables on the human skin, subject characteristics and environmental conditions on skin friction. The data are obtained on 50 subjects (34 males and 16 females). Friction measurements represent the friction between in vivo human skin and an aluminium sample, assessed on three anatomical locations. The coefficient of friction increased significantly (p<0.05) with increasing age, increasing ambient temperature and increasing relative air humidity. A significant inversely proportional relationship was found between friction and both the amount of hair present on the skin and the height of the subject. Other outcome variables in this study were the hydration of the skin and the skin temperature.

  7. Skin Ageing: Natural Weapons and Strategies

    PubMed Central

    Binic, Ivana; Lazarevic, Viktor; Ljubenovic, Milanka; Mojsa, Jelena; Sokolovic, Dusan

    2013-01-01

    The fact that the skin is the most visible organ makes us aware of the ageing process every minute. The use of plant extracts and herbs has its origins in ancient times. Chronological and photo-ageing can be easily distinguished clinically, but they share important molecular features. We tried to gather the most interesting evidence based on facts about plants and plant extracts used in antiaging products. Our main idea was to emphasize action mechanisms of these plant/herbal products, that is, their “strategies” in fighting skin ageing. Some of the plant extracts have the ability to scavenge free radicals, to protect the skin matrix through the inhibition of enzymatic degradation, or to promote collagen synthesis in the skin. There are some plants that can affect skin elasticity and tightness. Certainly, there is a place for herbal principles in antiaging cosmetics. On the other hand, there is a constant need for more evaluation and more clinical studies in vivo with emphasis on the ingredient concentration of the plant/herbal products, its formulation, safety, and duration of the antiaging effect. PMID:23431351

  8. The Microbiota of the Human Skin.

    PubMed

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members, PMID:27161351

  9. The Microbiota of the Human Skin.

    PubMed

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members,

  10. Skin tumors in aging Long Evans rats.

    PubMed

    Esfandiari, Adeleh; Loya, Theresa; Lee, Jeffrey L

    2002-06-01

    We report 25 cases of skin neoplasm observed among 30 Long Evans rats serving as controls in a psychosocial behavioral study conducted in the Vivarium at Charles R. Drew University, Los Angeles, CA. The animals were 10 weeks old at the beginning of the study. All the skin tumors developed at 18 to 26 months of age and slowly enlarged over a period of 9 months. Multiple nodules occurred in 8 males and 6 females. None of the tumors regressed. The tumors were located around the hind leg and dorso-medial area and measured 1 to 2 cm. Physical examination revealed firm well demarcated dermal masses. Most of the tumor nodules were intradermal, and some had a central ulcerated or keratin-filled core. Microscopic examination performed on some of the tumors showed findings of classic Keratoacanthoma, whereas others showed histologic features suggestive of squamous cell carcinoma. These findings indicate a high rate (83%) of spontaneous skin neoplasms among aging Long Evans rats. To our knowledge, such a high rate of skin neoplasms in aged rodents has not been described in the literature. Furthermore, further studies should be undertaken to confirm these findings and to assess whether these rodents might serve as a model for studying the alterations in the immune system with aging.

  11. Systemic and topical drugs for aging skin.

    PubMed

    Kockaert, Michael; Neumann, Martino

    2003-08-01

    The rejuvenation of aging skin is a common desire for our patients, and several options are available. Although there are some systemic methods, the most commonly used treatments for rejuvenation of the skin are applied topically. The most frequently used topical drugs include retinoids, alpha hydroxy acids (AHAs), vitamin C, beta hydroxy acids, anti-oxidants, and tocopherol. Combination therapy is frequently used; particularly common is the combination of retinoids and AHAs. Systemic therapies available include oral retinoids and vitamin C. Other available therapies such as chemical peels, face-lifts, collagen, and botulinum toxin injections are not discussed in this article. PMID:12884471

  12. Alpha-tocopherol modulates hydrogen peroxide-induced DNA damage and telomere shortening of human skin fibroblasts derived from differently aged individuals.

    PubMed

    Makpol, Suzana; Zainuddin, Azalina; Rahim, Norhazira Abdul; Yusof, Yasmin Anum; Ngah, Wan Zurinah

    2010-06-01

    Antioxidants such as vitamin E may act differently on skin cells depending on the age of the skin and the level of oxidative damage induced. The effects of alpha-tocopherol (ATF) on H(2)O(2)-induced DNA damage and telomere shortening of normal human skin fibroblast cells derived from young and old individual donors were determined. Fibroblasts were divided into five groups; untreated control, H(2)O(2)-induced oxidative stress, alpha-tocopherol treatment, and pre- and post-treatment with alpha-tocopherol for H(2)O(2)-induced oxidative stress. Our results showed that H(2)O(2)-induced oxidative stress increased DNA damage, shortened the telomere length and reduced the telomerase activity (p < 0.05) in fibroblasts obtained from young and old donors. Pre- and post-treatment with alpha-tocopherol protected against H(2)O(2)-induced DNA damage in fibroblasts obtained from young individuals (p = 0.005; p = 0.01, respectively). However, in fibroblasts obtained from old individuals, similar protective effects were only seen in cells pretreated with alpha-tocopherol (p = 0.05) but not in the post-treated cells. Protection against H(2)O(2)-induced telomere shortening was observed in fibroblasts obtained from both young and old donors which were pre-treated with alpha-tocopherol (p = 0.009; p = 0.008, respectively). However, similar protective effects against telomere shortening in fibroblasts obtained from both young and old donors were not observed in the post-treated fibroblasts. Protection against H(2)O(2)-induced telomerase activity loss was observed only in fibroblasts obtained from old donors which were pretreated with alpha-tocopherol (p = 0.04) but not in fibroblasts obtained from young donors. Similar protective effects against telomerase activity loss in fibroblasts obtained from both young and old donors were not observed in the post-treated fibroblasts. In conclusion, alpha-tocopherol protected against H(2)O(2)-induced telomere shortening by restoring the telomerase

  13. Role of antioxidants in the skin: anti-aging effects.

    PubMed

    Masaki, Hitoshi

    2010-05-01

    Intracellular and extracellular oxidative stress initiated by reactive oxygen species (ROS) advance skin aging, which is characterized by wrinkles and atypical pigmentation. Because UV enhances ROS generation in cells, skin aging is usually discussed in relation to UV exposure. The use of antioxidants is an effective approach to prevent symptoms related to photo-induced aging of the skin. In this review, the mechanisms of ROS generation and ROS elimination in the body are summarized. The effects of ROS generated in the skin and the roles of ROS in altering the skin are also discussed. In addition, the effects of representative antioxidants on the skin are summarized with a focus on skin aging.

  14. Human papillomaviruses and skin cancer.

    PubMed

    Smola, Sigrun

    2014-01-01

    Human papillomaviruses (HPVs) infect squamous epithelia and can induce hyperproliferative lesions. More than 120 different HPV types have been characterized and classified into five different genera. While mucosal high-risk HPVs have a well-established causal role in anogenital carcinogenesis, the biology of cutaneous HPVs is less well understood. The clinical relevance of genus beta-PV infection has clearly been demonstrated in patients suffering from epidermodysplasia verruciformis (EV), a rare inherited disease associated with ahigh rate of skin cancer. In the normal population genus beta-PV are suspected to have an etiologic role in skin carcinogenesis as well but this is still controversially discussed. Their oncogenic potency has been investigated in mouse models and in vitro. In 2009, the International Agency for Research on Cancer (IARC) classified the genus beta HPV types 5 and 8 as "possible carcinogenic" biological agents (group 2B) in EV disease. This chapter will give an overview on the knowns and unknowns of infections with genus beta-PV and discuss their potential impact on skin carcinogenesis in the general population.

  15. Effects of diffuse and specular reflections on the perceived age of facial skin

    NASA Astrophysics Data System (ADS)

    Arce-Lopera, Carlos; Igarashi, Takanori; Nakao, Keisuke; Okajima, Katsunori

    2012-05-01

    Age perception is a better biomarker of skin aging than chronological age. However, the optical cues that determine the perception of human skin age are difficult to assess given the complex interactions between light and the multi layered structure of the skin. The aim of the present study is to clarify the independent contribution of both diffuse and specular reflection components to the skin age perception. First, according to our results, subjects were able to estimate the age of skin only by using the diffuse reflection component. Moreover, we showed that inclusion of the specular reflection component added on average 5 years to their age estimation. Second, by artificially manipulating the specular component, we concluded that the luminance distribution affects the perceived age of the skin.

  16. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  17. Non-invasive, investigative methods in skin aging.

    PubMed

    Longo, C; Ciardo, S; Pellacani, G

    2015-12-01

    A precise and noninvasive quantification of aging is of outmost importance for in vivo assessment of the skin aging "stage", and thus acts to minimize it. Several bioengineering methods have been proposed to objectively, precisely, and non-invasively measure skin aging, and to detect early skin damage, that is sub-clinically observable. In this review we have described the most relevant methods that have emerged from recently introduced technologies, aiming at quantitatively assessing the effects of aging on the skin.

  18. The optics of human skin

    SciTech Connect

    Anderson, R.R.; Parrish, J.A.

    1981-07-01

    An integrated review of the transfer of optical radiation into human skin is presented, aimed at developing useful models for photomedicine. The component chromophores of epidermis and stratum corneum in general determine the attenuation of radiation in these layers, moreso than does optical scattering. Epidermal thickness and melanization are important factors for UV wavelengths less than 300 nm, whereas the attenuation of UVA (320-400 nm) and visible radiation is primarily via melanin. The selective penetration of all optical wavelengths into psoriatic skin can be maximized by application of clear lipophilic liquids, which decrease regular reflectance by a refractive-index matching mechanism. Sensitivity to wavelengths less than 320 nm can be enhanced by prolonged aqueous bathing, which extracts urocanic acid and other diffusible epidermal chromophores. Optical properties of the dermis are modelled using the Kubelka-Munk approach, and calculations of scattering and absorption coefficients are presented. This simple approach allows estimates of the penetration of radiation in vivo using noninvasive measurements of cutaneous spectral remittance (diffuse reflectance). Although the blood chromophores Hb, HbO/sup 2/, and bilirubin determine dermal absorption of wavelengths longer than 320 nm, scattering by collagen fibers largely determines the depths to which these wavelengths penetrate the dermis, and profoundly modifies skin colors. An optical ''window'' exists between 600 and 1300 nm, which offers the possibility of treating large tissue volumes with certain long-wavelength photosensitizers. Moreover, whenever photosensitized action spectra extend across the near UV and/or visible spectrum, judicious choice of wavelengths allows some selection of the tissue layers directly affected.

  19. William J. Cunliffe Scientific Awards. Characteristics and pathomechanisms of endogenously aged skin.

    PubMed

    Makrantonaki, Evgenia; Zouboulis, Christos C

    2007-01-01

    The skin, being in direct contact with several environmental factors (e.g. UV irradiation), does not only undergo endogenous aging, which has to do with the 'biological clock' of the skin cells per se, but also exogenous aging. While exogenous skin aging has been extensively studied, the pathomechanisms of endogenous skin aging remain far less clear. Endogenous skin aging reflects reduction processes, which are common in internal organs. These processes include cellular senescence and decreased proliferative capacity, decrease in cellular DNA repair capacity and chromosomal abnormalities, loss of telomeres, point mutations of extranuclear mtDNA, oxidative stress and gene mutations. As a consequence, aged skin in nonexposed areas shows typical characteristics including fine wrinkles, dryness, sallowness and loss of elasticity. Recent data have illustrated that lack of hormones occurring with age may also contribute to the aging phenotype. Improvement of epidermal skin moisture, elasticity and skin thickness, enhanced production of surface lipids, reduction of wrinkle depth, restoration of collagen fibers and increase of the collagen III/I ratio have been reported after hormone replacement therapy or local estrogen treatment in postmenopausal women. Furthermore, an in vitro model of endogenous skin aging consisting of human SZ95 sebocytes which were incubated under a hormone-substituted environment illustrated that hormones at age- and sex-specific levels were able to alter the development of cells by regulating their transcriptome. In conclusion, among other factors the hormone environment plays a distinct role in the generation of aged skin.

  20. Brain-Skin Connection: Stress, Inflammation and Skin Aging

    PubMed Central

    Chen, Ying; Lyga, John

    2014-01-01

    The intricate relationship between stress and skin conditions has been documented since ancient times. Recent clinical observations also link psychological stress to the onset or aggravation of multiple skin diseases. However, the exact underlying mechanisms have only been studied and partially revealed in the past 20 years or so. In this review, the authors will discuss the recent discoveries in the field of “Brain-Skin Connection”, summarizing findings from the overlapping fields of psychology, endocrinology, skin neurobiology, skin inflammation, immunology, and pharmacology. PMID:24853682

  1. Assessing human skin with diffuse reflectance spectroscopy and colorimetry

    NASA Astrophysics Data System (ADS)

    Seo, InSeok; Liu, Yang; Bargo, Paulo R.; Kollias, Nikiforos

    2012-02-01

    Colorimetry has been used as an objective measure of perceived skin color by human eye to document and score physiological responses of the skin from external insults. CIE color space values (L*, a* and b*) are the most commonly used parameters to correlate visually perceived color attributes such as L* for pigment, a* for erythema, and b* for sallowness of the skin. In this study, we investigated the relation of Lab color scale to the amount of major skin chromophores (oxy-, deoxyhemoglobin and melanin) calculated from diffuse reflectance spectroscopy. Thirty two healthy human subjects with ages from 20 to 70 years old, skin types I-VI, were recruited for the study. DRS and colorimetry measurements were taken from the left and right cheeks, and on the right upper inner arm. The melanin content calculated from 630-700 nm range of DRS measurements was shown to correlate with the lightness of skin (L*) for most skin types. For subjects with medium-to-light complexion, melanin measured at the blue part spectrum and hemoglobin interfered on the relation of lightness of the skin color to the melanin content. The sallowness of the skin that is quantified by the melanin contribution at the blue part spectrum of DRS was found to be related to b* scale. This study demonstrates the importance of documenting skin color by assessing individual skin chromophores with diffuse reflectance spectroscopy, in comparison to colorimetry assessment.

  2. Xenobiotic metabolizing enzymes in human skin and SkinEthic reconstructed human skin models.

    PubMed

    Eilstein, Joan; Léreaux, Guillaume; Arbey, Eric; Daronnat, Edwige; Wilkinson, Simon; Duché, Daniel

    2015-07-01

    Skin metabolism is becoming a major consideration in the development of new cosmetic ingredients, skin being the first organ exposed to them. In order to replace limited samples of Excised human skin (EHS), in vitro engineered human skins have been developed. 3D models are daily used to develop and evaluate new cosmetic ingredients and have to be characterized and compared with EHS in terms of metabolic capabilities. This work presents the determination of apparent catalytic parameters (apparent Vmax, Km and the ratio Vmax/Km) in 3D models compared with EHS for cytochrome P450 dependent monooxygenase isoforms involved in drug metabolism, esterases, alcohol dehydrogenases, aldehyde dehydrogenases, peroxidases, glutathione S-transferases, N-acetyl transferases, uridinyl diphosphate glucuronyl transferases and sulfotransferases. Results show that all these enzymes involved in the metabolism of xenobiotics are expressed and functional in the EHS and 3D models. Also, the Vmax/Km ratios (estimating the intrinsic metabolic clearances) show that the metabolic abilities are the most often comparable between the skin models and EHS. These results indicate that the 3D models can substitute themselves for EHS to select cosmetic ingredients on the basis of their metabolism, efficacy or/and safety. PMID:25808006

  3. Controlling reactive oxygen species in skin at their source to reduce skin aging.

    PubMed

    Kern, Dale G; Draelos, Zoe D; Meadows, Christiaan; James Morré, D; Morré, Dorothy M

    2010-01-01

    Activity of an age-related, superoxide-forming, cell-surface oxidase (arNOX) comparing dermis, epidermis, serum, and saliva from female and male subjects ages 28-72 years measured spectrophotometrically using reduction of ferricytochrome c correlated with oxidative skin damage as estimated from autofluoresence of skin using an Advanced Glycation End products Reader (AGE-Reader; DiagnOptics B.V., Netherlands). By reducing arNOX activity in skin with arNOX-inhibitory ingredients (NuSkin's ageLOC technology), skin appearance was improved through decreased protein cross-linking and an accelerated increase in collagen.

  4. Controlling reactive oxygen species in skin at their source to reduce skin aging.

    PubMed

    Kern, Dale G; Draelos, Zoe D; Meadows, Christiaan; James Morré, D; Morré, Dorothy M

    2010-01-01

    Activity of an age-related, superoxide-forming, cell-surface oxidase (arNOX) comparing dermis, epidermis, serum, and saliva from female and male subjects ages 28-72 years measured spectrophotometrically using reduction of ferricytochrome c correlated with oxidative skin damage as estimated from autofluoresence of skin using an Advanced Glycation End products Reader (AGE-Reader; DiagnOptics B.V., Netherlands). By reducing arNOX activity in skin with arNOX-inhibitory ingredients (NuSkin's ageLOC technology), skin appearance was improved through decreased protein cross-linking and an accelerated increase in collagen. PMID:19954332

  5. In vivo skin biophysical behaviour and surface topography as a function of ageing.

    PubMed

    Pailler-Mattei, C; Debret, R; Vargiolu, R; Sommer, P; Zahouani, H

    2013-12-01

    Normal skin ageing is characterised by an alteration of the underlying connective tissue with measurable consequences on global skin biophysical properties. The cutis laxa syndrome, a rare genetic disorder, is considered as an accelerated ageing process since patients appear prematurely aged due to alterations of dermal elastic fibres. In the present study, we compared the topography and the biomechanical parameters of normal aged skin with an 17 year old cutis laxa patient. Skin topography analyses were conducted on normal skin at different ages. The results indicate that the skin relief highly changes as a function of ageing. The cutaneous lines change from a relatively isotropic orientation to a highly anisotropic orientation. This reorganisation of the skin relief during the ageing process might be due to a modification of the skin mechanical properties, and particularly to a modification of the dermis mechanical properties. A specific bio-tribometer, based on the indentationtechnique under light load, has been developed to study the biophysical properties of the human skin in vivo through two main parameters: the physico-chemical properties of the skin surface, by measuring the maximum adhesion force between the skin and the bio-tribometer; and the bulk mechanical properties. Our results show that the pull-off force between the skin and the biotribometer as well as the skin Young's modulus decrease with age. In the case of the young cutis laxa patient, the results obtained were similar to those observed for aged individuals. These results are very interesting and encouraging since they would allow the monitoring of the cutis laxa skin in a standardised and non-invasive way to better characterize either the evolution of the disease or the benefit of a treatment.

  6. Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging.

    PubMed

    Ngan, Cheng Loong; Basri, Mahiran; Tripathy, Minaketan; Abedi Karjiban, Roghayeh; Abdul-Malek, Emilia

    2015-04-01

    Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit.

  7. Photoprotection of human skin beyond ultraviolet radiation.

    PubMed

    Grether-Beck, Susanne; Marini, Alessandra; Jaenicke, Thomas; Krutmann, Jean

    2014-01-01

    Photoprotection of human skin by means of sunscreens or daily skin-care products is traditionally centered around the prevention of acute (e.g. sunburn) and chronic (e.g. skin cancer and photoaging) skin damage that may result from exposure to ultraviolet rays (UVB and UVA). Within the last decade, however, it has been appreciated that wavelengths beyond the ultraviolet spectrum, in particular visible light and infrared radiation, contribute to skin damage in general and photoaging of human skin in particular. As a consequence, attempts have been made to develop skin care/sunscreen products that not only protect against UVB or UVA radiation but provide photoprotection against visible light and infrared radiation as well. In this article, we will briefly review the current knowledge about the mechanisms responsible for visible light/infrared radiation-induced skin damage and then, based on this information, discuss strategies that have been successfully used or may be employed in the future to achieve photoprotection of human skin beyond ultraviolet radiation. In this regard we will particularly focus on the use of topical antioxidants and the challenges that result from the task of showing their efficacy.

  8. Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin.

    PubMed

    Tfaili, Sana; Gobinet, Cyril; Josse, Gwendal; Angiboust, Jean-François; Manfait, Michel; Piot, Olivier

    2012-08-21

    The present paper provides a spectral comparison between abdominal human skin (Transkin) and pig ear skin using confocal Raman microspectroscopy at 660 nm. Pig ear skin is usually utilized as a substitute for human skin for active ingredients assessment in dermatological and cosmetics fields. Herein, the comparison is made at the level of the stratum corneum (SC), the SC/epidermis junction and the viable epidermis. The 660 nm excitation source appears to be the most appropriate wavelength for such skin characterization. From Raman signatures of both skin types, a tentative assignment of vibrations was performed in the fingerprint and the high wavenumber spectral regions. Significant differences were highlighted for lipid content in in-depth spectra and for hyaluronic acid (HA) and carotenoid in SC spectra. Marked tissular variability was also revealed by certain Raman vibrations. These intrinsic molecular data probed by confocal Raman microspectroscopy have to be considered for further applications such as cutaneous drug permeation.

  9. Quantification of mechanical properties of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Heinrich, Thorsten; Lunderstaedt, Reinhart A.

    2001-12-01

    Dermatologist as well as the cosmetical industry are interested in evaluating the mechanical properties of human skin. Many devices have been developed to measure skin's response to mechanical stress. In the presented paper a new approach to quantify the viscoelastic behavior of human skin on mechanical stress is proposed. Image processing techniques are used to detect the two-dimensional deformation of the skin in uniaxial tensile tests. The apparatus consists of a computer-controlled stepper motor drive mechanism to extend the skin, a load cell to measure displacement vector fields are calculated by a method based on local template matching and interpolation algorithms. From the displacement vector fields a strain tensor and the principal strain directions are evaluated. A model built up of springs and dashpots, is used to characterize the stress-strain-time relationships of skin and to obtain a set of parameters, which represent the instantaneous elasticity, the delayed elasticity and the viscosity of skin on loading. The results show the accuracy of the model. The method seems to be useful to investigate the influences of age, test area, cosmetics, etc. on the mechanical properties of human skin in vivo.

  10. Discovering the link between nutrition and skin aging

    PubMed Central

    Schagen, Silke K.; Zampeli, Vasiliki A.; Makrantonaki, Evgenia; Zouboulis, Christos C.

    2012-01-01

    Skin has been reported to reflect the general inner-health status and aging. Nutrition and its reflection on skin has always been an interesting topic for scientists and physicians throughout the centuries worldwide. Vitamins, carotenoids, tocopherols, flavonoids and a variety of plant extracts have been reported to possess potent anti-oxidant properties and have been widely used in the skin care industry either as topically applied agents or oral supplements in an attempt to prolong youthful skin appearance. This review will provide an overview of the current literature “linking” nutrition with skin aging. PMID:23467449

  11. Millimeter wave dosimetry of human skin.

    PubMed

    Alekseev, S I; Radzievsky, A A; Logani, M K; Ziskin, M C

    2008-01-01

    To identify the mechanisms of biological effects of mm waves it is important to develop accurate methods for evaluating absorption and penetration depth of mm waves in the epidermis and dermis. The main characteristics of mm wave skin dosimetry were calculated using a homogeneous unilayer model and two multilayer models of skin. These characteristics included reflection, power density (PD), penetration depth (delta), and specific absorption rate (SAR). The parameters of the models were found from fitting the models to the experimental data obtained from measurements of mm wave reflection from human skin. The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively. The thin SC produced little influence on the interaction of mm waves with skin. On the contrary, the thick SC in the palm played the role of a matching layer and significantly reduced reflection. In addition, the palmar skin manifested a broad peak in reflection within the 83-277 GHz range. The viable epidermis plus dermis, containing a large amount of free water, greatly attenuated mm wave energy. Therefore, the deeper fat layer had little effect on the PD and SAR profiles. We observed the appearance of a moderate SAR peak in the therapeutic frequency range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm. Millimeter waves penetrate into the human skin deep enough (delta = 0.65 mm at 42 GHz) to affect most skin structures located in the epidermis and dermis.

  12. The Genetics of Human Skin Disease

    PubMed Central

    DeStefano, Gina M.; Christiano, Angela M.

    2014-01-01

    The skin is composed of a variety of cell types expressing specific molecules and possessing different properties that facilitate the complex interactions and intercellular communication essential for maintaining the structural integrity of the skin. Importantly, a single mutation in one of these molecules can disrupt the entire organization and function of these essential networks, leading to cell separation, blistering, and other striking phenotypes observed in inherited skin diseases. Over the past several decades, the genetic basis of many monogenic skin diseases has been elucidated using classical genetic techniques. Importantly, the findings from these studies has shed light onto the many classes of molecules and essential genetic as well as molecular interactions that lend the skin its rigid, yet flexible properties. With the advent of the human genome project, next-generation sequencing techniques, as well as several other recently developed methods, tremendous progress has been made in dissecting the genetic architecture of complex, non-Mendelian skin diseases. PMID:25274756

  13. The genetics of human skin disease.

    PubMed

    DeStefano, Gina M; Christiano, Angela M

    2014-10-01

    The skin is composed of a variety of cell types expressing specific molecules and possessing different properties that facilitate the complex interactions and intercellular communication essential for maintaining the structural integrity of the skin. Importantly, a single mutation in one of these molecules can disrupt the entire organization and function of these essential networks, leading to cell separation, blistering, and other striking phenotypes observed in inherited skin diseases. Over the past several decades, the genetic basis of many monogenic skin diseases has been elucidated using classical genetic techniques. Importantly, the findings from these studies has shed light onto the many classes of molecules and essential genetic as well as molecular interactions that lend the skin its rigid, yet flexible properties. With the advent of the human genome project, next-generation sequencing techniques, as well as several other recently developed methods, tremendous progress has been made in dissecting the genetic architecture of complex, non-Mendelian skin diseases. PMID:25274756

  14. Malassezia skin diseases in humans.

    PubMed

    Difonzo, E M; Faggi, E; Bassi, A; Campisi, E; Arunachalam, M; Pini, G; Scarfì, F; Galeone, M

    2013-12-01

    Although Malassezia yeasts are a part of the normal microflora, under certain conditions they can cause superficial skin infection, such as pityriasis versicolor (PV) and Malassezia folliculitis. Moreover the yeasts of the genus Malassezia have been associated with seborrheic dermatitis and dandruff, atopic dermatitis, psoriasis, and, less commonly, with confluent and reticulated papillomatosis, onychomycosis, and transient acantholytic dermatosis. The study of the clinical role of Malassezia species has been surrounded by controversy due to the relative difficulty in isolation, cultivation, and identification. This review focuses on the clinical, mycologic, and immunologic aspects of the various skin diseases associated with Malassezia. Moreover, since there exists little information about the epidemiology and ecology of Malassezia species in the Italian population and the clinical significance of these species is not fully distinguished, we will report data about a study we carried out. The aim of our study was the isolation and the identification of Malassezia species in PV-affected skin and non-affected skin in patients with PV and in clinically healthy individuals without any Malassezia associated skin disease. PMID:24442041

  15. 11β-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects.

    PubMed

    Tiganescu, Ana; Tahrani, Abd A; Morgan, Stuart A; Otranto, Marcela; Desmoulière, Alexis; Abrahams, Lianne; Hassan-Smith, Zaki; Walker, Elizabeth A; Rabbitt, Elizabeth H; Cooper, Mark S; Amrein, Kurt; Lavery, Gareth G; Stewart, Paul M

    2013-07-01

    Glucocorticoid (GC) excess adversely affects skin integrity, inducing thinning and impaired wound healing. Aged skin, particularly that which has been photo-exposed, shares a similar phenotype. Previously, we demonstrated age-induced expression of the GC-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in cultured human dermal fibroblasts (HDFs). Here, we determined 11β-HSD1 levels in human skin biopsies from young and older volunteers and examined the aged 11β-HSD1 KO mouse skin phenotype. 11β-HSD1 activity was elevated in aged human and mouse skin and in PE compared with donor-matched photo-protected human biopsies. Age-induced dermal atrophy with deranged collagen structural organization was prevented in 11β-HSD1 KO mice, which also exhibited increased collagen density. We found that treatment of HDFs with physiological concentrations of cortisol inhibited rate-limiting steps in collagen biosynthesis and processing. Furthermore, topical 11β-HSD1 inhibitor treatment accelerated healing of full-thickness mouse dorsal wounds, with improved healing also observed in aged 11β-HSD1 KO mice. These findings suggest that elevated 11β-HSD1 activity in aging skin leads to increased local GC generation, which may account for adverse changes occurring in the elderly, and 11β-HSD1 inhibitors may be useful in the treatment of age-associated impairments in dermal integrity and wound healing.

  16. Bioactive compounds from natural resources against skin aging.

    PubMed

    Mukherjee, Pulok K; Maity, Niladri; Nema, Neelesh K; Sarkar, Birendra K

    2011-12-15

    Skin aging involves degradation of extracellular matrix (ECM) in both the epidermal and dermal layers, it leaves visible signs on the surface of skin and the physical properties of the skin are modified. Chronological aging is due to passage of time, whereas premature aging occurred due to some environmental factors on skin produces visible signs such as irregular dryness, dark/light pigmentation, sallowness, severe atrophy, telangiectases, premalignant lesions, laxity, leathery appearance and deep wrinkling. There are several synthetic skincare cosmetics existing in the market to treat premature aging and the most common adverse reactions of those include allergic contact dermatitis, irritant contact dermatitis, phototoxic and photo-allergic reactions. Recent trends in anti-aging research projected the use of natural products derived from ancient era after scientific validation. Ample varieties of phytomolecules such as aloin, ginsenoside, curcumin, epicatechin, asiaticoside, ziyuglycoside I, magnolol, gallic acid, hydroxychavicol, hydroxycinnamic acids, hydroxybenzoic acids, etc. scavenges free radicals from skin cells, prevent trans-epidermal water loss, include a sun protection factor (SPF) of 15 or higher contribute to protect skin from wrinkles, leading to glowing and healthy younger skin. Present era of treating aging skin has become technologically more invasive; but herbal products including botanicals are still relevant and combining them with molecular techniques outlined throughout this review will help to maximize the results and maintain the desired anti-skin aging benefits. PMID:22115797

  17. Bioactive compounds from natural resources against skin aging.

    PubMed

    Mukherjee, Pulok K; Maity, Niladri; Nema, Neelesh K; Sarkar, Birendra K

    2011-12-15

    Skin aging involves degradation of extracellular matrix (ECM) in both the epidermal and dermal layers, it leaves visible signs on the surface of skin and the physical properties of the skin are modified. Chronological aging is due to passage of time, whereas premature aging occurred due to some environmental factors on skin produces visible signs such as irregular dryness, dark/light pigmentation, sallowness, severe atrophy, telangiectases, premalignant lesions, laxity, leathery appearance and deep wrinkling. There are several synthetic skincare cosmetics existing in the market to treat premature aging and the most common adverse reactions of those include allergic contact dermatitis, irritant contact dermatitis, phototoxic and photo-allergic reactions. Recent trends in anti-aging research projected the use of natural products derived from ancient era after scientific validation. Ample varieties of phytomolecules such as aloin, ginsenoside, curcumin, epicatechin, asiaticoside, ziyuglycoside I, magnolol, gallic acid, hydroxychavicol, hydroxycinnamic acids, hydroxybenzoic acids, etc. scavenges free radicals from skin cells, prevent trans-epidermal water loss, include a sun protection factor (SPF) of 15 or higher contribute to protect skin from wrinkles, leading to glowing and healthy younger skin. Present era of treating aging skin has become technologically more invasive; but herbal products including botanicals are still relevant and combining them with molecular techniques outlined throughout this review will help to maximize the results and maintain the desired anti-skin aging benefits.

  18. Photoaging and chronological aging profile: Understanding oxidation of the skin.

    PubMed

    Peres, P S; Terra, V A; Guarnier, F A; Cecchini, R; Cecchini, A L

    2011-05-01

    The impact of chronological aging and photoaging on the skin is particularly concerning, especially when oxidative stress is involved. This article provides evidence of quantitative and qualitative differences in the oxidative stress generated by chronological aging and photoaging of the skin in HRS/J hairless mice. Analysis of the results revealed an increase in lipid peroxides as the skin gets older and in photoaged skin (10.086 ± 0.70 η MDA/mg and 14.303 ± 1.81 η MDA/mg protein, respectively), although protein oxidation was only verified in chronological aged skin (15.449 ± 0.99 η protein/mg protein). The difference between both skin types is the decay in the capacity of lipid membrane turnover revealed by the dislocation of older skin to the left in the chemiluminescence curve. Imbalance between antioxidant and oxidation processes was verified by the decrease in total antioxidant capacity of chronological and photoaged skins. Although superoxide dismutase remained unchanged, catalase increased in the 18 and 48-week-old skin groups and decreased in irradiated mice, demonstrating that neither enzyme is a good parameter to determine oxidative stress. The differences observed between chronological and photoaging skin represent a potential new approach to understanding the phenomenon of skin aging and a new target for therapeutic intervention. PMID:21356598

  19. Photoaging and chronological aging profile: Understanding oxidation of the skin.

    PubMed

    Peres, P S; Terra, V A; Guarnier, F A; Cecchini, R; Cecchini, A L

    2011-05-01

    The impact of chronological aging and photoaging on the skin is particularly concerning, especially when oxidative stress is involved. This article provides evidence of quantitative and qualitative differences in the oxidative stress generated by chronological aging and photoaging of the skin in HRS/J hairless mice. Analysis of the results revealed an increase in lipid peroxides as the skin gets older and in photoaged skin (10.086 ± 0.70 η MDA/mg and 14.303 ± 1.81 η MDA/mg protein, respectively), although protein oxidation was only verified in chronological aged skin (15.449 ± 0.99 η protein/mg protein). The difference between both skin types is the decay in the capacity of lipid membrane turnover revealed by the dislocation of older skin to the left in the chemiluminescence curve. Imbalance between antioxidant and oxidation processes was verified by the decrease in total antioxidant capacity of chronological and photoaged skins. Although superoxide dismutase remained unchanged, catalase increased in the 18 and 48-week-old skin groups and decreased in irradiated mice, demonstrating that neither enzyme is a good parameter to determine oxidative stress. The differences observed between chronological and photoaging skin represent a potential new approach to understanding the phenomenon of skin aging and a new target for therapeutic intervention.

  20. Biodemography of human ageing

    PubMed Central

    Vaupel, James W.

    2014-01-01

    Human senescence has been delayed by a decade. This finding, documented in 1994 and bolstered since, is a fundamental discovery about the biology of human ageing, and one with profound implications for individuals, society and the economy. Remarkably, the rate of deterioration with age seems to be constant across individuals and over time: it seems that death is being delayed because people are reaching old age in better health. Research by demographers, epidemiologists and other biomedical researchers suggests that further progress is likely to be made in advancing the frontier of survival — and healthy survival — to even greater ages. PMID:20336136

  1. Usefulness of rat skin as a substitute for human skin in the in vitro skin permeation study.

    PubMed

    Takeuchi, Hiroyuki; Mano, Yoko; Terasaka, Shuichi; Sakurai, Takanobu; Furuya, Atsushi; Urano, Hidetoshi; Sugibayashi, Kenji

    2011-01-01

    Sprague-Dawley (SD) rats are broadly used in preclinical studies for drug development, so a lot of information for the rats can be obtained especially from pharmacokinetic, pharmacological and toxicological studies. The purpose of this study was to clarify whether SD rat skin can be used to predict human skin permeability. In vitro permeation studies of the three model drugs, nicorandil, isosorbide dinitrate, and flurbiprofen, through human skin and SD rat skin were performed using Franz-type diffusion cells. The permeation rates of the three model drugs through human skin and SD rat skin were determined, and their variations were evaluated. The inter-individual variations in SD rat skin permeability of the three model drugs were much lower than that in human skin permeability, although the permeation rates of the three model drugs through the SD rat skin were about twice those through human skin. In addition, no difference in the skin permeability coefficients of the three model drugs was obtained between fresh SD rat skin and frozen SD rat skin. The markedly smaller variation in the permeability through SD rat skin compared with that through human skin indicated that in vitro permeation studies using SD rat skin would be especially useful for evaluating differences in the skin permeability of the three model drugs as well as for predicting human skin permeability.

  2. NF-κB accumulation associated with COL1A1 transactivators defects during chronological aging represses type I collagen expression through a -112/-61-bp region of the COL1A1 promoter in human skin fibroblasts.

    PubMed

    Bigot, Nicolas; Beauchef, Gallic; Hervieu, Magalie; Oddos, Thierry; Demoor, Magali; Boumediene, Karim; Galéra, Philippe

    2012-10-01

    The aging process, especially of the skin, is governed by changes in the epidermal, dermo-epidermal, and dermal compartments. Type I collagen, which is the major component of dermis extracellular matrix (ECM), constitutes a prime target for intrinsic and extrinsic aging-related alterations. In addition, under the aging process, pro-inflammatory signals are involved and collagens are fragmented owing to enhanced matrix metalloproteinase activities, and fibroblasts are no longer able to properly synthesize collagen fibrils. Here, we demonstrated that low levels of type I collagen detected in aged skin fibroblasts are attributable to an inhibition of COL1A1 transcription. Indeed, on one hand, we observed decreased binding activities of specific proteins 1 and 3, CCAAT-binding factor, and human collagen-Krüppel box, which are well-known COL1A1 transactivators acting through the -112/-61-bp promoter sequence. On the other hand, the aging process was accompanied by elevated amounts and binding activities of NF-κB (p65 and p50 subunits), together with an increased number of senescent cells. The forced expression of NF-κB performed in young fibroblasts was able to establish an old-like phenotype by repressing COL1A1 expression through the short -112/-61-bp COL1A1 promoter and by elevating the senescent cell distribution. The concomitant decrease of transactivator functions and increase of transinhibitor activity is responsible for ECM dysfunction, leading to aging/senescence in dermal fibroblasts.

  3. Isolation of Human Skin Dendritic Cell Subsets.

    PubMed

    Gunawan, Merry; Jardine, Laura; Haniffa, Muzlifah

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes with antigen-processing and antigen-presenting functions. DCs can be divided into distinct subsets by anatomical location, phenotype and function. In human, the two most accessible tissues to study leukocytes are peripheral blood and skin. DCs are rare in human peripheral blood (<1 % of mononuclear cells) and have a less mature phenotype than their tissue counterparts (MacDonald et al., Blood. 100:4512-4520, 2002; Haniffa et al., Immunity 37:60-73, 2012). In contrast, the skin covering an average total surface area of 1.8 m(2) has approximately tenfold more DCs than the average 5 L of total blood volume (Wang et al., J Invest Dermatol 134:965-974, 2014). DCs migrate spontaneously from skin explants cultured ex vivo, which provide an easy method of cell isolation (Larsen et al., J Exp Med 172:1483-1493, 1990; Lenz et al., J Clin Invest 92:2587-2596, 1993; Nestle et al., J Immunol 151:6535-6545, 1993). These factors led to the extensive use of skin DCs as the "prototype" migratory DCs in human studies. In this chapter, we detail the protocols to isolate DCs and resident macrophages from human skin. We also provide a multiparameter flow cytometry gating strategy to identify human skin DCs and to distinguish them from macrophages. PMID:27142012

  4. The origin of alkanes found in human skin surface lipids

    SciTech Connect

    Bortz, J.T.; Wertz, P.W.; Downing, D.T. )

    1989-12-01

    Lipids extracted from human skin contain variable amounts of paraffin hydrocarbons. Although the composition of these alkanes strongly resembles petroleum waxes, it has been proposed that they are biosynthetic products of human skin. To investigate this question, skin surface lipids from 15 normal subjects were analyzed for the amount and composition of alkanes, using quantitative thin-layer chromatography and quartz capillary gas chromatography. The alkanes were found to constitute 0.5% to 1.7% of the skin lipids. Subjects differed greatly in the chain length distribution of their alkanes between 15 and 35 carbon atoms, and in the relative amounts of normal alkanes (like those in petroleum waxes) and branched chain alkanes (like those in petroleum lubricating oils). In 6 subjects, the alkane content of cerumen from each ear was examined to investigate whether alkanes arrive at the skin surface by a systemic route or by direct contact with environmental surfaces. No trace of alkanes was found in 11 of the 12 cerumen samples. Using a tandem accelerator mass spectrometer for carbon-14 dating, a combined sample of the skin surface alkanes was found to have a theoretical age of 30,950 years, similar to that of a sample of petrolatum. These analyses indicate that the alkanes found on the surface of human skin are mixtures of a variety of petroleum distillation fractions that are acquired by direct contamination from the environment.

  5. Mitochondrial common deletion mutation and extrinsic skin ageing in German and Japanese women.

    PubMed

    Kaneko, Natsumi; Vierkoetter, Andrea; Kraemer, Ursula; Sugiri, Dorothee; Matsui, Mary; Yamamoto, Ai; Krutmann, Jean; Morita, Akimichi

    2012-07-01

    The mitochondrial common deletion (CD) mutation is induced by oxidative stress. One main source of oxidative stress is the error-prone process of the respiratory chain located in the mitochondria. Another important source is the exposure to environmental factors, which further induces oxidative stress in the cells. For human skin, the primary damaging environmental factor is ultraviolet (UV) radiation, which is able to induce CD mutations and the characteristic extrinsic skin ageing signs. Traditionally, levels of UV exposure differ between German and Japanese populations, as tanned skin represents beauty and health in Western cultures, whereas photo-protected skin is considered ideal in Asia. We hypothesize that (i) this cultural-related UV exposure pattern might be reflected by CD concentrations in environmentally exposed skin and (ii) CD concentrations in environmentally exposed areas might be associated with the manifestation of extrinsic skin ageing. In this study, we determined the concentration of CD in skin from the neck (environmentally exposed area) and the buttock (environmentally protected area) of 22 German and 46 Japanese women between 30 and 70 years of age. We evaluated skin ageing signs by a validated clinical score, and exposure to environmental factors, such as UV exposure and smoking, was assessed using a questionnaire-based interview. Higher levels of CD were detected in neck skin than in buttock skin in both German and Japanese women. CD also increased with age in the neck skin. German women had higher CD concentrations in the neck skin than Japanese women. The CD concentrations in the buttock skin samples were similar in both populations. These findings suggest higher environmental UV exposure resulted in higher levels of CD in the skin of German women compared with Japanese women. However, only in Japanese women were the signs of extrinsic skin ageing associated with higher CD concentrations in the neck skin, in agreement with the hypothesis

  6. Immune-competent human skin disease models.

    PubMed

    Bergers, Lambert I J C; Reijnders, Christianne M A; van den Broek, Lenie J; Spiekstra, Sander W; de Gruijl, Tanja D; Weijers, Ester M; Gibbs, Susan

    2016-09-01

    All skin diseases have an underlying immune component. Owing to differences in animal and human immunology, the majority of drugs fail in the preclinical or clinical testing phases. Therefore animal alternative methods that incorporate human immunology into in vitro skin disease models are required to move the field forward. This review summarizes the progress, using examples from fibrosis, autoimmune diseases, psoriasis, cancer and contact allergy. The emphasis is on co-cultures and 3D organotypic models. Our conclusion is that current models are inadequate and future developments with immune-competent skin-on-chip models based on induced pluripotent stem cells could provide a next generation of skin models for drug discovery and testing.

  7. Optical fiber sensing of human skin emanations

    NASA Astrophysics Data System (ADS)

    Lee, S.-W.; Wang, T.; Selyanchyn, R.; Korposh, S.; James, S. W.

    2015-07-01

    An evanescent-wave optical fibre sensor modified with tetrakis(4-sulfophenyl)porphine (TSPP) and poly(allylamine hydrochloride) (PAH) bilayers using an layer-by-layer (LbL) approach was tested to measure the gas emitted from human skin. Optical intensity changes at different wavelengths in the transmission spectrum of the porphyrin-based film were induced by the human skin gas and measured as sensor response. Influence of relative humidity, which can be a major interference to sensor response, was significantly different when compared to the influence of skin emanations. Responses of the current optical sensor system could be considered as composite sensor array, where different optical wavelengths act as channels that have selective response to specific volatile compounds. Data obtained from the sensor system was analyzed through principal component analysis (PCA). This approach enabled to distinguish skin odors of different people and their altered physiological conditions after alcohol consumption.

  8. Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging.

    PubMed

    Crane, Justin D; MacNeil, Lauren G; Lally, James S; Ford, Rebecca J; Bujak, Adam L; Brar, Ikdip K; Kemp, Bruce E; Raha, Sandeep; Steinberg, Gregory R; Tarnopolsky, Mark A

    2015-08-01

    Aging is commonly associated with a structural deterioration of skin that compromises its barrier function, healing, and susceptibility to disease. Several lines of evidence show that these changes are driven largely by impaired tissue mitochondrial metabolism. While exercise is associated with numerous health benefits, there is no evidence that it affects skin tissue or that endocrine muscle-to-skin signaling occurs. We demonstrate that endurance exercise attenuates age-associated changes to skin in humans and mice and identify exercise-induced IL-15 as a novel regulator of mitochondrial function in aging skin. We show that exercise controls IL-15 expression in part through skeletal muscle AMP-activated protein kinase (AMPK), a central regulator of metabolism, and that the elimination of muscle AMPK causes a deterioration of skin structure. Finally, we establish that daily IL-15 therapy mimics some of the anti-aging effects of exercise on muscle and skin in mice. Thus, we elucidate a mechanism by which exercise confers health benefits to skin and suggest that low-dose IL-15 therapy may prove to be a beneficial strategy to attenuate skin aging.

  9. In vitro human skin penetration of diethanolamine.

    PubMed

    Kraeling, M E K; Yourick, J J; Bronaugh, R L

    2004-10-01

    Concerns about the safety of diethanolamine (DEA) have been raised by the National Toxicology Program (NTP). Therefore, we measured the extent of DEA absorption in human skin relevant to exposures from shampoos, hair dyes and body lotions. Radiolabeled [14C]-DEA was added to two commercial products from each class and applied to excised viable and non-viable human skin in flow-through diffusion cells. The products remained on the skin for 5, 30 and 24 h for shampoos, hair dyes and body lotions, respectively. After 24 h, most of the absorbed dose was found in skin: 2.8% for shampoos, 2.9% for hair dyes and 10.0% for body lotions. Only small amounts were absorbed into the receptor fluid: 0.08%, 0.09% and 0.9% for shampoos, hair dyes and body lotions respectively. There was no significant difference in the absorption of DEA through viable and non-viable skin or from product application doses of 1, 2 or 3 mg lotion/cm2. In 72 h daily repeat dose studies with a lotion, DEA appeared to accumulate in the skin (29.2%) with little diffusing out into the receptor fluid. Therefore, skin levels of DEA should not be included in estimates of systemic absorption used in exposure assessments.

  10. Calendula extract: effects on mechanical parameters of human skin.

    PubMed

    Akhtar, Naveed; Zaman, Shahiq Uz; Khan, Barkat Ali; Amir, Muhammad Naeem; Ebrahimzadeh, Muhammad Ali

    2011-01-01

    The aim of this study was to evaluate the effects of newly formulated topical cream of Calendula officinalis extract on the mechanical parameters of the skin by using the cutometer. The Cutometer 580 MPA is a device that is designed to measure the mechanical properties of the skin in response to the application of negative pressure. This non-invasive method can be useful for objective and quantitative investigation of age related changes in skin, skin elasticity, skin fatigue, skin hydration, and evaluation of the effects of cosmetic and antiaging topical products. Two creams (base and formulation) were prepared for the study. Both the creams were applied to the cheeks of 21 healthy human volunteers for a period of eight weeks. Every individual was asked to come on week 1, 2, 3, 4, 5, 6, 7, and 8 and measurements were taken by using Cutometer MPA 580 every week. Different mechanical parameters of the skin measured by the cutometer were; R0, R1, R2, R5, R6, R7, and R8. These were then evaluated statistically to measure the effects produced by these creams. Using ANOVA, and t-test it was found that R0, and R6 were significant (p <0.05) whereas R1, R2, R5, R7, R8 were insignificant (p > 0.05). The instrumental measurements produced by formulation reflected significant improvements in hydration and firmness of skin.

  11. Diversity of the Human Skin Microbiome Early in Life

    PubMed Central

    Capone, Kimberly A; Dowd, Scot E; Stamatas, Georgios N; Nikolovski, Janeta

    2011-01-01

    Within days after birth, rapid surface colonization of infant skin coincides with significant functional changes. Gradual maturation of skin function, structure, and composition continues throughout the first years of life. Recent reports have revealed topographical and temporal variations in the adult skin microbiome. Here we address the question of how the human skin microbiome develops early in life. We show that the composition of cutaneous microbial communities evolves over the first year of life, showing increasing diversity with age. Although early colonization is dominated by Staphylococci, their significant decline contributes to increased population evenness by the end of the first year. Similar to what has been shown in adults, the composition of infant skin microflora appears to be site specific. In contrast to adults, we find that Firmicutes predominate on infant skin. Timely and proper establishment of healthy skin microbiome during this early period might have a pivotal role in denying access to potentially infectious microbes and could affect microbiome composition and stability extending into adulthood. Bacterial communities contribute to the establishment of cutaneous homeostasis and modulate inflammatory responses. Early microbial colonization is therefore expected to critically affect the development of the skin immune function. PMID:21697884

  12. Elucidation of Xenobiotic Metabolism Pathways in Human Skin and Human Skin Models by Proteomic Profiling

    PubMed Central

    van Eijl, Sven; Zhu, Zheying; Cupitt, John; Gierula, Magdalena; Götz, Christine; Fritsche, Ellen; Edwards, Robert J.

    2012-01-01

    Background Human skin has the capacity to metabolise foreign chemicals (xenobiotics), but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. Methodology/Principal Findings Label-free proteomic analysis of whole human skin (10 donors) was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4–10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. Conclusions/Significance The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these results provide a

  13. Analysis of the surface of human skin

    NASA Astrophysics Data System (ADS)

    Hof, Christoph; Lunderstaedt, Reinhart A.

    1999-10-01

    As every branch of industry the cosmetic industry has to control the quality of its products and to prove the assured treatment effects. Therefore, the structure of human skin is measured by mechanical or optical devices and the measurement data have to be analyzed. Until today, the devices commonly used in the industry only allow to measure profiles of replicas of the human skin and the methods of data analysis are classical methods e.g. digital filtering or Fourier Transform (FT). Recently, one can also find new methods such as in-vivo measurement of human skin with systems using active image triangulation or the Wavelet Transform for analysis and filtering of the raw measurement data. This paper discusses the qualifications of these new methods of measurement and data analysis in comparison to the classical ones.

  14. Anisotropy of light propagation in human skin

    NASA Astrophysics Data System (ADS)

    Nickell, Stephan; Hermann, Marcus; Essenpreis, Matthias; Farrell, Thomas J.; Krämer, Uwe; Patterson, Michael S.

    2000-10-01

    Using spatially resolved, steady state diffuse reflectometry, a directional dependence was found in the propagation of visible and near infrared light through human skin in vivo. The skin's reduced scattering coefficient µ's varies by up to a factor of two between different directions of propagation at the same position. This anisotropy is believed to be caused by the preferential orientation of collagen fibres in the dermis, as described by Langer's skin tension lines. Monte Carlo simulations that examine the effect of partial collagen fibre orientation support this hypothesis. The observation has consequences for non-invasive diagnostic methods relying on skin optical properties, and it could be used non-invasively to determine the direction of lines of cleavage in order to minimize scars due to surgical incisions.

  15. A novel method of skin closure for aging or fragile skin.

    PubMed

    Lipnik, Morris J

    2015-10-01

    A novel method of skin closure is detailed for surgical removal of tumors in patients with aging or thin and fragile skin. A polyethylene film with an acrylate adhesive was used as an adjunct to the dermis to help provide stability for suturing. Cases are presented with clinical photographs to demonstrate how this technique may prevent wound complications in elderly patients or those with fragile skin.

  16. Age-related changes in skin topography and microcirculation.

    PubMed

    Li, Li; Mac-Mary, Sophie; Marsaut, David; Sainthillier, Jean Marie; Nouveau, Stéphanie; Gharbi, Tijani; de Lacharriere, Olivier; Humbert, Philippe

    2006-03-01

    Skin topography and microvasculature undergo characteristic changes with age. Although several non-invasive bioengineering methods are currently available to measure them quantitatively, few publications have referred to their relationship with age in different anatomical sites. This study was carried out to observe the age-related changes of the skin topography and skin microcirculation. The microrelief was assessed with special processing software from scanning by interference fringe profilometry of silicone replicas performed on two sites (volar forearm and back of hand) on 50 female volunteers (aged 20-74 years who consisted of ten probands in each decade). The superficial vascular network of both sites was assessed by videocapillaroscopy, and the subpapillary vascular plexus was studied with laser Doppler flowmetry. Skin color, which is affected by blood flow, was observed by colorimeter. The skin roughness and the mean height between peak and valley increased with age. There were statistically significant differences between the evaluated sites. This study also shows that the capillary loops in the dermal papillae decrease but the subpapillary plexus increase with age. The interference fringe profilometry associated with videocapillaroscopy may be useful and accurate to measure the efficacy of medical or cosmetic products to delay skin aging.

  17. Quantitative biomarkers of human skin photoaging based on intrinsic second harmonic generation signal.

    PubMed

    Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin; Xie, Shusen

    2013-01-01

    Collagen change is a major feature in the photoaged human skin. Here, we present the use of intrinsic second harmonic generation (SHG) signal as a novel means to quantify collagen change with photoaging. We obtain the SHG images of the superficial dermis from ex vivo the cheek skin and the abdomen skin of eight patients aged 55-60 years. The results show that SHG signal can quantitatively reveal collagen change between normal and photoaged human skin in three dimensions. By comparing normal with photoaged dermis, there are significant differences in the collagen content and fine structure, providing substantial potential to be applied in vivo for the clinical diagnosis of human skin photoaging.

  18. [The role of oxidative stress in skin aging].

    PubMed

    Kozina, L S; Borzova, I V; Arutiunov, V A; Ryzhak, G A

    2012-01-01

    The review covers the literature proving that ROS formation in aging overbalances the antioxidant defense system potential of the skin structure (horny layer, epidermis and dermis). It has been shown that ROS are involved in the pathogenesis of inflammatory processes and allergic responses in the skin. The role of ROS and antioxidant systems in the cell-mediated responses associated with the MAP kinase activity in the skin is discussed. Special attention is paid to the ultraviolet irradiation exposure, which accounts for its genotoxic, immunosuppressive and carcinogenic effects on the skin.

  19. How to Select Anti-Aging Skin Care Products

    MedlinePlus

    ... zone Video library Find a dermatologist How to select anti-aging skin care products Dermatologists share their ... make a noticeable difference. When shopping for sunscreen, select one that offers all of the following: Broad ...

  20. Altered mitogen-activated protein kinase signal transduction in human skin fibroblasts during in vitro aging: differential expression of low-density lipoprotein receptor.

    PubMed

    Bose, Chhanda; Bhuvaneswaran, Chidambaram; Udupa, Kodetthoor B

    2004-02-01

    The purpose of the study was to investigate the correlation of low-density lipoprotein receptor (LDLr) and mitogen-activated protein kinases (MAPK) in fibroblasts after serial passage in vitro. We used early-passage ( approximately 20 mean population division, MPD) and late-passage ( approximately 60 MPD) human skin fibroblasts to study the LDLr expression and MAPK at basal and after interleukin-1beta (IL-1beta) stimulation. We found a reduced LDLr expression in late-passage fibroblasts in comparison with early-passage fibroblasts, and late-passage fibroblasts showed a delayed induction of MAPK after IL-1beta stimulation, confirmed by the delay in translocation of MAPK from cytoplasmic to nuclear fraction. Using two specific inhibitors of MAPK, we could show a reduced LDLr expression in early-passage fibroblasts, indicating a direct relationship between MAPK signaling and LDLr expression. We conclude that one of the reasons for reduced LDLr gene expression in late passage fibroblast is related to MAPK signaling.

  1. [Penetration of microparticles into human skin].

    PubMed

    Lademann, J; Schaefer, H; Otberg, N; Teichmann, A; Blume-Peytavi, U; Sterry, W

    2004-12-01

    The efficacy of the penetration of microparticles into the human skin depends on the size and the type of the formulation with which they are topically applied. Microparticles with a diameter of >1 microm barely penetrate into the human skin. They are located on the skin surface and form a film which, for instance, can be used for camouflage or protection against UV radiation in sunscreens. While the penetration of the microparticles in the lipid layers of the stratum corneum is limited, they penetrate efficiently into the hair follicles up to a depth >2 mm, providing their diameter is <1.5 microm. Thus, microparticles can be used for drug delivery into the hair follicles.

  2. Frequency dispersions of human skin dielectrics.

    PubMed

    Poon, C S; Choy, T T

    1981-04-01

    The electrical properties of many biological materials are known to exhibit frequency dispersions. In the human skin, the impedance measured at various frequencies closely describes a circular locus of the Cole-Cole type in the complex impedance plane. In this report, the formative mechanisms responsible for the anomalous circular-arc behavior of skin impedance were investigated, using data from impedance measurements taken after successive strippings of the skin. The data were analyzed with respect to changes in the parameters of the equivalent Cole-Cole model after each stripping. For an exponential resistivity profile (Tregear, 1966, Physical Functions of Skin; Yamamoto and Yamamoto, 1976, Med. Biol. Eng., 14:151--158), the profile of the dielectric constant was shown to be uniform across the epidermis. Based on these results, a structural model has been formulated in terms of the relaxation theory of Maxwell and Wagner for inhomogeneous dielectric materials. The impedance locus obtained from the model approximates a circular are with phase constant alpha = 0.82, which compares favorably with experimental data. At higher frequencies a constant-phase, frequency-dependent component having the same phase constant alpha is also demonstrated. It is suggested that an approximately rectangular distribution of the relaxation time over the epidermal dielectric sheath is adequate to account for the anomalous frequency characteristics of human skin impedance.

  3. Human skin pigmentation: melanocytes modulate skin color in response to stress.

    PubMed

    Costin, Gertrude-E; Hearing, Vincent J

    2007-04-01

    All organisms, from simple invertebrates to complex human beings, exist in different colors and patterns, which arise from the unique distribution of pigments throughout the body. Pigmentation is highly heritable, being regulated by genetic, environmental, and endocrine factors that modulate the amount, type, and distribution of melanins in the skin, hair, and eyes. In addition to its roles in camouflage, heat regulation, and cosmetic variation, melanin protects against UV radiation and thus is an important defense system in human skin against harmful factors. Being the largest organ of the body that is always under the influence of internal and external factors, the skin often reacts to those agents by modifying the constitutive pigmentation pattern. The focus of this review is to provide an updated overview of important physiological and biological factors that increase pigmentation and the mechanisms by which they do so. We consider endocrine factors that induce temporary (e.g., during pregnancy) or permanent (e.g., during aging) changes in skin color, environmental factors (e.g., UV), certain drugs, and chemical compounds, etc. Understanding the mechanisms by which different factors and compounds induce melanogenesis is of great interest pharmaceutically (as therapy for pigmentary diseases) and cosmeceutically (e.g., to design tanning products with potential to reduce skin cancer risk). PMID:17242160

  4. Effects of tretinoin on wound healing in aged skin.

    PubMed

    de Campos Peseto, Danielle; Carmona, Erica Vilaça; Silva, Kellyn Cristina da; Guedes, Flavia Roberta Valente; Hummel Filho, Fernando; Martinez, Natalia Peres; Pereira, José Aires; Rocha, Thalita; Priolli, Denise Gonçalves

    2016-03-01

    Aged and adult populations have differences in the structural, biological, and healing properties of skin. Comparative studies of healing under the influence of retinoids in both these populations are very important and, to the best of our knowledge, have not been performed to date. The purpose of this study was to compare the activities of topical tretinoin in aged and adult animal models of wound healing by secondary intention. Male aged rats (24 months old, n = 7) and adult rats (6 months old, n = 8) were used. The rats were assigned to the following groups according to the dates on which wound samples were excised (day 14 or 21 after model creation): treated group, control group, and naive group. Topical application of tretinoin cream was used only on the proximal wound and was applied daily for 7 days. Wound healing areas were measured using metal calipers, and morphological analysis was performed. Slides were stained with Hematoxylin and Eosin, Masson's trichrome, and periodic acid-Schiff stains. Statistical analysis adopted a 5% coefficient for rejection of the null hypothesis. Although aged animals showed skin repair, complete reepithelialization was found on day 21 in some animals of both groups (treated and control). In aged rats, the wound area was significantly smaller in treated wounds than in untreated wounds, resulting in a larger scar area compared with the adult group. When treated wounds were compared, no differences were found between the wound areas in adult and aged rats. As expected, the collagen concentration was higher in normal skin from adult rats than in normal skin from aged animals, but there was no difference when aged skin was treated with tretinoin. These results indicate that tretinoin increases collagen synthesis in aged skin and returns the healing process to a normal state of skin healing. PMID:26834030

  5. Trends in aging and skin care: Ayurvedic concepts

    PubMed Central

    Datta, Hema Sharma; Paramesh, Rangesh

    2010-01-01

    The association between Ayurveda, anti-aging and cosmeceuticals is gaining importance in the beauty, health and wellness sector. Ayurvedic cosmeceuticals date back to the Indus Valley Civilization. Modern research trends mainly revolve around principles of anti-aging activity described in Ayurveda: Vayasthapana (age defying), Varnya (brighten skin-glow), Sandhaniya (cell regeneration), Vranaropana (healing), Tvachya (nurturing), Shothahara (anti-inflammatory), Tvachagnivardhani (strengthening skin metabolism) and Tvagrasayana (retarding aging). Many rasayana plants such as Emblica officinalis (Amla) and Centella asiatica (Gotukola) are extensively used. PMID:21836797

  6. The analysis of aging skin based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Zhang, Xiaoman; Li, Zhifang; Xu, Shufei

    2010-11-01

    Aging is a very important issue not only in dermatology, but also in cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The chronological aging is induced with the passage of time. And the photoaging skin is the extrinsic aging caused by sun exposure. The aim of this study is to use multiphoton microscopy (MPM) in vivo to assess intrinsic-age-related and photo-age-related difference. The changes of dermal collagen are measured in quantitively. The algorithm that we used automatically produced the transversal dermal map from MPM. Others, the texture of dermis are analyzed by Fourier transform and Gray Level Co-occurrence Matrix. And the object extraction in textured images is proposed based on the method in object edge extraction, and the aim of it is to detect the object hidden in the skin texture in difference aging skin. The result demonstrates that the approach is effective in detecting the object in epidermis and dermis textured image in different aging skin. It could help to further understand the aging mechanism.

  7. Molecular-level insights into aging processes of skin elastin.

    PubMed

    Mora Huertas, Angela C; Schmelzer, Christian E H; Hoehenwarter, Wolfgang; Heyroth, Frank; Heinz, Andrea

    2016-01-01

    Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin. PMID:27569260

  8. In vivo time-resolved autofluorescence measurements on human skin

    NASA Astrophysics Data System (ADS)

    Katika, Kamal M.; Pilon, Laurent; Dipple, Katrina; Levin, Seymour; Blackwell, Jennifer; Berberoglu, Halil

    2006-02-01

    In this paper we present preliminary results obtained from fluorescence lifetime measurements on human skin using time-correlated single photon counting (TCSPC) techniques. Human skin was exposed to light from a pulsed LED of 700 ps pulse width at a wavelength of 375 nm and fluorescence decays were recorded at four different emission wavelengths (442, 460, 478 and 496 nm) using a photomultiplier tube (PMT) coupled to a monochromator. Measurements were carried out on the left and right palms of subjects recruited for the study after obtaining consent using a UCLA IRB approved consent form. The subjects recruited consisted of 18 males and 17 females with different skin complexions and ages ranging from 10 to 70 years. In addition, a set of experiments were also performed on various locations including the palm, the arm and the cheek of a Caucasian subject. The fluorescence decays thus obtained were fit to a three-exponential decay model in all cases and were approximately 0.4, 2.7 and 9.4 ns, respectively. The variations in these lifetimes with location, gender, skin complexion and age are studied. It is speculated that the shorter lifetimes correspond to free and bound NADH while the longer lifetime is due to AGE crosslinks.

  9. Fingerprint recovery from human skin surfaces.

    PubMed

    Trapecar, Matej; Balazic, Joze

    2007-11-01

    A study was conducted to investigate whether certain dactyloscopic powders and reagents can recover latent fingerprints on human skin surfaces. Four fingerprint powders, Magnetic Jet Black, Magnetic Silver, Silver Special, Swedish Black, and two other methods, cyanoacrylate fuming (CA) and Ruthenium tetroxide (RTX), were used. Having examined skin surfaces with a forensic light source, we observed that the fingerprint impressions remained visible up to 15 min after intentionally placing them on the skin surface of living subjects and dead bodies. Finger marks were recovered and positive results were achieved with Magnetic Black and Swedish Black powder on living subjects. On dead bodies finger marks treated with cyanoacrylate were visible but those treated with RTX, Swedish Black and Magnetic Jet Black powder were useful for potential comparison. On dead bodies best results were obtained with RTX method.

  10. Opioids and skin homeostasis, regeneration and ageing - What's the evidence?

    PubMed

    Bigliardi, Paul L; Dancik, Yuri; Neumann, Christine; Bigliardi-Qi, Mei

    2016-08-01

    What has the opioid receptor system, known for beneficial as well as disastrous effects in the central nervous system, to do with skin? The question is appropriate considering the fact that the nervous system and the skin both derive from the ectoderm. As part of the skin neuroendocrine system, the opioid receptor system exemplifies the closeness between the nervous system and the skin. Overexpression of the δ-opioid receptor in keratinocytes yields dysregulation of involucrin, loricrin, and filaggrin, proteins essential to the integrity of the skin barrier. The μ-opioid receptor ligand β-endorphin, produced in the pituitary gland and a variety of skin cells, promotes wound healing via regulation of cytokeratin 16 and TGF-β type II receptor expression in keratinocytes. These and other published results discussed in this viewpoint are evidence for the fundamental role of the skin opioid receptor system in skin homeostasis, regeneration and ageing. While considerable progress in understanding the opioid receptors' function on the cellular level has been made, there is a need to link these results to physiological observations for the development of local skin therapies. PMID:27060353

  11. Soil adherence to human skin

    SciTech Connect

    Driver, J.H.; Konz, J.J.; Whitmyre, G.K. )

    1989-12-01

    Dermal exposure to soils contaminated with toxic chemicals represents a potential public health hazard. These soils, contaminated with chemicals such as PCBs and dioxins, may be found at various locations throughout the US. Furthermore, dermal contact with pesticide-containing particles and contaminated soil particles is of importance for exposures to agricultural workers who reenter fields after pesticide application. With respect to dermal exposure to pesticide-contaminated particulate matter, several occurrences of human toxicity to ethyl parathion in citrus groves have been reported. These exposures resulted from dermal contact with high concentrations of the toxic transformation product paraoxon in soil dust contaminated as a result of application of pesticide to the overhead foliage of trees. To assess dermal exposure to chemically-contaminated soil at sites of concern, dermal adherence of soil must be determined prior to the assessment of dermal absorption. The purpose of the experiment reported herein was to determine the amount of soil (mg/cm{sup 2}) that adheres to adult hands under various soil conditions. These conditions include the type of soil, the organic content of the soil, and the particle size of the soil.

  12. Using FLIM in the study of permeability barrier function of aged and young skin

    NASA Astrophysics Data System (ADS)

    Xu, P.; Choi, E. H.; Man, M. Q.; Crumrine, D.; Mauro, T.; Elias, P.

    2006-02-01

    Aged skin commonly is afflicted by inflammatory skin diseases or xerosis/eczema that can be triggered or exacerbated by impaired epidermal permeability barrier homeostasis. It has been previously described a permeability barrier defect in humans of advanced age (> 75 years), which in a murine analog >18 mos, could be attributed to reduced lipid synthesis synthesis. However, the functional abnormality in moderately aged mice is due not to decreased lipid synthesis, but rather to a specific defect in stratum corneum (SC) acidification causing impaired lipid processing processing. Endogenous Na +/H + antiporter (NHE1) level was found declined in moderately aged mouse epidermis. This acidification defect leads to perturbed permeability barrier homeostasis through more than one pathways, we addressed suboptimal activation of the essential, lipid-processing enzyme, β-glucocerebrosidase (BGC) is linked to elevated SC pH. Finally, the importance of the epidermis acidity is shown by the normalization of barrier function after exogenous acidification of moderately aged skin.

  13. Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; Mentink, Rosaline; Kok, Joke H.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-09-01

    Knowledge of the optical properties of neonatal skin is invaluable when developing new, or improving existing optical techniques for use at the neonatal intensive care. In this article, we present in vivo measurements of the absorption μa and reduced scattering coefficient μs' of neonatal skin between 450 and 600 nm and assess the influence of age and skin pigmentation on the optical properties. The optical properties were measured using a spatially resolved, steady state diffuse reflectance spectroscopy setup, combined with a modified spatially resolved diffusion model. The method was validated on phantoms with known values for the absorption and reduced scattering coefficient. Values of μa and μs' were obtained from the skin at four different body locations (forehead, sternum, hand, and foot) of 60 neonates with varying gestational age, postnatal age, and skin pigmentation. We found that μa ranged from 0.02 to 1.25 mm-1 and μs' was in the range of 1 to 2.8 mm-1 (5th to 95th percentile of the patient population), independent of body location. In contrast to previous studies, no to very weak correlation was observed between the optical properties and gestational maturity, but a strong dependency of the absorption coefficient on postnatal age was found for dark skinned patients.

  14. "...Rewritten in the skin": clues to skin biology and aging from inherited disease.

    PubMed

    Monnat, Raymond J

    2015-06-01

    The growing diversity of heritable skin diseases, a practical challenge to clinicians and dermato-nosologists alike, has nonetheless served as a rich source of insight into skin biology and disease mechanisms. I summarize below some key insights from the recent gene-driven phase of research on Werner syndrome, a heritable adult progeroid syndrome with prominent dermatologic features, constitutional genomic instability, and an elevated risk of cancer. I also indicate how new insights into skin biology, disease, and aging may come from unexpected sources.

  15. Cytokine mRNA expression in normal skin of various age populations before and after engraftment onto nude mice.

    PubMed

    Gilhar, A; Ullmann, Y; Shalagino, R; Weisinger, G

    1998-01-01

    Whether the impact of skin biological age on cytokine expression is a result of this tissue's proliferation potential or not is an important issue in dermatology. We investigated these questions by monitoring cytokine marker mRNA expression from human skin samples from healthy groups of individuals. The skin samples studied represented three age groups: fetal (17-21 weeks), young (18-35 years) and aged (76-88 years). Furthermore, upon skin transplantation of tissue from different age groups onto nude mice, we investigated whether cytokine marker RNA levels would change or normalize. Interestingly, both TNF-alpha and P53 mRNA showed a similar pattern of expression. Both were significantly higher in fetal skin (p < 0.0001 and p < 0.05, respectively), and no difference was noted between aged versus young skin. In contrast to this, IL1-alpha mRNA was expressed at its lowest and highest levels in fetal and young skin, respectively. Following skin transplantation, cytokines and P53 mRNA expression were normalized to similar levels in all age groups. This study implies that when cytokine expression was determined directly at the mRNA level, post-natal expression was not significantly different at either age group. Furthermore, it seems that the environmental conditions surrounding the grafted human skin found on nude mice encouraged normalization of donor cytokine expression.

  16. Enhancement of human skin facial revitalization by moringa leaf extract cream

    PubMed Central

    Akhtar, Naveed; Chowdhary, Farzana

    2014-01-01

    Introduction Solar ultraviolet exposure is the main cause of skin damage by initiation of reactive oxygen species (ROS) leading to skin collagen imperfection and eventually skin roughness. This can be reduced by proper revitalization of skin enhancing younger and healthier appearance. Aim To evaluate the skin facial revitalization effect of a cream formulation containing the Moringa oleifera leaf extract on humans. Material and methods Active cream containing 3% of the concentrated extract of moringa leaves was developed by entrapping in the inner aqueous phase of cream. Base contained no extract. Skin revitalizing parameters, i.e. surface, volume, texture parameters and surface evaluation of the living skin (SELS) were assessed comparatively after application of the base and active cream on human face using Visioscan® VC 98 for a period of 3 months. Results Surface values were increased by the base and decreased by the active cream. Effects produced for the base and active cream were significant and insignificant, respectively, as observed in the case of surface. Unlike the base, the active cream showed significant effects on skin volume, texture parameters (energy, variance and contrast) and SELS, SEr (skin roughness), SEsc (skin scaliness), SEsm (skin smoothness), and SEw (skin wrinkles) parameters. Conclusions The results suggested that moringa cream enhances skin revitalization effect and supports anti-aging skin effects. PMID:25097471

  17. Ameliorating Effect of Akebia quinata Fruit Extracts on Skin Aging Induced by Advanced Glycation End Products

    PubMed Central

    Shin, Seoungwoo; Son, Dahee; Kim, Minkyung; Lee, Seungjun; Roh, Kyung-Baeg; Ryu, Dehun; Lee, Jongsung; Jung, Eunsun; Park, Deokhoon

    2015-01-01

    The accumulation of free radicals and advanced glycation end products (AGEs) in the skin plays a very important role in skin aging. Both are known to interact with each other. Therefore, natural compounds or extracts that possess both antioxidant and antiglycation activities might have great antiageing potential. Akebia quinata fruit extract (AQFE) has been used to treat urinary tract inflammatory disease in traditional Korean and Chinese medicines. In the present study, AQFE was demonstrated to possess antioxidant and antiglycation activity. AQFE protects human dermal fibroblasts (HDFs) from oxidative stress and inhibits cellular senescence induced by oxidative stress. We also found that AQFE inhibits glycation reaction between BSA and glucose. The antiglycation activity of AQFE was dose-dependent. In addition, the antiglycation activity of AQFE was confirmed in a human skin explant model. AQFE reduced CML expression and stimulated fibrillin-1 expression in comparison to the methyglyoxal treatment. In addition, the possibility of the extract as an anti-skin aging agent has also been clinically validated. Our analysis of the crow’s feet wrinkle showed that there was a decrease in the depth of deep furrows in RI treated with AQFE cream over an eight-week period. The overall results suggest that AQFE may work as an anti-skin aging agent by preventing oxidative stress and other complications associated with AGEs formation. PMID:26569300

  18. Ameliorating Effect of Akebia quinata Fruit Extracts on Skin Aging Induced by Advanced Glycation End Products.

    PubMed

    Shin, Seoungwoo; Son, Dahee; Kim, Minkyung; Lee, Seungjun; Roh, Kyung-Baeg; Ryu, Dehun; Lee, Jongsung; Jung, Eunsun; Park, Deokhoon

    2015-11-12

    The accumulation of free radicals and advanced glycation end products (AGEs) in the skin plays a very important role in skin aging. Both are known to interact with each other. Therefore, natural compounds or extracts that possess both antioxidant and antiglycation activities might have great antiageing potential. Akebia quinata fruit extract (AQFE) has been used to treat urinary tract inflammatory disease in traditional Korean and Chinese medicines. In the present study, AQFE was demonstrated to possess antioxidant and antiglycation activity. AQFE protects human dermal fibroblasts (HDFs) from oxidative stress and inhibits cellular senescence induced by oxidative stress. We also found that AQFE inhibits glycation reaction between BSA and glucose. The antiglycation activity of AQFE was dose-dependent. In addition, the antiglycation activity of AQFE was confirmed in a human skin explant model. AQFE reduced CML expression and stimulated fibrillin-1 expression in comparison to the methyglyoxal treatment. In addition, the possibility of the extract as an anti-skin aging agent has also been clinically validated. Our analysis of the crow's feet wrinkle showed that there was a decrease in the depth of deep furrows in RI treated with AQFE cream over an eight-week period. The overall results suggest that AQFE may work as an anti-skin aging agent by preventing oxidative stress and other complications associated with AGEs formation.

  19. Photoaging versus intrinsic aging: a morphologic assessment of facial skin.

    PubMed

    Bhawan, J; Andersen, W; Lee, J; Labadie, R; Solares, G

    1995-04-01

    Histologic studies have become increasingly important in recognizing morphologic differences in photoaged versus intrinsically aged skin. Earlier histologic studies have attempted to evaluate these changes by examining anatomical sites which are not comparable, such as face and buttocks. As part of a multicenter study, we have quantitatively examined a panel of 16 histologic features in baseline facial skin biopsies from 158 women with moderate to severe photodamage. When compared to the postauricular area (photo protected), biopsies of the crow's feet area (photo exposed) had a twofold increase in melanocytes and a statistically significant increase in melanocytic atypia (p < .0001) and epidermal melanin (p < .0001). Other epidermal changes included reduced epidermal thickness (p < .01), more compact stratum corneum (p < .0001) and increased granular layer thickness (p < .0001) in the crow's feet skin. There was increased solar elastosis (p < .0001), dermal elastic tissue (p < .0001), melanophages (p < .0001), perivascular inflammation (p < .05) and perifollicular fibrosis (p < .01) but no change in the number of mast cells or dermal mucin in the photo exposed skin. Our data document quantitative differences in photoaged versus intrinsically aged facial skin and provides the groundwork for future studies to evaluate the efficacy of new treatments for photoaged skin. PMID:7560349

  20. Photoaging versus intrinsic aging: a morphologic assessment of facial skin.

    PubMed

    Bhawan, J; Andersen, W; Lee, J; Labadie, R; Solares, G

    1995-04-01

    Histologic studies have become increasingly important in recognizing morphologic differences in photoaged versus intrinsically aged skin. Earlier histologic studies have attempted to evaluate these changes by examining anatomical sites which are not comparable, such as face and buttocks. As part of a multicenter study, we have quantitatively examined a panel of 16 histologic features in baseline facial skin biopsies from 158 women with moderate to severe photodamage. When compared to the postauricular area (photo protected), biopsies of the crow's feet area (photo exposed) had a twofold increase in melanocytes and a statistically significant increase in melanocytic atypia (p < .0001) and epidermal melanin (p < .0001). Other epidermal changes included reduced epidermal thickness (p < .01), more compact stratum corneum (p < .0001) and increased granular layer thickness (p < .0001) in the crow's feet skin. There was increased solar elastosis (p < .0001), dermal elastic tissue (p < .0001), melanophages (p < .0001), perivascular inflammation (p < .05) and perifollicular fibrosis (p < .01) but no change in the number of mast cells or dermal mucin in the photo exposed skin. Our data document quantitative differences in photoaged versus intrinsically aged facial skin and provides the groundwork for future studies to evaluate the efficacy of new treatments for photoaged skin.

  1. Modern approach to topical treatment of aging skin.

    PubMed

    Puizina-Ivić, Neira; Mirić, Lina; Carija, Antoanela; Karlica, Dobrila; Marasović, Dujomir

    2010-09-01

    The main processes involved in skin aging are intrinsic and extrinsic. Apart from them, so called stochastic aging connotes cell damage caused by metabolic processes, free radicals and cosmic irradiation. The clinical expression of intrinsic aging include smooth, dry, and thinned skin with accentuated expression lines. It is inevitable and time dependent. Extrinsically aged skin shows signs of photodamage which include appearance of wrinkles, pigmented lesions, actinic keratoses and patchy hypopigmentations. Therapeutic modalities imply photoprotection with sunscreens that prevent sunburns and block ultraviolet irradiation. Other modalities include use of retinoids which regulate gene transcription with subsequent cellular differentiation and proliferation. The topical and peroral administration of network antioxidants, such as vitamin E and C, coenzyme Q10, alpha-lipoic acid and glutathione, enhance antiaging effect. The other antioxidants such as green tea, dehydroepiandrosterone, melatonin, selenium and resveratrol, have also antiaging and anti-inflammatory effects. Topical bleaching agents such as hydroquinone, kojic acid and azelaic acid can reduce signs of aging. Studies confirm the efficacy of these topical agents in combination with superficial and/or medium depth or deep peeling agents for photodamaged skin treatment. Indications for type of chemical peels according to various clinical diagnosis are done, as well as advantages and disadvantages of different types of chemical peels. PMID:20977120

  2. Modern approach to topical treatment of aging skin.

    PubMed

    Puizina-Ivić, Neira; Mirić, Lina; Carija, Antoanela; Karlica, Dobrila; Marasović, Dujomir

    2010-09-01

    The main processes involved in skin aging are intrinsic and extrinsic. Apart from them, so called stochastic aging connotes cell damage caused by metabolic processes, free radicals and cosmic irradiation. The clinical expression of intrinsic aging include smooth, dry, and thinned skin with accentuated expression lines. It is inevitable and time dependent. Extrinsically aged skin shows signs of photodamage which include appearance of wrinkles, pigmented lesions, actinic keratoses and patchy hypopigmentations. Therapeutic modalities imply photoprotection with sunscreens that prevent sunburns and block ultraviolet irradiation. Other modalities include use of retinoids which regulate gene transcription with subsequent cellular differentiation and proliferation. The topical and peroral administration of network antioxidants, such as vitamin E and C, coenzyme Q10, alpha-lipoic acid and glutathione, enhance antiaging effect. The other antioxidants such as green tea, dehydroepiandrosterone, melatonin, selenium and resveratrol, have also antiaging and anti-inflammatory effects. Topical bleaching agents such as hydroquinone, kojic acid and azelaic acid can reduce signs of aging. Studies confirm the efficacy of these topical agents in combination with superficial and/or medium depth or deep peeling agents for photodamaged skin treatment. Indications for type of chemical peels according to various clinical diagnosis are done, as well as advantages and disadvantages of different types of chemical peels.

  3. The Characterization of Varicella Zoster Virus Specific T Cells In Skin and Blood During Ageing

    PubMed Central

    Vukmanovic-Stejic, Milica; Sandhu, Daisy; Seidel, Judith A.; Patel, Neil; Sobande, Toni O.; Agius, Elaine; Jackson, Sarah E.; Fuentes-Duculan, Judilyn; Suarez-Farinas, Mayte; Mabbott, Neil A.; Lacy, Katie E.; Ogg, Graham; Nestle, Frank O; Krueger, James G.; Rustin, Malcolm H.A.; Akbar, Arne N.

    2015-01-01

    The varicella-zoster virus (VZV) re-activation increases during ageing. Although the effects of VZV re-activation are observed in the skin (shingles) the number or functional capacity of cutaneous VZV specific T cells have not been investigated. The numbers of circulating IFN-γ secreting VZV specific CD4+ T cells are significantly decreased in old subjects however other measures of VZV-specific CD4+ T cells, including proliferative capacity to VZV antigen stimulation and identification of VZV-specific CD4+ T cells with a MHC class II tetramer (epitope of IE-63 protein), were similar in both age groups. The majority of T cells in the skin of both age groups expressed CD69, a characteristic of skin resident T cells. VZV-specific CD4+ T cells were significantly increased in the skin compared to the blood in young and old subjects and their function was similar in both age groups. In contrast the number of Foxp3+ regulatory T cells (Tregs) and expression of the inhibitory receptor PD-1 on CD4+ T cells were significantly increased in the skin of older humans. Therefore VZV-specific CD4+ T cells in the skin of older individuals are functionally competent. However their activity may be restricted by multiple inhibitory influences in situ. PMID:25734814

  4. Polycomponent mesotherapy formulations for the treatment of skin aging and improvement of skin quality.

    PubMed

    Prikhnenko, Sergey

    2015-01-01

    Skin aging can largely be attributed to dermal fibroblast dysfunction and a decrease in their biosynthetic activity. Regardless of the underlying causes, aging fibroblasts begin to produce elements of the extracellular matrix in amounts that are insufficient to maintain the youthful appearance of skin. The goal of mesopreparations is primarily to slow down and correct changes in skin due to aging. The rationale for developing complex polycomponent mesopreparations is based on the principle that aging skin needs to be supplied with the various substrates that are key to the adequate functioning of the fibroblast. The quintessential example of a polycomponent formulation - NCTF(®) (New Cellular Treatment Factor) - includes vitamins, minerals, amino acids, nucleotides, coenzymes and antioxidants, as well as hyaluronic acid, designed to help fibroblasts function more efficiently by providing a more optimal environment for biochemical processes and energy generation, as well as resisting the effects of oxidative stress. In vitro experiments suggest that there is a significant increase in the synthetic and prophylactic activity of fibroblasts with treated NCTF, and a significant increase in the ability of cells to resist oxidative stress. The current article looks at the rationale behind the development of polycomponent mesopreparations, using NCTF as an example.

  5. Could tight junctions regulate the barrier function of the aged skin?

    PubMed

    Svoboda, Marek; Bílková, Zuzana; Muthný, Tomáš

    2016-03-01

    The skin is known to be the largest organ in human organism creating interface with outer environment. The skin provides protective barrier against pathogens, physical and chemical insults, and against uncontrolled loss of water. The barrier function was primarily attributed to the stratum corneum (SC) but recent studies confirmed that epidermal tight junctions (TJs) also play important role in maintaining barrier properties of the skin. Independent observations indicate that barrier function and its recovery is impaired in aged skin. However, trans-epidermal water loss (TEWL) values remains rather unchanged in elderly population. UV radiation as major factor of photoageing impairs TJ proteins, but TJs have great self-regenerative potential. Since it may be possible that TJs can compensate TEWL in elderly due to its regenerative and compensatory capabilities, important question remains to be answered: how are TJs regulated during skin ageing? This review provides an insight into TJs functioning as epidermal barrier and summarizes current knowledge about the impact of ageing on the barrier function of the skin and epidermal TJs.

  6. Epidermal melanin absorption in human skin

    NASA Astrophysics Data System (ADS)

    Norvang Nilsen, Lill T.; Fiskerstrand, Elisanne J.; Nelson, J. Stuart; Berns, Michael W.; Svaasand, Lars O.

    1996-01-01

    The principle of laser induced selective photothermolysis is to induced thermal damage to specific targets in such a manner that the temperature of the surrounding tissue is maintained below the threshold for thermal damage. The selectivity is obtained by selection of a proper wavelength and pulse duration. The technique is presently being used in the clinic for removal of port-wine stains. The presence of melanin in the epidermal layer can represent a limitation to the selectivity. Melanin absorption drops off significantly with increasing wavelength, but is significant in the entire wavelength region where the blood absorption is high. Treatment of port-wine stain in patients with high skin pigmentation may therefore give overheating of the epidermis, resulting in epidermal necrosis. Melanosomal heating is dependent on the energy and duration of the laser pulse. The heating mechanism for time scales less than typically 1 microsecond(s) corresponds to a transient local heating of the individual melanosomes. For larger time scales, heat diffusion out of the melanosomes become of increased importance, and the temperature distribution will reach a local steady state condition after typically 10 microsecond(s) . For even longer pulse duration, heat diffusing from neighboring melanosomes becomes important, and the temperature rise in a time scale from 100 - 500 microsecond(s) is dominated by this mechanism. The epidermal heating during the typical 450 microsecond(s) pulse used for therapy is thus dependent on the average epidermal melanin content rather than on the absorption coefficient of the individual melanosomes. This study will present in vivo measurements of the epidermal melanin absorption of human skin when exposed to short laser pulses (< 0.1 microsecond(s) ) from a Q-switched ruby laser and with long laser pulses (approximately 500 microsecond(s) ) from a free-running ruby laser or a long pulse length flashlamp pumped dye laser. The epidermal melanin

  7. Sugar Sag: Glycation and the Role of Diet in Aging Skin.

    PubMed

    Nguyen, H P; Katta, R

    2015-11-01

    First described in the context of diabetes, advanced glycation end products (AGEs) are formed through a type of non-enzymatic reaction called glycation. Increased accumulation of AGEs in human tissue has now been associated with end stage renal disease, chronic obstructive pulmonary disease, and, recently, skin aging. Characteristic findings of aging skin, including decreased resistance to mechanical stress, impaired wound healing, and distorted dermal vasculature, can be in part attributable to glycation. Multiple factors mediate cutaneous senescence, and these factors are generally characterized as endogenous (e.g., telomere shortening) or exogenous (e.g., ultraviolet radiation exposure). Interestingly, AGEs exert their pathophysiological effects from both endogenous and exogenous routes. The former entails the consumption of sugar in the diet, which then covalently binds an electron from a donor molecule to form an AGE. The latter process mostly refers to the formation of AGEs through cooking. Recent studies have revealed that certain methods of food preparation (i.e., grilling, frying, and roasting) produce much higher levels of AGEs than water-based cooking methods such as boiling and steaming. Moreover, several dietary compounds have emerged as promising candidates for the inhibition of glycation-mediated aging. In this review, we summarize the evidence supporting the critical role of glycation in skin aging and highlight preliminary studies on dietary strategies that may be able to combat this process. PMID:27224842

  8. Permeation Studies of Captopril Transdermal Films Through Human Cadaver Skin.

    PubMed

    Nair, Rajesh Sreedharan; Nair, Sujith

    2015-01-01

    Mortality rate due to heart diseases increases dramatically with age. Captopril is an angiotensin converting enzyme inhibitor (ACE) used effectively for the management of hypertension. Due to short elimination half-life of captopril the oral dose is very high. Captopril is prone to oxidation and it has been reported that the oxidation rate of captopril in skin tissues is considerably low when compared to intestinal tissues. All these factors make captopril an ideal drug candidate for transdermal delivery. In this research work an effort was made to formulate transdermal films of captopril by utilizing polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) as film formers and polyethylene glycol 400 (PEG400) as a plasticizer. Dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were used as permeation enhancers. Physicochemical parameters of the films such as appearance, thickness, weight variation and drug content were evaluated. The invitro permeation studies were carried out through excised human cadaver skin using Franz diffusion cells. The in-vitro permeation studies demonstrated that the film (P4) having the polymer ratio (PVP:PVA = 80:20) with DMSO (10%) resulted a promising drug release of 79.58% at 24 hours with a flux of 70.0 µg/cm(2)/hr. No signs of erythema or oedema were observed on the rabbit skin as a result of skin irritation study by Draize test. Based on the stability report it was confirmed that the films were physically and chemically stable, hence the prepared films are very well suited for transdermal application.

  9. Comparison of human and porcine skin for characterization of sunscreens

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Jürgen; Schanzer, Sabine; Patzelt, Alexa; Bahaban, Virginie; Durat, Fabienne; Sterry, Wolfram; Lademann, Jürgen

    2009-03-01

    The universal sun protection factor (USPF) characterizing sunscreen efficacy based on spectroscopically determined data, which were obtained using the tape stripping procedure. The USPF takes into account the complete ultraviolet (UV) spectral range in contrast to the classical sun protection factor (SPF). Until now, the USPF determination has been evaluated only in human skin. However, investigating new filters not yet licensed excludes in vivo investigation on human skin but requires the utilization of a suitable skin model. The penetration behavior and the protection efficacy of 10 commercial sunscreens characterized by USPF were investigated, comparing human and porcine skin. The penetration behavior found for typical UV filter substances is nearly identical for both skin types. The comparison of the USPF obtained for human and porcine skin results in a linear relation between both USPF values with a correlation factor R2=0.98. The results demonstrate the possibility for the use of porcine skin to determine the protection efficacy of sunscreens.

  10. First genomic survey of human skin fungal diversity

    Cancer.gov

    Fungal infections of the skin affect 29 million people in the United States. In the first study of human fungal skin diversity, National Institutes of Health researchers sequenced the DNA of fungi that thrive at different skin sites of healthy adults to d

  11. Ultraviolet radiation and skin cancer of humans.

    PubMed

    Urbach, F

    1997-08-01

    Current scientific evidence indicates that stratospheric ozone has declined worldwide over the past 20 years. The trend estimates are markedly dependent on the geographical location and are highly seasonal. Winter trends are much more negative than those for summer and autumn. Projections based on current assumptions of chlorine release suggest that this decline will continue into the next century. On the basis of the decrease in ozone over the mid-latitudes, an increase in biologically effective ultraviolet radiation (UVR) of 4%-9% is expected, depending on the season and geographical location. However, the UVR penetration to the Earth's surface is greatly affected by clouds, aerosols and tropospheric ozone, and current increases, if any, have not been as large as this. Direct evidence for the induction of non-melanoma skin cancer (NMSC) due to UVR has been derived from animal experiments in mice and rats. Numerous epidemiological data confirm that this relationship also holds for human skin. The increase in NMSC incidence in the past two decades is not likely to be due to the decrease in ozone, given the long latency (two to three decades) associated with UVR effects on skin. A knowledge of the action spectrum for NMSC development suggests that a 1% depletion in stratospheric ozone may be expected to increase NMSC, at equilibrium, by about 2.0% The evidence on the role of UVR exposure in the development of malignant melanoma (MM) is less certain. It has been estimated that a 1% reduction in ozone may cause an increase in MM of 0.6%.

  12. Towards drug quantification in human skin with confocal Raman microscopy.

    PubMed

    Franzen, Lutz; Selzer, Dominik; Fluhr, Joachim W; Schaefer, Ulrich F; Windbergs, Maike

    2013-06-01

    Understanding the penetration behaviour of drugs into human skin is a prerequisite for the rational development and evaluation of effective dermal drug delivery. The general procedure for the acquisition of quantitative drug penetration profiles in human skin is performed by sequential segmentation and extraction. Unfortunately, this technique is destructive, laborious and lacks spatial resolution. Confocal Raman microscopy bares the potential of a chemically selective, label free and nondestructive analysis. However, the acquisition of quantitative drug depth profiles within skin by Raman microscopy is impeded by imponderable signal attenuation inside the tissue. In this study, we present a chemical semi-solid matrix system simulating the optical properties of human skin. This system serves as a skin surrogate for investigation of Raman signal attenuation under controlled conditions. Caffeine was homogeneously incorporated within the skin surrogate, and Raman intensity depth profiles were acquired. A mathematical algorithm describing the Raman signal attenuation within the surrogate was derived from these profiles. Human skin samples were incubated with caffeine, and Raman intensity depth profiles were similarly acquired. The surrogate algorithm was successfully applied to correct the drug profiles in human skin for signal attenuation. For the first time, a mathematical algorithm was established, which allows correction of Raman signal attenuation in human skin, thus facilitating reliable drug quantification in human skin by confocal Raman spectroscopy.

  13. DNA repair responses in human skin cells

    SciTech Connect

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  14. A custom tailored model to investigate skin penetration in porcine skin and its comparison with human skin.

    PubMed

    Herbig, Michael E; Houdek, Pia; Gorissen, Sascha; Zorn-Kruppa, Michaela; Wladykowski, Ewa; Volksdorf, Thomas; Grzybowski, Stephan; Kolios, Georgios; Willers, Christoph; Mallwitz, Henning; Moll, Ingrid; Brandner, Johanna M

    2015-09-01

    Reliable models for the determination of skin penetration and permeation are important for the development of new drugs and formulations. The intention of our study was to develop a skin penetration model which (1) is viable and well supplied with nutrients during the period of the experiment (2) is mimicking human skin as far as possible, but still is independent from the problems of supply and heterogeneity, (3) can give information about the penetration into different compartments of the skin and (4) considers specific inter-individual differences in skin thickness. In addition, it should be quick and inexpensive (5) and without ethical implications (6). Using a chemically divers set of four topically approved active pharmaceutical ingredients (APIs), namely diclofenac, metronidazole, tazarotene, and terbinafine, we demonstrated that the model allows reliable determination of drug concentrations in different layers of the viable epidermis and dermis. For APIs susceptible for skin metabolism, the extent of metabolic transformation in epidermis and dermis can be monitored. Furthermore, a high degree of accordance in the ability for discrimination of skin concentrations of the substances in different layers was found in models derived from porcine and human skin. Viability, proliferation, differentiation and markers for skin barrier function were surveyed in the model. This model, which we call 'Hamburg model of skin penetration' is particularly suited to support a rational ranking and selection of dermatological formulations within drug development projects.

  15. Skin aging in patients with acquired immunodeficiency syndrome.

    PubMed

    de Aquino Favarato, Grace Kelly Naves; da Silva, Aline Cristina Souza; Oliveira, Lívia Ferreira; da Fonseca Ferraz, Mara Lúcia; de Paula Antunes Teixeira, Vicente; Cavellani, Camila Lourencini

    2016-10-01

    To evaluate the histomorphometric skin changes over aging patients with autopsied acquired immunodeficiency syndrome (AIDS). In 29 skin fragments of autopsied elderly (older than 50 years) and nonelderly patients with AIDS, epidermal thickness, the number of layers, the diameter of cells, the percentage of collagen and elastic fibers in the dermis, and the number and morphology of Langerhans cells were assessed. Statistical analysis was performed by SigmaStat 2.03 program. The thickness of the epidermis (92.55 × 158.94 μm), the number of layers (7 × 9 layers), and the diameter of the cells (13.27 × 17.6 μm) were statistically lower among the elderly. The quantity of collagen fibers (9.68 × 14.11%) and elastic fibers (11.89 × 15.31%) was also significantly lower in the elderly. There was a decrease in total (10.61 × 12.38 cel/mm(2)) and an increase in immature Langerhans cells (6.31 × 4.98 cel/mm(2)) in elderly patients with AIDS. The aging of the skin of patients with AIDS is amended in different histomorphometric aspects, the epidermis constituents suffer less pronounced changes in normal aging, and the dermis has more intense changes in elastic fibers and collagen.

  16. Skin aging in patients with acquired immunodeficiency syndrome.

    PubMed

    de Aquino Favarato, Grace Kelly Naves; da Silva, Aline Cristina Souza; Oliveira, Lívia Ferreira; da Fonseca Ferraz, Mara Lúcia; de Paula Antunes Teixeira, Vicente; Cavellani, Camila Lourencini

    2016-10-01

    To evaluate the histomorphometric skin changes over aging patients with autopsied acquired immunodeficiency syndrome (AIDS). In 29 skin fragments of autopsied elderly (older than 50 years) and nonelderly patients with AIDS, epidermal thickness, the number of layers, the diameter of cells, the percentage of collagen and elastic fibers in the dermis, and the number and morphology of Langerhans cells were assessed. Statistical analysis was performed by SigmaStat 2.03 program. The thickness of the epidermis (92.55 × 158.94 μm), the number of layers (7 × 9 layers), and the diameter of the cells (13.27 × 17.6 μm) were statistically lower among the elderly. The quantity of collagen fibers (9.68 × 14.11%) and elastic fibers (11.89 × 15.31%) was also significantly lower in the elderly. There was a decrease in total (10.61 × 12.38 cel/mm(2)) and an increase in immature Langerhans cells (6.31 × 4.98 cel/mm(2)) in elderly patients with AIDS. The aging of the skin of patients with AIDS is amended in different histomorphometric aspects, the epidermis constituents suffer less pronounced changes in normal aging, and the dermis has more intense changes in elastic fibers and collagen. PMID:27649952

  17. Direct Conversion Provides Old Neurons from Aged Donor's Skin.

    PubMed

    Koch, Philipp

    2015-12-01

    Modeling human neuronal aging at a cellular level remains challenging. Human neurons are accessible from iPSCs, but during reprogramming age-associated traits of somatic cells get lost. In this issue of Cell Stem Cell, Mertens et al. (2015) demonstrate that neurons obtained by direct cell conversion retain age-associated transcriptional traits and functional deficits of the donor cell population. PMID:26637936

  18. Studies in human skin epithelial cell carcinogenesis

    SciTech Connect

    Lehman, T.A.

    1987-01-01

    Metabolism and DNA adduct formation of benzo(a)pyrene (BP) by human epidermal keratinocytes pretreated with inhibitors or inducer of cytochrame P450 was studied. To study DNA adduct analysis, cultures were pretreated as described above, and then treated with non-radiolabeled BP. DNA was prepared from these cultures, digested to the nucleotide level, and /sup 32/P-postlabeled for adduct analysis. Cultures pretreated with BHA, 7,8-BF or disulfiralm formed significantly fewer BPDE I-dB adducts than non-pretreated cultures, while cultures pretreated with MeBHA formed more BPDE-I-dG adducts. MeBHA increased BP activation and adduct formation inhuman keratinocyte in cultures by inducing a specific isoenzyme of cytochrome P450 which preferentially increases the oxidative metabolism of BP to 7,8 diol BP and 7,8 diol BP to BPDE I. To approximate an in vivo human system, metabolism of BPDE I by human skin xenografts treated with cell cycles modulators was studied. When treated with BPDE I, specific carcinogen-DNA adducts were formed. Separation and identification of these adducts by the /sup 32/P-postlabeling technique indicated that the 7R- and 7S-BPDE I-dG adducts were the major adducts.

  19. Setup for investigating gold nanoparticle penetration through reconstructed skin and comparison to published human skin data.

    PubMed

    Labouta, Hagar I; Thude, Sibylle; Schneider, Marc

    2013-06-01

    Owing to the limited source of human skin (HS) and the ethical restrictions of using animals in experiments, in vitro skin equivalents are a possible alternative for conducting particle penetration experiments. The conditions for conducting penetration experiments with model particles, 15-nm gold nanoparticles (AuNP), through nonsealed skin equivalents are described for the first time. These conditions include experimental setup, sterility conditions, effective applied dose determination, skin sectioning, and skin integrity check. Penetration at different exposure times (two and 24 h) and after tissue fixation (fixed versus unfixed skin) are examined to establish a benchmark in comparison to HS in an attempt to get similar results to HS experiments presented earlier. Multiphoton microscopy is used to detect gold luminescence in skin sections. λ(ex)=800 nm is used for excitation of AuNP and skin samples, allowing us to determine a relative index for particle penetration. Despite the observed overpredictability of penetration into skin equivalents, they could serve as a first fast screen for testing the behavior of nanoparticles and extrapolate their penetration behavior into HS. Further investigations are required to test a wide range of particles of different physicochemical properties to validate the skin equivalent-human skin particle penetration relationship.

  20. Setup for investigating gold nanoparticle penetration through reconstructed skin and comparison to published human skin data

    NASA Astrophysics Data System (ADS)

    Labouta, Hagar I.; Thude, Sibylle; Schneider, Marc

    2013-06-01

    Owing to the limited source of human skin (HS) and the ethical restrictions of using animals in experiments, in vitro skin equivalents are a possible alternative for conducting particle penetration experiments. The conditions for conducting penetration experiments with model particles, 15-nm gold nanoparticles (AuNP), through nonsealed skin equivalents are described for the first time. These conditions include experimental setup, sterility conditions, effective applied dose determination, skin sectioning, and skin integrity check. Penetration at different exposure times (two and 24 h) and after tissue fixation (fixed versus unfixed skin) are examined to establish a benchmark in comparison to HS in an attempt to get similar results to HS experiments presented earlier. Multiphoton microscopy is used to detect gold luminescence in skin sections. λex=800 nm is used for excitation of AuNP and skin samples, allowing us to determine a relative index for particle penetration. Despite the observed overpredictability of penetration into skin equivalents, they could serve as a first fast screen for testing the behavior of nanoparticles and extrapolate their penetration behavior into HS. Further investigations are required to test a wide range of particles of different physicochemical properties to validate the skin equivalent-human skin particle penetration relationship.

  1. Clinical implications of aging skin: cutaneous disorders in the elderly.

    PubMed

    Farage, Miranda A; Miller, Kenneth W; Berardesca, Enzo; Maibach, Howard I

    2009-01-01

    Aging skin undergoes progressive degenerative change. Structural and physiologic changes that occur as a natural consequence of intrinsic aging combined with the effects of a lifetime of ongoing cumulative extrinsic damage and environment insult (e.g. overexposure to solar radiation) can produce a marked susceptibility to dermatologic disorders in the elderly. As skin ages, the vasculature progressively atrophies. The supporting dermis also deteriorates, with collagen and elastin fibers becoming sparse and increasingly disordered. These changes leave the elderly increasingly susceptible to both vascular disorders such as stasis dermatitis and skin injuries such as pressure ulcers and skin tears, with a steadily decreasing ability to effect skin repair. A parallel erosion of normal immune function produces higher levels of autoimmune skin disorders such as bullous pemphigoid, benign mucous membrane pemphigoid, paraneoplastic pemphigoid, and pemphigus vulgaris. Lichen sclerosus, an autoimmune disorder often occurring in the genital area in older women, is not common but is an important development because of the potential for substantial discomfort as well as serious complications. The prevalence of polypharmacy in this population increases the risk for autoimmune drug reactions, and diagnosis should be undertaken with an awareness that polypharmacy in this population creates a greatly increased susceptibility to drug eruptions that can mimic other cutaneous disorders. Immunologic senescence in the elderly also sets the stage for potential reactivation of the Varicella zoster virus, in which initial dermatologic involvement expands into the major sensory ganglia. Known as shingles, this disorder can be excruciatingly painful with the potential to cause blindness if the optic nerve becomes involved. Dermatoses such as xerosis, pruritus, and eczema are also widespread in the elderly, create substantial suffering in those afflicted, and often prove recalcitrant to

  2. In vitro and human testing strategies for skin irritation.

    PubMed

    Robinson, M K; Osborne, R; Perkins, M A

    2000-01-01

    Prior to the manufacture, transport, and marketing of chemicals or products, it is critical to assess their potential for skin toxicity (corrosion or irritation), thereby protecting the worker and consumer from adverse skin effects due to intended or accidental skin exposure. Traditionally, animal testing procedures have provided the data needed to assess the more severe forms of skin toxicity, and current regulations may require animal test data before permission can be obtained to manufacture, transport, or market chemicals or the products that contain them. In recent years, the use of animals to assess skin safety has been opposed by some as inhumane and unnecessary. The conflicting needs of the industrial toxicologist to (1) protect human safety, (2) comply with regulations, and (3) reduce animal testing have led to major efforts to develop alternative, yet predictive, test methods. A variety of in vitro skin corrosion test methods have been developed and several have successfully passed initial international validation. These have included skin or epidermal equivalent assays that have been shown to distinguish corrosive from noncorrosive chemicals. These skin/epidermal equivalent assays have also been modified and used to assess skin irritation potential relative to existing human exposure test data. The data show a good correlation between in vitro assay data and different types of human skin irritation data for both chemicals and consumer products. The effort to eliminate animal tests has also led to the development of a novel human patch test for assessment of acute skin irritation potential. A case study shows the benefits of in vitro and human skin irritation tests compared to the animal tests they seek to replace, and strategies now exist to adequately assess human skin irritation potential without the need to rely on animal test methods. PMID:11083109

  3. In vitro and human testing strategies for skin irritation.

    PubMed

    Robinson, M K; Osborne, R; Perkins, M A

    2000-01-01

    Prior to the manufacture, transport, and marketing of chemicals or products, it is critical to assess their potential for skin toxicity (corrosion or irritation), thereby protecting the worker and consumer from adverse skin effects due to intended or accidental skin exposure. Traditionally, animal testing procedures have provided the data needed to assess the more severe forms of skin toxicity, and current regulations may require animal test data before permission can be obtained to manufacture, transport, or market chemicals or the products that contain them. In recent years, the use of animals to assess skin safety has been opposed by some as inhumane and unnecessary. The conflicting needs of the industrial toxicologist to (1) protect human safety, (2) comply with regulations, and (3) reduce animal testing have led to major efforts to develop alternative, yet predictive, test methods. A variety of in vitro skin corrosion test methods have been developed and several have successfully passed initial international validation. These have included skin or epidermal equivalent assays that have been shown to distinguish corrosive from noncorrosive chemicals. These skin/epidermal equivalent assays have also been modified and used to assess skin irritation potential relative to existing human exposure test data. The data show a good correlation between in vitro assay data and different types of human skin irritation data for both chemicals and consumer products. The effort to eliminate animal tests has also led to the development of a novel human patch test for assessment of acute skin irritation potential. A case study shows the benefits of in vitro and human skin irritation tests compared to the animal tests they seek to replace, and strategies now exist to adequately assess human skin irritation potential without the need to rely on animal test methods.

  4. Molecular cartography of the human skin surface in 3D

    PubMed Central

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M.; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W.; Meehan, Michael J.; Dorrestein, Kathleen; Gallo, Richard L.; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C.

    2015-01-01

    The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  5. Molecular cartography of the human skin surface in 3D.

    PubMed

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W; Meehan, Michael J; Dorrestein, Kathleen; Gallo, Richard L; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C

    2015-04-28

    The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.

  6. Molecular cartography of the human skin surface in 3D.

    PubMed

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W; Meehan, Michael J; Dorrestein, Kathleen; Gallo, Richard L; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C

    2015-04-28

    The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  7. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin.

    PubMed

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10-11 weeks of estimated gestational age (EGA)] or only faintly (13-15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation - a phenomenon previously observed also for other markers on LCs in prenatal human skin.

  8. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin

    PubMed Central

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10–11 weeks of estimated gestational age (EGA)] or only faintly (13–15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation – a phenomenon previously observed also for other markers on LCs in prenatal human skin. PMID:25722033

  9. In vivo multiphoton microscopy associated to 3D image processing for human skin characterization

    NASA Astrophysics Data System (ADS)

    Baldeweck, T.; Tancrède, E.; Dokladal, P.; Koudoro, S.; Morard, V.; Meyer, F.; Decencière, E.; Pena, A.-M.

    2012-03-01

    Multiphoton microscopy has emerged in the past decade as a promising non-invasive skin imaging technique. The aim of this study was to assess whether multiphoton microscopy coupled to specific 3D image processing tools could provide new insights into the organization of different skin components and their age-related changes. For that purpose, we performed a clinical trial on 15 young and 15 aged human female volunteers on the ventral and dorsal side of the forearm using the DermaInspectR medical imaging device. We visualized the skin by taking advantage of intrinsic multiphoton signals from cells, elastic and collagen fibers. We also developed 3D image processing algorithms adapted to in vivo multiphoton images of human skin in order to extract quantitative parameters in each layer of the skin (epidermis and superficial dermis). The results show that in vivo multiphoton microscopy is able to evidence several skin alterations due to skin aging: morphological changes in the epidermis and modifications in the quantity and organization of the collagen and elastic fibers network. In conclusion, the association of multiphoton microscopy with specific image processing allows the three-dimensional organization of skin components to be visualized and quantified thus providing a powerful tool for cosmetic and dermatological investigations.

  10. Reactive molecule species and antioxidative mechanisms in normal skin and skin aging.

    PubMed

    Wölfle, Ute; Seelinger, Günter; Bauer, Georg; Meinke, Martina C; Lademann, Jürgen; Schempp, Christoph M

    2014-01-01

    Reactive oxygen and nitrogen species (ROS/RNS) which may exist as radicals or nonradicals, as well as reactive sulfur species and reactive carbon species, play a major role in aging processes and in carcinogenesis. These reactive molecule species (RMS), often referred to as 'free radicals' or oxidants, are partly by-products of the physiological metabolism. When RMS concentrations exceed a certain threshold, cell compartments and cells are injured and destroyed. Endogenous physiological mechanisms are able to neutralize RMS to some extent, thereby limiting damage. In the skin, however, pollutants and particularly UV irradiation are able to produce additional oxidants which overload the endogenous protection system and cause early aging, debilitation of immune functions, and skin cancer. The application of antioxidants from various sources in skin care products and food supplements is therefore widespread, with increasingly effective formulations being introduced. The harmful effects of RMS (aside from impaired structure and function of DNA, proteins, and lipids) are: interference with specific regulatory mechanisms and signaling pathways in cell metabolism, resulting in chronic inflammation, weakening of immune functions, and degradation of tissue. Important control mechanisms are: MAP-kinases, the aryl-hydrocarbon receptor (AhR), the antagonistic transcription factors nuclear factor-κB and Nrf2 (nuclear factor erythroid 2-related factor 2), and, especially important, the induction of matrix metalloproteinases which degrade dermal connective tissue. Recent research, however, has revealed that RMS and in particular ROS/RNS are apparently also produced by specific enzyme reactions in an evolutionarily adapted manner. They may fulfill important physiologic functions such as the activation of specific signaling chains in the cell metabolism, defense against infectious pathogens, and regulation of the immune system. Normal physiological conditions are characterized by

  11. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction.

    PubMed

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging. PMID:27611371

  12. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction

    PubMed Central

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging. PMID:27611371

  13. Effect of Age on Tooth Shade, Skin Color and Skin-Tooth Color Interrelationship in Saudi Arabian Subpopulation

    PubMed Central

    Haralur, Satheesh B

    2015-01-01

    Background: Dental restoration or prosthesis in harmony with adjacent natural teeth color is indispensable part for the successful esthetic outcome. The studies indicate is existence of correlation between teeth and skin color. Teeth and skin color are changed over the aging process. The aim of the study was to explore the role of age on the tooth and skin color parameters, and to investigate the effect of ageing on teeth-skin color correlation. Materials and Methods: Total of 225 Saudi Arabian ethnic subjects was divided into three groups of 75 each. The groups were divided according to participant’s age. The participant’s age for Group I, Group II, and Group III was 18-29 years, 30-50 years, and above 50 years, respectively. The tooth color was identified by spectrophotometer in CIE Lab parameters. The skin color was registered with skin surface photography. The data were statistically analyzed with one-way ANOVA and correlation tests with SPSS 18 software. Results: The Group I had the highest ‘L’ value of 80.26, Group III recorded the least value of 76.66. The Group III had highest yellow value ‘b’ at 22.72, while Group I had 19.19. The skin ‘L’ value was highest in the young population; the elder population had the increased red value ‘a’ in comparison to younger subjects. The ‘L’ tooth color parameter had a strong positive linear correlation with skin color in young and adult subjects. While Group III teeth showed the strong positive correlation with ‘b’ parameter at malar region. Conclusion: The elder subjects had darker and yellow teeth in comparison with younger subjects. The reddening of the skin was observed as age-related skin color change. The age had a strong influence on the teeth-skin color correlation. PMID:26464536

  14. Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin

    NASA Astrophysics Data System (ADS)

    Leroy, Marie; Lefèvre, Thierry; Pouliot, Roxane; Auger, Michèle; Laroche, Gaétan

    2015-06-01

    Psoriasis is a chronic dermatosis that affects around 3% of the world's population. The etiology of this autoimmune pathology is not completely understood. The barrier function of psoriatic skin is known to be strongly altered, but the structural modifications at the origin of this dysfunction are not clear. To develop strategies to reduce symptoms of psoriasis or adequate substitutes for modeling, a deep understanding of the organization of psoriatic skin at a molecular level is required. Infrared and Raman microspectroscopies have been used to obtain direct molecular-level information on psoriatic and healthy human skin biopsies. From the intensities and positions of specific vibrational bands, the lipid and protein distribution and the lipid order have been mapped in the different layers of the skin. Results showed a similar distribution of lipids and collagen for normal and psoriatic human skin. However, psoriatic skin is characterized by heterogeneity in lipid/protein composition at the micrometer scale, a reduction in the definition of skin layer boundaries and a decrease in lipid chain order in the stratum corneum as compared to normal skin. A global decrease of the structural organization is exhibited in psoriatic skin that is compatible with an alteration of its barrier properties.

  15. Dermal absorption and skin damage following hydrofluoric acid exposure in an ex vivo human skin model.

    PubMed

    Dennerlein, Kathrin; Kiesewetter, Franklin; Kilo, Sonja; Jäger, Thomas; Göen, Thomas; Korinth, Gintautas; Drexler, Hans

    2016-04-25

    The wide industrial use of hydrofluoric acid (HF) poses a high risk for accidental dermal exposure. Despite local and systemic hazards associated with HF, information on percutaneous penetration and tissue damage is rare. In the present ex vivo study, the dermal absorption of HF (detected in terms of fluoride ions) was quantified and the skin damaging potential as a function of concentration and exposure duration was assessed. Percutaneous penetration of HF (c=5, 30, and 50%) at 3 exposure durations (3, 5, and 10 min) was investigated in a static diffusion cell model using freshly excised human skin. Alterations of skin were histologically evaluated. HF rapidly penetrated through skin under formation of a considerable intradermal reservoir (∼ 13-67% of total absorbed fluoride). Histologically, epidermal alterations were detected already after exposure to 5% HF for 3 min. The degree of skin damage increased with rising concentration and exposure duration leading to coagulation necrosis. For HF concentrations of ≥ 30%, skin damage progressed into deeper skin layers. Topically applied HF concentration was the principal parameter determining HF induced skin effects. The intradermal HF retention capacity associated with progression and prolongation of HF induced skin effects must be considered in the review of skin decontamination procedures.

  16. Three-Dimensional Human Tissue Models of Wounded Skin

    PubMed Central

    Egles, Christophe; Garlick, Jonathan A.; Shamis, Yulia

    2010-01-01

    Human skin equivalents (HSEs) are in vitro tissues in which a fully differentiated, stratified squamous epithelium is grown at an air–liquid interface on a Type I collagen gel harboring human dermal fibroblasts. HSEs now provide experimental human tissue models to study factors that direct re-epithelialization and epithelial–mesenchymal cross-talk following wounding. This chapter describes the fabrication of HSEs from human keratinocytes and fibroblasts and how HSEs can be modified to characterize the response of the human epithelium during wound repair. The protocols outlined first describe techniques for the generation of human tissues that closely approximate the architectural features, differentiation, and growth of human skin. This will be followed by a description of a protocol that enables HSEs to be adapted to monitor their response following wounding. These engineered human tissues provide powerful tools to study biological process in tissues that mimic the healing of human skin and of the epithelial tissue. PMID:19908015

  17. Interpretation of the human skin biotribological behaviour after tape stripping

    PubMed Central

    Pailler-Mattei, C.; Guerret-Piécourt, C.; Zahouani, H.; Nicoli, S.

    2011-01-01

    The present study deals with the modification of the human skin biotribological behaviour after tape stripping. The tape-stripping procedure consists in the sequential application and removal of adhesive tapes on the skin surface in order to remove stratum corneum (SC) layers, which electrically charges the skin surface. The skin electric charges generated by tape stripping highly change the skin friction behaviour by increasing the adhesion component of the skin friction coefficient. It has been proposed to rewrite the friction adhesion component as the sum of two terms: the first classical adhesion term depending on the intrinsic shear strength, τ0, and the second term depending on the electric shear strength, τelec. The experimental results allowed to estimate a numerical value of the electric shear strength τelec. Moreover, a plan capacitor model with a dielectric material inside was used to modelize the experimental system. This physical model permitted to evaluate the friction electric force and the electric shear strength values to calculate the skin friction coefficient after the tape stripping. The comparison between the experimental and the theoretical value of the skin friction coefficient after the tape stripping has shown the importance of the electric charges on skin biotribological behaviour. The static electric charges produced by tape stripping on the skin surface are probably able to highly modify the interaction of formulations with the skin surface and their spreading properties. This phenomenon, generally overlooked, should be taken into consideration as it could be involved in alteration of drug absorption. PMID:21227961

  18. [Place your bets, the die is cast ... the skin at the retiring age today and tomorrow].

    PubMed

    Piérard, G E; Lesuisse, M; Saint-Léger, D; Piérard-Franchimont, C

    2014-01-01

    Senescence of people represents a global expression of obsolescence of their organs, tissues, cells and constitutive molecules. Skin, similarly to any other organ, is ageing in particular ways. Over the past century, the time effects on skin have been expressed differently. Skin of any individual presently engaged in the Third Age looks different from that of his/her line ancestral. What is the expected future? The Third Age population is expanding and skin problems call for a variety of management procedures. Prevention of the diverse types of skin ageing has made tremendous progresses particularly in the field of preventive and corrective dermocosmetology. The future should further speed up such trends. PMID:25065247

  19. Human skin penetration of silver nanoparticles through intact and damaged skin.

    PubMed

    Larese, Francesca Filon; D'Agostin, Flavia; Crosera, Matteo; Adami, Gianpiero; Renzi, Nadia; Bovenzi, Massimo; Maina, Giovanni

    2009-01-01

    There is a growing interest on nanoparticle safety for topical use. The benefits of nanoparticles have been shown in several scientific fields, but little is known about their potential to penetrate the skin. This study aims at evaluating in vitro skin penetration of silver nanoparticles. Experiments were performed using the Franz diffusion cell method with intact and damaged human skin. Physiological solution was used as receiving phase and 70 microg/cm2 of silver nanoparticles coated with polyvinylpirrolidone dispersed in synthetic sweat were applied as donor phase to the outer surface of the skin for 24h. The receptor fluid measurements were performed by electro thermal atomic absorption spectroscopy (ETAAS). Human skin penetration was also determined by using transmission electron microscope (TEM) to verify the location of silver nanoparticles in exposed membranes. Median silver concentrations of 0.46 ng cm(-2) (range skin (eight cells) and on damaged skin (eight cells), respectively. Twenty-four hours silver flux permeation in damaged skin was 0.62+/-0.2 ng cm(-2) with a lag time <1h. Our experimental data showed that silver nanoparticles absorption through intact and damaged skin was very low but detectable, and that in case of damaged skin it was possible an increasing permeation of silver applied as nanoparticles. Moreover, silver nanoparticles could be detected in the stratum corneum and the outermost surface of the epidermis by electron microscopy. We demonstrated for the first time that silver applied as nanoparticles coated with polyvinylpirrolidone is able to permeate the damaged skin in an in vitro diffusion cell system.

  20. FDA: Anti-Aging, Skin-Lightening Products May Contain Mercury

    MedlinePlus

    ... FDA: Anti-Aging, Skin-Lightening Products May Contain Mercury How you can eliminate the health risk to ... 3, 2016 (HealthDay News) -- Some skin products contain mercury and pose a threat to your health, the ...

  1. Development of Blood and Lymphatic Endothelial Cells in Embryonic and Fetal Human Skin.

    PubMed

    Schuster, Christopher; Mildner, Michael; Botta, Albert; Nemec, Lucas; Rogojanu, Radu; Beer, Lucian; Fiala, Christian; Eppel, Wolfgang; Bauer, Wolfgang; Petzelbauer, Peter; Elbe-Bürger, Adelheid

    2015-09-01

    Blood and lymphatic vessels provide nutrients for the skin and fulfill important homeostatic functions, such as the regulation of immunologic processes. In this study, we investigated the development of blood and lymphatic endothelial cells in prenatal human skin in situ using multicolor immunofluorescence and analyzed angiogenic molecules by protein arrays of lysates and cell culture supernatants. We found that at 8 to 10 weeks of estimated gestational age, CD144(+) vessels predominantly express the venous endothelial cell marker PAL-E, whereas CD144(+)PAL-E(-) vessels compatible with arteries only appear at the end of the first trimester. Lymphatic progenitor cells at 8 weeks of estimated gestational age express CD31, CD144, Prox1, and temporary PAL-E. At that developmental stage not all lymphatic progenitor cells express podoplanin or Lyve-1, which are acquired with advancing gestational age in a stepwise fashion. Already in second-trimester human skin, the phenotype of blood and lymphatic vessels roughly resembles the one in adult skin. The expression pattern of angiogenic molecules in lysates and cell culture supernatants of prenatal skin did not reveal the expected bent to proangiogenic molecules, indicating a complex regulation of angiogenesis during ontogeny. In summary, this study provides enticing new insights into the development and phenotypic characteristics of the vascular system in human prenatal skin.

  2. Directional variations of mechanical parameters in rat skin depending on maturation and age.

    PubMed

    Vogel, H G

    1981-06-01

    Mechanical properties of rat back skin at low loads and at failure were studied in 2 directions, e.g., perpendicular and longitudinal to body axis beginning with early maturation (from 1 week onwards) until senescence (at 24 mo). Anisotropic behavior, known for human skin, has also been found in rats. Surprisingly, the changes due to maturation and aging were not the same for one area of skin regardless of the direction. Ultimate extension was more influenced by the aging process in samples perpendicular to the body axis than in those parallel to body axis. Elongation at zero load, that means load not measurable under the described conditions, was higher in the longitudinal samples than in the perpendicular ones in young and very old animals, whereas this difference was absent in mature animals. In contrast, ultimate load, tensile strength and modulus of elasticity were higher in perpendicular samples than in samples longitudinal to the body axis for young and very old, but not for mature animals. Elongation at low loads or low stresses shows a different pattern than at medium loads or medium stresses when both directions are compared. Apparently, elements contributing to the mechanical properties in the various directions are differently influenced by the maturation and aging processes. Moreover, the elements contributing to the changes at low loads react differently to the aging process from those responsible for the effects at medium and high loads.

  3. Skin wound healing in different aged Xenopus laevis.

    PubMed

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella

    2013-08-01

    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation.

  4. The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging.

    PubMed

    Oblong, John E

    2014-11-01

    Human skin is exposed to daily environmental insults, particularly solar radiation, that triggers a range of molecular responses. These perturbations to the normal homeostatic state can lead to cellular dysfunction and, ultimately, impacts tissue integrity and accelerates skin aging (photoaging). One of the responses is increased oxidative stress which has been shown to disrupt cellular bioenergetics. This can be detected by depletion of the nucleotide energy metabolites NAD+ and ATP as both an acute transient decrease and, over time, a more permanent chronic reduction due in part to cumulative damage of mitochondria. NAD+ and its primary precursor nicotinamide have been known for some time to impact skin homeostasis based on linkages to dietary requirements, treatment of various inflammatory conditions, photoaging, and prevention of cancer. Cellular NAD+ pools are known to be lower in aged skin and treatment with nicotinamide is hypothesized to restore these levels, thereby mitigating cellular bioenergetics dysfunction. In dermal fibroblasts, nicotinamide is able to protect against oxidative stress to glycolysis, oxidative phosphorylation as well as increase mitochondrial efficiency via sirtuin-dependent selective mitophagy. Recent research has found that NAD+ cellular pools are more dynamic than previously thought, oscillating in tandem with free nicotinamide, and serves as a regulatory point and feedback loop in cellular metabolism regulation, maintenance of mitochondrial efficiency, and circadian rhythmicity. Since UV-induced oxidative stress in skin can disrupt these processes, continued molecular understanding of the role of NAD+ and nicotinamide in skin biology is important to identify interventions that would help maintain its normal homeostatic functions and efficient cellular bioenergetics.

  5. The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging.

    PubMed

    Oblong, John E

    2014-11-01

    Human skin is exposed to daily environmental insults, particularly solar radiation, that triggers a range of molecular responses. These perturbations to the normal homeostatic state can lead to cellular dysfunction and, ultimately, impacts tissue integrity and accelerates skin aging (photoaging). One of the responses is increased oxidative stress which has been shown to disrupt cellular bioenergetics. This can be detected by depletion of the nucleotide energy metabolites NAD+ and ATP as both an acute transient decrease and, over time, a more permanent chronic reduction due in part to cumulative damage of mitochondria. NAD+ and its primary precursor nicotinamide have been known for some time to impact skin homeostasis based on linkages to dietary requirements, treatment of various inflammatory conditions, photoaging, and prevention of cancer. Cellular NAD+ pools are known to be lower in aged skin and treatment with nicotinamide is hypothesized to restore these levels, thereby mitigating cellular bioenergetics dysfunction. In dermal fibroblasts, nicotinamide is able to protect against oxidative stress to glycolysis, oxidative phosphorylation as well as increase mitochondrial efficiency via sirtuin-dependent selective mitophagy. Recent research has found that NAD+ cellular pools are more dynamic than previously thought, oscillating in tandem with free nicotinamide, and serves as a regulatory point and feedback loop in cellular metabolism regulation, maintenance of mitochondrial efficiency, and circadian rhythmicity. Since UV-induced oxidative stress in skin can disrupt these processes, continued molecular understanding of the role of NAD+ and nicotinamide in skin biology is important to identify interventions that would help maintain its normal homeostatic functions and efficient cellular bioenergetics. PMID:24794404

  6. The origins of human ageing.

    PubMed Central

    Kirkwood, T B

    1997-01-01

    The origins of human ageing are to be found in the origins and evolution of senescence as a general feature in the life histories of higher animals. Ageing is an intriguing problem in evolutionary biology because a trait that limits the duration of life, including the fertile period, has a negative impact on Darwinian fitness. Current theory suggests that senescence occurs because the force of natural selection declines with age and because longevity is only acquired at some metabolic cost. In effect, organisms may trade late survival for enhanced reproductive investments in earlier life. The comparative study of ageing supports the general evolutionary theory and reveals that human senescence, while broadly similar to senescence in other mammalian species, has distinct features, such as menopause, that may derive from the interplay of biological and social evolution. PMID:9460059

  7. Multifaceted pathways protect human skin from UV radiation.

    PubMed

    Natarajan, Vivek T; Ganju, Parul; Ramkumar, Amrita; Grover, Ritika; Gokhale, Rajesh S

    2014-07-01

    The recurrent interaction of skin with sunlight is an intrinsic constituent of human life, and exhibits both beneficial and detrimental effects. The apparent robust architectural framework of skin conceals remarkable mechanisms that operate at the interface between the surface and environment. In this Review, we discuss three distinct protective mechanisms and response pathways that safeguard skin from deleterious effects of ultraviolet (UV) radiation. The unique stratified epithelial architecture of human skin along with the antioxidant-response pathways constitutes the important defense mechanisms against UV radiation. The intricate pigmentary system and its intersection with the immune-system cytokine axis delicately balance tissue homeostasis. We discuss the relationship among these networks in the context of an unusual depigmenting disorder, vitiligo. The elaborate tunable mechanisms, elegant multilayered architecture and evolutionary selection pressures involved in skin and sunlight interaction makes this a compelling model to understand biological complexity.

  8. Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Yang, Hongqin; Zhang, Xiaoman; Li, Zhifang; Xu, Shufei

    2011-04-01

    Multiphoton microscopy was employed for monitoring the structure changes of mouse dermis collagen in the intrinsic- or the extrinsic-age-related processes in vivo. The characteristics of textures in different aging skins were uncovered by fast Fourier transform in which the orientation index and bundle packing of collagen were quantitatively analyzed. Some significant differences in collagen-related changes are found in different aging skins, which can be good indicators for the statuses of aging skins. The results are valuable to the study of aging skin and also of interest to biomedical photonics.

  9. Biohydrogels for the In Vitro Re-construction and In Situ Regeneration of Human Skin

    NASA Astrophysics Data System (ADS)

    Korkina, Liudmila; Kostyuk, Vladimir; Guerra, Liliana

    Natural and synthetic biohydrogels are of great interest for the development of innovative medicinal and cosmetic products feasible for the treatment of numerous skin diseases and age-related changes in skin structure and function. Here, the characteristics of bio-resorbable hydrogels as scaffolds for the in vitro re-construction of temporary skin substitutes or full skin equivalents for further transplantation are reviewed. Another fast developing area of regenerative medicine is the in situ regeneration of human skin. The approach is mainly applicable to activate and facilitate the skin regeneration process and angiogenesis in chronic wounds with impaired healing. In this case, extracellular matrix resembling polymers are used to stimulate cell growth, adhesion, and movement. Better results could be achieved by activation of biocompatible hydrogels either with proteins (growth factors, adhesion molecules or/and cytokines) or with allogenic skin cells producing and releasing these molecules. Hydrogels are widely applied as carriers of low molecular weight substances with antioxidant, anti-inflammatory, anti-ageing, and wound healing action. Incorporation of these substances into hydrogels enhances their penetration through the skin barrier and prevents their destruction by oxidation. Potential roles of hydrogel-based products for modern dermatology and cosmetology are also discussed.

  10. Terahertz spectroscopy of human skin constituents in suspension

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil; Yaroslavsky, Anna; Al-Arashi, Munir; Gatesman, Andrew; Goyette, Thomas; Giles, Robert

    2008-03-01

    Continuous wave terahertz imaging has the potential to offer a non-invasive medical imaging modality for detecting different types of human cancers. The aim of this study was to identify frequencies of interest for continuous wave terahertz imaging of skin cancer. The absorption characteristics of water, collagen, and elastin were studied in the range between 20 and 100cm-1. In addition, we have recorded and analyzed the teraherz absorption spectra of several substances that are present in human skin (i.e. tryptophan, tyrosine, melanin, urocanic acid, keratin) and their water suspensions with the goal of using them as biomarkers for skin cancer detection.

  11. Human skin penetration of cobalt nanoparticles through intact and damaged skin.

    PubMed

    Larese Filon, Francesca; Crosera, Matteo; Timeus, Elisa; Adami, Gianpiero; Bovenzi, Massimo; Ponti, Jessica; Maina, Giovanni

    2013-02-01

    Cobalt nanoparticles (CoNPs) are produced for several industrial and biomedical applications but there is a lack of data on human cutaneous absorption. Cobalt is also a skin sensitizer that can cause allergic contact dermatitis. Co applied as NPs, due to their small size and high surface, can penetrate into the skin in higher amount that bulk material. The aim of this study was to evaluate the absorption of Co applied as NPs in both intact and damaged skin. Experiments were performed using Franz cells and 1.0 mg cm(-2) of CoNPs was applied as donor phase for 24h. Mean Co content of 8.5 ± 1.2 ng cm(-2) and 1.87 ± 0.86 μg cm(-2) were found in the receiving solutions of Franz cells when the CoNPs suspension was applied on intact skin and on damaged skin, respectively. Twenty-four hours Co flux permeation was 76 ± 49 ng cm(-2)h(-1) in damaged skin with a lag time of 2.8 ± 2.1h. This study suggests that Co applied as NPs is able to penetrate the human skin in an in vitro diffusion cell system.

  12. Microbiome dynamics of human epidermis following skin barrier disruption

    PubMed Central

    2012-01-01

    Background Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury. Results We observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes. Conclusions We suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermis. PMID:23153041

  13. DNA damage and repair in human skin in situ

    SciTech Connect

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  14. Parabens inhibit human skin estrogen sulfotransferase activity: possible link to paraben estrogenic effects.

    PubMed

    Prusakiewicz, Jeffery J; Harville, Heather M; Zhang, Yanhua; Ackermann, Chrisita; Voorman, Richard L

    2007-04-11

    Parabens (p-hydroxybenzoate esters) are a group of widely used preservatives in topically applied cosmetic and pharmaceutical products. Parabens display weak associations with the estrogen receptors in vitro or in cell based models, but do exhibit estrogenic effects in animal models. It is our hypothesis that parabens exert their estrogenic effects, in part, by elevating levels of estrogens through inhibition of estrogen sulfotransferases (SULTs) in skin. We report here the results of a structure-activity-relationship of parabens as inhibitors of estrogen sulfation in human skin cytosolic fractions and normal human epidermal keratinocytes. Similar to reports of paraben estrogenicity and estrogen receptor affinity, the potency of SULT inhibition increased as the paraben ester chain length increased. Butylparaben was found to be the most potent of the parabens in skin cytosol, yielding an IC(50) value of 37+/-5 microM. Butylparaben blocked the skin cytosol sulfation of estradiol and estrone, but not the androgen dehydroepiandrosterone. The parabens were also tested as inhibitors of SULT activity in a cellular system, with normal human epidermal keratinocytes. The potency of butylparaben increased three-fold in these cells relative to the IC(50) value from skin cytosol. Overall, these results suggest chronic topical application of parabens may lead to prolonged estrogenic effects in skin as a result of inhibition of estrogen sulfotransferase activity. Accordingly, the skin anti-aging benefits of many topical cosmetics and pharmaceuticals could be derived, in part, from the estrogenicity of parabens.

  15. Human skin penetration of gold nanoparticles through intact and damaged skin.

    PubMed

    Filon, Francesca Larese; Crosera, Matteo; Adami, Gianpiero; Bovenzi, Massimo; Rossi, Federica; Maina, Giovanni

    2011-12-01

    Gold nanoparticles (AuNPs) are produced for many applications but there is a lack of available data on their skin absorption. Experiments were performed using the Franz diffusion cell method with intact and damaged human skin. A physiological solution was used as receiving phase and 0.5 mL (1st exp) and 1.5 mL (2nd exp) of a solution containing 100 mg L⁻¹ of AuNPs (15 and 45 μg cm⁻², respectively) was applied as donor phase to the outer surface of the skin for 24 h. Skin absorption was dose dependent. Mean gold content of 214.0 ± 43.7 ng cm⁻² and 187.7 ± 50.2 ng cm⁻² were found in the receiving solutions of cells where the AuNPs solution was applied in higher concentration on intact skin (8 Franz cells) and on damaged skin (8 Franz cells), respectively. Twenty-four hours gold flux permeation was 7.8 ± 2.0 ng cm⁻² h⁻¹ and 7.1 ± 2.5 ng cm⁻² h⁻¹ in intact and damaged skin, respectively, with a lag time less than 1 hour. Transmission Electron Microscope analysis on skin samples and chemical analysis using Inductively Coupled Plasma-Mass Spectrometry demonstrated the presence of AuNPs into epidermis and dermis. This study showed that AuNPs are able to penetrate the human skin in an in vitro diffusion cell system.

  16. Cohabitation--relationships of corynebacteria and staphylococci on human skin.

    PubMed

    Kwaszewska, Anna; Sobiś-Glinkowska, Maria; Szewczyk, Eligia M

    2014-11-01

    Skin microbiome main cultivable aerobes in human are coagulase-negative staphylococci and lipophilic corynebacteria. Staphylococcus strains (155) belonging to 10 species and 105 strains of Corynebacterium belonging to nine species from the skin swabs of healthy male volunteers were investigated to determine their enzymatic activity to main metabolic substrates: carbohydrates, proteins, lipids, and response to factors present on the skin such as osmotic pressure, pH, and organic acids. The results showed that lipophilic corynebacteria have different capacity for adaptation on the skin than staphylococci. Most of Corynebacterium spp. expressed lack of proteinase, phospholipase, and saccharolytic enzymes activity. Corynebacteria were also more sensitive than Staphylococcus spp. to antimicrobial agents existing on human skin, especially to low pH. These characters can explain domination of Staphylococcus genera on healthy human skin. It can be suggested that within these two bacterial genus, there exists conceivable cooperation and reciprocal protection which results in their quantitative ratio. Such behavior must be considered as crucial for the stability of the population on healthy skin.

  17. 'Skin Trade': Genealogy of Anti-ageing 'Whiteness Therapy' in Colonial Medicine.

    PubMed

    Mire, Amina

    2014-01-01

    This article investigates the extent to which the emerging trend of do-it-yourself anti-ageing skin-whitening products represents a re-articulation of Western colonial concerns with environmental pollution and racial degeneracy into concern with gendered vulnerability. This emerging market is a multibillion dollar industry anchored in the USA, but expanding globally. Do-it-yourself anti-ageing skin-whitening products purport to address the needs of those looking to fight the visible signs of ageing, often promising to remove hyper-pigmented age spots from women's skin, and replace it with ageless skin, free from pigmentation. In order to contextualize the investigation of do-it-yourself anti-ageing skin-whitening practice and discourse, this article draws from the literature in colonial commodity culture, colonial tropical medicine, the contemporary anti-ageing discourse, and advertisements for anti-ageing skin-whitening products. First, it argues that the framing of the biomedicalization of ageing as a pigmentation problem caused by deteriorating environmental conditions and unhealthy lifestyle draws tacitly from European colonial concerns with the European body's susceptibility to tropical diseases, pigmentation disorders, and racial degeneration. Second, the article argues that the rise of do-it-yourself anti-ageing skin-whitening commodities that promise to whiten, brighten, and purify the ageing skin of women and frames the visible signs of ageing in terms of pigmentation pathology. PMID:24817918

  18. Cloud-based Monte Carlo modelling of BSSRDF for the rendering of human skin appearance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Rushmeier, Holly E.; Meglinski, Igor; Bykov, Alexander V.

    2016-03-01

    We present a new Monte Carlo based approach for the modelling of Bidirectional Scattering-Surface Reflectance Distribution Function (BSSRDF) for accurate rendering of human skin appearance. The variations of both skin tissues structure and the major chromophores are taken into account correspondingly to the different ethnic and age groups. The computational solution utilizes HTML5, accelerated by the graphics processing units (GPUs), and therefore is convenient for the practical use at the most of modern computer-based devices and operating systems. The results of imitation of human skin reflectance spectra, corresponding skin colours and examples of 3D faces rendering are presented and compared with the results of phantom studies.

  19. Gadd45b deficiency promotes premature senescence and skin aging

    PubMed Central

    Magimaidas, Andrew; Madireddi, Priyanka; Maifrede, Silvia; Mukherjee, Kaushiki; Hoffman, Barbara; Liebermann, Dan A.

    2016-01-01

    The GADD45 family of proteins functions as stress sensors in response to various physiological and environmental stressors. Here we show that primary mouse embryo fibroblasts (MEFs) from Gadd45b null mice proliferate slowly, accumulate increased levels of DNA damage, and senesce prematurely. The impaired proliferation and increased senescence in Gadd45b null MEFs is partially reversed by culturing at physiological oxygen levels, indicating that Gadd45b deficiency leads to decreased ability to cope with oxidative stress. Interestingly, Gadd45b null MEFs arrest at the G2/M phase of cell cycle, in contrast to other senescent MEFs, which arrest at G1. FACS analysis of phospho-histone H3 staining showed that Gadd45b null MEFs are arrested in G2 phase rather than M phase. H2O2 and UV irradiation, known to increase oxidative stress, also triggered increased senescence in Gadd45b null MEFs compared to wild type MEFs. In vivo evidence for increased senescence in Gadd45b null mice includes the observation that embryos from Gadd45b null mice exhibit increased senescence staining compared to wild type embryos. Furthermore, it is shown that Gadd45b deficiency promotes senescence and aging phenotypes in mouse skin. Together, these results highlight a novel role for Gadd45b in stress-induced senescence and in tissue aging. PMID:27105496

  20. [The usefulness of protective creams on fragile and aged skin].

    PubMed

    Rueda López, Justo; Guerrero Palmero, Alberto; Muñoz Bueno, Ana Maria; Esquius i Carbonell, Jacint; Rosell Moreno, Carmen

    2005-06-01

    The ADDERMIS protective cream has these properties: it prevents skin maceration, exercises a regenerative effect, has bacteriostatic and bactericide activity, possesses a noted anti-inflammatory effect and reduces the risk of mycotic infections. Its application is indicated for use in cases of: skin lesions, such as bed sores or leg ulcers, which require the use of a barrier product; dermatitis lesions in zones of skin folds or due to diaper use; to prevent friction zones; fragile skin; peeling, zones where cracks in the skin appear...and to use for cases of incontinence when diapers are required.

  1. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5. PMID:25690483

  2. Upregulation of Collagen Expression via PPARβ/δ Activation in Aged Skin by Magnesium Lithospermate B from Salvia miltiorrhiza.

    PubMed

    Jung, Yu Ri; Lee, Eun Kyeong; Kim, Dae Hyun; Park, Chan Hum; Park, Min Hi; Jeong, Hyoung Oh; Yokozawa, Takako; Tanaka, Takashi; Im, Dong Soon; Kim, Nam Deuk; Yu, Byung Pal; Mo, Sang Hyun; Chung, Hae Young

    2015-08-28

    This study investigated the agonistic activity of magnesium lithospermate B (1), isolated from Salvia miltiorrhiza, on peroxisome proliferator-activated receptor (PPARβ/δ) and the expressions of collagen genes (COL1A1 and COL3A1) and transforming growth factor-β1 (TGF-β1) in models of skin aging. The action of compound 1 as a PPARβ/δ agonist was determined by reporter gene assay, immunostaining, and Western blotting. To determine the antiaging effects of compound 1 on skin, aged Sprague-Dawley rat skin and ultraviolet B (UVB)-irradiated human skin fibroblasts were used. The results show that 1 presented a marked enhancement of both nuclear protein levels and activity of PPARβ/δ in fibroblasts. In addition, 1 prevented downregulation of PPARβ/δ activity in aged rat skin and UVB-induced fibroblasts. Furthermore, 1 increased the expressions of COL1A1, COL3A1, and TGF-β1 in vivo and in a cell culture system. Therefore, the present study shows that compound 1 prevents collagen degradation in aged rat skin and UVB-exposed fibroblasts through PPARβ/δ activation. The therapeutic and cosmetic applications of compound 1 need further investigation. PMID:26280594

  3. Skin corrosion and irritation test of sunscreen nanoparticles using reconstructed 3D human skin model

    PubMed Central

    Choi, Jonghye; Kim, Hyejin; Choi, Jinhee; Oh, Seung Min; Park, Jeonggue; Park, Kwangsik

    2014-01-01

    Objectives Effects of nanoparticles including zinc oxide nanoparticles, titanium oxide nanoparticles, and their mixtures on skin corrosion and irritation were investigated by using in vitro 3D human skin models (KeraSkinTM) and the results were compared to those of an in vivo animal test. Methods Skin models were incubated with nanoparticles for a definite time period and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide method. Skin corrosion and irritation were identified by the decreased viability based on the pre-determined threshold. Results Cell viability after exposure to nanomaterial was not decreased to the pre-determined threshold level, which was 15% after 60 minutes exposure in corrosion test and 50% after 45 minutes exposure in the irritation test. IL-1α release and histopathological findings support the results of cell viability test. In vivo test using rabbits also showed non-corrosive and non-irritant results. Conclusions The findings provide the evidence that zinc oxide nanoparticles, titanium oxide nanoparticles and their mixture are ‘non corrosive’ and ‘non-irritant’ to the human skin by a globally harmonized classification system. In vivo test using animals can be replaced by an alternative in vitro test. PMID:25116366

  4. Instrumentation for the measurement of autofluorescence in human skin

    NASA Astrophysics Data System (ADS)

    Graaff, Reindert; Meerwaldt, Robbert; Lutgers, Helen L.; Baptist, Rene; de Jong, Ed D.; Zijp, Jaap R.; Links, Thera P.; Smit, Andries J.; Rakhorst, Gerhard

    2005-04-01

    A setup to measure skin autofluorescence was developed to assess accumulation of advanced glycation endproducts (AGE) in patients noninvasively. The method applies direct blacklight tube illumination of the skin of the lower arm, and spectrometry. The setup displays skin autofluorescence (AF) as a ratio of mean intensities detected from the skin between 420-600 nm and 300-420 nm, respectively. In an early clinical application in 46 and control subjects matched for age and gender, AF was significantly increased in the patients (p = 0.015), and highly correlated with skin AGE's that were determined from skin biopsies in both groups. A large follow-up study on type 2 diabetes mellitus, ongoing since 2001 with more than 1000 subjects, aims to assess the value of the instrument in predicting chronic complications of diabetes. At baseline, a relation with age, glycemic status and with complications present was found. In a study in patients with end stage renal disease on dialysis AF was a strong and independent predictor of total and cardiovascular mortality. A commercial version of this AGE-reader is now under development and becomes available early 2005 (DiagnOptics B.V., Groningen, The Netherlands). One of the remaining questions, that will be answered by measuring so-called Exciation-Emission Matrices (EEM's) of the skin tissue in vivo, is whether a more selective choice of wavelengths is more strongly related to clinical characteristics. An experimental instrument to measure these EEM's was, therefore, developed as well. Clinical measurements are underway of EEM's in patient groups with diabetes mellitus and in healthy volunteers.

  5. [VISIBLE LIGHT AND HUMAN SKIN (REVIEW)].

    PubMed

    Tsibadze, A; Chikvaidze, E; Katsitadze, A; Kvachadze, I; Tskhvediani, N; Chikviladze, A

    2015-09-01

    Biological effect of a visible light depends on extend of its property to penetrate into the tissues: the greater is a wavelength the more is an effect of a radiation. An impact of a visible light on the skin is evident by wave and quantum effects. Quanta of a visible radiation carry more energy than infrared radiation, although an influence of such radiation on the skin is produced by the light spectrum on the boarder of the ultraviolet and the infrared rays and is manifested by thermal and chemical effects. It is determined that large doses of a visible light (405-436 nm) can cause skin erythema. At this time, the ratio of generation of free radicals in the skin during an exposure to the ultraviolet and the visible light range from 67-33% respectively. Visible rays of 400-500 nm length of wave cause an increase of the concentration of oxygen's active form and mutation of DNA and proteins in the skin. The urticaria in 4-18% of young people induced by photodermatosis is described. As a result of a direct exposure to sunlight photosensitive eczema is more common in elderly. Special place holds a hereditary disease - porphyria, caused by a visible light. In recent years, dermatologists widely use phototherapy. The method uses polychromatic, non-coherent (wavelength of 515-1200 nm) pulsating beam. During phototherapy/light treatment a patient is being exposed to sunlight or bright artificial light. Sources of visible light are lasers, LEDs and fluorescent lamps which have the full range of a visible light. Phototherapy is used in the treatment of acne vulgaris, seasonal affective disorders, depression, psoriasis, eczema and neurodermities. LED of the red and near infrared range also is characterized by the therapeutic effect. They have an ability to influence cromatophores and enhance ATP synthesis in mitochondria. To speed up the healing of wounds and stimulate hair growth light sources of a weak intensity are used. The light of blue-green spectrum is widely used for

  6. [Biologic availability of diflucortolone-21-valerate in human skin].

    PubMed

    Täuber, U

    1983-01-01

    The concentration of diflucortolone-21-valerate (DFV) in the different layers of human skin was investigated after topical application of Nerisona (0.1%) as a function of the formulation (fatty ointment, ointment and creme), of the duration of exposition and of the condition of the skin. From all galenic formulations DFV penetrated rapidly into the horny layer. Mean highest concentrations were determined 4 h after application with approx. 300 micrograms/ml (ca. 600 mumol/l) after treatment with fatty ointment and ointment and with approx. 500 micrograms/ml (ca. 1000 mumol/l) after treatment with the cream. The corticoid concentration decreased in the horny layer from distal to proximal by 1.5 to 2 decades. After application to damaged skin - as a model for diseased skin - the local corticoid concentrations in all skin layers were distinctly higher than after application to intact skin at all time points investigated. DFV penetrates selectively into the damaged skin. The systemic load caused by percutaneous absorption through intact skin is neglectable. PMID:6686053

  7. Skin Anti-Aging Activities of Bacteriochlorophyll a from Photosynthetic Bacteria, Rhodobacter sphaeroides.

    PubMed

    Kim, Nam Young; Yim, Tae Bin; Lee, Hyeon Yong

    2015-10-01

    In this work, the anti-aging skin effects of bacteriochlorophyll a isolated from Rhodobacter sphaeroides are first reported, with notably low cytotoxicity in the range of 1% to 14% in adding 0.00078 (% (w/w)) of the extracts, compared with the normal growth of both human dermal fibroblast and keratinocyte cells without any treatment as a control. The highest production of procollagen from human fibroblast cells (CCD-986sk) was observed as 221.7 ng/ml with 0.001 (% (w/w)) of bacteriochlorophyll a, whereas 150 and 200 ng/ml of procollagen production resulted from addition of 0.001 (% (w/w)) of the photosynthetic bacteria. The bacteriochlorophylla- induced TNF-α production increased to 63.8%, which was lower secretion from HaCaT cells than that from addition of 0.00005 (% (w/w)) of bacteriochlorophyll a. Additionally, bacteriochlorophyll a upregulated the expression of genes related to skin anti-aging (i.e., keratin 10, involucrin, transglutaminase-1, and MMPs), by up to 4-15 times those of the control. However, crude extracts from R. sphaeroides did not enhance the expression level of these genes. Bacteriochlorophyll a showed higher antioxidant activity of 63.8% in DPPH free radical scavenging than those of water, ethanol, and 70% ethanol extracts (14.0%, 57.2%, and 12.6%, respectively). It was also shown that the high antioxidant activity could be attributed to the skin anti-aging effect of bacteriochlorophyll a, although R. sphaeroides itself would not exhibit significant anti-aging activities.

  8. Fluorescence lifetime imaging of human skin and hair

    NASA Astrophysics Data System (ADS)

    Ehlers, A.; Riemann, I.; Anhut, T.; Kaatz, M.; Elsner, P.; König, K.

    2006-02-01

    Multiphoton imaging has developed into an important technique for in-vivo research in life sciences. With the laser System DermaInspect (JenLab, Germany) laser radiation from a Ti:Sapphire laser is used to generate multiphotonabsorption deep in the human skin in vivo. The resulting autofluorescence radiation arises from endogenous fluorophores such as NAD(P)H, flavines, collagen, elastin, porphyrins und melanin. Second harmonic generation (SHG) was used to detect collagen structures in the dermal layer. Femtosecond laser multiphoton imaging offers the possibility of high resolution optical tomography of human skin as well as fluorescence lifetime imaging (FLIM) with picosecond time resolution. In this work a photon detector with ultrashort rise time of less than 30ps was applied to FLIM measurements of human skin and hair with different pigmentation. Fluorescence lifetime images of different human hair types will be discussed.

  9. Human skin wetness perception: psychophysical and neurophysiological bases.

    PubMed

    Filingeri, Davide; Havenith, George

    2015-01-01

    The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception.

  10. Human skin wetness perception: psychophysical and neurophysiological bases

    PubMed Central

    Filingeri, Davide; Havenith, George

    2015-01-01

    The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception. PMID:27227008

  11. Role of light in human skin color viariation.

    PubMed

    Quevedo, W C; Fitzpatrick, T B; Pathak, M A; Jimbow, K

    1975-11-01

    The major source of color in human skin derives from the presence within the epidermis of specialized melanin-bearing organelles, the melanosomes. Tanning of human skin on exposure to ultraviolet light results from increased amounts of melanin within the epidermis. Melanosomes synthesized by melanocytes are acquired by keratinocytes and transported within them to the epidermal surface. In some cases, the melanosomes are catobolized en route. New information indicates that the multicellular epidermal melanin unit (melanocyte and associated pool of keratinocytes) rather than the melanocyte alone is the focal point for the control of melanin metabolism within mammalian epidermis. Gross human skin color derives from the visual impact of the summed melanin pigmentation of the many epidermal melanin units. In theory, constitutive skin color in man designates the genetically-determined levels of melanin pigmentation developed in the absence of exposure to solar radiation or other environmental influences; facultative skin color or "tan" characterizes the increases in melanin pigmentation above the constitutive level induced by ultraviolet light. The details of genetic regulation of pigment metabolism within the epidermal melanin units are being clarified. In some mammals at least, the function of epidermal melanin units is significantly influenced by hormones which may be regulated by radiations received through the eyes. Based on an evolutionary history of the human family which exceeds ten million years, it is proposed that melanin pigmentation may have played a number of roles in human adaptions to changing biologic and physical environments.

  12. Novel approach to assess the emissivity of the human skin.

    PubMed

    Sanchez-Marin, Francisco J; Calixto-Carrera, Sergio; Villaseñor-Mora, Carlos

    2009-01-01

    To study the radiation emitted by the human skin, the emissivity of its surface must be known. We present a new approach to measure the emissivity of the human skin in vivo. Our method is based on the calculation of the difference of two infrared images: one acquired before projecting a CO(2) laser beam on the surface of the skin and the other after such projection. The difference image contains the radiation reflected by the skin, which is used to calculate the emissivity, making use of Kirchhoff's law and the Helmholtz reciprocity relation. With our method, noncontact measurements are achieved, and the determination of the skin temperature is not needed, which has been an inconvenience for other methods. We show that it is possible to make determinations of the emissivity at specific wavelengths. Last, our results confirm that the human skin obeys Lambert's law of diffuse reflection and that it behaves almost like a blackbody at a wavelength of 10.6 microm.

  13. Human Skin Hypoxia Modulates Cerebrovascular and Autonomic Functions

    PubMed Central

    Pucci, Olivia; Qualls, Clifford; Battisti-Charbonney, Anne; Balaban, Dahlia Y.; Fisher, Joe A.; Duffin, Jim; Appenzeller, Otto

    2012-01-01

    Because the skin is an oxygen sensor in amphibians and mice, we thought to confirm this function also in humans. The human upright posture, however, introduces additional functional demands for the maintenance of oxygen homeostasis in which cerebral blood flow and autonomic nervous system (ANS) function may also be involved. We examined nine males and three females. While subjects were breathing ambient air, at sea level, we changed gases in a plastic body-bag during two conditions of the experiment such as to induce skin hypoxia (with pure nitrogen) or skin normoxia (with air). The subjects performed a test of hypoxic ventilatory drive during each condition of the experiment. We found no differences in the hypoxic ventilatory drive tests. However, ANS function and cerebral blood flow velocities were modulated by skin hypoxia and the effect was significantly greater on the left than right middle cerebral arteries. We conclude that skin hypoxia modulates ANS function and cerebral blood flow velocities and this might impact life styles and tolerance to ambient hypoxia at altitude. Thus the skin in normal humans, in addition to its numerous other functions, is also an oxygen sensor. PMID:23056597

  14. Relationship between dermal birefringence and the skin surface roughness of photoaged human skin

    NASA Astrophysics Data System (ADS)

    Sakai, Shingo; Nakagawa, Noriaki; Yamanari, Masahiro; Miyazawa, Arata; Yasuno, Yoshiaki; Matsumoto, Masayuki

    2009-07-01

    The dermal degeneration accompanying photoaging is considered to promote skin roughness features such as wrinkles. Our previous study demonstrated that polarization-sensitive spectral domain optical coherence tomography (PS-SD-OCT) enabled noninvasive three-dimensional evaluation of the dermal degeneration of photoaged skin as a change in dermal birefringence, mainly due to collagenous structures. Our purpose is to examine the relationship between dermal birefringence and elasticity and the skin morphology in the eye corner area using PS-SD-OCT. Nineteen healthy male subjects in their seventees were recruited as subjects. A transverse dermal birefringence map, automatically produced by the algorithm, did not show localized changes in the dermal birefringence in the part of the main horizontal wrinkle. The averaged upper dermal birefringence, however, showed depth-dependent correlation with the parameters of skin roughness significantly, suggesting that solar elastosis is a major factor for the progress of wrinkles. Age-dependent parameters of skin elasticity measured with Cutometer did not correlate with the parameters. These results suggest that the analysis of dermal birefringence using PS-SD-OCT enables the evaluation of photoaging-dependent upper dermal degeneration related to the change of skin roughness.

  15. Human skin permeation of emerging mycotoxins (beauvericin and enniatins).

    PubMed

    Taevernier, Lien; Veryser, Lieselotte; Roche, Nathalie; Peremans, Kathelijne; Burvenich, Christian; Delesalle, Catherine; De Spiegeleer, Bart

    2016-01-01

    Currently, dermal exposure data of cyclic depsipeptide mycotoxins are completely absent. There is a lack of understanding about the local skin and systemic kinetics and effects, despite their widespread skin contact and intrinsic hazard. Therefore, we provide a quantitative characterisation of their dermal kinetics. The emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) were used as model compounds and their transdermal kinetics were quantitatively evaluated, using intact and damaged human skin in an in vitro Franz diffusion cell set-up and ultra high-performance liquid chromatography (UHPLC)-MS analytics. We demonstrated that all investigated mycotoxins are able to penetrate through the skin. ENN B showed the highest permeation (kp,v=9.44 × 10(-6) cm/h), whereas BEA showed the lowest (kp,v=2.35 × 10(-6) cm/h) and the other ENNs ranging in between. Combining these values with experimentally determined solubility data, Jmax values ranging from 0.02 to 0.35 μg/(cm(2) h) for intact skin and from 0.07 to 1.11 μg/(cm(2) h) for damaged skin were obtained. These were used to determine the daily dermal exposure (DDE) in a worst-case scenario. On the other hand, DDE's for a typical occupational scenario were calculated based on real-life mycotoxin concentrations for the industrial exposure of food-related workers. In the latter case, for contact with intact human skin, DDE's up to 0.0870 ng/(kg BW × day) for ENN A were calculated, whereas for impaired skin barrier this can even rise up to 0.3209 ng/(kg BW × day) for ENN B1. This knowledge is needed for the risk assessment after skin exposure of contaminated food, feed, indoor surfaces and airborne particles with mycotoxins.

  16. Human skin in organ culture and human skin cells (keratinocytes and fibroblasts) in monolayer culture for assessment of chemically induced skin damage.

    PubMed

    Varani, James; Perone, Patricia; Spahlinger, Diana M; Singer, Lisa M; Diegel, Kelly L; Bobrowski, Walter F; Dunstan, Robert

    2007-08-01

    Human skin cells (epidermal keratinocytes and dermal fibroblasts) in monolayer culture and human skin in organ culture were exposed to agents that are known to produce irritation (redness, dryness, edema and scaly crusts) when applied topically to skin. Among the agents used were three well accepted contact irritants (i.e., all-trans retinoic acid [RA], sodium lauryl sulfate [SLS] and benzalkonium chloride) as well as the corrosive organic mercury compound, aminophenyl mercuric acetate (APMA), and 5 contact sensitizers (oxazolone, nickel sulfate, eugenol, isoeugenol and ethylene glycol dimethacrylate [EGDM]). As a group, the contact irritants (including the corrosive mercuric compound) were cytotoxic for keratinocytes and fibroblasts and suppressed growth at lower concentrations than the contact sensitizers. The contact irritants also produced histological changes (hyperplasia, incomplete keratinization, loss of the granular layer, acantholysis and necrosis) in organ-cultured skin at dose levels at which the contact sensitizers appeared to be inert. Finally, the profile of secreted molecules from organ-cultured skin was different in the presence of contact irritants versus contact sensitizers. Taken together, these data suggest that the use of organ-cultured skin in conjunction with cells derived from the skin in monolayer culture may provide an initial approach to screening agents for deleterious changes in skin.

  17. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast.

    PubMed

    Seol, Ja Young; Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami; Choi, Soon Young

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin's elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity. PMID:27194933

  18. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast.

    PubMed

    Seol, Ja Young; Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami; Choi, Soon Young

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin's elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity.

  19. Two-wavelength Raman detector for noninvasive measurements of carotenes and lycopene in human skin

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2005-04-01

    Carotenoids are an important part of the antioxidant system in human skin. Carotenoid molecules, provided by fruits and vegetables, are potent free radical quenchers that accumulate in the body. If not balanced by carotenoids and other antioxidants, free radicals may cause premature skin aging, oxidative cell damage, and even skin cancers. As carotenoids depletion may predispose a person to cancer or other disease, rapid and noninvasive measurement of carotenoid level in skin may be of preventive or diagnostic help. At the very least, such measurement can be used to obtain a biomarker for healthy levels of fruit and vegetable consumption. Recently we have developed noninvasive optical technique based on Raman spectroscopy. In this paper we describe compact optical detector for clinical applications that utilizes two-wavelength excitation. It selectively measures the two most prominent skin carotenoids found in the human skin, lycopene and carotenes. According to the medical literature, these two compounds may play different roles in the human body and be part of different tissue defense mechanisms. Dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects.

  20. Human skin cells support thymus-independent T cell development.

    PubMed

    Clark, Rachael A; Yamanaka, Kei-ichi; Bai, Mei; Dowgiert, Rebecca; Kupper, Thomas S

    2005-11-01

    Thymic tissue has previously been considered a requirement for the generation of a functional and diverse population of human T cells. We report that fibroblasts and keratinocytes from human skin arrayed on a synthetic 3-dimensional matrix support the development of functional human T cells from hematopoietic precursor cells in the absence of thymic tissue. Newly generated T cells contained T cell receptor excision circles, possessed a diverse T cell repertoire, and were functionally mature and tolerant to self MHC, indicating successful completion of positive and negative selection. Skin cell cultures expressed the AIRE, Foxn1, and Hoxa3 transcription factors and a panel of autoantigens. Skin and bone marrow biopsies can thus be used to generate de novo functional and diverse T cell populations for potential therapeutic use in immunosuppressed patients. PMID:16224538

  1. Human skin cells support thymus-independent T cell development

    PubMed Central

    Clark, Rachael A.; Yamanaka, Kei-ichi; Bai, Mei; Dowgiert, Rebecca; Kupper, Thomas S.

    2005-01-01

    Thymic tissue has previously been considered a requirement for the generation of a functional and diverse population of human T cells. We report that fibroblasts and keratinocytes from human skin arrayed on a synthetic 3-dimensional matrix support the development of functional human T cells from hematopoietic precursor cells in the absence of thymic tissue. Newly generated T cells contained T cell receptor excision circles, possessed a diverse T cell repertoire, and were functionally mature and tolerant to self MHC, indicating successful completion of positive and negative selection. Skin cell cultures expressed the AIRE, Foxn1, and Hoxa3 transcription factors and a panel of autoantigens. Skin and bone marrow biopsies can thus be used to generate de novo functional and diverse T cell populations for potential therapeutic use in immunosuppressed patients. PMID:16224538

  2. Biogeography and individuality shape function in the human skin metagenome.

    PubMed

    Oh, Julia; Byrd, Allyson L; Deming, Clay; Conlan, Sean; Kong, Heidi H; Segre, Julia A

    2014-10-01

    The varied topography of human skin offers a unique opportunity to study how the body's microenvironments influence the functional and taxonomic composition of microbial communities. Phylogenetic marker gene-based studies have identified many bacteria and fungi that colonize distinct skin niches. Here metagenomic analyses of diverse body sites in healthy humans demonstrate that local biogeography and strong individuality define the skin microbiome. We developed a relational analysis of bacterial, fungal and viral communities, which showed not only site specificity but also individual signatures. We further identified strain-level variation of dominant species as heterogeneous and multiphyletic. Reference-free analyses captured the uncharacterized metagenome through the development of a multi-kingdom gene catalogue, which was used to uncover genetic signatures of species lacking reference genomes. This work is foundational for human disease studies investigating inter-kingdom interactions, metabolic changes and strain tracking, and defines the dual influence of biogeography and individuality on microbial composition and function. PMID:25279917

  3. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice

    PubMed Central

    Hu, Longyuan; Tan, Jia; Yang, Xiaomei; Tan, Haitao; Xu, Xiaozhen; You, Manhang; Qin, Wu; Huang, Liangzhao; Li, Siqi; Mo, Manqiu; Wei, Huifen; Li, Jing; Tan, Jiyong

    2016-01-01

    This study aimed to determine the effect of topically applied Laminaria polysaccharide (LP) on skin aging. We applied ointment containing LP (10, 25, and 50 μg/g) or vitamin E (10 μg/g) to the dorsal skin of aging mice for 12 months and young control mice for 4 weeks. Electron microscopy analysis of skin samples revealed that LP increased dermal thickness and skin collagen content. Tissue inhibitor of metalloprotease- (TIMP-) 1 expression was upregulated while that of matrix metalloproteinase- (MMP-) 1 was downregulated in skin tissue of LP-treated as compared to untreated aging mice. Additionally, phosphorylation of c-Jun N-terminal kinase (JNK) and p38 was higher in aging skin than in young skin, while LP treatment suppressed phospho-JNK expression. LP application also enhanced the expression of antioxidative enzymes in skin tissue, causing a decrease in malondialdehyde levels and increases in superoxide dismutase, catalase, and glutathione peroxidase levels relative to those in untreated aging mice. These results indicate that LP inhibits MMP-1 expression by preventing oxidative stress and JNK phosphorylation, thereby delaying skin collagen breakdown during aging. PMID:27143987

  4. The effect of mother-infant skin-to-skin contact on infants' response to the Still Face Task from newborn to three months of age.

    PubMed

    Bigelow, Ann E; Power, Michelle

    2012-04-01

    The effect of mother-infant skin-to-skin contact on infants' developing social expectations for maternal behavior was investigated longitudinally over infants' first 3 months. Infants with and without skin-to-skin contact engaged with their mothers in the Still Face Task at ages 1 week, 1 month, 2 months, and 3 months. Infants with skin-to-skin contact began responding to changes in their mothers' behavior with their affect at 1 month; infants without skin-to-skin contact did so at 2 months. At 3 months, infants with skin-to-skin contact increased their non-distress vocalizations during the still face phase, suggesting social bidding to their mothers. Skin-to-skin contact accelerated infants' social expectations for their mothers' behavior and enhanced infants' awareness of themselves as active agents in social interactions.

  5. Deep sequencing extends the diversity of human papillomaviruses in human skin.

    PubMed

    Bzhalava, Davit; Mühr, Laila Sara Arroyo; Lagheden, Camilla; Ekström, Johanna; Forslund, Ola; Dillner, Joakim; Hultin, Emilie

    2014-07-24

    Most viruses in human skin are known to be human papillomaviruses (HPVs). Previous sequencing of skin samples has identified 273 different cutaneous HPV types, including 47 previously unknown types. In the present study, we wished to extend prior studies using deeper sequencing. This deeper sequencing without prior PCR of a pool of 142 whole genome amplified skin lesions identified 23 known HPV types, 3 novel putative HPV types and 4 non-HPV viruses. The complete sequence was obtained for one of the known putative types and almost the complete sequence was obtained for one of the novel putative types. In addition, sequencing of amplimers from HPV consensus PCR of 326 skin lesions detected 385 different HPV types, including 226 previously unknown putative types. In conclusion, metagenomic deep sequencing of human skin samples identified no less than 396 different HPV types in human skin, out of which 229 putative HPV types were previously unknown.

  6. OCT monitoring of cosmetic creams in human skin in vivo

    NASA Astrophysics Data System (ADS)

    Han, Seung Hee; Yoon, Chang Han; Conroy, Leigh; Vitkin, I. Alex

    2012-02-01

    Optical coherence tomography (OCT) is a tool currently used for noninvasive diagnosis of human disease as well as for monitoring treatment during or after therapy. In this study, OCT was used to examine penetration and accumulation of cosmetic creams on human hand skin. The samples varied in collagen content with one formulation containing soluble collagen as its primary active ingredient. Collagen is a major connective tissue protein that is essential in maintaining health vitality and strength of many organs. The penetration and localization of collagen in cosmetic creams is thought to be the main determinant of the efficacy of new collagen synthesis. Detection and quantification of collagen in cosmetic creams applied to skin may thus help predict the eventual efficacy of the product in skin collagen regeneration. We hypothesize that the topically applied collagen may be detectable by OCT through its modulation of skin scattering properties. To test this hypothesis, we used a FDML swept-source optical coherence tomography (SS-OCT) system. A particular location on the skin of two male adult volunteers was used to investigate 4 different cosmetic creams. The duration of OCT monitoring of cosmetic penetration into skin ranged from 5 minutes to 2 hours following topical application. The results showed that OCT can discriminate between a cream with collagen and other collagen-free formulations. Thus it seems feasible that OCT intensity can monitor the in vivo effects of topical application of collagen contained in cosmetic formulations.

  7. Percutaneous penetration of 2-phenoxyethanol through rat and human skin.

    PubMed

    Roper, C S; Howes, D; Blain, P G; Williams, F M

    1997-01-01

    2-Phenoxyethanol applied in methanol was absorbed (64 +/- 4.4% at 24 hr) through unoccluded rat skin in vitro in the static diffusion cell with ethanol/water as receptor fluid. By comparison (43 +/- 3.7% in 24 hr) was absorbed in the flow-through diffusion system with tissue culture medium as receptor fluid. 2-Phenoxyethanol applied in methanol was absorbed (59.3 +/- 7.0% at 6 hr) through unoccluded human skin in vitro in the flow-through diffusion cell with tissue culture medium. With both unoccluded cells, 2-phenoxyethanol was lost by evaporation but occlusion of the static cell reduced evaporation and increased total absorption to 98.8 +/- 7.0%. Skin, post mitochondrial fraction, metabolized phenoxyethanol to phenoxyacetic acid at 5% of the rate for liver. Metabolism was inhibited by 1 mM pyrazole, suggesting involvement of alcohol dehydrogenase. However, first-pass metabolism of phenoxyethanol to phenoxyacetic acid was not detected during percutaneous penetration through viable rat skin in the flow-through system. First-pass metabolism in the skin does not therefore have an influence on systemic availability of dermally absorbed phenoxyethanol. These measures of phenoxyethanol absorption through rat and human skin in vitro agree well with those obtained previously in vivo.

  8. Specific Immune Response in Human Skin Carcinoma

    PubMed Central

    Nairn, R. C.; Nind, A. P. P.; Guli, E. P. G.; Muller, H. K.; Rolland, J. M.; Minty, C. C. J.

    1971-01-01

    Eight out of nine patients with squamous cell carcinoma of skin have shown immunological reactivity against their own tumour cells by one or more tests with their sera or peripheral blood lymphocytes. The tests included membrane and cytoplasmic immunofluorescence, and, with cultured tumour, complement-dependent serum cytotoxicity and lymphocyte attack. One case examined in depth had an unusually conspicuous lymphocyte and plasma cell reaction on histological examination, and was positive by all four tests; a time-lapse cinephoto-micrographic record over seven days was obtained of the attack on the carcinoma cells in culture by the patient's lymphocytes. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9 PMID:4943032

  9. Diversity of human papillomaviruses in skin lesions.

    PubMed

    Ekström, Johanna; Mühr, Laila Sara Arroyo; Bzhalava, Davit; Söderlund-Strand, Anna; Hultin, Emilie; Nordin, Peter; Stenquist, Bo; Paoli, John; Forslund, Ola; Dillner, Joakim

    2013-12-01

    Pools of frozen biopsies from patients with squamous cell carcinoma (SCC) (n=29) actinic keratosis (AK) (n=31), keratoacanthoma (n=91) and swab samples from 84 SCCs and 91 AKs were analysed with an extended HPV general primer PCR and high-throughput sequencing of amplimers. We found 273 different HPV isolates (87 known HPV types, 139 previously known HPV sequences (putative types) and 47 sequences from novel putative HPV types). Among the new sequences, five clustered in genus Betapapillomavirus and 42 in genus Gammapapillomavirus. Resequencing of the three pools between 21 to 70 times resulted in the detection of 283 different known or putative HPV types, with 156 different sequences found in only one of the pools. Type-specific PCRs for 37 putative types from an additional 296 patients found only two of these putative types. In conclusion, skin lesions contain a large diversity of HPV types, but most appeared to be rare infections.

  10. Repetitive DNA alterations in human skin cancers.

    PubMed

    Ribeiro, Gil R H; Francisco, Guilherme; Teixeira, Lúcia V S; Romão-Correia, Rosana F; Sanches, José A; Neto, Cyro Festa; Ruiz, Itamar R G

    2004-11-01

    Repetitive sequences constitute landmarks for genome regulation, evolution, and chromatin architecture. Patterns of specific and non-specific repetitive sequences change in many types and stages of tumor cells, characterized by band loss, gain, and (de) increased staining of pre-existing bands. In this work, repetitive DNA was studied in search of genome instability of skin cancers: basal and squamous cell carcinomas (BCC and SCC), malignant melanoma (MM), melanocytic nevus (MN), and actinic keratosis (AK) lesions. DNAs were extracted from blood and tumor samples from 21 BCC, 7 SCC, 11 MM and 7 lesions. Banding patterns were obtained by random amplification of polymorphic DNA (RAPD), and specific D9S50 and D9S52 microsatellites (9p21). D9S50 patterns revealed microsatellite instability (MSI) and/or loss of heterozygosity (LOH) in 36% BCC, 25% SCC, and 57% MM tumors. D9S52 microsatellite showed 28.5%; 42.8%; and 71.4% altered tumors, respectively. No microsatellite alterations were found in MN and AK. On the other hand, genomic rearrangements detected by RAPD were present in 100% tumors. In BCC, the mean number of tumor DNA alterations showed predominant gain of bands. On the contrary, MM samples presented loss, or decreased intensity signal of RAPD bands. Genome alterations in skin cancers would result from chromosomal rearrangements, aneuploidy and/or polysomies. The low-cost and quick RAPD technique may reveal unknown genes or DNA sequences associated with tumor development and progression, and may be easily implemented in clinical diagnosis.

  11. Using skin to assess iron accumulation in human metabolic disorders

    NASA Astrophysics Data System (ADS)

    Guinote, I.; Fleming, R.; Silva, R.; Filipe, P.; Silva, J. N.; Veríssimo, A.; Napoleão, P.; Alves, L. C.; Pinheiro, T.

    2006-08-01

    The distribution of Fe in skin was assessed to monitor body Fe status in human hereditary hemochromatosis. The paper reports on data from nine patients with hemochromatosis that were studied along the therapeutic programme. Systemic evaluation of Fe metabolism was carried out by measuring with PIXE technique the Fe concentration in plasma and blood cells, and by determining with biochemical methods the indicators of Fe transport in serum (ferritin and transferrin). The Fe distribution and concentration in skin was assessed by nuclear microscopy and Fe deposits in liver estimated through nuclear magnetic resonance. Elevated Fe concentrations in skin were related to increased plasma Fe (p < 0.004), serum ferritin content (p < 0.01) and Fe deposits in liver (p < 0.004). The relationship of Fe deposits in organs and metabolism markers may help to better understand Fe pools mobilisation and to establish the quality of skin as a marker for the disease progression and therapy efficacy.

  12. Dipeptides Increase Functional Activity of Human Skin Fibroblasts.

    PubMed

    Malinin, V V; Durnova, A O; Polyakova, V O; Kvetnoi, I M

    2015-05-01

    We analyzed the effect of dipeptide Glu-Trp and isovaleroyl-Glu-Trp in concentrations of 0.2, 2 and 20 μg/ml and Actovegin preparation on functional activity of human skin fibroblasts. Dipeptides, especially Glu-Trp, produce a stimulating effect on human skin fibroblasts and their effect is equivalent to that of Actovegin. Dipeptides stimulate cell renewal processes by activating synthesis of Ki-67 and reducing expression of caspase-9 and enhance antioxidant function of the cells by stimulating the expression of Hsp-90 and inducible NO-synthase. These findings suggest that dipeptides are promising candidates for preparations stimulating reparative processes.

  13. Age-Associated Skin Conditions and Diseases: Current Perspectives and Future Options.

    PubMed

    Blume-Peytavi, Ulrike; Kottner, Jan; Sterry, Wolfram; Hodin, Michael W; Griffiths, Tamara W; Watson, Rachel E B; Hay, Roderick J; Griffiths, Christopher E M

    2016-04-01

    The International League of Dermatological Societies (ILDS), a global, not-for-profit organization representing 157 dermatological societies worldwide, has identified the consequences of skin aging as one of the most important grand challenges in global skin health. Reduced functional capacity and increased susceptibility of the skin with development of dermatoses such as dry skin, itching, ulcers, dyspigmentation, wrinkles, fungal infections, as well as benign and malignant tumors are the most common skin conditions in aged populations worldwide. Environmental (e.g., pollution) and lifestyle factors (e.g., smoking, sunbed use) negatively affect skin health. In turn altered appearance, dry skin, chronic wounds, and other conditions decrease general health and reduce the likelihood for healthy and active aging. Preventive skin care includes primary, secondary, and tertiary interventions. Continuous sun protection from early childhood onward is most important, to avoid extrinsic skin damage and skin cancer. Exposure to irritants, allergens, or other molecules damaging the skin must be avoided or reduced to a minimum. Public health approaches are needed to implement preventive and basic skin care worldwide to reach high numbers of dermatological patients and care receivers. Education of primary caregivers and implementation of community dermatology are successful strategies in resource-poor countries. Besides specialist physicians, nurses and other health care professionals play important roles in preventing and managing age-related skin conditions in developing as well as in developed countries. Healthy skin across the life course leads to better mental and emotional health, positive impact on social engagement, and healthier, more active, and productive lives.

  14. Influence of skin ageing features on Chinese women's perception of facial age and attractiveness

    PubMed Central

    Porcheron, A; Latreille, J; Jdid, R; Tschachler, E; Morizot, F

    2014-01-01

    Objectives Ageing leads to characteristic changes in the appearance of facial skin. Among these changes, we can distinguish the skin topographic cues (skin sagging and wrinkles), the dark spots and the dark circles around the eyes. Although skin changes are similar in Caucasian and Chinese faces, the age of occurrence and the severity of age-related features differ between the two populations. Little is known about how the ageing of skin influences the perception of female faces in Chinese women. The aim of this study is to evaluate the contribution of the different age-related skin features to the perception of age and attractiveness in Chinese women. Methods Facial images of Caucasian women and Chinese women in their 60s were manipulated separately to reduce the following skin features: (i) skin sagging and wrinkles, (ii) dark spots and (iii) dark circles. Finally, all signs were reduced simultaneously (iv). Female Chinese participants were asked to estimate the age difference between the modified and original images and evaluate the attractiveness of modified and original faces. Results Chinese women perceived the Chinese faces as younger after the manipulation of dark spots than after the reduction in wrinkles/sagging, whereas they perceived the Caucasian faces as the youngest after the manipulation of wrinkles/sagging. Interestingly, Chinese women evaluated faces with reduced dark spots as being the most attractive whatever the origin of the face. The manipulation of dark circles contributed to making Caucasian and Chinese faces being perceived younger and more attractive than the original faces, although the effect was less pronounced than for the two other types of manipulation. Conclusion This is the first study to have examined the influence of various age-related skin features on the facial age and attractiveness perception of Chinese women. The results highlight different contributions of dark spots, sagging/wrinkles and dark circles to their perception

  15. Influence of human skin injury on regeneration of sensory neurons.

    PubMed

    Taherzadeh, O; Otto, W R; Anand, U; Nanchahal, J; Anand, P

    2003-06-01

    The regeneration of sensory nerve fibres is regulated by trophic factors released from their target tissue, particularly the basal epidermis, and matrix molecules. Means to modulate this response may be useful for the treatment of neuromas and painful hypertrophic scars and of sensory deficits in skin grafts and flaps. We have developed an in vitro model of sensory neuron regeneration on human skin in order to study the mechanisms of sensory dysfunction in pathological conditions. Adult rat sensory neurons were co-cultured with unfixed cryosections of normal or injured (crushed) human skin for 72 h. Neurons were immunostained for growth-associated protein-43 and the neurite lengths of neuronal cell bodies situated in various skin regions were measured. Two-way analysis of variance was performed. Neurites of sensory cell bodies on epidermis of normal skin were the shortest, with a mean +/- SEM of 75+/-10 micrometer, whereas those of cells on the dermo-epidermal junction were the longest, with a mean +/- SEM of 231+/-18 micrometer. Neurons on the dermo-epidermal junction of injured skin had significantly longer neurites than those on the same region of normal skin (mean +/- SEM = 289+/-21 micrometer). Regeneration of sensory neurons may be influenced by extracellular matrix molecules, matrix-binding growth factors and trophic factors. Altered substrate or trophic factors in injured skin may explain the increase of neurite lengths. This in vitro model may be useful for studying the molecular mechanisms of sensory recovery and the development of neuropathic pain following peripheral nerve injury.

  16. Bringing skin assessments to life using human patient simulation: an emphasis on cancer prevention and early detection.

    PubMed

    Kuhrik, Marilee; Seckman, Christy; Kuhrik, Nancy; Ahearn, Tina; Ercole, Patrick

    2011-12-01

    Skin cancer is the most common cancer in the United States, with about 1,000,000 people developing the disease each year. The incidence of melanoma has rapidly increased in young white women between the ages of 15-34 over the last three decades. While melanoma accounts for approximately 3% of skin cancers, it causes more than 75% of skin cancer deaths. Thorough skin assessments and awareness of new or changing appearance of skin lesions are critical to early detection and treatment of skin cancer, as well as teaching sun-protective behaviors. Educators created a novel approach to "bring to life" skin cancer assessment skills to promote awareness of prevention and early detection of skin cancer using moulage in a human patient simulation lab. Through the use of moulage-like lesions, simulated patients were evaluated and taught skin cancer prevention and early detection principles by baccalaureate nursing students. The average age of study participants (n = 104) was 26.50 years. The majority of responders were female. At the end of the lab, students' average responses to an evaluation based on program goals were very positive. Anecdotal comments affirmed positive student perceptions of their simulation experience. Data analyses indicated item means were consistently higher for upper-division students. The age and gender of students who participated in this study align with the NCI statistics on age and gender of the population with increased incidence of melanoma.

  17. Skin delivery of kojic acid-loaded nanotechnology-based drug delivery systems for the treatment of skin aging.

    PubMed

    Gonçalez, M L; Corrêa, M A; Chorilli, M

    2013-01-01

    The aging process causes a number of changes in the skin, including oxidative stress and dyschromia. The kojic acid (KA) is iron chelator employed in treatment of skin aging, and inhibits tyrosinase, promotes depigmentation. Nanotechnology-based drug delivery systems, such as liquid crystalline systems (LCSs), can modulate drug permeation through the skin and improve the drug activity. This study is aimed at structurally developing and characterizing a kojic acid-loaded LCS, consists of water (W), cetostearyl isononanoate (oil-O) and PPG-5-CETETH-20 (surfactant-S) and evaluating its in vitro skin permeation and retention. Three regions of the diagram were selected for characterization: A (35% O, 50% S, 15% W), B (30% O, 50% S, 20% W) and C (20% O, 50% S, 30% W), to which 2% KA was added. The formulations were subjected to polarized light microscopy, which indicated the presence of a hexagonal mesophase. Texture and bioadhesion assay showed that formulation B is suitable for topical application. According to the results from the in vitro permeation and retention of KA, the formulations developed can modulate the permeation of KA in the skin. The in vitro cytotoxic assays showed that KA-unloaded LCS and KA-loaded LCS didn't present cytotoxicity. PPG-5-CETETH-20-based systems may be a promising platform for KA skin delivery. PMID:24369010

  18. Skin Delivery of Kojic Acid-Loaded Nanotechnology-Based Drug Delivery Systems for the Treatment of Skin Aging

    PubMed Central

    Gonçalez, M. L.; Corrêa, M. A.; Chorilli, M.

    2013-01-01

    The aging process causes a number of changes in the skin, including oxidative stress and dyschromia. The kojic acid (KA) is iron chelator employed in treatment of skin aging, and inhibits tyrosinase, promotes depigmentation. Nanotechnology-based drug delivery systems, such as liquid crystalline systems (LCSs), can modulate drug permeation through the skin and improve the drug activity. This study is aimed at structurally developing and characterizing a kojic acid-loaded LCS, consists of water (W), cetostearyl isononanoate (oil—O) and PPG-5-CETETH-20 (surfactant-S) and evaluating its in vitro skin permeation and retention. Three regions of the diagram were selected for characterization: A (35% O, 50% S, 15% W), B (30% O, 50% S, 20% W) and C (20% O, 50% S, 30% W), to which 2% KA was added. The formulations were subjected to polarized light microscopy, which indicated the presence of a hexagonal mesophase. Texture and bioadhesion assay showed that formulation B is suitable for topical application. According to the results from the in vitro permeation and retention of KA, the formulations developed can modulate the permeation of KA in the skin. The in vitro cytotoxic assays showed that KA-unloaded LCS and KA-loaded LCS didn't present cytotoxicity. PPG-5-CETETH-20-based systems may be a promising platform for KA skin delivery. PMID:24369010

  19. Development and validation of human psoriatic skin equivalents.

    PubMed

    Tjabringa, Geuranne; Bergers, Mieke; van Rens, Desiree; de Boer, Roelie; Lamme, Evert; Schalkwijk, Joost

    2008-09-01

    Psoriasis is an inflammatory skin disease driven by aberrant interactions between the epithelium and the immune system. Anti-psoriatic drugs can therefore target either the keratinocytes or the immunocytes. Here we sought to develop an in vitro reconstructed skin model that would display the molecular characteristics of psoriatic epidermis in a controlled manner, allowing the screening of anti-psoriatic drugs and providing a model in which to study the biology of this disease. Human skin equivalents generated from normal human adult keratinocytes after air exposure and stimulation by keratinocyte growth factor and epidermal growth factor displayed the correct morphological and molecular characteristics of normal human epidermis whereas the psoriasis-associated proteins, hBD-2, SKALP/elafin, and CK16, were absent. Skin equivalents generated from foreskin keratinocytes were clearly abnormal both morphologically and with respect to gene expression. When normal skin equivalents derived from adult keratinocytes were stimulated with psoriasis-associated cytokines [tumor necrosis factor-alpha, interleukin (IL)-1alpha, IL-6, and IL-22] or combinations thereof, strong expression of hBD-2, SKALP/elafin, CK16, IL-8, and tumor necrosis factor-alpha was induced as shown by quantitative polymerase chain reaction and immunohistochemistry. Retinoic acid but not cyclosporin A was found to inhibit cytokine-induced gene expression at both the mRNA and protein levels. These results illustrate the potential of this disease model to study the molecular pathology and pharmacological intervention in vitro. PMID:18669614

  20. Morphometric skin characteristics dependent on chronological and biological age: the Leiden Longevity Study.

    PubMed

    Waaijer, Mariette E C; Gunn, David A; Catt, Sharon D; van Ginkel, Michael; de Craen, Anton J M; Hudson, Nicole M; van Heemst, Diana; Slagboom, P Eline; Westendorp, Rudi G J; Maier, Andrea B

    2012-12-01

    The effect of chronological age on skin characteristics is readily visible, and its underlying histological changes have been a field of study for several years. However, the effect of biological age (i.e. a person's rate of ageing compared to their chronological age) on the skin has so far only been studied in facial photographs. Skin biopsies obtained from middle-aged offspring of nonagenarian siblings that are genetically enriched for longevity were compared to their partners who represent the general Dutch population. Though of the same chronological age, the offspring were previously observed to be of a younger biological age than their partners. The biopsies were analysed on several aspects epidermal and elastic fibre morphology. We investigated whether these skin characteristics were dependent on chronological age, familial longevity (the difference between the offspring and partners) and Framingham heart risk scores, adjusted for external stressors. A decreased thickness and flattening of the epidermis as well as an increased amount of elastic fibres in the reticular dermis were observed with chronological age (P < 0.001, P < 0.001 and P = 0.03, respectively), but no effect of familial longevity was found. The Framingham heart risk score was associated with some skin characteristics. A slower rate of skin ageing does not mark offspring from nonagenarian siblings. Epidermal and elastic fibre morphometric characteristics are not a potential marker for familial longevity in middle-aged subjects enriched for familial longevity.

  1. 650 GHz bistatic scattering measurements on human skin

    NASA Astrophysics Data System (ADS)

    Chamberlin, Richard A.; Mujica-Schwahn, Natalie; Grossman, Erich N.

    2014-06-01

    Many groups are developing submillimeter cameras that will be used to screen human subjects for improvised explosive devices (IEDs) and other threat items hidden beneath their clothing. To interpret submillimeter camera images the scattering properties, specifically the bidirectional scattering distribution function (BSDF) must be known. This problem is not trivial because surfaces of man-made objects and human skin have topographic features comparable to the wavelength of submillimeter radiation—thus simple, theoretical scattering approximations do not apply. To address this problem we built a goniometer instrument to measure the BSDF from skin surfaces of live human subjects illuminated with a beam from a 650 GHz synthesized source. To obtain some multi-spectral information, the instrument was reconfigured with a 160 GHz source. Skin areas sampled are from the hand, interior of the forearm, abdomen, and back. The 650 GHz beam has an approximately Gaussian profile with a FWHM of approximately 1 cm. Instrument characteristics: angular resolution 2.9⍛; noise floor -45 dB/sr; dynamic range ˃ 70 dB; either s or p-polarization; 25⍛ bidirectional-scattering-angle ≤ 180⍛ ; The human scattering target skin area was placed exactly on the goniometer center of rotation with normal angle of incidence to the source beam. Scattering power increased at the higher frequency. This new work enables radiometrically correct models of humans.

  2. Measurements and Characterizations of Mechanical Properties of Human Skins

    NASA Astrophysics Data System (ADS)

    Song, Han Wook; Park, Yon Kyu

    A skin is an indispensible organ for humans because it contributes to metabolism using its own biochemical functions and protects the human body from external stimuli. Recently, mechanical properties such as a thickness, a friction and an elastic coefficient have been used as a decision index in the skin physiology and in the skin care market due to the increased awareness of wellbeing issues. In addition, the use of mechanical properties is known to have good discrimination ability in the classification of human constitutions, which are used in the field of an alternative medicine. In this study, a system that measures mechanical properties such as a friction and an elastic coefficient is designed. The equipment consists of a load cell type (manufactured by the authors) for the measurements of a friction coefficient, a decompression tube for the measurement of an elastic coefficient. Using the proposed system, the mechanical properties of human skins from different constitutions were compared, and the relative repeatability error for measurements of mechanical properties was determined to be less than 2%. Combining the inspection results of medical doctors in the field of an alternative medicine, we could conclude that the proposed system might be applicable to a quantitative constitutional diagnosis between human constitutions within an acceptable level of uncertainty.

  3. Topographic diversity of fungal and bacterial communities in human skin.

    PubMed

    Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2013-06-20

    Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.

  4. Noninvasive and high-resolving photoacoustic dermoscopy of human skin

    PubMed Central

    Xu, Dong; Yang, Sihua; Wang, Ying; Gu, Ying; Xing, Da

    2016-01-01

    We proposed and developed a photoacoustic (PA) dermoscope equipped with an integrated PA probe to achieve quantification and high-resolution, high-contrast deep imaging of human skin. The PA probe, with light-sound confocal excitation and reception, is specially designed, and integrated with an objective lens, an ultrasound transducer, and an inverted-triangle coupling cup to facilitate convenient implementation in a clinical setting. The PA dermoscope was utilized for noninvasive and high-resolution imaging of epidermal and dermal structure in volunteers. The imaging results demonstrated that the characteristic parameters of skin disease, including pigment distribution and thickness, vascular diameter, and depth, can be obtained by the PA dermoscope, confirming that PA dermoscopy can serve as a potential tool for the diagnosis and curative effect evaluation of human skin disease. PMID:27375929

  5. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part 2: Clinical perspectives and clinical methods in the evaluation of ageing skin.

    PubMed

    Callaghan, T M; Wilhelm, K-P

    2008-10-01

    With the advancement of skin research, today's consumer has increased access to technological information about ageing skin and hair care products. As a result, there is a rapidly increasing demand for proof of efficacy of these products. Recognizing these demands has led to the development and validation of many clinical methods to measure and quantify ageing skin and the effects of anti-ageing treatments. Many of the current testing methods used to research and evaluate anti-ageing product claim to employ sophisticated instruments alongside more traditional clinical methods. Intelligent use of combined clinical methods has enabled the development of technologically advanced consumer products providing enhanced efficacy and performance. Of non-invasive methods for the assessment and quantification of ageing skin, there is a plethora of tools available to the clinical researcher as defined by key clinically observed ageing parameters: skin roughness and surface texture; fine lines and wrinkles; skin pigmentation; skin colour; firmness and elasticity; hair loss; and proliferative lesions. Furthermore, many clinical procedures for the evaluation of ageing skin treatments are combined with invasive procedures, which enable added-value to claims (such as identification and alteration of biochemical markers), particularly in those cases where perception of product effect needs additional support. As discussed herein, clinical methods used in the assessment of skin ageing are many and require a disciplined approach to their use in such investigations.

  6. Telocytes in human skin – are they involved in skin regeneration?

    PubMed Central

    Ceafalan, Laura; Gherghiceanu, Mihaela; Popescu, L M; Simionescu, Olga

    2012-01-01

    Abstract Telocytes (TCs), a particular interstitial cell type, have been recently described in a wide variety of mammalian organs (www.telocytes.com). The TCs are identified morphologically by a small cell body and extremely long (tens to hundreds of μm), thin prolongations (less than 100 nm in diameter, below the resolving power of light microscopy) called telopodes. Here, we demonstrated with electron microscopy and immunofluorescence that TCs were present in human dermis. In particular, TCs were found in the reticular dermis, around blood vessels, in the perifollicular sheath, outside the glassy membrane and surrounding sebaceous glands, arrector pili muscles and both the secretory and excretory portions of eccrine sweat glands. Immunofluorescence screening and laser scanning confocal microscopy showed two subpopulations of dermal TCs; one expressed c-kit/CD117 and the other was positive for CD34. Both subpopulations were also positive for vimentin. The TCs were connected to each other by homocellular junctions, and they formed an interstitial 3D network. We also found TCs adjoined to stem cells in the bulge region of hair follicles. Moreover, TCs established atypical heterocellular junctions with stem cells (clusters of undifferentiated cells). Given the frequency of allergic skin pathologies, we would like to emphasize the finding that close, planar junctions were frequently observed between TCs and mast cells. In conclusion, based on TC distribution and intercellular connections, our results suggested that TCs might be involved in skin homeostasis, skin remodelling, skin regeneration and skin repair. PMID:22500885

  7. Technical note: comparing von Luschan skin color tiles and modern spectrophotometry for measuring human skin pigmentation.

    PubMed

    Swiatoniowski, Anna K; Quillen, Ellen E; Shriver, Mark D; Jablonski, Nina G

    2013-06-01

    Prior to the introduction of reflectance spectrophotometry into anthropological field research during the 1950s, human skin color was most commonly classified by visual skin color matching using the von Luschan tiles, a set of 36 standardized, opaque glass tiles arranged in a chromatic scale. Our goal was to establish a conversion formula between the tile-based color matching method and modern reflectance spectrophotometry to make historical and contemporary data comparable. Skin pigmentation measurements were taken on the forehead, inner upper arms, and backs of the hands using both the tiles and a spectrophotometer on 246 participants showing a broad range of skin pigmentation. From these data, a second-order polynomial conversion formula was derived by jackknife analysis to estimate melanin index (M-index) based on tile values. This conversion formula provides a means for comparing modern data to von Luschan tile measurements recorded in historical reports. This is particularly important for populations now extinct, extirpated, or admixed for which tile-based measures of skin pigmentation are the only data available.

  8. Opinions regarding skin ageing in the elderly inhabitants of Bialystok, Poland

    PubMed Central

    Krajewska-Kulak, Elzbieta

    2016-01-01

    Skin diseases constitute an essential health and aesthetic problem in the elderly. The aim of the study was to evaluate the knowledge of the elderly residents of public nursing homes and participants of the University of the Third Age in Bialystok, Poland surrounding the factors influencing skin ageing, the awareness of skin conditions in agening skin, and the impact of skin ageing on the volunteers. The study was performed from April to June 2015 in Bialystok, in two groups: among 100 public nursing home residents (PNH) and 100 members of University of the Third Age (U3A), (all over 60 years old). The study made use of a diagnostic survey conducted via a questionnaire prepared by the authors. Nearly half of those surveyed (42.5%; n = 85) sunbathed in the past, while 28.0% (n = 56) of those surveyed now take part in this type of leisure activity. More than half of respondents (53.0%; n = 106) protected their skin using special protective preparations. A majority of Bialystok inhabitants surveyed (80.5%; n = 161) noticed the features of skin ageing. They reported birthmarks, fungal infections and bedsores as the main skin problems of the old age. Nearly half (40%) of respondents assessed their knowledge as average and 26.0% as poor. The study showed some statistical differences in the knowledge and awareness between the residents of public nursing homes and the students of the University of the Third Age, e.g., the use of the Internet by the U3A group for finding out information. There is a desire to receive education in the field of the agening skin conditions/diseases among the elderly because their level of knowledge is relatively poor. Education of seniors in this area can increase their awareness of the basic principles of skin care and prevention marking of skin ageing. The benefits of greater knowledge of seniors about the conditions of agening skin can help reduce the medical burden and reduce the incidence on certain skin diseases. Furthermore, there is a

  9. Opinions regarding skin ageing in the elderly inhabitants of Bialystok, Poland.

    PubMed

    Cybulski, Mateusz; Krajewska-Kulak, Elzbieta

    2016-01-01

    Skin diseases constitute an essential health and aesthetic problem in the elderly. The aim of the study was to evaluate the knowledge of the elderly residents of public nursing homes and participants of the University of the Third Age in Bialystok, Poland surrounding the factors influencing skin ageing, the awareness of skin conditions in agening skin, and the impact of skin ageing on the volunteers. The study was performed from April to June 2015 in Bialystok, in two groups: among 100 public nursing home residents (PNH) and 100 members of University of the Third Age (U3A), (all over 60 years old). The study made use of a diagnostic survey conducted via a questionnaire prepared by the authors. Nearly half of those surveyed (42.5%; n = 85) sunbathed in the past, while 28.0% (n = 56) of those surveyed now take part in this type of leisure activity. More than half of respondents (53.0%; n = 106) protected their skin using special protective preparations. A majority of Bialystok inhabitants surveyed (80.5%; n = 161) noticed the features of skin ageing. They reported birthmarks, fungal infections and bedsores as the main skin problems of the old age. Nearly half (40%) of respondents assessed their knowledge as average and 26.0% as poor. The study showed some statistical differences in the knowledge and awareness between the residents of public nursing homes and the students of the University of the Third Age, e.g., the use of the Internet by the U3A group for finding out information. There is a desire to receive education in the field of the agening skin conditions/diseases among the elderly because their level of knowledge is relatively poor. Education of seniors in this area can increase their awareness of the basic principles of skin care and prevention marking of skin ageing. The benefits of greater knowledge of seniors about the conditions of agening skin can help reduce the medical burden and reduce the incidence on certain skin diseases. Furthermore, there is a

  10. Fibroblast-mediated contraction in actinically exposed and actinically protected aging skin

    SciTech Connect

    Marks, M.W.; Morykwas, M.J.; Wheatley, M.J. )

    1990-08-01

    The changes in skin morphology over time are a consequence of both chronologic aging and the accumulation of environmental exposure. Through observation, we know that actinic radiation intensifies the apparent aging of skin. We have investigated the effects of aging and actinic radiation on the ability of fibroblasts to contract collagen-fibroblast lattices. Preauricular and postauricular skin samples were obtained from eight patients aged 49 to 74 undergoing rhytidectomy. The samples were kept separate, and the fibroblasts were grown in culture. Lattices constructed with preauricular fibroblasts consistently contracted more than lattices containing postauricular fibroblasts. The difference in amount of contraction in 7 days between sites was greatest for the younger patients and decreased linearly as donor age increased (r = -0.96). This difference may be due to preauricular fibroblasts losing their ability to contract a lattice as aging skin is exposed to more actinic radiation.

  11. The human skin: fragrances and pheromones.

    PubMed

    Berliner, D L; Jennings-White, C; Lavker, R M

    1991-10-01

    Non-human mammalian pheromones are commonly used as perfumery ingredients. The actual purpose for using these compounds is as a fixative or carrier for the odor effects of the other ingredients as well as a contributor, in part, to the over-all scent of the perfume. Although such materials are used for their fixative and odor qualities rather than their pheromonal effects, perfumes are generally marketed as having the ability to enhance sexual attractiveness. While providing a scent may elicit a positive pleasant response, this should not be confused with a pheromone response. The attractive effect of perfumes is principally related to the effect of the pleasant scent. A more logical approach would be to use human pheromones which, for humans, are both more natural and more effective as true sensual attractants. It seems likely that implementation of this approach will constitute an important paradigm in the perfume industry as perfumery moves from the realm of art to that of science.

  12. Generalization of Extinguished Skin Conductance Responding in Human Fear Conditioning

    ERIC Educational Resources Information Center

    Vervliet, Bram; Vansteenwegen, Debora; Eelen, Paul

    2004-01-01

    In a human fear conditioning paradigm using the skin conductance response (SCR), participants were assigned to two groups. Following identical acquisition, group ABA (n = 16) was extinguished to a generalization stimulus (GS), whereas group AAB (n = 20) was extinguished to the conditioned stimulus (CS). At test, presenting the CS in group ABA…

  13. In vivo Raman spectroscopy of biochemical changes in human skin by cosmetic application

    NASA Astrophysics Data System (ADS)

    Tosato, Maira Gaspar; dos Santos, Edson Pereira; Alves, Rani de Souza; Raniero, Leandro; Menezes, Priscila Fernanda C.; Kruger, Odivânia; Praes, Carlos Eduardo O.; Martin, Airton Abrahão

    2010-02-01

    The skin aging process is mainly accelerated by external agents such as sunlight, air humidity and surfactants action. Changes in protein structures and hydration during the aging process are responsible for skin morphological variations. In this work the human skin was investigated by in vivo Raman spectroscopy before and after the topical applications of a cosmetic on 17 healthy volunteers (age 60 to 75). In vivo Raman spectra of the skin were obtained with a Spectrometer SpectraPro- 2500i (Pi-Acton), CCD detector and a 785 nm laser excitation source, collected at the beginning of experiment without cream (T0), after 30 (T30) and 60 (T60) days using the product. The primary changes occurred in the following spectral regions: 935 cm-1 (νCC), 1060 cm-1 (lipids), 1174 to 1201 cm-1 (tryptofan, phenylalanine and tyrosine), 1302 cm-1 (phospholipids), 1520 to 1580 cm-1 (C=C) and 1650 cm-1 (amide I). These findings indicate that skin positive effects were enhanced by a continuous cream application.

  14. High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study.

    PubMed

    Boone, M A L M; Suppa, M; Marneffe, A; Miyamoto, M; Jemec, G B E; Del Marmol, V

    2015-10-01

    Several non-invasive two-dimensional techniques with different lateral resolution and measurable depth range have proved to be useful in assessing and quantifying morphological changes in skin ageing. Among these, only in vivo microscopy techniques permit histometric measurements in vivo. Qualitative and quantitative assessment of chronological (intrinsic) age-related (IAR) morphological changes of epidermis, dermo-epidermal junction (DEJ), papillary dermis (PD), papillary-reticular dermis junction and reticular dermis (RD) have been performed by high-definition optical coherence tomography in real time 3-D. HD-OCT images were taken at the internal site of the right upper arm. Qualitative HD-OCT IAR descriptors were reported at skin surface, at epidermal layer, DEJ, PD and upper RD. Quantitative evaluation of age-related compaction and backscattered intensity or brightness of different skin layers was performed by using the plugin plot z-axis profile of ImageJ(®) software permitting intensity assessment of HD-OCT (DICOM) images (3-D images). Analysis was in blind from all clinical information. Sixty, fair-skinned (Fitzpatrick types I-III) healthy females were analysed retrospectively in this study. The subjects belonged to three age groups: twenty in group I aged 20-39, twenty in group II aged 40-59 and twenty in group III aged 60-79. Only intrinsic ageing in women has been studied. Significant age-related qualitative and quantitative differences could be noticed. IAR changes in dermal matrix fibers morphology/organisation and in microvasculature were observed. The brightness and compaction of the different skin layers increased significantly with intrinsic skin ageing. The depth of visibility of fibers in RD increased significantly in the older age group. In conclusion, HD-OCT allows 3-D in vivo and real time qualitative and quantitative assessment of chronological (intrinsic) age-related morphological skin changes at high resolution from skin surface to a depth

  15. Preliminary characterization of human skin microbiome in healthy Egyptian individuals.

    PubMed

    Ramadan, M; Solyman, S; Taha, M; Hanora, A

    2016-01-01

    Human skin is a large, complex ecosystem that harbors diverse microbial communities. The rapid advances in molecular techniques facilitate the exploration of skin associated bacterial populations. The objective of this study was to perform a preliminary characterization of skin associated bacterial populations in Egyptian individuals. Samples were collected from five healthy subjects from two skin sites; Antecubital Fossa (AF) and Popliteal Fossa (PF). Genomic DNA was extracted and used to amplify bacterial 16S rRNA genes which were sequenced on Illumina MiSeq platform. The two sites showed distinct diversity where PF was more diverse than AF. Taxonomic analysis of sequences revealed four main phyla Proteobacteria, Firmicutes, Actinobacteria and Deinococcus-Thermus, with Proteobacteria presenting the highest diversity. Klebsiella, Bacillus, Pseudomonas and Escherichia were the most predominant genera. Our data suggest that environmental factors can shape the composition of the skin microbiome in certain geographical regions. This study presents a new insight for subsequent analyses of human microbiome in Egypt. PMID:27545210

  16. Raman measurement of carotenoid composition in human skin

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2004-07-01

    The carotenoids lycopene and beta-carotene are powerful antioxidants in skin and are thought to act as scavengers for free radicals and singlet oxygen. The role of carotenoid species in skin health is of strong current interest. We demonstrate the possibility to use Resonance Raman spectroscopy for fast, non-invasive, highly specific, and quantitative detection of beta-carotene and lycopene in human skin. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue and green laser excitation, we were able to characterize quantitatively the relative concentrations of each carotenoid species in-vivo. In the selective detection, we take advantage of different Raman cross-section spectral profiles for beta-carotene and lycopene molecules, and obtain a quantitative assessment of individual long-chain carotenoid species in the skin rather than their cumulative levels. Preliminary dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects. The technique holds promise for rapid screening of carotenoid compositions in human skin in large populations and may be suitable in clinical studies for assessing the risk for cutaneous diseases.

  17. Damage from periorbital ageing to the multilayered structures and resilience of the skin in Chinese population

    PubMed Central

    Liao, Chuh-Kai; Tsai, Feng-Chou; Fong, Tsorng-Harn; Hu, Chien-Ming; Wei, Po-Li; Su, Ching-Hua

    2013-01-01

    Ageing dynamically disrupts the multilayered supporting components of the skin that are held together by cell adhesion molecules (CAMs). Skin specimens from 33 female Chinese patients undergoing lower blepharoplasty were divided into three age groups and examined by haematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) and Elastica-van Gieson (EVG) stains, western blotting, surface electron microscopy (SEM) and biomechanical tension analysis. The SEM density (skin surface topology) showed a negative linear relationship with age. The triangular pattern of the skin surface in the younger group gradually broke down into quadrangular and irregular patterns in the older group. Collagens and elastic fibres in the dermis showed anisotropy and decreased density in the older groups compared with the younger group, especially in the papillary dermis. Anisotropy means that physical properties differ according to the direction of measurement. E-cadherin and integrin αv (whose functions are to bind epidermal and dermal elements respectively) increased and decreased, respectively, in the oldest group. Skin resilience decreased significantly in this group under repetitive stress. In conclusion, a loss of skin surface textures, integrin αv expressions, epidermal-dermal connections and dermal compactness led to the multilayered structure of the skin becoming separated. This in turn decreased resilience during ageing. These findings may therefore explain why aged skins cannot tolerate repetitive facial expressions, and why this action produces further dynamic wrinkles. PMID:23441675

  18. Human Stem Cell-Derived Skin Progenitors Produce Alpha 2-HS Glycoprotein (Fetuin): A Revolutionary Cosmetic Ingredient.

    PubMed

    Nistor, Gabriel; Poole, Aleksandra J; Draelos, Zoe; Lupo, Mary; Tzikas, Thomas; Liu, Jerome H; Keirstead, Hans S

    2016-05-01

    These studies were designed to determine the effect of stem cell-derived skin lineage precursor secretions on the intrinsic and extrinsic symptoms of human skin aging.
    Human stem cells cultivated in balanced conditions were differentiated into skin lineage precursors, and shown to secrete large amounts of fetuin as well as multiple growth factors beneficial for human skin development and maintenance. The cell secretions were incorporated in two simple cosmetic formulations (serum and lotion) and investigated in an IRB-approved 12-week human trial that included 25 subjects in each group. Subjects were examined at 2, 4, 8, and 12 weeks by a dermatologist to evaluate safety, trans-epidermal water loss, wrinkles, firmness, radiance, texture, softness, and overall appearance. A sub-group of subjects from each group consented for biopsies for histological analyses.
    Protein analyses in the cell secretions revealed a high concentration of the multifunctional alpha 2-HS glycoprotein (fetuin) along with a multitude of protein factors involved in the development and maintenance of healthy human skin. Clinical investigation demonstrated significant amelioration of the clinical signs of intrinsic and extrinsic skin aging, findings that were confirmed by significant changes in skin morphology, filaggrin, aquaporin 3, and collagen I content.
    Our data strongly support our hypothesis that cosmetic application of stem cell-derived skin lineage precursor secretions containing fetuin and growth factors beneficial for human skin development and maintenance, positively influence intrinsic and extrinsic aging.

    J Drugs Dermatol. 2016;15(5):583-598.

  19. Human Stem Cell-Derived Skin Progenitors Produce Alpha 2-HS Glycoprotein (Fetuin): A Revolutionary Cosmetic Ingredient.

    PubMed

    Nistor, Gabriel; Poole, Aleksandra J; Draelos, Zoe; Lupo, Mary; Tzikas, Thomas; Liu, Jerome H; Keirstead, Hans S

    2016-05-01

    These studies were designed to determine the effect of stem cell-derived skin lineage precursor secretions on the intrinsic and extrinsic symptoms of human skin aging.
    Human stem cells cultivated in balanced conditions were differentiated into skin lineage precursors, and shown to secrete large amounts of fetuin as well as multiple growth factors beneficial for human skin development and maintenance. The cell secretions were incorporated in two simple cosmetic formulations (serum and lotion) and investigated in an IRB-approved 12-week human trial that included 25 subjects in each group. Subjects were examined at 2, 4, 8, and 12 weeks by a dermatologist to evaluate safety, trans-epidermal water loss, wrinkles, firmness, radiance, texture, softness, and overall appearance. A sub-group of subjects from each group consented for biopsies for histological analyses.
    Protein analyses in the cell secretions revealed a high concentration of the multifunctional alpha 2-HS glycoprotein (fetuin) along with a multitude of protein factors involved in the development and maintenance of healthy human skin. Clinical investigation demonstrated significant amelioration of the clinical signs of intrinsic and extrinsic skin aging, findings that were confirmed by significant changes in skin morphology, filaggrin, aquaporin 3, and collagen I content.
    Our data strongly support our hypothesis that cosmetic application of stem cell-derived skin lineage precursor secretions containing fetuin and growth factors beneficial for human skin development and maintenance, positively influence intrinsic and extrinsic aging.

    J Drugs Dermatol. 2016;15(5):583-598. PMID:27168267

  20. Sensory neuropeptide effects in human skin.

    PubMed

    Fuller, R W; Conradson, T B; Dixon, C M; Crossman, D C; Barnes, P J

    1987-12-01

    1 Neuropeptides released from sensory nerves may account for cutaneous flare and wheal following local trauma. In 28 normal subjects we have studied the effects of four sensory neuropeptides given by intradermal injection on the forearm or back. 2 All peptides caused a flare distant from the site of injection, presumably due to an axon reflex. Substance P (SP) was the most potent (geometric mean dose causing 50% of maximum flare, 4.2 pmol). Neurokinin A (NKA) was the next most potent with neurokinin B (NKB) and calcitonin gene-related peptide (CGRP) the least. The distant flare response to SP, NKA and NKB was maximal at 5 min and disappeared within 2 h. 3 CGRP caused a local erythema over the site of injection at doses above 0.5 pmol which at higher doses lasted for up to 12 h. 4 SP, NKA and NKB caused wheals at doses above 5 pmol with SP and NKB being the most potent. CGRP (up to 250 pmol) did not consistently cause wheal formation. There was no significant effect of coinjection of CGRP upon the response to SP although there was a tendency for an enhancement of the wheal response. 5 The H1-histamine antagonist terfenadine (60 mg orally) significantly inhibited the wheal and distant flare response to histamine (5 nmol) and NKA, but not that caused by NKB. The distant flare of CGRP was also reduced but the local erythema was unaltered. 6. Aspirin (600 mg orally) significantly inhibited the distant flare response to SP, NKA and CGRP, but not that caused by NKB or histamine; the local erythema induced by CGRP was unaffected by aspirin. Aspirin also inhibited the wheal formed by NKA but not the wheal induced by the other substances. 7. These results suggest that tachykinins cause a distant flare response partially via the release of histamine and cyclo-oxygenase products, but cause a wheal by a direct effect on the skin microvasculature. The order of potency SP > NKB > NKA suggests that an SPp or NK, receptor is involved in the wheal response. CGRP by contrast has a

  1. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast

    PubMed Central

    Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin’s elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity. PMID:27194933

  2. Methods for Evaluating Topical Antibacterial Agents on Human Skin

    PubMed Central

    Marples, R. R.; Kligman, A. M.

    1974-01-01

    Three procedures were presented for appraising the ability of antibacterial chemicals and formulations to suppress the growth of microorganisms on human skin. In each of these, the microflora was quantified after the skin had been occlusively covered for a day or more, a circumstance which, in the absence of a deterrent, led to an explosive overgrowth by resident organisms. The data obtained related to (i) the capacity to prevent expansion of the normal microflora, (ii) the suppression of an already expanded flora, and (iii) the persistence of antibacterial effect 3 days after the last application. PMID:4840440

  3. Optoelectronic set for measuring reflectance spectrum of living human skin

    NASA Astrophysics Data System (ADS)

    Gryko, Lukasz; Zajac, Andrzej; Gilewski, Marian; Kulesza, Ewa

    2015-09-01

    In the paper the authors present the developed optoelectronic set for measuring spectral reflectance of living human skin. The basic elements of the set are: the illuminator consists of the LED illuminator emitting a uniform distribution of spectral irradiance in the exposed field, the semispherical measuring chamber and the spectrometer which measures spectrum of reflected radiation. Measured radiation is from spectral range of tissue optical window (from 600 nm to 1000 nm). Knowledge about the reflectance spectrum of the patient skin allows adjusting spectral and energetic parameters of the radiation used in biostimulation treatment. The developed set also enables the repeatable exposures of patients in the Low Level Laser Therapy procedures.

  4. Epidermis of Human Skin: Pyroelectric and Piezoelectric Sensor Layer

    NASA Astrophysics Data System (ADS)

    Athenstaedt, Herbert; Claussen, Helge; Schaper, Daniel

    1982-05-01

    The epidermis of live human skin has a permanent electric dipole moment perpendicular to its surface. Voltage responses to a rapid change of temperature are pyroelectric, while voltage responses to pressure pulses are piezoelectric in nature. The time course of the responses depends on dX/dt (X, temperature or pressure). The epidermal surface can react to all physical environmental influences to which nonbiological pyroelectric materials are known to respond. Epidermal voltage signals can be perceived through the intraepidermal and the superficial dermal nervous network. The pyroelectric and piezoelectric properties are also measurable on dead, dry skin samples.

  5. [Intrinsic skin aging. A critical appraisal of the role of hormones].

    PubMed

    Zouboulis, Ch C

    2003-09-01

    Intrinsic skin aging is determined primarily by genetic factors and hormonal status. It reflects the same degenerative process seen in other organs. Skin function is one of the parameters most influenced by aging. The hormonal influences include reduced pituitary, adrenal and gonadal secretion. The hormonal changes of aging lead to the development of a specific body and skin phenotype. Individuals in developed lands spend up to a third of their life (women-post-menopausal) or perhaps 20 years (men-partial androgen deficiency of the aging man, PADAM) with oestrogen or androgen deficiency. Other hormones whose levels decrease with aging include melatonin, growth hormone (GH), dehydroepiandrosterone und insulin-like growth factor-I (IGF-I). Since the skin not only fulfils a protective function for the organism but is also an active peripheral endocrine organ, which even releases effective hormones in the circulation, local hormone substitution could become interesting in the future.

  6. Failure of topical acyclovir in ointment to penetrate human skin.

    PubMed Central

    Freeman, D J; Sheth, N V; Spruance, S L

    1986-01-01

    Topical acyclovir (ACV) in polyethylene glycol (PEG) ointment has been disappointing in the treatment of recurrent herpes simplex virus infections in immunocompetent patients. To investigate the possible role of poor drug delivery from this formulation, we studied the penetration of ACV through excised human skin from three vehicles; PEG ointment, modified aqueous cream, and dimethyl sulfoxide. A second antiviral agent, idoxuridine, was studied in the same formulations, and drug delivery through excised guinea pig skin was also assessed for comparison. The delivery of ACV from PEG ointment was very slow for both human and guinea pig skin (drug flux, 0.055 and 0.047 microgram/cm2 per h, respectively). Formulation of ACV in modified aqueous cream and in dimethyl sulfoxide resulted in an 8- and 60-fold increase, respectively, in the flux of ACV through human skin. Idoxuridine behaved similarly to ACV in the three vehicles. The poor clinical results seen with topical use of ACV ointment may be due in part to retarded drug delivery from this formulation. PMID:3729337

  7. Effects of intrinsic aging and photodamage on skin dyspigmentation: an explorative study

    NASA Astrophysics Data System (ADS)

    Dobos, Gabor; Trojahn, Carina; D'Alessandro, Brian; Patwardhan, Sachin; Canfield, Douglas; Blume-Peytavi, Ulrike; Kottner, Jan

    2016-06-01

    Photoaging is associated with increasing pigmentary heterogeneity and darkening of skin color. However, little is known about age-related changes in skin pigmentation on sun-protected areas. The aim of this explorative study was to measure skin color and dyspigmentation using image processing and to evaluate the reliability of these parameters. Twenty-four volunteers of three age-groups were included in this explorative study. Measurements were conducted at sun-exposed and sun-protected areas. Overall skin-color estimates were similar among age groups. The hyper- and hypopigmentation indices differed significantly by age groups and their correlations with age ranged between 0.61 and 0.74. Dorsal forearm skin differed from the other investigational areas (p<0.001). We observed an increase in dyspigmentation at all skin areas, including sun-protected skin areas, already in young adulthood. Associations between age and dyspigmentation estimates were higher compared to color parameters. All color and dyspigmentation estimates showed high reliability. Dyspigmentation parameters seem to be better biomarkers for UV damage than the overall color measurements.

  8. Evaluation of a Silicone Membrane as an Alternative to Human Skin for Determining Skin Permeation Parameters of Chemical Compounds.

    PubMed

    Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji

    2016-01-01

    We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated. PMID:27581638

  9. [Obtention of human skin sheets by means of tissue engineering].

    PubMed

    Arvelo, Francisco; Pérez, Pedro; Cotte, Carlos

    2004-01-01

    The aim of this "in vitro" study was to develop a new system for keratinocyte culture on a dermal equivalent that enables treatment of different skin injuries. The keratinocyte where obtained from primary cell cultures derived from skin biopsies, seeded over a fibrin matrix enhanced with live human fibroblast. Cells growing over the dermal equivalent, rapidly confluences and a stratified epithelium was obtained within 20-25 days culture. Detachment of composite culture from flask is a simple and quick procedure with no need for chemical or enzyme treatments. The method described provides a number of advantages which include the large expansion of keratinocyte from the primary cell cultures without the need of a feeder layer, the availability of plasma from blood banks, and the versatile and safe manipulation of composite obtained "in vitro". All these facts allow to assure that this system could result very efficient for the treatment of all type of skin injuries.

  10. [Molecular Mechanisms of Functional Activity Decreasing of the Skin Cells With Its Aging].

    PubMed

    Khavinson, V Kh; Linkova, N S; Kukanova, E O; Orlova, O A

    2016-01-01

    The article discusses the pool of signaling molecules that regulate the functional activity of the skin cells. Molecules of apoptosis and cells skin aging are p53, p21, p15, Cdk 4/6 and Bcl-2. Inflammation in skin fibroblasts are realized through the cytokines TNF-α, TGF-β, IL-1, ICAM-1, matrix metalloproteinase MMP-1,2,3,9, transcription factor NF-κB and activator protein AP-1. An important role in the aging of skin cells play neuroimmunoendocrine signaling molecules--melatonin, serotonin, skin fibroblast proliferation marker chromogranin A and CD98hc. Age-related changes in the activity of immune cells of the skin is associated with impaired expression of cluster of differentiation of T-lymphocytes (CD3, CD4, CD5, CD8, CD11) and dendritic cells (CD83⁺). These signaling molecules produced by the fibroblasts of the skin, regulate the activity of immune cells involved in the cascade of reactions associated with inflammatory responses, proliferation, apoptosis and cell regeneration. Based on these data nowadays new highly selective approaches to the diagnosis of the skin and the creation of cosmetic agents for the prevention of aging are developed. PMID:27530044

  11. [Molecular Mechanisms of Functional Activity Decreasing of the Skin Cells With Its Aging].

    PubMed

    Khavinson, V Kh; Linkova, N S; Kukanova, E O; Orlova, O A

    2016-01-01

    The article discusses the pool of signaling molecules that regulate the functional activity of the skin cells. Molecules of apoptosis and cells skin aging are p53, p21, p15, Cdk 4/6 and Bcl-2. Inflammation in skin fibroblasts are realized through the cytokines TNF-α, TGF-β, IL-1, ICAM-1, matrix metalloproteinase MMP-1,2,3,9, transcription factor NF-κB and activator protein AP-1. An important role in the aging of skin cells play neuroimmunoendocrine signaling molecules--melatonin, serotonin, skin fibroblast proliferation marker chromogranin A and CD98hc. Age-related changes in the activity of immune cells of the skin is associated with impaired expression of cluster of differentiation of T-lymphocytes (CD3, CD4, CD5, CD8, CD11) and dendritic cells (CD83⁺). These signaling molecules produced by the fibroblasts of the skin, regulate the activity of immune cells involved in the cascade of reactions associated with inflammatory responses, proliferation, apoptosis and cell regeneration. Based on these data nowadays new highly selective approaches to the diagnosis of the skin and the creation of cosmetic agents for the prevention of aging are developed.

  12. In vitro model for decontamination of human skin: formaldehyde.

    PubMed

    Zhai, H; Barbadillo, S; Hui, X; Maibach, H I

    2007-04-01

    Decontamination of a chemical from skin is often an emergency measure. This study utilized an in vitro model to compare the decontamination capacity of three model decontaminant solutions (tap water, isotonic saline, and hypertonic saline). Human cadaver skin was dosed (approximately 0.25 microg on 3 cm(2) per skin) with radio-labeled [(14)C]-formaldehyde. After a defined exposure time (1, 3, and 30 min post-dosing, respectively), the surface skin was washed three times (4ml per time) with each solution. After washing, the skin was stripped with tape discs twice. Lastly, the wash solutions, strippings, receptor fluid, and remainder of skin were liquid scintillation analyzer counted to determine the amounts of formaldehyde. Additionally, an evaporation test at different exposure times (1min, 3min, 15min, 30min, and 60min, respectively) was conducted to monitor formaldehyde % evaporation. There were no statistical differences among these groups except isotonic saline, at 3min post-exposure (in wash solutions), showed a significantly difference (p<0.05) when compared to tap water. Formaldehyde % evaporation increased linearly with extending application times, and were 7.7%, 13.6%, 19.7%, 24.4%, and 35.9% (1min, 3min, 15min, 30min, and 60min, respectively). This data suggests that isotonic saline may be effective in removing formaldehyde from skin. However, results from this model need validation in vivo. The model may provide a facile and robust method of accelerating knowledge of decontamination mechanism and lead to enhanced efficacy. PMID:17123683

  13. Targeting Senescent Cells: Possible Implications for Delaying Skin Aging: A Mini-Review.

    PubMed

    Velarde, Michael C; Demaria, Marco

    2016-01-01

    Senescent cells are induced by a wide variety of stimuli. They accumulate in several tissues during aging, including the skin. Senescent cells secrete proinflammatory cytokines, chemokines, growth factors, and proteases, a phenomenon called senescence-associated secretory phenotype (SASP), which are thought to contribute to the functional decline of the skin as a consequence of aging. Due to the potential negative effects of the SASP in aged organisms, drugs that selectively target senescent cells represent an intriguing therapeutic strategy to delay aging and age-related diseases. Here, we review studies on the role of senescent cells in the skin, with particular emphasis on the age-related mechanisms and phenotypes associated with excessive accumulation of cellular senescence. We discuss the aberrant behavior of senescent cells in aging and how the different signaling pathways associated with survival and secretion of senescent cells can be engaged for the development of targeted therapies.

  14. Fluorescence spectroscopy for endogenous porphyrins in human facial skin

    NASA Astrophysics Data System (ADS)

    Seo, I.; Tseng, S. H.; Cula, G. O.; Bargo, P. R.; Kollias, N.

    2009-02-01

    The activity of certain bacteria in skin is known to correlate to the presence of porphyrins. In particular the presence of coproporphyrin produced by P.acnes inside plugged pores has been correlated to acne vulgaris. Another porphyrin encountered in skin is protoporphyrin IX, which is produced by the body in the pathway for production of heme. In the present work, a fluorescence spectroscopy system was developed to measure the characteristic spectrum and quantify the two types of porphyrins commonly present in human facial skin. The system is comprised of a Xe lamp both for fluorescence excitation and broadband light source for diffuse reflectance measurements. A computer-controlled filter wheel enables acquisition of sequential spectra, first excited by blue light at 405 nm then followed by the broadband light source, at the same location. The diffuse reflectance spectrum was used to correct the fluorescence spectrum due to the presence of skin chromophores, such as blood and melanin. The resulting fluorescence spectra were employed for the quantification of porphyrin concentration in a population of healthy subjects. The results show great variability on the concentration of these porphyrins and further studies are being conducted to correlate them with skin conditions such as inflammation and acne vulgaris.

  15. Background free imaging of upconversion nanoparticle distribution in human skin

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Anissimov, Yuri G.; Zhao, Jiangbo; Nechaev, Andrei V.; Nadort, Annemarie; Jin, Dayong; Prow, Tarl W.; Roberts, Michael S.; Zvyagin, Andrei V.

    2013-06-01

    Widespread applications of nanotechnology materials have raised safety concerns due to their possible penetration through skin and concomitant uptake in the organism. This calls for systematic study of nanoparticle transport kinetics in skin, where high-resolution optical imaging approaches are often preferred. We report on application of emerging luminescence nanomaterial, called upconversion nanoparticles (UCNPs), to optical imaging in skin that results in complete suppression of background due to the excitation light back-scattering and biological tissue autofluorescence. Freshly excised intact and microneedle-treated human skin samples were topically coated with oil formulation of UCNPs and optically imaged. In the first case, 8- and 32-nm UCNPs stayed at the topmost layer of the intact skin, stratum corneum. In the second case, 8-nm nanoparticles were found localized at indentations made by the microneedle spreading in dermis very slowly (estimated diffusion coefficient, Dnp=3-7×10-12 cm2.s-1). The maximum possible UCNP-imaging contrast was attained by suppressing the background level to that of the electronic noise, which was estimated to be superior in comparison with the existing optical labels.

  16. A new method for assessing the gloss of human skin.

    PubMed

    Lentner, A; Wienert, V

    1996-01-01

    A new method for an objective assessment of the gloss of human skin is presented. The reflectometric measuring set-up complies with DIN 67530. The principle of this new method is based on a contactless determination of the skin's reflection of light from a tungsten filament lamp, recorded at an angle of 60 degrees by a silicon photocell. In a comparative study with 30 test persons it was discovered that the forehead, with 2.70 standardised reflectometer units (RU; SD +/- 0.59 RU), displayed a significantly higher gloss than the lower arm (1.99 RU, SD 0.28 RU, p < 0.0001). In an investigation into the influence of four different cream bases on the skin gloss it could be determined that the value depends on the percentage of grease, the water concentration and the consistency of the respective base. The method presented permits a fast, contactless, randomly repeatable objective assessment of skin gloss. Since the acceptance of cosmetics and pharmaceutical products depends not least on their skin gloss effect, this method can provide valuable information when estimating the success of old and new products. PMID:8737915

  17. Solar UV radiation reduces the barrier function of human skin

    PubMed Central

    Biniek, Krysta; Levi, Kemal; Dauskardt, Reinhold H.

    2012-01-01

    The ubiquitous presence of solar UV radiation in human life is essential for vitamin D production but also leads to skin photoaging, damage, and malignancies. Photoaging and skin cancer have been extensively studied, but the effects of UV on the critical mechanical barrier function of the outermost layer of the epidermis, the stratum corneum (SC), are not understood. The SC is the first line of defense against environmental exposures like solar UV radiation, and its effects on UV targets within the SC and subsequent alterations in the mechanical properties and related barrier function are unclear. Alteration of the SC’s mechanical properties can lead to severe macroscopic skin damage such as chapping and cracking and associated inflammation, infection, scarring, and abnormal desquamation. Here, we show that UV exposure has dramatic effects on cell cohesion and mechanical integrity that are related to its effects on the SC’s intercellular components, including intercellular lipids and corneodesmosomes. We found that, although the keratin-controlled stiffness remained surprisingly constant with UV exposure, the intercellular strength, strain, and cohesion decreased markedly. We further show that solar UV radiation poses a double threat to skin by both increasing the biomechanical driving force for damage while simultaneously decreasing the skin’s natural ability to resist, compromising the critical barrier function of the skin. PMID:23027968

  18. Near infrared laser penetration and absorption in human skin

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-02-01

    For understanding the mechanisms of low level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. In this paper, we present a three dimensional, multi-layer Monte Carlo simulation tool for studying light penetration and absorption in human skin. The skin is modeled as a three-layer participating medium, namely epidermis, dermis, and subcutaneous, where its geometrical and optical properties are obtained from the literature. Both refraction and reflection are taken into account at the boundaries according to Snell's law and Fresnel relations. A forward Monte Carlo method was implemented and validated for accurately simulating light penetration and absorption in absorbing and anisotropically scattering media. Local profiles of light penetration and volumetric absorption densities were simulated for uniform as well as Gaussian profile beams with different spreads at 155 mW average power over the spectral range from 1000 nm to 1900 nm. The results show the effects of beam profiles and wavelength on the local fluence within each skin layer. Particularly, the results identify different wavelength bands for targeted deposition of power in different skin layers. Finally, we show that light penetration scales well with the transport optical thickness of skin. We expect that this tool along with the results presented will aid researchers resolve issues related to dose and targeted delivery of energy in tissues for LLLT.

  19. Peptide Regulation of Skin Fibroblast Functions during Their Aging In Vitro.

    PubMed

    Lin'kova, N S; Drobintseva, A O; Orlova, O A; Kuznetsova, E P; Polyakova, V O; Kvetnoy, I M; Khavinson, V Kh

    2016-05-01

    The effect peptides KE, KED, AED and AEDG on proliferation (Ki-67), regeneration and aging (CD98hc), apoptosis (caspase-3), and extracellular matrix remodeling (MMP-9) in skin fibroblasts during their aging in culture were studied by immunofluorescent confocal microscopy. All studied peptides inhibited MMP-9 synthesis that increases during aging of skin fibroblasts and enhanced the expression of Ki-67 and CD98hc that are less intensively synthesized during cell aging. Peptides AED and AEDG suppressed caspase-dependent apoptosis that increases during aging of cell cultures. PMID:27259496

  20. p53 Induces skin aging by depleting Blimp1+ sebaceous gland cells.

    PubMed

    Kim, J; Nakasaki, M; Todorova, D; Lake, B; Yuan, C-Y; Jamora, C; Xu, Y

    2014-03-27

    p53 is an important inducer of organismal aging. However, its roles in the aging of skin remain unclear. Here we show that mice with chronic activation of p53 develop an aging phenotype in the skin associated with a reduction of subcutaneous fat and loss of sebaceous gland (SG). The reduction in the fat layer may result from the decrease of mammalian TOR complex 1 (mTORC1) activity accompanied by elevated expression of energy expenditure genes, and possibly as compensatory effects, leading to the elevation of peroxisome proliferator-activated receptor (PPAR)γ, an inducer of sebocyte differentiation. In addition, Blimp1(+) sebocytes become depleted concomitantly with an increase in cellular senescence, which can be reversed by PPARγ antagonist (BADGE) treatment. Therefore, our results indicate that p53-mediated aging of the skin involves not only thinning through the loss of subdermal fat, but also xerosis or drying of the skin through declining sebaceous gland activity.

  1. In vitro osteogenesis from human skin-derived precursor cells.

    PubMed

    Buranasinsup, Shutipen; Sila-Asna, Monnipha; Bunyaratvej, Narong; Bunyaratvej, Ahnond

    2006-05-01

    Embryonic tissue and organ development are initiated from three embryonic germ layers: ectoderm (skin and neuron), mesoderm (blood, bone, muscle, cartilage and fat) and endoderm (respiratory and digestive tract). In former times, it was believed that cell types in each germ layer are specific and do not cross from one to another throughout life. A new finding is that one tissue lineage can differentiate across to another tissue lineage, and this is termed transdifferentiation. We were interested in studying the transdifferentiation of skin-derived precursor cells (ectoderm layer) to osteoblastic cells (mesoderm layer). Human skin-derived precursor cells (hSKP) were isolated and induced into an osteoblastic lineage using osteogenic induction medium (alpha-MEM plus 10% fetal bovine serum supplemented with ascorbic acid, beta-glycerophosphate and dexamethasone). The specific characteristics of osteoblastic cells, including the expression of enzyme alkaline phosphatase, the deposition of mineral and the expression of osterix, bone sialoprotein and osteocalcin, were detected only from the inductive group. The results in our study show that SKP from human skin are a practically available source for osteogenesis. The samples are easily obtainable for autologous use with a high expansion capacity.

  2. Noncontacting diffuse VIS-NIR spectroscopy of human skin for evaluation of skin type and time-dependent microcirculation

    NASA Astrophysics Data System (ADS)

    Schmidt, Wolf-Dieter; Fassler, Dieter; Zimmermann, Gabi; Liebold, Kristin; Wollina, Uwe

    2000-11-01

    Spectroscopic investigations of the VIS-NIR range allow the objective determination of pigmentation, blood microcirculation and water content of human skin. Non- contacting in vivo measurements of the human skin of 50 volunteers reflect the clinical skin type well. Our correlation analysis yields that the red/infrared spectral range can be used for a determination of skin type. The observed strong spectral variations within the same group of skin type are likely based on the high biological variability of human skin and subjective clinically observed skin type. Therefore it can be useful to measure the full spectral range and to calculate a non-observed skin score with multivariate spectral methods. By multivariate analysis a correct classification of remittance spectra can be obtained. Time- depending spectral variations of dermal microcirculation can be measured at defined locations of the body, for instance the dynamics of oxygenation or blood volume in the skin of the fingertip. The cardial, pulmonal and vasomotoric waves of the micro- and macrocirculation are clearly visible at different wavelengths. The spectroscopic informations are important as an objective measure for the skin type evaluation, the penetration behavior of pharmaca, laser surgery, and therapy.

  3. Local heating of human skin causes hyperemia without mediation by muscarinic cholinergic receptors or prostanoids.

    PubMed

    Golay, Sandrine; Haeberli, Christian; Delachaux, Anne; Liaudet, Lucas; Kucera, Paul; Waeber, Bernard; Feihl, François

    2004-11-01

    Local changes in surface temperature have a powerful influence on the perfusion of human skin. Heating increases local skin blood flow, but the mechanisms and mediators of this response (thermal hyperemia response) are incompletely elucidated. In the present study, we examined the possible dependence of the thermal hyperemia response on stimulation of muscarinic cholinergic receptors and on production of vasodilator prostanoids. In 13 male healthy subjects aged 20-30 yr, a temperature-controlled chamber was positioned on the volar face of one forearm and used to raise surface temperature from 34 to 41 degrees C. The time course of the resulting thermal hyperemia response was recorded with a laser-Doppler imager. In one experiment, each of eight subjects received an intravenous bolus of the antimuscarinic agent glycopyrrolate (4 microg/kg) on one visit and saline on the other. The thermal hyperemia response was determined within the hour after the injections. Glycopyrrolate effectively inhibited the skin vasodilation induced by iontophoresis of acetylcholine but did not influence the thermal hyperemia response. In a second experiment, conducted in five other subjects, 1 g of the cyclooxygenase inhibitor aspirin administered orally totally abolished the vasodilation induced in the skin by anodal current but also failed to modify the thermal hyperemia response. The present study excludes the stimulation of muscarinic receptors and the production of vasodilator prostaglandins as essential and nonredundant mechanisms for the vasodilation induced by local heating in human forearm skin. PMID:15247159

  4. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    PubMed

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  5. Mitochondrial DNA deletions serve as biomarkers of aging in the skin, but are typically absent in nonmelanoma skin cancers.

    PubMed

    Eshaghian, Alex; Vleugels, Ruth A; Canter, Jeffrey A; McDonald, Michel A; Stasko, Thomas; Sligh, James E

    2006-02-01

    The potential role of mitochondrial DNA (mtDNA) deletions in nonmelanoma skin cancer (NMSC) and in cutaneous photoaging was explored using a genetic approach. Tumors and photodamaged tumor-free "margin" skin were obtained from NMSC patients undergoing excision and the mtDNA from these specimens was screened for the presence of deletions using long extension PCR. mtDNA deletions were abundant in margin tissue specimens from older patients and their number correlated with the patient age. There was a statistically significant difference between the number of mtDNA deletions in tumors and margins. Fewer deletions were detected in the tumors than the margins and the tumors often had no deletions, implying a potential selection for full-length mtDNA or perhaps a protective role for mtDNA deletions in the process of tumorigenesis. The observed mtDNA deletions from skin were often unreported (19 of 21 deletions), but typically shared structural features with mtDNA deletions reported in other tissues. Some mtDNA deletions were detected from the skin of multiple individuals, including 3,715 and 6,278-base pair (bp) deletions, whose frequencies approached that of the previously well-characterized 4977-bp "common" deletion. These data support the use of mtDNA mutations as biomarkers of photoaging in the skin.

  6. Relationship between arsenic skin lesions and the age of natural menopause

    PubMed Central

    2014-01-01

    Background Chronic exposure to arsenic is associated with neoplastic, cardiovascular, endocrine, neuro-developmental disorders and can have an adverse effect on women’s reproductive health outcomes. This study examined the relationship between arsenic skin lesions (a hallmark sign of chronic arsenic poisoning) and age of natural menopause (final menopausal period) in populations with high levels of arsenic exposure in Bangladesh. Methods We compared menopausal age in two groups of women – with and without arsenic skin lesions; and presence of arsenic skin lesions was used as an indicator for chronic arsenic exposure. In a cross-sectional study, a total of 210 participants were randomly identified from two ongoing studies— participants with arsenic skin lesions were identified from an ongoing clinical trial and participants with no arsenic skin lesions were identified from an ongoing cohort study. Mean age of menopause between these two groups were calculated and compared. Multivariable linear regression was used to estimate the relationship between the status of the arsenic skin lesions and age of natural menopause in women. Results Women with arsenic skin lesions were 1.5 years younger (p <0.001) at the time of menopause compared to those without arsenic skin lesions. After adjusting with contraceptive use, body mass index, urinary arsenic level and family history of premature menopause, the difference between the groups’ age at menopause was 2.1 years earlier (p <0.001) for respondents with arsenic skin lesions. Conclusions The study showed a statistically significant association between chronic exposure to arsenic and age at menopause. Heavily exposed women experienced menopause two years earlier than those with lower or no exposure. PMID:24886424

  7. Evaluation of simultaneous permeation and metabolism of methyl nicotinate in human, snake, and shed snake skin.

    PubMed

    Ngawhirunpat, Tanasait; Opanasopit, Praneet; Rojanarata, Theerasak; Panomsuk, Suwannee; Chanchome, Lawan

    2008-01-01

    The transdermal permeation and metabolic characteristics of methyl nicotinate (MN) in stratum corneum and split-thickness human skin and three species of shed snake and snake skin (Elaphae obsoleta, Naja kaouthia, and Python molurus bivittatus) were evaluated. In vitro skin transport using excised skin and hydrolysis experiments using skin homogenate were carried out. The flux of MN, a metabolite, nicotinic acid (NA), and the total (MN+NA), as well as kinetic parameters (V(max) and K(m)) for hydrolysis of MN were determined and compared among various skin types. The total flux from MN-saturated solution through human skin was not significantly different from that through snake and shed snake skin of Elaphae obsoleta, Naja kaouthia but was significantly higher than that through snake and shed snake skin of Naja kaouthia (p < 0.05). A great difference in skin esterase activity was observed between human and snake in both snake skin and shed snake skin of all species. In all skins except the stratum corneum of human skin, NA flux increased with an increase in MN donor concentration and reached a plateau, suggesting that metabolic saturation was taking place in the skin. NA flux at the plateau and MN donor concentrations at which the NA flux reached a plateau also varied by species. These findings indicated that the discrepancy in transdermal profiles of MN among skins tested was predominantly due to the difference in the esterase activity in the skin.

  8. Decline of lymphatic vessel density and function in murine skin during aging.

    PubMed

    Karaman, Sinem; Buschle, Dorina; Luciani, Paola; Leroux, Jean-Christophe; Detmar, Michael; Proulx, Steven T

    2015-10-01

    Lymphatic vessels play important roles in the pathogenesis of many conditions that have an increased prevalence in the elderly population. However, the effects of the aging process on the lymphatic system are still relatively unknown. We have applied non-invasive imaging and whole-mount staining techniques to assess the lymphatic vessel function and morphology in three different age groups of mice: 2 months (young), 7 months (middle-aged), and 18 months (aged). We first developed and validated a new method to quantify lymphatic clearance from mouse ear skin, using a lymphatic-specific near-infrared tracer. Using this method, we found that there is a prominent decrease in lymphatic vessel function during aging since the lymphatic clearance was significantly delayed in aged mice. This loss of function correlated with a decreased lymphatic vessel density and a reduced lymphatic network complexity in the skin of aged mice as compared to younger controls. The blood vascular leakage in the skin was slightly increased in the aged mice, indicating that the decreased lymphatic function was not caused by a reduced capillary filtration in aged skin. The decreased function of lymphatic vessels with aging might have implications for the pathogenesis of a number of aging-related diseases.

  9. Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging.

    PubMed

    Breitenbach, Jenny S; Rinnerthaler, Mark; Trost, Andrea; Weber, Manuela; Klausegger, Alfred; Gruber, Christina; Bruckner, Daniela; Reitsamer, Herbert A; Bauer, Johann W; Breitenbach, Michael

    2015-06-01

    The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII,COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex- and age-matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls.

  10. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    SciTech Connect

    Darvin, M E; Richter, H; Zhu, Y J; Meinke, M C; Knorr, F; Lademann, J; Gonchukov, S A; Koenig, K

    2014-07-31

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)

  11. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    NASA Astrophysics Data System (ADS)

    Darvin, M. E.; Richter, H.; Zhu, Y. J.; Meinke, M. C.; Knorr, F.; Gonchukov, S. A.; Koenig, K.; Lademann, J.

    2014-07-01

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted.

  12. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts.

    PubMed

    Ryu, Jina; Park, Su-Jin; Kim, In-Hye; Choi, Youn Hee; Nam, Taek-Jeong

    2014-09-01

    The significant increase in life expectancy is closely related to the growing interest in the impact of aging on the function and appearance of the skin. Skin aging is influenced by several factors, and solar ultraviolet (UV) irradiation is considered one of the most important causes of skin photoaging. The aim of this study was to examine the anti-photoaging role of porphyra-334 from Porphyra (P.) yezoensis, a mycosporine-like amino acid (MAA), using high-performance liquid chromatography (HPLC), and electrospray ionization‑mass spectrometry (ESI-MS). In the present study, extracted UV‑absorbing compounds from P. yezoensis included palythine, asterina-330 and porphyra-334. Porphyra-334 was the most abundant MAA in P. yezoensis, and it was therefore used for conducting antiphotoaging experiments. The effect of porphyra-334 on the prevention of photoaging was investigated by measuring reactive oxygen species (ROS) production and matrix metalloproteinase (MMP) levels, as well as extracellular matrix (ECM) components and protein expression in UVA‑irradiated human skin fibroblasts. Porphyra-334 suppressed ROS production and the expression of MMPs following UVA irradiation, while increasing levels of ECM components, such as procollagen, type I collagen, elastin. These results suggest that porphyra-334 has various applications in cosmetics and toiletries because of its anti‑photoaging activities and may serve as a novel anti-aging agent.

  13. Two photon microscopy for studies of xenobiotics in human skin

    NASA Astrophysics Data System (ADS)

    Simonsson, Carl; Smedh, Maria; Jonson, Charlotte; Karlberg, Ann-Therese; Ericson, Marica B.

    2007-07-01

    For successful uptake and distribution of drugs from transdermal formulations, it is important to understand the skin barrier function. Innovative advances in modern microscopy have provided valuable tools to study the interaction between the skin and xenobiotics. Two-photon microscopy (TPM) allows non-invasive visualization of fluorescent compounds in the skin. The advantages of TPM over conventional confocal microscopy are better light penetration into highly scattering and absorbing tissue such as human skin, improved detection efficiency, limited out of focus photobleaching and reduced phototoxic effects. We present TPM as an alternative non-invasive in vitro method to study chemical penetration enhancement of fluorescent model drugs. The permeability of sulforhodamine B (SRB) through human epidermis was measured with vertical diffusion cells. The absorption was visualized using TPM after 24 h passive diffusion. We have evaluated variations in physicochemical parameters controlling dermal drug uptake induced by the penetration enhancer oleic acid according to methods previously described by Yu et al. Optical sectioning by TPM was compared with cryosectioning. Oleic acid significantly increased penetration of sulforhodamine. TPM images demonstrate a four-fold increase in the partition coefficient. In addition, a six-fold increase in the concentration gradient was found over stratum corneum. Better light penetration and detection efficiency increase maximum imaging depth in TPM compared to conventional confocal microscopy, however loss of signal due to scattering and absorption is still significant and will affect distribution profiles generated by optical sectioning. A true concentration profile cannot be established without better knowledge about signal losses in the skin.

  14. Biogeography and individuality shape function in the human skin metagenome

    PubMed Central

    Oh, Julia; Byrd, Allyson L.; Deming, Clay; Conlan, Sean; Kong, Heidi H.; Segre, Julia A.

    2014-01-01

    Summary The varied topography of human skin offers a unique opportunity to study how the body’s microenvironments influence the functional and taxonomic composition of microbial communities. Phylogenetic marker gene-based studies have identified many bacteria and fungi that colonize distinct skin niches. Here, metagenomic analyses of diverse body sites in healthy humans demonstrate that local biogeography and strong individuality define the skin microbiome. We developed a relational analysis of bacterial, fungal, and viral communities, which showed not only site-specificity but also individual signatures. We further identified strain-level variation of dominant species as heterogeneous and multiphyletic. Reference-free analyses captured the uncharacterized metagenome through the development of a multi-kingdom gene catalog, which was used to uncover genetic signatures of species lacking reference genomes. This work is foundational for human disease studies investigating inter-kingdom interactions, metabolic changes, and strain tracking and defines the dual influence of biogeography and individuality on microbial composition and function. PMID:25279917

  15. Development of an innervated model of human skin.

    PubMed

    Khammo, Nancy; Ogilvie, Jane; Clothier, Richard H

    2007-10-01

    Neuronal cell responses and interactions with the epithelial and fibroblastic cells of the skin are a key factor in the production in vivo of the irritation/inflammatory response. Currently, few in vitro models are available that contain dermal, epidermal and the relevant neuronal components. The primary objective of this study was to produce and maintain a 3-D in vitro model of human skin containing these elements. The relevant neuronal component was supplied by adding sensory neurons derived from the dorsal root ganglion (DRG). Since adult neuronal cells do not grow significantly in vivo or in vitro, and since it is very difficult to obtain such cells from humans, it was necessary to employ embryonic rat DRG cells. The ultimate purpose of this model is to improve prediction of the in vivo skin irritancy potential of chemicals and formulations, without the need to use animal models. In addition, this approach has also been applied to the in vitro human eye and bronchial 3-D models being developed in the FRAME Alternatives Laboratory.

  16. Ultrasonic Stimulation of Mouse Skin Reverses the Healing Delays in Diabetes and Aging by Activation of Rac1.

    PubMed

    Roper, James A; Williamson, Rosalind C; Bally, Blandine; Cowell, Christopher A M; Brooks, Rebecca; Stephens, Phil; Harrison, Andrew J; Bass, Mark D

    2015-11-01

    Chronic skin-healing defects are one of the leading challenges to lifelong well-being, affecting 2-5% of populations. Chronic wound formation is linked to age and diabetes and frequently leads to major limb amputation. Here we identify a strategy to reverse fibroblast senescence and improve healing rates. In healthy skin, fibronectin activates Rac1 in fibroblasts, causing migration into the wound bed, and driving wound contraction. We discover that mechanical stimulation of the skin with ultrasound can overturn healing defects by activating a calcium/CamKinaseII/Tiam1/Rac1 pathway that substitutes for fibronectin-dependent signaling and promotes fibroblast migration. Treatment of diabetic and aged mice recruits fibroblasts to the wound bed and reduces healing times by 30%, restoring healing rates to those observed in young, healthy animals. Ultrasound treatment is equally effective in rescuing the healing defects of animals lacking fibronectin receptors, and can be blocked by pharmacological inhibition of the CamKinaseII pathway. Finally, we discover that the migration defects of fibroblasts from human venous leg ulcer patients can be reversed by ultrasound, demonstrating that the approach is applicable to human chronic samples. By demonstrating that this alternative Rac1 pathway can substitute for that normally operating in the skin, we identify future opportunities for management of chronic wounds.

  17. Ultrasonic stimulation of mouse skin reverses the healing delays in diabetes and aging by activation of Rac1

    PubMed Central

    Roper, James A; Williamson, Rosalind C; Bally, Blandine; Cowell, Christopher AM; Brooks, Rebecca; Stephens, Phil; Harrison, Andrew J; Bass, Mark D

    2015-01-01

    Chronic skin healing defects are one of the leading challenges to lifelong wellbeing, affecting 2-5% of populations. Chronic wound formation is linked to age and diabetes and frequently leads to major limb amputation. Here we identify a strategy to reverse fibroblast senescence and improve healing rates. In healthy skin, fibronectin activates Rac1 in fibroblasts, causing migration into the wound bed and driving wound contraction. We discover that mechanical stimulation of skin with ultrasound can overturn healing defects by activating a calcium/CamKinaseII/Tiam1/Rac1 pathway that substitutes for fibronectin-dependent signaling and promotes fibroblast migration. Treatment of diabetic and aged mice recruits fibroblasts to the wound bed and reduces healing times by 30%, restoring healing rates to those observed in young, healthy animals. Ultrasound treatment is equally effective in rescuing the healing defects of animals lacking fibronectin receptors, and can be blocked by pharmacological inhibition of the CamKinaseII pathway. Finally, we discover that the migration defects of fibroblasts from human venous leg ulcer patients can be reversed by ultrasound, demonstrating that the approach is applicable to human chronic samples. By demonstrating that this alternative Rac1 pathway can substitute for that normally operating in skin, we identify future opportunities for management of chronic wounds. PMID:26079528

  18. Functional analysis of keratinocytes in skin color using a human skin substitute model composed of cells derived from different skin pigmentation types.

    PubMed

    Yoshida, Yasuko; Hachiya, Akira; Sriwiriyanont, Penkanok; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori; Visscher, Marty O; Boissy, Raymond E

    2007-09-01

    Skin color is one of the most distinct features in the human race. To assess the mechanisms of skin color variation, human skin substitutes (HSS) were constructed by grafting mixtures of cultured keratinocytes and melanocytes from a combination of donor skin types, together with light skin derived fibroblasts, into chambers inserted onto the back skin of severe combined immunodeficient (SCID) mice. The resulting complexion coloration of the HSS was relatively darker and lighter when dark and light skin derived keratinocytes, respectively, were combined with melanocytes derived from either light or dark skin. The melanin content in the epidermis and the maturation stage of melanosomes in basal keratinocytes were significantly increased in the HSS composed of dark compared to light skin derived keratinocytes. In addition, the ratio of individual/clustered melanosomes in recipient keratinocytes was increased in the former as opposed to the latter HSS. The genetic expression of endothelin-1, proopiomelanocortin, microphthalmia-associated transcription factor, tyrosinase, GP100, and MART1 were increased in HSS composed of dark vs. light skin derived keratinocytes. These data suggest that our HSS is a promising melanogenic model that demonstrates the role of the keratinocyte in regulating in part both melanogenesis and distribution of transferred melanosomes.

  19. Differences in tooth shade value according to age, gender and skin color: A pilot study

    PubMed Central

    Veeraganta, Sumanth K.; Savadi, Ravindra C.; Baroudi, Kusai; Nassani, Mohammad Z.

    2015-01-01

    Purpose of the Study: The purpose was to investigate the differences in tooth shade value according to age, gender and skin color among a sample of the local population in Bengaluru, India. Methodology: The study comprised 100 subjects belonging to both gender between the age groups of 16 years to 55 years. Tooth shade values of permanent maxillary left or right central incisors were recorded using the Vitapan 3D-Master shade guide. Skin color was matched using the Radiance compact makeup shades as a guide. Results: Chi-square statistical test demonstrated that younger subjects have lighter tooth shade values. No statistically significant differences were recorded in tooth shade value according to gender or skin color. Conclusion: Within the limitations of the current study, it can be concluded that tooth shade value is significantly influenced by age. Gender and skin color appear not to have a significant relation to tooth shade value. PMID:26929500

  20. Anticedants and natural prevention of environmental toxicants induced accelerated aging of skin.

    PubMed

    Tanuja Yadav; Mishra, Shivangi; Das, Shefali; Aggarwal, Shikha; Rani, Vibha

    2015-01-01

    Skin is frequently exposed to a variety of environmental and chemical agents that accelerate ageing. External stress such as UV radiations (UVR) and environmental pollutants majorly deteriorate the skin morphology, by activating certain intrinsic factors such as Reactive Oxygen Species (ROS) which trigger the activation of Matrix Metalloproteinases (MMPs) and inflammatory responses hence damaging the extracellular matrix (ECM) components. To counter this, an exogenous supply of anti-oxidants, is required since the endogenous anti-oxidant system cannot alone suffice the need. Bio-prospecting of natural resources for anti-oxidants has hence been intensified. Immense research is being carried out to identify potential plants with potent anti-oxidant activity against skin ageing. This review summarizes the major factors responsible for premature skin ageing and the plants being targeted to lessen the impact of those. PMID:25555260

  1. Anticedants and natural prevention of environmental toxicants induced accelerated aging of skin.

    PubMed

    Tanuja Yadav; Mishra, Shivangi; Das, Shefali; Aggarwal, Shikha; Rani, Vibha

    2015-01-01

    Skin is frequently exposed to a variety of environmental and chemical agents that accelerate ageing. External stress such as UV radiations (UVR) and environmental pollutants majorly deteriorate the skin morphology, by activating certain intrinsic factors such as Reactive Oxygen Species (ROS) which trigger the activation of Matrix Metalloproteinases (MMPs) and inflammatory responses hence damaging the extracellular matrix (ECM) components. To counter this, an exogenous supply of anti-oxidants, is required since the endogenous anti-oxidant system cannot alone suffice the need. Bio-prospecting of natural resources for anti-oxidants has hence been intensified. Immense research is being carried out to identify potential plants with potent anti-oxidant activity against skin ageing. This review summarizes the major factors responsible for premature skin ageing and the plants being targeted to lessen the impact of those.

  2. The senile epidermis: environmental influences on skin ageing and cutaneous carcinogenesis.

    PubMed

    Rogers, G S; Gilchrest, B A

    1990-04-01

    There is a wealth of new knowledge regarding mechanisms of carcinogenesis and their interaction with senescence and environmental insults, particularly on the effects of UV irradiation on the skin. Innovations and advances in tissue culture techniques now permit in vitro studies of keratinocytes and other benign and malignant skin-derived cells. The ageing processes and cutaneous neoplasia, therefore, can now be studied at the cellular level. New insights regarding the interrelationship of ageing, environment and cutaneous neoplasia are close at hand. Depletion in the number of Langerhans cells and suppression of their function in ageing and UV-exposed skin may allow tumour cells to overcome the host's defence system. The potential increase in UV irradiation due to depletion of the ozone layer may increase the incidence of skin tumours. Carcinogenesis involves three distinct steps: initiation, promotion, and malignant conversion. The mechanism has been studied in mice, where it is suggested the c-ras oncogene may play an important role.

  3. Comparison of cutaneous bioavailability of cosmetic preparations containing caffeine or alpha-tocopherol applied on human skin models or human skin ex vivo at finite doses.

    PubMed

    Dreher, Frank; Fouchard, Frédéric; Patouillet, Claire; Andrian, Michèle; Simonnet, Jean-Thierry; Benech-Kieffer, Florence

    2002-01-01

    The use of human skin models for performing cutaneous bioavailability studies has been little investigated. For instance, only few studies have been reported on human skin models dealing with vehicle effects on percutaneous penetration. The present study aimed at evaluating the influence on caffeine's and alpha-tocopherol's cutaneous bioavailability of cosmetic vehicles such as a water-in-oil emulsion, an oil-in-water emulsion, a liposome dispersion and a hydrogel applied at finite dose using the reconstructed human skin models EpiDerm and Episkin. The results were compared with those obtained in human skin ex vivo using similar experimental conditions. It was demonstrated that the rank order of solute permeability could be correctly predicted when the preparation was applied at a finite dose in human skin models, at least when solutes with far different physicochemical properties such as caffeine and alpha-tocopherol were used. If only slight effects of cosmetic vehicle on skin bioavailability were observed in human skin ex vivo, they were less predictable using skin models. Especially, alcohol-containing vehicles seemed to behave differently in EpiDerm as well as in Episkin than on human skin ex vivo. Stratum corneum intercellular lipid composition and organization of human skin models differ to some extent from that of human stratum corneum ex vivo, which contributes to less pronounced barrier properties, together with the increased hydration of the outermost stratum corneum layers of the models. These features, as well as still unknown factors, may explain the differences observed in vehicle effects in human skin ex vivo versus human skin models.

  4. In-vivo differentiation of photo-aged epidermis skin by texture-based classification

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoman; Weng, Cuncheng; Yu, Biying; Li, Hui

    2014-11-01

    Two sets of in vivo female cheek skin epidermis images were analyzed through gray level co-occurrence matrix (GLCM) and fast fourier transform (FFT). One set was derived from women in their 20s and the other from women more than 60 years of age. GLCM was used to evaluate the texture features of the regions of interest within the cheek epidermis, and texture classification was subsequently performed. During texture classification, 25 images (320×240 pixels) in each age set were randomly selected. Three texture features, i.e., energy, contrast, and correlation, were obtained from the skin images and analyzed at four orientations (0°, 45°,90°, and 135°), accompanied by different distances between two pixels. The textures of the different aging skins were characterized by FFT, which provides the dermatoglyph orientation index. The differences in the textures between the young and old skin samples can be well described by the FFT dermatoglyph orientation index. The texture features varied among the different aging skins, which provide a versatile platform for differentiating the statuses of aging skins.

  5. Distribution of bioactive lipid mediators in human skin.

    PubMed

    Kendall, Alexandra C; Pilkington, Suzanne M; Massey, Karen A; Sassano, Gary; Rhodes, Lesley E; Nicolaou, Anna

    2015-06-01

    The skin produces bioactive lipids that participate in physiological and pathological states, including homeostasis, induction, propagation, and resolution of inflammation. However, comprehension of the cutaneous lipid complement, and contribution to differing roles of the epidermal and dermal compartments, remains incomplete. We assessed the profiles of eicosanoids, endocannabinoids, N-acyl ethanolamides, and sphingolipids, in human dermis, epidermis, and suction blister fluid. We identified 18 prostanoids, 12 hydroxy-fatty acids, 9 endocannabinoids and N-acyl ethanolamides, and 21 non-hydroxylated ceramides and sphingoid bases, several demonstrating significantly different expression in the tissues assayed. The array of dermal and epidermal fatty acids was reflected in the lipid mediators produced, whereas similarities between lipid profiles in blister fluid and epidermis indicated a primarily epidermal origin of suction blister fluid. Supplementation with omega-3 fatty acids ex vivo showed that their action is mediated through perturbation of existing species and formation of other anti-inflammatory lipids. These findings demonstrate the diversity of lipid mediators involved in maintaining tissue homeostasis in resting skin and hint at their contribution to signaling, cross-support, and functions of different skin compartments. Profiling lipid mediators in biopsies and suction blister fluid can support studies investigating cutaneous inflammatory responses, dietary manipulation, and skin diseases lacking biomarkers and therapeutic targets.

  6. Dynamic viscoelastic models of human skin using optical elastography

    PubMed Central

    Kearney, Steven P.; Khan, Altaf; Dai, Zoujun; Royston, Thomas J.

    2015-01-01

    A novel technique for measuring in vivo human skin viscoelastic properties using optical elastography has been developed. The technique uses geometrically focused surface (GFS) waves that allow for wide bandwidth measurements of the wave field. An analytical solution for the case of a radiating annular disk surface source was fit to experimentally measured GFS waves, enabling an estimate of the frequency-dependent surface wavenumber, which can then be related to the dynamic shear modulus. Several viscoelastic models were then fit to the dynamic shear modulus dispersion curve. Viscoelastic models were evaluated based on their overall quality of fit and variability amongst healthy volunteers. An Ecoflex phantom was used to validate the procedure and results by comparison to similar studies using the same type of phantom. For skin results, it was found that the “α” parameters from the fractional models had the least variability, with coefficients of variability of 0.15, and 0.16. The best fitting models were the standard linear solid, and the fractional Voigt, with a mean fit correlation coefficient, R2, of 0.93, 0.89, respectively. This study has demonstrated the efficacy of this new method, and with larger studies the viscoelastic skin models could be used to identify various skin diseases and their response to treatment. PMID:26305137

  7. Dynamic viscoelastic models of human skin using optical elastography.

    PubMed

    Kearney, Steven P; Khan, Altaf; Dai, Zoujun; Royston, Thomas J

    2015-09-01

    A novel technique for measuring in vivo human skin viscoelastic properties using optical elastography has been developed. The technique uses geometrically focused surface (GFS) waves that allow for wide bandwidth measurements of the wave field. An analytical solution for the case of a radiating annular disk surface source was fit to experimentally measured GFS waves, enabling an estimate of the frequency-dependent surface wavenumber, which can then be related to the dynamic shear modulus. Several viscoelastic models were then fit to the dynamic shear modulus dispersion curve. Viscoelastic models were evaluated based on their overall quality of fit and variability amongst healthy volunteers. An Ecoflex phantom was used to validate the procedure and results by comparison to similar studies using the same type of phantom. For skin results, it was found that the 'α' parameters from the fractional models had the least variability, with coefficients of variability of 0.15, and 0.16. The best fitting models were the standard linear solid, and the fractional Voigt, with a mean fit correlation coefficient, R(2), of 0.93, 0.89, respectively. This study has demonstrated the efficacy of this new method, and with larger studies the viscoelastic skin models could be used to identify various skin diseases and their response to treatment. PMID:26305137

  8. Modeling and analysis of cosmetic treatment effects on human skin

    NASA Astrophysics Data System (ADS)

    Lunderstaedt, Reinhart A.; Hopermann, Hermann; Hillemann, Thomas

    2000-10-01

    In view of treatment effects of cosmetics, quality management becomes more and more important. Due to the efficiency reasons it is desirable to quantify these effects and predict them as a function of time. For this, a mathematical model of the skin's surface (epidermis) is needed. Such a model cannot be worked out purely analytically. It can only be derived with the help of measurement data. The signals of interest as output of different measurement devices consist of two parts: noise of high (spatial) frequencies (stochastic signal) and periodic functions (deterministic signal) of low (spatial) frequencies. Both parts can be separated by correlation analysis. The paper introduces in addition to the Fourier Transform (FT) with the Wavelet Transform (WT), a brand new, highly sophisticated method with excellent properties for both modeling the skin's surface as well as evaluating treatment effects. Its main physical advantage is (in comparison to the FT) that local irregularities in the measurement signal (e.g. by scars) remain at their place and are not represented as mean square values as it is the case when applying the FT. The method has just now been installed in industry and will there be used in connection with a new in vivo measurement device for quality control of cosmetic products. As texture parameter for an integral description of the human skin the fractal dimension D is used which is appropriate for classification of different skin regions and treatment effects as well.

  9. [Aging of the human testis].

    PubMed

    Sibert, Louis; Lacarrière, Emeric; Safsaf, Athmane; Rives, Nathalie

    2014-02-01

    The morphological and histological changes related to testicular aging are: volume decrease, arteriolar sclerosis, degeneration of Leydig cells and Sertoli, depletion of germ cells and thickening of the tunica albuginea testis. The participation in testicular androgen decline in aging is related to the decrease in the number of Leydig cells associated with alterations in the functioning of the hypothalamic-pituitary axis Sperm volume, concentration and total number, motility and morphology of sperm decrease with aging male. The interindividual variability of sperm parameters, the variability of methodologies for data collection and selection of patients must be careful in interpreting the published results. Overall, the quality of sperm decreases progressively with age, without any age limit that can be individualized. Alterations of spermatogenesis do not seem significantly compromising fertility in the elderly. The clinical impact of testicular aging implies androgen production decrease and diseases associated with aging.

  10. Lasers and cosmetic dermatologic surgery for aging skin.

    PubMed

    Rohrer, T E

    2001-11-01

    Many topical agents and physical modalities have been used throughout the years to give the face a more youthful appearance. The goal has always been to effectively and consistently rejuvenate the face while minimizing the time of recovery and risk for complications. Because each person is unique, there is no one modality that is best for everyone. This article reviews some of the options available for treating photoaged skin in 2001. Various lasers (e.g., vascular lesion, pigmented lesion, hair removal, and resurfacing), botulinum A toxin, chemical peels, and various dermal and subcutaneous filler substances all are discussed.

  11. Skin care in the aging female: myths and truths

    PubMed Central

    Neill, Ushma S.

    2012-01-01

    I recently had the opportunity to visit a very relaxing and beautiful day spa during the middle-of-the-day break from the sessions at a Keystone meeting. I was having a very tranquil and restorative day, when I went in for my final treatment — a facial. The very chipper and cheerful esthetician began examining my skin and applying various creams, when I then heard her say something that nearly ruined my experience: she claimed that the topical treatment she was about to apply would, in her words, “cleanse my liver.” PMID:22293186

  12. Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging

    PubMed Central

    Trost, Andrea; Weber, Manuela; Klausegger, Alfred; Gruber, Christina; Bruckner, Daniela; Reitsamer, Herbert A.; Bauer, Johann W.; Breitenbach, Michael

    2015-01-01

    The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII, COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex‐ and age‐matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls. PMID:26143532

  13. Measuring hemoglobin amount and oxygen saturation of skin with advancing age

    NASA Astrophysics Data System (ADS)

    Watanabe, Shumpei; Yamamoto, Satoshi; Yamauchi, Midori; Tsumura, Norimichi; Ogawa-Ochiai, Keiko; Akiba, Tetsuo

    2012-03-01

    We measured the oxygen saturation of skin at various ages using our previously proposed method that can rapidly simulate skin spectral reflectance with high accuracy. Oxygen saturation is commonly measured by a pulse oximeter to evaluate oxygen delivery for monitoring the functions of heart and lungs at a specific time. On the other hand, oxygen saturation of skin is expected to assess peripheral conditions. Our previously proposed method, the optical path-length matrix method (OPLM), is based on a Monte Carlo for multi-layered media (MCML), but can simulate skin spectral reflectance 27,000 times faster than MCML. In this study, we implemented an iterative simulation of OPLM with a nonlinear optimization technique such that this method can also be used for estimating hemoglobin concentration and oxygen saturation from the measured skin spectral reflectance. In the experiments, the skin reflectance spectra of 72 outpatients aged between 20 and 86 years were measured by a spectrophotometer. Three points were measured for each subject: the forearm, the thenar eminence, and the intermediate phalanx. The result showed that the oxygen saturation of skin remained constant at each point as the age varied.

  14. In vitro model adapted to the study of skin ageing induced by air pollution.

    PubMed

    Lecas, Sarah; Boursier, Elsa; Fitoussi, Richard; Vié, Katell; Momas, Isabelle; Seta, Nathalie; Achard, Sophie

    2016-09-30

    More than a barrier against environmental agents, skin reflects individual health and is a visible sign of ageing with the progressive loss of skin integrity. In order to evaluate the consequences of an environmental complex mixture, with tobacco smoke (TS) as model, on cellular and morphological changes, a 3D skin model was used. Morphologically, tissue integrity was intact after one TS-exposure while the superficial layers were drastically reduced after two TS-exposures. However, TS modified epidermal organisation at the molecular level after just one exposure. A decrease in loricrin protein staining was showed in the epidermis, while production of inflammatory cytokines (IL-8, IL-1α, IL-18) and metalloproteinase (MMP-1, MMP-3) were stimulated. Oxidative stress was also illustrated with an increase in 4-HNE protein staining. Moreover, terminal differentiation, cell-cell junction and anchorage gene expression was down-regulated in our model after one TS-exposure. In conclusion, tobacco smoke impacted the fundamental functions of skin, namely tissue anchorage, cornification and skin desquamation. Oxidative stress resulted in skin ageing. The tissue was even reactive with the inflammatory pathways, after one TS-exposure. The 3D-RHE model is appropriate for evaluating the impact of environmental pollutants on skin ageing. PMID:27480279

  15. In vitro model adapted to the study of skin ageing induced by air pollution.

    PubMed

    Lecas, Sarah; Boursier, Elsa; Fitoussi, Richard; Vié, Katell; Momas, Isabelle; Seta, Nathalie; Achard, Sophie

    2016-09-30

    More than a barrier against environmental agents, skin reflects individual health and is a visible sign of ageing with the progressive loss of skin integrity. In order to evaluate the consequences of an environmental complex mixture, with tobacco smoke (TS) as model, on cellular and morphological changes, a 3D skin model was used. Morphologically, tissue integrity was intact after one TS-exposure while the superficial layers were drastically reduced after two TS-exposures. However, TS modified epidermal organisation at the molecular level after just one exposure. A decrease in loricrin protein staining was showed in the epidermis, while production of inflammatory cytokines (IL-8, IL-1α, IL-18) and metalloproteinase (MMP-1, MMP-3) were stimulated. Oxidative stress was also illustrated with an increase in 4-HNE protein staining. Moreover, terminal differentiation, cell-cell junction and anchorage gene expression was down-regulated in our model after one TS-exposure. In conclusion, tobacco smoke impacted the fundamental functions of skin, namely tissue anchorage, cornification and skin desquamation. Oxidative stress resulted in skin ageing. The tissue was even reactive with the inflammatory pathways, after one TS-exposure. The 3D-RHE model is appropriate for evaluating the impact of environmental pollutants on skin ageing.

  16. Athletic equipment microbiota are shaped by interactions with human skin

    DOE PAGESBeta

    Wood, Mariah; Gibbons, Sean M.; Lax, Simon; Eshoo-Anton, Tifani W.; Owens, Sarah M.; Kennedy, Suzanne; Gilbert, Jack A.; Hampton-Marcell, Jarrad T.

    2015-06-19

    Background: Americans spend the vast majority of their lives in built environments. Even traditionally outdoor pursuits, such as exercising, are often now performed indoors. Bacteria that colonize these indoor ecosystems are primarily derived from the human microbiome. The modes of human interaction with indoor surfaces and the physical conditions associated with each surface type determine the steady-state ecology of the microbial community. Results: Bacterial assemblages associated with different surfaces in three athletic facilities, including floors, mats, benches, free weights, and elliptical handles, were sampled every other hour (8 am to 6 pm) for 2 days. Surface and equipment type hadmore » a stronger influence on bacterial community composition than the facility in which they were housed. Surfaces that were primarily in contact with human skin exhibited highly dynamic bacterial community composition and non-random co-occurrence patterns, suggesting that different host microbiomes—shaped by selective forces—were being deposited on these surfaces through time. Bacterial assemblages found on the floors and mats changed less over time, and species co-occurrence patterns appeared random, suggesting more neutral community assembly. Conclusions: These longitudinal patterns highlight the dramatic turnover of microbial communities on surfaces in regular contact with human skin. By uncovering these longitudinal patterns, this study promotes a better understanding of microbe-human interactions within the built environment.« less

  17. Athletic equipment microbiota are shaped by interactions with human skin

    SciTech Connect

    Wood, Mariah; Gibbons, Sean M.; Lax, Simon; Eshoo-Anton, Tifani W.; Owens, Sarah M.; Kennedy, Suzanne; Gilbert, Jack A.; Hampton-Marcell, Jarrad T.

    2015-06-19

    Background: Americans spend the vast majority of their lives in built environments. Even traditionally outdoor pursuits, such as exercising, are often now performed indoors. Bacteria that colonize these indoor ecosystems are primarily derived from the human microbiome. The modes of human interaction with indoor surfaces and the physical conditions associated with each surface type determine the steady-state ecology of the microbial community. Results: Bacterial assemblages associated with different surfaces in three athletic facilities, including floors, mats, benches, free weights, and elliptical handles, were sampled every other hour (8 am to 6 pm) for 2 days. Surface and equipment type had a stronger influence on bacterial community composition than the facility in which they were housed. Surfaces that were primarily in contact with human skin exhibited highly dynamic bacterial community composition and non-random co-occurrence patterns, suggesting that different host microbiomes—shaped by selective forces—were being deposited on these surfaces through time. Bacterial assemblages found on the floors and mats changed less over time, and species co-occurrence patterns appeared random, suggesting more neutral community assembly. Conclusions: These longitudinal patterns highlight the dramatic turnover of microbial communities on surfaces in regular contact with human skin. By uncovering these longitudinal patterns, this study promotes a better understanding of microbe-human interactions within the built environment.

  18. Middle age has a significant impact on gene expression during skin wound healing in male mice.

    PubMed

    Yanai, Hagai; Lumenta, David Benjamin; Vierlinger, Klemens; Hofner, Manuela; Kitzinger, Hugo-Benito; Kamolz, Lars-Peter; Nöhammer, Christa; Chilosi, Marco; Fraifeld, Vadim E

    2016-08-01

    The vast majority of research on the impact of age on skin wound healing (WH) compares old animals to young ones. The middle age is often ignored in biogerontological research despite the fact that many functions that decline in an age-dependent manner have starting points in mid-life. With this in mind, we examined gene expression patterns during skin WH in late middle-aged versus young adult male mice, using the head and back punch models. The rationale behind this study was that the impact of age would first be detectable at the transcriptional level. We pinpointed several pathways which were over-activated in the middle-aged mice, both in the intact skin and during WH. Among them were various metabolic, immune-inflammatory and growth-promoting pathways. These transcriptional changes were much more pronounced in the head than in the back. In summary, the middle age has a significant impact on gene expression in intact and healing skin. It seems that the head punch model is more sensitive to the effect of age than the back model, and we suggest that it should be more widely applied in aging research on wound healing.

  19. Skin aging modulates percutaneous drug absorption: the impact of ultraviolet irradiation and ovariectomy.

    PubMed

    Hung, Chi-Feng; Chen, Wei-Yu; Aljuffali, Ibrahim A; Lin, Yin-Ku; Shih, Hui-Chi; Fang, Jia-You

    2015-01-01

    Ultraviolet (UV) exposure and menopause are known as the inducers of damage to the skin structure. The combination of these two factors accelerates the skin aging process. In this study, we aimed to evaluate the influence of UV and ovariectomy (OVX) on the permeation of drugs through the skin. The role of tight junctions (TJs) and adherens junctions (AJs) in the cutaneous absorption of extremely lipophilic permeants and macromolecules was explored. The OVX nude mouse underwent bilateral ovary removal. Both UVA and UVB were employed to irradiate the skin. The physiological and biochemical changes of the skin structure were examined with focus on transepidermal water loss (TEWL), skin color, immunohistochemistry, and mRNA levels of proteins. UVB and OVX increased TEWL, resulting in stratum corneum (SC) integrity disruption and dehydration. A hyperproliferative epidermis was produced by UVB. UVA caused a pale skin color tone due to keratinocyte apoptosis in the epidermis. E-cadherin and β-catenin showed a significant loss by both UVA and UVB. OVX downregulated the expression of filaggrin and involucrin. A further reduction was observed when UV and OVX were combined. The in vitro cutaneous absorption demonstrated that UV increased the skin permeation of tretinoin by about twofold. However, skin accumulation and flux of estradiol were not modified by photoaging. OVX basically revealed a negligible effect on altering the permeation of small permeants. OVX increased tretinoin uptake by the appendages from 1.36 to 3.52 μg/cm(2). A synergistic effect on tretinoin follicular uptake enhancement was observed for combined UV and OVX. However, the intervention of OVX to photoaged skin resulted in less macromolecule (dextran, molecular weight = 4 kDa) accumulation in the skin reservoir because of retarded partitioning into dry skin. The in vivo percutaneous absorption of lipophilic dye examined by confocal microscopy had indicated that the SC was still important to

  20. Non contact method for in vivo assessment of skin mechanical properties for assessing effect of ageing.

    PubMed

    Boyer, G; Pailler Mattei, C; Molimard, J; Pericoi, M; Laquieze, S; Zahouani, H

    2012-03-01

    The assessment of human tissue properties by objective and quantitative devices is very important to improve the understanding of its mechanical behaviour. The aim of this paper is to present a non contact method to measure the mechanical properties of human skin in vivo. A complete non contact device using an air flow system has been developed. Validation and assessment of the method have been performed on inert visco-elastic material. An in vivo study on the forearm of two groups of healthy women aged of 23.2±1.6 and 60.4±2.4 has been performed. Main parameters assessed are presented and a first interpretation to evaluate the reduced Young's modulus is proposed. Significant differences between the main parameters of the curve are shown with ageing. As tests were performed with different loads, the influence of the stress is also observed. We found a reduced Young's modulus with an air flow force of 10 mN of 14.38±3.61 kPa for the youngest group and 6.20±1.45 kPa for the oldest group. These values agree with other studies using classical or dynamic indentation. Non contact test using the developed device gives convincing results.

  1. Protein oxidative damage and heme oxygenase in sunlight-exposed human skin: roles of MAPK responses to oxidative stress.

    PubMed

    Akasaka, Emiko; Takekoshi, Susumu; Horikoshi, Yosuke; Toriumi, Kentarou; Ikoma, Norihiro; Mabuchi, Tomotaka; Tamiya, Shiho; Matsuyama, Takashi; Ozawa, Akira

    2010-12-20

    Oxidative stress derived from ultraviolet (UV) light in sunlight induces different hazardous effects in the skin, including sunburn, photo-aging and DNA mutagenesis. In this study, the protein-bound lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8OHdG) were investigated in chronically sun-exposed and sun-protected human skins using immunohistochemistry. The levels of antioxidative enzymes, such as heme oxygenase 1 and 2, Cu/Zn-SOD, Mn-SOD and catalase, were also examined. Oxidative stress is also implicated in the activation of signal transduction pathways, such as mitogen-activated protein kinase (MAPK). Therefore, the expression and distribution of phosphorylated p38 MAPK, phosphorylated Jun N-terminal kinase (JNK) and phosphorylated extracellular signal-regulated kinase (ERK) were observed. Skin specimens were obtained from the surgical margins. Chronically sunlight-exposed skin samples were taken from the ante-auricular (n = 10) and sunlight-protected skin samples were taken from the post-auricular (n = 10). HNE was increased in the chronically sunlight-exposed skin but not in the sunlight-protected skin. The expression of heme oxygenase-2 was markedly increased in the sunlight-exposed skin compared with the sun-protected skin. In contrast, the intensity of immunostaining of Cu/Zn-SOD, Mn-SOD and catalase was not different between the two areas. Phosphorylated p38 MAPK and phosphorylated JNK accumulated in the ante-auricular dermis and epidermis, respectively. These data show that particular anti-oxidative enzymes function as protective factors in chronically sunlight-exposed human skin. Taken together, our results suggest (1) antioxidative effects of heme oxygenase-2 in chronically sunlight-exposed human skin, and that (2) activation of p38 MAPK may be responsible for oxidative stress.

  2. Contribution of human skin topography to the characterization of dynamic skin tension during senescence: morpho-mechanical approach

    NASA Astrophysics Data System (ADS)

    Zahouani, H.; Djaghloul, M.; Vargiolu, R.; Mezghani, S.; Mansori, M. E. L.

    2014-03-01

    The structuring of the dermis with a network of collagen and elastic fibres gives a three-dimensional structure to the skin network with directions perpendicular and parallel to the skin surface. This three-dimensional morphology prints on the surface of the stratum corneum a three dimensional network of lines which express the mechanical tension of the skin at rest. To evaluate the changes of skin morphology, we used a three-dimensional confocal microscopy and characterization of skin imaging of volar forearm microrelief. We have accurately characterize the role of skin line network during chronological aging with the identification of depth scales on the network of lines (z <= 60μm) and the network of lines covering Langer's lines (z > 60 microns). During aging has been highlighted lower rows for elastic fibres, the decrease weakened the tension and results in enlargement of the plates of the microrelief, which gives us a geometric pertinent indicator to quantify the loss of skin tension and assess the stage of aging. The study of 120 Caucasian women shows that ageing in the volar forearm zone results in changes in the morphology of the line network organisation. The decrease in secondary lines (z <= 60 μm) is counterbalanced by an increase in the depth of the primary lines (z > 60 μm) and an accentuation of the anisotropy index.

  3. Hyperspectral imaging for detection of cholesterol in human skin

    NASA Astrophysics Data System (ADS)

    Milanič, Matija; Bjorgan, Asgeir; Larsson, Marcus; Marraccini, Paolo; Strömberg, Tomas; Randeberg, Lise L.

    2015-03-01

    Hypercholesterolemia is characterized by high levels of cholesterol in the blood and is associated with an increased risk of atherosclerosis and coronary heart disease. Early detection of hypercholesterolemia is necessary to prevent onset and progress of cardiovascular disease. Optical imaging techniques might have a potential for early diagnosis and monitoring of hypercholesterolemia. In this study, hyperspectral imaging was investigated for this application. The main aim of the study was to identify spectral and spatial characteristics that can aid identification of hypercholesterolemia in facial skin. The first part of the study involved a numerical simulation of human skin affected by hypercholesterolemia. A literature survey was performed to identify characteristic morphological and physiological parameters. Realistic models were prepared and Monte Carlo simulations were performed to obtain hyperspectral images. Based on the simulations optimal wavelength regions for differentiation between normal and cholesterol rich skin were identified. Minimum Noise Fraction transformation (MNF) was used for analysis. In the second part of the study, the simulations were verified by a clinical study involving volunteers with elevated and normal levels of cholesterol. The faces of the volunteers were scanned by a hyperspectral camera covering the spectral range between 400 nm and 720 nm, and characteristic spectral features of the affected skin were identified. Processing of the images was done after conversion to reflectance and masking of the images. The identified features were compared to the known cholesterol levels of the subjects. The results of this study demonstrate that hyperspectral imaging of facial skin can be a promising, rapid modality for detection of hypercholesterolemia.

  4. Variation of Biophysical Parameters of the Skin with Age, Gender, and Body Region

    PubMed Central

    Firooz, Alireza; Sadr, Bardia; Babakoohi, Shahab; Sarraf-Yazdy, Maryam; Fanian, Ferial; Kazerouni-Timsar, Ali; Nassiri-Kashani, Mansour; Naghizadeh, Mohammad Mehdi; Dowlati, Yahya

    2012-01-01

    Background. Understanding the physiological, chemical, and biophysical characteristics of the skin helps us to arrange a proper approach to the management of skin diseases. Objective. The aim of this study was to measure 6 biophysical characteristics of normal skin (sebum content, hydration, transepidermal water loss (TEWL), erythema index, melanin index, and elasticity) in a normal population and assess the effect of sex, age, and body location on them. Methods. Fifty healthy volunteers in 5 age groups (5 males and females in each) were enrolled in this study. A multifunctional skin physiology monitor (Courage & Khazaka electronic GmbH, Germany) was used to measure skin sebum content, hydration, TEWL, erythema index, melanin index, and elasticity in 8 different locations of the body. Results. There were significant differences between the hydration, melanin index, and elasticity of different age groups. Regarding the locations, forehead had the highest melanin index, where as palm had the lowest value. The mean values of erythema index and melanin index and TEWL were significantly higher in males and anatomic location was a significant independent factor for all of 6 measured parameters. Conclusion. Several biophysical properties of the skin vary among different gender, age groups, and body locations. PMID:22536139

  5. TSLP is differentially regulated by vitamin D3 and cytokines in human skin

    PubMed Central

    Landheer, Janneke; Giovannone, Barbara; Sadekova, Svetlana; Tjabringa, Sandra; Hofstra, Claudia; Dechering, Koen; Bruijnzeel-Koomen, Carla; Chang, Charlie; Ying, Yu; de Waal Malefyt, Rene; Hijnen, DirkJan; Knol, Edward

    2015-01-01

    Thymic stromal lymphopoietin (TSLP) plays an important role in allergic diseases and is highly expressed in keratinocytes in human lesional atopic dermatitis (AD) skin. In nonlesional AD skin TSLP expression can be induced by applying house dust mite allergen onto the skin in the atopy patch test. Several studies have demonstrated that the induction of TSLP expression in mouse skin does not only lead to AD-like inflammation of the skin, but also predisposes to severe inflammation of the airways. In mice, TSLP expression can be induced by application of the 1,25-dihydroxyvitamin D3 (VD3) analogue calcipotriol and results in the development of eczema-like lesions. The objective is to investigate the effect of VD3 (calcitriol) or calcipotriol on TSLP expression in normal human skin and skin from AD patients. Using multiple ex vivo experimental setups, the effects of calci(po)triol on TSLP expression by normal human skin, and skin from AD patients were investigated and compared to effects of calcipotriol on mouse and non-human primates (NHP) skin. No induction of TSLP expression (mRNA or protein) was observed in human keratinocytes, normal human skin, nonlesional AD skin, or NHP skin samples after stimulation with calcipotriol or topical application of calcitriol. The biological activity of calci(po)triol in human skin samples was demonstrated by the increased expression of the VD3-responsive Cyp24a1 gene. TSLP expression was induced by cytokines (IL-4, IL-13, and TNF-α) in skin samples from all three species. In contrast to the findings in human and NHP, a consistent increase in TSLP expression was confirmed in mouse skin biopsies after stimulation with calcipotriol. VD3 failed to induce expression of TSLP in human or monkey skin in contrast to mouse, implicating careful extrapolation of this often-used mouse model to AD patients. PMID:25866638

  6. Assessment of endothelial and neurovascular function in human skin microcirculation.

    PubMed

    Roustit, Matthieu; Cracowski, Jean-Luc

    2013-07-01

    Peripheral microvascular dysfunction has been described in many physiological and pathological conditions. Owing to its accessibility, the cutaneous microcirculation provides a unique index of microvascular function. Skin microvascular function has therefore been proposed as a prognostic marker or for evaluating the effect of drugs on the microcirculation. Various reactivity tests, coupled with techniques measuring skin blood flux, are used to non-invasively explore both endothelial and neurovascular microvascular functioning in humans. We review the advantages and limitations of the main reactivity tests, including post-occlusive reactive hyperemia, local thermal hyperemia, pressure-induced vasodilation, and iontophoresis of vasodilators, combined with measurement techniques such as laser Doppler and laser speckle contrast imaging. Recent advances in our comprehension of the physiological pathways underlying these reactivity tests, as well as technological developments in microcirculation imaging, have provided reliable and reproducible tools for studying the microcirculation.

  7. Racial and ethnic differences in skin aging: implications for treatment with soft tissue fillers.

    PubMed

    Alexis, Andrew F; Alam, Murad

    2012-08-01

    Racial and ethnic differences in the age of onset, severity, and anatomical features of facial aging have been described. In addition, increased melanocyte lability and fibroblast reactivity are functional features that are characteristic of skin of color. These differences should be considered when treating patients with soft tissue fillers in order to achieve optimal results. Signs of facial aging in individuals with skin of color tend to be most pronounced in the periorbital and midface region with less prominent features of skin aging in the upper third of the face and a decreased tendency toward perioral rhytides and radial lip lines. As such, volumization of the midface while preserving individual and ethnic ideals of beauty is a key goal. Important treatment considerations include minimization of inflammation, epidermal injury, and bruising, which can lead to aesthetically displeasing sequelae.

  8. Degradation of type IV collagen by neoplastic human skin fibroblasts

    SciTech Connect

    Sheela, S.; Barrett, J.C.

    1985-02-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion.

  9. Biology of Zika Virus Infection in Human Skin Cells

    PubMed Central

    Hamel, Rodolphe; Dejarnac, Ophélie; Wichit, Sineewanlaya; Ekchariyawat, Peeraya; Neyret, Aymeric; Luplertlop, Natthanej; Perera-Lecoin, Manuel; Surasombatpattana, Pornapat; Talignani, Loïc; Thomas, Frédéric; Cao-Lormeau, Van-Mai; Choumet, Valérie; Briant, Laurence; Desprès, Philippe; Amara, Ali; Yssel, Hans

    2015-01-01

    ABSTRACT Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. IMPORTANCE Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune

  10. Potent therapeutic effect of melatonin on aging skin in pinealectomized rats.

    PubMed

    Eşrefoğlu, Mukaddes; Seyhan, Muammer; Gül, Mehmet; Parlakpinar, Hakan; Batçioğlu, Kadir; Uyumlu, Burçin

    2005-10-01

    It is generally agreed that one of the major contributors to skin aging is reactive oxygen species. As organisms reach advanced age, free radical generation increases and the activity of tissue antioxidant enzyme system decreases. Melatonin is an antioxidant and free radical scavenger. The present study was first aimed to determine the morphometric and biochemical changes caused by long-term pinealectomy in order to investigate the role of melatonin as skin architecture. Secondly, the effect of exogenous melatonin administration on these changes was determined. Rats were pinealectomized or sham operated (control) for 6 months. Half of the pinealectomized rats were treated with 4 mg/kg melatonin during the last month of the experiment. Pinealectomy resulted in important morphometric and biochemical changes in the back, abdominal and thoracic skin. The thickness of epidermis and dermis and the number of dermal papillae and hair follicles were reduced. Melatonin administration to pinealectomized rats significantly improved these alterations in all body areas (P < 0.005). On the contrary, in pinealectomized rats the levels of antioxidant enzymes, catalase and glutathione peroxidase were decreased. Melatonin restored the levels of these enzymes. The pinealectomy-induced increases in lipid peroxidation in the abdominal and thoracic skin were significantly reduced by melatonin treatment (P < 0.005 and 0.01 respectively). These results suggest that melatonin is highly efficient anti-aging factor and, as melatonin levels decrease with age, melatonin treatment may reduce age-related skin changes. PMID:16150102

  11. Apigenin inhibits UVA-induced cytotoxicity in vitro and prevents signs of skin aging in vivo.

    PubMed

    Choi, Sungjin; Youn, Jeungyeun; Kim, Karam; Joo, Da Hye; Shin, Shanghun; Lee, Jeongju; Lee, Hyun Kyung; An, In-Sook; Kwon, Seungbin; Youn, Hae Jeong; Ahn, Kyu Joong; An, Sungkwan; Cha, Hwa Jun

    2016-08-01

    Apigenin (4',5,7-trihydroxyflavone) is a flavone that has been reported to have anti-inflammatory, antioxidant and anti-carcinogenic properties. In this study, we investigated the protective effects of apigenin on skin and found that, in experiments using cells, apigenin restored the viability of normal human dermal fibroblasts (nHDFs), which had been decreased by exposure to ultraviolet (UV) radiation in the UVA range. Using a senescence-associated (SA)-β-gal assay, we also demonstrate that apigenin protects against the UVA-induced senescence of nHDFs. Furthermore, we found that apigenin decreased the expression of the collagenase, matrix metalloproteinase (MMP)-1, in UVA-irradiated nHDFs. UVA, which has been previously identified as a photoaging-inducing factor, has been shown to induce MMP-1 expression. The elevated expression of MMP-1 impairs the collagen matrix, leading to the loss of elasticity and skin dryness. Therefore, we examined the clinical efficacy of apigenin on aged skin, using an apigenin‑containing cream for clinical application. Specifically, we measured dermal density, skin elasticity and the length of fine wrinkles in subjects treated with apigenin cream or the control cream without apigenin. Additionally, we investigated the effects of the apigenin-containing cream on skin texture, moisture and transepidermal water loss (TEWL). From these experiments, we found that the apigenin‑containing cream increased dermal density and elasticity, and reduced fine wrinkle length. It also improved skin evenness, moisture content and TEWL. These results clearly demonstrate the biological effects of apigenin, demonstrating both its cellular and clinical efficacy, and suggest that this compound holds promise as an anti-aging cosmetic ingredient. PMID:27279007

  12. Botanical extracts as anti-aging preparations for the skin: a systematic review.

    PubMed

    Hunt, Katherine J; Hung, Shao Kang; Ernst, Edzard

    2010-12-01

    Although topical creams and other anti-aging products purport to reduce the appearance of aging and skin wrinkling, there has been no critical analysis in the scientific literature of their effectiveness. This systematic review critically evaluates the evidence for the effectiveness or efficacy of botanical treatments in reducing skin aging and wrinkling. MEDLINE, Embase, CINAHL®, CENTRAL and AMED databases were searched from their inception until October 2009. Reference lists of retrieved articles were hand-searched. Manufacturers and professional associations were contacted in order to identify further non-published studies. No language restrictions were applied. Only randomized clinical trials or controlled clinical trials assessing the effectiveness of botanical extracts in reducing wrinkling and aging of the skin were included. Data were extracted by two independent reviewers and methodological quality was assessed using the Jadad score and key aspects of the Cochrane risk of bias tool. Of 36 potentially relevant studies, 11 trials of botanical extracts for reducing skin wrinkling and the appearance of aging met all the inclusion criteria. No trials were identified following contact with anti-aging and cosmetic organizations, companies and professional bodies. A significant reduction in skin wrinkling was noted for date kernel extract, cork extract, soy extract, Rosaceae and peony extract. No significant reduction was noted for green tea, Vitaphenol® (a combination of green and white teas, mangosteen and pomegranate extract) or maca root. All trials were of poor methodological quality. Adverse effects were frequently not reported. In summary, there is some weak evidence to suggest that several botanical extracts may be effective in reducing the appearance of skin aging but no evidence that this effect is enduring. Independent replications with larger, more diverse samples, longer treatment durations and more rigorous study designs are required to validate

  13. Botanical extracts as anti-aging preparations for the skin: a systematic review.

    PubMed

    Hunt, Katherine J; Hung, Shao Kang; Ernst, Edzard

    2010-12-01

    Although topical creams and other anti-aging products purport to reduce the appearance of aging and skin wrinkling, there has been no critical analysis in the scientific literature of their effectiveness. This systematic review critically evaluates the evidence for the effectiveness or efficacy of botanical treatments in reducing skin aging and wrinkling. MEDLINE, Embase, CINAHL®, CENTRAL and AMED databases were searched from their inception until October 2009. Reference lists of retrieved articles were hand-searched. Manufacturers and professional associations were contacted in order to identify further non-published studies. No language restrictions were applied. Only randomized clinical trials or controlled clinical trials assessing the effectiveness of botanical extracts in reducing wrinkling and aging of the skin were included. Data were extracted by two independent reviewers and methodological quality was assessed using the Jadad score and key aspects of the Cochrane risk of bias tool. Of 36 potentially relevant studies, 11 trials of botanical extracts for reducing skin wrinkling and the appearance of aging met all the inclusion criteria. No trials were identified following contact with anti-aging and cosmetic organizations, companies and professional bodies. A significant reduction in skin wrinkling was noted for date kernel extract, cork extract, soy extract, Rosaceae and peony extract. No significant reduction was noted for green tea, Vitaphenol® (a combination of green and white teas, mangosteen and pomegranate extract) or maca root. All trials were of poor methodological quality. Adverse effects were frequently not reported. In summary, there is some weak evidence to suggest that several botanical extracts may be effective in reducing the appearance of skin aging but no evidence that this effect is enduring. Independent replications with larger, more diverse samples, longer treatment durations and more rigorous study designs are required to validate

  14. Recovery of latent fingerprints and DNA on human skin.

    PubMed

    Färber, Doris; Seul, Andrea; Weisser, Hans-Joachim; Bohnert, Michael

    2010-11-01

    The project "Latent Fingerprints and DNA on Human Skin" was the first systematic research in Europe dealing with detection of fingerprints and DNA left by offenders on the skin of corpses. One thousand samples gave results that allow general statements on the materials and methods used. The tests were carried out according to a uniform trial structure. Fingerprints were deposited by natural donors on corpses. The latent fingerprints were treated with magnetic powder or black fingerprint powder. Afterward, they were lifted with silicone casting material (Isomark(®)) or gelatine foil. All lifts were swabbed to recover DNA. It was possible to visualize comparable and identifiable fingerprints on the skin of corpses (16%). In the same categories, magnetic powder (18.4%) yielded better results than black fingerprint powder (13.6%). The number of comparable and identifiable fingerprints decreased on the lifts (12.7%). Isomark(®) (14.9%) was the better lifting material in comparison with gelatine foil (10.1%). In one-third of the samples, DNA could be extracted from the powdered and lifted latents. Black fingerprint powder delivered the better result with a rate of 2.2% for full DNA profiles and profiles useful for exclusion in comparison with 1.8% for the magnetic powder traces. Isomark(®) (3.1%) yielded better results than gelatine foil (0.6%).

  15. [Oscillatory processes in microlymphatic bed of human skin].

    PubMed

    Krupatkin, A I

    2014-01-01

    Laser Doppler flowmetry with wavelet-analysis of oscillations in microlymphocirculation was used for the first time at 30 persons with (n = 17) and without edema (n = 13) of the upper extremities distal parts. Human skin microlymphatic flow is characterized by well-defined predomination of pacemaker phasic oscillations in frequency range from 0.021 Hz to 0.042 Hz (palmar surface of finger distal phalange) or from 0.016 Hz to 0.035 Hz (forearm skin). Edema was accompanied by increase of average peak frequencies and normalized maximum amplitudes of phasic oscillations (A(l)/M(l), where A(l)--average maximum amplitude of phasic oscillations, M(l)--value of average lymphatic flow, both in perfusion units). Myogenic, endothelial and respiratory low amplitude oscillations were registered rarely. Heart rate rhythms were not revealed in lymphatic flow. Intercommunications were not found between values of A(l)/M(l) and skin temperature. Only in physiologic conditions without edema negative correlation was revealed between values of A(l)/M(l) and amplitudes of myogenic oscillations in blood flow; the latter reflect the number of open capillaries and the activity of oxidative metabolism. Intercommunications were not found between lymphatic and blood flow oscillations in edema availability. Normalized amplitudes and frequencies of phasic oscillations may serve as effective diagnostic indices in micro-lymphocirculation study.

  16. In vivo optical coherence tomography of human skin microstructure

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander M.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Pravdenko, Kirill I.; Shabanov, Dmitry V.; Gladkova, Natalia D.; Pochinko, Vitaly; Zhegalov, V.; Dmitriev, G.; Vazina, I.; Petrova, Galina P.; Nikulin, Nikolai K.

    1994-12-01

    A compact effective optical coherence tomography (OCT) system is presented. It contains approximately equals 0.3 mW superluminescent diode with spectral width 30 nm FWHM (providing approximately equals 15 micrometers longitudinal resolution) and fiber interferometer with integrated longitudinal scanning. The dynamic range 60 dB allows to observe structure of human skin in vivo up to 1.5 mm in depth. A comparison of obtained tomographs with data of histologic analysis of the same samples of the skin have been carried out to identify the observed structures and determine their optical properties. This technique allows one to perform noncontact, noninvasive diagnostic of early stages of different pathological state of the skin, to measure the burn depth and to observe the process of the recovery. Unlike scanning confocal microscopy, OCT is more suitable for an endoscopic investigation of the mucous membranes of hollow organs. Possible diagnostic applications include dermatology, gastroenterology, gynecology, urology, oncology, othorinolaryngology, transplantology. The most promising features are the potential possibility of differential diagnosis of precancer and various types of cancer, estimation of the invasion depth, differential diagnosis of inflammation and dystrophic processes, control of radical operative treatment.

  17. Correlation between experimental human and murine skin sensitization induction thresholds.

    PubMed

    Api, Anne Marie; Basketter, David; Lalko, Jon

    2015-01-01

    Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the "EC3" value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).

  18. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    SciTech Connect

    Hughes, Michael F.; Edwards, Brenda C.

    2010-07-15

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flow-through diffusion cells, and radiolabeled bifenthrin, deltamethrin or cis-permethrin was applied in acetone to the skin. Fractions of receptor fluid were collected every 4 h. At 24 h, the skins were washed with soap and water to remove unabsorbed chemical. The skin was then solubilized. Two additional experiments were performed after washing the skin; the first was tape-stripping the skin and the second was the collection of receptor fluid for an additional 24 h. Receptor fluid, skin washes, tape strips and skin were analyzed for radioactivity. For rat skin, the wash removed 53-71% of the dose and 26-43% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid ranged from 1 to 5%. For human skin, the wash removed 71-83% of the dose and 14-25% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid was 1-2%. Tape-stripping removed 50-56% and 79-95% of the dose in rat and human skin, respectively, after the wash. From 24-48 h, 1-3% and about 1% of the dose diffused into the receptor fluid of rat and human skin, respectively. The pyrethroids bifenthrin, deltamethrin and cis-permethrin penetrated rat and human skin following dermal application in vitro. However, a skin wash removed 50% or more of the dose from rat and human skin. Rat skin was more permeable to the pyrethroids than human skin. Of the dose in skin, 50% or more was removed by tape-stripping, suggesting that permeation of pyrethroids into viable tissue could be impeded. The percentage of the dose absorbed into the receptor fluid was considerably less than the dose in rat and human skin. Therefore, consideration of the skin type used and fractions analyzed are important when using

  19. Steroid synthesis by primary human keratinocytes; implications for skin disease

    SciTech Connect

    Hannen, Rosalind F.; Michael, Anthony E.; Jaulim, Adil; Bhogal, Ranjit; Burrin, Jacky M.; Philpott, Michael P.

    2011-01-07

    Research highlights: {yields} Primary keratinocytes express the steroid enzymes required for cortisol synthesis. {yields} Normal primary human keratinocytes can synthesise cortisol. {yields} Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. {yields} StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3{beta}HSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-{sup 3}H]-pregnenolone through each steroid intermediate to [7-{sup 3}H]-cortisol in cultured PHK. Trilostane (a 3{beta}HSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data

  20. Investigation of the Efficacy of Transdermal Penetration Enhancers Through the Use of Human Skin and a Skin Mimic Artificial Membrane.

    PubMed

    Balázs, Boglárka; Vizserálek, Gábor; Berkó, Szilvia; Budai-Szűcs, Mária; Kelemen, András; Sinkó, Bálint; Takács-Novák, Krisztina; Szabó-Révész, Piroska; Csányi, Erzsébet

    2016-03-01

    The aim of this study was to investigate the behavior of promising penetration enhancers through the use of 2 different skin test systems. Hydrogel-based transdermal formulations were developed with ibuprofen as a nonsteroidal anti-inflammatory drug. Transcutol and sucrose esters were used as biocompatible penetration enhancers. The permeability measurements were performed with ex vivo Franz diffusion cell methods and a newly developed Skin Parallel Artificial Membrane Permeability Assays (PAMPA) model. Franz diffusion measurement is commonly used as a research tool in studies of diffusion through synthetic membranes in vitro or penetration through ex vivo human skin, whereas Skin PAMPA involves recently published artificial membrane-based technology for the fast prediction of skin penetration. It is a 96-well plate-based model with optimized artificial membrane structure containing free fatty acid, cholesterol, and synthetic ceramide analog compounds to mimic the stratum corneum barrier function. Transdermal preparations containing 2.64% of different sucrose esters and/or Transcutol and a constant (5%) of ibuprofen were investigated to determine the effects of these penetration enhancers. The study demonstrated the good correlation of the permeability data obtained through use of human skin membrane and the in vitro Skin PAMPA system. The Skin PAMPA artificial membrane serves as quick and relatively deep tool in the early stages of transdermal delivery systems, through which the enhancing efficacy of excipients can be screened so as to facilitate the choice of effective penetration components. PMID:26886318

  1. Investigation of the Efficacy of Transdermal Penetration Enhancers Through the Use of Human Skin and a Skin Mimic Artificial Membrane.

    PubMed

    Balázs, Boglárka; Vizserálek, Gábor; Berkó, Szilvia; Budai-Szűcs, Mária; Kelemen, András; Sinkó, Bálint; Takács-Novák, Krisztina; Szabó-Révész, Piroska; Csányi, Erzsébet

    2016-03-01

    The aim of this study was to investigate the behavior of promising penetration enhancers through the use of 2 different skin test systems. Hydrogel-based transdermal formulations were developed with ibuprofen as a nonsteroidal anti-inflammatory drug. Transcutol and sucrose esters were used as biocompatible penetration enhancers. The permeability measurements were performed with ex vivo Franz diffusion cell methods and a newly developed Skin Parallel Artificial Membrane Permeability Assays (PAMPA) model. Franz diffusion measurement is commonly used as a research tool in studies of diffusion through synthetic membranes in vitro or penetration through ex vivo human skin, whereas Skin PAMPA involves recently published artificial membrane-based technology for the fast prediction of skin penetration. It is a 96-well plate-based model with optimized artificial membrane structure containing free fatty acid, cholesterol, and synthetic ceramide analog compounds to mimic the stratum corneum barrier function. Transdermal preparations containing 2.64% of different sucrose esters and/or Transcutol and a constant (5%) of ibuprofen were investigated to determine the effects of these penetration enhancers. The study demonstrated the good correlation of the permeability data obtained through use of human skin membrane and the in vitro Skin PAMPA system. The Skin PAMPA artificial membrane serves as quick and relatively deep tool in the early stages of transdermal delivery systems, through which the enhancing efficacy of excipients can be screened so as to facilitate the choice of effective penetration components.

  2. Human skin pigmentation as an adaptation to UV radiation

    PubMed Central

    Jablonski, Nina G.; Chaplin, George

    2010-01-01

    Human skin pigmentation is the product of two clines produced by natural selection to adjust levels of constitutive pigmentation to levels of UV radiation (UVR). One cline was generated by high UVR near the equator and led to the evolution of dark, photoprotective, eumelanin-rich pigmentation. The other was produced by the requirement for UVB photons to sustain cutaneous photosynthesis of vitamin D3 in low-UVB environments, and resulted in the evolution of depigmented skin. As hominins dispersed outside of the tropics, they experienced different intensities and seasonal mixtures of UVA and UVB. Extreme UVA throughout the year and two equinoctial peaks of UVB prevail within the tropics. Under these conditions, the primary selective pressure was to protect folate by maintaining dark pigmentation. Photolysis of folate and its main serum form of 5-methylhydrofolate is caused by UVR and by reactive oxygen species generated by UVA. Competition for folate between the needs for cell division, DNA repair, and melanogenesis is severe under stressful, high-UVR conditions and is exacerbated by dietary insufficiency. Outside of tropical latitudes, UVB levels are generally low and peak only once during the year. The populations exhibiting maximally depigmented skin are those inhabiting environments with the lowest annual and summer peak levels of UVB. Development of facultative pigmentation (tanning) was important to populations settling between roughly 23° and 46° , where levels of UVB varied strongly according to season. Depigmented and tannable skin evolved numerous times in hominin evolution via independent genetic pathways under positive selection. PMID:20445093

  3. Detection of hypercholesterolemia using hyperspectral imaging of human skin

    NASA Astrophysics Data System (ADS)

    Milanic, Matija; Bjorgan, Asgeir; Larsson, Marcus; Strömberg, Tomas; Randeberg, Lise L.

    2015-07-01

    Hypercholesterolemia is characterized by high blood levels of cholesterol and is associated with increased risk of atherosclerosis and cardiovascular disease. Xanthelasma is a subcutaneous lesion appearing in the skin around the eyes. Xanthelasma is related to hypercholesterolemia. Identifying micro-xanthelasma can thereforeprovide a mean for early detection of hypercholesterolemia and prevent onset and progress of disease. The goal of this study was to investigate spectral and spatial characteristics of hypercholesterolemia in facial skin. Optical techniques like hyperspectral imaging (HSI) might be a suitable tool for such characterization as it simultaneously provides high resolution spatial and spectral information. In this study a 3D Monte Carlo model of lipid inclusions in human skin was developed to create hyperspectral images in the spectral range 400-1090 nm. Four lesions with diameters 0.12-1.0 mm were simulated for three different skin types. The simulations were analyzed using three algorithms: the Tissue Indices (TI), the two layer Diffusion Approximation (DA), and the Minimum Noise Fraction transform (MNF). The simulated lesions were detected by all methods, but the best performance was obtained by the MNF algorithm. The results were verified using data from 11 volunteers with known cholesterol levels. The face of the volunteers was imaged by a LCTF system (400- 720 nm), and the images were analyzed using the previously mentioned algorithms. The identified features were then compared to the known cholesterol levels of the subjects. Significant correlation was obtained for the MNF algorithm only. This study demonstrates that HSI can be a promising, rapid modality for detection of hypercholesterolemia.

  4. Genotype × age interaction in human transcriptional ageing

    PubMed Central

    Kent, Jack W.; Göring, Harald H. H.; Charlesworth, Jac C.; Drigalenko, Eugene; Diego, Vincent P.; Curran, Joanne E.; Johnson, Matthew P.; Dyer, Thomas D.; Cole, Shelley A.; Jowett, Jeremy B. M.; Mahaney, Michael C.; Comuzzie, Anthony G.; Almasy, Laura; Moses, Eric K.; Blangero, John; Williams-Blangero, Sarah

    2012-01-01

    Individual differences in biological ageing (i.e., the rate of physiological response to the passage of time) may be due in part to genotype-specific variation in gene action. However, the sources of heritable variation in human age-related gene expression profiles are largely unknown. We have profiled genome-wide expression in peripheral blood mononuclear cells from 1,240 individuals in large families and found 4,472 human autosomal transcripts, representing ~4,349 genes, significantly correlated with age. We identified 623 transcripts that show genotype by age interaction in addition to a main effect of age, defining a large set of novel candidates for characterization of the mechanisms of differential biological ageing. We applied a novel SNP genotype×age interaction test to one of these candidates, the ubiquilin-like gene UBQLNL, and found evidence of joint cis-association and genotype by age interaction as well as trans-genotype by age interaction for UBQLNL expression. Both UBQLNL expression levels at recruitment and cis genotype are associated with longitudinal cancer risk in our study cohort. PMID:22871458

  5. THE PENETRATION OF VESICANT VAPORS INTO HUMAN SKIN.

    PubMed

    Nagy, S M; Golumbic, C; Stein, W H; Fruton, J S; Bergmann, M

    1946-07-20

    Analytical methods which are accurate to about 1 per cent have been developed for the determination of small amounts (ca. 500 gamma) of bis(beta-chloroethyl)-sulfide (H), ethyl-bis(beta-chloroethyl)amine (EBA), tris(beta-chloroethyl)amine (TBA), beta-chloroethyl-benzylsulfide (benzyl-H), and beta-chloroethyl-ethylsulfide (ethyl-H). The determinations are made by micro titration of the HCl liberated upon complete hydrolysis of the vesicants. A description is given of an apparatus suitable for applying vapors of vesicants to unit areas of skin. A very precise and reproducible micropipetting technique is described for the introduction of the vesicants into the penetration apparatus. By means of this penetration apparatus studies have been made of several factors which may influence the rate at which vesicant vapors penetrate into skin. Model experiments have been performed in which H was allowed to vaporize and the vapor was absorbed on a surface such as that of diethylene glycol or vaseline. It has been found that if the surface of liquid H is increased by spreading the agent on filter paper, the rate of evaporation is markedly increased. Furthermore, if the vapor is agitated by means of a magnetically driven fan, the rate of absorption by diethylene glycol is greatly accelerated. With vaseline as the absorbing surface it has been found that the area of the absorbing surface has an effect on the rate of absorption of H vapor. More H is absorbed by vaseline spread on filter paper to give a rough surface than is absorbed by a smooth film of vaseline. Measurements of the rate of penetration into human skin of H, EBA, TBA, benzyl-H, and ethyl-H vapors have been performed at 21-23 degrees C. and 30-31 degrees C. by means of the penetration apparatus described in this paper. The measurements were carred out on human volunteers under conditions of controlled temperature and humidity. When human skin is exposed to air saturated with H vapor, the H penetrates the skin of the

  6. Chicken skin virome analyzed by high-throughput sequencing shows a composition highly different from human skin.

    PubMed

    Denesvre, Caroline; Dumarest, Marine; Rémy, Sylvie; Gourichon, David; Eloit, Marc

    2015-10-01

    Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection. Despite the high sensitivity of the HTS method used herein to detect small circular DNA viruses, we did not detect any papillomaviruses, polyomaviruses, or circoviruses, indicating that these viruses may not be resident of the chicken skin. The results suggest that the turkey herpesvirus is a resident of chicken skin in vaccinated chickens. This study indicates major differences between the skin viromes of chickens and humans. The origin of this difference remains to be further studied in relation with skin physiology, environment, or virus population dynamics.

  7. Chicken skin virome analyzed by high-throughput sequencing shows a composition highly different from human skin.

    PubMed

    Denesvre, Caroline; Dumarest, Marine; Rémy, Sylvie; Gourichon, David; Eloit, Marc

    2015-10-01

    Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection. Despite the high sensitivity of the HTS method used herein to detect small circular DNA viruses, we did not detect any papillomaviruses, polyomaviruses, or circoviruses, indicating that these viruses may not be resident of the chicken skin. The results suggest that the turkey herpesvirus is a resident of chicken skin in vaccinated chickens. This study indicates major differences between the skin viromes of chickens and humans. The origin of this difference remains to be further studied in relation with skin physiology, environment, or virus population dynamics. PMID:26223320

  8. The Protective Role of Melanin Against UV Damage in Human Skin

    PubMed Central

    Brenner, Michaela; Hearing, Vincent J.

    2009-01-01

    Human skin is repeatedly exposed to ultraviolet radiation (UVR) that influences the function and survival of many cell types and is regarded as the main causative factor in the induction of skin cancer. It has been traditionally believed that skin pigmentation is the most important photoprotective factor, since melanin, besides functioning as a broadband UV absorbent, has antioxidant and radical scavenging properties. Besides, many epidemiological studies have shown a lower incidence for skin cancer in individuals with darker skin compared to those with fair skin. Skin pigmentation is of great cultural and cosmetic importance, yet the role of melanin in photoprotection is still controversial. This article outlines the major acute and chronic effects of UV radiation on human skin, the properties of melanin, the regulation of pigmentation and its effect on skin cancer prevention. PMID:18435612

  9. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity

    PubMed Central

    Plikus, Maksim V.; Van Spyk, Elyse Noelani; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S.; Andersen, Bogi

    2015-01-01

    Historically work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as liver, fat and muscle. In recent years, skin is emerging as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging and carcinogenesis. Morphologically skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration -- the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell-type specific circadian mutants. Also, due to the accessibility of the skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar UV radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. The skin also provides opportunities to interrogate clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model for investigating the

  10. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity.

    PubMed

    Plikus, Maksim V; Van Spyk, Elyse N; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S; Andersen, Bogi

    2015-06-01

    Historically, work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as the liver, fat, and muscle. In recent years, skin has emerged as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging, and carcinogenesis. Morphologically, skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable, and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration: the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell type-specific circadian mutants. Also, due to the accessibility of skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar ultraviolet (UV) radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it also represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. Skin also provides opportunities to interrogate the clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model

  11. Ageing of the human hypothalamus.

    PubMed

    Swaab, D F

    1995-01-01

    The various hypothalamic nuclei show very different patterns of change in ageing. These patterns are a basis for changes in biological rhythms, hormones, autonomous functions or behavior. The suprachiasmatic nucleus (SCN) coordinates circadian and circannual rhythms. A marked seasonal and circadian variation in the vasopressin (AVP) cell number of the SCN was observed in relation to the variation in photoperiod. During normal ageing, the circadian variation and number of AVP-expressing neurons in the SCN decreases. The sexually dimorphic nucleus (SDN), intermediate nucleus or INAH-1 is localized between the supraoptic and paraventricular nucleus (PVN). In adult men the SDN is twice as large as in adult women. In girls, the SDN shows a first period of decreasing cell numbers during prepubertal development, leading to sexual dimorphism. During ageing a decrease in cell number is found in both sexes. The cells of the supraoptic nucleus and PVN produce AVP or oxytocin and coexpress tyrosine hydroxylase. These nuclei are examples of neuron populations that seem to stay perfectly intact in ageing. Parvicellular corticotropin-releasing-hormone (CRH)-containing neurons are found throughout the PVN. CRH neurons in the PVN are activated in the course of ageing, as indicated by their increase in number and AVP coexpression. Part of the infundibular (or arcuate) nucleus, the subventricular nucleus, contains hypertrophic neurons in postmenopausal women. The hypertrophied neurons contain neurokinin-B (NKB), substance P and estrogen receptors and probably act on LHRH neurons as interneurons. The NKB neurons may also be involved in the initiation of menopausal flushes. The nucleus tuberalis lateralis might be involved in feeding behavior and metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Skin colour variability in Basque boys aged 8-19 years.

    PubMed

    Rebato, E; Rosique, J; Gonzalez Apraiz, A

    1993-01-01

    Skin colour variation with increasing age was analysed using a cross-sectional sample of 796 Basque boys aged from 8 to 19 years. Measurements were taken at the upper inner arm and forehead by means of an EEL DS29 Digital Unigalvo reflectance spectrophotometer with a nine-filter head. Ontogenic changes of skin pigmentation were found to be statistically significant. The influence of the month in which measurements were taken on reflectance values has been studied. Comparisons with another similar study (Pembrokeshire, Wales population) were carried out.

  13. Influence of epidermal hydration on the friction of human skin against textiles.

    PubMed

    Gerhardt, L-C; Strässle, V; Lenz, A; Spencer, N D; Derler, S

    2008-11-01

    Friction and shear forces, as well as moisture between the human skin and textiles are critical factors in the formation of skin injuries such as blisters, abrasions and decubitus. This study investigated how epidermal hydration affects the friction between skin and textiles.The friction between the inner forearm and a hospital fabric was measured in the natural skin condition and in different hydration states using a force plate. Eleven males and eleven females rubbed their forearm against the textile on the force plate using defined normal loads and friction movements. Skin hydration and viscoelasticity were assessed by corneometry and the suction chamber method, respectively.In each individual, a highly positive linear correlation was found between skin moisture and friction coefficient (COF). No correlation was observed between moisture and elasticity, as well as between elasticity and friction. Skin viscoelasticity was comparable for women and men. The friction of female skin showed significantly higher moisture sensitivity. COFs increased typically by 43% (women) and 26% (men) when skin hydration varied between very dry and normally moist skin. The COFs between skin and completely wet fabric were more than twofold higher than the values for natural skin rubbed on a dry textile surface.Increasing skin hydration seems to cause gender-specific changes in the mechanical properties and/or surface topography of human skin, leading to skin softening and increased real contact area and adhesion.

  14. In vivo multiscale photoacoustic microscopy of human skin

    NASA Astrophysics Data System (ADS)

    Favazza, Christopher P.; Hu, Song; Huang, Victor; Jassim, Omar; Cornelius, Lynn A.; Wang, Lihong V.

    2011-03-01

    Scalability is a key feature of photoacoustic microscopy (PAM). Reports have shown that PAM systems can be designed to possess sub-micron resolution at shallow depths or penetrate centimeters deep at the expense of resolution while the number of resolved pixels in the depth direction remains high. This capability to readily tune the imaging parameters while maintaining the same inherent contrast could be extremely useful for a variety of biomedical applications. Human skin, with its layered vascular structure whose dimensions scale with depth, provides an ideal imaging target to illustrate this advantage. Here, we present results from in vivo human skin imaging experiments using two different PAM systems, an approach which enables better characterization of the cutaneous microvasculature throughout the imaging depth. Specifically, we show images from several distinct areas of skin: the palm and the forearm. For each region, the same area was imaged with both an optical-resolution PAM (OR-PAM) and an acoustic-resolution PAM (AR-PAM), and the subsequent images were combined into composite images. The OR-PAM provides less than 5 μm lateral resolution, capable of imaging the smallest capillary vessels, while the AR-PAM enables imaging at depths of several millimeters. Several structures are identifiable in the ORPAM images which cannot be differentiated in AR-PAM images, namely thin epidermal and stratum corneum layers, undulations in the dermal papillae, and capillary loops. However, the AR-PAM provides images of larger vessels, deeper than the OR-PAM can penetrate. These results demonstrate how PAM's scalability can be utilized to more fully characterize cutaneous vasculature, potentially impacting the assessment of numerous cardiovascular related and cutaneous diseases.

  15. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts

    PubMed Central

    Saini, Natalie; Chan, Kin; Grimm, Sara A.; Dai, Shuangshuang; Fargo, David C.; Kaufmann, William K.; Taylor, Jack A.; Lee, Eunjung; Cortes-Ciriano, Isidro; Park, Peter J.; Schurman, Shepherd H.; Malc, Ewa P.; Mieczkowski, Piotr A.

    2016-01-01

    Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration ClinicalTrials.gov NCT01087307 PMID:27788131

  16. Fractional calculus model of electrical impedance applied to human skin.

    PubMed

    Vosika, Zoran B; Lazovic, Goran M; Misevic, Gradimir N; Simic-Krstic, Jovana B

    2013-01-01

    Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1) Weyl fractional derivative operator, 2) Cole equation, and 3) Constant Phase Element (CPE). These generalizations were described by the novel equation which presented parameter [Formula: see text] related to remnant memory and corrected four essential parameters [Formula: see text] We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters [Formula: see text] We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for[Formula: see text] Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects. PMID:23577065

  17. A golden age of human pigmentation genetics.

    PubMed

    Sturm, Richard A

    2006-09-01

    The zebrafish golden mutation is characterized by the production of small and irregular-shaped melanin granules, resulting in a lightening of the pigmented lateral stripes of the animal. The recent positional cloning and localization of the golden gene, combined with genotype-phenotype correlations of alleles of its human orthologue (SLC24A5) in African-American and African-Caribbean populations, provide insights into the genetic and molecular basis of human skin colour. SLC24A5 promotes melanin deposition through maturation of the melanosome, highlighting the importance of ion-exchange in the function of this organelle.

  18. UV exposure modulates hemidesmosome plasticity, contributing to long-term pigmentation in human skin.

    PubMed

    Coelho, Sergio G; Valencia, Julio C; Yin, Lanlan; Smuda, Christoph; Mahns, Andre; Kolbe, Ludger; Miller, Sharon A; Beer, Janusz Z; Zhang, Guofeng; Tuma, Pamela L; Hearing, Vincent J

    2015-05-01

    Human skin colour, ie pigmentation, differs widely among individuals, as do their responses to various types of ultraviolet radiation (UV) and their risks of skin cancer. In some individuals, UV-induced pigmentation persists for months to years in a phenomenon termed long-lasting pigmentation (LLP). It is unclear whether LLP is an indicator of potential risk for skin cancer. LLP seems to have similar features to other forms of hyperpigmentation, eg solar lentigines or age spots, which are clinical markers of photodamage and risk factors for precancerous lesions. To investigate what UV-induced molecular changes may persist in individuals with LLP, clinical specimens from non-sunburn-inducing repeated UV exposures (UVA, UVB or UVA + UVB) at 4 months post-exposure (short-term LLP) were evaluated by microarray analysis and dataset mining. Validated targets were further evaluated in clinical specimens from six healthy individuals (three LLP+ and three LLP-) followed for more than 9 months (long-term LLP) who initially received a single sunburn-inducing UVA + UVB exposure. The results support a UV-induced hyperpigmentation model in which basal keratinocytes have an impaired ability to remove melanin that leads to a compensatory mechanism by neighbouring keratinocytes with increased proliferative capacity to maintain skin homeostasis. The attenuated expression of SOX7 and other hemidesmosomal components (integrin α6β4 and plectin) leads to increased melanosome uptake by keratinocytes and points to a spatial regulation within the epidermis. The reduced density of hemidesmosomes provides supporting evidence for plasticity at the epidermal-dermal junction. Altered hemidesmosome plasticity, and the sustained nature of LLP, may be mediated by the role of SOX7 in basal keratinocytes. The long-term sustained subtle changes detected are modest, but sufficient to create dramatic visual differences in skin colour. These results suggest that the hyperpigmentation phenomenon

  19. Skin infections in young people (aged 14-18 years): an integrative review.

    PubMed

    Lambe, Catherine I; Hoare, Karen J

    2014-06-01

    Skin infections are a major cause of preventable hospitalization, with young people being particularly susceptible. Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infection typically presents as skin infection. CA-MRSA infection rates have increased rapidly in the past decade. Exploration of literature specific to young people aged 14-18 years is therefore timely. Integrative review using the methods described by Whittemore and Knafl was undertaken. Electronic databases of Medline, CINAHL, Scopus, Cochrane Database of Systematic Reviews, and Google databases were searched for English-language articles published after 1990. Twenty primary studies were included and the findings are reported here. Data analysis revealed factors influencing skin infections in young people may be host-, transmission-, or pathogen-specific. Strategies to address host and transmission factors may be effective in controlling skin infection rates in young people. PMID:23945044

  20. Laser system for optical biopsy and in-vivo study of the human skin

    NASA Astrophysics Data System (ADS)

    Borisova, Ekaterina G.; Avramov, Lachezar A.

    2001-04-01

    The aim of this study was to perform a preliminary evaluation of the diagnostic potential of noninvasive laser-induced autofluorescence spectroscopy (LIAFS) for human skin in vivo. The autofluorescence characterization of tissue relies on different spectral properties of tissue. It was demonstrated a differentiation between normal skin and skin with vitaligo. In our experimental investigation of the autofluorescence spectrum of human skin in vivo a nitrogen laser with excitation wavelength 337 nm was used. Two fluorescence bands were observed at 440 and 490 nm, these were attributed to reduced nicotinamide adenine dinucleotide (NADH) and collagen. The intensity of the NADH emission band was markedly reduced in the skin with vitaligo compared with the normal skin, which could indicate different redox conditions in skin with vitaligo. The autofluorescence spectrum of human skin depends on the main internal absorbers, which are blood and melanin. In this study was described the effect caused by melanin content on the shape of the autofluorescence spectrum of human skin. Human skin fluorescence spectrum might provide dermatologists with important information and such investigations are successfully used now in skin disease diagnostics, in investigation of the environmental factor impact or for evaluation of treatment efficiency. The goal of this work is optimization of detection and diagnosis of hollow organs and skin.

  1. In vivo skin analysis (INSA) for quantitative determination of lotion transfer to human skin.

    PubMed

    Ebrahimpour, Arman; Ullman, Alan H

    2009-01-01

    There is a need during the development of cosmetic and skin products for simple, quantitative, noninvasive measurements of product deposition onto skin. In this article we describe INSA (in vivo skin analysis) as such a method for measuring the amount of lotion transferred to the skin from tissue products. Using Fourier transform infrared spectroscopy with an attenuated total reflectance (ATR FT-IR) sampling accessory, we were able to quantify lotion levels on the arms of subjects in minutes.

  2. In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment.

    PubMed

    Dąbrowska, Agnieszka K; Adlhart, Christian; Spano, Fabrizio; Rotaru, Gelu-Marius; Derler, Siegfried; Zhai, Lina; Spencer, Nicholas D; Rossi, René M

    2016-01-01

    The skin properties, structure, and performance can be influenced by many internal and external factors, such as age, gender, lifestyle, skin diseases, and a hydration level that can vary in relation to the environment. The aim of this work was to demonstrate the multifaceted influence of water on human skin through a combination of in vivo confocal Raman spectroscopy and images of volar-forearm skin captured with the laser scanning confocal microscopy. By means of this pilot study, the authors have both qualitatively and quantitatively studied the influence of changing the depth-dependent hydration level of the stratum corneum (SC) on the real contact area, surface roughness, and the dimensions of the primary lines and presented a new method for characterizing the contact area for different states of the skin. The hydration level of the skin and the thickness of the SC increased significantly due to uptake of moisture derived from liquid water or, to a much lesser extent, from humidity present in the environment. Hydrated skin was smoother and exhibited higher real contact area values. The highest rates of water uptake were observed for the upper few micrometers of skin and for short exposure times. PMID:27634368

  3. In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment.

    PubMed

    Dąbrowska, Agnieszka K; Adlhart, Christian; Spano, Fabrizio; Rotaru, Gelu-Marius; Derler, Siegfried; Zhai, Lina; Spencer, Nicholas D; Rossi, René M

    2016-01-01

    The skin properties, structure, and performance can be influenced by many internal and external factors, such as age, gender, lifestyle, skin diseases, and a hydration level that can vary in relation to the environment. The aim of this work was to demonstrate the multifaceted influence of water on human skin through a combination of in vivo confocal Raman spectroscopy and images of volar-forearm skin captured with the laser scanning confocal microscopy. By means of this pilot study, the authors have both qualitatively and quantitatively studied the influence of changing the depth-dependent hydration level of the stratum corneum (SC) on the real contact area, surface roughness, and the dimensions of the primary lines and presented a new method for characterizing the contact area for different states of the skin. The hydration level of the skin and the thickness of the SC increased significantly due to uptake of moisture derived from liquid water or, to a much lesser extent, from humidity present in the environment. Hydrated skin was smoother and exhibited higher real contact area values. The highest rates of water uptake were observed for the upper few micrometers of skin and for short exposure times.

  4. Premature skin aging features rescued by inhibition of NADPH oxidase activity in XPC-deficient mice.

    PubMed

    Hosseini, Mohsen; Mahfouf, Walid; Serrano-Sanchez, Martin; Raad, Houssam; Harfouche, Ghida; Bonneu, Marc; Claverol, Stephane; Mazurier, Frederic; Rossignol, Rodrigue; Taieb, Alain; Rezvani, Hamid Reza

    2015-04-01

    Xeroderma pigmentosum type C (XP-C) is characterized mostly by a predisposition to skin cancers and accelerated photoaging, but little is known about premature skin aging in this disease. By comparing young and old mice, we found that the level of progerin and p16(INK4a) expression, β-galactosidase activity, and reactive oxygen species, which increase with age, were higher in young Xpc(-/-) mice than in young Xpc(+/+) ones. The expression level of mitochondrial complexes and mitochondrial functions in the skin of young Xpc(-/-) was as low as in control aged Xpc(+/+)animals. Furthermore, the metabolic profile in young Xpc(-/-) mice resembled that found in aged Xpc(+/+) mice. Furthermore, premature skin aging features in young Xpc(-/-) mice were mostly rescued by inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) activity by using a NOX1 peptide inhibitor, suggesting that the continuous oxidative stress due to overactivation of NOX1 has a causative role in the underlying pathophysiology. PMID:25437426

  5. Study on radiation transfer in human skin for cosmetics

    NASA Astrophysics Data System (ADS)

    Yamada, Jun; Kawamura, Ayumu; Miura, Yoshimasa; Takata, Sadaki; Ogawa, Katsuki

    2005-06-01

    In order to design cosmetics producing the optical properties that are required for a beautiful skin, the radiation transfer in the skin has been numerically investigated by the Monte Carlo method and the effects of skin texture and cosmetics on the radiation transfer have been empirically investigated using an artificial skin. The numerical analysis showed that the total internal reflection suppresses large portion of radiation going out through the skin surface Additionally, the experimental study revealed that skin texture and cosmetics not only diffusely reflect the incoming radiation, but also lead the internally reflected radiation to the outside of the skin.

  6. Skin Concentrations of Topically Applied Substances in Reconstructed Human Epidermis (RHE) Compared with Human Skin Using in vivo Confocal Raman Microscopy.

    PubMed

    Fleischli, Franziska D; Morf, Fabienne; Adlhart, Christian

    2015-01-01

    Detailed knowledge about the skin concentration of topically applied substances is important to understand their local pharmacological activity. In particular since in vitro models of reconstructed human epidermis are increasingly used as models for diseased skin. In general, diffusion cell experiments are performed to determine the diffusion flux of test substances through either skin models or excised skin both from humans and animals. Local concentrations of the test substances within the skin are then calculated applying diffusion laws and suitable boundary conditions. In this study we used a direct approach to reveal the local concentrations of test substances within skin using confocal Raman microscopy. This non-invasive method can also be applied in vivo and therefore we directly compared in vivo concentrations with those obtained from commercially available reconstructed human epidermis (RHE). Hydrophilic and lipophilic test substances with log Pow from -0.07 to 5.91 were topically applied on human skin in vivo and RHE from SkinEthic was used as the commercial skin model. Local concentration profiles in the stratum corneum (SC) showed substantial differences between the RHE model and the in vivo situation. Differences between RHE models and human skin in vivo were also observed in their molecular composition, in particular in terms of their water profile, lipid content and the presence of natural moisturizing factor (NMF). Confocal Raman is shown to be a powerful non-invasive method for qualitative and quantitative comparative studies between RHE models and human skin in vivo. This method can also be applied to validate RHE models for future use in clinical studies. PMID:26507219

  7. Daily intake of Jeju groundwater improves the skin condition of the model mouse for human atopic dermatitis.

    PubMed

    Tanaka, Akane; Jung, Kyungsook; Matsuda, Akira; Jang, Hyosun; Kajiwara, Naoki; Amagai, Yosuke; Oida, Kumiko; Ahn, Ginnae; Ohmori, Keitaro; Kang, Kyung-goo; Matsuda, Hiroshi

    2013-03-01

    Drinking water is an important nutrient for human health. The mineral ingredients included in drinking water may affect the physical condition of people. Various kinds of natural water are in circulation as bottled water in developed countries; however, its influence on clinical conditions of patients with certain diseases has not been fully evaluated. In this study, effects of the natural groundwater from Jeju Island on clinical symptoms and skin barrier function in atopic dermatitis (AD) were evaluated. NC/Tnd mice, a model for human AD, with moderate to severe dermatitis were used. Mice were given different natural groundwater or tap water for 8 weeks from 4 weeks of age. Clinical skin severity scores were recorded every week. Scratching analysis and measurement of transepidermal water loss were performed every other week. The pathological condition of the dorsal skin was evaluated histologically. Real-time polymerase chain reaction analysis was performed for cytokine expression in the affected skin. The epidermal hyperplasia and allergic inflammation were reduced in atopic mice supplied with Jeju groundwater when compared to those supplied with tap water or other kinds of natural groundwater. The increase in scratching behavior with the aggravation of clinical severity of dermatitis was favorably controlled. Moreover, transepidermal water loss that reflects skin barrier function was recovered. The early inflammation and hypersensitivity in the atopic skin was alleviated in mice supplied with Jeju groundwater, suggesting its profitable potential on the daily care of patients with skin troubles including AD.

  8. Skin-identical lipids versus petrolatum in the treatment of tape-stripped and detergent-perturbed human skin.

    PubMed

    Lodén, M; Bárány, E

    2000-01-01

    The cutaneous permeability barrier is localized to the stratum corneum interstices and is mediated by lamellar bilayers enriched in cholesterol, free fatty acids and ceramides. Topically applied lipids may interfere with the skin barrier function and formulations containing "skin-identical lipids" have been suggested to facilitate normalization of damaged skin. The aim of the present study was to compare the ability of "skin-identical lipids" in a petrolatum-rich cream base and pure petrolatum to facilitate barrier repair in detergent- and tape-stripped-perturbed human skin. Barrier recovery and inflammation were instrumentally monitored for 14 days as transepidermal water loss and skin blood flow, using an Evaporimeter and a laser Doppler flowmeter, respectively. Treatment with the 2 different products gave no indication that "skin-identical lipids" in a cream base are more efficient than pure petrolatum at promoting normalization in either of the 2 experimentally perturbed areas. This finding may support the hypothesis that different types of skin abnormality should be treated according to the underlying damage.

  9. Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.; Aziz, David J.; Gmitro, Arthur F.; Kerr, James H.; O'Grady, Terence C.; Goldman, Leon

    1997-10-01

    The use of reflected light confocal microscopy is proposed to rapidly observe unfixed, unstained biopsy specimens of human skin. Reflected light laser scanning confocal microscopy was used to compare a freshly excised, unfixed, unstained biopsy specimen, and in vivo human skin. Optical sections from the ex vivo biopsy specimen of human skin and in vivo human skin were converted to red-green anaglyphs for 3D visualization. Contrast was derived from intrinsic differences in the scattering properties of the organelles and cells within the tissue. Individual cellular layers were observed in both tissues from the surface to the papillary dermis. Confocal microscopy of an unfixed, unstained biopsy specimen showed cells and cell nuclei of the stratum spinosum. Confocal microscopy of in vivo human skin demonstrated optical sectioning through a hair shaft on the upper hand. The combination of reflected light confocal microscopy and 3D visualization with red-green anaglyphs provides a rapid technique for observing fresh biopsies of human skin.

  10. Effect of botanicals on inflammation and skin aging: analyzing the evidence.

    PubMed

    Suggs, Amanda; Oyetakin-White, Patricia; Baron, Elma D

    2014-01-01

    The skin and its immune system manifest a decline in physiologic function as it undergoes aging. External insults such as ultraviolet light exposure cause inflammation, which may enhance skin aging even further leading to cancer and signs of photoaging. There is a potential role for botanicals as an adjunct modality in the prevention of skin aging. Numerous over-the-counter anti-aging products are commercially available, many of which boast unverified claims to reduce stress, inflammation and correct signs of aging. In this article we reviewed the scientific literature for data on frequently published "anti-inflammaging" additives such as vitamins A, C and E and green tea. We also analyzed the evidence available on five promising ingredients commonly found in anti-aging products, namely, argan oil, rosemary, pomegranate, Coenzyme Q10, and Coffeeberry. Though there may be an increasing amount of scientific data on a few of these novel botanicals, in general, there remains a lack of clinical data to support the anti-aging claims made.

  11. Is rate of skin wound healing associated with aging or longevity phenotype?

    PubMed

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Fraifeld, Vadim E

    2011-12-01

    Wound healing (WH) is a fundamental biological process. Is it associated with a longevity or aging phenotype? In an attempt to answer this question, we compared the established mouse models with genetically modified life span and also an altered rate of WH in the skin. Our analysis showed that the rate of skin WH in advanced ages (but not in the young animals) may be used as a marker for biological age, i.e., to be indicative of the longevity or aging phenotype. The ability to preserve the rate of skin WH up to an old age appears to be associated with a longevity phenotype, whereas a decline in WH-with an aging phenotype. In the young, this relationship is more complex and might even be inversed. While the aging process is likely to cause wounds to heal slowly, an altered WH rate in younger animals could indicate a different cellular proliferation and/or migration capacity, which is likely to affect other major processes such as the onset and progression of cancer. As a point for future studies on WH and longevity, using only young animals might yield confusing or misleading results, and therefore including older animals in the analysis is encouraged.

  12. Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements

    SciTech Connect

    Wharton, W.

    1984-01-01

    Cultures of human fibroblasts were prepared from chest skin obtained either from newborns (less than 3 months old) or adults (more than 35 years old) and maintained in vitro until they senesced. Adult cells grew logarithmically in medium supplemented with whole blood serum but not with platelet-poor plasma. Early passage cells obtained from newborns grew equally well in either plasma- or serum-supplemented medium. The difference in growth factor requirements between adult and newborn cells persisted through the lifespan of the cells; i.e., newborn cells did not develop adult hormonal requirements when maintained in culture. Thus, in vitro cellular aging can be distinguished from some types of differentiation.

  13. Porphyrin Metabolisms in Human Skin Commensal Propionibacterium acnes Bacteria: Potential Application to Monitor Human Radiation Risk

    PubMed Central

    Shu, M.; Kuo, S.; Wang, Y.; Jiang, Y.; Liu, Y.-T.; Gallo, R.L.; Huang, C.-M.

    2013-01-01

    Propionibacterium acnes (P. acnes), a Gram-positive anaerobic bacterium, is a commensal organism in human skin. Like human cells, the bacteria produce porphyrins, which exhibit fluorescence properties and make bacteria visible with a Wood’s lamp. In this review, we compare the porphyrin biosynthesis in humans and P. acnes. Also, since P. acnes living on the surface of skin receive the same radiation exposure as humans, we envision that the changes in porphyrin profiles (the absorption spectra and/or metabolism) of P. acnes by radiation may mirror the response of human cells to radiation. The porphyrin profiles of P. acnes may be a more accurate reflection of radiation risk to the patient than other biodosimeters/biomarkers such as gene up-/down-regulation, which may be non-specific due to patient related factors such as autoimmune diseases. Lastly, we discuss the challenges and possible solutions for using the P. acnes response to predict the radiation risk. PMID:23231351

  14. Atomic hydrogen surrounded by water molecules, H(H2O)m, modulates basal and UV-induced gene expressions in human skin in vivo.

    PubMed

    Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho

    2013-01-01

    Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging.

  15. In vivo transformation of human skin with human papillomavirus type 11 from condylomatot acuminata

    SciTech Connect

    Kreider, J.W.; Howett, M.K.; Lill, N.L.; Bartlett, G.L.; Zaino, R.J.; Sedlacek, T.V.; Mortel, R.

    1986-08-01

    Human papillomaviruses (HPVs) have been implicated in the development of a number of human malignancies, but direct tests of their involvement have not been possible. The authors describe a system in which human skin from various skin from various sites was infected with HPV type 11 (HPV-11) extracted from vulvar condylomata and was grafted beneath the renal capsule of athymic mice. Most of the skin grafts so treated underwent morphological transformation, resulting in the development of condylomata identical to those which occur spontaneously in patients. Foreskins responded with the most vigorous proliferative response to HPV-11. The lesions produced the characteristic intranuclear group-specific antigen of papillomaviruses. Both dot blot and Southern blot analysis of DNA from the lesions revealed the presence of HPV-11 DNA in the transformed grafts. These results demonstrate the first laboratory system for the study of the interaction of human skin with an HPV. The method may be useful in understanding the mechanisms of HPV transformation and replication and is free of the ethical restraints which have impeded study. This system will allow the direct study of factors which permit neoplastic progression of HPV-induced cutaneous lesions in human tissues.

  16. The Development of Skin Conductance Fear Conditioning in Children from Ages 3 to 8 Years

    ERIC Educational Resources Information Center

    Gao, Yu; Raine, Adrian; Venables, Peter H.; Dawson, Michael E.; Mednick, Sarnoff A.

    2010-01-01

    Although fear conditioning is an important psychological construct implicated in behavioral and emotional problems, little is known about how it develops in early childhood. Using a differential, partial reinforcement conditioning paradigm, this longitudinal study assessed skin conductance conditioned responses in 200 children at ages 3, 4, 5, 6,…

  17. In vivo optical elastography: stress and strain imaging of human skin lesions

    NASA Astrophysics Data System (ADS)

    Es'haghian, Shaghayegh; Gong, Peijun; Kennedy, Kelsey M.; Wijesinghe, Philip; Sampson, David D.; McLaughlin, Robert A.; Kennedy, Brendan F.

    2015-03-01

    Probing the mechanical properties of skin at high resolution could aid in the assessment of skin pathologies by, for example, detecting the extent of cancerous skin lesions and assessing pathology in burn scars. Here, we present two elastography techniques based on optical coherence tomography (OCT) to probe the local mechanical properties of skin. The first technique, optical palpation, is a high-resolution tactile imaging technique, which uses a complaint silicone layer positioned on the tissue surface to measure spatially-resolved stress imparted by compressive loading. We assess the performance of optical palpation, using a handheld imaging probe on a skin-mimicking phantom, and demonstrate its use on human skin. The second technique is a strain imaging technique, phase-sensitive compression OCE that maps depth-resolved mechanical variations within skin. We show preliminary results of in vivo phase-sensitive compression OCE on a human skin lesion.

  18. Invited review: aging and human temperature regulation.

    PubMed

    Kenney, W Larry; Munce, Thayne A

    2003-12-01

    This mini-review focuses on the effects of aging on human temperature regulation. Although comprehensive reviews have been published on this topic (Kenney WL. Exercise and Sport Sciences Reviews, Baltimore: Williams & Wilkins, 1997, p. 41-76; Pandolf KB. Exp Aging Res 17: 189-204, 1991; Van Someren EJ, Raymann RJ, Scherder EJ, Daanen HA, and Swaab DF. Ageing Res Rev 1: 721-778, 2002; and Young AJ. Exp Aging Res 17: 205-213, 1991), this mini-review concisely summarizes the present state of knowledge about human temperature regulation and aging in thermoneutral conditions, as well as during hypo- and hyperthermic challenges. First, we discuss age-related effects on baseline body core temperature and phasing rhythms of the circadian temperature cycle. We then examine the altered physiological responses to cold stress that result from aging, including attenuated peripheral vasoconstriction and reduced cold-induced metabolic heat production. Finally, we present the age-related changes in sweating and cardiovascular function associated with heat stress. Although epidemiological evidence of increased mortality among older adults from hypo- and hyperthermia exists, this outcome does not reflect an inability to thermoregulate with advanced age. In fact, studies that have attempted to separate the effects of chronological age from concurrent factors, such as fitness level, body composition, and the effects of chronic disease, have shown that thermal tolerance appears to be minimally compromised by age.

  19. Nature versus nurture: does human skin maintain its stratum corneum lipid properties in vitro?

    PubMed

    Thakoersing, Varsha S; Danso, Mogbekeloluwa O; Mulder, Aat; Gooris, Gerrit; El Ghalbzouri, Abdoelwaheb; Bouwstra, Joke A

    2012-11-01

    Human skin equivalents (HSEs) mimic human skin closely, but show differences in their stratum corneum (SC) lipid properties. The aim of this study was to determine whether isolation of primary cells, which is needed to generate HSEs, influence the SC lipid properties of HSEs. For this purpose, we expanded explants of intact full thickness human skin and isolated epidermal sheets in vitro. We investigated whether their outgrowths maintain barrier properties of human skin. The results reveal that the outgrowths and human skin have a similar morphology and expression of several differentiation markers, except for an increased expression of keratin 16 and involucrin. The outgrowths show a decreased SC fatty acid content compared with human skin. Additionally, SC lipids of the outgrowths have a predominantly hexagonal packing, whereas human skin has the dense orthorhombic packing. Furthermore, the outgrowths have lipid lamellae with a slightly reduced periodicity compared with human skin. These results demonstrate that the outgrowths do not maintain all properties observed in human skin, indicating that changes in properties of HSEs are not caused by isolation of primary cells, but by culture conditions.

  20. Nature versus nurture: does human skin maintain its stratum corneum lipid properties in vitro?

    PubMed

    Thakoersing, Varsha S; Danso, Mogbekeloluwa O; Mulder, Aat; Gooris, Gerrit; El Ghalbzouri, Abdoelwaheb; Bouwstra, Joke A

    2012-11-01

    Human skin equivalents (HSEs) mimic human skin closely, but show differences in their stratum corneum (SC) lipid properties. The aim of this study was to determine whether isolation of primary cells, which is needed to generate HSEs, influence the SC lipid properties of HSEs. For this purpose, we expanded explants of intact full thickness human skin and isolated epidermal sheets in vitro. We investigated whether their outgrowths maintain barrier properties of human skin. The results reveal that the outgrowths and human skin have a similar morphology and expression of several differentiation markers, except for an increased expression of keratin 16 and involucrin. The outgrowths show a decreased SC fatty acid content compared with human skin. Additionally, SC lipids of the outgrowths have a predominantly hexagonal packing, whereas human skin has the dense orthorhombic packing. Furthermore, the outgrowths have lipid lamellae with a slightly reduced periodicity compared with human skin. These results demonstrate that the outgrowths do not maintain all properties observed in human skin, indicating that changes in properties of HSEs are not caused by isolation of primary cells, but by culture conditions. PMID:23163653

  1. Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering

    PubMed Central

    Willard, James J.; Drexler, Jason W.; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded

    2013-01-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  2. Flagellin Delivery by Pseudomonas aeruginosa Rhamnolipids Induces the Antimicrobial Protein Psoriasin in Human Skin

    PubMed Central

    Meyer-Hoffert, Ulf; Zimmermann, Alexandra; Czapp, Manfred; Bartels, Joachim; Koblyakova, Yulia; Gläser, Regine; Schröder, Jens-Michael; Gerstel, Ulrich

    2011-01-01

    The opportunistic pathogen Pseudomonas aeruginosa can cause severe infections in patients suffering from disruption or disorder of the skin barrier as in burns, chronic wounds, and after surgery. On healthy skin P. aeruginosa causes rarely infections. To gain insight into the interaction of the ubiquitous bacterium P. aeruginosa and healthy human skin, the induction of the antimicrobial protein psoriasin by P. aeruginosa grown on an ex vivo skin model was analyzed. We show that presence of the P. aeruginosa derived biosurfactant rhamnolipid was indispensable for flagellin-induced psoriasin expression in human skin, contrary to in vitro conditions. The importance of the bacterial virulence factor flagellin as the major inducing factor of psoriasin expression in skin was demonstrated by use of a flagellin-deficient mutant. Rhamnolipid mediated shuttle across the outer skin barrier was not restricted to flagellin since rhamnolipids enable psoriasin expression by the cytokines IL-17 and IL-22 after topical application on human skin. Rhamnolipid production was detected for several clinical strains and the formation of vesicles was observed under skin physiological conditions. In conclusion we demonstrate herein that rhamnolipids enable the induction of the antimicrobial protein psoriasin by flagellin in human skin without direct contact of bacteria and responding cells. Hereby, human skin might control the microflora to prevent colonization of unwanted microbes in the earliest steps before potential pathogens can develop strategies to subvert the immune response. PMID:21283546

  3. Isolation and characterization of migratory human skin dendritic cells.

    PubMed Central

    Richters, C D; Hoekstra, M J; van Baare, J; Du Pont, J S; Hoefsmit, E C; Kamperdijk, E W

    1994-01-01

    A method is described to isolate and characterize human skin dendritic cells (DC). This method is based on the migratory capacities of these cells. The cells migrated 'spontaneously' out of split-skin explants into the medium during a 24-h culture period and contained up to 75% CD1a+ cells. After removal of co-migrated T cells and macrophages, the highly enriched (> 95% CD1a+) DC showed potent allo-antigen-presenting capacities. About 25% of the CD1a+ cells were also positive for the dermal DC marker CD1b, whereas only 15-20% of the cells contained Birbeck granules, the characteristic cell organelle of the epidermal Langerhans cell. Before culture, CD1a+ DC were observed on cryostat sections not only in the epidermis but also in the dermis. After culture, the number of CD1a+ cells in both epidermis and dermis had decreased. Not all the cells had migrated during the culture period; some CD1a+ cells could still be detected in the epidermis and dermis after culture. Thus, using this method, potent allo-stimulating CD1a+ cells, migrating from both epidermis and dermis, can be obtained without the use of enzymes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7955541

  4. Human exposure to tetrachloroethylene: Inhalation and skin contact

    PubMed Central

    Hake, Carl L.; Stewart, Richard D.

    1977-01-01

    There is considerable potential for worker exposure to tetrachloroethylene, both by skin contact and by inhalation, during its use in dry cleaning and degreasing operations. This paper reviews accounts of both accidental overexposures of workers and controlled exposures of human subjects by these two routes of exposure. Several reported cases of accidental overexposure to anesthetic doses of the chemical reveal that recovery was generally complete but prolonged, and accompanied by many days of measurable levels of the chemical in the patient's alveolar breath. Chronic overexposures of workmen have lessened since the general acceptance by the Western world of the recommended TLV of 100 ppm for 8 hr of daily exposure. Controlled inhalation studies with volunteer subjects at this level of exposure revealed no effects upon health but did indicate a slight decrement in performance on a coordination test. Additional behavioral and neurological tests revealed no interactive effects when alcohol or diazepam, two depressant drugs, were added singly to tetrachloroethylene exposures. Individual susceptibility to the vapor of this chemical, as evidenced by subjective complaints, was noted in approximately one of ten subjects. The authors conclude that the TLV concentration of 100 ppm in the workplace has a negligible margin of safety regarding unimpaired performance during repeated exposures which could be especially hazardous if the worker is physically active or is in a situation where skin absorption presents an added burden. PMID:612448

  5. Advanced UV Absorbers for the Protection of Human Skin.

    PubMed

    Hüglin, Dietmar

    2016-01-01

    The increasing awareness of the damaging effects of UV radiation to human skin triggered the market introduction of new cosmetic UV absorbers. This article summarizes the outcome of a multi-year research program, in which the author contributed to the development of different new UV filters. First of all, the molecular design and the basic properties of bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT) will be presented. This oil-soluble filter, which today is widely used in both beach products and skin care products, exhibits inherent photostability and strong broad-spectrum UV-A+B absorbance. Based on the concept of micronized organic UV absorbers, the UV-B filter tris biphenyl triazine (TBPT) will be introduced. At present TBPT exhibits the highest efficacy of all cosmetic UV absorbers in the market (measured by area under the UV spectrum). Finally, the concept of liposomogenic UV absorbers will be featured. This approach was developed to create water-resistant UV filters, as liposomogenic structures are thought to integrate into the lipids of the horny layer. Due to prohibitively high costs, this technology did not result in a commercial product so far. PMID:27561611

  6. Respiratory activity and growth of human skin derma fibroblasts.

    PubMed

    Papa, F; Scacco, S; Vergari, R; Bucaria, V; Dioguardi, D; Papa, S

    1998-09-01

    A study has been made on the speed of growth and respiratory activity of fibroblast cultures from control derma, cheloid (hypertrophic) scar and stabilized scar taken from human skin. The speed of growth and the efficiency of plaque formation of fibroblasts from cheloid scar were greater in comparison with those of fibroblasts from stabilized scar and were stimulated by the addition to the culture medium of the exudate from post-traumatic ulcer. Measurement of the contents of cytochromes showed a decrease in the content of cytochromes b562 and c + c1 in the fibroblast culture from both cheloid and stabilized scar as compared to the fibroblast culture from control derma. Cytochrome aa3 content did not show significant difference among the three types of fibroblast cultures. The respiratory activities supported by pyruvate plus malate, succinate or ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine did not show, however, significant difference among the three fibroblast cultures. These observations show that the speed of growth of skin fibroblasts does not depend on the overall respiratory capacity. The exudate stimulated the activity of cytochrome c oxidase in fibroblasts from control derma, and cheloid scar. This effect and the accompanying stimulation of fibroblast growth might be correlated with the balance of oxygen free radicals.

  7. Advanced UV Absorbers for the Protection of Human Skin.

    PubMed

    Hüglin, Dietmar

    2016-01-01

    The increasing awareness of the damaging effects of UV radiation to human skin triggered the market introduction of new cosmetic UV absorbers. This article summarizes the outcome of a multi-year research program, in which the author contributed to the development of different new UV filters. First of all, the molecular design and the basic properties of bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT) will be presented. This oil-soluble filter, which today is widely used in both beach products and skin care products, exhibits inherent photostability and strong broad-spectrum UV-A+B absorbance. Based on the concept of micronized organic UV absorbers, the UV-B filter tris biphenyl triazine (TBPT) will be introduced. At present TBPT exhibits the highest efficacy of all cosmetic UV absorbers in the market (measured by area under the UV spectrum). Finally, the concept of liposomogenic UV absorbers will be featured. This approach was developed to create water-resistant UV filters, as liposomogenic structures are thought to integrate into the lipids of the horny layer. Due to prohibitively high costs, this technology did not result in a commercial product so far.

  8. Transplantation of human skin microbiota in models of atopic dermatitis

    PubMed Central

    Myles, Ian A.; Williams, Kelli W.; Reckhow, Jensen D.; Jammeh, Momodou L.; Pincus, Nathan B.; Sastalla, Inka; Saleem, Danial; Stone, Kelly D.; Datta, Sandip K.

    2016-01-01

    Atopic dermatitis (AD) is characterized by reduced barrier function, reduced innate immune activation, and susceptibility to Staphylococcus aureus. Host susceptibility factors are suggested by monogenic disorders associated with AD-like phenotypes and can be medically modulated. S. aureus contributes to AD pathogenesis and can be mitigated by antibiotics and bleach baths. Recent work has revealed that the skin microbiome differs significantly between healthy controls and patients with AD, including decreased Gram-negative bacteria in AD. However, little is known about the potential therapeutic benefit of microbiome modulation. To evaluate whether parameters of AD pathogenesis are altered after exposure to different culturable Gram-negative bacteria (CGN) collected from human skin, CGN were collected from healthy controls and patients with AD. Then, effects on cellular and culture-based models of immune, epithelial, and bacterial function were evaluated. Representative strains were evaluated in the MC903 mouse model of AD. We found that CGN taken from healthy volunteers but not from patients with AD were associated with enhanced barrier function, innate immunity activation, and control of S. aureus. Treatment with CGN from healthy controls improved outcomes in a mouse model of AD. These findings suggest that a live-biotherapeutic approach may hold promise for treatment of patients with AD. PMID:27478874

  9. Skin blood flow changes in anaesthetized humans: comparison between skin thermal clearance and finger pulse amplitude measurement.

    PubMed

    Saumet, J L; Leftheriotis, G; Dittmar, A; Delhomme, G; Degoute, C S

    1986-01-01

    The effect of general anaesthesia on skin blood flow in the left hand, measured by a new non-invasive probe using the thermal clearance method was examined. A mercury silastic gauge was placed around the third left finger and the plethysmographic wave amplitude was recorded to measure changes in finger pulse amplitude. Heart rate (HR), mean arterial blood pressure (MABP) and skin temperature were also recorded. General anaesthesia was induced by droperidol and phenoperidine injection and propanidid infusion in eight female patients. Skin thermal clearance, plethysmographic wave amplitude, HR, MABP and skin temperature were 0.40 +/- 0.02 w X m-1 degree C-1, 9 +/- 1 mm, 98 +/- 5 beats X min-1, 12.50 +/- 0.93 kPa and 33.3 +/- 3.4 degrees C respectively. The minimal value of MABP was 9.58 +/- 1.06 kPa, whereas skin thermal clearance, plethysmographic wave amplitude, HR and skin temperature increased to 0.45 +/- 0.02 w X m-1 degree C-1, 29 +/- 3 mm, 110 +/- 4 beats X min-1 and 34.4 +/- 0.4 degrees C. Changes in skin thermal clearance correlated well with plethysmographic wave amplitude. Statistically significant changes in these two parameters occurred before significant change in HR, MABP or skin temperature. The results show that the new non-invasive probe using the thermal clearance method appears to be a useful device for measuring cutaneous microcirculation in anaesthetized humans, and responds more quickly than change in skin temperature, which is a delayed effect of skin blood flow change. Our results also show that the intensity of cutaneous vasodilatation induced by general anaesthesia did not relate to the vascular tone before anaesthesia.

  10. Penetration of the fragrance compounds, cinnamaldehyde and cinnamyl alcohol, through human skin in vitro.

    PubMed

    Weibel, H; Hansen, J

    1989-03-01

    The delivery of cinnamaldehyde and cinnamyl alcohol in fragrance through human skin has been investigated by in vitro penetration studies using full thickness human skin. Cinnamaldehyde was transformed to cinnamyl alcohol and cinnamic acid in the skin. The transformation took place in model protein solution, bovine serum albumin, as well as in skin homogenates. After conjugation of cinnamaldehyde with the protein, a lag time was observed after which cinnamyl alcohol and cinnamic acid were released. On the other hand, cinnamyl alcohol was not transformed in detectable amounts to either cinnamaldehyde or cinnamic acid during penetration of the skin.

  11. Melanin and blood concentration in human skin studied by multiple regression analysis: experiments

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.

    2001-09-01

    Knowledge of the mechanism of human skin colour and measurement of melanin and blood concentration in human skin are needed in the medical and cosmetic fields. The absorbance spectrum from reflectance at the visible wavelength of human skin increases under several conditions such as a sunburn or scalding. The change of the absorbance spectrum from reflectance including the scattering effect does not correspond to the molar absorption spectrum of melanin and blood. The modified Beer-Lambert law is applied to the change in the absorbance spectrum from reflectance of human skin as the change in melanin and blood is assumed to be small. The concentration of melanin and blood was estimated from the absorbance spectrum reflectance of human skin using multiple regression analysis. Estimated concentrations were compared with the measured one in a phantom experiment and this method was applied to in vivo skin.

  12. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation

    PubMed Central

    Amaro-Ortiz, Alexandra; Yan, Betty; D’Orazio, John A.

    2015-01-01

    Being the largest and most visible organ of the body and heavily influenced by environmental factors, skin is ideal to study long-term effects of aging. Throughout our lifetime, we accumulate damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing incidence over the last several decades. Melanoma incidence is directly related to age, with highest rates in individuals over the age of 55 years, making it a clear age-related disease. In this review, we will focus on UV-induced carcinogenesis and photo aging along with natural protective mechanisms that reduce amount of “realized” solar radiation dose and UV-induced injury. We will focus on the theoretical use of forskolin, a plant-derived pharmacologically active compound to protect the skin against UV injury and prevent aging symptoms by up-regulating melanin production. We will discuss its use as a topically-applied root-derived formulation of the Plectranthus barbatus (Coleus forskolii) plant that grows naturally in Asia and that has long been used in various Aryuvedic teas and therapeutic preparations. PMID:24838074

  13. Elderly and sun-affected skin. Distinguishing between changes caused by aging and changes caused by habitual exposure to sun.

    PubMed Central

    Jackson, R.

    2001-01-01

    OBJECTIVE: To review and distinguish between skin changes produced by aging and changes produced by habitual exposure to sun. QUALITY OF EVIDENCE: The literature was searched from 1969 to 1999 for articles on dermatoheliosis and sun-damaged skin. Surprisingly few were found comparing the difference between elderly skin and sun-damaged skin. A few articles focused on certain small aspects of sun-damaged skin. Many excellent articles described particular changes (e.g., actinic keratosis), but few covered all the changes due to aging and to sun. MAIN MESSAGE: Skin changes due to aging can be distinguished from those due to sun damage. All changes due to sun exposure can be grouped under the term dermatoheliosis; five parts of the skin are involved: epidermis (actinic keratosis), dermis (solar elastosis), blood vessels (telangiectasia), sebaceous glands (solar comedones), and melanocytes (diffuse or mottled brown patches). Habitual exposure to sun and a white skin are prerequisites for developing these changes. Knowing the difference between changes caused by sun and by aging can help physicians predict which patients are most likely to get skin cancers. CONCLUSION: Knowledge of these common skin changes will help physicians diagnose and manage the skin abnormalities of elderly people and of people with dermatoheliosis. PMID:11421052

  14. Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model.

    PubMed

    Lee, Jeong-Hyun; Kim, Hye-Lee; Lee, Mi Hee; You, Kyung Eun; Kwon, Byeong-Ju; Seo, Hyok Jin; Park, Jong-Chul

    2012-10-15

    Wound healing proceeds through a complex collaborative process involving many types of cells. Keratinocytes and fibroblasts of epidermal and dermal layers of the skin play prominent roles in this process. Asiaticoside, an active component of Centella asiatica, is known for beneficial effects on keloid and hypertrophic scar. However, the effects of this compound on normal human skin cells are not well known. Using in vitro systems, we observed the effects of asiaticoside on normal human skin cell behaviors related to healing. In a wound closure seeding model, asiaticoside increased migration rates of skin cells. By observing the numbers of cells attached and the area occupied by the cells, we concluded that asiaticoside also enhanced the initial skin cell adhesion. In cell proliferation assays, asiaticoside induced an increase in the number of normal human dermal fibroblasts. In conclusion, asiaticoside promotes skin cell behaviors involved in wound healing; and as a bioactive component of an artificial skin, may have therapeutic value.

  15. In vivo confocal Raman spectroscopy study of the vitamin A derivative perfusion through human skin

    NASA Astrophysics Data System (ADS)

    dos Santos, Laurita; Téllez Soto, Claudio A.; Favero, Priscila P.; Martin, Airton A.

    2016-03-01

    In vivo confocal Raman spectroscopy is a powerful non-invasive technique able to analyse the skin constituents. This technique was applied to transdermal perfusion studies of the vitamin A derivative in human skin. The composition of the stratum corneum (lipid bilayer) is decisive for the affinity and transport of the vitamin through skin. The vitamin A is significantly absorbed by human skin when applied with water in oil emulsion or hydro-alcoholic gel. The purpose of this study is to elucidate the behaviour of vitamin A derivative into human skin without the presence of enhancers. The results showed that the intensity band of the derivative (around 1600 cm-1), which represents the -C=O vibrational mode, was detected in different stratum corneum depths (up to 20 μm). This Raman peak of vitamin A derivative has non-coincident band with the Raman spectra of the skin epidermis, demonstrating that compound penetrated in forearm skin.

  16. Modeling and verification of melanin concentration on human skin type.

    PubMed

    Karsten, Aletta E; Smit, Jacoba E

    2012-01-01

    Lasers are used in the minimalistic or noninvasive diagnosis and treatment of skin disorders. Less laser light reaches the deeper skin layers in dark skin types, due to its higher epidermal melanin concentration compared with lighter skin. Laser-tissue interaction modeling software can correct for this by adapting the dose applied to the skin. This necessitates an easy and reliable method to determine the skin's type. Noninvasive measurement of the skin's melanin content is the best method. However, access to samples of all skin types is often limited and skin-like phantoms are used instead. This study's objective is to compare experimentally measured absorption features of liquid skin-like phantoms representing Skin Types I-VI with a realistic skin computational model component of ASAP(®). Sample UV-VIS transmittance spectra were measured from 370 to 900 nm and compared with simulated results from ASAP(®) using the same optical parameters. Results indicated nonmonotonic absorption features towards shorter wavelengths, which may allow for more accurate ways of determining melanin concentration and expected absorption through the epidermal layer. This suggests possible use in representing optical characteristics of real skin. However, a more comprehensive model and phantoms are necessary to account for the effects of sun exposure.

  17. Age peculiarities of human motor control in aging.

    PubMed

    Mankovsky, N B; Mints, A Y; Lisenyuk, V P

    1982-01-01

    A clinicophysiological investigation of motor control was carried out in 199 apparently healthy, socially active elderly (aged 60-69 years) and long-living (90 years and over) subjects in order to establish the peculiarities of the motor sphere specific to age-related changes of the nervous system. Analyzing the experimentally induced state of readiness (intention) before a spontaneous movement, we found an increase with age in the latent period of the muscle intentional activity (IA) parallel to an increase in the latent period of the spontaneous movement, a decrease in IA amplitude with more frequent structural deviations of the EMG in the prestarting period and a reduction of the required IA selectiveness. The described changes in the organization of readiness for a spontaneous movement seemed to be related with age impairment of supraspinal (mainly corticospinal) influences and may be used for an explanation of a number of clinical peculiarities of human motor control in late ontogenesis.

  18. Modulation of cell-phenotype during in vitro aging. Glycosaminoglycan biosynthesis by skin fibroblasts and corneal keratocytes.

    PubMed

    Isnard, N; Fodil, I; Robert, L; Renard, G

    2002-12-01

    The aim of this study was to compare keratocyte and fibroblast phenotypes during in vitro aging by comparing their biosynthesis of glycosaminoglycans using explant and cell cultures. Human skin and corneal explant cultures were realised with Dulbecco Modified Eagle's medium containing 3H glucosamine. Sequential cell cultures were studied at different passages for GAGs biosynthesis by 3H glucosamine incorporation followed by selective degradation with specific hydrolases. Radioactivity was determined and each GAG fraction evaluated. KS and DS are the major components synthesised by corneal explant culture. During in vitro aging, keratocytes synthesised 41% less KS between passages 4-9 with a decrease by 26% of the proportion of DS observed in the same conditions. In skin explant cultures, as expected the major components are CS and hyaluronan (HA). In the first cell passage studied compared with skin organ cultures we could notice a strong decrease of the proportions of DS and KS compensated by an increase of the proportion of HA. During the successive passages of fibroblasts, the proportions of DS and HS decreased (-30 and -62%, respectively) and those of KS increased (+90%). These results indicate that there remain measurable differences between keratocyte and fibroblast phenotypes as far as GAG-synthesis is concerned all though the successive passages, starting from explant cultures and up to the limits of in vitro cell passages.

  19. On-line detection of human skin vapors.

    PubMed

    Martínez-Lozano, Pablo; de la Mora, Juan Fernández

    2009-06-01

    Vapors released by the skin in the hand of one human subject are detected in real time by sampling them directly from the ambient gas surrounding the hand, ionizing them by secondary electrospray ionization (SESI, via contact with the charged cloud from an electrospray source), and analyzing them in a mass spectrometer with an atmospheric pressure source (API-MS). This gas-phase approach is complementary to alternative on-line surface ionization methods such as DESI and DART. A dominating peak of lactic acid and a complete series of saturated and singly unsaturated fatty acids (C(12) to C(18)) are observed, in accordance with previous off-line studies by gas chromatography-mass spectrometry. Several other metabolites have been identified, including ketomonocarboxylic and hydroxymonocarboxylic acids.

  20. Skin pentosidine and telomere length do not covary with age in a long-lived seabird.

    PubMed

    Rattiste, Kalev; Klandorf, Hillar; Urvik, Janek; Sepp, Tuul; Asghar, Muhammad; Hasselquist, Dennis; Cooey, Crissa; Hõrak, Peeter

    2015-08-01

    The questions about why and how senescence occurs in the wild are among the most pertinent ones in evolutionary ecology. Telomere length is a commonly used marker for aging, while other biomarkers of aging have received considerably less attention. Here we studied how another potent indicator of aging-skin pentosidine concentration-relates to age and blood telomere length in a long-lived seabird with well-documented reproductive senescence. We found no associations between telomere length, skin pentosidine and chronological age in male common gulls (Larus canus), aging from 2 to 30 years. However, the variance in telomere length was 4.6 times higher among the birds older than 13 years, which hints at relaxed selection on telomere length among the birds that have passed their prime age of reproduction. These results suggest that physiological and chronological ages may be largely uncoupled in our study system. Furthermore, our findings do not support a hypothesis about the presence of a common physiological factor (e.g., such as oxidative stress) that would cause covariation between two independent markers of aging.

  1. A Randomized, Double-blind, Placebo-controlled Clinical Trial Evaluating an Oral Anti-aging Skin Care Supplement for Treating Photodamaged Skin

    PubMed Central

    Sigler, Monya L.; Hino, Peter D.; Moigne, Anne Le; Dispensa, Lisa

    2016-01-01

    Objective: Evaluate an anti-aging skin care supplement on the appearance of photodamaged skin. Design: Randomized, double-blind, placebo-controlled clinical trial. Following a one-month washout period, subjects received two anti-aging skin care formula tablets (total daily dose: marine complex 210mg, vitamin C 54mg, zinc 4mg) or placebo daily for 16 weeks. Subjects were restricted from products/procedures that may affect the condition/appearance of skin, including direct facial sun or tanning bed exposure. Participants utilized a standardized facial cleanser and SPF15 moisturizer. Setting: Single study center (Texas, United States; June-November 2007). Participants: Healthy women aged 35 to 60 years (mean, 50 years), Fitzpatrick skin type I-IV, modified Glogau type II—III. Measurements: Subjects were assessed at Weeks 6, 12, and 16 on clinical grading (0-10 VAS), bioinstrumentation, digital photography, and self-assessments. Analysis of variance with treatment in the model was used for between-group comparisons (alpha P≤0.05). Results: Eighty-two anti-aging skin care formula subjects and 70 placebo subjects completed the study. Significant differences in change from baseline to Week 16 scores were observed for clinical grading of overall facial appearance (0.26; P<0.0001), radiant complexion (0.59; P<0.0001), periocular wrinkles (0.08; P<0.05), visual (0.56; P<0.0001) and tactile (0.48; P<0.0001) roughness, and mottled hyperpigmentation (0.15; P<0.001) favoring the subjects in the anti-aging skin care supplement group. Ultrasound skin density (Week 16) was significantly reduced for placebo versus anti-aging skin care supplement group (-1.4% vs. 0%; P<0.01). Other outcomes were not significant. Mild gastrointestinal symptoms possibly related to the anti-aging skin care supplement (n=1) and placebo (n=2) were observed. Conclusion: Women with photodamaged skin receiving anti-aging skin care supplement showed significant improvements in the appearance of facial

  2. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    PubMed

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.

  3. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-01-01

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. PMID:26840224

  4. Heat waves, aging, and human cardiovascular health.

    PubMed

    Kenney, W Larry; Craighead, Daniel H; Alexander, Lacy M

    2014-10-01

    This brief review is based on a President's Lecture presented at the Annual Meeting of the American College of Sports Medicine in 2013. The purpose of this review was to assess the effects of climate change and consequent increases in environmental heat stress on the aging cardiovascular system. The earth's average global temperature is slowly but consistently increasing, and along with mean temperature changes come increases in heat wave frequency and severity. Extreme passive thermal stress resulting from prolonged elevations in ambient temperature and prolonged physical activity in hot environments creates a high demand on the left ventricle to pump blood to the skin to dissipate heat. Even healthy aging is accompanied by altered cardiovascular function, which limits the extent to which older individuals can maintain stroke volume, increase cardiac output, and increase skin blood flow when exposed to environmental extremes. In the elderly, the increased cardiovascular demand during heat waves is often fatal because of increased strain on an already compromised left ventricle. Not surprisingly, excess deaths during heat waves 1) occur predominantly in older individuals and 2) are overwhelmingly cardiovascular in origin. Increasing frequency and severity of heat waves coupled with a rapidly growing at-risk population dramatically increase the extent of future untoward health outcomes.

  5. HEAT WAVES, AGING, AND HUMAN CARDIOVASCULAR HEALTH

    PubMed Central

    Kenney, W. Larry; Craighead, Daniel H.; Alexander, Lacy M.

    2014-01-01

    This brief review is based on a President’s Lecture presented at the Annual Meeting of the American College of Sports Medicine in 2013. The purpose of this review is to assess the effects of climate change and consequent increases in environmental heat stress on the aging cardiovascular system. The earth’s average global temperature is slowly but consistently increasing, and along with mean temperature changes come increases in heat wave frequency and severity. Extreme passive thermal stress resulting from prolonged elevations in ambient temperature, as well as prolonged physical activity in hot environments, creates a high demand on the left ventricle to pump blood to the skin to dissipate heat. Even healthy aging is accompanied by altered cardiovascular function, which limits the extent to which older individuals can maintain stroke volume, increase cardiac output, and increase skin blood flow when exposed to environmental extremes. In the elderly, the increased cardiovascular demand during heat waves is often fatal due to increased strain on an already compromised left ventricle. Not surprisingly, excess deaths during heat waves 1) occur predominantly in older individuals and 2) are overwhelmingly cardiovascular in origin. Increasing frequency and severity of heat waves coupled with a rapidly growing at-risk population dramatically increases the extent of future untoward health outcomes. PMID:24598696

  6. The creatine kinase system in human skin: protective effects of creatine against oxidative and UV damage in vitro and in vivo.

    PubMed

    Lenz, Holger; Schmidt, Melanie; Welge, Vivienne; Schlattner, Uwe; Wallimann, Theo; Elsässer, Hans-Peter; Wittern, Klaus-Peter; Wenck, Horst; Stäb, Franz; Blatt, Thomas

    2005-02-01

    Cutaneous aging is characterized by a decline in cellular energy metabolism, which is mainly caused by detrimental changes in mitochondrial function. The processes involved seem to be predominantly mediated by free radicals known to be generated by exogenous noxes, e.g., solar ultraviolet (UV) radiation. Basically, skin cells try to compensate any loss of mitochondrial energetic capacity by extra-mitochondrial pathways such as glycolysis or the creatine kinase (CK) system. Recent studies reported the presence of cytosolic and mitochondrial isoenzymes of CK, as well as a creatine transporter in human skin. In this study, we analyzed the cutaneous CK system, focusing on those cellular stressors known to play an important role in the process of skin aging. According to our results, a stress-induced decline in mitochondrial energy supply in human epidermal cells correlated with a decrease in mitochondrial CK activity. In addition, we investigated the effects of creatine supplementation on human epidermal cells as a potential mechanism to reinforce the endogenous energy supply in skin. Exogenous creatine was taken up by keratinocytes and increased CK activity, mitochondrial function and protected against free oxygen radical stress. Finally, our new data clearly indicate that human skin cells that are energetically recharged with the naturally occurring energy precursor, creatine, are markedly protected against a variety of cellular stress conditions, like oxidative and UV damage in vitro and in vivo. This may have further implications in modulating processes, which are involved in premature skin aging and skin damage.

  7. The active natural anti-oxidant properties of chamomile, milk thistle, and halophilic bacterial components in human skin in vitro.

    PubMed

    Mamalis, Andrew; Nguyen, Duc-Huy; Brody, Neil; Jagdeo, Jared

    2013-07-01

    The number of skin cancers continues to rise, accounting for approximately 40% of all cancers reported in the United States and approximately 9,500 deaths per year. Studies have shown reactive oxygen species (ROS) type free radicals are linked to skin cancer and aging. Therefore, it is important for us to identify agents that have anti-oxidant properties to protect skin against free radical damage. The purpose of this research is to investigate the anti-oxidant properties of bisabolol, silymarin, and ectoin that are components from chamomile, milk thistle, and halophilic bacteria, respectively. We measured the ability of bisabolol, silymarin, and ectoin to modulate the hydrogen peroxide (H2O2)-induced upregulation of ROS free radicals in normal human skin fibroblasts in vitro. Using a flow cytometry-based assay, we demonstrated that varying concentrations of these natural components were able to inhibit upregulation of H2O2-generated free radicals in human skin fibroblasts in vitro. Our results indicate components of chamomile, milk thistle, and halophilic bacteria exhibit anti-oxidant capabilities and warrant further study in clinical trials to characterize their anti-cancer and anti-aging capabilities.

  8. In vitro absorption of metal powders through intact and damaged human skin.

    PubMed

    Filon, Francesca Larese; D'Agostin, Flavia; Crosera, Matteo; Adami, Gianpiero; Bovenzi, Massimo; Maina, Giovanni

    2009-06-01

    The bioavailability of metals, which are known as important contact allergens, is decisive for the development and the maintenance of contact dermatitis. The aim of this study was to evaluate the percutaneous penetration of metal powders of cobalt (Co), nickel (Ni) and chromium (Cr) and the effect of skin lesions on skin absorption. In vitro permeation experiments were performed using the Franz diffusion cells with intact and damaged human skin. Physiological solution was used as receiving phase and metal powders (Co, Ni and Cr) dispersed in synthetic sweat at pH 4.5 were applied as donor phase to the outer surface of the skin for 24h. The amount of each metal permeating the skin was analysed by electro-thermal atomic absorption spectroscopy (ETAAS). Donor solution analysis demonstrated that metals were present as ions. Measurements of metals skin content were also exploited. Median Co and Ni concentrations found in the receiving phase were significantly higher when Co and Ni powders were applied on the abraded skin than after application on the intact skin (3566 and 2631ngcm(-2) vs. 8.4 and 31ngcm(-2), respectively). No significant difference was found in Cr permeation through intact and damaged skin. The measurement of metals skin content showed that Co, Ni and Cr concentrations were significantly higher in the damaged skin than in the intact skin. Co and Ni ions concentrations increased significantly when the donor solutions were applied on the damaged skin, while Cr ions concentrations did not increase. This study demonstrated that Co and Ni powders can permeate through damaged skin more easily than Cr powder, which has probably a stronger skin proteins binding capacity. Therefore, our results suggest that is necessary to prevent skin contamination when using toxic substances because a small injury to the skin barrier can significantly increase skin absorption.

  9. [Age and aging as incomplete architecture of human ontogenesis].

    PubMed

    Baltes, P B

    1999-12-01

    The focus is on the basic biological-genetic and social-cultural architecture of human development across the life span. The starting point is the frame provided by past evolutionary forces. A first conclusion is that for modern times and the relative brevity of the time windows involved in modernity, further change in human functioning is primarily dependent on the evolution of new cultural forms of knowledge rather than evolution-based changes in the human genome. A second conclusion concerns the general architecture of the life course. Three governing lifespan developmental principles coexist. First, because long-term evolutionary selection evince a negative age correlation, genome-based plasticity and biological potential decrease with age. Second, for growth aspects of human development to extend further into the life span, culture-based resources are required at ever increasing levels. Third, because of age-related losses in biological plasticity and negative effects associated with some principles of learning (e.g., negative transfer), the efficiency of culture is reduced as lifespan development unfolds. Joint application of these principles suggests that the lifespan architecture becomes more and more incomplete with age. Three examples are given to illustrate the implications of the lifespan architecture outlined. The first is a general theory of development involving the orchestration of three component processes and their age-related dynamics: Selection, optimization, and compensation. The second example is theory and research on lifespan intelligence that distinguishes between the biology-based mechanics and culture-based pragmatics of intelligence and specifies distinct age gradients for the two categories of intellectual functioning. The third example considers the goal of evolving a positive biological and cultural scenario for the last phase of life (fourth age). Because of the general lifespan architecture outlined, this objective becomes

  10. Anethole prevents hydrogen peroxide-induced apoptosis and collagen metabolism alterations in human skin fibroblasts.

    PubMed

    Galicka, Anna; Krętowski, Rafał; Nazaruk, Jolanta; Cechowska-Pasko, Marzanna

    2014-09-01

    The collagen metabolism alterations triggered by reactive oxygen species are involved in the development of various connective tissue diseases and skin aging. This study was designed to examine whether (E)-anethole possesses a protective effect on H2O2-induced alterations in collagen metabolism as well as whether it can prevent apoptosis in human skin fibroblasts. In cells treated with 300 µM H₂O₂, a decrease in collagen biosynthesis of 54% was observed. Pretreatment of cells with 0.5 µM anethole for 1 h completely prevented this alteration. Changes at the protein level positively correlated with alterations of type I collagen mRNA expression. We have shown that H2O2 caused increase in the activity of MMP-2 and MMP-9 as well as that an increase in MMP-2 activity can contribute to the 8% decrease in the amount of collagen secreted into the medium. The most efficient suppression of these changes was observed in the presence of 0.5 µM of anethole. At 10 µM, in addition to suppression, an inhibitory effect of anethole on MMP-9 activity was documented. Additionally, the 60% H₂O₂-induced decrease in cell viability was suppressed by 1 µM of anethole and a 4-fold increase in cell apoptosis was suppressed by 0.5 µM of anethole. Our results suggest that anethole, which is a small lipophilic and non-toxic molecule with the ability to prevent H₂O₂-induced collagen metabolism alterations and apoptosis in human skin fibroblasts, would prove useful in the development of effective agents in pharmacotherapy of oxidative stress-related skin diseases.

  11. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue

    NASA Astrophysics Data System (ADS)

    Woodward, Ruth M.; Cole, Bryan E.; Wallace, Vincent P.; Pye, Richard J.; Arnone, Donald D.; Linfield, Edmund H.; Pepper, Michael

    2002-11-01

    We demonstrate the application of terahertz pulse imaging (TPI) in reflection geometry for the study of skin tissue and related cancers both in vitro and in vivo. The sensitivity of terahertz radiation to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the skin and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Basal cell carcinoma has shown a positive terahertz contrast, and inflammation and scar tissue a negative terahertz contrast compared to normal tissue. In vivo measurements on the stratum corneum have enabled visualization of the stratum corneum-epidermis interface and the study of skin hydration levels. These results demonstrate the potential of terahertz pulse imaging for the study of skin tissue and its related disorders, both in vitro and in vivo.

  12. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling.

    PubMed

    Quan, Taihao; He, Tianyuan; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2004-09-01

    Ultraviolet (UV) irradiation from the sun reduces production of type I procollagen (COLI), the major structural protein in human skin. This reduction is a key feature of the pathophysiology of premature skin aging (photoaging). Photoaging is the most common form of skin damage and is associated with skin carcinoma. TGF-beta/Smad pathway is the major regulator of type I procollagen synthesis in human skin. We have previously reported that UV irradiation impairs transforming growth factor-beta (TGF-beta)/Smad signaling in mink lung epithelial cells. We have investigated the mechanism of UV irradiation impairment of the TGF-beta/Smad pathway and the impact of this impairment on type I procollagen production in human skin fibroblasts, the major collagen-producing cells in skin. We report here that UV irradiation impairs TGF-beta/Smad pathway in human skin by down-regulation of TGF-beta type II receptor (TbetaRII). This loss of TbetaRII occurs within 8 hours after UV irradiation and precedes down-regulation of type I procollagen expression in human skin in vivo. In human skin fibroblasts, UV-induced TbetaRII down-regulation is mediated by transcriptional repression and results in 90% reduction of specific, cell-surface binding of TGF-beta. This loss of TbetaRII prevents downstream activation of Smad2/3 by TGF-beta, thereby reducing expression of type I procollagen. Preventing loss of TbetaRII by overexpression protects against UV inhibition of type I procollagen gene expression in human skin fibroblasts. UV-induced down-regulation of TbetaRII, with attendant reduction of type I procollagen production, is a critical molecular mechanism in the pathophysiology of photoaging.

  13. Aging Skin

    MedlinePlus

    ... Read more from womenshealth.gov Varicose Veins and Spider Veins Fact Sheet - This fact sheet provides information about varicose and spider veins, including the causes, prevention, potential dangers, and ...

  14. Comparison of protocols for measuring cosmetic ingredient distribution in human and pig skin.

    PubMed

    Gerstel, D; Jacques-Jamin, C; Schepky, A; Cubberley, R; Eilstein, J; Grégoire, S; Hewitt, N; Klaric, M; Rothe, H; Duplan, H

    2016-08-01

    The Cosmetics Europe Skin Bioavailability and Metabolism Task Force aims to improve the measurement and prediction of the bioavailability of topically-exposed compounds for risk assessment. Key parameters of the experimental design of the skin penetration studies were compared. Penetration studies with frozen human and pig skin were conducted in two laboratories, according to the SCCS and OECD 428 guidelines. The disposition in skin was measured 24h after finite topical doses of caffeine, resorcinol and 7-ethoxycoumarin. The bioavailability distribution in skin layers of cold and radiolabelled chemicals were comparable. Furthermore, the distribution of each chemical was comparable in human and pig skin. The protocol was reproducible across the two laboratories. There were small differences in the amount of chemical detected in the skin layers, which were attributed to differences in washing procedures and anatomical sites of the skin used. In conclusion, these studies support the use of pig skin as an alternative source of skin should the availability of human skin become a limiting factor. If radiolabelled chemicals are not available, cold chemicals can be used, provided that the influence of chemical stability, reactivity or metabolism on the experimental design and the relevance of the data obtained is considered. PMID:27039122

  15. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studi