Sample records for aged mcs outflow

  1. Raman Lidar Observations of a MCS in the frame of the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Bhawar, Rohini; Summa, Donato; Di Iorio, Tatiana; Demoz, Belay B.

    2009-03-01

    The Raman lidar system BASIL was deployed in Achern (Supersite R, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) in the frame of the Convective and Orographically-induced Precipitation Study. On 20 July 2007 a frontal zone passed over the COPS region, with a Mesoscale Convective System (MCS) imbedded in it. BASIL was operated continuously during this day, providing measurements of temperature, water vapour, particle backscattering coefficient at 355, 532 and 1064 nm, particle extinction coefficient at 355 and 532 nm and particle depolarization at 355 and 532 nm. The thunderstorm approaching determined the lowering of the anvil clouds, which is clearly visible in the lidar data. A cloud deck is present at 2 km, which represents a mid-level outflow from the thunderstorm/MCS. The mid-level outflow spits out hydrometeor-debris (mostly virga) and it is recycled back into it. The MCS modified the environment at 1.6-2.5 km levels directly (outflow) and the lower levels through the virga/precipitation. Wave structures were observed in the particle backscatter data. The wave activity seems to be a reflection of the shear that is produced by the MCS and the inflow environmental wind. Measurements in terms of particle backscatter and water vapour mixing ratio are discussed to illustrate the above phenomena.

  2. Dust Science with SPICA/MCS

    NASA Astrophysics Data System (ADS)

    Sakon, I.; Onaka, T.; Kataza, H.; Wada, T.; Sarugaku, Y.; Matsuhara, H.; Nakagawa, T.; Kobayashi, N.; Kemper, C.; Ohyama, Y.; Matsumoto, T.; Seok, J. Y.

    Mid-Infrared Camera and Spectrometers (MCS) is one of the Focal-Plane Instruments proposed for the SPICA mission in the pre-project phase. SPICA MCS is equipped with two spectrometers with different spectral resolution powers (R=λ /δ λ ); medium-resolution spectrometer (MRS) which covers 12-38µ m with R≃1100-3000, and high-resolution spectrometer (HRS) which covers either 12-18µ m with R≃30000. MCS is also equipped with Wide Field Camera (WFC), which is capable of performing multi-objects grism spectroscopy in addition to the imaging observation. A small slit aperture for low-resolution slit spectroscopy is planned to be placed just next to the field of view (FOV) aperture for imaging and slit-less spectroscopic observation. MCS covers an important part of the core spectral range of SPICA and, complementary with SAFARI (SpicA FAR-infrared Instrument), can do crucial observations for a number of key science cases to revolutionize our understanding of the lifecycle of dust in the universe. In this article, the latest design specification and the expected performance of the SPICA/MCS are introduced. Key science cases that should be targetted by SPICA/MCS have been discussed by the MCS science working group. Among such science cases, some of those related to dust science are briefly introduced.

  3. Acoustic imaging of the Mediterranean water outflowing through the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Biescas Gorriz, Berta; Carniel, Sandro; Sallarès, Valentí; Rodriguez Ranero, Cesar

    2016-04-01

    Acoustic imaging of the Mediterranean water outflowing through the Strait of Gibraltar Berta Biescas (1), Sandro Carniel (2) , Valentí Sallarès (3) and Cesar R. Ranero(3) (1) Istituto di Scienze Marine, CNR, Bologna, Italy (2) Istituto di Scienze Marine, CNR, Venice, Italy (3) Institut de Ciències del Mar, CSIC, Barcelona, Spain Acoustic reflectivity acquired with multichannel seismic reflection (MCS) systems allow to detect and explore the thermohaline structure in the ocean with vertical and lateral resolutions in the order of 10 m, covering hundreds of kilometers in the lateral dimension and the full-depth water column. In this work we present a MCS 2D profile that crosses the Strait of Gibraltar, from the Alboran Sea to the internal Gulf of Cadiz (NE Atlantic Ocean). The MCS data was acquired during the Topomed-Gassis Cruise (European Science Foundation TopoEurope), which was carried out on board of the Spanish R/V Sarmiento de Gamboa in October 2011. The strong thermohaline contrast between the Mediterranean water and the Atlantic water, characterizes this area and allows to visualize, with unprecedented resolution, the acoustic reflectivity associated to the dense flow of the Mediterranean water outflowing through the prominent slope of the Strait of Gibraltar. During the first kilometers, the dense flow drops attached to the continental slope until it reaches the buoyancy depth at 700 m. Then, it detaches from the sea floor and continues flowing towards the Atlantic Ocean, occupying the layer at 700-1500 m deep and developing clear staircase layers. The reflectivity images display near seabed reflections that could well correspond to turbidity layers. The XBT data acquired coincident in time and space with the MCS data will help us in the interpretation and analysis of the acoustic data.

  4. The 2015 Middle Childhood Survey (MCS) of mental health and well-being at age 11 years in an Australian population cohort

    PubMed Central

    Laurens, Kristin R; Tzoumakis, Stacy; Dean, Kimberlie; Brinkman, Sally A; Bore, Miles; Lenroot, Rhoshel K; Smith, Maxwell; Holbrook, Allyson; Robinson, Kim M; Stevens, Robert; Harris, Felicity; Carr, Vaughan J; Green, Melissa J

    2017-01-01

    Purpose The Middle Childhood Survey (MCS) was designed as a computerised self-report assessment of children’s mental health and well-being at approximately 11 years of age, conducted with a population cohort of 87 026 children being studied longitudinally within the New South Wales (NSW) Child Development Study. Participants School Principals provided written consent for teachers to administer the MCS in class to year 6 students at 829 NSW schools (35.0% of eligible schools). Parent or child opt-outs from participation were received for 4.3% of children, and MCS data obtained from 27 808 children (mean age 11.5 years, SD 0.5; 49.5% female), representing 85.9% of students at participating schools. Findings to date Demographic characteristics of participating schools and children are representative of the NSW population. Children completed items measuring Social Integration, Prosocial Behaviour, Peer Relationship Problems, Supportive Relationships (at Home, School and in the Community), Empathy, Emotional Symptoms, Conduct Problems, Aggression, Attention, Inhibitory Control, Hyperactivity-Inattention, Total Difficulties (internalising and externalising psychopathology), Perceptual Sensitivity, Psychotic-Like Experiences, Personality, Self-esteem, Daytime Sleepiness and Connection to Nature. Distributions of responses on each item and construct demarcate competencies and vulnerabilities within the population: most children report mental health and well-being, but the population distribution spanned the full range of possible scores on every construct. Future plans Multiagency, intergenerational linkage of the MCS data with health, education, child protection, justice and early childhood development records took place late in 2016. Linked data were used to elucidate patterns of risk and protection across early and middle child development, and these data will provide a foundation for future record linkages in the cohort that will track mental and physical health

  5. The 2015 Middle Childhood Survey (MCS) of mental health and well-being at age 11 years in an Australian population cohort.

    PubMed

    Laurens, Kristin R; Tzoumakis, Stacy; Dean, Kimberlie; Brinkman, Sally A; Bore, Miles; Lenroot, Rhoshel K; Smith, Maxwell; Holbrook, Allyson; Robinson, Kim M; Stevens, Robert; Harris, Felicity; Carr, Vaughan J; Green, Melissa J

    2017-06-23

    The Middle Childhood Survey (MCS) was designed as a computerised self-report assessment of children's mental health and well-being at approximately 11 years of age, conducted with a population cohort of 87 026 children being studied longitudinally within the New South Wales (NSW) Child Development Study. School Principals provided written consent for teachers to administer the MCS in class to year 6 students at 829 NSW schools (35.0% of eligible schools). Parent or child opt-outs from participation were received for 4.3% of children, and MCS data obtained from 27 808 children (mean age 11.5 years, SD 0.5; 49.5% female), representing 85.9% of students at participating schools. Demographic characteristics of participating schools and children are representative of the NSW population. Children completed items measuring Social Integration, Prosocial Behaviour, Peer Relationship Problems, Supportive Relationships (at Home, School and in the Community), Empathy, Emotional Symptoms, Conduct Problems, Aggression, Attention, Inhibitory Control, Hyperactivity-Inattention, Total Difficulties (internalising and externalising psychopathology), Perceptual Sensitivity, Psychotic-Like Experiences, Personality, Self-esteem, Daytime Sleepiness and Connection to Nature. Distributions of responses on each item and construct demarcate competencies and vulnerabilities within the population: most children report mental health and well-being, but the population distribution spanned the full range of possible scores on every construct. Multiagency, intergenerational linkage of the MCS data with health, education, child protection, justice and early childhood development records took place late in 2016. Linked data were used to elucidate patterns of risk and protection across early and middle child development, and these data will provide a foundation for future record linkages in the cohort that will track mental and physical health, social and educational/occupational outcomes into

  6. Relating the Hadamard Variance to MCS Kalman Filter Clock Estimation

    NASA Technical Reports Server (NTRS)

    Hutsell, Steven T.

    1996-01-01

    The Global Positioning System (GPS) Master Control Station (MCS) currently makes significant use of the Allan Variance. This two-sample variance equation has proven excellent as a handy, understandable tool, both for time domain analysis of GPS cesium frequency standards, and for fine tuning the MCS's state estimation of these atomic clocks. The Allan Variance does not explicitly converge for the nose types of alpha less than or equal to minus 3 and can be greatly affected by frequency drift. Because GPS rubidium frequency standards exhibit non-trivial aging and aging noise characteristics, the basic Allan Variance analysis must be augmented in order to (a) compensate for a dynamic frequency drift, and (b) characterize two additional noise types, specifically alpha = minus 3, and alpha = minus 4. As the GPS program progresses, we will utilize a larger percentage of rubidium frequency standards than ever before. Hence, GPS rubidium clock characterization will require more attention than ever before. The three sample variance, commonly referred to as a renormalized Hadamard Variance, is unaffected by linear frequency drift, converges for alpha is greater than minus 5, and thus has utility for modeling noise in GPS rubidium frequency standards. This paper demonstrates the potential of Hadamard Variance analysis in GPS operations, and presents an equation that relates the Hadamard Variance to the MCS's Kalman filter process noises.

  7. Multiple Chemical Sensitivity (MCS) - Scientific and Public-Health Aspects

    PubMed Central

    Schwenk, Michael

    2004-01-01

    Multiple Chemical Sensitivity (MCS) is a phenomenon which the ENT-doctor should be familiar with. It has its roots in the description of a syndrome in 1987. A worker spilled chemicals at his workplace and from then on he reacted highly sensitive to chemicals. Today, there are many people who explain their complaints with self-suspected MCS. Various pathopysiological models have been proposed, including toxicological, immunological or behaviorial models. But no-one could be proved so far. Since controlled provocation tests have also provided unclear results, an increasing number of doctors assumes today, that MCS reflects a psychic condition. In 1996, an expert team of the WHO has suggested the renaming of MCS to "idiopathic environmental illness" (IEI). However, other doctors still assume a chemical cause. Since there are neither straightforward diagnostic methods to proof MCS, nor reliable therapeutic concepts, treatment of MCS-patients is usually difficult. The MCS-debate (somatic vs psychic causes) seems to reflect the dilemma of the medical profession today, that somatic disorders of known origin can be well treated, whereas the increasing number of psychosomatic/ somatoform disorders is often resistant to medical help. The ENT-doctor should pay attention to changes of the nasal mucous membrane, nasal resistance and the sense of smell. Moreover he should know about the peculiarities of MCS-patients. The manuscript describes the present knowledge and state of discussion with special regard to the situation in Germany. PMID:22073047

  8. Bipolar outflows and Jets From Young Stars

    NASA Astrophysics Data System (ADS)

    Bally, J.

    2000-05-01

    Stars produce powerful jets and winds during their birth. These primary outflows power shock waves (Herbig-Haro objects) and entrain surrounding gas to produce molecular outflows. Many outflows reach parsec-scale dimensions whose dynamical ages can become comparable to the accretion age of the source star. Thus, these giant outflows provide fossil records of the mass loss histories of their parent stars. Jet symmetries provide tantalizing clues about the violent history of stellar accretion and dynamical interactions with nearby companions. These flows inject sufficient energy and momentum into the surrounding medium to alter the physical and chemical state of the gas, generate turbulence, disrupt the parent cloud, and self-regulate the rate of star formation. Recent observations have revealed a new class of externally irradiated jets which are rendered visible by the light of nearby massive stars. Some of these jets appear to be millions of years old, indicating that outflow activity can persist for much longer than previously thought. Stellar jets provide ideal laboratories for the investigation of accretion powered outflows and associated shocks since their time-dependent behavior can be observed with a rich variety of spectral line diagnostics.

  9. Prototype Mcs Parameterization for Global Climate Models

    NASA Astrophysics Data System (ADS)

    Moncrieff, M. W.

    2017-12-01

    Excellent progress has been made with observational, numerical and theoretical studies of MCS processes but the parameterization of those processes remain in a dire state and are missing from GCMs. The perceived complexity of the distribution, type, and intensity of organized precipitation systems has arguably daunted attention and stifled the development of adequate parameterizations. TRMM observations imply links between convective organization and large-scale meteorological features in the tropics and subtropics that are inadequately treated by GCMs. This calls for improved physical-dynamical treatment of organized convection to enable the next-generation of GCMs to reliably address a slew of challenges. The multiscale coherent structure parameterization (MCSP) paradigm is based on the fluid-dynamical concept of coherent structures in turbulent environments. The effects of vertical shear on MCS dynamics implemented as 2nd baroclinic convective heating and convective momentum transport is based on Lagrangian conservation principles, nonlinear dynamical models, and self-similarity. The prototype MCS parameterization, a minimalist proof-of-concept, is applied in the NCAR Community Climate Model, Version 5.5 (CAM 5.5). The MCSP generates convectively coupled tropical waves and large-scale precipitation features notably in the Indo-Pacific warm-pool and Maritime Continent region, a center-of-action for weather and climate variability around the globe.

  10. Connection between the CMEs in the coronagraph and the MCs near the Earth

    NASA Astrophysics Data System (ADS)

    Shen, C.; Wang, Y.

    2016-12-01

    Magnetic Clouds (MCs) are thought to be a subset of the interplanetary counterparts of Coronal Mass Ejections (CMEs) near the Earth. Using different models, the parameters of MCs are obtained based on the in situ observations. In recent, the propagation speed, the expansion speed, and poloidal speed of MCs are obtained based on the velocity-modified cylindrical force-free flux rope model developed by Wang et al. (2015). In this work, we first make the association between the MCs recorded by WIND and their source CMEs observed by SOHO. Then, the parameters of these MCs obtained by the model developed by Wang et al. (2016) will be compared with the parameters of the CMEs during their propagation in the coronagraph. The parameters of CMEs are obtained by the GCS model using multiple observations from SOHO and STEREO.

  11. SOBER-MCS: Sociability-Oriented and Battery Efficient Recruitment for Mobile Crowd-Sensing

    PubMed Central

    Anjomshoa, Fazel

    2018-01-01

    The Internet of Things (IoT) concept is aiming at being an integral part of the next generation networking services by introducing pervasiveness and ubiquitous interconnectivity of uniquely-identifiable objects. The massive availability of personalized smart devices such as smartphones and wearables enable their penetration into the IoT ecosystem with their built-in sensors, particularly in Mobile Crowd-Sensing (MCS) campaigns. The MCS systems achieve the objectives of the large-scale non-dedicated sensing concept in the IoT if a sufficient number of participants are engaged to the collaborative data acquisition process. Therefore, user recruitment is a key challenge in MCS, which requires effective incentivization of cooperative, truthful and trustworthy users. A grand concern for the participants is the battery drain on the mobile devices. It is a known fact that battery drain in a smartphone is a function of the user activity, which can be modeled under various contexts. With this in mind, we propose a new social activity-aware recruitment policy, namely Sociability-Oriented and Battery-Efficient Recruitment for Mobile Crowd-Sensing (SOBER-MCS). SOBER-MCS uses sociability and the residual power of the participant smartphones as two primary criteria in the selection of participating devices. The former is an indicator of the participant willingness toward sensing campaigns, whereas the latter is used to prioritize personal use over crowd-sensing under critical battery levels. We use sociability profiles that were obtained in our previous work and use those values to simulate the sociability behavior of a large pool of participants in an MCS environment. Through simulations, we show that SOBER-MCS is able to introduce battery savings up to 18.5% while improving user and platform utilities by 12% and 20%, respectively. PMID:29772779

  12. SOBER-MCS: Sociability-Oriented and Battery Efficient Recruitment for Mobile Crowd-Sensing.

    PubMed

    Anjomshoa, Fazel; Kantarci, Burak

    2018-05-17

    The Internet of Things (IoT) concept is aiming at being an integral part of the next generation networking services by introducing pervasiveness and ubiquitous interconnectivity of uniquely-identifiable objects. The massive availability of personalized smart devices such as smartphones and wearables enable their penetration into the IoT ecosystem with their built-in sensors, particularly in Mobile Crowd-Sensing (MCS) campaigns. The MCS systems achieve the objectives of the large-scale non-dedicated sensing concept in the IoT if a sufficient number of participants are engaged to the collaborative data acquisition process. Therefore, user recruitment is a key challenge in MCS, which requires effective incentivization of cooperative, truthful and trustworthy users. A grand concern for the participants is the battery drain on the mobile devices. It is a known fact that battery drain in a smartphone is a function of the user activity, which can be modeled under various contexts. With this in mind, we propose a new social activity-aware recruitment policy, namely Sociability-Oriented and Battery-Efficient Recruitment for Mobile Crowd-Sensing (SOBER-MCS). SOBER-MCS uses sociability and the residual power of the participant smartphones as two primary criteria in the selection of participating devices. The former is an indicator of the participant willingness toward sensing campaigns, whereas the latter is used to prioritize personal use over crowd-sensing under critical battery levels. We use sociability profiles that were obtained in our previous work and use those values to simulate the sociability behavior of a large pool of participants in an MCS environment. Through simulations, we show that SOBER-MCS is able to introduce battery savings up to 18.5% while improving user and platform utilities by 12% and 20%, respectively.

  13. Mechanisms Underlying the Breast Cancer Susceptibility Locus Mcs5a

    DTIC Science & Technology

    2010-07-01

    fixed using formaldehyde . The extracted fixed chromatin is digested with a restriction enzyme and religated in a strongly dilute fashion. In this...procedure the ligation of genetic elements that were glued together by formaldehyde fixation is favored over ligation of random elements. Following... digested and randomly ligated control template containing all restriction fragments of interest in equal molarity. To investigate the Mcs5a1-Mcs5a2

  14. Vertical wind shear characteristics that promote supercell-to-MCS transitions

    NASA Astrophysics Data System (ADS)

    Peters, J. M.

    2017-12-01

    What causes supercells to transition into MCSs in some situations, but not others? To explore this question, I first examined observed environmental characteristics of supercell events when MCSs formed, and compared them to the analogous environmental characteristics of supercell events when MCSs did not form. During events when MCS growth occurred, 0-1 km (low-level) vertical wind shear was stronger and 0-10 km (deep-layer) vertical wind shear was weaker than the wind shear during events when MCS growth did not occur. Next, I used idealized simulations of supercell thunderstorms to understand the connections between low-level and deep-layer shear and MCS growth. Compared to simulations with strong deep-layer shear, the simulations with weak deep-layer shear had rain in the storm's forward-flank downdraft (FFD) that fell closer to the updraft, fell through storm-moistened air and evaporated less, and produced a more intense FFD. Compared to simulations with weak low-level shear, the simulations with stronger low-level shear showed enhanced northward low-level hydrometeor transport into the FFD. Environments with strong low-level shear and weak deep-layer shear therefore conspired to produce a storm with a more intense FFD cold pool, when compared to environments with weak low-level shear and/or strong deep-layer shear. This strong FFD periodically disrupted the supercells' mesocyclones, and favorably interacted with westerly wind shear to produce widespread linear convection initiation, which drove MCS growth. These results suggest that increasing low-level wind shear after dark - while commonly assumed to enhance tornado potential - may in fact drive MCS growth and reduce tornado potential, unless it is combined with sufficiently strong deep layer shear.

  15. Pediatric peripheral blood progenitor cell collection: haemonetics MCS 3P versus COBE Spectra versus Fresenius AS104.

    PubMed

    Bambi, F; Faulkner, L B; Azzari, C; Gelli, A M; Tamburini, A; Tintori, V; Lippi, A A; Tucci, F; Bernini, G; Genovese, F

    1998-01-01

    An increasing number of apheresis machines are becoming available for peripheral blood progenitor cell (PBPC) collection in children. At the Children's Hospital of Florence (Italy), three apheresis machines were evaluated: MCS 3P (Haemonetics) (10 procedures in 4 patients, aged 10-12 years, weight 23.5-64 kg), Spectra, (COBE) (8 procedures in 3 patients, aged 4-17 years, weight 19-59 kg), and AS104 (Fresenius) (24 procedures in 9 patients, aged 2-16 years, weight 13.6-60 kg). For PBPC quantitative analysis, CD34 cytofluorimetry was employed. Relevant variables analyzed included efficiency of CD34+ cell extraction and enrichment, mononuclear cell purity and red cell contamination of the apheresis components, and platelet count decreases after leukapheresis. No significant differences in CD34+ cell-extraction abilities were found. However, the AS104 provided consistently purer leukapheresis components in terms of mononuclear cell and CD34+ cell enrichment (441 +/- 59%, vs. 240 +/- 35% and 290 +/- 42% for MCS 3P and Spectra, respectively). Postapheresis platelet counts dropped the least with the AS104. The smallest patient who underwent apheresis with MCS 3P (the only machine working on discontinuous flow and hence with greater volume shifts) weighed 23.5 kg and tolerated the procedure well, with no signs of hemodynamic instability. No significant complications were observed. All machines seem to have comparable PBPC extraction efficiency, but the AS104 seems to give the component with the greatest PBPC enrichment. This feature might be relevant for further ex vivo cell processing (CD34+ cell selection, expansion, and so on).

  16. Shining a light on galactic outflows: photoionized outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida

    2016-04-01

    We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.

  17. MCS precipitation and downburst intensity response to increased aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Clavner, M.; Cotton, W. R.; van den Heever, S. C.

    2015-12-01

    Mesoscale convective systems (MCSs) are important contributors to rainfall in the High Plains of the United States as well as producers of severe weather such as hail, tornados and straight-line wind events known as derechos. Past studies have shown that changes in aerosol concentrations serving as cloud condensation nuclei (CCN) alter the MCS hydrometeor characteristics which in turn modify precipitation yield, downdraft velocity, cold-pool strength, storm propagation and the potential for severe weather to occur. In this study, the sensitivity of MCS precipitation characteristics and convective downburst velocities associated with a derecho to changes in CCN concentrations were examined by simulating a case study using the Regional Atmospheric Modeling System (RAMS). The case study of the 8 May 2009 "Super-Derecho" MCS was chosen since it produced a swath of widespread wind damage in association with an embedded large-scale bow echo, over a broad region from the High Plains of western Kansas to the foothills of the Appalachians. The sensitivity of the storm to changes in CCN concentrations was examined by conducting a set of three simulations which differed in the initial aerosol concentration based on output from the 3D chemical transport model, GEOS-Chem. Results from this study indicate that while increasing CCN concentrations led to an increase in precipitation rates, the changes to the derecho strength were not linear. A moderate increase in aerosol concentration reduced the derecho strength, while the simulation with the highest aerosol concentrations increased the derecho intensity. These changes are attributed to the impact of enhanced CCN concentration on the production of convective downbursts. An analysis of aerosol loading impacts on these MCS features will be presented.

  18. Northwestern Tharsis Latent Outflow Activity Mars

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Anderson, R. C.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Strom, R. G.; Rudd, L.; Rice, J. W., Jr.; Scott, D. H.

    2000-01-01

    Previously defined outflow channels, which are indicated by relict landforms similar to those observed on Earth, signify ancient catastrophic flood events on Mars. These conspicuous geomorphic features are some of the most remarkable yet profound discoveries made by geologists to date. These outflow channels, which debouched tremendous volumes of water into topographic lows such as Chryse, Utopia, Elysium, and Hellas Planitiae, may represent the beginning of warmer and wetter climatic periods unlike the present-day cold and dry Mars. In addition to the previously identified outflow channels, observations permitted by the newly acquired Mars Orbiter Laser Altimeter (MOLA) data have revealed a system of gigantic valleys, referred to as the northwestern slope valleys (NSV), that are located to the northwest of a huge shield volcano, Arsia Mons, western hemisphere of Mars. These features generally correspond spatially to gravity lows similar to the easternmost, circum-Chryse outflow channel systems. Geologic investigations of the Tharsis region suggest that the large valley system pre-dates the construction of Arsia Mons and its extensive associated lava flows of mainly Late Hesperian and Amazonian age and coincides stratigraphically with the early development of the circum-Chryse outflow channel systems that debouch into Chryse Planitia. This newly identified system, the NSV, potentially signifies the largest flood event(s) ever recorded for the solar system. Additional information is contained in original extended abstract.

  19. Introduction to the MCS. Visual Media Learning Guide.

    ERIC Educational Resources Information Center

    Spokane Falls Community Coll., WA.

    This student learning guide is designed to introduce graphics arts students t the MCS (Modular Composition System) compugraphic typesetting system. Addressed in the individual units of the competency-based guide are the following tasks: programming the compugraphic typesetting system, creating a new file and editing a file, operating a…

  20. Organelle Communication at Membrane Contact Sites (MCS): From Curiosity to Center Stage in Cell Biology and Biomedical Research.

    PubMed

    Simmen, Thomas; Tagaya, Mitsuo

    2017-01-01

    Cell biology has long recognized that organelles can communicate with each other. Initially, such communication was thought to occur primarily via vesicular trafficking between biochemically distinct organelles. However, studies starting in the 1970s on lipid metabolism have unearthed another way how organelles can communicate and have spawned the field of membrane contact sites (MCS). While, initially, MCS had been recognized as fluid entities that mediate lipid and ion transport in an ad hoc manner, more recently MCS have been found to depend on protein-protein interactions that control themselves a variety of MCS functions. As a result, the cell biological definition of an intracellular organelle as an isolated membrane compartment is now being revised. Accordingly, the organelle definition now describes organelles as dynamic membrane compartments that function in a milieu of coordinated contacts with other organelles. Through these mercurial functions, MCS dictate the function of organelles to a large extent but also play important roles in a number of diseases, including type 2 diabetes, neurodegenerative diseases, infections, and cancer. This book assembles reviews that describe our quickly evolving knowledge about organellar communication on MCS and the significance of MCS for disease.

  1. Suppression of proatherogenic leukocyte interactions by MCS-18--Impact on advanced atherosclerosis in ApoE-deficient mice.

    PubMed

    Kuehn, Constanze; Tauchi, Miyuki; Stumpf, Christian; Daniel, Christoph; Bäuerle, Tobias; Schwarz, Marc; Kerek, Franz; Steinkasserer, Alexander; Zinser, Elisabeth; Achenbach, Stephan; Dietel, Barbara

    2016-02-01

    Atherosclerosis is associated with chronic inflammatory responses of the arterial blood vessels. The previously observed protective effect of the MCS-18 substance against the initiation of atherosclerosis in a murine model was explained by its pronounced anti-inflammatory activity. Here, we investigated its impact on murine plaque progression in advanced atherosclerosis and on proatherogenic processes. ApoE-deficient mice were fed a high-fat diet for 12 weeks to induce atherosclerosis, followed by normal chow and intraperitoneal injections of either MCS-18 (500 μg, n = 10) or saline (n = 10) twice a week for another 12 weeks. Plaque size was reduced in MCS-18 treated mice compared to controls (p = 0.001), which was associated with a reduced size of the lipid core (p = 0.01). There was a decrease in apoptotic cells (p = 0.02), endothelial ICAM-1 expression (p < 0.001), and macrophage density (p = 0.01) in the MCS-18 group. In addition, human and murine dendritic cells (DCs) and human umbilical vein endothelial cells (HUVECs) were treated with MCS-18 (50-200 μg/ml) to analyze cell migration and adhesion under flow conditions. MCS-18 reduced human (p = 0.01) and murine (p = 0.006) DC migration. Furthermore, adhesion of MCS-18-treated DCs to a HUVEC monolayer was decreased (p < 0.001). Compared to controls, CD209 (p < 0.001) and CCR7 (p = 0.003) expression was decreased in MCS-18-treated DCs, while in HUVECs lower levels of ICAM-1 (p < 0.001) and of phosphorylated NF-κB-p65 (p = 0.002) were observed. Blocking of ICAM-1 reduced DC adhesion (p < 0.001). MCS-18 exhibits interesting therapeutic effects when applied in advanced murine atherosclerosis. Its antiatherogenic impact might be associated with a suppressed adhesion to the endothelium due to down-regulation of endothelial ICAM-1 expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. A proposal for a drug product Manufacturing Classification System (MCS) for oral solid dosage forms.

    PubMed

    Leane, Michael; Pitt, Kendal; Reynolds, Gavin

    2015-01-01

    This paper proposes the development of a drug product Manufacturing Classification System (MCS) based on processing route. It summarizes conclusions from a dedicated APS conference and subsequent discussion within APS focus groups and the MCS working party. The MCS is intended as a tool for pharmaceutical scientists to rank the feasibility of different processing routes for the manufacture of oral solid dosage forms, based on selected properties of the API and the needs of the formulation. It has many applications in pharmaceutical development, in particular, it will provide a common understanding of risk by defining what the "right particles" are, enable the selection of the best process, and aid subsequent transfer to manufacturing. The ultimate aim is one of prediction of product developability and processability based upon previous experience. This paper is intended to stimulate contribution from a broad range of stakeholders to develop the MCS concept further and apply it to practice. In particular, opinions are sought on what API properties are important when selecting or modifying materials to enable an efficient and robust pharmaceutical manufacturing process. Feedback can be given by replying to our dedicated e-mail address (mcs@apsgb.org); completing the survey on our LinkedIn site; or by attending one of our planned conference roundtable sessions.

  3. Did the martian outflow channels mostly form during the Amazonian Period?

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. Alexis P.; Platz, Thomas; Gulick, Virginia; Baker, Victor R.; Fairén, Alberto G.; Kargel, Jeffrey; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-09-01

    Simud, Tiu, and Ares Valles comprise some of the largest outflow channels on Mars. Their excavation has been attributed variously to (or a combination of) erosion by catastrophic floods, glaciers, and debris flows. Numerous investigations indicate that they formed largely during the Late Hesperian (3.61-3.37 Ga). However, these studies mostly equate the ages of the outflow channel floors to those of the flows that generated mesoscale (several hundred meters to a few kilometers) bedforms within them. To improve the statistical accuracy in the age determinations of these flow events, we have used recently acquired high-resolution image and topographic data to map and date portions of Simud, Tiu and Ares Valles, which are extensively marked by these bedforms. Our results, which remove the statistical effects of older and younger outflow channel floor surfaces on the generation of modeled ages, reveal evidence for major outflow channel discharges occurring during the Early (3.37-1.23 Ga) and Middle (1.23-0.328 Ga) Amazonian, with activity significantly peaking during the Middle Amazonian stages. We also find that during the documented stages of Middle Amazonian discharges, the floor of Tiu Valles underwent widespread collapse, resulting in chaotic terrain formation. In addition, we present evidence showing that following the outflow channel discharges, collapse within northern Simud Valles generated another chaotic terrain. This younger chaos region likely represents the latest stage of large-scale outflow channel resurfacing within the study area. Our findings imply that in southern circum-Chryse the martian hydrosphere experienced large-scale drainage during the Amazonian, which likely led to periodic inundation and sedimentation within the northern plains.

  4. Alignment between Protostellar Outflows and Filamentary Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.

    2017-09-01

    We present new Submillimeter Array (SMA) observations of CO(2–1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mixmore » of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ∼3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.« less

  5. Alignment between Protostellar Outflows and Filamentary Structure

    NASA Astrophysics Data System (ADS)

    Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.; Pokhrel, Riwaj; Sadavoy, Sarah I.; Vorobyov, Eduard I.; Tobin, John J.; Pineda, Jaime E.; Offner, Stella S. R.; Lee, Katherine I.; Kristensen, Lars E.; Jørgensen, Jes K.; Goodman, Alyssa A.; Bourke, Tyler L.; Arce, Héctor G.; Plunkett, Adele L.

    2017-09-01

    We present new Submillimeter Array (SMA) observations of CO(2-1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mix of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ˜3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.

  6. The influence of the Great Lakes on MCS formation and development in the warm season

    NASA Astrophysics Data System (ADS)

    Srock, Alan F.

    This study focuses on how near-surface thermal boundaries that form near the Great Lakes during the warm season can contribute to the formation of mesoscale convective systems (MCSs). Differential heating across land-water interfaces can create a cold dome of air over the lake; convection may develop when the relatively-cold dome of air becomes deep enough to enable air parcels that intersect these boundaries to reach their level of free convection. A radar-based climatology of MCS events surrounding the Great Lakes for 2002-2005 showed that MCSs frequently form in the vicinity of the Great Lakes. Composites of MCS events over the Great Lakes and in sub-regions defined by proximity to a Great Lake showed that the most important synoptic-scale precursor for MCS initiation is the presence of a low-level moisture plume, which is often (but not always) provided by a low-level jet (LLJ). Case studies of two MCSs that formed along the eastern shore of Lake Michigan showed how differential heating across the land-lake interface enabled the development of a near-surface mesoscale thermal boundary along which forced ascent was able to trigger convection. A third case study of an MCS that formed along the southern shore of Lake Superior showed that a strong land-lake thermal boundary provided a focus for long-lived MCS development beneath a plume of warm, moist air along the LLJ. High-resolution WRF-modeling studies were used to test the effect of the presence of a Great Lake on land-lake thermal boundary development and MCS generation. In one pair of simulations, differential heating in the control run created an over-lake cold dome that grew stronger and deeper during the day. Removing the lake removed the differential heating, so the no-lake run became comparatively warmer and moister in the lowest 1000 m over the "lake". Convection focused and organized along the near-lake mesoscale boundary in the control run, but was less organized and forced by larger-scale processes

  7. Mapping of Mcs30, a new mammary carcinoma susceptibility quantitative trait locus (QTL30) on rat chromosome 12: identification of fry as a candidate Mcs gene.

    PubMed

    Ren, Xuefeng; Graham, Jessica C; Jing, Lichen; Mikheev, Andrei M; Gao, Yuan; Lew, Jenny Pan; Xie, Hong; Kim, Andrea S; Shang, Xiuling; Friedman, Cynthia; Vail, Graham; Fang, Ming Zhu; Bromberg, Yana; Zarbl, Helmut

    2013-01-01

    Rat strains differ dramatically in their susceptibility to mammary carcinogenesis. On the assumption that susceptibility genes are conserved across mammalian species and hence inform human carcinogenesis, numerous investigators have used genetic linkage studies in rats to identify genes responsible for differential susceptibility to carcinogenesis. Using a genetic backcross between the resistant Copenhagen (Cop) and susceptible Fischer 344 (F344) strains, we mapped a novel mammary carcinoma susceptibility (Mcs30) locus to the centromeric region on chromosome 12 (LOD score of ∼8.6 at the D12Rat59 marker). The Mcs30 locus comprises approximately 12 Mbp on the long arm of rat RNO12 whose synteny is conserved on human chromosome 13q12 to 13q13. After analyzing numerous genes comprising this locus, we identified Fry, the rat ortholog of the furry gene of Drosophila melanogaster, as a candidate Mcs gene. We cloned and determined the complete nucleotide sequence of the 13 kbp Fry mRNA. Sequence analysis indicated that the Fry gene was highly conserved across evolution, with 90% similarity of the predicted amino acid sequence among eutherian mammals. Comparison of the Fry sequence in the Cop and F344 strains identified two non-synonymous single nucleotide polymorphisms (SNPs), one of which creates a putative, de novo phosphorylation site. Further analysis showed that the expression of the Fry gene is reduced in a majority of rat mammary tumors. Our results also suggested that FRY activity was reduced in human breast carcinoma cell lines as a result of reduced levels or mutation. This study is the first to identify the Fry gene as a candidate Mcs gene. Our data suggest that the SNPs within the Fry gene contribute to the genetic susceptibility of the F344 rat strain to mammary carcinogenesis. These results provide the foundation for analyzing the role of the human FRY gene in cancer susceptibility and progression.

  8. Sequence and batch language programs and alarm related C Programs for the 242-A MCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, J.F.

    1996-04-15

    A Distributive Process Control system was purchased by Project B-534, 242-A Evaporator/Crystallizer Upgrades. This control system, called the Monitor and Control system (MCS), was installed in the 242-A evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict themore » overall process. To do this, WTSE developed a second alarm scheme.« less

  9. Massive Outflows Associated with ATLASGAL Clumps

    NASA Astrophysics Data System (ADS)

    Yang, A. Y.; Thompson, M. A.; Urquhart, J. S.; Tian, W. W.

    2018-03-01

    We have undertaken the largest survey for outflows within the Galactic plane using simultaneously observed {}13{CO} and {{{C}}}18{{O}} data. Out of a total of 919 ATLASGAL clumps, 325 have data suitable to identify outflows, and 225 (69% ± 3%) show high-velocity outflows. The clumps with detected outflows show significantly higher clump masses ({M}clump}), bolometric luminosities ({L}bol}), luminosity-to-mass ratios ({L}bol}/{M}clump}), and peak H2 column densities ({N}{{{H}}2}) compared to those without outflows. Outflow activity has been detected within the youngest quiescent clump (i.e., 70 μ {{m}} weak) in this sample, and we find that the outflow detection rate increases with {M}clump}, {L}bol}, {L}bol}/{M}clump}, and {N}{{{H}}2}, approaching 90% in some cases (UC H II regions = 93% ± 3%; masers = 86% ± 4%; HC H II regions = 100%). This high detection rate suggests that outflows are ubiquitous phenomena of massive star formation (MSF). The mean outflow mass entrainment rate implies a mean accretion rate of ∼ {10}-4 {M}ȯ {yr}}-1, in full agreement with the accretion rate predicted by theoretical models of MSF. Outflow properties are tightly correlated with {M}clump}, {L}bol}, and {L}bol}/{M}clump} and show the strongest relation with the bolometric clump luminosity. This suggests that outflows might be driven by the most massive and luminous source within the clump. The correlations are similar for both low-mass and high-mass outflows over 7 orders of magnitude, indicating that they may share a similar outflow mechanism. Outflow energy is comparable to the turbulent energy within the clump; however, we find no evidence that outflows increase the level of clump turbulence as the clumps evolve. This implies that the origin of turbulence within clumps is fixed before the onset of star formation.

  10. Comparison of plateletpheresis on the Fresenius AS.TEC 204 and Haemonetics MCS 3p.

    PubMed

    Ranganathan, Sudha

    2007-02-01

    This is an attempt at comparing two cell separators for plateletpheresis, namely the Fresenius AS.TEC 204 and Haemonetics MCS 3p, at a tertiary care center in India. Donors who weighed between 55-75 kg, who had a hematocrit of 41-43%, and platelet counts of 250x10(3)-400x10(3)/microl were selected for the study. The comparability of the donors who donated on the two cell separators were analysed by t-test independent samples and no significant differences were found (P>0.05). The features compared were time taken for the procedure, volume processed on the separators, adverse reactions of the donors, quality control of the product, separation efficiency of the separators, platelet loss in the donors after the procedure, and the predictor versus the actual yield of platelets given by the cell separator. The volume processed to get a target yield of >3x10(11) was equal to 2.8-3.2 l and equal in both the cell separators. Symptoms of citrate toxicity were seen in 4 and 2.5% of donors who donated on the MCS 3p and the AS.TEC 204, respectively, and 3 and 1% of donors, respectively, had vasovagal reactions. All the platelet products collected had a platelet count of >3x10(11); 90% of the platelet products collected on the AS.TEC 204 attained the predicted yield that was set on the cell separator where as 75% of the platelet products collected on the MCS 3p attained the target yield. Quality control of the platelets collected on both the cell separators complied with the standards except that 3% of the platelets collected on the MCS 3p had a visible red cell contamination. The separation efficiency of the MCS 3p was higher, 50-52% as compared to the 40-45% on the AS.TEC 204. A provision of double venous access, less adverse reactions, negligible RBC contamination with a better predictor yield of platelets makes the AS.TEC 204 a safer and more reliable alternative than the widely used Haemonetics MCS 3p. Copyright (c) 2006 Wiley-Liss, Inc.

  11. [Surgical treatment of congenital obstruction of the left ventricular outflow tract].

    PubMed

    Biocina, B; Sutlić, Z; Husedinović, I; Letica, D; Sokolić, J

    1993-01-01

    This report presents the classification and all types of left ventricular outflow tract obstructions. The possibilities of operative therapies are surveyed as well. Results of surgical treatment in 34 patients with obstruction to left ventricular outflow are shown. The majority of patients underwent operation under extracorporeal circulation (84.4%), while the rest were operated by means of the inflow occlusion technique (14.7%). The obtained results were compared with those from the literature. The importance of echocardiographic evaluation of location of the left ventricular outflow tract obstruction and the appropriate choice of a surgical technique according to the patient's age are emphasized.

  12. Studying the outflow-core interaction with ALMA Cycle 1 observations of the HH 46/47 molecular outflow

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Arce, Hector G.; Mardones, Diego; Dunham, Michael; Garay, Guido; Noriega-Crespo, Alberto; Corder, Stuartt; Offner, Stella; Cabrit, Sylvie

    2016-01-01

    We present ALMA Cycle 1 observations of the HH 46/47 molecular outflow which is driven by a low-mass Class 0/I protostar. Previous ALMA Cycle 0 12CO observation showed outflow cavities produced by the entrainment of ambient gas by the protostellar jet and wide-angle wind. Here we present analysis of observation of 12CO, 13CO, C18O and other species using combined 12m array and ACA observations. The improved angular resolution and sensitivity allow us to detect details of the outflow structure. Specially, we see that the outflow cavity wall is composed of two or more layers of outflowing gas, which separately connect to different shocked regions along the outflow axis inside the cavity, suggesting the outflow cavity wall is composed of multiple shells entrained by a series of jet bow-shock events. The new 13CO and C18O data also allow us to trace relatively denser and slower outflow material than that traced by the 12CO. These species are only detected within about 1 to 2 km/s from the cloud velocity, tracing the outflow to lower velocities than what is possible using only the 12CO emission. Interestingly, the cavity wall of the red lobe appears at very low outflow velocities (as low as ~0.2 km/s). In addition, 13CO and C18O allow us to correct for the CO optical depth, allowing us to obtain more accurate estimates of the outflow mass, momentum and kinetic energy. Applying the optical depth correction significantly increases the previous mass estimate by a factor of 14. The outflow kinetic energy distribution shows that even though the red lobe is mainly entrained by jet bow-shocks, most of the outflow energy is being deposited into the cloud at the base of the outflow cavity rather than around the heads of the bow shocks. The estimated total mass, momentum, and energy of the outflow indicate that the outflow has the ability to disperse the parent core. We found possible evidence for a slowly moving rotating outflow in CS. Our 13CO and C18O observations also trace a

  13. Fine tuning GPS clock estimation in the MCS

    NASA Technical Reports Server (NTRS)

    Hutsell, Steven T.

    1995-01-01

    With the completion of a 24 operational satellite constellation, GPS is fast approaching the critical milestone, Full Operational Capability (FOC). Although GPS is well capable of providing the timing accuracy and stability figures required by system specifications, the GPS community will continue to strive for further improvements in performance. The GPS Master Control Station (MCS) recently demonstrated that timing improvements are always composite Clock, and hence, Kalman Filter state estimation, providing a small improvement to user accuracy.

  14. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    NASA Astrophysics Data System (ADS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  15. Directly Driven Ion Outflow

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Moore, T. E.; Russell, C. T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We examine ionospheric outflows in the high altitude magnetospheric polar cap during the POLAR satellite's apogee on April 19, 1996 using the Thermal Ion Dynamics Experiment (TIDE) instrument. The elevated levels of O(+) observed in this pass may be due to the geophysical conditions during and prior to the apogee pass. In addition to the high abundance of O(+) relative to H(+), several other aspects of this data are noteworthy. We observe relationships between the density, velocity, and temperature which appear to be associated with perpendicular heating and the mirror force, rather than adiabatic expansion. The H(+) outflow is at a fairly constant flux which is consistent with being source limited by charge exchange at lower altitudes. Local centrifugal acceleration in the polar cap is found to be insufficient to account for the main variations we observe in the outflow velocity. The solar wind speed is high during this pass approximately 700 kilometers per second, and there are Alfve'n waves present in the solar wind such that the solar wind speed and IMF Bx are correlated. In this pass both the H(+) and O(+) outflow velocities correlate with both the solar wind speed and IMF fluctuations. Polar cap magnetometer and Hydra electron data show the same long period wave structure as found in the solar wind and polar cap ion outflow. In addition, the polar cap Poynting flux along the magnetic field direction correlates well with the H(+) temperature (R=0.84). We conclude that the solar wind can drive polar cap ion outflow particularly during polar squalls by setting up a parallel drop that is tens of eV which then causes the ion outflow velocity of O(+) and H(+), the electrons, and magnetic perturbations to vary in a similar fashion.

  16. Unconventional Aqueous Humor Outflow: A Review

    PubMed Central

    Johnson, Mark; McLaren, Jay W.; Overby, Darryl R.

    2016-01-01

    Aqueous humor flows out of the eye primarily through the conventional outflow pathway that includes the trabecular meshwork and Schlemm's canal. However, a fraction of aqueous humor passes through an alternative or ‘unconventional’ route that includes the ciliary muscle, supraciliary and suprachoroidal spaces. From there, unconventional outflow may drain through two pathways: a uveoscleral pathway where aqueous drains across the sclera to be resorbed by orbital vessels, and a uveovortex pathway where aqueous humor enters the choroid to drain through the vortex veins. We review the anatomy, physiology and pharmacology of these pathways. We also discuss methods to determine unconventional outflow rate, including direct techniques that use radioactive or fluorescent tracers recovered from tissues in the unconventional pathway and indirect methods that estimate unconventional outflow based on total outflow over a range of pressures. Indirect methods are subject to a number of assumptions and generally give poor agreement with tracer measurements. We review the variety of animal models that have been used to study conventional and unconventional outflow. The mouse appears to be a promising model because it captures several aspects of conventional and unconventional outflow dynamics common to humans, although questions remain regarding the magnitude of unconventional outflow in mice. Finally, we review future directions. There is a clear need to develop improved methods for measuring unconventional outflow in both animals and humans. PMID:26850315

  17. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei, E-mail: gbmou@ustc.edu.cn

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but ismore » close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.« less

  18. INJURY INCIDENCE, DANCE EXPOSURE AND THE USE OF THE MOVEMENT COMPETENCY SCREEN (MCS) TO IDENTIFY VARIABLES ASSOCIATED WITH INJURY IN FULL-TIME PRE-PROFESSIONAL DANCERS

    PubMed Central

    Reid, Duncan; Cadwell, Jill; Palmer, Priya

    2017-01-01

    Background/Purposes Prospective studies utilizing standardized injury and exposure measures are needed to consolidate our knowledge of injury incidence and associated risk factors for musculoskeletal injury amongst pre-professional dancers. The purpose of this study was to investigate the injury incidence amongst pre-professional dancers attending a fulltime training school in New Zealand. The secondary purposes of this study were to investigate the relationship between dance exposure and injury risk, and the relationship between risk factors (specifically the MCS outcome scores) and injury risk. Methods A prospective cohort study of 66 full-time pre-professional dancers was undertaken over one full academic year (38 weeks), included 40 females (mean age 17.78 yrs, SD 1.18) and 26 males (mean age 18.57yrs, SD 1.72). Injury surveillance included both reported and self reported injury data. Dancers were screened using the MCS in the first week of term one. Results Eighty-six per cent of dancers sustained one or more injuries. Fifty-nine per cent of all injuries were time-loss. The injury incidence rate was 2.27 per 1000 hours of dance exposure (DEhr) and 3.35 per 1000 dance exposures (DE). There was a significant association between the total number of injuries and total DE per month (B=0.003, 95% CI 0.001 - 0.006, p=0.016). Dancers who had a MCS score < 23 were more likely to be injured than those who scored ≥23 (B = -0.702, 95% CI = -1.354 – -0.050, p=0.035). Conclusion Injury prevalence and incidence was comparable with other international cohorts. The number of dance exposures was more highly associated with injury risk than the hours of dance exposure. The MCS may be a useful tool to help identify dancers at risk of injury. Level of Evidence Level 3b, Prospective Longitudinal Cohort Study PMID:28593089

  19. A young bipolar outflow from IRAS15398-3359

    NASA Astrophysics Data System (ADS)

    Bjerkeli, Per; Jørgensen, Jes K.

    2015-08-01

    The Class 0 protostar IRAS 15398-3359 is located in the Lupus I cloud at a distance of 155 pc. The source is known to harbour a molecular outflow, but the region has not attracted much interest until recently. IRAS 15398 is known to show interesting chemical signatures and being one of the very nearby, young outflow sources makes it an excellent target for detailed studies of the gas kinematics of different species.We present observations of several molecular species, carried out with the Submillimeter Array and ALMA, towards the IRAS 15398 outflow. The analysis of CO emission show obvious signs of episodic mass ejections, with a dynamical time scale between the knots in the jet, of the order 100 years. This is consistent with recent ALMA results where luminosity outbursts are estimated to occur on similar time-scales. The physical properties of the outflow, such as mass, momentum, momentum rate, mechanical luminosity, kinetic energy and mass-loss rate are estimated at relatively low values. We argue that this source is of a very young age, possibly younger than ~1000 years. This is consistent with recent studies of the kinematics of the inner envelope/disk. The observed line profiles were compared to full 3D radiative transfer models of the source, constructed with the Line Modelling Engine (LIME). The observed line shapes can only be understood when considering several distinctly different physical components, viz. the outflow cavity, the infalling envelope and the surrounding cloud material. This allows us to put quantitative constraints on the kinematics of the material close to the central source.

  20. Ionospheric Outflow in the Magnetosphere: Circulation and Consequences

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Liemohn, M. W.

    2017-12-01

    Including ionospheric outflow in global magnetohydrodynamic models of near-Earth outer space has become an important step towards understanding the role of this plasma source in the magnetosphere. Such simulations have revealed the importance of outflow in populating the plasma sheet and inner magnetosphere as a function of outflow source characteristics. More importantly, these experiments have shown how outflow can control global dynamics, including tail dynamics and dayside reconnection rate. The broad impact of light and heavy ion outflow can create non-linear feedback loops between outflow and the magnetosphere. This paper reviews some of the most important revelations from global magnetospheric modeling that includes ionospheric outflow of light and heavy ions. It also introduces new advances in outflow modeling and coupling outflow to the magnetosphere.

  1. Bright crater outflows: Possible emplacement mechanisms

    NASA Technical Reports Server (NTRS)

    Chadwick, D. John; Schaber, Gerald G.; Strom, Robert G.; Duval, Darla M.

    1992-01-01

    Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree.

  2. Star formation inside a galactic outflow.

    PubMed

    Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E

    2017-04-13

    Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.

  3. Ionized and Neutral Outflows in the QUEST QSOs

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    2011-10-01

    The role of galactic winds in gas-rich mergers is of crucial importance to understand galaxy and SMBH evolution. In recent months, our group has had three major scientific breakthroughs in this area: {1} The discovery with Herschel of massive molecular {OH-absorbing} outflows in several ULIRGs, including the nearest quasar, Mrk 231. {2} The independent discovery from mm-wave interferometric observations in the same object of a spatially resolved molecular {CO-emitting} wind with estimated mass outflow rate 3x larger than the star formation rate and spatially coincident with blueshifted neutral {Na ID-absorbing} gas in optical long-slit spectra. {3} The unambiguous determination from recent Gemini/IFU observations that the Na ID outflow in this object is wide-angle, thus driven by a QSO wind rather than a jet. This powerful outflow may be the long-sought "smoking gun" of quasar mechanical feedback purported to transform gas-rich mergers. However, our Herschel survey excludes all FIR-faint {UV-bright} "classic" QSOs by necessity. So here we propose a complementary FUV absorption-line survey of all FIR-bright -and- FIR-faint QSOs from the same parent sample. New {19 targets} and archival {11} spectra will be used to study, for the first time, the gaseous environments of QSOs as a function of host properties and age across the merger sequence ULIRG -> QSO. These data will allow us to distinguish between ionized & neutral quasar-driven outflows, starburst-driven winds, and tidal debris around the mergers. They will also be uniquely suited for a shallow but broad study of the warm & warm-hot intergalactic media, complementary to on-going surveys that are deeper but narrower.

  4. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS. II. FEEDBACK, STAR-FORMATION EFFICIENCY, AND OUTFLOW BROADENING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W., E-mail: rolf.kuiper@uni-tuebingen.de, E-mail: Neal.J.Turner@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov

    2016-11-20

    We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities clearedmore » by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.« less

  5. Simulating Supernovae Driven Outflows in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jaimee-Ian

    2018-01-01

    Galactic outflows, or winds, prove to be a necessary input for galactic simulations to produce results comparable to observation, for it solves issues caused by what previous literature dubbed the “angular momentum catastrophe.” While it is known that the nature of outflows depends on the nature of the Interstellar Medium (ISM), the mechanisms behind outflows are still not completely understood. We investigate the driving force behind galactic outflows and the factors that influence their behavior, hypothesizing that supernovae within the galaxy drive these winds. We study isolated, high-resolution, smooth particle hydrodynamic simulations, focusing specifically on dwarf galaxies due to their shallow potential wells, which allow for more significant outflows. We find that outflows follow star formation (and associated supernovae) suggesting the causal relationship between the two. Furthermore, simulations with higher diffusivity differ little in star formation rate, but show significantly lower outflow rates, suggesting that environmental factors that have little effect on regulating star formation can greatly influence outflows, and so efficient outflows can be driven by a constant rate of supernovae, depending on ISM behavior. We are currently analyzing disk morphology and ambient density in order to comprehend the effect of supernovae on the immediate interstellar gas. By attaining greater understanding of the origin of galactic outflows, we will be able to not only improve the accuracy of simulations, we will also be able to gain greater insight into galactic formation and evolution, as outflows and resultant inflows may be vital to the regulation of galaxies throughout their lifetimes.

  6. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015

    NASA Astrophysics Data System (ADS)

    Wu, Mengwen; Luo, Yali

    2016-08-01

    A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme rainfall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolution surface observations, sounding data, and radar measurements. New convective cells are continuously initiated along a mesoscale boundary at the surface, leading to formation and maintenance of the quasi-linear-shaped MCS from about 2000 BT 19 to 1200 BT 20 May. The boundary is originally formed between a cold dome generated by previous convection and southwesterly flow from the ocean carrying higher equivalent potential temperature ( θ e) air. The boundary is subsequently maintained and reinforced by the contrast between the MCS-generated cold outflow and the oceanic higher- θ e air. The cold outflow is weak (wind speed ≤ 5 m s -1), which is attributable to the characteristic environmental conditions, i.e., high humidity in the lower troposphere and weak horizontal winds in the middle and lower troposphere. The low speed of the cold outflow is comparable to that of the near surface southerly flow from the ocean, resulting in very slow southward movement of the boundary. The boundary features temperature contrasts of 2-3°C and is roughly 500-m deep. Despite its shallowness, the boundary appears to exert a profound influence on continuous convection initiation because of the very low level of free convection and small convection inhibition of the near surface oceanic air, building several parallel rainbands (of about 50-km length) that move slowly eastward along the MCS and produce about 80% of the total rainfall. Another MCS moves into the area from the northwest and merges with the local MCS at about 1200 BT. The cold outflow subsequently strengthens and the boundary moves more rapidly toward the southeast, leading to end of the event in 3 h.

  7. Massive outflow properties suggest AGN fade slowly

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis

    2018-01-01

    Massive large-scale active galactic nucleus (AGN) outflows are an important element of galaxy evolution, being a way through which the AGN can affect most of the host galaxy. However, outflows evolve on time-scales much longer than typical AGN episode durations, therefore most AGN outflows are not observed simultaneously with the AGN episode that inflated them. It is therefore remarkable that rather tight correlations between outflow properties and AGN luminosity exist. In this paper, I show that such correlations can be preserved during the fading phase of the AGN episode, provided that the AGN luminosity evolves as a power law with exponent αd ∼ 1 at late times. I also show that subsequent AGN episodes that illuminate an ongoing outflow are unlikely to produce outflow momentum or energy rates rising above the observed correlations. However, there may be many difficult-to-detect outflows with momentum and energy rates lower than expected from the current AGN luminosity. Detailed observations of AGN outflow properties might help constrain the activity histories of typical and/or individual AGN.

  8. Estimating outflow facility through pressure dependent pathways of the human eye

    PubMed Central

    Gardiner, Bruce S.

    2017-01-01

    We develop and test a new theory for pressure dependent outflow from the eye. The theory comprises three main parameters: (i) a constant hydraulic conductivity, (ii) an exponential decay constant and (iii) a no-flow intraocular pressure, from which the total pressure dependent outflow, average outflow facilities and local outflow facilities for the whole eye may be evaluated. We use a new notation to specify precisely the meaning of model parameters and so model outputs. Drawing on a range of published data, we apply the theory to animal eyes, enucleated eyes and in vivo human eyes, and demonstrate how to evaluate model parameters. It is shown that the theory can fit high quality experimental data remarkably well. The new theory predicts that outflow facilities and total pressure dependent outflow for the whole eye are more than twice as large as estimates based on the Goldman equation and fluorometric analysis of anterior aqueous outflow. It appears likely that this discrepancy can be largely explained by pseudofacility and aqueous flow through the retinal pigmented epithelium, while any residual discrepancy may be due to pathological processes in aged eyes. The model predicts that if the hydraulic conductivity is too small, or the exponential decay constant is too large, then intraocular eye pressure may become unstable when subjected to normal circadian changes in aqueous production. The model also predicts relationships between variables that may be helpful when planning future experiments, and the model generates many novel testable hypotheses. With additional research, the analysis described here may find application in the differential diagnosis, prognosis and monitoring of glaucoma. PMID:29261696

  9. On the Fraction of Quasars with Outflows

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Brotherton, Michael S.

    2008-01-01

    Outflows from active galactic nuclei (AGNs) seem to be common and are thought to be important from a variety of perspectives: as an agent of chemical enhancement of the interstellar and intergalactic media, as an agent of angular momentum removal from the accreting central engine, and as an agent limiting star formation in starbursting systems by blowing out gas and dust from the host galaxy. To understand these processes, we must determine what fraction of AGNs feature outflows and understand what forms they take. We examine recent surveys of quasar absorption lines, reviewing the best means to determine if systems are intrinsic and result from outflowing material, and the limitations of approaches taken to date. The surveys reveal that, while the fraction of specific forms of outflows depends on AGN properties, the overall fraction displaying outflows is fairly constant, approximately 60%, over many orders of magnitude in luminosity. We emphasize some issues concerning classification of outflows driven by data type rather than necessarily the physical nature of outflows and illustrate how understanding outflows probably requires a more comprehensive approach than has usually been taken in the past.

  10. Quantifying the AGN-driven outflows in ULIRGs (QUADROS) II: evidence for compact outflow regions from HST [OIII] imaging observations

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.; Zaurín, J. Rodríguez; Rose, M.; Spence, R. A. W.; Batcheldor, D.; Berg, M. A.; Ramos Almeida, C.; Spoon, H. W. W.; Sparks, W.; Chiaberge, M.

    2018-05-01

    The true importance of the warm, AGN-driven outflows for the evolution of galaxies remains uncertain. Measurements of the radial extents of the outflows are key for quantifying their masses and kinetic powers, and also establishing whether the AGN outflows are galaxy-wide. Therefore, as part of a larger project to investigate the significance of warm, AGN-driven outflows in the most rapidly evolving galaxies in the local universe, here we present deep Hubble Space Telescope (HST) narrow-band [OIII]λ5007 observations of a complete sample of 8 nearby ULIRGs with optical AGN nuclei. Combined with the complementary information provided by our ground-based spectroscopy, the HST images show that the warm gas outflows are relatively compact for most of the objects in the sample: in three objects the outflow regions are barely resolved at the resolution of HST (0.065 < R[OIII] < 0.12 kpc); in a further four cases the outflows are spatially resolved but with flux weighted mean radii in the range 0.65 < R[OIII] < 1.2 kpc; and in only one object (Mrk273) is there clear evidence for a more extended outflow, with a maximum extent of R[OIII] ˜ 5 kpc. Overall, our observations show little evidence for the galaxy-wide outflows predicted by some models of AGN feedback.

  11. Broad Absorption Line Quasars with Polar Outflows

    NASA Astrophysics Data System (ADS)

    Wang, Junxian

    2005-10-01

    It is widely accepted that the broad absorption line (BAL) outflow exists in most (if not all) quasars with a small covering factor. Various evidences show that equatorial outflows are responsible for the BALs in most BAL QSOs. By searching for radio variable quasars in SDSS, we built the first sample of 6 BAL QSOs with polar BAL outflows. It is very likely that polar outflows are associated with relativistic jets, and their origins should be different from the equatorial outflows in the majority of BAL QSOs. We propose an XMM snapshot survey to a) check whether strong X-ray absorption, one of the most prominent characteristics of most BAL QSOs, also exist in the polar outflows b) check whether face-on BAL QSOs are otherwise X-ray normal c) provide a baseline for future extensive X-ray studies.

  12. Large-Scale Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  13. OBSERVATIONS OF MOLECULAR OUTFLOW IN CAR 291.6-01.9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saul, M.; Saul, L., E-mail: msaul@phys.unsw.edu.au, E-mail: luke.saul@space.unibe.ch

    We report the first observations of a dense molecular gas nebula and bipolar outflow in Car 291.6-01.9, showing characteristics of an embedded young stellar object (YSO). Using the Mopra radio telescope near Coonabarabaran, Australia, we image the kinematic structure of several emission features to examine physical properties within a molecular clump of mass {approx}3.2 {+-} 0.6 Multiplication-Sign 10{sup 3} M{sub Sun} in which a stellar cluster may be forming. Motivated by acquiring a more thorough understanding of star formation we ask what may have initiated collapse in the clump; observed outflow alignment is suggestive of {approx}1.0 pc distant massive starmore » HD 308280 radiative-driven compression as a formation trigger for the dense core. An outflow derived age of <10{sup 6} years, together with significant C{sup 18}O and SO core depletion, support the case for the core as the host of an extremely YSO cluster.« less

  14. OUTFLOWS FROM EVOLVED STARS: THE RAPIDLY CHANGING FINGERS OF CRL 618

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, Bruce; Huarte-Espinosa, Martin; Frank, Adam

    2013-07-20

    Our ultimate goal is to probe the nature of the collimator of the outflows in the pre-planetary nebula CRL 618. CRL 618 is uniquely suited for this purpose owing to its multiple, bright, and carefully studied finger-shaped outflows east and west of its nucleus. We compare new Hubble Space Telescope images to images in the same filters observed as much as 11 yr ago to uncover large proper motions and surface brightness changes in its multiple finger-shaped outflows. The expansion age of the ensemble of fingers is close to 100 yr. We find strong brightness variations at the fingertips duringmore » the past decade. Deep IR images reveal a multiple ring-like structure of the surrounding medium into which the outflows propagate and interact. Tightly constrained three-dimensional hydrodynamic models link the properties of the fingers to their possible formation histories. We incorporate previously published complementary information to discern whether each of the fingers of CRL 618 are the results of steady, collimated outflows or a brief ejection event that launched a set of bullets about a century ago. Finally, we argue on various physical grounds that fingers of CRL 618 are likely to be the result of a spray of clumps ejected at the nucleus of CRL 618 since any mechanism that form a sustained set of unaligned jets is unprecedented.« less

  15. Aqueous outflow - a continuum from trabecular meshwork to episcleral veins

    PubMed Central

    Carreon, Teresia; van der Merwe, Elizabeth; Fellman, Ronald L.; Johnstone, Murray; Bhattacharya, Sanjoy K.

    2016-01-01

    In glaucoma, lowered intraocular pressure (IOP) confers neuroprotection. Elevated IOP characterizes glaucoma and arises from impaired aqueous humor (AH) outflow. Increased resistance in the trabecular meshwork (TM), a filter-like structure essential to regulate AH outflow, may result in the impaired outflow. Flow through the 360° circumference of TM structures may be non-uniform, divided into high and low flow regions, termed as segmental. After flowing through the TM, AH enters Schlemm’s canal (SC), which expresses both blood and lymphatic markers; AH then passes into collector channel entrances (CCE) along the SC external well. From the CCE, AH enters a deep scleral plexus (DSP) of vessels that typically run parallel to SC. From the DSP, intrascleral collector vessels run radially to the scleral surface to connect with AH containing vessels called aqueous veins to discharge AH to blood-containing episcleral veins. However, the molecular mechanisms that maintain homeostatic properties of endothelial cells along the pathways are not well understood. How these molecular events change during aging and in glaucoma pathology remain unresolved. In this review, we propose mechanistic possibilities to explain the continuum of AH outflow control, which originates at the TM and extends through collector channels to the episcleral veins. PMID:28028002

  16. Analysis of hysteresis effect on the vibration motion of a bimodal non-uniform micro-cantilever using MCS theory

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Korayem, A. H.; Hosseini Hashemi, Sh.

    2016-02-01

    Nowadays, to enhance the performance of atomic force microscopy (AFM) micro-cantilevers (MCs) during imaging, reduce costs and increase the surface topography precision, advanced MCs equipped with piezoelectric layers are utilized. Using the modified couple stress (MCS) theory not only makes the modeling more exhaustive, but also increases the accuracy of prediction of the vibration behavior of the system. In this paper, Hamilton's principle by consideration of the MCS theory has been used to extract the equations. In addition, to discretize the equations, differential quadrature method has been adopted. Analysis of the hysteresis effect on the vibration behavior of the AFM MC is of significant importance. Thus, to model the hysteresis effect, Bouc-Wen method, which is solved simultaneously with the vibration equations of non-uniform Timoshenko beam, has been utilized. Furthermore, a bimodal excitation of the MC has been considered. The results reveal that the hysteresis effect appears as a phase difference in the time response. Finally, the effect of the geometric parameters on the vibration frequency of the system which is excited by combination of the first two vibration modes of the non-uniform piezoelectric MC has been examined. The results indicate the considerable effect of the MC length in comparison with other geometric parameters such as the MC width and thickness.

  17. Characterizing Quasar Outflows II: The Incidence of the Highest Velocity Outflows

    NASA Astrophysics Data System (ADS)

    Stark, Michele A.; Ganguly, R.; Christenson, D. H.; Richmond, J. M.; Derseweh, J. A.; Robbins, J. M.; Townsend, S. L.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In an accompanying poster, we subjectively divide these quasars into four categories (broad absorption-line quasars, associated absorption-line quasars, reddened quasars, and unabsorbed/unreddened quasars). This subjective scheme is limited with regard to classifying narrow absorption-line systems (NALs). With single epoch, low dispersion SDSS spectra, we cannot distinguish between cosmologically intervening NALs, and intrinsic NALs that appear at large velocity offsets. In this poster, we tackle this uncertainty statistically by considering the incidence of both CIV and MgII NALs as a function of velocity, and how this distribution changes with quasar properties. We expect that absorption by intervening structures should not vary with quasar property. Other accompanying posters add photometry from rest-frame X-ray through the infrared (WISE) to complete the SED, which we utilize in these efforts. This material is based upon work supported by the National Aeronautics and Space Administration under

  18. Molecular Outflows: Explosive versus Protostellar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina

    2017-02-10

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, butmore » with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.« less

  19. The energetics of AGN radiation pressure-driven outflows

    NASA Astrophysics Data System (ADS)

    Ishibashi, W.; Fabian, A. C.; Maiolino, R.

    2018-05-01

    The increasing observational evidence of galactic outflows is considered as a sign of active galactic nucleus (AGN) feedback in action. However, the physical mechanism responsible for driving the observed outflows remains unclear, and whether it is due to momentum, energy, or radiation is still a matter of debate. The observed outflow energetics, in particular the large measured values of the momentum ratio (\\dot{p}/(L/c) ˜ 10) and energy ratio (\\dot{E}_k/L ˜ 0.05), seems to favour the energy-driving mechanism; and most observational works have focused their comparison with wind energy-driven models. Here, we show that AGN radiation pressure on dust can adequately reproduce the observed outflow energetics (mass outflow rate, momentum flux, and kinetic power), as well as the scalings with luminosity, provided that the effects of radiation trapping are properly taken into account. In particular, we predict a sublinear scaling for the mass outflow rate (\\dot{M} ∝ L^{1/2}) and a superlinear scaling for the kinetic power (\\dot{E}_k ∝ L^{3/2}), in agreement with the observational scaling relations reported in the most recent compilation of AGN outflow data. We conclude that AGN radiative feedback can account for the global outflow energetics, at least equally well as the wind energy-driving mechanism, and therefore both physical models should be considered in the interpretation of future AGN outflow observations.

  20. Shocks and Molecules in Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Arce, Héctor

    2014-06-01

    As protostars form through the gravitational infall of material from their parent molecular cloud, they power energetic bipolar outflows that interact with the surrounding medium. Protostellar outflows are important to the chemical evolution of star forming regions, as the shocks produced by the interaction of the high-velocity protostellar wind and the ambient cloud can heat the surrounding medium and trigger chemical and physical processes that would otherwise not take place in a quiescent molecular cloud. Protostellar outflows, are therefore a great laboratory to study shock physics and shock-induced chemistry. I will present results from millimeter-wave observations of a small sample of outflow shocks. The spectra show clear evidence of the existence of complex organic molecules (e.g., methyl formate, ethanol, acetaldehyde) and high abundance of certain simple molecules (e.g., HCO^+, HCN, H_2O) in outflows. Results indicate that, most likely, the complex species formed on the surface of grains and were then ejected from the grain mantles by the shock. Spectral surveys of shocked regions using ALMA could therefore be used to probe the composition of dust in molecular clouds. Our results demonstrate that outflows modify the chemical composition of the surrounding gaseous environment and that this needs to be considered when using certain species to study active star forming regions.

  1. Ionised outflows in z ~ 2.4 quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2015-08-01

    Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for

  2. MOLECULAR OUTFLOWS FROM THE PROTOCLUSTER SERPENS SOUTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Fumitaka; Higuchi, Aya; Sugitani, Kohji

    2011-08-20

    We present the results of CO (J = 3-2) and HCO{sup +} (J = 4-3) mapping observations toward a nearby embedded cluster, Serpens South, using the ASTE 10 m telescope. Our CO (J = 3-2) map reveals that many outflows are crowded in the dense cluster-forming clump that can be recognized as an HCO{sup +} clump with a size of {approx}0.2 pc and mass of {approx}80 M{sub sun}. The clump contains several subfragments with sizes of {approx}0.05 pc. By comparing the CO (J = 3-2) map with the 1.1 mm dust continuum image taken by AzTEC on ASTE, we findmore » that the spatial extents of the outflow lobes are sometimes anti-correlated with the distribution of the dense gas, and some of the outflow lobes apparently collide with the dense gas. The total outflow mass, momentum, and energy are estimated to be 0.6 M{sub sun}, 8 M{sub sun} km s{sup -1}, and 64 M{sub sun} km{sup 2} s{sup -2}, respectively. The energy injection rate due to the outflows is comparable to the turbulence dissipation rate in the clump, implying that the protostellar outflows can maintain the supersonic turbulence in this region. The total outflow energy seems only about 10% of the clump gravitational energy. We conclude that the current outflow activity is not enough to destroy the whole cluster-forming clump, and therefore star formation is likely to continue for several or many local dynamical times.« less

  3. The COS revolution of AGN outflow science

    NASA Astrophysics Data System (ADS)

    Arav, Nahum

    2016-10-01

    HST/COS has opened a new discovery space for quasar outflow science. Specifically, it provides high quality FUV spectra covering the diagnostic-rich 500A-1050A rest-frame of medium redshift objects. We have published three refereed papers based on the analysis of such data that were supported by our concluded COS archive program, in which we reported: a) a new population of very high ionization outflows, b) robust cases of two-ionization-phase outflows, which are the missing link between UV AGN outflows and x-ray warm absorbers, and most importantly c) spectral diagnostics that allowed us to determine the distance of the outflows from the central source. The latter is a cardinal issue in the field as many researchers believe that most outflows are situated close to the accretion disk ( 0.01 pc) while the few reliable measurements show distances of 10-10,000 pc. Therefore, every empirical distance measurement is of importance. Our archive based publication also demonstrates that quasar outflows have sufficient energy to match theoretical predictions for AGN feedback influencing galaxy evolution.We propose to continue this successful archive program. Thus far we've analyzed about 300 COS G130M and G160M orbits of AGN observations. There are roughly 900 additional orbits that satisfy our criteria and will be available within a year. Based on our published survey, we expect that these 900 orbits will yield about 20-30 additional very-high ionization outflows and 4-6 cases of distance and kinetic luminosity determinations, all in cosmologically important luminous-quasars.

  4. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  5. A New Look at Speeding Outflows

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    The compact centers of active galaxies known as active galactic nuclei, or AGN are known for the dynamic behavior they exhibit as the supermassive black holes at their centers accrete matter. New observations of outflows from a nearby AGN provide a more detailed look at what happens in these extreme environments.Outflows from GiantsThe powerful radio jets of Cygnus A, which extend far beyond the galaxy. [NRAO/AUI]AGN consist of a supermassive black hole of millions to tens of billions of solar masses surrounded by an accretion disk of in-falling matter. But not all the material falling toward the black hole accretes! Some of it is flung from the AGN via various types of outflows.The most well-known of these outflows are powerful radio jets collimated and incredibly fast-moving streams of particles that blast their way out of the host galaxy and into space. Only around 10% of AGN are observed to host such jets, however and theres another outflow thats more ubiquitous.Fast-Moving AbsorbersPerhaps 30% of AGN both those with and without observed radio jets host wider-angle, highly ionized gaseous outflows known as ultra-fast outflows (UFOs). Ultraviolet and X-ray radiation emitted from the AGN is absorbed by the UFO, revealing the outflows presence: absorption lines appear in the ultraviolet and X-ray spectra of the AGN, blue-shifted due to the high speeds of the absorbing gas in the outflow.Quasar PG 1211+143, indicated by the crosshairs at the center of the image, in the color context of its surroundings. [SDSS/S. Karge]But what is the nature of UFOs? Are they disk winds? Or are they somehow related to the radio jets? And what impact do they have on the AGNs host galaxy?X-ray and Ultraviolet CooperationNew observations are now providing fresh information about one particular UFO. A team of scientists led by Ashkbiz Danehkar (Harvard-Smithsonian Center for Astrophysics) recently used the Chandra and Hubble space telescopes to make the first simultaneous observations

  6. Validation and Inter-Comparison of Limb Sounding Profiles from MRO/MCS and MGS/TES

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; McConnochie, T. M.; Kass, D. M.; Kleinböhl, A.; Schofield, J. T.; Heavens, N. G.; McCleese, D. J.; Benson, J.; Hinson, D. P.; Bandfield, J. L.

    2014-07-01

    Nighttime atmospheric temperatures in northern middle latitudes during Mars' aphelion season obtained by MGS/TES and MRO/MCS are compared with MGS radio science results. Profile mean Δ Ts of <= 2 K demonstrate consistency of retrieved temperatures.

  7. AGN outflows and feedback twenty years on

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Costa, T.; Tadhunter, C. N.; Flütsch, A.; Kakkad, D.; Perna, M.; Vietri, G.

    2018-03-01

    It is twenty years since the seminal works by Magorrian and co-authors and by Silk and Rees, which, along with other related work, ignited an explosion of publications connecting active galactic nucleus (AGN)-driven outflows to galaxy evolution. With a surge in observations of AGN outflows, studies are attempting to test AGN feedback models directly using the outflow properties. With a focus on outflows traced by optical and CO emission lines, we discuss significant challenges that greatly complicate this task, from both an observational and theoretical perspective. We highlight the observational uncertainties involved and the assumptions required when deriving kinetic coupling efficiencies (that is, outflow kinetic power as a fraction of AGN luminosity) from typical observations. Based on recent models we demonstrate that extreme caution should be taken when comparing observationally derived kinetic coupling efficiencies to coupling efficiencies from fiducial feedback models.

  8. A distance-limited sample of massive molecular outflows

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Moore, T. J. T.; Lumsden, S. L.; Mottram, J. C.; Urquhart, J. S.; Hoare, M. G.

    2015-10-01

    We have observed 99 mid-infrared-bright, massive young stellar objects and compact H II regions drawn from the Red MSX source survey in the J = 3-2 transition of 12CO and 13CO, using the James Clerk Maxwell Telescope. 89 targets are within 6 kpc of the Sun, covering a representative range of luminosities and core masses. These constitute a relatively unbiased sample of bipolar molecular outflows associated with massive star formation. Of these, 59, 17 and 13 sources (66, 19 and 15 per cent) are found to have outflows, show some evidence of outflow, and have no evidence of outflow, respectively. The time-dependent parameters of the high-velocity molecular flows are calculated using a spatially variable dynamic time-scale. The canonical correlations between the outflow parameters and source luminosity are recovered and shown to scale with those of low-mass sources. For coeval star formation, we find the scaling is consistent with all the protostars in an embedded cluster providing the outflow force, with massive stars up to ˜30 M⊙ generating outflows. Taken at face value, the results support the model of a scaled-up version of the accretion-related outflow-generation mechanism associated with discs and jets in low-mass objects with time-averaged accretion rates of ˜10-3 M⊙ yr-1 on to the cores. However, we also suggest an alternative model, in which the molecular outflow dynamics are dominated by the entrained mass and are unrelated to the details of the acceleration mechanism. We find no evidence that outflows contribute significantly to the turbulent kinetic energy of the surrounding dense cores.

  9. Shining a light on star formation driven outflows: the physical conditions within galactic outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John P.; Tremonti, Christina A.; Leitherer, Claus; Wofford, Aida; Chen, Yanmei

    2016-01-01

    Stellar feedback drives energy and momentum into the surrounding gas, which drives gas and metals out of galaxies through a galactic outflow. Unfortunately, galactic outflows are difficult to observe and characterize because they are extremely diffuse, and contain gas at many different temperatures. Here we present results from a sample of 37 nearby (z < 0.27) star forming galaxies observed in the ultraviolet with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The sample covers over three decades in stellar mass and star formation rate, probing different morphologies such as dwarf irregulars and high-mass merging systems. Using four different UV absorption lines (O I, Si II, Si III and Si IV) that trace a wide range of temperatures (ionization potentials between 13.6 eV and 45 eV), we find shallow correlations between the outflow velocity or the equivalent width of absorption lines with stellar mass or star formation rate. Absorption lines probing different temperature phases have similar centroid velocities and line widths, indicating that they are comoving. Using the equivalent width ratios of the four different transitions, we find the ratios to be consistent with photo-ionized outflows, with moderately strong ionization parameters. By constraining the ionization mechanism we model the ionization fractions for each transition, but find the ionization fractions depend crucially on input model parameters. The shallow velocity scalings imply that low-mass galaxies launch outflows capable of escaping their galactic potential, while higher mass galaxies retain all of their gas, unless they undergo a merger.

  10. AGN outflows as neutrino sources: an observational test

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Turcati, A.; Resconi, E.

    2018-04-01

    We test the recently proposed idea that outflows associated with Active Galactic Nuclei (AGN) could be neutrino emitters in two complementary ways. First, we cross-correlate a list of 94 "bona fide" AGN outflows with the most complete and updated repository of IceCube neutrinos currently publicly available, assembled by us for this purpose. It turns out that AGN with outflows matched to an IceCube neutrino have outflow and kinetic energy rates, and bolometric powers larger than those of AGN with outflows not matched to neutrinos. Second, we carry out a statistical analysis on a catalogue of [O III] λ5007 line profiles using a sample of 23,264 AGN at z < 0.4, a sub-sample of which includes mostly possible outflows sources. We find no significant evidence of an association between the AGN and the IceCube events, although we get the smallest p-values (˜6 and 18 per cent respectively, pre-trial) for relatively high velocities and luminosities. Our results are consistent with a scenario where AGN outflows are neutrino emitters but at present do not provide a significant signal. This can be tested with better statistics and source stacking. A predominant role of AGN outflows in explaining the IceCube data appears in any case to be ruled out.

  11. AGN outflows as neutrino sources: an observational test

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Turcati, A.; Resconi, E.

    2018-07-01

    We test the recently proposed idea that outflows associated with Active Galactic Nuclei (AGN) could be neutrino emitters in two complementary ways. First, we cross-correlate a list of 94 'bona fide' AGN outflows with the most complete and updated repository of IceCube neutrinos currently publicly available, assembled by us for this purpose. It turns out that AGN with outflows matched to an IceCube neutrino have outflow and kinetic energy rates, and bolometric powers larger than those of AGN with outflows not matched to neutrinos. Secondly, we carry out a statistical analysis on a catalogue of [O III] λ5007 line profiles using a sample of 23 264 AGN at z < 0.4, a subsample of which includes mostly possible outflow sources. We find no significant evidence of an association between the AGN and the IceCube events, although we get the smallest p-values (˜6 and 18 per cent, respectively, pre-trial) for relatively high velocities and luminosities. Our results are consistent with a scenario where AGN outflows are neutrino emitters but at present do not provide a significant signal. This can be tested with better statistics and source stacking. A predominant role of AGN outflows in explaining the IceCube data appears in any case to be ruled out.

  12. Key Issues in the Production of Ionospheric Outflows

    NASA Astrophysics Data System (ADS)

    Lotko, W.

    2017-12-01

    Global models demonstrate that outflows of ionospheric ions can have profound effects on the dynamics of the solar wind-magnetosphere-ionosphere-thermosphere system, particularly during geomagnetic storms. Yet the processes that determine where and when outflows occur are poorly understood, in large part because a full complement of critical multivariable measurements of outflows and their causal drivers has yet to be assembled. Development of accurate regional and global predictive models of outflows has been hampered by this lack of empirical knowledge, but models are also challenged by the additional requirement of having to reduce the complex microphysics of ion energization into lumped relations that specify outflow characteristics through causal regulators. Opportunities to improve understanding of this problem are vast. This overview will focus on a limited set of priority questions that address how ions overcome gravity to leave the ionosphere; the timing, rate, spatial distribution and energetics of their exodus; how their flight impacts the ionosphere-thermosphere environment that spawns outflows; and the influence of magnetospheric feedback on outflow production.

  13. THE PREVALENCE OF GAS OUTFLOWS IN TYPE 2 AGNs. II. 3D BICONICAL OUTFLOW MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Hyun-Jin; Woo, Jong-Hak, E-mail: hjbae@galaxy.yonsei.ac.kr, E-mail: woo@astro.snu.ac.kr

    We present 3D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclinationmore » increases, while velocity (i.e., velocity shifts with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O iii] line profiles, e.g., narrow core and broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O iii] velocity–velocity dispersion distribution of ∼39,000 type 2 AGNs, we constrain the intrinsic velocity of gas outflows ranging from ∼500 to ∼1000 km s{sup −1} for the majority of AGNs, and up to ∼1500–2000 km s{sup −1} for extreme cases. The Monte Carlo simulations show that the number ratio of AGNs with negative [O iii] velocity to AGNs with positive [O iii] velocity correlates with the outflow opening angle, suggesting that outflows with higher intrinsic velocity tend to have wider opening angles. These results demonstrate the potential of our 3D models for studying the physical properties of gas outflows, applicable to various observations, including spatially integrated and resolved gas kinematics.« less

  14. Secondary chaotic terrain formation in the higher outflow channels of southern circum-Chryse, Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Kargel, J.S.; Tanaka, K.L.; Crown, D.A.; Berman, D.C.; Fairen, A.G.; Baker, V.R.; Furfaro, R.; Candelaria, P.; Sasaki, S.

    2011-01-01

    . Within relatively warm upper crustal materials in volcanic settings, or within highly saline crustal materials where cryopegs developed, lenses of volatiles in liquid form within the cryolithosphere could have formed, and/or remained stable.In addition, our numerical simulations suggest that low thermal conductivity, dry fine-grained porous geologic materials just a few tens of meters in thickness (e.g., dunes, sand sheets, some types of regolith materials), could have produced high thermal anomalies resulting in subsurface melting. The existence of a global layer of dry geologic materials overlying the cryolithosphere would suggest that widespread lenses of fluids existed (and may still exist) at shallow depths wherever these materials are fine-grained and porous. The surface ages of the investigated outflow channels and chaotic terrains span a full 500 to 700. Myr. Chaotic terrains similar in dimensions and morphology to secondary chaotic terrains are not observed conspicuously throughout the surface of Mars, suggesting that intra-cryolithospheric fluid lenses may form relatively stable systems. The existence of widespread groundwater lenses at shallow depths of burial has tremendous implications for exobiological studies and future human exploration. We find that the clear geomorphologic anomaly that the chaotic terrains and outflow channels of southern Chryse form within the Martian landscape could have been a consequence of large-scale resurfacing resulting from anomalously extensive subsurface melt in this region of the planet produced by high concentrations of salts within the regional upper crust. Crater count statistics reveal that secondary chaotic terrains and the outflow channels within which they occur have overlapping ages, suggesting that the instabilities leading to their formation rapidly dissipated, perhaps as the thickness of the cryolithosphere was reset following the disruption of the upper crustal thermal structure produced during outflow channel ex

  15. Powerful Molecular Outflows in Nearby Active Galaxies

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain; Meléndez, Marcio

    2014-07-01

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel-PACS† in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7-μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than -50 km s-1, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (~ 145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s-1, is seen in only 4 objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ~ -1000 km s-1 are measured in several objects, but median outflow velocities are typically ~ -200 km s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large AGN fractions and luminosities [log (L AGN/L ⊙) >= 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. In contrast, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  16. Trends in the use of mechanical circulatory support as a bridge to heart transplantation across different age groups.

    PubMed

    Ciarka, Agnieszka; Edwards, Leah; Nilsson, Johan; Stehlik, Josef; Lund, Lars H

    2017-03-15

    Numerous cohort analyses suggest rapidly increasing use of mechanical circulatory support (MCS) as a bridge to heart transplantation (HTx), but the role of age in selection for MCS remains unknown. We assessed adult HTx in the International Society for Heart And Lung Transplantation Registry between 2005 and 2013 and we determined MCS use by recipient age group and transplant year. Multivariable logistic regression models were constructed to identify variables associated with continuous flow (CF) left ventricular assist device (LVAD) use within each age group. Among 16,480 HTx recipients the percentage of overall MCS use increased from 23% to 38%, 21% to 41%, and 17% to 42% in age groups 18-39 years, 40-59 years and over 60 years, respectively. This effect was mainly due to an increase in CF LVAD use and primarily in HTx recipients aged over 60. In multivariable analyses, male gender and blood group O were significantly associated with CF LVAD use in all age groups. Bridge to transplant MCS use increased dramatically between 2005 and 2013 primarily due to increased use of CF LVAD and primarily in higher ages. Pre-HTx CF LVAD use was more frequent in men and blood group O. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Quantifying The Effect Of Scattering Upon The Retrieved Dust Opacity In The Martian Atmosphere, As Deduced From Mro/mcs Measurements

    NASA Astrophysics Data System (ADS)

    Howett, Carly; Irwin, P. G.; Teanby, N.; Calcutt, S. B.; Lolachi, R.; Bowles, N.; Schofield, J. T.; McCleese, D. J.

    2007-10-01

    Mars Climate Sounder data from September to November 2006 is analysed to determine the effect of scattering upon the retrieved dust opacity in the atmosphere of Mars. The inclusion of scattering in dust retrievals makes them significantly more computationally expensive. Thus, understanding the regimes in which scattering plays a less significant role could considerably decrease the computational time of analysing the extensive MCS dataset. Temperature profiles were initially retrieved using Nemesis, Oxford University's multivariate retrieval algorithm, at each location using MCS' A1, A2 and A3 channels (595 to 665 cm-1 ).Using these temperature profiles, and by assuming the characteristics of the dust particles to be comparable to those of Wolff and Clancy (2003), the dust opacity was retrieved using the B1 channel of MCS (290 to 340 cm-1 ) with and without scattering. The effect of scattering on the fit to the MCS data and on the derived vertical dust profile at various locations across the planet are presented. Particular emphasis is placed upon understanding the spatial and temporal variations of atmospheric regimes in which scattering plays a significant role.

  18. Limb Retrievals of TES solarband/IR data (and MCS solarband data)

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Pankine, A.

    2016-12-01

    Vertical variations in aerosol distributions (and their microphysicalproperties) can have a dramatic impact on the state and evolution of theMartian atmosphere. This has been clearly delineated recent work usingretrieval products produced by the Mars Climate Sounder (MCS) teamfrom limb observations by the MCS IR bolometers. However, similarproducts for Thermal EmissionSpectrometer (TES) limb observationshave not been as widely disseminated. In addition, the solar bandchannels of both datasets have been essentially unanalyzed. Ouroverarching goal has been to fill these gaps in order to addressparticle size studies, as well as to generate products that can beused by the wider community. In our presentation we will include: 1) A summary of our limb radiative transfer algorithms and retrievalscheme; 2) The limitations imposed by "Smoothing Error" and by systematicradiometric error on retrievals in lower and upper atmosphere, respectively;3) vertical profiles of opacity and particle size associated with theevolution of the 2001 TES dust storm; and 4) the use of limbretrievals to estimate integrated-column optical depths (validatedagainst Mars Exploration Rover and TES emission phase functionmeasurements); and 5) the plans for an ongoing archive to be used forthe distribution of the derived profiles and associated retrievalmetadata. This work has been supported by NASA with a Mars Data AnalysisProgram award (grant NNX10AO23G).

  19. Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES

    NASA Astrophysics Data System (ADS)

    Shirley, James H.; McConnochie, Timothy H.; Kass, David M.; Kleinböhl, Armin; Schofield, John T.; Heavens, Nicholas G.; McCleese, Daniel J.; Benson, Jennifer; Hinson, David P.; Bandfield, Joshua L.

    2015-05-01

    We exploit the relative stability and repeatability of the Mars atmosphere at aphelion for an inter-comparison of Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES) and Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) nighttime temperature profiles and aerosol opacity profiles in Mars years 25, 26, 29, 30, and 31. Cross-calibration of these datasets is important, as they together provide an extended climatology for this planetary atmosphere. As a standard of comparison we employ temperature profiles obtained by radio occultation methods during the MGS mission in Mars years 24, 25, and 26. We first compare both zonal mean TES limb sounding profiles and zonal mean MCS limb sounding profiles with zonal means of radio occultation temperature profiles for the same season (Ls = 70-80°) and latitudes (55-70°N). We employ a statistical z test for quantifying the degree of agreement of temperature profiles by pressure level. For pressures less than 610 Pa (altitudes > 3 km), the ensemble mean temperature difference between the radio occultation and TES limb sounding profiles found in these comparisons was 1.7 ± 0.7 K. The ensemble mean temperature difference between radio occultation and MCS profiles was 1.4 ± 1.0 K. These differences fall within the formal error estimates for both TES and MCS, validating the accuracy of the instruments and their respective retrieval algorithms. In the second phase of our investigation, we compare aphelion season zonal mean TES limb sounding temperature, water ice opacity, and dust opacity profiles with those obtained at the same latitudes in different years by MCS. The ensemble mean temperature difference found for three comparisons between TES and MCS zonal mean temperature profiles was 2.8 ± 2.1 K. MCS and TES temperatures between 610 Pa and 5 Pa from 55 to 70°N are largely in agreement (with differences < 2 K) when water ice aerosol opacities are comparable. Temperature differences increase when the opacities

  20. From individual coping strategies to illness codification: the reflection of gender in social science research on multiple chemical sensitivities (MCS).

    PubMed

    Nadeau, Geneviève; Lippel, Katherine

    2014-09-10

    Emerging fields such as environmental health have been challenged, in recent years, to answer the growing methodological calls for a finer integration of sex and gender in health-related research and policy-making. Through a descriptive examination of 25 peer-reviewed social science papers published between 1996 and 2011, we explore, by examining methodological designs and theoretical standpoints, how the social sciences have integrated gender sensitivity in empirical work on Multiple Chemical Sensitivities (MCS). MCS is a "diagnosis" associated with sensitivities to chronic and low-dose chemical exposures, which remains contested in both the medical and institutional arenas, and is reported to disproportionately affect women. We highlighted important differences between papers that did integrate a gender lens and those that did not. These included characteristics of the authorship, purposes, theoretical frameworks and methodological designs of the studies. Reviewed papers that integrated gender tended to focus on the gender roles and identity of women suffering from MCS, emphasizing personal strategies of adaptation. More generally, terminological confusions in the use of sex and gender language and concepts, such as a conflation of women and gender, were observed. Although some men were included in most of the study samples reviewed, specific data relating to men was undereported in results and only one paper discussed issues specifically experienced by men suffering from MCS. Papers that overlooked gender dimensions generally addressed more systemic social issues such as the dynamics of expertise and the medical codification of MCS, from more consistently outlined theoretical frameworks. Results highlight the place for a critical, systematic and reflexive problematization of gender and for the development of methodological and theoretical tools on how to integrate gender in research designs when looking at both micro and macro social dimensions of environmental

  1. The Coldest Place in the Universe: Probing the Ultra-cold Outflow and Dusty Disk in the Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W. H. T.; Nyman, L.-Å.

    2017-06-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the cosmic background temperature. Our new CO 1-0 data reveal heretofore unseen distant regions of this ultra-cold outflow, out to ≳120,000 au. We find that in the ultra-cold outflow, the mass-loss rate (\\dot{M}) increases with radius, similar to its expansion velocity (V)—taking V\\propto r, we find \\dot{M}\\propto {r}0.9{--2.2}. The mass in the ultra-cold outflow is ≳ 3.3 M ⊙, and the Boomerang’s main-sequence progenitor mass is ≳ 4 M ⊙. Our high angular resolution (˜ 0\\buildrel{\\prime\\prime}\\over{.} 3) CO J = 3-2 map shows the inner bipolar nebula’s precise, highly collimated shape, and a dense central waist of size (FWHM) ˜1740 au × 275 au. The molecular gas and the dust as seen in scattered light via optical Hubble Space Telescope imaging show a detailed correspondence. The waist shows a compact core in thermal dust emission at 0.87-3.3 mm, which harbors (4{--}7)× {10}-4 M ⊙ of very large (˜millimeter-to-centimeter sized), cold (˜ 20{--}30 K) grains. The central waist (assuming its outer regions to be expanding) and fast bipolar outflow have expansion ages of ≲ 1925 {years} and ≤slant 1050 {years}: the “jet-lag” (I.e., torus age minus the fast-outflow age) in the Boomerang supports models in which the primary star interacts directly with a binary companion. We argue that this interaction resulted in a common-envelope configuration, while the Boomerang’s primary was an RGB or early-AGB star, with the companion finally merging into the primary’s core, and ejecting the primary’s envelope that now forms the ultra-cold outflow.

  2. Far-Ultraviolet Observations of Outflows from Infrared-Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Chandar, Rupali; Tremonti, Christy A.; Wofford, Aida

    2013-03-01

    We have obtained ultraviolet spectra between 1150 and 1450 Å of four ultraviolet-bright, infrared-luminous starburst galaxies. Our selected sight-lines towards the starburst nuclei probe the conditions in the starburst-driven outflows. We detect outflowing gas with velocities of up to ˜900 km s-1. It is likely that the outflows are a major source of metal enrichment of the galaxies' halos. The mass outflow rates of several tens of M⊙ yr-1 are similar to the star-formation rates. The outflows may quench star formation and ultimately regulate the starburst.

  3. Studies of Quasar Outflows

    NASA Technical Reports Server (NTRS)

    Arav, Nahum

    2002-01-01

    The main aim of this research program is to determine the ionization equilibrium and abundances in quasar outflows. Especially in the broad absorption line QSO PG 0946+301. We find that the outflow's metalicity is consistent with being solar, while the abundance ratio of phosphorus to other metals is at least ten times solar. These findings are based on diagnostics that are not sensitive to saturation and partial covering effects in the BALs (Broad Adsorption Lines), which considerably weakened previous claims for enhanced metalicity. Ample evidence for these effects is seen in the spectrum.

  4. Does the X-ray outflow quasar PDS 456 have a UV outflow at 0.3c?

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Chartas, George; Reeves, James; Nardini, Emanuele

    2018-05-01

    The quasar PDS 456 (at redshift ˜0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log NH(cm-2) > 23, and large kinetic energies that could be important for feedback to the host galaxy. A UV spectrum of PDS 456 obtained with the Hubble Space Telescope in 2000 contains one well-measured broad absorption line (BAL) at ˜1346 Å (observed) that might be Ly α at v ≈ 0.06c or N V λ1240 at v ≈ 0.08c. However, we use photoionization models and comparisons to other outflow quasars to show that these BAL identifications are problematic because other lines that should accompany them are not detected. We argue that the UV BAL is probably C IV at v ≈ 0.30c. This would be the fastest UV outflow ever reported, but its speed is similar to the X-ray outflow and its appearance overall is similar to relativistic UV BALs observed in other quasars. The C IV BAL identification is also supported indirectly by the tentative detection of another broad C IV line at v ≈ 0.19c. The high speeds suggest that the UV outflow originates with the X-ray UFO crudely 20-30 rg from the central black hole. We speculate that the C IV BAL might form in dense clumps embedded in the X-ray UFO, requiring density enhancements of only ≳0.4 dex compared to clumpy structures already inferred for the soft X-ray absorber in PDS 456. The C IV BAL might therefore be the first detection of low-ionization clumps proposed previously to boost the opacities in UFOs for radiative driving.

  5. Long-Term Results of Stent Placement in Patients with Outflow Block After Living-Donor-Liver Transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimori, Masashi, E-mail: fujimorim@clin.medic.mie-u.ac.jp; Yamakado, Koichiro, E-mail: yamakado47@gmail.com; Takaki, Haruyuki, E-mail: takaki-h@clin.medic.mie-u.ac.jp

    PurposeTo evaluate long-term results of stent placement retrospectively in patients with outflow block after living-donor-liver transplantation (LDLT).Materials and MethodsFor this institutional review board approved retrospective study conducted during 2002–2012, stents were placed in outflow veins in 15 patients (11.3 %, 15/133) (12 men; 3 female) in whom outflow block developed after LDLT. Their mean age was 52.3 years ± 15.3 (SD) (range, 4–69 years). Venous stenosis with a pressure gradient ≥5 mmHg (outflow block) was observed in the inferior vena cava in seven patients, hepatic vein in seven patients, and both in one patient. Technical success, change in a pressure gradient and clinical manifestations, and complicationsmore » were evaluated. Overall survival of 15 patients undergoing outflow block stenting was compared with that of 116 patients without outflow block after LDLT.ResultsStents were placed across the outflow block veins without complications, lowering the pressure gradient ≤ 3 mmHg in all patients (100 %, 15/15). Clinical manifestations improved in 11 patients (73.3 %, 11/15), and all were discharged from the hospital. However, they did not improve in the other 4 patients (26.7 %, 4/15) who died in the hospital 1.0–3.7 months after stenting (mean, 2.0 ± 1.2 months). No significant difference in 5-year survival rates was found between patients with and without outflow block after LDLT (61.1 vs. 72.2 %, p = .405).ConclusionStenting is a feasible, safe, and useful therapeutic option to resolve outflow block following LDLT, providing equal survival to that of patients without outflow block.« less

  6. Optimal visualization of the fetal four-chamber and outflow tract views with transabdominal ultrasound in the morbidly obese: Are we there yet?

    PubMed

    Adekola, Henry; Soto, Eleazar; Dai, Jing; Lam-Rachlin, Jennifer; Gill, Navleen; Leon-Peters, Jocelyn; Puder, Karoline; Abramowicz, Jacques S

    2015-01-01

    To compare optimal visualization of the four-chamber and outflow-tract views of the fetal heart on sonographic examination between morbidly obese (body mass index [BMI] ≥ 40 kg/m(2) ) and nonobese (BMI < 25 kg/m(2) ) pregnant women. In this retrospective cohort study, we included records and images from 509 pregnant women who had first undergone sonographic examination between 18 and 36 weeks' fetal gestational age. Compared with the nonobese women, morbidly obese women had lower optimal visualization of the four-chamber and outflow-tract heart views: four-chamber view, morbidly obese, 83/186 (44.6%), versus nonobese, 283/323 (87.6%), and outflow-tract view, morbidly obese, 80/186 (43%) versus nonobese, 258/290 (89%); p < 0.0001 for each comparison. Similar outcomes were observed when the results from each subcategory of morbidly obese women (ie, BMI 40-49.9, 50-59.9, and ≥60 kg/m(2) ) were compared with that from nonobese women; p < 0.0001 for each comparison. These outcomes remained the same regardless of whether this comparison was made among those who had their examination before or at 19 weeks' or more gestational age. Among the morbidly obese women, there was no difference in optimal visualization of the four-chamber or outflow-tract views regardless of whether the examination was performed at <23 weeks' or at ≥23 weeks' gestational age: four-chamber view <23 weeks, 44.8% (78/174), versus four-chamber view ≥23 weeks, 41.7% (5/12); p = 0.8, and outflow-tract view <23 weeks, 43.1% (75/174), versus outflow-tract view ≥23 weeks, 41.7% (5/12); p = 0.9. After controlling for maternal age and race, the odds of visualizing the four-chamber and outflow-tract views in the morbidly obese were reduced compared with those in their nonobese counterparts: odds ratio (OR) for four-chamber, 0.13; 95% confidence interval (CI), 0.08-0.21, and OR for outflow-tract, 0.11; 95% CI, 0.07-0.17. Optimal visualization of the fetal four-chamber and outflow-tract views was

  7. Arctic Ocean Sedimentary Cover Structure, Based on 2D MCS Seismic Data.

    NASA Astrophysics Data System (ADS)

    Kireev, A.; Kaminsky, V.; Poselov, V.; Poselova, L.; Kaminsky, D.

    2016-12-01

    In 2016 the Russian Federation has submitted its partial revised Submission for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean. In order to prepare the Submission, in 2005 - 2014 the Russian organizations carried out a wide range of geological and geophysical studies, so that today over 23000 km of MCS lines and 4000 km of deep seismic sounding are accomplished. For correct time/depth conversion of seismic sections obtained with a short streamer in difficult ice conditions wide-angle reflection/refraction seismic sonobuoy soundings were used. All of these seismic data were used to refine the stratigraphy model, to identify sedimentary complexes and to estimate the total thickness of the sedimentary cover. Seismic stratigraphy model was successively determined for the Cenozoic and pre-Cenozoic parts of the sedimentary section and was based on correlation of the Russian MCS data and seismic data documented by boreholes. Cenozoic part of the sedimentary cover is based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin. Pre-Cenozoic part of the sedimentary cover is based on tracing major unconformities from boreholes on the Chukchi shelf (Crackerjack, Klondike, Popcorn) to the North-Chuckchi Trough and further to the Mendeleev Rise as well as to the Vilkitsky Trough and the adjacent Podvodnikov Basin. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to generalize all seismic surveys (top of acoustic basement correlation data) and bathymetry data in the sedimentary cover thickness map

  8. VizieR Online Data Catalog: CO obs. of MCs in the Extreme Outer Galaxy region (Sun+, 2017)

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Su, Y.; Zhang, S.-B.; Xu, Y.; Chen, X.-P.; Yang, J.; Jiang, Z.-B.; Fang, M.

    2017-08-01

    The observations in the Galactic range of 34.75°<=l<=45.25° and -5.25°<=b<=5.25° were conducted during 2011 November to 2015 March using the 13.7m millimeter-wavelength telescope of the Purple Mountain Observatory (PMO) in Delingha, China. The molecular lines of 12CO(J=1-0) in the upper sideband, and 13CO(J=1-0) and C18O(J=1-0) in the lower sideband were observed simultaneously. A total of 174 molecular clouds (MCs) were identified, of which 168 MCs probably lie in the Extreme Outer Galaxy (EOG) region. (3 data files).

  9. What Fraction of Active Galaxies Actually Show Outflows?

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Brotherton, M. S.

    2007-12-01

    Outflows from active galactic nuclei (AGNs) seem to be common and are thought to be important from a variety of perspectives: as an agent of chemical enhancement of the interstellar and intergalactic media, as an agent of angular momentum removal from the accreting central engine, and as an agent limiting star formation in starbursting systems by blowing out gas and dust from the host galaxy. To understand these processes, we must determine what fraction of AGNs feature outflows and understand what forms they take. We examine recent surveys of outflows detected in ultraviolet absorption over the entire range of velocities and velocity widths (i.e., broad absorption lines, associated absorption lines, and high-velocity narrow absorption lines). While the fraction of specific forms of outflows depends on AGN properties, the overall fraction displaying outflows is fairly constant, approximately 60%, over many orders of magnitude in luminosity. We discuss implications of this result and ways to refine our understanding of outflows. We acknowledge support from the US National Science Foundation through grant AST 05-07781.

  10. Broad Redshifted Line as a Signature of Outflow

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Kazanas, Demos; Becker, Peter A.

    2003-11-01

    We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.

  11. A resolved outflow of matter from a brown dwarf.

    PubMed

    Whelan, Emma T; Ray, Thomas P; Bacciotti, Francesca; Natta, Antonella; Testi, Leonardo; Randich, Sofia

    2005-06-02

    The birth of stars involves not only accretion but also, counter-intuitively, the expulsion of matter in the form of highly supersonic outflows. Although this phenomenon has been seen in young stars, a fundamental question is whether it also occurs among newborn brown dwarfs: these are the so-called 'failed stars', with masses between stars and planets, that never manage to reach temperatures high enough for normal hydrogen fusion to occur. Recently, evidence for accretion in young brown dwarfs has mounted, and their spectra show lines that are suggestive of outflows. Here we report spectro-astrometric data that spatially resolve an outflow from a brown dwarf. The outflow's characteristics appear similar to, but on a smaller scale than, outflows from normal young stars. This result suggests that the outflow mechanism is universal, and perhaps relevant even to the formation of planets.

  12. Debating the legitimacy of a contested environmental illness: a case study of multiple chemical sensitivities (MCS).

    PubMed

    Phillips, Tarryn

    2010-11-01

    More than 20years after it was first identified, the anomalous condition, multiple chemical sensitivities (MCS), remains immersed in controversy, with a continuing debate over its causation being played out in the medico-scientific community and in the courts. This article examines why sceptical and supportive experts disagree over the condition's legitimacy as an organic condition. Drawing on ethnographic research conducted in Perth, Western Australia, the author scrutinises the decision-making practices of 16 experts (eight sceptical and eight supportive of a chemical explanation). Both groups were found to use evidence-based, inductive reasoning. However, sceptical experts tended to use a different set of evidence requirements, exhibited more faith in the efficiency of the current biomedical paradigm regarding toxicity and were less likely to acknowledge uncertainty in their field. All the experts recognised a spectrum of beliefs about the causal mechanisms of MCS. However, when they were engaged in litigation as expert witnesses due to their supportive or sceptical tendency, the oppositional legal system polarised their opinions and exacerbated the perceived divide between them. Ultimately, the adversarial medico-legal process inhibits genuine dialogue between some of the key players in the MCS debate, thus impeding understanding and consensus about the condition. © 2010 The Author. Sociology of Health & Illness © 2010 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  13. Compact binary merger and kilonova: outflows from remnant disc

    NASA Astrophysics Data System (ADS)

    Yi, Tuan; Gu, Wei-Min; Liu, Tong; Kumar, Rajiv; Mu, Hui-Jun; Song, Cui-Ying

    2018-05-01

    Outflows launched from a remnant disc of compact binary merger may have essential contribution to the kilonova emission. Numerical calculations are conducted in this work to study the structure of accretion flows and outflows. By the incorporation of limited-energy advection in the hyper-accretion discs, outflows occur naturally from accretion flows due to imbalance between the viscous heating and the sum of the advective and radiative cooling. Following this spirit, we revisit the properties of the merger outflow ejecta. Our results show that around 10-3 ˜ 10-1 M⊙ of the disc mass can be launched as powerful outflows. The amount of unbound mass varies with the disc mass and the viscosity. The outflow-contributed peak luminosity is around 1040 ˜ 1041 erg s-1. Such a scenario can account for the observed kilonovae associated with short gamma-ray bursts, including the recent event AT2017gfo (GW170817).

  14. Global-scale Ionospheric Outflow: Major Processes and Unresolved Problems

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Ilie, R.; Khazanov, G. V.; Jahn, J. M.; Zou, S.; Ganushkina, N. Y.; Valek, P. W.; Elliott, H. A.; Gilchrist, B. E.; Hoegy, W. R.; Glocer, A.

    2016-12-01

    Outflow from the ionosphere is a major source of plasma to the magnetosphere. Its presence, especially that of ions heavier than He+, mass loads the magnetosphere and changes reconnection rates, current system configurations, plasma wave excitation and wave-particle interactions. It even impacts the propagation of information. We present a brief overview of the major processes and scientific history of this field. There are still major gaps, however, in our understanding of the global-scale nature of ionospheric outflow. We discuss these unresolved problems highlighting the leading questions still outstanding on this topic. First and foremost, since the measurements of ionospheric outflow have largely come from individual satellites and sounding rockets, the processes are best known on the local level, while the spatial distribution of outflow has never been simultaneously measured on more global scales. The spatial coherence and correlation of outflow across time and space have not been quantified. Furthermore, the composition of the outflow is often only measured at a coarse level of H+, He+, and O+, neglecting other species such as N+ or moleculars. However, resolving O+ from N+, as is customary in planetary research, aids in revealing the physics and altitude dependence of the energization processes in the ionosphere. Similarly, fine-resolution velocity space measurements of ionospheric outflow have been limited, yet such observations can also reveal energization processes driving the outflow. A final unresolved issue to mention is magnetically conjugate outflow and the full extent of hemispherically asymmetric outflow fluxes or fluence. Each of these open questions have substantial ramifications for magnetospheric physics; their resolution could yield sweeping changes in our understanding of nonlinear feedback and cross-scale physical interactions, magnetosphere-ionosphere coupling, and geospace system-level science.

  15. Transcatheter stenting of the right ventricular outflow tract augments pulmonary arterial growth in symptomatic infants with right ventricular outflow tract obstruction and hypercyanotic spells.

    PubMed

    McGovern, Eimear; Morgan, Conall T; Oslizlok, Paul; Kenny, Damien; Walsh, Kevin P; McMahon, Colin J

    2016-10-01

    We retrospectively reviewed all the children with right ventricular outflow tract obstruction, hypoplastic pulmonary annulus, and pulmonary arteries who underwent stenting of the right ventricular outflow tract for hypercyanotic spells at our institution between January, 2008 and December, 2013; nine patients who underwent cardiac catheterisation at a median age of 39 days (range 12-60 days) and weight of 3.6 kg (range 2.6-4.3 kg) were identified. The median number of stents placed was one stent (range 1-4). The median oxygen saturation increased from 60% to 96%. The median right pulmonary artery size increased from 3.3 to 5.5 mm (-2.68 to -0.92 Z-score), and the median left pulmonary artery size increased from 3.4 to 5.5 mm (-1.93 to 0 Z-scores). Among all, one patient developed transient pulmonary haemorrhage, and one patient had pericardial tamponade requiring drainage. Complete repair of tetralogy of Fallot +/- atrioventricular septal defect or double-outlet right ventricle was achieved in all nine patients. Transcatheter stent alleviation of the right ventricular outflow tract obstruction resolves hypercyanotic spells and allows reasonable growth of the pulmonary arteries to facilitate successful surgical repair. This represents a viable alternative to placement of a systemic-to-pulmonary artery shunt, particularly in small neonates.

  16. Cumulative neutrino background from quasar-driven outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiawei; Loeb, Abraham, E-mail: xiawei.wang@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2016-12-01

    Quasar-driven outflows naturally account for the missing component of the extragalactic γ-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic γ-ray background data and derive a cumulative neutrino background of ∼ 10{sup −7} GeV cm{sup −2} s{sup −1} sr{sup −1} at neutrino energies E {sub ν} ∼> 10 TeV, which naturally explains the most recent IceCube data without tuning any free parameters. The link between the γ-ray and neutrino emission frommore » quasar outflows can be used to constrain the high-energy physics of strong shocks at cosmological distances.« less

  17. Theory of Bipolar Outflows from Accreting Hot Stars

    NASA Astrophysics Data System (ADS)

    Konigl, A.

    1996-05-01

    There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main

  18. Relativistic Outflows from ADAFs

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  19. Density diagnostics of ionized outflows in active galacitc nuclei

    NASA Astrophysics Data System (ADS)

    Mao, J.; Kaastra, J.; Mehdipour, M.; Raassen, T.; Gu, L.

    2017-10-01

    Ionized outflows in Active Galactic Nuclei are thought to influence their nuclear and local galactic environment. However, the distance of outflows with respect to the central engine is poorly constrained, which limits our understanding of the kinetic power by the outflows. Therefore, the impact of AGN outflows on their host galaxies is uncertain. Given the density of the outflows, their distance can be immediately obtained by the definition of the ionization parameter. Here we carry out a theoretical study of density diagnostics of AGN outflows using absorption lines from metastable levels in Be-like to F-like ions. With the new self-consistent photoionization model (PION) in the SPEX code, we are able to calculate ground and metastable level populations. This enable us to determine under what physical conditions these levels are significantly populated. We then identify characteristic transitions from these metastable levels in the X-ray band. Firm detections of absorption lines from such metastable levels are challenging for current grating instruments. The next generation of spectrometers like X-IFU onboard Athena will certainly identify the presence/absence of these density- sensitive absorption lines, thus tightly constraining the location and the kinetic power of AGN outflows.

  20. Application of rain scanner SANTANU and transportable weather radar in analyze of Mesoscale Convective System (MCS) events over Bandung, West Java

    NASA Astrophysics Data System (ADS)

    Nugroho, G. A.; Sinatra, T.; Trismidianto; Fathrio, I.

    2018-05-01

    Simultaneous observation of transportable weather radar LAPAN-GMR25SP and rain-scanner SANTANU were conducted in Bandung and vicinity. The objective is to observe and analyse the weather condition in this area during rainy and transition season from March until April 2017. From the observation result reported some heavy rainfall with hail and strong winds occurred on March 17th and April 19th 2017. This events were lasted within 1 to 2 hours damaged some properties and trees in Bandung. Mesoscale convective system (MCS) are assumed to be the cause of this heavy rainfall. From two radar data analysis showed a more local convective activity in around 11.00 until 13.00 LT. This local convective activity are showed from the SANTANU observation supported by the VSECT and CMAX of the Transportable radar data that signify the convective activity within those area. MCS activity were observed one hour after that. This event are confirm by the classification of convective-stratiform echoes from radar data and also from the high convective index from Tbb Himawari 8 satellite data. The different MCS activity from this two case study is that April 19 have much more MCS activity than in March 17, 2017.

  1. Differentiating the origin of outflow tract ventricular arrhythmia using a simple, novel approach.

    PubMed

    Efimova, Elena; Dinov, Borislav; Acou, Willem-Jan; Schirripa, Valentina; Kornej, Jelena; Kosiuk, Jedrzej; Rolf, Sascha; Sommer, Philipp; Richter, Sergio; Bollmann, Andreas; Hindricks, Gerhard; Arya, Arash

    2015-07-01

    Numerous electrocardiographic (ECG) criteria have been proposed to identify localization of outflow tract ventricular arrhythmias (OT-VAs); however, in some cases, it is difficult to accurately localize the origin of OT-VA using the surface ECG. The purpose of this study was to assess a simple criterion for localization of OT-VAs during electrophysiology study. We measured the interval from the onset of the earliest QRS complex of premature ventricular contractions (PVCs) to the distal right ventricular apical signal (the QRS-RVA interval) in 66 patients (31 men aged 53.3 ± 14.0 years; right ventricular outflow tract [RVOT] origin in 37) referred for ablation of symptomatic outflow tract PVCs. We prospectively validated this criterion in 39 patients (22 men aged 52 ± 15 years; RVOT origin in 19). Compared with patients with RVOT PVCs, the QRS-RVA interval was significantly longer in patients with left ventricular outflow tract (LVOT) PVCs (70 ± 14 vs 33.4±10 ms, P < .001). Receiver operating characteristic analysis showed that a QRS-RVA interval ≥49 ms had sensitivity, specificity, and positive and negative predictive values of 100%, 94.6%, 93.5%, and 100%, respectively, for prediction of an LVOT origin. The same analysis in the validation cohort showed sensitivity, specificity, and positive and negative predictive values of 94.7%, 95%, 95%, and 94.7%, respectively. When these data were combined, a QRS-RVA interval ≥49 ms had sensitivity, specificity, and positive and negative predictive values of 98%, 94.6%, 94.1%, and 98.1%, respectively, for prediction of an LVOT origin. A QRS-RVA interval ≥49 ms suggests an LVOT origin. The QRS-RVA interval is a simple and accurate criterion for differentiating the origin of outflow tract arrhythmia during electrophysiology study; however, the accuracy of this criterion in identifying OT-VA from the right coronary cusp is limited. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  2. Inverse-Ray Imaging of Gas Hydrates Along a MCS/OBS Profile at the Continental Slope Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, T. K.; Chen, C.; Yang, B.; Lee, C.

    2006-12-01

    Prevalence of gas hydrates offshore SW Taiwan has been proposed due to lots of bottom-simulated reflectors (BSR) appeared on the seismic data. In this paper, we analyze a MCS/OBS profile with intensive BSR signals at the continental slope of the northern South China Sea. Firstly, MCS data with 160 channels collected by R/V Maurice-Ewing in September 1995 is re-processed through vertical velocity analysis, horizon velocity analysis, and prestack depth migration. Then, OBS data collected by the first Micro-OBS survey from NTOU team in August 2005 is analyzed through travel-time inversion of reflected and refracted arrivals for which the initial model is constructed from the MCS result. Finally, a novel technique of inverse reflected rays by considering both MCS and OBS data is applied for layer-stripping imaging of sedimentary layers. Velocity models imaged from three methods are confirmed the prevalence of BSR at 100-400 m depth below the sea floor along the whole profile. Relatively smooth sedimentary layers are observed below the lower slope of the continent whereas several mud diapers are imaged below the upper slope of the continent. Above the mud diapers, we find gas hydrates with high velocity of about 1.9-2.1 km/s and thickness of about 100 m immediately above the strong BSR. Similarly, near the mud diapers, free gas with low velocity of about 1.4-1.7 km/s and thickness of about 200 m is imaged. Migration of free gas through diapirism may result in lots of gas hydrates accumulated below the upper slope of the continent offshore SW Taiwan.

  3. Quantifying the AGN-driven outflows in ULIRGs (QUADROS) III: Measurements of the radii and kinetic powers of 8 near-nuclear outflows

    NASA Astrophysics Data System (ADS)

    Spence, R. A. W.; Tadhunter, C. N.; Rose, M.; Rodríguez Zaurín, J.

    2018-05-01

    As part of the QUADROS project to quantify the impact of AGN-driven outflows in rapidly evolving galaxies in the local universe, we present observations of 8 nearby ULIRGs (0.04 < z < 0.2) taken with the ISIS spectrograph on the William Herschel Telescope (WHT), and also summarize the results of the project as a whole. Consistent with Rose et al. (2018), we find that the outflow regions are compact (0.08 < R_{[O III]} < 1.5 kpc), and the electron densities measured using the [S II], [O II] trans-auroral emission-line ratios are relatively high (2.5 < log ne (cm-3) < 4.5, median log ne (cm-3) ˜ 3.1). Many of the outflow regions are also significantly reddened (median E(B - V) ˜ 0.5). Assuming that the de-projected outflow velocities are represented by the 5^{th} percentile velocities (v05) of the broad, blueshifted components of [O III] λ5007, we calculate relatively modest mass outflow rates (0.1 < \\dot{M} < 20 M⊙ yr-1, median \\dot{M} ˜ 2 M⊙ yr-1), and find kinetic powers as a fraction of the AGN bolometric luminosity (\\dot{F} = \\dot{E}/L_bol) in the range 0.02 < \\dot{F} < 3 per cent, median \\dot{F} ˜ 0.3 per cent). The latter estimates are in line with the predictions of multi-stage outflow models, or single-stage models in which only a modest fraction of the initial kinetic power of the inner disk winds is transferred to the larger-scale outflows. Considering the QUADROS sample as a whole, we find no clear evidence for correlations between the properties of the outflows and the bolometric luminosities of the AGN, albeit based on a sample that covers a relatively small range in Lbol. Overall, our results suggest that there is a significant intrinsic scatter in outflow properties of ULIRGs for a given AGN luminosity.

  4. Intra- and Inter-rater Agreement of Superior Vena Cava Flow and Right Ventricular Outflow Measurements in Late Preterm and Term Neonates.

    PubMed

    Mahoney, Liam; Fernandez-Alvarez, Jose R; Rojas-Anaya, Hector; Aiton, Neil; Wertheim, David; Seddon, Paul; Rabe, Heike

    2018-02-24

    To explore the intra- and inter-rater agreement of superior vena cava (SVC) flow and right ventricular (RV) outflow in healthy and unwell late preterm neonates (33-37 weeks' gestational age), term neonates (≥37 weeks' gestational age), and neonates receiving total-body cooling. The intra- and inter-rater agreement (n = 25 and 41 neonates, respectively) rates for SVC flow and RV outflow were determined by echocardiography in healthy and unwell late preterm and term neonates with the use of Bland-Altman plots, the repeatability coefficient, the repeatability index, and intraclass correlation coefficients. The intra-rater repeatability index values were 41% for SVC flow and 31% for RV outflow, with intraclass correlation coefficients indicating good agreement for both measures. The inter-rater repeatability index values for SVC flow and RV outflow were 63% and 51%, respectively, with intraclass correlation coefficients indicating moderate agreement for both measures. If SVC flow or RV outflow is used in the hemodynamic treatment of neonates, sequential measurements should ideally be performed by the same clinician to reduce potential variability. © 2018 by the American Institute of Ultrasound in Medicine.

  5. Toward a Prescription for Feedback from Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Bourjaily, M.; Munsell, J.; Brotherton, M. S.; Bhattacharjee, A.; Runnoe, J.; Charlton, J. C.; Eracleous, M.

    2011-01-01

    Models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, distance, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 14000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) estimates of the quasar black hole mass. To this, we are adding photometry from GALEX, 2MASS, and ROSAT in an effort to characterize more fully the quasar SEDs. ROSAT photometry provides estimates of the level of soft X-ray absorption, which helps regulate the velocity of outflows. GALEX photometry samples the extreme ultraviolet range where several high ionization species, that may be present in the outflows, absorb light. 2MASS photometry samples the rest-frame optical, where the effects of absorption and dust reddening are minimal, yield better estimates of the bolometric luminosity (hence, Eddington ratio). In this poster, we will present preliminary measurements of the amount of absorption in the soft X-ray and extreme ultraviolet bands as a function of both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.

  6. Outflow activities in the young high-mass stellar object G23.44-0.18

    NASA Astrophysics Data System (ADS)

    Ren, Jeremy Zhiyuan; Liu, Tie; Wu, Yuefang; Li, Lixin

    2011-07-01

    We present an observational study towards the young high-mass star-forming region G23.44-0.18 using the Submillimeter Array. Two massive, radio-quiet dusty cores MM1 and MM2 are observed in 1.3-mm continuum emission and dense molecular gas tracers including thermal CH3OH, CH3CN, HNCO, SO, and OCS lines. The 12CO (2-1) line reveals a strong bipolar outflow originating from MM2. The outflow consists of a low-velocity component with wide-angle quasi-parabolic shape and a more compact and collimated high-velocity component. The overall geometry resembles the outflow system observed in the low-mass protostar which has a jet-driven fast flow and entrained gas shell. The outflow has a dynamical age of 6 × 103 yr and a mass loss rate ˜10-3 M ⊙ yr-1. A prominent shock emission in the outflow is observed in SO and OCS, and also detected in CH3OH and HNCO. We investigated the chemistry of MM1, MM2 and the shocked region. The dense core MM2 have molecular abundances of three to four times higher than those in MM1. The abundance excess, we suggest, can be a net effect of the stellar evolution and embedded shocks in MM2 that calls for further inspection.

  7. Fast Outflow of Molecular Gas in the Seyfert Galaxy IC 5063

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella; Oosterloo, T.; Oonk, R.; Tadhunter, C.

    2017-11-01

    AGN-driven gas outflows may play an important role in the evolution of galaxies, as they impact on the growth on the central supermassive black hole as well on the star formation of the host galaxy. Much of the detailed physics of these gas outflows, and their actual impact on the host galaxy, is still not well understood. We present a detailed analysis, using ALMA observations, of the radio-jet driven outflow of molecular gas in the nearby radio-loud Seyfert galaxy IC 5063 which allows to derive important physical parameters of the gas and the outflow which, in turn, provide crucial input to numerical models. In recent years, a surprising result in the field of AGN-driven outflows has been that the cold phases of the gas (atomic and molecular) in some galaxies are the massive components of these outflows, despite the huge amounts of energy involved in driving these outflows. However, why most of the outflowing gas should be molecular/atomic, and in general, what are the physical conditions of the gas in the outflows and what really drives them, are still open questions. We present the results obtained from ALMA observations of multiple CO transitions and other molecules of what appears to be a textbook case of a jet-driven multi- phase outflow in the central regions of the Seyfert galaxy IC 5063. The data on multiple transitions allow us to derive the physical conditions in the different regions of the outflowing molecular gas. The signature of the impact of the radio jet is clearly seen in the spatial distribution of the excitation temperature and pressure of the outflowing gas, with the highest excitation and pressure found for the gas with the highest outflow velocities. We obtain a detailed three- dimensional picture of the outflow, and its kinematics, and find that outflowing molecular gas is present across the entire region co-spatial with the radio plasma, providing unambiguous evidence that the radio jets/cocoon are responsible for the outflow. The

  8. Maja Valley and the Chryse outflow complex sites

    NASA Technical Reports Server (NTRS)

    Rice, Jim W.

    1994-01-01

    This candidate landing site is located at 19 deg N, 53.5 deg W near the mouth of a major outflow channel. Maja Valles, and two 'valley network' channel systems, Maumee and Vedra Valles. The following objectives are to be analyzed in this region: (1) origin and paleohydrology of outflow and valley network channels; (2) fan delta complex composition (the deposit located in this area is one of the few identified at the mouth s of any channels on the planet); and (3) analysis of any paleolake sediments (carbonates, evaporites). The primary objectives of the Chryse Outflow Complex region (Ares, Tiu, Mawrth, Simud, and Shalbatana Valles) would be outflow channel dynamics (paleohydrology) of five different channel systems.

  9. A Study of PG Quasar-Driven Outflows with COS

    NASA Astrophysics Data System (ADS)

    Hamann, Frederick

    2013-10-01

    Quasar outflows are an important part of the quasar phenomenon, but many questions remain about their energetics, physical properties and the role they might play in providing feedback to host galaxy evolution. We searched our own COS far-UV observations from the QUEST survey and other large COS programs to find a sample of 6 bright PG quasars with broad {FWHM > 400 km/s} high velocity {v > 1000 km/s} absorption lines that clearly form in quasar-driven winds. These quasars can fill an important gap in our understanding between local Seyferts with low-speed winds and high-redshift quasars with extreme BAL outflows. They are also well-studied at other wavelengths, with some evidence for the quasars driving galaxy-scale blowouts and shutting down star formation. But almost nothing is known about the quasar outflows themselves. We propose a detailed study of these 6 outflow quasars using new COS FUV observations to 1} expand the existing wavelength coverage across critical lines that are diagnostic of the outflow physical conditions, kinetic energies, and metallicities, and 2} check for line variability as an indicator of the outflow structure and locations. This quasar sample includes unusual cases with many low-abundance {PV 1118,1128 and SIV 1063} and excited-state lines {SIV 1073*, CIII* 1175, CII* 1335} that will provide unprecedented constraints on the outflow properties, plus the first known OVI-only mini-BAL outflow {no lower ions detected} for which we will cover NeVIII 770,780 to probe the highest ionization gas. The high FUV sensitivity of COS is uniquely able to measure this wide range of outflow lines in low-redshift quasars with no Lya forest contamination.

  10. The Mass Outflow Rate of the Milky Way

    NASA Astrophysics Data System (ADS)

    Fox, Andrew

    2017-08-01

    The balance between gaseous inflow and outflow regulates star formation in spiral galaxies. This paradigm can be tested in the Milky Way, but whereas the star formation rate and inflow rate have both been measured, the outflow rate has not. We propose an archival COS program to determine the Galactic outflow rate in cool gas ( 10^4 K) by surveying UV absorption line high-velocity clouds (HVCs). This project will make use of the newly updated Hubble Spectroscopic Legacy Archive, which contains a uniformly reduced sample of 233 COS G130M spectra of background AGN. The outflow rate will be determined by (1) searching for redshifted HVCs; (2) modeling the clouds with photoionization simulations to determine their masses and physical properties; (3) combining the cloud masses with their velocities and distances. We will measure how the outflow is distributed spatially across the sky, calculate its mass loading factor, and compare the line profiles to synthetic spectra extracted from new hydrodynamic simulations. The distribution of HVC velocities will inform us what fraction of the outflowing clouds will escape the halo and what fraction will circulate back to the disk, to better understand how and where gas enters and exits the Milky Way.

  11. Quantification of Focal Outflow Enhancement Using Differential Canalograms

    PubMed Central

    Loewen, Ralitsa T.; Brown, Eric N.; Scott, Gordon; Parikh, Hardik; Schuman, Joel S.; Loewen, Nils A.

    2016-01-01

    Purpose To quantify regional changes of conventional outflow caused by ab interno trabeculectomy (AIT). Methods Gonioscopic, plasma-mediated AIT was established in enucleated pig eyes. We developed a program to automatically quantify outflow changes (R, package eye-canalogram, github.com) using a fluorescent tracer reperfusion technique. Trabecular meshwork (TM) ablation was demonstrated with fluorescent spheres in six eyes before formal outflow quantification with two-dye reperfusion canalograms in six additional eyes. Eyes were perfused with a central, intracameral needle at 15 mm Hg. Canalograms and histology were correlated for each eye. Results The pig eye provided a model with high similarity to AIT in human patients. Histology indicated ablation of TM and unroofing of most Schlemm's canal segments. Spheres highlighted additional circumferential and radial outflow beyond the immediate area of ablation. Differential canalograms showed that AIT caused an increase of outflow of 17 ± 5-fold inferonasally, 14 ± 3-fold superonasally, and also an increase in the opposite quadrants with a 2 ± 1-fold increase superotemporally, and 3 ± 3 inferotemporally. Perilimbal specific flow image analysis showed an accelerated nasal filling with an additional perilimbal flow direction into adjacent quadrants. Conclusions A quantitative, differential canalography technique was developed that allows us to quantify supraphysiological outflow enhancement by AIT. PMID:27227352

  12. Functional Anatomy of the Outflow Facilities.

    PubMed

    Pizzirani, Stefano; Gong, Haiyan

    2015-11-01

    In order to understand the pathophysiology, select optimal therapeutic options for patients and provide clients with honest expectations for cases of canine glaucoma, clinicians should be familiar with a rational understanding of the functional anatomy of the ocular structures involved in this group of diseases. The topographical extension and the structural and humoral complexity of the regions involved with the production and the outflow of aqueous humor undergo numerous changes with aging and disease. Therefore, the anatomy relative to the fluid dynamics of aqueous has become a pivotal yet flexible concept to interpret the different phenotypes of glaucoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Exploring the engines of molecular outflows

    NASA Astrophysics Data System (ADS)

    Testi, Leonardo

    1995-03-01

    Water vapour masers and CO outflows are well known to be associated with the youngest phases of evolution of massive stellar objects. Nevertheless, up to now there is a lack of high resolution multiwavelength study of the regions containing these objects. Using the VLA, the CSO and the TIRGO equipped with the new Near-Infrared (NIR) camera ARNICA, we have begun a systematic study of water maser/CO outflow regions. These new high resolution and high sensitivity data have proved to be very useful in probing the star formation activity and the connection between infrared and radio sources. Here we report the results obtained in a preliminary sub- sample of objects. The NIR data showed that both the maser spots and the large- scale outflows tend to be associated to the most embedded and probably younger sources of the infrared clusters. Infrared emission lines observed with narrow band filters show the presence of jet-like structures in most of the sources observed. Water masers, jet-like and Herbig-Haro-like infrared structures, and CO outflows enable to probe ejection phenomena at all spacial scales ranging from 0.01 to 1 parsec.

  14. Outflow from a Nocturnal Thunderstorm.

    DTIC Science & Technology

    1980-11-01

    P AD-A093 796 ILLINOIS STATE WATER SURVEY URBANAF/ .2 OUTFLOW FROM A NOCTURNAL THUNDERSTORM. (U) NOV a0 R W SCOTT NSF-ATHN78-0a865 UNCLASSIFIED SWS...CR-242 ARO-15529.5-6S N I muuuuuuuuuuuu iDA0937 9 6 State Water Survey Division k istitute of METEOROLOGY SECTION 0 uJD AT THE UNIVERSITY OF ILLINOIS...SWS Contract Report 242 / F OUTFLOW FROM A NOCTURNAL THUNDERSTORM Robert W. Scott Meteorology Section Illinois State Water Survey -- DTIC ELECTE CD

  15. No Sign of Strong Molecular Gas Outflow in an Infrared-bright Dust-obscured Galaxy with Strong Ionized-gas Outflow

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Komugi, Shinya; Nagao, Tohru; Yamashita, Takuji; Wang, Wei-Hao; Imanishi, Masatoshi; Sun, Ai-Lei

    2017-12-01

    We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detailed analysis of their optical spectra, we found some peculiar IR-bright DOGs that show strong ionized-gas outflow ([O III] λ5007) from the central active galactic nucleus (AGN). For one of these DOGs (WISE J102905.90+050132.4) at z spec = 0.493, we performed follow-up observations using ALMA to investigate their CO molecular gas properties. As a result, we successfully detected 12CO(J = 2–1) and 12CO(J = 4–3) lines and the continuum of this DOG. The intensity-weighted velocity map of both lines shows a gradient, and the line profile of those CO lines is well-fitted by a single narrow Gaussian, meaning that this DOG has no sign of strong molecular gas outflow. The IR luminosity of this object is log (L IR/L ⊙) = 12.40, which is classified as an ultraluminous IR galaxy (ULIRG). We found that (i) the stellar mass and star formation rate relation and (ii) the CO luminosity and far-IR luminosity relation are consistent with those of typical ULIRGs at similar redshifts. These results indicate that the molecular gas properties of this DOG are normal despite the fact that its optical spectrum shows a powerful AGN outflow. We conclude that a powerful ionized-gas outflow caused by the AGN does not necessarily affect the cold interstellar medium in the host galaxy, at least for this DOG.

  16. Characterizing Quasar Outflows I: Sample, Spectral Measurements

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Christenson, D. H.; Richmond, J. M.; Derseweh, J. A.; Robbins, J. M.; Townsend, S. L.; Stark, M. A.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we subjectively divide these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). We present measurements of the absorption (velocities, velocity widths, equivalent widths), composite spectral profiles of outflows as a function of velocity, as well as measurements of the continuum and CIV, MgII, and FeII emission-line properties. In accompanying posters, we add photometry from the rest-frame X-ray (ROSAT and Chandra), EUV (GALEX), optical (2MASS), and infrared (WISE) bands to complete the SED. The continuum and emission-line measurements from the SDSS spectra and accompanying photometry provides estimates on the black hole masses, bolometric luminsosities, and SED. We consider empirically how these affect the outflow properties. This material is based upon work supported by the National Aeronautics and Space Administration under

  17. Chryse Outflow Channel

    NASA Image and Video Library

    1998-06-08

    A color image of the south Chryse basin Valles Marineris outflow channels on Mars; north toward top. The scene shows on the southwest corner the chaotic terrain of the east part of Valles Marineris and two of its related canyons: Eos and Capri Chasmata (south to north). Ganges Chasma lies directly north. The chaos in the southern part of the image gives rise to several outflow channels, Shalbatana, Simud, Tiu, and Ares Valles (left to right), that drained north into the Chryse basin. The mouth of Ares Valles is the site of the Mars Pathfinder lander. This image is a composite of NASA's Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 20 degrees S. to 20 degrees N. and from longitude 15 degrees to 53 degrees; Mercator projection. http://photojournal.jpl.nasa.gov/catalog/PIA00418

  18. DISCOVERY OF RELATIVISTIC OUTFLOW IN THE SEYFERT GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.; Mathur, S.; Krongold, Y.

    2013-07-20

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as K{alpha} transitions of O VII (two lines) and O VI at outflow velocities of {approx}0.1c. These lines are detected at 6.9{sigma}, 6.2{sigma}, and 4.7{sigma}, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectralmore » fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E-dot (outflow)/L{sub bol} lower limit of {>=}0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved.« less

  19. Character and dynamics of the Red Sea and Persian Gulf outflows

    NASA Astrophysics Data System (ADS)

    Bower, Amy S.; Hunt, Heather D.; Price, James F.

    2000-03-01

    Historical hydrographic data and a numerical plume model are used to investigate the initial transformation, dynamics, and spreading pathways of Red Sea and Persian Gulf outflow waters where they enter the Indian Ocean. The annual mean transport of these outflows is relatively small (<0.4 Sv), but they have a major impact on the hydrographic properties of the Indian Ocean at the thermocline level because of their high salinity. They are different from other outflows in that they flow over very shallow sills (depth < 200 m) into a highly stratified upper ocean environment and they are located at relatively low latitudes (12°N and 26°N). Furthermore, the Red Sea outflow exhibits strong seasonal variability in transport. The four main results of this study are as follows. First, on the basis of observed temperature-salinity (T-S) characteristics of the outflow source and product waters we estimate that the Red Sea and Persian Gulf outflows are diluted by factors of ˜2.5 and 4, respectively, as they descend from sill depth to their depth of neutral buoyancy. The high-dilution factor for the Persian Gulf outflow results from the combined effects of large initial density difference between the outflow source water and oceanic water and low outflow transport. Second, the combination of low latitude and low outflow transport (and associated low outflow thickness) results in Ekman numbers for both outflows that are O(1). This indicates that they should be thought of as frictional density currents modified by rotation rather than geostrophic density currents modified by friction. Third, different mixing histories along the two channels that direct Red Sea outflow water into the open ocean result in product waters with significantly different densities, which probably contributes to the multilayered structure of the Red Sea product waters. In both outflows, seasonal variations in source water and oceanic properties have some effect on the T-S of the product waters, but

  20. The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Pakmor, Rüdiger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.

    2016-08-01

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.

  1. THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overallmore » clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.« less

  2. Formation and spatial distribution of hypervelocity stars in AGN outflows

    NASA Astrophysics Data System (ADS)

    Wang, Xiawei; Loeb, Abraham

    2018-05-01

    We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.

  3. Sequence and batch language programs and alarm-related ``C`` programs for the 242-A MCS. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, J.F.

    1995-03-01

    A Distributive Process Control system was purchased by Project B-534, ``242-A Evaporator/Crystallizer Upgrades``. This control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict themore » overall process. To do this, WTSE developed a second alarm scheme which uses special programs, annunciator keys, and process graphics. The special programs are written in two languages; Sequence and Batch Language (SABL), and ``C`` language. The WTSE-developed alarm scheme works as described below: SABL relates signals and alarms to the annunciator keys, called SKID keys. When an alarm occurs, a SABL program causes a SKID key to flash, and if the alarm is of yellow or white priority then a ``C`` program turns on an audible horn (the D/3 system uses a different audible horn for the red priority alarms). The horn and flashing key draws the attention of the operator.« less

  4. Broad Red-Shifted Lines as a Signature of Outflow

    NASA Astrophysics Data System (ADS)

    Kazanas, Demosthenes; Titarchuk, Lev; Becker, Peter A.

    2004-07-01

    We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.

  5. Broad Red-Shifted Lines as a Signature of Outflows

    NASA Astrophysics Data System (ADS)

    Titarchuck, Lev; Kazanas, Demos; Becker, Peter A.

    2006-02-01

    We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in υ/c, where υ the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.

  6. Modification history of the Harmakhis Vallis outflow channel, Mars, based on CTX-scale photogeologic mapping and crater count dating

    NASA Astrophysics Data System (ADS)

    Kukkonen, S.; Kostama, V.-P.

    2018-01-01

    Harmakhis Vallis is one of the four major outflow channel systems (Dao, Niger, Harmakhis, and Reull Valles) that cut the eastern rim region of the Hellas basin, the largest well-preserved impact structure on Mars. The structure of Harmakhis Vallis and the volume of its head depression, as well as earlier dating studies of the region, suggest that the outflow channel formed in the Hesperian period by collapsing when a large amount of subsurface fluid was released. Thus Harmakhis Vallis, as well as the other nearby outflow channels, represents a significant stage of the fluvial activity in the regional history. On the other hand, the outflow channel lies in the Martian mid-latitude zone, where there are several geomorphologic indicators of past and possibly also contemporary ground ice. The floor of Harmakhis also displays evidence of a later-stage ice-related activity, as the outflow channel has been covered by lineated valley fill deposits and debris apron material. The eastern rim region of the Hellas impact basin has been the subject of numerous geologic mapping studies at various scales and based on different imaging data sets. However, Harmakhis Vallis itself has received less attention and the studies on the outflow channel have focused only on limited parts of the outflow channel or on separated different geologic events. In this work, the Harmakhis Vallis floor is mapped and dated from the head depression to the beginning of the terminus based on the Mars Reconnaissance Orbiter's ConTeXt camera images (CTX; ∼ 6 m/pixel). Our results show that Harmakhis Vallis has been modified by several processes after its formation. Age determinations on the small uncovered parts of the outflow channel, which possibly represent the original floor of Harmakhis, imply that Harmakhis may have experienced fluvial activity only 780-850 ( ± 400-600) Ma ago. The discovered terrace structure instead shows that the on-surface activity of the outflow channel has been periodic

  7. Wind influence on a coastal buoyant outflow

    NASA Astrophysics Data System (ADS)

    Whitney, Michael M.; Garvine, Richard W.

    2005-03-01

    This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.

  8. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A.; André, M.; Maes, L.; Baddeley, L.; Barakat, A.; Chappell, R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R.; Welling, D.

    2015-12-01

    Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.

  9. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A. I.; Andre, M.; Maes, L.; Baddeley, L. J.; Barakat, A. R.; Chappell, C. R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R. W.; Welling, D. T.

    2015-12-01

    Low energy ions of ionospheric origin provide a significant contributon to the magnetospheric plasmapopulation. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise arise if continuous longtime observations such as the during a geomagnetic storms are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near Earth region during gemagnetic storms.

  10. Active galactic nucleus outflows in galaxy discs

    NASA Astrophysics Data System (ADS)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  11. (abstract) A Test of the Theoretical Models of Bipolar Outflows: The Bipolar Outflow in Mon R2

    NASA Technical Reports Server (NTRS)

    Xie, Taoling; Goldsmith, Paul; Patel, Nimesh

    1993-01-01

    We report some results of a study of the massive bipolar outflow in the central region of the relatively nearby giant molecular cloud Monoceros R2. We make a quantative comparison of our results with the Shu et al. outflow model which incorporates a radially directed wind sweeping up the ambient material into a shell. We find that this simple model naturally explains the shape of this thin shell. Although Shu's model in its simplest form predicts with reasonable parameters too much mass at very small polar angles, as previously pointed out by Masson and Chernin, it provides a reasonable good fit to the mass distribution at larger polar angles. It is possible that this discrepancy is due to inhomogeneities of the ambient molecular gas which is not considered by the model. We also discuss the constraints imposed by these results on recent jet-driven outflow models.

  12. Quantifying Feedback from Narrow Line Region Outflows in Nearby Active Galaxies. I. Spatially Resolved Mass Outflow Rates for the Seyfert 2 Galaxy Markarian 573

    NASA Astrophysics Data System (ADS)

    Revalski, M.; Crenshaw, D. M.; Kraemer, S. B.; Fischer, T. C.; Schmitt, H. R.; Machuca, C.

    2018-03-01

    We present the first spatially resolved mass outflow rate measurements ({\\dot{M}}out}) of the optical emission line gas in the narrow line region (NLR) of a Seyfert 2 galaxy, Markarian 573. Using long slit spectra and [O III] imaging from the Hubble Space Telescope and Apache Point Observatory in conjunction with emission line diagnostics and Cloudy photoionization models, we find a peak outflow rate of {\\dot{M}}out}≈ 3.4 +/- 0.5 {M}ȯ {yr}}-1 at a distance of 210 pc from the central supermassive black hole (SMBH). The outflow extends to distances of 600 pc from the nucleus with a total mass and kinetic energy of M ≈ 2.2 × 106 M ⊙ and E ≈ 5.1 × 1054 erg, revealing the outflows to be more energetic than those in the lower luminosity Seyfert 1 galaxy NGC 4151. The peak outflow rate is an order of magnitude larger than the mass accretion and nuclear outflow rates, indicating local in situ acceleration of the circumnuclear NLR gas. We compare these results to global techniques that quantify an average outflow rate across the NLR, and find the latter are subject to larger uncertainties. These results indicate that spatially resolved observations are critical for probing AGN feedback on scales where circumnuclear star formation occurs.

  13. Scaling Relations Between Warm Galactic Outflows and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida; Lundgren, Britt

    2015-10-01

    We report on a sample of 48 nearby, star-forming galaxies observed with the Cosmic Origin Spectrograph on the Hubble Space Telescope. We measure the kinematics of warm gas in galactic outflows using a combination of four Si ii absorption lines. We use multi-wavelength ancillary data to estimate stellar masses (M*), star formation rates (SFR), circular velocities (vcirc), and morphologies. The galaxies cover four orders of magnitude in M* and SFR, and sample a wide range of morphologies from starbursting mergers to normal star-forming galaxies. We derive 3.0-3.5σ relations between outflow velocity and SFR, M*, and vcirc. The outflow velocities scale as SFR0.08-0.22, {M}*0.12-0.20 and {v}{circ}0.44-0.87, with the range depending on whether we use a maximum or a central velocity to quantify the outflow velocity. After accounting for their increased SFR, mergers drive 32% faster outflows than non-merging galaxies, with all of the highest velocity outflows arising from mergers. Low-mass galaxies (log(M*/ M⊙) < 10.5) lose some low-ionization gas through galactic outflows, while more massive galaxies retain all of their low-ionization gas, unless they undergo a merger.

  14. Quasars Outflows As A Function of SED - An Empirical Approach

    NASA Astrophysics Data System (ADS)

    Richmond, Joseph M.; Ganguly, Rajib

    2015-08-01

    Feedback from quasars (jets, outflows, and luminosity) is now recognized as a vital phase in describing galaxy evolution, growth, and star formation efficiency. Regarding outflows, roughly 60% are observed to have outflowing gas appearing at large velocities and with a variety of velocity dispersions. The most extreme observed form of these outflows appears in the ultraviolet spectrum of 15-20% of objects. Understanding the physics of these outflows is important for both astrophysical and cosmological reasons. Establishing empirical relationships to test the theoretical models of how these outflows are driven (and hence, how they impact their surroundings) is currently plagued by having too few objects, where other parameters like the black hole mass or accretion rate, may add to the scatter. We aim to fix this by using a systematic study of a large sample of objects. As a follow up to a previous study, we have identified a sample of nearly 11000 z=1.7-2 quasars using archived data from the Sloan Digital Sky Survey (Data Release 7), of which roughly 4400 appear to show outflows according to the visual inspection. The specific redshift range is chosen to feature both the Mg II 2800 emission line as well as wavelengths extending to nearly 20,000 km/s blueward of the C IV 1549 emission line. Our goals for this study are: (1) To temper our visual inspection schemes with a more automated, computer-driven scheme; (2) To measure the properties of the outflows (velocity, velocity dispersion, equivalent width, ionization); (3) To supplement the SDSS spectra with photometric measurements from GALEX, 2MASS, and WISE to further characterize the spectral energy distributions (SEDs) and dust content; (4) To form spectral composites to investigate possible SED changes with outflow properties; and (5) To use published estimates of the quasar physical properties (black hole mass, accretion rate, etc.) to fully establish in an empirical way the complex dependencies between the

  15. Asymmetric MHD outflows/jets from accreting T Tauri stars

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.

    2015-06-01

    Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.

  16. The Simbol-X Perspective on the Physics of Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Giustini, M.; Cappi, M.; Vignali, C.; Palumbo, G. G. C.; Fiore, F.; Malaguti, G.

    2009-05-01

    There is increasing evidence that quasar outflows may play a key role in providing the feedback between AGN/QSOs and their surrounding (and feeding) media, in regulating the central supermassive black hole growth and the galaxy formation and, on larger scales, in shaping the growth of cosmic structures (see e.g. [1]). X-ray observations of quasar outflows are crucial to probe their innermost parts and assess the global energetics entrained in the outflow by studying its most extreme (in terms of velocity, ionization state, mass outflow rate) phases. Simbol-X-with its high effective area in the Fe K energy band and above-will allow the detection and the characterization of powerful outflows in bright, nearby AGN and notably also in moderately faint AGN, thus shedding light on feedback processes in these objects.

  17. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.

    PubMed

    Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas

    2011-12-01

    As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The formation and dust lifting processes associated with a large Saharan meso-scale convective system (MCS)

    NASA Astrophysics Data System (ADS)

    Roberts, Alex; Knippertz, Peter

    2013-04-01

    This work focusses on the meteorology that produced a large Mesoscale Convective System (MCS) and the dynamics of its associated cold pool. The case occurred between 8th-10th June 2010 and was initiated over the Hoggar and Aïr Mountains in southern Algeria and northern Niger respectively. The dust plume created covered parts of Algeria, Mali and Mauritania and was later deformed the by background flow and transported over the Atlantic and Mediterranean. This study is based on: standard surface observations (where available), ERA-Interim reanalysis, Meteosat imagery, MODIS imagery, Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat and a high resolution (3.3km) limited area simulation using the Weather Research and Forecasting (WRF) model. A variety of different processes appear to be important for the generation of this MCS and the spreading of the associated dusty cold pool. These include: the presence of a trough on the subtropical jet, the production of a tropical cloud plume, disruption to the structure of the Saharan heat low and the production of a Libyan high. These features produced moistening of the boundary layer and a convergence zone over the region of MCS initiation. Another important factor appears to have been the production of a smaller MCS and cold pool on the evening of the 7th June. This elevated low-level moisture and encouraged convective initiation the following day. Once triggered on the 8th June some cells grew and merged into a single large system that propagated south westward and produced a large cold pool that emanated from its northern edge. The cells on the northern edge of the system over the Hoggar grew and collapsed producing a haboob that spread over a large area. Cells further south continued to develop into the MCS and actively produce a cold pool over the system's lifetime. This undercut the dusty air from the earlier cold pool and

  19. A Doppler dimming determination of coronal outflow velocity

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard; Kohl, John L.; Weiser, Heinz; Withbroe, George L.; Munro, Richard H.

    1993-01-01

    Outflow velocities in a polar coronal hole are derived from observations made during a 1982 sounding rocket flight. The velocity results are derived from a Doppler dimming analysis of resonantly scattered H I Ly-alpha. This analysis indicates radial outflow velocities of 217 km/s at 2 solar radii from sun-center with an uncertainty range of 153 to 251 km/s at a confidence level of 67 percent. These results are best characterized as strong evidence for supersonic outflow within 2 solar radii of sun-center in a polar coronal hole. Several means for obtaining improved accuracy in future observations are discussed.

  20. ALMA Studies of the Disk-Jet-Outflow Connection

    NASA Astrophysics Data System (ADS)

    Dougados, Catherine; Louvet, F.; Mardones, D.; Cabrit, S.

    2017-06-01

    I will describe in this contribution recent results obtained with ALMA on the origin of the disk/jet/outflow connexion in T Tauri stars. I will first present ALMA observations of the disk associated with the jet source Th 28, which question previous jet rotation measurements in this source and the implications drawn from them. I will then discuss Cycle 2 ALMA observations of the disk and small scale CO outflow associated with the prototypical edge-on HH 30 source. The unprecedented angular resolution of this dataset brings new constraints on the origin of the CO outflows in young stars.

  1. Differentiation between microcystin contaminated and uncontaminated fish by determination of unconjugated MCs using an ELISA anti-Adda test based on receiver-operating characteristic curves threshold values: application to Tinca tinca from natural ponds.

    PubMed

    Moreno, Isabel María; Herrador, M Ángeles; Atencio, Loyda; Puerto, María; González, A Gustavo; Cameán, Ana María

    2011-02-01

    The aim of this study was to evaluate whether the enzyme-linked immunosorbent assay (ELISA) anti-Adda technique could be used to monitor free microcystins (MCs) in biological samples from fish naturally exposed to toxic cyanobacteria by using receiver operating characteristic (ROC) curve software to establish an optimal cut-off value for MCs. The cut-off value determined by ROC curve analysis in tench (Tinca tinca) exposed to MCs under laboratory conditions by ROC curve analysis was 5.90-μg MCs/kg tissue dry weight (d.w.) with a sensitivity of 93.3%. This value was applied in fish samples from natural ponds (Extremadura, Spain) in order to asses its potential MCs bioaccumulation by classifying samples as either true positive (TP), false positive (FP), true negative (TN), or false negative (FN). In this work, it has been demonstrated that toxic cyanobacteria, mainly Microcystis aeruginosa, Aphanizomenon issatchenkoi, and Anabaena spiroides, were present in two of these ponds, Barruecos de Abajo (BDown) and Barruecos de Arriba (BUp). The MCs levels were detected in waters from both ponds with an anti-MC-LR ELISA immunoassay and were of similar values (between 3.8-6.5-μg MC-LR equivalent/L in BDown pond and 4.8-6.0-μg MC-LR equivalent/L in BUp). The MCs cut-off values were applied in livers from fish collected from these two ponds using the ELISA anti-Adda technique. A total of 83% of samples from BDown pond and only 42% from BUp were TP with values of free MCs higher than 8.8-μg MCs/kg tissue (d.w.). Copyright © 2009 Wiley Periodicals, Inc.

  2. Latent outflow activity for western Tharsis, Mars: Significant flood record exposed

    USGS Publications Warehouse

    Dohm, J.M.; Anderson, R.C.; Baker, V.R.; Ferris, J.C.; Rudd, L.P.; Hare, T.M.; Rice, J. W.; Casavant, R.R.; Strom, R.G.; Zimbelman, J.R.; Scott, D.H.

    2001-01-01

    Observations permitted by the newly acquired Mars Observer Laser Altimeter data have revealed a system of gigantic valleys northwest of the huge Martian shield volcano, Arsia Mons, in the western hemisphere of Mars (northwestern slope valleys (NSVs)). These features, which generally correspond spatially to gravity lows, are obscured by veneers of materials including volcanic lava flows, air fall deposits, and eolian materials. Geologic investigations of the Tharsis region suggest that the system of gigantic valleys predates the construction of Arsia Mons and its extensive associated lava flows of mainly late Hesperian and Amazonian age and coincides stratigraphically with the early development of the outflow channels that debouch into Chryse Planitia. Similar to the previously identified outflow channels, which issued tremendous volumes of water into topographic lows such as Chryse Planitia, the NSVs potentially represent flooding of immense magnitude and, as such, a source of water for a northern plains ocean.

  3. Cascade filtration (CF) with the Haemonetics MCS+: a new technical adaptation.

    PubMed

    Valbonesi, M; Bo, A; De Luigi, M C; Bruni, R; Stura, P; Sanfilippo, B; Varinelli, I

    2001-03-01

    CF was introduced in clinical medicine in 1980. Up to now, exclusively two-vein procedures have been carried out with some limitations to expansion of this technique. In this report we describe the very first application of single-needle CF carried out with Haemonetics MCS + apparatus. Twenty procedures were completed without any untoward effect in patients suffering from TTP, post-hepatitic cryoblobulinemia, familial hypercholesterolemia and acute Guillan-Barrè Syndrome. From 1 to 4 sessions were carried out per patient with the expected laboratory and clinical results. The only limit is the procedure time that averages 231 +/- 48 min., approximately 40% longer than two needle procedures.

  4. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    NASA Astrophysics Data System (ADS)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  5. Erectile hydraulics: maximizing inflow while minimizing outflow.

    PubMed

    Meldrum, David R; Burnett, Arthur L; Dorey, Grace; Esposito, Katherine; Ignarro, Louis J

    2014-05-01

    Penile rigidity depends on maximizing inflow while minimizing outflow. The aim of this review is to describe the principal factors and mechanisms involved. Erectile quality is the main outcome measure. Data from the pertinent literature were examined to inform our conclusions. Nitric oxide (NO) is the principal factor increasing blood flow into the penis. Penile engorgement and the pelvic floor muscles maintain an adequate erection by impeding outflow of blood by exerting pressure on the penile veins from within and from outside of the penile tunica. Extrinsic pressure by the pelvic floor muscles further raises intracavernosal pressure above maximum inflow pressure to achieve full penile rigidity. Aging and poor lifestyle choices are associated with metabolic impediments to NO production. Aging is also associated with fewer smooth muscle cells and increased fibrosis within the corpora cavernosa, preventing adequate penile engorgement and pressure on the penile veins. Those same penile structural changes occur rapidly following the penile nerve injury that accompanies even "nerve-sparing" radical prostatectomy and are largely prevented in animal models by early chronic use of a phosphodiesterase type 5 (PDE5) inhibitor. Pelvic floor muscles may also decrease in tone and bulk with age, and pelvic floor muscle exercises have been shown to improve erectile function to a similar degree compared with a PDE5 inhibitor in men with erectile dysfunction (ED). Because NO is critical for vascular health and ED is strongly associated with cardiovascular disease, maximal attention should be focused on measures known to increase vascular NO production, including the use of PDE5 inhibitors. Attention should also be paid to early, regular use of PDE5 inhibition to reduce the incidence of ED following penile nerve injury and to assuring normal function of the pelvic floor muscles. These approaches to maximizing erectile function are complementary rather than competitive, as they

  6. Modeling Jet and Outflow Feedback during Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ~1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ~1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ~ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  7. The Anatomy of the Young Protostellar Outflow HH 211

    NASA Astrophysics Data System (ADS)

    Tappe, A.; Forbrich, J.; Martín, S.; Yuan, Y.; Lada, C. J.

    2012-05-01

    We present Spitzer Space Telescope 5-36 μm mapping observations toward the southeastern lobe of the young protostellar outflow HH 211. The southeastern terminal shock of the outflow shows a rich mid-infrared spectrum including molecular emission lines from OH, H2O, HCO+, CO2, H2, and HD. The spectrum also shows a rising infrared continuum toward 5 μm, which we interpret as unresolved emission lines from highly excited rotational levels of the CO v = 1-0 fundamental band. This interpretation is supported by a strong excess flux observed in the Spitzer/IRAC 4-5 μm channel 2 image compared to the other IRAC channels. The extremely high critical densities of the CO v = 1-0 ro-vibrational lines and a comparison to H2 and CO excitation models suggest jet densities larger than 106 cm-3 in the terminal shock. We also observed the southeastern terminal outflow shock with the Submillimeter Array and detected pure rotational emission from CO 2-1, HCO+ 3-2, and HCN 3-2. The rotationally excited CO traces the collimated outflow backbone as well as the terminal shock. HCN traces individual dense knots along the outflow and in the terminal shock, whereas HCO+ solely appears in the terminal shock. The unique combination of our mid-infrared and submillimeter observations with previously published near-infrared observations allow us to study the interaction of one of the youngest known protostellar outflows with its surrounding molecular cloud. Our results help us to understand the nature of some of the so-called green fuzzies (Extended Green Objects), and elucidate the physical conditions that cause high OH excitation and affect the chemical OH/H2O balance in protostellar outflows and young stellar objects. In an appendix to this paper, we summarize our Spitzer follow-up survey of protostellar outflow shocks to find further examples of highly excited OH occurring together with H2O and H2.

  8. SU-E-T-325: The New Evaluation Method of the VMAT Plan Delivery Using Varian DynaLog Files and Modulation Complexity Score (MCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateoka, K; Graduate School of Medicine, Sapporo Medical University, Sapporo, JP; Fujimomo, K

    2014-06-01

    Purpose: The aim of the study is to evaluate the use of Varian DynaLog files to verify VMAT plans delivery and modulation complexity score (MCS) of VMAT. Methods: Delivery accuracy of machine performance was quantified by multileaf collimator (MLC) position errors, gantry angle errors and fluence delivery accuracy for volumetric modulated arc therapy (VMAT). The relationship between machine performance and plan complexity were also investigated using the modulation complexity score (MCS). Plan and Actual MLC positions, gantry angles and delivered fraction of monitor units were extracted from Varian DynaLog files. These factors were taken from the record and verify systemmore » of MLC control file. Planned and delivered beam data were compared to determine leaf position errors and gantry angle errors. Analysis was also performed on planned and actual fluence maps reconstructed from those of the DynaLog files. This analysis was performed for all treatment fractions of 5 prostate VMAT plans. The analysis of DynaLog files have been carried out by in-house programming in Visual C++. Results: The root mean square of leaf position and gantry angle errors were about 0.12 and 0.15, respectively. The Gamma of planned and actual fluence maps at 3%/3 mm criterion was about 99.21. The gamma of the leaf position errors were not directly related to plan complexity as determined by the MCS. Therefore, the gamma of the gantry angle errors were directly related to plan complexity as determined by the MCS. Conclusion: This study shows Varian dynalog files for VMAT plan can be diagnosed delivery errors not possible with phantom based quality assurance. Furthermore, the MCS of VMAT plan can evaluate delivery accuracy for patients receiving of VMAT. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.« less

  9. Two separate outflows in the dual supermassive black hole system NGC 6240

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Nevin, R.; Comerford, J. M.; Davies, R. I.; Privon, G. C.; Treister, E.

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content1-3. Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows4-6, it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown7-9. Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O iii] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O iii] cone, respectively. Their combined mass outflow is comparable to the star formation rate10, suggesting that negative feedback on star formation is occurring.

  10. Two separate outflows in the dual supermassive black hole system NGC 6240.

    PubMed

    Müller-Sánchez, F; Nevin, R; Comerford, J M; Davies, R I; Privon, G C; Treister, E

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content 1-3 . Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows 4-6 , it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown 7-9 . Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O III] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O III] cone, respectively. Their combined mass outflow is comparable to the star formation rate 10 , suggesting that negative feedback on star formation is occurring.

  11. Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow

    NASA Astrophysics Data System (ADS)

    Ramírez-Olivencia, N.; Varenius, E.; Pérez-Torres, M.; Alberdi, A.; Pérez, E.; Alonso-Herrero, A.; Deller, A.; Herrero-Illana, R.; Moldón, J.; Barcos-Muñoz, L.; Martí-Vidal, I.

    2018-03-01

    We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcsec from the A-nucleus in the N-S direction ( ≈5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system. We also discuss HST/NICMOS [FeII] 1.64 μm and H2 2.12 μm images of Arp 299-A, which show similar features to those unveiled by our 150 MHz LOFAR observations, providing strong morphological support for the outflow scenario. Finally, we discuss unpublished Na I D spectra that confirm the outflow nature of this structure. From energetic arguments, we rule out the low-luminosity active galactic nucleus in Arp 299-A as a driver for the outflow. On the contrary, the powerful, compact starburst in the central regions of Arp 299-A provides plenty of mechanical energy to sustain an outflow, and we conclude that the intense supernova (SN) activity in the nuclear region of Arp 299-A is driving the observed outflow. We estimate that the starburst wind can support a mass-outflow rate in the range (11-63 M⊙ yr-1) at speeds of up to 370-890 km s-1, and is relatively young, with an estimated kinematic age of 3-7 Myr. Those results open an avenue to the use of low-frequency (150 MHz), sub-arcsecond imaging with LOFAR to detect outflows in the central regions of local luminous infrared galaxies.

  12. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics

    PubMed Central

    Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em

    2011-01-01

    We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548

  13. Outflows in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Diaz Trigo, M.

    2017-10-01

    Accretion onto neutron stars and black holes powers the most luminous phenomena in the Universe. Associated to it is the existence of outflows, in the form of uncollimated winds or highly collimated relativistic jets. The origin of outflows and their feedback to the environment is one of the most debated topics in astrophysics today. In this talk I will review the current understanding of accretion disc winds in X-ray binaries, their launching mechanism and their relation to specific accretion states. I will also discuss the potential interplay between the appearance/disappearance of such winds and relativistic jets and the insight gained with ongoing multi-wavelength observational programmes focused on the variability of such phenomena.

  14. Cosmic ray driven outflows in an ultraluminous galaxy

    NASA Astrophysics Data System (ADS)

    Fujita, Akimi; Mac Low, Mordecai-Mark

    2018-06-01

    In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.

  15. THE ORION FINGERS: NEAR-IR SPECTRAL IMAGING OF AN EXPLOSIVE OUTFLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Allison; Bally, John; Ginsburg, Adam, E-mail: allison.youngblood@colorado.edu

    2016-06-01

    We present near-IR (1.1–2.4 μ m) position–position–velocity cubes of the 500 year old Orion BN/KL explosive outflow with spatial resolution 1″ and spectral resolution 86 km s{sup −1}. We construct integrated intensity maps free of continuum sources of 15 H{sub 2} and [Fe ii] lines while preserving kinematic information of individual outflow features. Included in the detected H{sub 2} lines are the 1-0 S(1) and 1-0 Q(3) transitions, allowing extinction measurements across the outflow. Additionally, we present dereddened flux ratios for over two dozen outflow features to allow for the characterization of the true excitation conditions of the BN/KL outflow. All of themore » ratios show the dominance of the shock excitation of the H{sub 2} emission, although some features exhibit signs of fluorescent excitation from stellar radiation or J-type shocks. We also detect tracers of the PDR/ionization front north of the Trapezium stars in [O i] and [Fe ii] and analyze other observed outflows not associated with the BN/KL outflow.« less

  16. Did ice streams carve martian outflow channels?

    USGS Publications Warehouse

    Lucchitta, B.K.; Anderson, D.M.; Shoji, H.

    1981-01-01

    Outflow channels on Mars1 are long sinuous linear depressions that occur mostly in the equatorial area (??30?? lat.). They differ from small valley networks2 by being larger and arising full born from chaotic terrains. Outflow channels resemble terrestrial stream beds, and their origin has generally been attributed to water3-5 in catastrophic floods6,7 or mudflows8. The catastrophic-flood hypothesis is derived primarily from the morphological similarities of martian outflow channels and features created by the catastrophic Spokane flood that formed the Washington scablands. These similarities have been documented extensively3,6,7, but differences of scale remain a major problemmartian channel features are on the average much larger than their proposed terrestrial analogues. We examine here the problem of channel origin from the perspective of erosional characteristics and the resultant landf orms created by former and present-day ice streams and glaciers on Earth. From morphologic comparisons, an ice-stream origin seems equally well suited to explain the occurrences and form of the outflow channels on Mars, and in contrast with the hydraulic hypothesis, ice streams and ice sheets produce terrestrial features of the same scale as those observed on Mars. ?? 1981 Nature Publishing Group.

  17. A precessing jet in the NGC2264G outflow

    NASA Astrophysics Data System (ADS)

    McCoey, Carolyn; Teixeira, P. S.; Fich, M.; Lada, C. J.

    2007-05-01

    We present new infrared imaging of the NGC 2264 G protostellar outflow region, obtained with the Spitzer Space Telescope. A jet in the red (eastern) outflow lobe is clearly detected in all four IRAC bands and, for the first time, is shown to continuously extend over the entire length of the red outflow lobe, as traced by CO observations. The jet also extends to a deeply embedded Class 0 source, VLA2, confirming previous suggestions that it is the driving source of the outflow. The images show that the easternmost part of the jet exhibits what appears to be multiple changes of direction. We consider two possible explanations for the jet morphology: (i) deflection of the jet off the walls of the outflow lobes as proposed by Fich & Lada (1997) and (ii) precession. The jet structure shown in the IRAC images can be largely, although not entirely, explained by a slowly precessing jet (period 8000 yr) that lies mostly on the plane of the sky. In either case it appears that the observed and inferred changes in the jet direction are sufficient to broaden the NGC 2264 G outflow to an extent comparable to that observed in the CO emission. P. S. T. acknowledges support from the scholarship SFRH/BD/13984/2003 awarded by the Fundaçao para a Ciencia e Tecnologia (Portugal). Both M. F. and C. M. are supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.

  18. Waveform Tomography Applied to Long Streamer MCS Data from the Scotian Slope

    NASA Astrophysics Data System (ADS)

    Delescluse, Matthias; Louden, Keith; Nedimovic, Mladen

    2010-05-01

    Detailed velocity models of the earth subsurface can be obtained through waveform tomography, a method that relies on using information from the full wavefield. Such models can be of significantly higher resolution than the corresponding models formed by more generic traveltime tomography methods, which are constrained only by the wave arrival times. However, to derive the detailed subsurface velocity, the waveform method is sensitive to modelling low-frequency refracted waves that have long paths through target structures. Thus field examples primarily have focused on the analysis of long-offset wide-angle datasets collected using autonomous receivers, in which refractions arrive at earlier times than reflections and there is a significant separation between the two wave arrivals. MCS datasets with shorter offsets typically lack these important features, which result in methodological problems (e.g. Hicks and Pratt, 2001), even though they benefit from a high density of raypaths and uniformity of receiver and shot properties. Modern marine seismic acquisition using long streamers now offers both the ability to record refracted waves at far offsets arriving ahead of the seafloor reflection, and the ability to do this at great density using uniform sources. In this study, we use 2D MCS data acquired with a 9-km-long streamer by ION GX-Technology over the Nova Scotia Slope in water depths of ~1600 m. We show that the refracted arrivals, although restricted to receivers between offsets of 7.5 and 9 km, provide sufficient information to successfully invert for a high-resolution velocity field. Using a frequency domain acoustic code (Pratt, 1999) over frequencies from 8 Hz to 24 Hz on two crossing profiles (45 and 20 km long), we detail how the limited refracted waves can constrain the velocity field above the depth of the turning waves (~1.5 km below seafloor). Several important features are resolved by the waveform velocity model that are not present in the initial

  19. MCS-18, a natural product isolated from Helleborus purpurascens, inhibits maturation of dendritic cells in ApoE-deficient mice and prevents early atherosclerosis progression.

    PubMed

    Dietel, Barbara; Muench, Rabea; Kuehn, Constanze; Kerek, Franz; Steinkasserer, Alexander; Achenbach, Stephan; Garlichs, Christoph D; Zinser, Elisabeth

    2014-08-01

    Inflammation accelerates both plaque progression and instability in the pathogenesis of atherosclerosis. The inhibition of dendritic cell (DC) maturation is a promising approach to suppress excessive inflammatory immune responses and has been shown to be protective in several autoimmune models. The aim of this study was to investigate the immune modulatory effects of the natural substance MCS-18, an inhibitor of DC maturation, regarding the progression of atherosclerosis in ApoE-deficient mice. ApoE-deficient mice were fed for twelve weeks with a Western-type diet (n = 32) or normal chow (control group; n = 16). Animals receiving high-fat diet were treated with MCS-18 (500 μg/kg body weight, n = 16) or saline (n = 16) twice a week. After 12 weeks, animals were transcardially perfused and sacrificed. The percentage of mature DCs (CD3(-)/CD19(-)/CD14(-)/NK1.1(-)/CD11c(+)/MHCII(+)/CD83(+)/CD86(+)) and T cell subpopulations (CD4(+)/CD25(+)/Foxp3(+), CD3/CD4/CD8) was analyzed in peripheral blood and in the spleen using flow cytometry. Plaque size was determined in the aortic root and the thoracoabdominal aorta using en-face staining. Immunohistochemical stainings served to detect inflammatory cells in the aortic root. Several cytokines and chemokines were determined in serum using multiplex assays. In splenic cells derived from saline-treated atherosclerotic mice an increased DC maturation, reflected by the upregulation of CD83 and CD86 expression, was observed. The enhanced expression of both maturation markers was absent in MCS-18 treated atherosclerotic mice. While the percentage of splenic Foxp3 expressing Treg was increased in animals receiving MCS-18 compared to saline-treated atherosclerotic mice, cytotoxic T cells were reduced in the spleen and in atherosclerotic lesions of the aortic root. Furthermore, proatherogenic cytokines (e.g. IL-6 and IFN-γ) and chemokines (e.g. MIP-1β) were decreased in serum of MCS-18-treated animals when compared to saline

  20. The Resolved Outflow from 3C 48

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    2014-10-01

    We investigate the properties of the high-velocity outflow driven by the young radio jet of 3C 48, a compact-steep-spectrum source. We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telecope to obtain (1) low-resolution UV and optical spectra and (2) multi-slit medium-resolution spectra of the ionized outflow. With supporting data from ground-based spectrographs, we are able to accurately measure the ratios of diagnostic emission lines such as [O III] λ5007, [O III] λ3727, [N II] λ6548, Hα, Hβ, [Ne V] λ3425, and [Ne III] λ3869. We fit the observed emission-line ratios using a range of ionization models, powered by active galactic nucleus (AGN) radiation and shocks, produced by the MAPPINGS code. We have determined that AGN radiation is likely the dominant ionization source. The outflow's density is estimated to be in the range n = 103-104 cm-3, the mass is ~6 × 106 M ⊙, and the metallicity is likely equal to or higher than solar. Compared with the typical outflows associated with more evolved radio jets, this young outflow is denser, less massive, and more metal rich. Multi-slit observations allow us to construct a two-dimensional velocity map of the outflow that shows a wide range of velocities with distinct velocity components, suggesting a wide-angle clumpy outflow. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11574. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the

  1. Growth of left ventricular outflow tract and predictors of future re-intervention after repair for ventricular septal defect and aortic arch obstruction.

    PubMed

    Jijeh, Abdulraouf; Ismail, Muna; Alhabshan, Fahad

    2017-09-01

    Ventricular septal defect and aortic arch obstruction are usually associated with a narrow left ventricular outflow tract. The aim of the present study was to analyse the growth and predictors of future obstruction of the left ventricular outflow tract after surgical repair. We carried out a retrospective review of patients who underwent repair for ventricular septal defect and aortic arch obstruction - coarctation or interrupted aortic arch - between July, 2002 and June, 2013. Echocardiographic data were reviewed, and the need for re-intervention was evaluated. A total of 89 patients were included in this study. A significant left ventricular outflow tract growth was noticed after surgical repair. Preoperatively, the mean left ventricular outflow tract Z-score was -1.46±1 (range -5.5 to 1.1) and increased to a mean value of -0.7±1.3 (range -2.7 to 3.2) at last follow-up (p=0.0001), demonstrating relevant growth of the left ventricular outflow tract after repair for ventricular septal defect and aortic arch obstruction. After primary repair, 11 patients (12.3%) required re-intervention with surgical repair for left ventricular outflow tract obstruction after a mean period of 36±21 months. There were no significant differences in age, weight, and indexed aortic valve and left ventricular outflow tract measurements between those who developed obstruction and those who did not. Significant left ventricular outflow tract growth is expected after repair of ventricular septal defect and aortic arch obstruction. Small aortic valve and left ventricular outflow tract at diagnosis are not risk factors to predict the need for surgical re-intervention for left ventricular outflow tract obstruction in future.

  2. Quenching star formation with quasar outflows launched by trapped IR radiation

    NASA Astrophysics Data System (ADS)

    Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.

    2018-06-01

    We present cosmological radiation-hydrodynamic simulations, performed with the code RAMSES-RT, of radiatively-driven outflows in a massive quasar host halo at z = 6. Our simulations include both single- and multi-scattered radiation pressure on dust from a quasar and are compared against simulations performed with thermal feedback. For radiation pressure-driving, we show that there is a critical quasar luminosity above which a galactic outflow is launched, set by the equilibrium of gravitational and radiation forces. While this critical luminosity is unrealistically high in the single-scattering limit for plausible black hole masses, it is in line with a ≈ 3 × 10^9 M_⊙ black hole accreting at its Eddington limit, if infrared (IR) multi-scattering radiation pressure is included. The outflows are fast (v ≳ 1000 km s^{-1}) and strongly mass-loaded with peak mass outflow rates ≈ 10^3 - 10^4 M_⊙ yr^{-1}, but short-lived (< 10 Myr). Outflowing material is multi-phase, though predominantly composed of cool gas, forming via a thermal instability in the shocked swept-up component. Radiation pressure- and thermally-driven outflows both affect their host galaxies significantly, but in different, complementary ways. Thermally-driven outflows couple more efficiently to diffuse halo gas, generating more powerful, hotter and more volume-filling outflows. IR radiation, through its ability to penetrate dense gas via diffusion, is more efficient at ejecting gas from the bulge. The combination of gas ejection through outflows with internal pressurisation by trapped IR radiation leads to a complete shut down of star formation in the bulge. We hence argue that radiation pressure-driven feedback may be an important ingredient in regulating star formation in compact starbursts, especially during the quasar's `obscured' phase.

  3. Effects of stellar outflows on interstellar sulfur oxide chemistry

    NASA Technical Reports Server (NTRS)

    Welch, W. J.; Vogel, S.; Terebey, S.; Dreher, J.; Jackson, J.; Carlstrom, J.

    1986-01-01

    Interferometer Maps with 2" to 6" resolution of a number of regions with active star formation (Orion A, W49, W51, SGRB2) show that the distribution of the molecule SO is very compact around stellar outflow sources. Both SO and SO2 were studied near three outflows, OrionA/IRc2 and two sources in W49. The two molecules have similar distributions and abundances. More than 95% of the emission comes from regions whose extents are only .05 to .2 pc., being larger around the more energetic sources. Their spectra are broad, 30 km/sec or more, suggesting that the oxide production is associated with the flows. The outflows are identified by water masers and by extended bipolar flows in SiO. Maps in other molecules, such as HCO+ and CS, which have similar collisional excitation requirements, have much greater spatial extent. Thus it appears that the SO and SO2 abundances are truly compact and are closely associated with the outflows.

  4. An In Vitro Perfusion System to Enhance Outflow Studies in Mouse Eyes

    PubMed Central

    Kizhatil, Krishnakumar; Chlebowski, Arthur; Tolman, Nicholas G.; Freeburg, Nelson F.; Ryan, Margaret M.; Shaw, Nicholas N.; Kokini, Alexander D. M.; Marchant, Jeffrey K.; John, Simon W. M.

    2016-01-01

    Purpose The molecular mechanisms controlling aqueous humor (AQH) outflow and IOP need much further definition. The mouse is a powerful system for characterizing the mechanistic basis of AQH outflow. To enhance outflow studies in mice, we developed a perfusion system that is based on human anterior chamber perfusion culture systems. Our mouse system permits previously impractical experiments. Methods We engineered a computer-controlled, pump-based perfusion system with a platform for mounting whole dissected mouse eyes (minus lens and iris, ∼45% of drainage tissue is perfused). We tested the system's ability to monitor outflow and tested the effects of the outflow-elevating drug, Y27632, a rho-associated protein kinase (ROCK) inhibitor. Finally, we tested the system's ability to detect genetically determined decreases in outflow by determining if deficiency of the candidate genes Nos3 and Cav1 alter outflow. Results Using our system, the outflow facility (C) of C57BL/6J mouse eyes was found to range between 7.7 and 10.4 nl/minutes/mm Hg (corrected for whole eye). Our system readily detected a 74.4% Y27632-induced increase in C. The NOS3 inhibitor L-NG-nitroarginine methyl ester (L-NAME) and a Nos3 null mutation reduced C by 28.3% and 35.8%, respectively. Similarly, in Cav1 null eyes C was reduced by 47.8%. Conclusions We engineered a unique perfusion system that can accurately measure changes in C. We then used the system to show that NOS3 and CAV1 are key components of mechanism(s) controlling outflow. PMID:27701632

  5. AGN feedback in action? - outflows and star formation in type 2 AGNs

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Hak

    2017-01-01

    We present the statistical constraints on the ionized gas outflows and their connection to star formation, using a large sample of ~110,000 AGNs and star-forming galaxies at z < 0.3. First, we find a dramatic difference of the outflow signatures between AGNs and star-forming galaxies based on the [OIII] emission line kinematics. While the [OIII] velocity and velocity dispersion of star forming galaxies can be entirely accounted by the gravitational potential of host galaxies, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. Second, the distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the outflows are AGN-driven. Third, the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [OIII] profile. Interestingly, we find that the specific star formation of non-outflow AGNs is much lower than that of strong outflow AGNs, while the star formation rate of strong outflow AGNs is comparable to that of star forming galaxies. We interpret this trend as a delayed AGN feedback as it takes dynamical time for the outflows to suppress star formation in galactic scales.

  6. A young bipolar outflow from IRAS 15398-3359

    NASA Astrophysics Data System (ADS)

    Bjerkeli, P.; Jørgensen, J. K.; Brinch, C.

    2016-03-01

    Context. Changing physical conditions in the vicinity of protostars allow for a rich and interesting chemistry to occur. Heating and cooling of the gas allows molecules to be released from and frozen out on dust grains. These changes in physics, traced by chemistry as well as the kinematical information, allows us to distinguish between different scenarios describing the infall of matter and the launching of molecular outflows and jets. Aims: We aim to determine the spatial distribution of different species that are of different chemical origin. This is to examine the physical processes in play in the observed region. From the kinematical information of the emission lines we aim to determine the nature of the infalling and outflowing gas in the system. We also aim to determine the physical properties of the outflow. Methods: Maps from the Submillimeter Array (SMA) reveal the spatial distribution of the gaseous emission towards IRAS 15398-3359. The line radiative transfer code LIME is used to construct a full 3D model of the system taking all relevant components and scales into account. Results: CO, HCO+, and N2H+ are detected and shown to trace the motions of the outflow. For CO, the circumstellar envelope and the surrounding cloud also have a profound impact on the observed line profiles. N2H+ is detected in the outflow, but is suppressed towards the central region, perhaps because of the competing reaction between CO and H3+ in the densest regions as well as the destruction of N2H+ by CO. N2D+ is detected in a ridge south-west of the protostellar condensation and is not associated with the outflow. The morphology and kinematics of the CO emission suggests that the source is younger than ~1000 years. The mass, momentum, momentum rate, mechanical luminosity, kinetic energy, and mass-loss rate are also all estimated to be low. A full 3D radiative transfer model of the system can explain all the kinematical and morphological features in the system.

  7. Elevated O3 in Fresh and Aged Lightning-NOx Plumes Interacting with Biomass Burning Plumes over the Central U.S. during DC3 (Invited)

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Fütterer, D.; Rappenglück, B.; Ackermann, L.; Pickering, K. E.; Cummings, K.; Barth, M. C.

    2013-12-01

    During the Deep Convective Clouds and Chemistry Experiment (DC3) in summer 2012 a variety of different thunderstorm systems were investigated over the Central U.S. by the DLR research aircraft Falcon together with the NCAR GV and NASA DC-8 aircraft. In addition, the complete DC3 field phase was characterized by a number of extended wildfires burning in the surroundings of the thunderstorms. Here we mainly focus on trace gas in situ measurements, such as NOx, CO, O3, CH4, SO2, NMHC, and a variety of aerosol measurements carried out by the Falcon in the fresh (~0-6 h) and aged (~12-24 h) anvil outflow at ~10-12 km altitude. It is well-known that thunderstorms modify the trace gas composition in the upper troposphere (UT) and may affect O3 mixing ratios, an important greenhouse gas in the UT. However, a complete picture of the different processes affecting the UT-O3 composition in vicinity of thunderstorms and its large-scale effects is still missing. From the DC3 data set we present an example of small-scale effects on the O3 composition in the anvil outflow, such as immediate O3 production by an aircraft-induced flash. But we also show how the efficient convective transport that extended over the whole updraft region may transport O3-poorer air masses from the, in general, rather unpolluted inflow region (with regard to anthropogenic emissions) over the Central U.S. directly to the UT. However, in a few cases enhanced O3 mixing ratios were observed in the anvil outflow attributed to different chemical and dynamical processes. In the two most powerful convective systems, an intense MCS over Missouri/Arkansas and a supercell over Texas, extended biomass burning (BB) plumes from New Mexico interacted with the thunderstorms. Ozone production was obvious in the BB plumes transported mainly in the lower troposphere at ~2-5 km altitude (ΔO3/ΔCO=0.1). However, if these air masses affected by BB emissions (containing high amounts of O3 precursors such as CH4 and NMHC) were

  8. Formation of Hydrocarbons in the Outflows from Red Giants

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne; Kress, Monika; Tielens, Alexander G.

    1995-01-01

    The formation of hydrocarbons in the oxygen-rich outflows from red giants was studied. The existence of organic molecules in such outflows has been known for several years; however, their surprisingly high abundances has been a mystery since all of the carbon had been thought to be irretrievably locked up in CO, the most strongly bound molecule. CO is the first molecule to form from the atoms present in the star's extended atmosphere, and as strong stellar winds drive a cooling outflow, dust grains condense out. In oxygen-rich outflows, the dust is thought to be composed mainly of silicates and other metal oxides. Perhaps the noble metals can condense out in metallic form, in particular the relatively abundant transition metals iron and nickel. We proposed that perhaps the carbon reservoir held as CO can be accessed through a catalytic process involving the chemisorption of CO and H2 onto grains rich in metallic iron. CO and H2 are the two most abundant molecules in circumstellar outflows, and they both are known to dissociate on transition metal surfaces at elevated temperatures, freeing carbon to form organic molecules such as methane. We believe methane is a precursor molecule to the organics observed in oxygen-rich red giants. We have developed a nonequilibrium numerical model of a surface chemical (catalytic) process. Based on this model, we believe that methane can be formed under the conditions present in circumstellar outflows. Although the methane formation rates are exceptionally low under these conditions, over dynamical timescales, a significant amount of CO can be converted to methane and driven further out in the envelope, explaining the presence of organics there.

  9. Protostellar Outflows Mapped with ALMA and Techniques to Include Short Spacings

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele

    2018-01-01

    Protostellar outflows are early signs of star formation, yet in cluster environments - common sites of star formation - their role and interaction with surrounding gas are complicated. Protostellar outflows are interesting and complex because they connect protostars (scales 10s au) to the surrounding gas environment (few pc), and their morphology constrains launching and/or accretion modes. A complete outflow study must use observing methods that recover several orders of magnitude of spatial scales, ideally with sub-arcsecond resolution and mapping over a few parsecs. ALMA provides high-resolution observations of outflows, and in some cases outflows have been mapped in clusters. Combining with observations using the Total Power array is possible, but challenging, and a large single dish telescope providing more overlap in uv space is advantageous. In this presentation I show protostellar outflows observed with ALMA using 12m, 7m, and To tal Power arrays. With a new CASA tool TP2VIS we create total power ``visibility'' data and perform joint imaging and deconvolution of interferometry and single dish data. TP2VIS will ultimately provide synergy between ALMA and AtLAST data.

  10. User's guide to the LLL BASIC interpreter. [For 8080-based MCS-80 microcomputer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, T.; Eckard, R.; Barber, J.

    1977-06-09

    Scientists are finding increased applications for microcomputers as process controllers in their experiments. However, while microcomputers are small and inexpensive, they are difficult to program in machine or assembly language. A high-level language is needed to enable scientists to develop their own microcomputer programs for their experiments on location. Recognizing this need, LLL contracted to have such a language developed. This report describes the result--the LLL BASIC interpreter, which operates with LLL's 8080-based MCS-80 microcomputer system. 4 tables.

  11. Cusp field-aligned currents and ion outflows

    NASA Astrophysics Data System (ADS)

    Strangeway, R. J.; Russell, C. T.; Carlson, C. W.; McFadden, J. P.; Ergun, R. E.; Temerin, M.; Klumpar, D. M.; Peterson, W. K.; Moore, T. E.

    2000-09-01

    On September 24 and 25, 1998, the Polar spacecraft observed intense outflows of terrestrial ions in association with the passage of an interplanetary shock and coronal mass ejection. The orbit of the Fast Auroral Snapshot (FAST) Explorer was in the noon-midnight meridian during this ion outflow event, and FAST passed through the day side cusp region at ˜4000 km altitude every 2.2 hours. FAST was therefore able to monitor the ion outflows subsequently observed by Polar. We show that while the outflows were more intense after the shock passage, the overall particle and field signatures within the cusp region were qualitatively similar both before and after the shock passage. FAST observations show that the cusp particle precipitation marks the lower latitude leg of a pair of field-aligned currents and further, that both field-aligned current sheets appear to be on open field lines. Moreover, the polarity of the cusp currents is controlled by the polarity of the interplanetary magnetic field (IMF) y-component, such that the magnetic field perturbation associated with the pair of cusp currents is in the same direction as the IMF By. This is a consequence of the reconnection of cusp-region field lines at the magnetopause, with the flux transport resulting in electromagnetic energy being transmitted along field lines to the ionosphere as Poynting flux. We show that this Poynting flux can be as high as 120 mW m-2 (120 ergs cm-2 s-1) at FAST altitudes (˜500 mW m-2 at ionospheric altitudes), presumably because of the strong IMF By (˜40 nT), and is the dominant energy input to the cusp-region ionosphere. Furthermore, we find that the peak ion outflow flux is correlated with the peak downward Poynting flux, although only a few passes through the cusp centered around the time of the shock passage were used to determine this correlation. The energy carried by Poynting flux is dissipated as heat within the ionosphere, through Joule dissipation. The heating will tend to

  12. The Circumstellar Disk and Asymmetric Outflow of the EX Lup Outburst System

    NASA Astrophysics Data System (ADS)

    Hales, A. S.; Pérez, S.; Saito, M.; Pinte, C.; Knee, L. B. G.; de Gregorio-Monsalvo, I.; Dent, B.; López, C.; Plunkett, A.; Cortés, P.; Corder, S.; Cieza, L.

    2018-06-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations at 0.″3 resolution of EX Lup, the prototype of the EXor class of outbursting pre-main-sequence stars. The circumstellar disk of EX Lup is resolved for the first time in 1.3 mm continuum emission and in the J = 2–1 spectral line of three isotopologues of CO. At the spatial resolution and sensitivity achieved, the compact dust continuum disk shows no indications of clumps, fragments, or asymmetries above the 5σ level. Radiative transfer modeling constrains the characteristic radius of the dust disk to 23 au and the total dust mass to 1.0 × 10‑4 M ⊙ (33 M ⊕), similar to other EXor sources. The 13CO and C18O line emissions trace the disk rotation and are used to constrain the disk geometry, kinematics, and a total gas disk mass of 5.1 × 10‑4 M ⊙. The 12CO emission extends out to a radius of 200 au and is asymmetric, with one side deviating from Keplerian rotation. We detect blueshifted, 12CO arc-like emission located 0.″8 to the northwest and spatially disconnected from the disk emission. We interpret this extended structure as the brightened walls of a cavity excavated by an outflow, which are more commonly seen in FUor sources. Such outflows have also been seen in the borderline FU/EXor object V1647 Ori, but not toward EXor objects. Our detection provides evidence that the outflow phenomenon persists into the EXor phase, suggesting that FUor and EXor objects are a continuous population in which outflow activity declines with age, with transitional objects such as EX Lup and V1647 Ori.

  13. Superposed epoch analysis of O+ auroral outflow during sawtooth events and substorms

    NASA Astrophysics Data System (ADS)

    Nowrouzi, N.; Kistler, L. M.; Lund, E. J.; Cai, X.

    2017-12-01

    Sawtooth events are repeated injection of energetic particles at geosynchronous orbit. Studies have shown that 94% of sawtooth events occurred during magnetic storm times. The main factor that causes a sawtooth event is still an open question. Simulations have suggested that heavy ions like O+ may play a role in triggering the injections. One of the sources of the O+ in the Earth's magnetosphere is the nightside aurora. O+ ions coming from the nightside auroral region have direct access to the near-earth magnetotail. A model (Brambles et al. 2013) for interplanetary coronal mass ejection driven sawtooth events found that nightside O+ outflow caused the subsequent teeth of the sawtooth event through a feedback mechanism. This work is a superposed epoch analysis to test whether the observed auroral outflow supports this model. Using FAST spacecraft data from 1997-2007, we examine the auroral O+ outflow as a function of time relative to an injection onset. Then we determine whether the profile of outflow flux of O+ during sawtooth events is different from the outflow observed during isolated substorms. The auroral region boundaries are estimated using the method of (Andersson et al. 2004). Subsequently the O+ outflow flux inside these boundaries are calculated and binned as a function of superposed epoch time for substorms and sawtooth "teeth". In this way, we will determine if sawtooth events do in fact have greater O+ outflow, and if that outflow is predominantly from the nightside, as suggested by the model results.

  14. Dissecting the Butterfly: Dual Outflows in the Dual AGN NGC 6240

    NASA Astrophysics Data System (ADS)

    Mueller Sanchez, Francisco; Comerford, Julie; Nevin, Rebecca; Davies, Richard; Treister, Ezequiel; Privon, George

    2018-01-01

    Current theories of galaxy evolution invoke some kind of feedback (from the stars or the supermassive black hole) to explain the properties of galaxies. However, numerical simulations and observations have not been able to evaluate the real impact of feedback in galaxies. This is largely because most studies have focused on studying stellar feedback or AGN feedback alone, instead of considering the combined effect of both. In fact, this is an unexplored territory for observations due to the difficulty of separating the contribution from the two sources.In this contribution I present the discovery of a dual outflow of different species of gas in the prototypical merging galaxy NGC 6240 using HST imaging, long-slit and integral-eld spectroscopy: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. The AGN outflow extends up to 4 kpc along a position angle of 56 degrees, has a conical shape with an opening angle of 52 degrees and a maximum line-of-sight velocity of 350 km/s. The WFC3 images also reveal a bubble of Halpha emission in the northwest, which has no counterpart in [O III], consistent with a scenario in which the starburst is ionizing and driving outflowing winds which inflate the bubble at an expansion velocity of 380 km/s. Assuming a spherical geometry for the starburst-driven bubble and a conical geometry for the AGN-driven outflow, we estimate mass outflow rates of 26 Msun/yr and 62 Msun/yr, respectively. We conclude that the AGN contribution to the evolution of the merger remnant and the formation of outflowing winds is signicant in the central 5 kpc of NGC 6240.

  15. An X-Ray/SDSS Sample: Observational Characterization of The Outflowing Gas

    NASA Astrophysics Data System (ADS)

    Perna, Michele; Brusa, M.; Lanzuisi, G.; Mignoli, M.

    2016-10-01

    Powerful ionised AGN-driven outflows, commonly detected both locally and at high redshift, are invoked to contribute to the co-evolution of SMBH and galaxies through feedback phenomena. Our recent works (Brusa+2015; 2016; Perna+2015a,b) have shown that the XMM-COSMOS targets with evidence of outflows collected so far ( 10 sources) appear to be associated with low X-ray kbol corrections (Lbol /LX ˜ 18), in spite of their spread in obscuration, in the locations on the SFR-Mstar diagram, in their radio emission. A higher statistical significance is required to validate a connection between outflow phenomena and a X-ray loudness. Moreover, in order to validate their binding nature to the galaxy fate, it is crucial to correctly determine the outflow energetics. This requires time consuming integral field spectroscopic (IFS) observations, which are, at present, mostly limited to high luminosity objectsThe study of SDSS data offers a complementary strategy to IFS efforts. I will present physical and demographic characterization of the AGN-galaxy system during the feedback phase obtained studying a sample of 500 X-ray/SDSS AGNs, at z<0.8. Outflow velocity inferred from [OIII]5007 emission line profile has been related to optical (e.g., [OIII] and bolometric luminosities, Eddington ratio, stellar velocity dispersion) and X-ray properties (intrinsic X-ray luminosity, obscuration and X-ray kbol correction), to determine what drives ionised winds. Several diagnostic line ratios have been used to infer the physical properties of the ionised outflowing gas. The knowledge of these properties can reduce the actual uncertainties in the outflow energetics by a factor of ten, pointing to improve our understanding of the AGN outflow phenomenon and its impact on galaxy evolution.

  16. Observations of Water Vapor Outflow from NML Cygnus

    NASA Astrophysics Data System (ADS)

    Zubko, Viktor; Li, Di; Lim, Tanya; Feuchtgruber, Helmut; Harwit, Martin

    2004-07-01

    We report new observations of the far-infrared and submillimeter water vapor emission of NML Cygnus based on data gathered with the Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite. We compare the emission from NML Cyg to that previously published for VY CMa and W Hya in an attempt to establish the validity of recently proposed models for the outflow from evolved stars. The data obtained support the contention by Ivezić & Elitzur that the atmospheres of evolved stars obey a set of scaling laws in which the optical depth of the outflow is the single most significant scaling parameter, affecting both the radiative transfer and the dynamics of the outflow. Specifically, we provide observations comparing the water vapor emission from NML Cyg, VY CMa, and W Hya and find, to the extent permitted by the quality of our data, that the results are in reasonable agreement with a model developed by Zubko & Elitzur. Using this model we derive a mass loss based on the dust opacities, spectral line fluxes, and outflow velocities of water vapor observed in the atmospheres of these oxygen-rich giants. For VY CMa and NML Cyg, we also obtain an estimate of the stellar mass.

  17. Quasar feedback revealed by giant molecular outflows

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Maiolino, R.; Piconcelli, E.; Menci, N.; Aussel, H.; Lamastra, A.; Fiore, F.

    2010-07-01

    In the standard scenario for galaxy evolution young star-forming galaxies transform into red bulge-dominated spheroids, where star formation has been quenched. To explain this transformation, a strong negative feedback generated by accretion onto a central super-massive black hole is often invoked. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead the black hole to “suicide” by starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, because outflows previously observed in quasars are generally associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occurrs in the central regions. We used the IRAM PdB Interferometer to observe the CO(1-0) transition in Mrk 231, the closest quasar known. Thanks to the wide band we detected broad wings of the CO line, with velocities of up to 750 km s-1 and spatially resolved on the kpc scale. These broad CO wings trace a giant molecular outflow of about 700 M_⊙/year, far larger than the ongoing star-formation rate (~200 M_⊙/year) observed in the host galaxy. This wind will totally expel the cold gas reservoir in Mrk 231 in about 107 yrs, therefore halting the star-formation activity on the same timescale. The inferred kinetic energy in the molecular outflow is ~1.2 × 1044 erg/s, corresponding to a few percent of the AGN bolometric luminosity, which is very close to the fraction expected by models ascribing quasar feedback to highly supersonic shocks generated by radiatively accelerated nuclear winds. Instead, the contribution by the SNe associated with the starburst fall short by several orders of magnitude to account for the kinetic energy observed in the outflow. The direct observational evidence for quasar feedback reported here provides solid support to the scenarios ascribing the observed properties of local massive

  18. How well does CO emission measure the H2 mass of MCs?

    NASA Astrophysics Data System (ADS)

    Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.

    2016-07-01

    We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.

  19. Outflow and Accretion Physics in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    McGraw, Sean Michael

    2016-09-01

    This dissertation focuses on placing observational constraints on outflows and accretion disks in active galactic nuclei (AGN) for the purpose of better understanding the physics of super-massive black holes (SMBHs) and their evolution with the host galaxy over cosmic time. Quasar outflows and their importance in SMBH-host galaxy co-evolution can be further understood by analyzing broad absorption lines (BALs) in rest-frame UV spectra that trace a range of wind conditions. We quantify the properties of the flows by conducting BAL variability studies using multiple-epoch spectra acquired primarily from MDM Observatory and from the Sloan Digital Sky Survey. Iron low-ionization BALs (FeLoBALs) are a rare type of outflow that may represent a transient phase in galaxy evolution, and we analyze the variations in 12 FeLoBAL quasars with redshifts between 0.7 ≤ z ≤ 1.9 and rest frame timescales between ˜10 d to 7.6 yr. We investigate BAL variability in 71 quasar outflows that exhibit P V absorption, a tracer of high column density gas (i.e. NH ≥ 1022 cm -2), in order to quantify the energies and momenta of the flows. We also characterize the variability patterns of 26 quasars with mini-BALs, an interesting class of absorbers that may represent a distinct phase in the evolution of outflows. Low-luminosity AGN (LLAGN) are important objects to study since their prominence in the local Universe suggest a possible evolution from the quasar era, and their low radiative outputs likely indicate a distinct mode of accretion onto the SMBH. We probe the accretion conditions in the LLAGN NGC 4203 by estimating the SMBH mass, which is obtained by modeling the 2-dimensional velocity field of the nebular gas using spectra from the Hubble Space Telescope. We detect significant BAL and mini-BAL variability in a subset of quasars from each of our samples, with measured rest-frame variability time-scales from days to years and over multiple years on average. Variable wavelength

  20. Segmental Versican Expression in the Trabecular Meshwork and Involvement in Outflow Facility

    PubMed Central

    Keller, Kate E.; Bradley, John M.; Vranka, Janice A.

    2011-01-01

    Purpose. Versican is a large proteoglycan with numerous chondroitin sulfate (CS) glycosaminoglycan (GAG) side chains attached. To assess versican's potential contributions to aqueous humor outflow resistance, its segmental distribution in the trabecular meshwork (TM) and the effect on outflow facility of silencing the versican gene were evaluated. Methods. Fluorescent quantum dots (Qdots) were perfused to label outflow pathways of anterior segments. Immunofluorescence with confocal microscopy and quantitative RT-PCR were used to determine versican protein and mRNA distribution relative to Qdot-labeled regions. Lentiviral delivery of shRNA-silencing cassettes to TM cells in perfused anterior segment cultures was used to evaluate the involvement of versican and CS GAG chains in outflow facility. Results. Qdot uptake by TM cells showed considerable segmental variability in both human and porcine outflow pathways. Regional levels of Qdot labeling were inversely related to versican protein and mRNA levels; versican levels were relatively high in sparsely Qdot-labeled regions and low in densely labeled regions. Versican silencing decreased outflow facility in human and increased facility in porcine anterior segments. However, RNAi silencing of ChGn, an enzyme unique to CS GAG biosynthesis, increased outflow facility in both species. The fibrillar pattern of versican immunostaining in the TM juxtacanalicular region was disrupted after versican silencing in perfusion culture. Conclusions. Versican appears to be a central component of the outflow resistance, where it may organize GAGs and other ECM components to facilitate and control open flow channels in the TM. However, the exact molecular organization of this resistance appears to differ between human and porcine eyes. PMID:21596823

  1. BASIC2 INTERPRETER; minimal basic language. [MCS-80,8080-based microcomputers; 8080 Assembly language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGoldrick, P.R.; Allison, T.G.

    The BASIC2 INTERPRETER was developed to provide a high-level easy-to-use language for performing both control and computational functions in the MCS-80. The package is supplied as two alternative implementations, hardware and software. The ''software'' implementation provides the following capabilities: entry and editing of BASIC programs, device-independent I/O, special functions to allow access from BASIC to any I/O port, formatted printing, special INPUT/OUTPUT-and-proceed statements to allow I/O without interrupting BASIC program execution, full arithmetic expressions, limited string manipulation (10 or fewer characters), shorthand forms for common BASIC keywords, immediate mode BASIC statement execution, and capability of running a BASIC program thatmore » is stored in PROM. The allowed arithmetic operations are addition, subtraction, multiplication, division, and raising a number to a positive integral power. In the second, or ''hardware'', implementation of BASIC2 requiring an Am9511 Arithmetic Processing Unit (APU) interfaced to the 8080 microprocessor, arithmetic operations are performed by the APU. The following additional built-in functions are available in this implementation: square root, sine, cosine, tangent, arcsine, arccosine, arctangent, exponential, logarithm base e, and logarithm base 10. MCS-80,8080-based microcomputers; 8080 Assembly language; Approximately 8K bytes of RAM to store the assembled interpreter, additional user program space, and necessary peripheral devices. The hardware implementation requires an Am9511 Arithmetic Processing Unit and an interface board (reference 2).« less

  2. Low-energy ion outflow modulated by the solar wind energy input

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wei, Yong; Andre, Mats; Eriksson, Anders; Haaland, Stein; Kronberg, Elena; Nilsson, Hans; Maes, Lukas

    2017-04-01

    Due to the spacecraft charging issue, it has been difficult to measure low-energy ions of ionospheric origin in the magnetosphere. A recent study taking advantage of the spacecraft electric potential has found that the previously 'hidden' low-energy ions is dominant in the magnetosphere. This comprehensive dataset of low-energy ions allows us to study the relationship between the ionospheric outflow and energy input from the solar wind (ɛ). In this study, we discuss the ratios of the solar wind energy input to the energy of the ionospheric outflow. We show that the ɛ controls the ionospheric outflow when the ɛ is high, while the ionospheric outflow does not systematically change with the ɛ when the ɛ is low.

  3. Outflows in low-mass galaxies at z >1

    NASA Astrophysics Data System (ADS)

    Maseda, Michael V.; MUSE GTO Consortium

    2017-03-01

    Star formation histories of local dwarf galaxies, derived through resolved stellar populations, appear complex and varied. The general picture derived from hydrodynamical simulations is one of cold gas accretion and bursty star formation, followed by feedback from supernovae and winds that heat and eject the central gas reservoirs. This ejection halts star formation until the material cools and re-accretes, resulting in an episodic SFH, particularly at stellar masses below ~ 109 M⊙. Such feedback has often been cited as the driving force behind the observed slowly-rising rotation curves in local dwarfs, due to an under-density of dark matter compared to theoretical models, which is one of the primary challenges to LCDM cosmology. However, these events have not yet been directly observed at high-redshift. Recently, using HST imaging and grism spectroscopy, we have uncovered an abundant population of low-mass galaxies (M* < 109 M⊙) at z = 1 - 2 that are undergoing strong bursts of star formation, in agreement with the theoretical predictions. These Extreme Emission Line Galaxies, with high specific SFRs and shallow gravitational potential wells, are ideal places to test the theoretical prediction of strong feedback-driven outflows. Here we use deep MUSE spectroscopy to search these galaxies for signatures of outflowing material, namely kinematic offsets between absorption lines (in the restframe optical and UV), which trace cool gas, and the nebular emission lines, which define the systemic redshift of the galaxy. Although the EELGs are intrinsically very faint, stacked spectra reveal blueshifted velocity centroids for Fe II absorption, which is indicative of outflowing cold gas. This represents the first constraint on outflows in M* < 109 M⊙ galaxies at z = 1 - 2. These outflows should regulate the star formation histories of low-mass galaxies at early cosmic times and thus play a crucial role in galaxy growth and evolution.

  4. Plasma Outflows: Known Knowns, Known Unknowns, and The Unknown

    NASA Technical Reports Server (NTRS)

    Moore, T. E.

    2012-01-01

    A brief summary is given of i) what we know from observing ionospheric outflows and ii) how outflow parameterizations are being used in global simulations to evaluate their effects on magnetospheric dynamics. Then, a list of unanswered questions and issues to be resolved is given, followed by a description of the known future mission plans expressed in the Heliophysics Roadmap, such as Origin of Near-Earth Plasmas (ONEP), and Ion-Neutral Coupling in the Atmosphere (INCA). Finally, a set of requirements for definitive plasma outflow observations are identified, along with possible methods for fulfilling them in future missions. Since results of the current Heliophysics Decadal Survey are expected soon, it is hoped that future plans can be summarized and discussed without speculation at the GEM 2012 meeting.

  5. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; Puccetti, S.; Veilleux, S.

    2015-11-01

    Mrk 231 is a nearby ultra-luminous IR galaxy exhibiting a kpc-scale, multi-phase AGN-driven outflow. This galaxy represents the best target to investigate in detail the morphology and energetics of powerful outflows, as well as their still poorly-understood expansion mechanism and impact on the host galaxy. In this work, we present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO(2-1) and (3-2) observations obtained with the IRAM/PdBI. In addition, we analyze archival deep Chandra and NuSTAR X-ray observations. We use this unprecedented combination of multi-wavelength data sets to constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular CO(2-1) outflow has a size of 1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to 1 kpc, thus implying that the density of the outflowing material must decrease from the nucleus outwards as r-2. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to 1 kpc, thus implying a limit on its age of 1 Myr. Mapping the mass and energy rates of the molecular outflow yields dot {M} OF = [500-1000] M⊙ yr-1 and Ėkin,OF = [7-10] × 1043 erg s-1. The total kinetic energy of the outflow is Ekin,OF is of the same order of the total energy of the molecular disk, Edisk. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20 000 km s-1, dot {M}UFO = [0.3-2.1] M⊙ yr-1, and momentum load dot {P}UFO/ dot {P}rad = [0.2-1.6]. We find Ėkin,UFO Ėkin,OF as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO

  6. The JCMT Gould Belt Survey: Understanding the influence of outflows on Gould Belt clouds

    NASA Astrophysics Data System (ADS)

    Drabek-Maunder, E.; Hatchell, J.; Buckle, J. V.; Di Francesco, J.; Richer, J.

    2016-03-01

    Using James Clerk Maxwell Telescope (JCMT) Gould Belt Survey data from CO J = 3 → 2 isotopologues, we present a meta-analysis of the outflows and energetics of star-forming regions in several Gould Belt clouds. The majority of the regions are strongly gravitationally bound. There is evidence that molecular outflows transport large quantities of momentum and energy. Outflow energies are at least 20 per cent of the total turbulent kinetic energies in all of the regions studied and greater than the turbulent energy in half of the regions. However, we find no evidence that outflows increase levels of turbulence, and there is no correlation between the outflow and turbulent energies. Even though outflows in some regions contribute significantly to maintaining turbulence levels against dissipation, this relies on outflows efficiently coupling to bulk motions. Other mechanisms (e.g. supernovae) must be the main drivers of turbulence in most if not all of these regions.

  7. Isotopic tracing of the outflow during artificial rain-on-snow event

    NASA Astrophysics Data System (ADS)

    Juras, Roman; Pavlásek, Jirka; Vitvar, Tomáš; Šanda, Martin; Holub, Jirka; Jankovec, Jakub; Linda, Miloslav

    2016-10-01

    The frequency of rain-on-snow (ROS) occurrence is increasing and this natural phenomenon is beginning to play an important role in temperate climate regions. Present knowledge of outflow generation mechanisms and rainwater dynamics during ROS is still insufficient. The study introduces a combined method of artificial ROS, isotopic tracing and energy balance to partition the event rainwater and the pre-event non-rainwater in the outflow. A rainfall simulator and water enriched with deuterium were used for identifying event rainwater and pre-event non-rainwater during an ROS event. The ROS experiment was conducted in the Krkonoše Mountains in the Czech Republic. An experimental snow block consisting of ripe and isothermal snow was sprayed with deuterium enriched water. The outflow from the snowpack was continuously monitored to gain quantitative and qualitative information about outflow water. The isotopic deuterium content was further analysed from the samples by means of laser spectroscopy in order to separate the hydrograph components. The deuterium content was also analysed from the snow samples gathered before and after the experiment to identify the retention of event rainwater in the snowpack. Isotopic hydrograph separation revealed that although high rain intensity was applied, the event rainwater represented one half (52.7%) of the total outflow volume. The ripe snowpack retained about one third of the rainwater input (33.6%). Significant changes in the outflowing water quality can therefore be expected during ROS events. This experiment also shows that rainwater during ROS firstly pushes-out the non-rainwater and then contributes to the outflow. These results show that the presented technique allows us to gain sufficient information about rainwater dynamics during ROS.

  8. Simulated O VI Doppler dimming measurements of coronal outflow velocities

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard; Gardner, L. D.; Kohl, John L.

    1992-01-01

    The possibility of determining O(5+) outflow velocities by using a Doppler dimming analysis of the resonantly scattered intensities of O VI lambda 1031.9 and lambda 1037.6 is addressed. The technique is sensitive to outflow velocities, W, in the range W greater than 30 and less than 250 km/s and can be used for probing regions of the inner solar corona, where significant coronal heating and solar wind acceleration may be occurring. These velocity measurements, when combined with measurements of other plasma parameters (temperatures and densities of ions and electrons) can be used to estimate the energy and mass flux of O(5+). In particular, it may be possible to locate where the flow changes from subsonic to supersonic and to identify source regions for the high and low speed solar wind. The velocity diagnostic technique is discussed with emphasis placed on the requirements needed for accurate outflow velocity determinations. Model determinations of outflow velocities based on simulated Doppler observations are presented.

  9. Constraining Engine Paradigms of Pre-Planetary Nebulae Using Kinematic Properties of their Outflows

    NASA Astrophysics Data System (ADS)

    Blackman, E.

    2014-04-01

    Binary interactions and accretion plausibly conspire to produce the ubiquitous collimated outflows from planetary nebulae (PN) and their presumed pre-planetary nebulae (PPN) progenitors. But which accretion engines are viable? The difficulty in observationally resolving the engines warrants indirect constraints. I discuss how momentum outflow data for PPN can be used to determine the minimum required accretion rate for presumed main sequence (MS) or white dwarf (WD) accretors by comparing to several example accretion rates inferred from published models. While the main goal is to show the method in anticipation of more data and better theoretical constraints, taking the present results at face value already rule out modes of accretion: Bondi-Hoyle Lyttleton (BHL) wind accretion and wind Roche lobe overflow (M-WRLOF, based on Mira parameters) are too feeble for all 19/19 objects for a MS accretor. For a WD accretor, BHL is ruled out for 18/19 objects and M-WRLOF for 15/19 objects. Roche lobe overflow from the primary can accommodate 7/19 objects but only common envelope evolution accretion modes seem to be able to accommodate all 19 objects. Sub-Eddington rates for a MS accretor are acceptable but 8/19 would require super-Eddington rates for a WD. I also briefly discuss a possible anti-correlation between age and maximum observed outflow speed, and the role of magnetic fields.

  10. HELICAL MAGNETIC FIELDS IN THE NGC 1333 IRAS 4A PROTOSTELLAR OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou

    We present Submillimeter Array polarization observations of the CO J = 3–2 line toward NGC 1333 IRAS 4A. The CO Stokes I maps at an angular resolution of ∼1″ reveal two bipolar outflows from the binary sources of NGC 1333 IRAS 4A. The kinematic features of the CO emission can be modeled by wind-driven outflows at ∼20° inclined from the plane of the sky. Close to the protostars the CO polarization, at an angular resolution of ∼2.″3, has a position angle approximately parallel to the magnetic field direction inferred from the dust polarizations. The CO polarization direction appears to vary smoothly frommore » an hourglass field around the core to an arc-like morphology wrapping around the outflow, suggesting a helical structure of magnetic fields that inherits the poloidal fields at the launching point and consists of toroidal fields at a farther distance of outflow. The helical magnetic field is consistent with the theoretical expectations for launching and collimating outflows from a magnetized rotating disk. Considering that the CO polarized emission is mainly contributed from the low-velocity and low-resolution data, the helical magnetic field is likely a product of the wind–envelope interaction in the wind-driven outflows. The CO data reveal a PA of ∼30° deflection in the outflows. The variation in the CO polarization angle seems to correlate with the deflections. We speculate that the helical magnetic field contributes to ∼10° deflection of the outflows by means of Lorentz force.« less

  11. An X-ray/SDSS sample. II. AGN-driven outflowing gas plasma properties

    NASA Astrophysics Data System (ADS)

    Perna, M.; Lanzuisi, G.; Brusa, M.; Cresci, G.; Mignoli, M.

    2017-10-01

    Aims: Galaxy-scale outflows are currently observed in many active galactic nuclei (AGNs); however, characterisation of them in terms of their (multi-) phase nature, amount of flowing material, and effects on their host galaxy is still unresolved. In particular, ionised gas mass outflow rate and related energetics are still affected by many sources of uncertainty. In this respect, outflowing gas plasma conditions, being largely unknown, play a crucial role. Methods: We have analysed stacked spectra and sub-samples of sources with high signal-to-noise temperature- and density-sensitive emission lines to derive the plasma properties of the outflowing ionised gas component. We did this by taking advantage of the spectroscopic analysis results we obtained while studying the X-ray/SDSS sample of 563 AGNs at z < 0.8 presented in our companion paper. For these sources, we also studied in detail various diagnostic diagrams to infer information about outflowing gas ionisation mechanisms. Results: We derive, for the first time, median values for electron temperature and density of outflowing gas from medium-size samples ( 30 targets) and stacked spectra of AGNs. Evidence of shock excitation are found for outflowing gas. Conclusions: We measure electron temperatures of the order of 1.7 × 104 K and densities of 1200 cm-3 for faint and moderately luminous AGNs (intrinsic X-ray luminosity 40.5 < log (LX) < 44 in the 2-10 keV band). We note that the electron density that is usually assumed (Ne = 100 cm-3) in ejected material might result in relevant overestimates of flow mass rates and energetics and, as a consequence, of the effects of AGN-driven outflows on the host galaxy.

  12. The Production of Cold Gas Within Galaxy Outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Evan

    2017-03-01

    I present a suite of three-dimensional simulations of the evolution of initially hot material ejected by starburst-driven galaxy outflows. The simulations are conducted in a comoving frame that moves with the material, tracking atomic/ionic cooling, Compton cooling, and dust cooling and destruction. Compton cooling is the most efficient of these processes, while the main role of atomic/ionic cooling is to enhance density inhomogeneities. Dust, on the other hand, has little effect on the outflow evolution, and is rapidly destroyed in all the simulations except for the case with the smallest mass flux. I use the results to construct a simplemore » steady-state model of the observed UV/optical emission from each outflow. The velocity profiles in this case are dominated by geometric effects, and the overall luminosities are extremely strong functions of the properties of the host system, as observed in ultra-luminous infrared galaxies (ULIRGs). Furthermore the luminosities and maximum velocities in several models are consistent with emission-line observations of ULIRGs, although the velocities are significantly greater than observed in absorption-line studies. It may be that absorption line observations of galaxy outflows probe entrained cold material at small radii, while emission-line observations probe cold material condensing from the initially hot medium at larger distances.« less

  13. Geochemistry and source waters of rock glacier outflow, Colorado Front Range

    USGS Publications Warehouse

    Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.

    2006-01-01

    We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.

  14. Unicameral bone cyst: radiographic assessment of venous outflow by cystography as a prognostic index.

    PubMed

    Ramirez, Ana; Abril, Juan Carlos; Touza, Alberto

    2012-11-01

    The aim of this study was to determine the benefits of cystography in the management of a simple bone cyst, its implication in the final result of the treatment after corticoid intracystic injections, and the presence of secondary effects. We retrospectively reviewed 42 patients diagnosed with a simple bone cyst. Cystography was performed before the corticoid injection. The presence or absence of loculation intracyst and the existence and number of venous outflows were determined. According to the venous drainage, cysts were classified as type 0 when a venous outflow did not exist and as type 1 when there was a rapid venous outflow (<3 min). The treatment protocol included a maximum of three corticoid injections at an interval of 6 months. Healing of the cyst was determined on the basis of Neer's criteria. Secondary effects and surgical complications were assessed. Cystography studies showed a unicameral bone cyst with absent loculation in 16 cases (37.3%), whereas the lesion showed multiloculation in 26 cases (62.7%). There was no statistical difference between loculation intracyst (present or absent) and the final outcomes of the 42 cysts treated with a steroid injection (P=0.9). Cystography showed a negative venogram in 10 cases (23.8%), whereas the cysts showed a rapid venous outflow in 32 cases (76.2%). On the basis of Neer's classification, all patients with a negative venogram achieved complete healing of the cyst. Patients with a rapid venous outflow achieved complete healing in 14 cases (Neer I). In two patients, the healing was incomplete at the end of the follow-up period (Neer IV). In most cases (21 cysts), healing was partial (Neer II). Five patients showed a recurrence after initial healing of the cyst (Neer III) (P<0.05). The number or the size of veins did not affect healing of a bone cyst (P=0.6). Two patients with a rapid venous outflow showed a generalized hypertrichosis after the first injection of corticosteroids. Sex and age at the initiation

  15. The Dual Role of Starbursts and Active Galactic Nuclei in Driving Extreme Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Gowardhan, Avani; Spoon, Henrik; Riechers, Dominik A.; González-Alfonso, Eduardo; Farrah, Duncan; Fischer, Jacqueline; Darling, Jeremy; Fergulio, Chiara; Afonso, Jose; Bizzocchi, Luca

    2018-05-01

    We report molecular gas observations of IRAS 20100‑4156 and IRAS 03158+4227, two local ultraluminous infrared galaxies (ULIRGs) hosting some of the fastest and most massive molecular outflows known. Using Atacama Large Millimeter Array and Plateau de Bure Interferometer observations, we spatially resolve the CO (1‑0) emission from the outflowing molecular gas in both and find maximum outflow velocities of v max ∼ 1600 and ∼1700 km s‑1 for IRAS 20100‑4156 and IRAS 03158+4227, respectively. We find total gas mass outflow rates of {\\dot{M}}OF}∼ 670 and ∼350 M ⊙ yr‑1, respectively, corresponding to molecular gas depletion timescales {τ }OF}dep}∼ 11 and ∼16 Myr. This is nearly 3 times shorter than the depletion timescales implied by star formation, {τ }SFR}dep}∼ 33 and ∼46 Myr, respectively. To determine the outflow driving mechanism, we compare the starburst luminosity (L *) and active galactic nucleus (AGN) luminosity (L AGN) to the outflowing energy and momentum fluxes, using mid-infrared spectral decomposition to discern L AGN. Comparison to other molecular outflows in ULIRGs reveals that outflow properties correlate similarly with L * and L IR as with L AGN, indicating that AGN luminosity alone may not be a good tracer of feedback strength and that a combination of AGN and starburst activity may be driving the most powerful molecular outflows. We also detect the OH 1.667 GHz maser line from both sources and demonstrate its utility in detecting molecular outflows.

  16. Unveiling the molecular bipolar outflow of the peculiar red supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Shinnaga, Hiroko; Claussen, Mark J.; Lim, Jeremy; Dinh-van-Trung; Tsuboi, Masato

    2003-04-01

    We carried out polarimetric spectral-line imaging of the molecular outflow of the peculiar red supergiant VY Canis Majoris in SiO J=1-0 line in the ground vibrational state, which contains highly linearly-polarized velocity components, using the Very Large Array. We succeeded in unveiling the highly linearly polarized bipolar outflow for the first time at subarcsecond spatial resolution. The results clearly show that the direction of linear polarization of the brightest maser components is parallel to the outflow axis. The results strongly suggest that the linear polarization of the SiO maser is closely related to the outflow phenomena of the star. Furthermore, the results indicate that the linear polarization observed in the optical and infrared also occur due to the outflow phenomena.

  17. Controlling Factors of the Fate of Ionospheric Outflow at Earth and Mars

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Ilie, R.; Ganushkina, N. Y.; Johnson, B. C.; Xu, S.; Dong, C.

    2015-12-01

    Both Earth and Mars experience ionospheric outflow, but the radically different magnetic field configurations at the two planets yield significantly different patterns of outflow and processes governing outflow. This study examines a set of numerical simulations for Earth and Mars to explore the factors controlling ionospheric outflow and the fate of the escaping ions (immediate precipitation, magnetospheric recirculation, or loss to deep space). Specifically, simulation results from the Space Weather Modeling Framework (SWMF), which is capable of handling both planetary space environments, are analyzed to assess the physical processes governing the fate of ionospheric ions. Velocity streamlines from the SWMF results are traced from the high-latitude inner boundary of the BATS-R-US MHD simulation domain and followed through geospace. Some of these streamlines return to the inner boundary of the simulation domain, others extend to the outer boundary of the domain, while most others eventually cross (or at least approach) the magnetospheric equatorial plane. At Earth, this plane is well defined, while at Mars there are multiple mini-magnetospheres in which ionospheric ions can become trapped. These streamlines are categorized according to their eventual destination. Multi-fluid MHD simulations are examined in this study, assessing the influence of species mass on trajectories through near-planet space. Steady-state numerical experiments with different levels of solar driving are examined to quantify the influence of each driver on outflow characteristics and the fate of outflowing ions. Real event intervals are considered to assess flows in a time-varying magnetospheric system. For Earth, as solar wind dynamic pressure increases, the dominant outflow region moves to lower latitudes and significantly more of the outflowing ions escape to deep space. As the interplanetary magnetic field increases in southward magnitude, the region of dominant outflow shifts to lower

  18. How stellar feedback simultaneously regulates star formation and drives outflows

    NASA Astrophysics Data System (ADS)

    Hayward, Christopher C.; Hopkins, Philip F.

    2017-02-01

    We present an analytic model for how momentum deposition from stellar feedback simultaneously regulates star formation and drives outflows in a turbulent interstellar medium (ISM). Because the ISM is turbulent, a given patch of ISM exhibits sub-patches with a range of surface densities. The high-density patches are 'pushed' by feedback, thereby driving turbulence and self-regulating local star formation. Sufficiently low-density patches, however, are accelerated to above the escape velocity before the region can self-adjust and are thus vented as outflows. When the gas fraction is ≳ 0.3, the ratio of the turbulent velocity dispersion to the circular velocity is sufficiently high that at any given time, of the order of half of the ISM has surface density less than the critical value and thus can be blown out on a dynamical time. The resulting outflows have a mass-loading factor (η ≡ dot{M}_{out}/M_{star }) that is inversely proportional to the gas fraction times the circular velocity. At low gas fractions, the star formation rate needed for local self-regulation, and corresponding turbulent Mach number, declines rapidly; the ISM is 'smoother', and it is actually more difficult to drive winds with large mass-loading factors. Crucially, our model predicts that stellar-feedback-driven outflows should be suppressed at z ≲ 1 in M⋆ ≳ 1010 M⊙ galaxies. This mechanism allows massive galaxies to exhibit violent outflows at high redshifts and then 'shut down' those outflows at late times, thereby enabling the formation of a smooth, extended thin stellar disc. We provide simple fitting functions for η that should be useful for sub-resolution and semi-analytic models.

  19. Outflow and Infall in Star-forming Region L1221

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Ho, Paul T. P.

    2005-10-01

    We have mapped the 3.3 mm continuum, CO, HCO+, N2H+, and CS emission around a nearby Class I source, IRAS 22266+6845, in the L1221 cometary dark cloud. L1221 is a complicated star-forming region. It hosts three infrared sources: a close binary consisting of an east source and a west source around the IRAS source position and a southeast source ~45" to the southeast (T. Bourke 2004, private communication). The east source is identified as the IRAS source. Continuum emission is seen around the east and southeast sources, probably tracing the dust around them. No continuum emission is seen toward the west source, probably indicating that there is not much dust there. An east-west molecular outflow is seen in CO, HCO+, and CS originated from around the binary. It is bipolar with an east lobe and a west lobe, both appearing as a wide-opening outflow shell originated from around the binary. It is likely powered by the east source, which shows a southeast extension along the outflow axis in the K' image. A ringlike envelope is seen in N2H+ around the binary surrounding the outflow waist. It is tilted with the major axis perpendicular to the outflow axis. The kinematics is well reproduced by a thin-disk model with both infall and rotation, and a column density peak in a ring. The ringlike envelope is not rotationally supported, as the rotation velocity is smaller than the infall velocity.

  20. Far-ultraviolet Observations of Outflows from Infrared-luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Chandar, Rupali; Tremonti, Christy A.; Wofford, Aida; Schaerer, Daniel

    2013-08-01

    We obtained medium-resolution ultraviolet (UV) spectra between 1150 and 1450 Å of the four UV-bright, infrared-luminous starburst galaxies IRAS F08339+6517, NGC 3256, NGC 6090, and NGC 7552 using the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The selected sightlines toward the starburst nuclei probe the properties of the recently formed massive stars and the physical conditions in the starburst-driven galactic superwinds. Despite being metal-rich and dusty, all four galaxies are strong Lyα emitters with equivalent widths ranging between 2 and 13 Å. The UV spectra show strong P Cygni-type high-ionization features indicative of stellar winds and blueshifted low-ionization lines formed in the interstellar and circumgalactic medium. We detect outflowing gas with bulk velocities of ~400 km s-1 and maximum velocities of almost 900 km s-1. These are among the highest values found in the local universe and comparable to outflow velocities found in luminous Lyman-break galaxies at intermediate and high redshift. The outflow velocities are unlikely to be high enough to cause escape of material from the galactic gravitational potential. However, the winds are significant for the evolution of the galaxies by transporting heavy elements from the starburst nuclei and enriching the galaxy halos. The derived mass outflow rates of ~100 M ⊙ yr-1 are comparable to or even higher than the star formation rates. The outflows can quench star formation and ultimately regulate the starburst as has been suggested for high-redshift galaxies.

  1. Solar forcing, and ionospheric ion outflow from Venus, Earth and Mars - A comparison

    NASA Astrophysics Data System (ADS)

    Lundin, R. N.

    2012-12-01

    Solar forcing by e.g. EUV radiation and the solar wind leads to outflow and escape of ionospheric ions from Earth, Venus and Mars. In-situ measurements in the Earth's space environment have demonstrated that the ion escape rate correlates with the magnitude of solar forcing, i.e. high solar EUV and solar wind forcing leads to enhanced escape rates. The Terrestrial outflow is dominated by H+ and O+ suggesting that the ultimate origin of outflowing ions is water. Recent measurements from the two arid planets Mars and Venus, their atmospheres dominated by CO2, display characteristics similar to that of the Earth - an outflow dominated by hydrogen (H+) and oxygen (O+, O2+) ions. Despite major differences in atmospheric composition, the composition of the ion outflow from Earth and Venus is very similar, i.e. H+ and O+ dominates and the outflow has a stoichiometric H/O ratio of close to 2. The latter implies escape of water. The ion outflow from Mars is dominated by O+, O2+, and H+. Here the stoichiometric ratio between hydrogen and oxygen ion is ≈1, implying that if the ion outflow originates from water, about half of the hydrogen mass disappears by other means. The primary origin of the ion outflow from Earth, Venus and Mars is a complex issue. Nevertheless, a predominant hydrogen and oxygen loss implies that water can easily escape planets orbiting close to the Sun, while Carbon-based molecules (e.g. CO2) resides more easily. Observations shows that the outflow of e.g. CO+ and CO2+ from Mars and Venus is minute compared to the outflow of hydrogen and oxygen ions. Magnetic shielding is an issue affecting the net ion outflow and escape from a planet, because acceleration processes are also the characteristics of magnetized plasmas. Recent findings suggests that, despite magnetic field pile-up at Mars and Venus, the stand-off distance is insufficient to prohibit a direct interaction between the solar wind and the magnetized ionospheric plasma in the induced

  2. UNRAVELLING THE COMPLEX STRUCTURE OF AGN-DRIVEN OUTFLOWS. II. PHOTOIONIZATION AND ENERGETICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karouzos, Marios; Woo, Jong-Hak; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr

    2016-12-20

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local ( z  < 0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence connecting the extreme kinematics of the ionized gas to the AGN photoionization.more » The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.« less

  3. Characterizing Quasar Outflows III: SEDs, and Bolometric Luminosity Estimates

    NASA Astrophysics Data System (ADS)

    Richmond, Joseph; Robbins, J. M.; Ganguly, R.; Stark, M. A.; Christenson, D. H.; Derseweh, J. A.; Townsend, S. L.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we add photometry from both the Two Micron All-Sky Survey (2MASS) and from the Wide-Field Infrared Survey Explorer (WISE). 2MASS photometry covers the rest-frame optical regime of these qusars, while the WISE W1, W2, and W3 bands cover the rest-frame wavelength ranges 0.9-1.27 micron, 1.35-1.75 micron, and 2.52-5.51 micron, respectively. The preliminary release of WISE data cover 3800 of our quasars. In an accompnying poster, we have subjectively divided these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). Here, we present average SEDs for these subsamples, estimates of bolometric luminosity, and explore changes in SED based on both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the

  4. Investigations of protostellar outflow launching and gas entrainment: Hydrodynamic simulations and molecular emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Offner, Stella S. R.; Arce, Héctor G., E-mail: stella.offner@yale.edu

    2014-03-20

    We investigate protostellar outflow evolution, gas entrainment, and star formation efficiency using radiation-hydrodynamic simulations of isolated, turbulent low-mass cores. We adopt an X-wind launching model, in which the outflow rate is coupled to the instantaneous protostellar accretion rate and evolution. We vary the outflow collimation angle from θ = 0.01-0.1 and find that even well-collimated outflows effectively sweep up and entrain significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is similar to the observed Class 0 lifetime. The star formation efficiency of the cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in themore » surrounding material. Although the initial core turbulence is purely solenoidal by construction, the simulations converge to approximate equipartition between solenoidal and compressive motions due to a combination of outflow driving and collapse. When compared to simulation of a cluster of protostars, which is not gravitationally centrally condensed, we find that the outflows drive motions that are mainly solenoidal. The final turbulent velocity dispersion is about twice the initial value of the cores, indicating that an individual outflow is easily able to replenish turbulent motions on sub-parsec scales. We post-process the simulations to produce synthetic molecular line emission maps of {sup 12}CO, {sup 13}CO, and C{sup 18}O and evaluate how well these tracers reproduce the underlying mass and velocity structure.« less

  5. Outflow channel sources, reactivation, and chaos formation, Xanthe Terra, Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Sasaki, S.; Kuzmin, R.O.; Dohm, J.M.; Tanaka, K.L.; Miyamoto, H.; Kurita, K.; Komatsu, G.; Fairen, A.G.; Ferris, J.C.

    2005-01-01

    The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that

  6. Multi-phase outflows as probes of AGN accretion history

    NASA Astrophysics Data System (ADS)

    Nardini, Emanuele; Zubovas, Kastytis

    2018-05-01

    Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.

  7. Electron-positron outflow from black holes.

    PubMed

    van Putten, M H

    2000-04-24

    Cosmological gamma-ray bursts (GRBs) appear as the brightest transient phenomena in the Universe. The nature of their central engine is a missing link in the theory of fireballs to stellar mass progenitors, and may be associated with low mass black holes. In contact with an external magnetic field B, black hole spin produces a gravitational potential on the wave function of charged particles. We show that a rapidly rotating black hole of mass M produces outflow from initially electrostatic equilibrium with normalized isotropic emission approximately 10(48)(B/B(c))(2)(M/7M)(2)sin (2) theta erg/s, where B(c) = 4.4x10(13) G. The half-opening angle satisfies theta >or = square root[B(c)/3B]. The outflow proposed as input to GRB fireball models.

  8. Transport Pathways for Asian Pollution Outflow Over the Pacific: Interannual and Seasonal Variations

    NASA Technical Reports Server (NTRS)

    Liu, Hong-Yu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-01-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (less than 60 ppbv and 20 ppbv CO, respectively) and were not detectable in the observations because of superposition of the much larger Asian pollution signal. Spring 2001 (La Nina) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  9. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-10-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (<60 ppbv and 20 ppbv CO, respectively) and were not detectable in the observations because of superposition of the much larger Asian pollution signal. Spring 2001 (La Niña) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  10. X-Ray Evidence for the Accretion Disc-Outflow Connection in 3C 111

    NASA Technical Reports Server (NTRS)

    Tombesi, Frank; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.

    2011-01-01

    We present the spectral analysis of three Suzaku X-ray Imaging Spectrometer observations of 3C III requested to monitor the predicted variability of its ultrafast outflow on approximately 7 d time-scales. We detect an ionized iron emission line in the first observation and a blueshifted absorption line in the second, when the flux is approximately 30 per cent higher. The location of the material is constrained at less than 0.006 pc from the variability. Detailed modelling supports an identification with ionized reflection off the accretion disc at approximately 20-100rg from the black hole and a highly ionized and massive ultrafast outflow with velocity approximately 0.1c, respectively. The outflow is most probably accelerated by radiation pressure, but additional magnetic thrust cannot be excluded. The measured high outflow rate and mechanical energy support the claims that disc outflows may have a significant feedback role. This work provides the first direct evidence for an accretion disc-outflow connection in a radio-loud active galactic nucleus, possibly linked also to the jet activity.

  11. Netarsudil Increases Outflow Facility in Human Eyes Through Multiple Mechanisms

    PubMed Central

    Ren, Ruiyi; Li, Guorong; Le, Thuy Duong; Kopczynski, Casey; Stamer, W. Daniel; Gong, Haiyan

    2016-01-01

    Purpose Netarsudil is a Rho kinase/norepinephrine transporter inhibitor currently in phase 3 clinical development for glaucoma treatment. We investigated the effects of its active metabolite, netarsudil-M1, on outflow facility (C), outflow hydrodynamics, and morphology of the conventional outflow pathway in enucleated human eyes. Methods Paired human eyes (n = 5) were perfused with either 0.3 μM netarsudil-M1 or vehicle solution at constant pressure (15 mm Hg). After 3 hours, fluorescent microspheres were added to perfusion media to trace the outflow patterns before perfusion-fixation. The percentage effective filtration length (PEFL) was calculated from the measured lengths of tracer distribution in the trabecular meshwork (TM), episcleral veins (ESVs), and along the inner wall (IW) of Schlemm's canal after global and confocal imaging. Morphologic changes along the trabecular outflow pathway were investigated by confocal, light, and electron microscopy. Results Perfusion with netarsudil-M1 significantly increased C when compared to baseline (51%, P < 0.01) and to paired controls (102%, P < 0.01), as well as significantly increased PEFL in both IW (P < 0.05) and ESVs (P < 0.01). In treated eyes, PEFL was significantly higher in ESVs than in the IW (P < 0.01) and was associated with increased cross-sectional area of ESVs (P < 0.01). Percentage effective filtration length in ESVs positively correlated with the percentage change in C (R2 = 0.58, P = 0.01). A significant increase in juxtacanalicular connective tissue (JCT) thickness (P < 0.05) was found in treated eyes compared to controls. Conclusions Netarsudil acutely increased C by expansion of the JCT and dilating the ESVs, which led to redistribution of aqueous outflow through a larger area of the IW and ESVs. PMID:27842161

  12. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta

    NASA Astrophysics Data System (ADS)

    Yermolaev, Y. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Y.

    2017-12-01

    This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976 - 2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions ( i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry ( i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.

  13. Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Bolatto, Alberto D.; Leroy, Adam K.; Veilleux, Sylvain; Warren, Steven R.; Hodge, Jacqueline; Levy, Rebecca C.; Meier, David S.; Ostriker, Eve C.; Ott, Jürgen; Rosolowsky, Erik; Scoville, Nick; Weiss, Axel; Zschaechner, Laura; Zwaan, Martin

    2017-02-01

    We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ˜300 pc, with a width of ˜50 pc, and a velocity dispersion of ˜40 km s-1, which is consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s-1 pc-1. In this scenario, the gas is approaching an escape velocity at the last measured point. Strikingly, bright tracers of dense molecular gas (HCN, CN, HCO+, CS) are also detected in the molecular outflow: we measure an HCN(1-0)/CO(1-0) line ratio of ˜ 1/10 in the outflow, similar to that in the central starburst region of NGC 253 and other starburst galaxies. By contrast, the HCN/CO line ratio in the NGC 253 disk is significantly lower (˜ 1/30), similar to other nearby galaxy disks. This strongly suggests that the streamer gas originates from the starburst, and that its physical state does not change significantly over timescales of ˜1 Myr during its entrainment in the outflow. Simple calculations indicate that radiation pressure is not the main mechanism for driving the outflow. The presence of such dense material in molecular outflows needs to be accounted for in simulations of galactic outflows.

  14. The Soft X-ray View of Ultra Fast Outflows

    NASA Astrophysics Data System (ADS)

    Reeves, J.; Braito, V.; Nardini, E.; Matzeu, G.; Lobban, A.; Costa, M.; Pounds, K.; Tombesi, F.; Behar, E.

    2017-10-01

    The recent large XMM-Newton programmes on the nearby quasars PDS 456 and PG 1211+143 have revealed prototype ultra fast outflows in the iron K band through highly blue shifted absorption lines. The wind velocities are in excess of 0.1c and are likely to make a significant contribution to the host galaxy feedback. Here we present evidence for the signature of the fast wind in the soft X-ray band from these luminous quasars, focusing on the spectroscopy with the RGS. In PDS 456, the RGS spectra reveal the presence of soft X-ray broad absorption line profiles, which suggests that PDS 456 is an X-ray equivalent to the BAL quasars, with outflow velocities reaching 0.2c. In PG 1211, the soft X-ray RGS spectra show a complex of several highly blue shifted absorption lines over a wide range of ionisation and reveal outflowing components with velocities between 0.06-0.17c. For both quasars, the soft X-ray absorption is highly variable, even on timescales of days and is most prominent when the quasar flux is low. Overall the results imply the presence of a soft X-ray component of the ultra fast outflows, which we attribute to a clumpy or inhomogeneous phase of the disk wind.

  15. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-01-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  16. Wave-Modulated CO2 Condensation in Mars' Polar Atmosphere From MGS/TES & MOLA and MRO/MCS.

    NASA Astrophysics Data System (ADS)

    Banfield, D. J.

    2016-12-01

    In Mars' polar night, atmospheric temperatures fall low enough to cause CO2 condensation. This has been empirically demonstrated by Mars Global Surveyor's (MGS) Mars Orbiter Laser Altimeter (MOLA), which identified reflections from above the surface, and MGS Radio Science (RS) and Thermal Emission Spectrometer (TES) and Mars Reconnaissance Orbiter's (MRO) Mars Climate Sounder (MCS), all of which showed polar night temperature profiles that were super-saturated. Detailed analysis of TES temperature profiles as well as numerical modeling both suggest that the stationary and traveling waves on the polar vortices are strong enough to significantly modulate the CO2 cloud condensation. However the extent to which this is actually occurring has not been quantified. The polar night CO2 condensation represents a significant amount of energy deposition, even if it were uniformly distributed. If instead it is concentrated in the cold sectors of the various waves, this can be a tremendous perturbation not only to the wave amplitudes (clipping them from going much below the CO2 condensation temperature), but also impacting their ability to transport heat and momentum poleward and upward, and thus it may also impact the maintenance and shape of the polar vortex itself. Mars' polar vortices remain barotropically unstable throughout the winter in spite of large amplitude waves in their vicinity. We have identified when and where the various waves (with their specific amplitudes and phases) in the vicinity of the polar vortex should modulate the CO2 condensation (see Figure of a meridional cross-section showing where no clouds are expected (blue), clouds should be ubiquitous (green) and waves should be required to form clouds (red)). We have also correlated this with the distribution of the actual observed cloud identifications from MGS MOLA and MRO MCS. We find only poor correlations between the MGS/TES identified wave modulated condensation predictions and actual simultaneous

  17. The small observed scale of AGN-driven outflows, and inside-out disc quenching

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; King, Andrew

    2016-11-01

    Observations of massive outflows with detectable central active galactic nuclei (AGN) typically find them within radii ≲10 kpc. We show that this apparent size restriction is a natural result of AGN driving if this process injects total energy only of the order of the gas binding energy to the outflow, and the AGN varies over time (`flickers') as suggested in recent work. After the end of all AGN activity, the outflow continues to expand to larger radii, powered by the thermal expansion of the remnant-shocked AGN wind. We suggest that on average, outflows should be detected further from the nucleus in more massive galaxies. In massive gas-rich galaxies, these could be several tens of kpc in radius. We also consider the effect that pressure of such outflows has on a galaxy disc. In moderately gas-rich discs, with gas-to-baryon fraction <0.2, the outflow may induce star formation significant enough to be distinguished from quiescent by an apparently different normalization of the Kennicutt-Schmidt law. The star formation enhancement is probably stronger in the outskirts of galaxy discs, so coasting outflows might be detected by their effects upon the disc even after the driving AGN has shut off. We compare our results to the recent inference of inside-out quenching of star formation in galaxy discs.

  18. Morphological and Hydrodynamic Correlations with Increasing Outflow Facility by Rho-Kinase Inhibitor Y-27632

    PubMed Central

    Yang, Chen-Yuan Charlie

    2014-01-01

    Abstract Rho-kinase inhibitors affect actomyosin cytoskeletal networks and have been shown to significantly increase outflow facility and lower intraocular pressure in various animal models and human eyes. This article summarizes common morphological changes in the trabecular meshwork induced by Rho-kinase inhibitors and specifically compares the morphological and hydrodynamic correlations with increased outflow facility by Rho-kinase inhibitor, Y-27632, in bovine, monkey, and human eyes under similar experimental conditions. Interspecies comparison has shown that morphological changes in the juxtacanalicular connective tissue (JCT) of these 3 species were different. However, these different morphological changes in the JCT, no matter if it's separation between the JCT and inner wall in bovine eyes, or separation between the JCT cells or between the JCT cells and their matrix in monkey eyes, or even no separation between the inner wall and the JCT but a more subtle expansion of the JCT in human eyes, appear to correlate with the increased percent change of outflow facility. More importantly, these different morphological changes all resulted in an increase in effective filtration area, which was positively correlated with increased outflow facility in all 3 species. These results suggest a link among changes in outflow facility, tissue architecture, and aqueous outflow pattern. Y-27632 increases outflow facility by redistributing aqueous outflow through a looser and larger area in the JCT. PMID:24460021

  19. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    NASA Astrophysics Data System (ADS)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  20. The structure of the Cepheus E protostellar outflow: The jet, the bowshock, and the cavity

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Gusdorf, A.; Codella, C.; Eislöffel, J.; Neri, R.; Gómez-Ruiz, A. I.; Güsten, R.; Leurini, S.; Risacher, C.; Benedettini, M.

    2015-09-01

    component. In the terminal bowshock HH377, we detect gas of moderate excitation, with a temperature in the range Tkin ≈ 400-500 K, density n(H2) ≃ (1 -2) × 106 cm-3 and column density N(CO) = 1017 cm-2. The amounts of momentum carried away in the jet and in the entrained ambient medium are similar. Comparison with time-dependent shock models shows that the hot gas emission in the jet is well accounted for by a magnetized shock with an age of 220-740 yr propagating at 20-30 km s-1 in a medium of density n(H2) = (0.5-1) × 105 cm-3, consistent with that of the bulk material. Conclusions: The Cep E protostellar outflow appears to be a convincing case of jet bowshock driven outflow. Our observations trace the recent impact of the protostellar jet into the ambient cloud, produing a non-stationary magnetized shock, which drives the formation of an outflow cavity. Appendices are available in electronic form at http://www.aanda.org

  1. Optimizing gene transfer to conventional outflow cells in living mouse eyes

    PubMed Central

    Li, G; Gonzalez, P; Camras, LJ; Navarro, I; Qiu, J; Challa, P; Stamer, WD

    2013-01-01

    The mouse eye has physiological and genetic advantages to study conventional outflow function. However, its small size and shallow anterior chamber presents technical challenges to efficient intracameral delivery of genetic material to conventional outflow cells. The goal of this study was to optimize methods to overcome this technical hurdle, without damaging ocular structures or compromising outflow function. Gene targeting was monitored by immunofluorescence microscopy after transduction of adenovirus encoding green fluorescent protein driven by a CMV promoter. Guided by a micromanipulator and stereomicroscope, virus was delivered intracamerally to anesthetized mice by bolus injection using 33 gauge needle attached to Hamilton syringe or infusion with glass micropipette connected to syringe pump. The total number of particles introduced remained constant, while volume of injected virus solution (3–10 µl) was varied for each method and time of infusion (3–40 min) tested. Outflow facility and intraocular pressure were monitored invasively using established techniques. Unlike bolus injections or slow infusions, introduction of virus intracamerally during rapid infusions (3 min) at any volume tested preferentially targeted trabecular meshwork and Schlemm's canal cells, with minimal transduction of neighboring cells. While infusions resulted in transient intraocular pressure spikes (commensurate with volume infused, Δ40–70 mmHg), eyes typically recovered within 60 minutes. Transduced eyes displayed normal outflow facility and tissue morphology 3–6 days after infusions. Taken together, fast infusion of virus solution in small volumes intracamerally is a novel and effective method to selectively deliver agents to conventional outflow cells in living mice. PMID:23337742

  2. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    NASA Astrophysics Data System (ADS)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  3. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Fischer, J.; González-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; de Jong, J. A.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H.; Polisensky, E.

    2013-10-01

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than -50 km s-1, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (~145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s-1, is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ~-1000 km s-1 are measured in several objects, but median outflow velocities are typically ~-200 km s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L AGN/L ⊙) >= 11.8 ± 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  4. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; hide

    2013-01-01

    We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 micron silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than-50 km/s, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (approx. 145 deg.) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km/s is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of approx. -1000 km/s are measured in several objects, but median outflow velocities are typically approx.-200 km/s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L(sub AGN)/L(sub solar)) => 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  5. Grain formation around carbon stars. 1: Stationary outflow models

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun Ming

    1995-01-01

    Asymptotic giant branch (AGB) stars are known to be sites of dust formation and undergo significant mass loss. The outflow is believed to be driven by radiation pressure on grains and momentum coupling between the grains and gas. While the physics of shell dynamics and grain formation are closely coupled, most previous models of circumstellar shells have treated the problem separately. Studies of shell dynamics typically assume the existence of grains needed to drive the outflow, while most grain formation models assume a constant veolcity wind in which grains form. Furthermore, models of grain formation have relied primarily on classical nucleation theory instead of using a more realistic approach based on chemical kinetics. To model grain formation in carbon-rich AGB stars, we have coupled the kinetic equations governing small cluster growth to moment equations which determine the growth of large particles. Phenomenological models assuming stationary outflow are presented to demonstrate the differences between the classical nucleation approach and the kinetic equation method. It is found that classical nucleation theory predicts nucleation at a lower supersaturation ratio than is predicted by the kinetic equations, resulting in significant differences in grain properties. Coagulation of clusters larger than monomers is unimportant for grain formation in high mass-loss models but becomes more important to grain growth in low mass-loss situations. The properties of the dust grains are altered considerably if differential drift velocities are ignored in modeling grain formation. The effect of stellar temperature, stellar luminosity, and different outflow velocities are investigated. The models indicate that changing the stellar temperature while keeping the stellar luminosity constant has little effect on the physical parameters of the dust shell formed. Increasing the stellar luminosity while keeping the stellar temperature constant results in large differences in

  6. A Lagrangian view of ozone production tendency in North American outflow in summers 2009 and 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Owen, R. Chris; Perlinger, Judith; Kumar, Aditya; Wu, Shiliang; Martin, Maria Val; Kramer, Louisa; Helmig, Detlev

    2013-04-01

    The Pico Mountain Observatory, located at 2,225 ma.s.l. in the Azores Islands, was established in 2001 to observe long-range transport from North America to the central North Atlantic. In previous research conducted at the Observatory, ozone enhancements (> 55 ppbv) were observed in North American outflows containing anthropogenic and biomass burning emissions, and efficient ozone production in these outflows was postulated. One of the major objectives of BORTAS is to better understand chemical composition and evolution during transport of biomass burning outflows. A key to the study of pollution plumes at a ground-based station is identification of emission type and source region(s). Transport pathways of individual plumes are also thought to be critical to plume aging. In this study, by analyzing observations of atmospheric tracer gases at Pico and FLEXPART simulation results, we were able to identify transport events induced by anthropogenic or biomass burning emissions during summers 2009 and 2010. In order to assess ozone production tendency during these long-range transport events, the convolved or "folded" retroplume technique developed by Owen and Honrath (2009) was applied to combine upwind FLEXPART transport pathways with GEOS-Chem chemical fields, providing a semi-lagrangian view of physical properties and production/loss of ozone in polluted North American outflows. Two anthropogenic events from North America were selected for detailed analysis because anthropogenic emissions were considered to be more predictable and consistent over time. Ozone enhancement was observed in both plumes, but due to differing transport mechanisms, ozone production tendency was found to be different between the two. In the first case, ozone production was found during the last two days of transport, when the pollution plume subsided from the free troposphere to the altitude of Pico station in the high pressure system centered over the Azores region at the time. Increase of

  7. Another piece of the puzzle: The fast H I outflow in Mrk 231

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella; Veilleux, Sylvain; Oosterloo, Tom; Teng, Stacy H.; Rupke, David

    2016-09-01

    We present the detection, performed with the Westerbork Synthesis Radio Telescope (WSRT) and the Karl Jansky Very Large Array (VLA), of a fast H I 21 cm outflow in the ultra-luminous infrared galaxy Mrk 231. The outflow is observed as shallow H I absorption blueshifted ~1300 km s-1 with respect to the systemic velocity and located against the inner kpc of the radio source. The outflowing gas has an estimated column density between 5 and 15 × 1018Tspin cm-2. We derive the Tspin to lie in the range 400-2000 K and the corresponding H I densities are nHI ~ 10-100 cm-3. Our results complement previous findings and confirm the multiphase nature of the outflow in Mrk 231. Although effects of the interaction between the radio plasma and the surrounding medium cannot be ruled out, the energetics and the lack of a clear kpc-scale jet suggest that the most likely origin of the H I outflow is a wide-angle nuclear wind, as earlier proposed to explain the neutral outflow traced by Na I and molecular gas in this source. Our results suggest that an H I component is present in fast outflows regardless of the acceleration mechanism (wind vs. jet driven) and that it must be connected with common properties of the pre-interaction gas involved. Considering the observed similarity of their column densities, the H I outflow likely represents the inner part of the broad wind identified on larger scales in atomic Na I. The mass outflow rate of the H I outflow (between 8 and 18 M⊙ yr-1) does not appear to be as large as that observed in molecular gas, partly owing to the smaller sizes of the outflowing region sampled by the H I absorption. These characteristics are commonly seen in other cases of outflows driven by the active galactic nucleus (AGN) suggesting that the H I may represent a short intermediate phase in the rapid cooling of the gas. The results further confirm H I as a good tracer for AGN-driven outflows not only in powerful radio sources. We also obtained deeper continuum

  8. Effects of Energetic Ion Outflow on Magnetospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.; Mouikis, C.; Lund, E. J.; Menz, A.; Nowrouzi, N.

    2016-12-01

    There are two dominant regions of energetic ion outflow: the nightside auroral region and the dayside cusp. Processes in these regions can accelerate ions up to keV energies. Outflow from the nightside has direct access to the plasma sheet, while outflow from the cusp is convected over the polar cap and into the lobes. The cusp population can enter the plasma sheet from the lobe, with higher energy ions entering further down the tail than lower energy ions. During storm times, the O+ enhanced plasma sheet population is convected into the inner magnetosphere. The plasma that does not get trapped in the inner magnetosphere convects to the magnetopause where reconnection is taking place. An enhanced O+ population can change the plasma mass density, which may have the effect of decreasing the reconnection rate. In addition O+ has a larger gyroradius than H+ at the same velocity or energy. Because of this, there are larger regions where the O+ is demagnetized, which can lead to larger acceleration because the O+ can move farther in the direction of the electric field. In this talk we will review results from Cluster, Van Allen Probes, and MMS, on how outflow from the two locations affects magnetospheric dynamics. We will discuss whether enhanced O+ from either population has an effect on the reconnection rate in the tail or at the magnetopause. We will discuss how the two populations impact the inner magnetosphere during storm times. And finally, we will discuss whether either population plays a role in triggering substorms, particularly during sawtooth events.

  9. Measuring the Outflow Properties of FeLoBAL Quasars

    NASA Astrophysics Data System (ADS)

    Dabbieri, Collin; Choi, Hyunseop; MacInnis, Francis; Leighly, Karen; Terndrup, Donald

    2018-01-01

    Roughly 20 percent of the quasar population shows broad absorption lines, which are indicators of an energetic wind. Within the broad absorption line class of quasars exist FeLoBAL quasars, which show strong absorption lines from the Fe II and Fe III transitions as well as other low-ionization lines. FeLoBALs are of particular interest because they are thought to possibly be a short-lived stage in a quasar's life where it expels its shroud of gas and dust. This means the winds we see from FeLoBALs are one manifestation of galactic feedback. This idea is supported by Farrah et al. (2012) who found an anti correlation between outflow strength and contribution from star formation to the total IR luminosity of the host galaxy when examining a sample of FeLoBAL quasars. We analyze the sample of 26 FeLoBALs from Farrah et al. (2012) in order to measure the properties of their outflows, including ionization, density, column density and covering fraction. The absorption and continuum profiles of these objects are modeled using SimBAL, a program which creates synthetic spectra using a grid of Cloudy models. A Monte-Carlo method is employed to determine posterior probabilities for the physical parameters of the outflow. From these probabilities we extract the distance of the outflow, the mass outflow rate and the kinetic luminosity. We demonstrate SimBAL is capable of modeling a wide range of spectral morphologies. From the 26 objects studied we observe interesting correlations between ionization parameter, distance and density. Analysis of our sample also suggests a dearth of objects with velocity widths greater than or equal to 300 km/s at distances greater than or equal to 100 parsecs.

  10. Can Radio Emission From Luminous Obscured AGN Blow Kpc-scale Ionized Outflows?

    NASA Astrophysics Data System (ADS)

    Goulding, Andy

    2017-09-01

    We propose joint VLA radio and Chandra X-ray to observe 4 AGN selected from the SDSS-BOSS and the Hyper Suprime-Cam surveys that present spectacular extended outflowing [O III] regions, reaching up to 50kpc in diameter. Our proposed observations allow us to study the mechanical and kinematical output of the AGN through radio and X-ray observations, measure the fraction of the AGN bolometric luminosity that is transferred to the outflow, and to determine the morphology and spectral index (by producing high-res continuum maps) of the radio emission that may be co-spatial with the extended ionized AGN outflow. In turn, our study will determine what role the AGN plays in producing extended outflows, and hence, provide an in-depth understanding of the physical drivers of AGN feedback.

  11. Winds of change - a molecular outflow in NGC 1377?. The anatomy of an extreme FIR-excess galaxy

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Muller, S.; Sakamoto, K.; Gallagher, J. S.; Martín, S.; Costagliola, F.

    2012-10-01

    Aims: Our goal was to investigate the molecular gas distribution and kinematics in the extreme far-infrared (FIR) excess galaxy NGC 1377 and to address the nature and evolutionary status of the buried source. Methods: We used high- (0''65 × 0''52, (65 × 52 pc)) and low- (4''88 × 2''93) resolution SubMillimeter Array (SMA) observations to image the 12CO and 13CO 2-1 line emission. Results: We find bright, complex 12CO 2-1 line emission in the inner 400 pc of NGC 1377. The 12CO 2-1 line has wings that are tracing a kinematical component that appears to be perpendicular to the component traced by the line core. Together with an intriguing X-shape of the integrated intensity and dispersion maps, this suggests that the molecular emission of NGC 1377 consists of a disk-outflow system. Lower limits to the molecular mass and outflow rate are Mout(H2) > 1 × 107 M⊙ and Ṁ > 8 M⊙ yr-1. The age of the proposed outflow is estimated to be 1.4 Myr, the extent to be 200 pc and the outflow speed to be Vout = 140 km s-1. The total molecular mass in the SMA map is estimated to Mtot(H2) = 1.5 × 108 M⊙ (on a scale of 400 pc) while in the inner r = 29 pc the molecular mass is Mcore(H2) = 1.7 × 107 M⊙ with a corresponding H2 column density of N(H2) = 3.4 × 1023 cm-2 and an average 12CO 2-1 brightness temperature of 19 K. 13CO 2-1 emission is found at a factor 10 fainter than 12CO in the low-resolution map while C18O 2-1 remains undetected. We find weak 1 mm continuum emission of 2.4 mJy with spatial extent less than 400 pc. Conclusions: Observing the molecular properties of the FIR-excess galaxy NGC 1377 allows us to probe the early stages of nuclear activity and the onset of feedback in active galaxies. The age of the outflow supports the notion that the current nuclear activity is young - a few Myr. The outflow may be powered by radiation pressure from a compact, dust enshrouded nucleus, but other driving mechanisms are possible. The buried source may be an active

  12. Evidence that 50% of BALQSO Outflows Are Situated at Least 100 pc from the Central Source

    NASA Astrophysics Data System (ADS)

    Arav, Nahum; Liu, Guilin; Xu, Xinfeng; Stidham, James; Benn, Chris; Chamberlain, Carter

    2018-04-01

    The most robust way for determining the distance of quasar absorption outflows is the use of troughs from ionic excited states. The column density ratio between the excited and resonance states yields the outflow number density. Combined with a knowledge of the outflow’s ionization parameter, a distance from the central source (R) can be determined. Here we report results from two surveys targeting outflows that show troughs from S IV. One survey includes 1091 SDSS and BOSS quasar spectra, and the other includes higher-quality spectra of 13 quasars observed with the Very Large Telescope. Our S IV samples include 38 broad absorption line (BAL) outflows and four mini-BAL outflows. The S IV is formed in the same physical region of the outflow as the canonical outflow-identifying species C IV. Our results show that S IV absorption is only detected in 25% of C IV BAL outflows. The smaller detection fraction is due to the higher total column density (N H) needed to detect S IV absorption. Since R empirically anticorrelates with N H, the results of these surveys can be extrapolated to C IV quasar outflows with lower N H as well. We find that at least 50% of quasar outflows are at distances larger than 100 pc from the central source, and at least 12% are at distances larger than 1000 pc. These results have profound implications for the study of the origin and acceleration mechanism of quasar outflows and their effects on the host galaxy.

  13. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  14. The two-way relationship between ionospheric outflow and the ring current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welling, Daniel T.; Jordanova, Vania Koleva; Glocer, Alex

    It is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first-principles-based numerical models to test the dependence of ionospheric outflow on ring current-driven region 2 field-aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptivemore » Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), a polar wind model (Polar Wind Outflow Model), and a bounce-averaged kinetic ring current model (ring current atmosphere interaction model with self-consistent magnetic field, RAM-SCB). Initially, each code is two-way coupled to all others except for RAM-SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS-R-US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the non-coupled results. The additional outflow further energizes the ring current, establishing an ionosphere-magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere-magnetosphere-ring current system.« less

  15. The two-way relationship between ionospheric outflow and the ring current

    DOE PAGES

    Welling, Daniel T.; Jordanova, Vania Koleva; Glocer, Alex; ...

    2015-06-01

    It is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first-principles-based numerical models to test the dependence of ionospheric outflow on ring current-driven region 2 field-aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptivemore » Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), a polar wind model (Polar Wind Outflow Model), and a bounce-averaged kinetic ring current model (ring current atmosphere interaction model with self-consistent magnetic field, RAM-SCB). Initially, each code is two-way coupled to all others except for RAM-SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS-R-US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the non-coupled results. The additional outflow further energizes the ring current, establishing an ionosphere-magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere-magnetosphere-ring current system.« less

  16. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    NASA Astrophysics Data System (ADS)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale

  17. Triamcinolone Acetonide Decreases Outflow Facility in C57BL/6 Mouse Eyes

    PubMed Central

    Kumar, Sandeep; Shah, Shaily; Deutsch, Emily Rose; Tang, Hai Michael; Danias, John

    2013-01-01

    Purpose. To determine the effect of triamcinolone acetonide (TA) on outflow facility in mice. Methods. Animals received 20 μL of TA (40 mg/mL) suspension subconjunctivally either bilaterally or unilaterally and were euthanized after either 1 week or 3 weeks. Before mice were killed, IOP was measured with a rebound tonometer. Outflow facility was determined using simultaneous pressure and flow measurements. Another set of animals received bilateral injection of anecortave acetate (AA) with or without bilateral TA injection and their outflow facility was also determined. Myocilin expression was investigated in a subset of eyes using quantitative PCR (qPCR). Results. Outflow facility of eyes in animals receiving bilateral TA injection (TABL) and TA-treated eyes of animals receiving unilateral injection (TAUL) was significantly decreased compared to naïve control eyes (Cnaive) after 1 week and 3 weeks of TA treatment (ANOVA P < 0.01, P < 0.001, respectively). Eyes treated with AA (with or without TA) had higher outflow facility than animals treated with TA (P < 0.05). IOP data did not show any significant difference between groups. qPCR analysis revealed significant decrease in myocilin expression in eyes receiving AA compared to naïve control and TA-treated eyes (ANOVA P < 0.001). Conclusions. Steroid treatment significantly decreases outflow facility in C57BL/6 mice despite having small effect on IOP. This animal model can be useful for studying the pathogenesis of steroid-induced glaucoma. PMID:23322580

  18. The HST-pNFL program: Mapping the Fluorescent Emission of Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy

    2017-08-01

    Galactic outflows associated with star formation are believed to play a crucial role in the evolution of galaxies and the IGM. Most of our knowledge about outflows has come from down-the-barrel UV absorption spectroscopy of star-forming galaxies. However, absorption-line data alone provide only indirect information about the radial structure of the gas flows, which introduces large systematic uncertainties in some of the most important quantities, such as the outflow rate, the mass loading factor, and the momentum, metal, and energy fluxes. Recent spectroscopic observations of star-forming galaxies with large (projected physical) apertures have revealed non-resonant (fluorescent) emission in the UV, e.g., FeII* and SiII*, that can be naturally produced by spatially extended emission from the same outflowing material traced in absorption. Encouraged by the most recent observations of FeII* emission by the SDSS-IV/eBOSS survey (Zhu et al. 2015), we propose a pilot program to use narrow-band filter UVIS F280N images to map the extended FeII* 2626 and 2613 fluorescent emission in a carefully-chosen sample of 4 starburst galaxies at z=0.065, and COS G130M to obtain down-the- barrel spectra for SiII absorption and SiII* emission. This HST pilot program can provide unique information about the spatial structure of galactic outflows and can potentially lead to a revolution in our understanding of outflow physics and its impact on galaxies and the IGM.

  19. Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063

    NASA Astrophysics Data System (ADS)

    Oosterloo, Tom; Raymond Oonk, J. B.; Morganti, Raffaella; Combes, Françoise; Dasyra, Kalliopi; Salomé, Philippe; Vlahakis, Nektarios; Tadhunter, Clive

    2017-12-01

    We present a detailed study of the properties of the molecular gas in the fast outflow driven by the active galactic nucleus (AGN) in the nearby radio-loud Seyfert galaxy IC 5063. By using ALMA observations of a number of tracers of the molecular gas (12CO(1-0), 12CO(2-1), 12CO(3-2), 13CO(2-1) and HCO+(4-3)), we map the differences in excitation, density and temperature of the gas as function of position and kinematics. The results show that in the immediate vicinity of the radio jet, a fast outflow, with velocities up to 800 km s-1, is occurring of which the gas has high excitation with excitation temperatures in the range 30-55 K, demonstrating the direct impact of the jet on the ISM. The relative brightness of the 12CO lines, as well as that of 13CO(2-1) vs. 12CO(2-1), show that the outflow is optically thin. We estimate the mass of the molecular outflow to be at least 1.2 × 106 M⊙ and likely to be a factor between two and three larger than this value. This is similar to that of the outflow of atomic gas, but much larger than that of the ionised outflow, showing that the outflow in IC 5063 is dominated by cold gas. The total mass outflow rate we estimated to be 12 M⊙ yr-1. The mass of the outflow is much smaller than the total gas mass of the ISM of IC 5063. Therefore, although the influence of the AGN and its radio jet is very significant in the inner regions of IC 5063, globally speaking the impact will be very modest. We used RADEX non-LTE modelling to explore the physical conditions of the molecular gas in the outflow. Models with the outflowing gas being quite clumpy give the most consistent results and our preferred solutions have kinetic temperatures in the range 20-100 K and densities between 105 and 106 cm-3. The resulting pressures are 106-107.5 K cm-3, about two orders of magnitude higher than in the outer quiescent disk. The highest densities and temperatures are found in the regions with the fastest outflow. The results strongly suggest that

  20. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  1. Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea.

    PubMed

    Sclocco, Roberta; Kim, Jieun; Garcia, Ronald G; Sheehan, James D; Beissner, Florian; Bianchi, Anna M; Cerutti, Sergio; Kuo, Braden; Barbieri, Riccardo; Napadow, Vitaly

    2016-02-01

    While autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood. We evaluated sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects' ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anti-correlated with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Positron annihilation in the nuclear outflows of the Milky Way

    NASA Astrophysics Data System (ADS)

    Panther, Fiona H.; Crocker, Roland M.; Birnboim, Yuval; Seitenzahl, Ivo R.; Ruiter, Ashley J.

    2018-02-01

    Observations of soft gamma rays emanating from the Milky Way from SPI/INTEGRAL reveal the annihilation of ˜2 × 1043 positrons every second in the Galactic bulge. The origin of these positrons, which annihilate to produce a prominent emission line centred at 511 keV, has remained mysterious since their discovery almost 50 yr ago. A plausible origin for the positrons is in association with the intense star formation ongoing in the Galactic centre. Moreover, there is strong evidence for a nuclear outflow in the Milky Way. We find that advective transport and subsequent annihilation of positrons in such an outflow cannot simultaneously replicate the observed morphology of positron annihilation in the Galactic bulge and satisfy the requirement that 90 per cent of positrons annihilate once the outflow has cooled to 104 K.

  3. Exploring the engines of molecular outflows. Radio continuum and H_2_O maser observations.

    NASA Astrophysics Data System (ADS)

    Tofani, G.; Felli, M.; Taylor, G. B.; Hunter, T. R.

    1995-09-01

    We present A-configuration VLA observations of the 22GHz H_2_O maser line and 8.4GHz continuum emission of 22 selected CO bipolar outflows associated with water masers. These observations allow us to study the region within 10^4^AU of the engine powering the outflow. The positions of the maser spots are compared with those of ultra-compact (UC) continuum sources found in our observations, with IRAS data and with data from the literature on the molecular outflows. Weak unresolved continuum sources are found in several cases associated with the maser. Most probably they represent the ionized envelope surrounding the young stellar object (YSO) which powers the maser and the outflow. These weak radio continuum sources are not necessarily associated with the IRAS sources, which are more representative of the global emission from the star forming region. A comparison of the velocity pattern of the CO outflow with those of the maser spots detected with the VLA is also made. Asymmetries in the H_2_O velocities are found on opposite sides of the YSO, suggesting that the outflow acceleration begins from the YSO itself. In a few cases we find evidence for two outflows in different evolutionary stages. The H_2_O masers in these sources are always found at the centre of the younger outflow. The degree of variability of each maser is derived from single dish observations obtained with the Medicina radiotelescope before and after the VLA observations. Velocity drifts of some features are interpreted as acceleration of the maser.

  4. The Dependence of Galactic Outflows on the Properties and Orientation of zCOSMOS Galaxies at z ~ 1

    NASA Astrophysics Data System (ADS)

    Bordoloi, R.; Lilly, S. J.; Hardmeier, E.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Carollo, C. M.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Garilli, B.; Iovino, A.; Kampczyk, P.; Kovač, K.; Knobel, C.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Mignoli, M.; Oesch, P.; Pello, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Cappi, A.; Cimatti, A.; Coppa, G.; Franzetti, P.; Koekemoer, A.; Moresco, M.; Nair, P.; Pozzetti, L.

    2014-10-01

    We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 <= z <= 1.5. These galaxies span a range of stellar masses (9.45 <= log10[M */M ⊙] <= 10.7) and star formation rates (0.14 <= log10[SFR/M ⊙ yr-1] <= 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (ΣSFR) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from -150 km s-1 ~-200 km s-1 and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M ⊙ yr-1 and a mass loading factor ({ η = \\dot{M}out /SFR}) comparable to the star formation rates of the galaxies. Based on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Program 175.A-0839.

  5. Magnetic Topology and Ion Outflow in Mars' Magnetotail

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Xu, S.; McFadden, J. P.; Hara, T.; Luhmann, J. G.; Mazelle, C. X.; Andersson, L.; DiBraccio, G. A.; Connerney, J. E. P.

    2017-12-01

    Planetary ion outflow down the Martian magnetotail could be an important atmospheric loss mechanism. This process depends on magnetic connectivity to the day-side ionosphere and on acceleration of ions to escape velocity. The Mars Atmosphere and Volatile Evolution (MAVEN) mission has obtained comprehensive ion, electron, and magnetic field data in Mars' magnetotail. The spacecraft is in a 75°-inclination, elliptical orbit that samples altitudes from 150 to 6200 km. As the orbit precesses, it sweeps through the tail at a variety of altitudes in this range. Data from the Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) are used to determine the magnetic field topology in the tail at high cadence (every 2-4 seconds), and in particular whether field lines are open, closed, or draped, and if open whether they have access to the day-side or night-side ionosphere. Simultaneous observations by the Supra-Thermal and Thermal Ion Composition (STATIC) instrument and the Langmuir Probe and Waves (LPW) experiment are used to measure the density, composition, and velocity of planetary plasma on these field lines. We find that magnetic topology in the tail is complex and variable, and is influenced by the IMF polarity and the orientation of Mars' crustal magnetic fields with respect to the Sun. We find that planetary ion outflow occurs on both open and draped field lines. On open field lines, outflow tends to occur parallel to the field line, with colder, denser, and slower outflow on field lines connected to the day-side ionosphere (Fig. 1). On these same field lines (after correction for the spacecraft potential) a shift in the position of the He-II photoelectron feature indicates a 1-Volt parallel electric potential directed away from the planet. Except for H+ and occasionally O+, this potential is insufficient by itself to accelerate planetary ions to escape velocity. Outflow is warmer, less dense, and faster moving on draped field lines. In this case, the ion bulk

  6. Circumstellar Structure Properties of Young Stellar Objects: Envelopes, Bipolar Outflows, and Disks

    NASA Astrophysics Data System (ADS)

    Kwon, Woojin

    2009-12-01

    disk) to fit the two wavelength data simultaneously in Bayesian inference, we constrained disk properties. In addition, we detected a dust lane at 100 AU radius of HL Tau, which is gravitationally unstable and can be fragmented. Besides, CI Tau and DL Tau appear to have a spiral pattern. Moreover, we found that more evolved disks have a shallower density gradient and that disks with a smaller β are less massive, which implies "hidden" masses in the cold midplane and/or in large grains. Finally, we found that the accretion disk model is preferred by HL Tau, which has a strong bipolar outflow and accretion, while the power-law disk model is preferred by DL Tau, which has experienced dust settlement and has weak accretion. This implies that the accretion disk model could be applied to disks only in a limited age range.

  7. Ultrafast outflows disappear in high-radiation fields

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Alston, W.; Parker, M. L.; Fabian, A. C.; Gallo, L. C.; Buisson, D. J. K.; Walton, D. J.; Kara, E.; Jiang, J.; Lohfink, A.; Reynolds, C. S.

    2018-05-01

    Ultrafast outflows (UFOs) are the most extreme winds launched by active galactic nuclei (AGN) due to their mildly relativistic speeds (˜0.1-0.3c) and are thought to significantly contribute to galactic evolution via AGN feedback. Their nature and launching mechanism are however not well understood. Recently, we have discovered the presence of a variable UFO in the narrow-line Seyfert 1 IRAS 13224-3809. The UFO varies in response to the brightness of the source. In this work we perform flux-resolved X-ray spectroscopy to study the variability of the UFO and found that the ionization parameter is correlated with the luminosity. In the brightest states the gas is almost completely ionized by the powerful radiation field and the UFO is hardly detected. This agrees with our recent results obtained with principal component analysis. We might have found the tip of the iceberg: the high ionization of the outflowing gas may explain why it is commonly difficult to detect UFOs in AGN and possibly suggest that we may underestimate their actual feedback. We have also found a tentative correlation between the outflow velocity and the luminosity, which is expected from theoretical predictions of radiation-pressure-driven winds. This trend is rather marginal due to the Fe XXV-XXVI degeneracy. Further work is needed to break such degeneracy through time-resolved spectroscopy.

  8. The WISSH quasars project. I. Powerful ionised outflows in hyper-luminous quasars

    NASA Astrophysics Data System (ADS)

    Bischetti, M.; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Sani, E.; Marconi, A.; Duras, F.; Zappacosta, L.; Brusa, M.; Comastri, A.; Cresci, G.; Feruglio, C.; Giallongo, E.; La Franca, F.; Mainieri, V.; Mannucci, F.; Martocchia, S.; Ricci, F.; Schneider, R.; Testa, V.; Vignali, C.

    2017-02-01

    Models and observations suggest that both the power and effects of AGN feedback should be maximised in hyper-luminous (LBol > 1047 erg s-1) quasars, I.e. objects at the brightest end of the AGN luminosity function. In this paper, we present the first results of a multiwavelength observing programme, focusing on a sample of WISE/SDSS selected hyper-luminous (WISSH) broad-line quasars at z ≈ 1.5-5. The WISSH quasars project has been designed to reveal the most energetic AGN-driven outflows, estimate their occurrence at the peak of quasar activity, and extend the study of correlations between outflows and nuclear properties up to poorly investigated, extreme AGN luminosities, I.e. LBol 1047 - 1048 erg s-1. We present near-infrared, long-slit LBT/LUCI1 spectroscopy of five WISSH quasars at z ≈ 2.3 - 3.5, showing prominent [OIII] emission lines with broad (FWHM 1200-2200 km s-1) and skewed profiles. The luminosities of these broad [OIII] wings are the highest measured so far, with L[OIII]broad ≳ 5 × 1044 erg s-1, and reveal the presence of powerful ionised outflows with associated mass outflow rates Ṁ ≳ 1700M⊙ yr-1 and kinetic powers Ėkin ≳ 1045 erg s-1. Although these estimates are affected by large uncertainties because of the use of [OIII] as a tracer of ionised outflows and the very basic outflow model adopted here, these results suggest that in our hyper-luminous targets the AGN is highly efficient at pushing large amounts of ionised gas outwards. Furthermore, the mechanical outflow luminosities measured for WISSH quasars correspond to higher percentages ( 1-3%) of LBol than those derived for AGN with lower LBol. Our targets host very massive (MBH ≳ 2 × 109M⊙) black holes that are still accreting at a high rate (I.e. a factor of 0.4-3 of the Eddington limit). These findings clearly demonstrate that WISSH quasars offer the opportunity to probe the extreme end of both luminosity and supermassive black holes (SMBH) mass functions and revealing

  9. Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces

    NASA Astrophysics Data System (ADS)

    Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.

    2014-10-01

    A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.

  10. The influence of the environment on the propagation of protostellar outflows

    NASA Astrophysics Data System (ADS)

    Moraghan, Anthony; Smith, Michael D.; Rosen, Alexander

    2008-06-01

    The properties of bipolar outflows depend on the structure in the environment as well as the nature of the jet. To help distinguish between the two, we investigate here the properties pertaining to the ambient medium. We execute axisymmetric hydrodynamic simulations, injecting continuous atomic jets into molecular media with density gradients (protostellar cores) and density discontinuities (thick swept-up sheets). We determine the distribution of outflowing mass with radial velocity (the mass spectrum) to quantify our approach and to compare to observationally determined values. We uncover a sequence from clump entrainment in the flanks to bow shock sweeping as the density profile steepens. We also find that the dense, highly supersonic outflows remain collimated but can become turbulent after passing through a shell. The mass spectra vary substantially in time, especially at radial speeds exceeding 15 kms-1. The mass spectra also vary according to the conditions: both envelope-type density distributions and the passage through dense sheets generate considerably steeper mass spectra than a uniform medium. The simulations suggest that observed outflows penetrate highly non-uniform media.

  11. Multiple outflows in the bipolar planetary nebula M1-16: A molecular line study

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Wootten, Alwyn; Schwarz, Hugo E.; Wild, W.

    1994-06-01

    Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and greater than 34 km/s, respectively. The slow outflow is mildly elliptical, while the fast molecular outflow is bipolar. This fast outflow is roughly aligned with the very fast outflows recently found in the optical, while the long axis of the slow elliptical outflow is roughly orthogonal to the optical outflow axis. The kinematic timescales for the CO fast outflow and the optical very fast outflow agree closely, supporting the view that the former represents material in the slow outflow accelerated by the very fast outflow. The kinematic signature of a disk expanding with about 15.5 km/s can also be seen in the CO J = 2-1 data. The mass-loss rate (a) for the slow outflow is greater than or equal to 2.8 x 10-5 solar mass/yr and possibly as large as 9 x 10-5 solar mass/yr, (b) for the fast outflow is greater than or equal to 5 x 10-6 solar mass/yr, and (c) for the very fast optically visible outflow is approximately equal 5 x 10-7 solar mass/yr. The disk mass is approximately equal 6 x 10-3 solar mass. Grain photoelectric heating results in temperatures of 20-70 K in molecular gas of the slow outflow. The (13)C/(12)C abundance ratio in M1-16 is found to be 0.33, quite possibly the highest found for any evolved object. Upper limits for the (18)O/(16)O and (17)O/(16)O ratios were found to be consistent with the values found in AGB stars. A search for other molecular species in M1-16 resulted in the detection of the high-excitation species HCN, CN, (13)CN, HCO(+), and H(13)CO(+) and possibly N2H(+). Both the HCO(+)/HCN and CN/HCN line-intensity ratios are enhanced, the former by a very large factor, over the values found in the envelopes of AGB stars, probably as a result of

  12. A Comparison of Techniques for Determining Mass Outflow Rates in the Type 2 Quasar Markarian 34

    NASA Astrophysics Data System (ADS)

    Revalski, Mitchell; Crenshaw, D. Michael; Fischer, Travis C.; Kraemer, Steven B.; Schmitt, Henrique R.; Dashtamirova, Dzhuliya; Pope, Crystal L.

    2018-06-01

    We present spatially resolved measurements of the mass outflow rates and energetics for the Narrow Line Region (NLR) outflows in the type 2 quasar Markarian 34. Using data from the Hubble Space Telescope and Apache point observatory, together with Cloudy photoionization models, we calculate the radial mass distribution of ionized gas and map its kinematics. We compare the results of this technique to global outflow rates that characterize NLR outflows with a single outflow rate and energetic measurement. We find that NLR mass estimates based on emission line luminosities produce more consistent results than techniques employing filling factors.

  13. X-ray evidence for ultra-fast outflows in AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  14. Transparency Parameters from Relativistically Expanding Outflows

    NASA Astrophysics Data System (ADS)

    Bégué, D.; Iyyani, S.

    2014-09-01

    In many gamma-ray bursts a distinct blackbody spectral component is present, which is attributed to the emission from the photosphere of a relativistically expanding plasma. The properties of this component (temperature and flux) can be linked to the properties of the outflow and have been presented in the case where there is no sub-photospheric dissipation and the photosphere is in coasting phase. First, we present the derivation of the properties of the outflow for finite winds, including when the photosphere is in the accelerating phase. Second, we study the effect of localized sub-photospheric dissipation on the estimation of the parameters. Finally, we apply our results to GRB 090902B. We find that during the first epoch of this burst the photosphere is most likely to be in the accelerating phase, leading to smaller values of the Lorentz factor than the ones previously estimated. For the second epoch, we find that the photosphere is likely to be in the coasting phase.

  15. Financial Crisis, Capital Outflows, and Policy Responses: Examples from East Asia

    ERIC Educational Resources Information Center

    Rajan, Ramkishen S.

    2007-01-01

    Financial crises seem to have become the norm rather than the exception since 1992. The author examines the impact of a crisis of confidence and resultant capital outflows from a small and open economy and the possible policy options in response to such outflows, using simple tools and definitions that will be familiar to any money and banking or…

  16. Embedded Outflows from Herbig-Haro 46/47

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on image for larger view of insert

    This image from NASA's Spitzer Space Telescope transforms a dark cloud into a silky translucent veil, revealing the molecular outflow from an otherwise hidden newborn star. Using near-infrared light, Spitzer pierces through the dark cloud to detect the embedded outflow in an object called HH 46/47. Herbig-Haro (HH) objects are bright, nebulous regions of gas and dust that are usually buried within dark clouds. They are formed when supersonic gas ejected from a forming protostar, or embryonic stars, interacts with the surrounding interstellar medium. These young stars are often detected only in the infrared.

    The Spitzer image was obtained with the infrared array camera and is a three-color mosaic. Emission at 3.6 microns is shown as blue, emission from 4.5 and 5.8 microns has been combined as green, and 8.0 micron emission is depicted as red.

    HH 46/47 is a striking example of a low mass protostar ejecting a jet and creating a bipolar, or two-sided, outflow. The central protostar lies inside a dark cloud (known as a 'Bok globule') which is illuminated by the nearby Gum Nebula. Located at a distance of 1,140 light-years and found in the constellation Vela, the protostar is hidden from view in the visible-light image (inset). With Spitzer, the star and its dazzling jets of molecular gas appear with clarity.

    The 8-micron channel of the infrared array camera is sensitive to emission from polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by the surrounding radiation field and become luminescent, accounting for the reddish cloud. Note that the boundary layer of the 8-micron emission corresponds to the lower right edge of the dark cloud in the visible-light picture.

    Outflows are fascinating objects, since they characterize one of the most energetic phases of the formation of low-mass stars (like our Sun). The

  17. OUTFLOW AND METALLICITY IN THE BROAD-LINE REGION OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Nagao, Tohru

    2017-01-20

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE , we investigate outflows in the broad-line region (BLR) in low-redshift AGNs ( z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which ismore » consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.« less

  18. Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures

    NASA Technical Reports Server (NTRS)

    Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.

  19. Extreme gaseous outflows in radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-07-01

    We present four radio-loud narrow-line Seyfert 1 (NLS1) galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km s-1, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km s-1. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [O III] λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [Ne V] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  20. Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Jong-Hak; Son, Donghoon; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr, E-mail: hjbae@galaxy.yonsei.ac.kr

    2017-04-20

    We present gas kinematics based on the [O iii] λ 5007 line and their connection to galaxy gravitational potential, active galactic nucleus (AGN) energetics, and star formation, using a large sample of ∼110,000 AGNs and star-forming (SF) galaxies at z < 0.3. Gas and stellar velocity dispersions are comparable to each other in SF galaxies, indicating that the ionized gas kinematics can be accounted by the gravitational potential of host galaxies. In contrast, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. The [O iii] velocity–velocity dispersion (VVD) diagrammore » dramatically expands toward high values as a function of AGN luminosity, implying that the outflows are AGN-driven, while SF galaxies do not show such a trend. We find that the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [O iii] profile. AGNs with strong outflow signatures show on average similar specific star formation rates (sSFRs) to those of star-forming galaxies. In contrast, AGNs with weak or no outflows have an order of magnitude lower sSFRs, suggesting that AGNs with current strong outflows do now show any negative AGN feedback and that it may take dynamical time to impact on star formation over galactic scales.« less

  1. Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-05-01

    Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.

  2. Detection and validation of a small broad-host-range plasmid pBBR1MCS-2 for use in genetic manipulation of the extremely acidophilic Acidithiobacillus sp.

    PubMed

    Hao, Likai; Liu, Xiangmei; Wang, Huiyan; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2012-09-01

    An efficient genetic system for introducing genes into biomining microorganisms is essential not only to experimentally determine the functions of genes predicted based on bioinformatic analysis, but also for their genetic breeding. In this study, a small broad-host-range vector named pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups, was studied for the feasibility of its use in conjugative gene transfer into extremely acidophilic strains of Acidithiobacillus. To do this, a recombinant plasmid pBBR-tac-Sm, a derivative of pBBR1MCS-2, was constructed and the streptomycin resistant gene (Sm(r)) was used as the reporter gene. Using conjugation, pBBR-tac-Sm was successfully transferred into three tested strains of Acidithiobacillus. Then we measured its transfer frequency, its stability in Acidithiobacillus cells, and the level of resistance to streptomycin of the transconjugants and compared this with the IncQ plasmid pJRD215 control. Our results indicate that pBBR1MCS-2 provides a new and useful tool in the genetic manipulation of Acidithiobacillus strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Can Gas Outflows Explain The Strong Lyα Emission Of Lyman Alpha Emitters?

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takuya; Ouchi, M.; Shimasaku, K.; Nakajima, K.; Ono, Y.; Rauch, M.

    2012-05-01

    Lyman alpha emitters (LAEs) are galaxies commonly seen at high redshift, probably playing an important role in galaxy evolution as building blocks of massive galaxies. The most interesting feature of LAEs is strong Lyα emission, because Lyα photons produced in a galaxy are expected to be easily absorbed by dust in the ISM before escaping the galaxy due to their resonant nature. Previous studies have suggested that outflow may help their escape thanks to reduced cross sections of outflowing (ie, redshifted) neutral hydrogen atoms. Although the presence of outflows can be examined from the offset of the Lyα emission from the systemic velocity defined by Hα emission, there are only four LAEs with reliable detection of Hα emission. We present the results of Magellan/MMIRS and Keck/NIRSPEC spectroscopic observations of five LAEs at z˜2.2 from our wide-field narrow-band survey with Subaru/Suprime-Cam. We successfully detect Hα emission for five objects. After eliminating an AGN contaminated object, we measure the velocityoffset between Lyα and Hα (Δ v_Lyα) for the remaining four, to find that three have a positive offset, suggesting an outflow. Since three among the four from the the literature also have an outflow, we conclude that ˜75% of LAEs have an outflow, with velocities of 75-280 km/s. We then use these eight LAEs to examine how the Lyα strength defined by Lyα escape fraction (f_esc) and/or Lyα equivalent width (EW(Lyα)) depend on other physical quantities including those derived from SED fitting. Contrary to our expectation, we find that both f_esc and EW(Lyα) decrease with Δ v_Lyα. Thus, although LAEs do have outflow, high outflow velocities are not the primary cause of strong Lyα emission. We also find that the Lyα strength does not depend on E(B-V). However, we find that objects with a clumpier gas distribution may have higher f_esc.

  4. Valles Marineris and Chryse Outflow Channels

    NASA Image and Video Library

    1998-06-08

    A color image of Valles Marineris, the great canyon and the south Chryse basin-Valles Marineris outflow channels of Mars; north toward top. The scene shows the entire Valles Marineris canyon system, over 3,000 km long and averaging 8 km deep, extending from Noctis Labyrinthus, the arcuate system of graben to the west, to the chaotic terrain to the east and related outflow canyons that drain toward the Chryse basin. Eos and Capri Chasmata (south to north) are two canyons connected to Valles Marineris. Ganges Chasma lies directly north. The chaos in the southeast part of the image gives rise to several outflow channels, Shalbatana, Simud, Tiu, and Ares Valles (left to right), that drained north into the Chryse basin. The mouth of Ares Valles is the site of the Mars Pathfinder lander. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color; Mercator projection. The image roughly extends from latitude 20 degrees S. to 20 degrees N. and from longitude 15 degrees to 102.5 degrees. The connected chasma or valleys of Valles Marineris may have formed from a combination of erosional collapse and structural activity. Layers of material in the eastern canyons might consist of carbonates deposited in ancient lakes, eolian deposits, or volcanic materials. Huge ancient river channels began from Valles Marineris and from adjacent canyons and ran north. Many of the channels flowed north into Chryse Basin. The south Chryse outflow channels are cut an average of 1 km into the cratered highland terrain. This terrain is about 9 km above datum near Valles Marineris and steadily decreases in elevation to 1 km below datum in the Chryse basin. Shalbatana is relatively narrow (10 km wide) but can reach 3 km in depth. The channel begins at a 2- to 3-km-deep circular depression within a large impact crater, whose floor is partly covered by chaotic material, and ends in Simud Valles. Tiu and Simud Valles consist of a complex of

  5. The Gaseous Environments of Quasars: Outflows, Feedback & Cold Mode Accretion

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Hamann, Fred

    2018-06-01

    The early stages of massive galaxy evolution can involve galaxy-scale outflows driven by a starburst or a central quasar and cold-mode accretion (infall) that adds to the mass buildup in the galaxies. I will describe three related studies that use quasar absorption lines to measure outflows, infall, and the general gaseous environments of quasars across a range of spatial scales. The three studies are: 1) High-resolution spectroscopy with Keck-HIRES and VLT-UVES to study associated absorption lines (AALs) that have redshifts greater than the emission redshifts indicating infall and/or rich multi-component AAL complexes that might be interstellar clouds in the host galaxies that have been shredded and dispersed by a fast unseen quasar-driven wind. The data provide strong constraints on the gas kinematics, spatial structure, column densities, metallicities, and energetics. 2) A complete inventory of high-velocity CIV 1548,1550 mini-BAL outflows in quasars using high-resolution high signal-to-noise spectra in the public VLT-UVES and Keck-HIRES archives. This sensitive mini-BAL survey fills an important niche between previous work on narrow absorption lines (NALs) and the much-studied broad absorption lines (BALs) to build a more complete picture of quasar outflows. I will report of the mini-BAL statistics, the diversity of lines detected, and some tests for correlations with the quasar properties. We find, for example, that mini-BALs at v > 4000 km/s in at least 10% of 511 quasars studied, including 1% at v > 0.1 c. Finally, 3) Use the much larger database of NALs measured in 262,449 BOSS quasars by York et al. (in prep.) to study their potential relationships to the quasars and, specifically, their origins in quasar outflows. This involves primarily comparisons of the incidence and properties of NALs at different velocity shifts to other measured properties of the quasars such as BAL outflows, emission line characteristics, radio-loudness, and red colors. We find

  6. Suzaku Discovery of Ultra-fast Outflows in Radio-loud AGN

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.; Tombesi, F.; Reeves, J.; Braito, V.; Gofford, J.; Cappi, M.

    2010-03-01

    We present the results of an analysis of the 3.5--10.5 keV spectra of five bright Broad-Line Radio Galaxies (BLRGs) using proprietary and archival Suzaku observations. In three sources -- 3C 111, 3C 120, and 3C 390.3 -- we find evidence, for the first time in a radio-loud AGN, for absorption features at observed energies 7 keV and 8--9 keV, with high significance according to both the F-test and extensive Monte Carlo simulations (99% or larger). In the remaining two BLRGs, 3C 382 and 3C 445, there is no evidence for such absorption features in the XIS spectra. If interpreted as due to Fe XXV and/or Fe XXVI K-shell resonance lines, the absorption features in 3C 111, 3C 120, and 3C 390.3 imply an origin from an ionized gas outflowing with velocities in the range v 0.04-0.15c, reminiscent of Ultra-Fast Outflows (UFOs) previously observed in radio-quiet Seyfert galaxies. A fit with specific photoionization models gives ionization parameters log ξ 4--5.6 erg s-1 cm and column densities of NH 1022-23 cm-2, similar to the values observed in Seyferts. Based on light travel time arguments, we estimate that the UFOs in the three BLRGs are located within 20--500 gravitational radii from the central black hole, and thus most likely are connected to disk winds/outflows. Our estimates show that the UFOs mass outflow rate is comparable to the accretion rate and their kinetic energy a significant fraction of the AGN bolometric luminosity, making these outflows significant for the global energetic of these systems, in particular for mechanisms of jet formation.

  7. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  8. Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling.

    PubMed

    Park, Eon Joo; Ogden, Lisa A; Talbot, Amy; Evans, Sylvia; Cai, Chen-Leng; Black, Brian L; Frank, Deborah U; Moon, Anne M

    2006-06-01

    Fibroblast growth factor 8 (Fgf8) is a secreted signaling protein expressed in numerous temporospatial domains that are potentially relevant to cardiovascular development. However, the pathogenesis of complex cardiac and outflow tract defects observed in Fgf8-deficient mice, and the specific source(s) of Fgf8 required for outflow tract formation and subsequent remodeling are unknown. A detailed examination of the timing and location of Fgf8 production revealed previously unappreciated expression in a subset of primary heart field cells; Fgf8 is also expressed throughout the anterior heart field (AHF) mesoderm and in pharyngeal endoderm at the crescent and early somite stages. We used conditional mutagenesis to examine the requirements for Fgf8 function in these different expression domains during heart and outflow tract morphogenesis. Formation of the primary heart tube and the addition of right ventricular and outflow tract myocardium depend on autocrine Fgf8 signaling in cardiac crescent mesoderm. Loss of Fgf8 in this domain resulted in decreased expression of the Fgf8 target gene Erm, and aberrant production of Isl1 and its target Mef2c in the anterior heart field, thus linking Fgf8 signaling with transcription factor networks that regulate survival and proliferation of the anterior heart field. We further found that mesodermal- and endodermal-derived Fgf8 perform specific functions during outflow tract remodeling: mesodermal Fgf8 is required for correct alignment of the outflow tract and ventricles, whereas activity of Fgf8 emanating from pharyngeal endoderm regulates outflow tract septation. These findings provide a novel insight into how the formation and remodeling of primary and anterior heart field-derived structures rely on Fgf8 signals from discrete temporospatial domains.

  9. Molecular emission in chemically active protostellar outflows

    NASA Astrophysics Data System (ADS)

    Lefloch, B.

    2011-12-01

    Protostellar outflows play an important role in the dynamical and chemical evolution of cloud through shocks. The Herschel Space Observatory (HSO) brings new insight both on the molecular content and the physical conditions in protostellar shocks through high spectral and angular resolution studies of the emission of major gas cooling agents and hydrides. The Herschel/CHESS key-program is carrying out an in depth study of the prototypical shock region L1157-B1. Analysis of the line profiles detected allows to constrain the formation/destruction route of various molecular species, in relation with the predictions of MHD shock models. The Herschel/WISH key-program investigates the properties and origin of water emission in a broad sample of protostellar outflows and envelopes. Implications of the first results for future studies on mass-loss phenomena are discussed.

  10. Velocity Space Evolution of Dayside Reconnection Outflow

    NASA Astrophysics Data System (ADS)

    Broll, J. M.; Fuselier, S. A.; Trattner, K. J.

    2015-12-01

    Magnetic reconnection is a universal phenomenon occurring when energy stored in a complicated magnetic field topology is released into the surrounding plasma as the field simplifies its configuration. At Earth's dayside magnetopause, reconnection is responsible for mass and energy input from the solar wind into the magnetosphere. We describe the evolution of the velocity-space evolution of plasma outflow from a dayside magnetic reconnection region. We analyze Cluster magnetopause crossings between 1 and 10 Earth radii from the reconnection X-line predicted by the maximum magnetic shear model. The effects of nonadiabatic processes, such as deformation of the profile due to finite-gyroradius-induced pitch-angle scattering and wave-particle interactions, are described. We compare observations and simulation results to describe the outflow evolution and infer the field-aligned distance between an observation and the reconnection site producing it.

  11. A Massive X-ray Outflow From The Quasar PDS 456

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; O'Brien, P. T.; Ward, M. J.

    2003-01-01

    We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.

  12. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  13. Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238-1904

    NASA Astrophysics Data System (ADS)

    Arav, Nahum; Borguet, Benoit; Chamberlain, Carter; Edmonds, Doug; Danforth, Charles

    2013-12-01

    Spectroscopic observations of quasar outflows at rest-frame 500-1000 Å have immense diagnostic power. We present analyses of such data, where absorption troughs from O IV and O IV* allow us to obtain the distance of the outflows from the AGN and troughs from Ne VIII and Mg X reveal the warm absorber phase of the outflow. Their inferred column densities, combined with those of O VI, N IV and H I, yield two important results. (1) The outflow shows two ionization phases, where the high-ionization phase carries the bulk of the material. This is similar to the situation seen in X-ray warm absorber studies. Furthermore, the low-ionization phase is inferred to have a volume filling factor of 10-5-10-6. (2) We determine a distance of 3000 pc from the outflow to the central source using the O IV*/O IV column density ratio and the knowledge of the ionization parameter. Since this is a typical high-ionization outflow, we can determine robust values for the outflow's mass flux and kinetic luminosity of 40 M⊙ yr-1 and 1045 erg s-1, respectively, where the latter is roughly equal to 1 per cent of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high-ionization wind suggest that quasar outflows are a major contributor to AGN feedback mechanisms.

  14. Dynamic right ventricular outflow tract (infundibular) stenosis and pectus excavatum in a dog

    PubMed Central

    Fournier, Tanya E.

    2008-01-01

    This is the first published report of a dog with dynamic right ventricular outflow tract (infundibular) stenosis, right ventricular hypertrophy, and pectus excavatum. A juvenile dog presented with a grade V/VI left base systolic heart murmur, tachycardia, and pectus excavatum. Diagnosis of the aforementioned conditions was based on radiography, electrocardiography, and echocardiography. At 9 1/2 wk of age the heart murmur was no longer audible and the right ventricular stenosis and hypertrophy had dissipated and regressed, respectively. Resolution may be associated with growth of the dog. A good prognosis is foreseen. PMID:18512460

  15. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  16. Multiple outflows in the bipolar planetary nebula M1-16: A molecular line study

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Wootten, Alwyn; Schwarz, Hugo E.; Wild, W.

    1994-01-01

    Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and greater than 34 km/s, respectively. The slow outflow is mildly elliptical, while the fast molecular outflow is bipolar. This fast outflow is roughly aligned with the very fast outflows recently found in the optical, while the long axis of the slow elliptical outflow is roughly orthogonal to the optical outflow axis. The kinematic timescales for the CO fast outflow and the optical very fast outflow agree closely, supporting the view that the former represents material in the slow outflow accelerated by the very fast outflow. The kinematic signature of a disk expanding with about 15.5 km/s can also be seen in the CO J = 2-1 data. The mass-loss rate (a) for the slow outflow is greater than or equal to 2.8 x 10(exp -5) solar mass/yr and possibly as large as 9 x 10(exp -5) solar mass/yr, (b) for the fast outflow is greater than or equal to 5 x 10(exp -6) solar mass/yr, and (c) for the very fast optically visible outflow is approximately equal 5 x 10(exp -7) solar mass/yr. The disk mass is approximately equal 6 x 10(exp -3) solar mass. Grain photoelectric heating results in temperatures of 20-70 K in molecular gas of the slow outflow. The (13)C/(12)C abundance ratio in M1-16 is found to be 0.33, quite possibly the highest found for any evolved object. Upper limits for the (18)O/(16)O and (17)O/(16)O ratios were found to be consistent with the values found in AGB stars. A search for other molecular species in M1-16 resulted in the detection of the high-excitation species HCN, CN, (13)CN, HCO(+), and H(13)CO(+) and possibly N2H(+). Both the HCO(+)/HCN and CN/HCN line-intensity ratios are enhanced, the former by a very large factor, over the values found in the envelopes of AGB

  17. Interannual variation, decadal trend, and future change in ozone outflow from East Asia

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Liao, Hong; Mao, Yuhao; Yang, Yang; Jiang, Hui

    2017-03-01

    We examine the past and future changes in the O3 outflow from East Asia using a global 3-D chemical transport model, GEOS-Chem. The simulations of Asian O3 outflow for 1986-2006 are driven by the assimilated GEOS-4 meteorological fields, and those for 2000-2050 are driven by the meteorological fields archived by the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 under the IPCC SRES A1B scenario. The evaluation of the model results against measurements shows that the GEOS-Chem model captures the seasonal cycles and interannual variations of tropospheric O3 concentrations fairly well with high correlation coefficients of 0.82-0.93 at four ground-based sites and 0.55-0.88 at two ozonesonde sites where observations are available. The increasing trends in surface-layer O3 concentrations in East Asia over the past 2 decades are captured by the model, although the modeled O3 trends have low biases. Sensitivity studies are conducted to examine the respective impacts of meteorological parameters and emissions on the variations in the outflow flux of O3. When both meteorological parameters and anthropogenic emissions varied from 1986-2006, the simulated Asian O3 outflow fluxes exhibited a statistically insignificant decadal trend; however, they showed large interannual variations (IAVs) with seasonal values of 4-9 % for the absolute percent departure from the mean (APDM) and an annual APDM value of 3.3 %. The sensitivity simulations indicated that the large IAVs in O3 outflow fluxes were mainly caused by variations in the meteorological conditions. The variations in meteorological parameters drove the IAVs in O3 outflow fluxes by altering the O3 concentrations over East Asia and by altering the zonal winds; the latter was identified to be the key factor, since the O3 outflow was highly correlated with zonal winds from 1986-2006. The simulations of the 2000-2050 changes show that the annual outflow flux of O3 will increase by 2.0, 7.9, and

  18. Fluid outflows from Venus impact craters - Analysis from Magellan data

    NASA Technical Reports Server (NTRS)

    Asimow, Paul D.; Wood, John A.

    1992-01-01

    Many impact craters on Venus have unusual outflow features originating in or under the continuous ejecta blankets and continuing downhill into the surrounding terrain. These features clearly resulted from flow of low-viscosity fluids, but the identity of those fluids is not clear. In particular, it should not be assumed a priori that the fluid is an impact melt. A number of candidate processes by which impact events might generate the observed features are considered, and predictions are made concerning the rheological character of flows produce by each mechanism. A sample of outflows was analyzed using Magellan images and a model of unconstrained Bingham plastic flow on inclined planes, leading to estimates of viscosity and yield strength for the flow materials. It is argued that at least two different mechanisms have produced outflows on Venus: an erosive, channel-forming process and a depositional process. The erosive fluid is probably an impact melt, but the depositional fluid may consist of fluidized solid debris, vaporized material, and/or melt.

  19. Pest controllers: a high-risk group for Multiple Chemical Sensitivity (MCS)?

    PubMed

    Bornschein, Susanne; Hausteiner, Constanze; Pohl, Corina; Jahn, Thomas; Angerer, Jürgen; Foerstl, Hans; Zilker, Thomas

    2008-03-01

    Based on the assumption that professional groups with frequent chemical exposure are at an increased risk for developing Multiple Chemical Sensitivity (MCS), a sample of 45 professional pest controllers was investigated. The examination of the pest controllers consisted of a physical and laboratory examination with urine screening for pyrethroid metabolites, a psychiatric interview, a neuropsychological test battery, and a chemical sensitivity questionnaire. Persistent or serious work related health problems and chemical sensitivity were not reported. In urine, cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (Br(2)CA) was detected in 11%, 4-fluoro-3-phenoxybenzoic acid (F-PBA) in 7%. 3-phenoxybenzoic acid (3-PBA) exceeded the reference range in 9%, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (Cl(2)CA) in 20%. Increased liver enzymes and blood count deviations were rather common. 38% had psychiatric disorders. With few exceptions, neuropsychological testing results were normal. The results do not support the hypothesis that work-related insecticide exposure promotes chemical sensitivity.

  20. Triggering a Wet Climate on Mars: The Role of Outflow Channels in Martian Water Cycles

    NASA Astrophysics Data System (ADS)

    Santiago, D.; Asphaug, E. I.; Colaprete, A.

    2011-12-01

    The triggering of a robust water cycle on Mars has been hypothesized to be caused by gigantic flooding events evidenced by outflow channels. Here we use the Ames Mars General Circulation Model (MGCM) to study how these presumably abrupt eruptions of water (Carr,1996) affected the climate of Mars. We model where the water ultimately went as part of a transient hydrologic cycle. Chryse Planitia, east of Tharsis, has evidence for multiple water outflow channels. One of the largest channels is Ares Valles, which was carved by floods with estimated water volumes of order 10^5 km^2 (Andrews-Hanna, 2007 & Carr, 1996). Outflow discharge rate estimates range from 10^6 to 10^7 m^3/seconds or greater (Andrews-Hanna & Phillips, 2007, Harrison & Grimm, 2008). Studies suggest that outflow channels formed with smaller, successive floods instead of a single large flood (Wilson, et al.,2004). Warner et al. (2009) suggest up to six outflow events for the formation of Ares Valles, while estimates for another large outflow, Kasei Valles, might have been flooded by over two thousand floods with a total water volume of 5.5 x 10^5 km^3 (Harrison & Grimm, 2008). By adding water to the surface of Mars at the given outflow rate, as an expanding one-layer lake, we are able to study quantitatively how these outflow events influenced Mars climate, particularly the hydrologic cycle. In particular: Could sudden introductions of large amounts of water on the Martian surface lead to a new equilibrated water cycle? Can we tie certain fluvial surface features to transient or sustained water cycles? What are the roles of water vapor and water ice clouds to sudden changes in the water cycle on Mars? How are radiative feedbacks involved with this? What is the ultimate fate of the outflow water? This work uses the NASA Ames MGCM version 2.1 and other schemes that are part of the NASA Ames MGCM suite of tools. Various versions of the MGCM developed at Ames have been used extensively to examine dust and

  1. Evidence that Most BALQSO Outflows are situated at Least 100 Parsecs from the Central Source

    NASA Astrophysics Data System (ADS)

    Arav, Nahum; Xu, Xinfeng

    2018-01-01

    The most robust way for determining the distance of quasar absorption outflows is the use of troughs from ionic excited states. The column densities ratio between the excited and resonance states is a sensitive diagnostic of the outflows’ number density. Combined with a knowledge of the outflow's ionization parameter a distance can be determined. Here we report the results of two surveys targeting outflows that show troughs from S IV. One survey includes 1091 SDSS and BOSS quasar spectra, and the other includes higher quality spectra of 13 quasar observed with the Very Large Telescope.We find that at least 50% of quasar outflows are at distances larger than 100 parsecs from the central source, and at least 12% are at distances larger than 1000 parsecs. These results have profound implications to the study of the origin and acceleration mechanism of quasar outflows, and their effects on the host galaxy.

  2. Ionized and Molecular Gas in IC 860: Evidence for an Outflow

    NASA Astrophysics Data System (ADS)

    Adams, Carson; Alatalo, Katherine; Medling, Anne M.

    2018-01-01

    Galaxies at present-day fall predominantly in two distinct populations, as either blue, star-forming spirals or red, quiescent early-type galaxies. Blue galaxies appear to evolve onto the red sequence as star formation is quenched. The absence of a significant population falling in the intermediate ‘green valley’ implies that these transitions must occur rapidly. Identifying the initial properties of and pathways taken by these ‘dying galaxies’ is essential to building a complete understanding of galactic evolution. In this work, we investigate these phenomena in action within IC860 — a nearby, early-type spiral in the initial stages of undergoing a rapid transition in the presence of a powerful AGN-driven molecular outflow. As a shocked, post-starburst galaxy with an intermediate-age stellar population which lies on the blue end of the green valley, IC860 provides a window into the early stages of galaxy transition and AGN feedback. We present Hubble Space Telescope imaging of IC860 showing a violent, dusty outflow originating from a compact core. We find that the mean velocity map of the CO(1-0) from CARMA suggests a dynamically excited bar funneling molecular gas into the galactic center. Finally, we present kinematic maps of ionized gas emission lines as well as sodium D absorption tracing neutral winds obtained by the Wide-Field Spectrograph.

  3. Morphometric Analysis of Aqueous Humor Outflow Structures with Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Francis, Andrew W.; Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Folz, Steven; Overby, Darryl R.; Sigal, Ian A.; Wang, Bo; Schuman, Joel S.

    2012-01-01

    Purpose. To describe morphometric details of the human aqueous humor (AH) outflow microvasculature visualized with 360-degree virtual castings during active AH outflow in cadaver eyes and to compare these structures with corrosion casting studies. Methods. The conventional AH outflow pathways of donor eyes (n = 7) and eyes in vivo (n = 3) were imaged with spectral-domain optical coherence tomography (SD-OCT) and wide-bandwidth superluminescent diode array during active AH outflow. Digital image contrast was adjusted to isolate AH microvasculature, and images were viewed in a 3D viewer. Additional eyes (n = 3) were perfused with mock AH containing fluorescent tracer microspheres to compare microvasculature patterns. Results. Observations revealed components of the conventional outflow pathway from Schlemm's canal (SC) to the superficial intrascleral venous plexus (ISVP). The superficial ISVP in both our study and corrosion casts were composed of interconnected venules (10–50 μm) forming a hexagonal meshwork. Larger radial arcades (50–100 μm) drained the region nearest SC and converged with larger tortuous vessels (>100 μm). A 360-degree virtual casting closely approximated corrosion casting studies. Tracer studies corroborated our findings. Tracer decorated several larger vessels (50–100 μm) extending posteriorly from the limbus in both raw and contrast-enhanced fluorescence images. Smaller tracer-labeled vessels (30–40 μm) were seen branching between larger vessels and exhibited a similar hexagonal network pattern. Conclusions. SD-OCT is capable of detailed morphometric analysis of the conventional outflow pathway in vivo or ex vivo with details comparable to corrosion casting techniques. PMID:22499987

  4. Spin properties of supermassive black holes with powerful outflows

    NASA Astrophysics Data System (ADS)

    Daly, Ruth. A.

    2016-05-01

    Relationships between beam power and accretion disc luminosity are studied for a sample of 55 high excitation radio galaxies (HERG), 13 low excitation radio galaxies (LERG), and 29 radio loud quasars (RLQ) with powerful outflows. The ratio of beam power to disc luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disc luminosity and beam power and applying the empirically determined relationships allows a function that parametrizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in magnetically arrested disk (MAD) and advection-dominated accretion flow (ADAF) models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and active galactic nucleus type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.

  5. Disentangling the outflow and protostars in HH 900 in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan; Kiminki, Megan M.; Bally, John; Anderson, Jay

    2015-04-01

    HH 900 is a peculiar protostellar outflow emerging from a small, tadpole-shaped globule in the Carina Nebula. Previous Hα imaging with Hubble Space Telescope (HST)/Advanced Camera for Surveys showed an ionized outflow with a wide opening angle that is distinct from the highly collimated structures typically seen in protostellar jets. We present new narrowband near-IR [Fe II] images taken with the Wide Field Camera 3 on the HST that reveal a remarkably different structure than Hα. In contrast to the unusual broad Hα outflow, the [Fe II] emission traces a symmetric, collimated bipolar jet with the morphology and kinematics that are more typical of protostellar jets. In addition, new Gemini adaptive optics images reveal near-IR H2 emission coincident with the Hα emission, but not the [Fe II]. Spectra of these three components trace three separate and distinct velocity components: (1) H2 from the slow, entrained molecular gas, (2) Hα from the ionized skin of the accelerating outflow sheath, and (3) [Fe II] from the fast, dense, and collimated protostellar jet itself. Together, these data require a driving source inside the dark globule that remains undetected behind a large column density of material. In contrast, Hα and H2 emission trace the broad outflow of material entrained by the jet, which is irradiated outside the globule. As it get dissociated and ionized, it remains visible for only a short time after it is dragged into the H II region.

  6. Condensation onto grains in the outflows from mass-losing red giants

    NASA Technical Reports Server (NTRS)

    Jura, M.; Morris, M.

    1985-01-01

    In the outflows from red giants, grains are formed which are driven by radiation pressure. For the development of a model of the outflows, a detailed understanding of the interaction between the gas and dust is critical. The present investigation is concerned with condensation processes which occur after the grains nucleate near the stars. A physical process considered results from the cooling of the grains as they flow away from the star. Molecules which initially do not condense onto the grains can do so far from the star. It is shown that for some species this effect can be quite important in determining their gas-phase abundances in the outer circumstellar envelope. One of the major motivations of this investigation was provided by the desire to understand the physical conditions and molecular abundances in the outflows from the considered stars.

  7. Constraining the geometry of AGN outflows with reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Buisson, D. J. K.; Jiang, J.; Gallo, L. C.; Kara, E.; Matzeu, G. A.; Walton, D. J.

    2018-06-01

    We collate active galactic nuclei (AGN) with reported detections of both relativistic reflection and ultra-fast outflows. By comparing the inclination of the inner disc from reflection with the line-of-sight velocity of the outflow, we show that it is possible to meaningfully constrain the geometry of the absorbing material. We find a clear relation between the velocity and inclination, and demonstrate that it can potentially be explained either by simple wind geometries or by absorption from the disc surface. Due to systematic errors and a shortage of high-quality simultaneous measurements our conclusions are tentative, but this study represents a proof-of-concept that has great potential.

  8. VY Canis Majoris: Observational Studies of the Outflow

    NASA Astrophysics Data System (ADS)

    Harwit, M.

    2001-12-01

    A number of recent studies carried out with the Infrared Space Observatory, ISO, and the Submillimeter Wave Astronomy Satellite, SWAS, provide new information on the chemical composition of the dust and the geometry of the outflow. With ISO, we have obtained a near-, mid-, and far-infrared spectrum of VY CMa that shows the strong preponderance of amorphous, as contrasted to crystalline, silicates. The sharp spectral slope in the near-infrared suggests the presence also of iron grains. While an excellent theoretical fit to the data is obtained, we emphasize that this is far from unique. A resolution of ambiguities will require a self-consistent model that considers not only radiative transfer, but also plausible elemental abundances, laboratory studies of chemical condensation sequences, and gas dynamics. With SWAS we have obtained a high-resolution spectrum of the 557GHz ground state transition of ortho-water. The spectral profile enables us to rule out a number of outflow geometries proposed in the literature. With ISO we also obtained the intensities and velocity structure of several other spectral lines of water. Most of these lines must be optically thick but effectively thin, a circumstance that permits us to make use of recent gas-dynamic models to locate the radial position in the outflow where individual lines are emitted.

  9. YSO jets in the Galactic plane from UWISH2 - V. Jets and outflows in M17

    NASA Astrophysics Data System (ADS)

    Samal, M. R.; Chen, W. P.; Takami, M.; Jose, J.; Froebrich, D.

    2018-07-01

    Jets and outflows are the first signposts of stellar birth. Emission in the H2 1-0 S(1) line at 2.122- μm is a powerful tracer of shock excitation in these objects. Here we present the analysis of 2.0 × 0.8 deg2 data from the UK Wide-field Infrared Survey for H2 (UWISH2) in the 1-0 S(1) line to identify and characterize the outflows of the M17 complex. We uncover 48 probable outflows, of which 93 per cent are new discoveries. We identified driving source candidates for 60 per cent of outflows. Among the driving source candidate young stellar objects (YSOs), 90 per cent are protostars and the remaining 10 per cent are Class II YSOs. In comparison with results from other surveys, we suggest that H2 emission fades very quickly as the objects evolve from protostars to pre-main-sequence stars. We fit spectral energy distribution (SED) models to 14 candidate outflow-driving sources and conclude that the outflows of our sample are mostly driven by moderate-mass YSOs that are still actively accreting from their protoplanetary disc. We examined the spatial distribution of the outflows with the gas and dust distribution of the complex and observed that the filamentary dark cloud M17SWex, located on the south-western side of the complex, is associated with a greater number of outflows. We find that our results corroborate previous suggestions that, in the M17 complex, M17SWex is the most active site of star formation. Several of our newly identified outflow candidates are excellent targets for follow-up studies to understand better the very early phase of protostellar evolution.

  10. Outflow resistance of the Baerveldt glaucoma drainage implant and modifications for early postoperative intraocular pressure control.

    PubMed

    Breckenridge, R Reid; Bartholomew, Luanna R; Crosson, Craig E; Kent, Alexander R

    2004-10-01

    To determine outflow resistance of the Baerveldt glaucoma implant using different tube configurations. Outflow resistance of 6 tube configurations (C1- C6) of Baerveldt implants was measured under conditions of constant pressure perfusion. Pressures ranged from 2 to 55 mm Hg. Venting slits were created using a 7-0 Vicryl, spatulated suture-needle. Seton tubes were occluded by threading a retrograde suture approximately 1.5 cm into the lumen. At pressures between 2 and 55 mm Hg, mean outflow resistance of the normally configured seton (ie, open tube; C1) was 0.41 (+/- 0.6) mm Hg/microL/min. Resistance was unchanged (mean 0.41 (+/- 0.4) mm Hg/microL/min) by the addition of 4 venting slits (C2) to the seton tube. Occlusion of the open seton tube with a 3-0 Supramid suture (C3) significantly increased (P < 0.001) mean outflow resistance to 14.99 (+/- 0.6) mm Hg/microL/min. Occlusion of the tube with a 4-0 Supramid suture (C4) significantly increased (P < 0.001) mean outflow resistance to 1.09 (+/- 0.5) mm Hg/microL/min. In implants where tubes were occluded with a 3-0 Supramid suture, the addition of venting slits (C5) significantly decreased (P = 0.038) mean outflow resistance to 8.98 (+/- 0.4) mm Hg/microL/min. In tubes occluded with a 4-0 Supramid suture, the addition of venting slits (C6) decreased mean outflow resistance to 0.98 (+/- 0.6) mm Hg/microL/min. Although these results cannot be directly correlated to the clinical setting, they do show that outflow resistance can be modified at the time of surgery by changing tube configuration of the Baerveldt glaucoma implant. Configuration C5 (3-0 Supramid with venting slits) closely approximates the outflow rate in the normal intraocular pressure range.

  11. Adaptive MCS selection and resource planning for energy-efficient communication in LTE-M based IoT sensing platform.

    PubMed

    Dao, Nhu-Ngoc; Park, Minho; Kim, Joongheon; Cho, Sungrae

    2017-01-01

    As an important part of IoTization trends, wireless sensing technologies have been involved in many fields of human life. In cellular network evolution, the long term evolution advanced (LTE-A) networks including machine-type communication (MTC) features (named LTE-M) provide a promising infrastructure for a proliferation of Internet of things (IoT) sensing platform. However, LTE-M may not be optimally exploited for directly supporting such low-data-rate devices in terms of energy efficiency since it depends on core technologies of LTE that are originally designed for high-data-rate services. Focusing on this circumstance, we propose a novel adaptive modulation and coding selection (AMCS) algorithm to address the energy consumption problem in the LTE-M based IoT-sensing platform. The proposed algorithm determines the optimal pair of MCS and the number of primary resource blocks (#PRBs), at which the transport block size is sufficient to packetize the sensing data within the minimum transmit power. In addition, a quantity-oriented resource planning (QORP) technique that utilizes these optimal MCS levels as main criteria for spectrum allocation has been proposed for better adapting to the sensing node requirements. The simulation results reveal that the proposed approach significantly reduces the energy consumption of IoT sensing nodes and #PRBs up to 23.09% and 25.98%, respectively.

  12. Adaptive MCS selection and resource planning for energy-efficient communication in LTE-M based IoT sensing platform

    PubMed Central

    Dao, Nhu-Ngoc; Park, Minho; Kim, Joongheon

    2017-01-01

    As an important part of IoTization trends, wireless sensing technologies have been involved in many fields of human life. In cellular network evolution, the long term evolution advanced (LTE-A) networks including machine-type communication (MTC) features (named LTE-M) provide a promising infrastructure for a proliferation of Internet of things (IoT) sensing platform. However, LTE-M may not be optimally exploited for directly supporting such low-data-rate devices in terms of energy efficiency since it depends on core technologies of LTE that are originally designed for high-data-rate services. Focusing on this circumstance, we propose a novel adaptive modulation and coding selection (AMCS) algorithm to address the energy consumption problem in the LTE-M based IoT-sensing platform. The proposed algorithm determines the optimal pair of MCS and the number of primary resource blocks (#PRBs), at which the transport block size is sufficient to packetize the sensing data within the minimum transmit power. In addition, a quantity-oriented resource planning (QORP) technique that utilizes these optimal MCS levels as main criteria for spectrum allocation has been proposed for better adapting to the sensing node requirements. The simulation results reveal that the proposed approach significantly reduces the energy consumption of IoT sensing nodes and #PRBs up to 23.09% and 25.98%, respectively. PMID:28796804

  13. The Properties and Prevalence of Galactic Outflows at z ~ 1 in the Extended Groth Strip

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine A.; Shapley, Alice E.; Martin, Crystal L.; Coil, Alison L.; Lotz, Jennifer M.; Schiminovich, David; Bundy, Kevin; Noeske, Kai G.

    2012-10-01

    We investigate galactic-scale outflowing winds in 72 star-forming galaxies at z ~ 1 in the Extended Groth Strip. Galaxies were selected from the DEEP2 survey and follow-up LRIS spectroscopy was obtained covering Si II, C IV, Fe II, Mg II, and Mg I lines in the rest-frame ultraviolet. Using Galaxy Evolution Explorer (GALEX), Hubble Space Telescope (HST), and Spitzer imaging available for the Extended Groth Strip, we examine galaxies on a per-object basis in order to better understand both the prevalence of galactic outflows at z ~ 1 and the star-forming and structural properties of objects experiencing outflows. Gas velocities, measured from the centroids of Fe II interstellar absorption lines, are found to span the interval [-217, +155] km s-1. We find that ~40% (10%) of the sample exhibits blueshifted Fe II lines at the 1σ (3σ) level. We also measure maximal outflow velocities using the profiles of the Fe II and Mg II lines; we find that Mg II frequently traces higher velocity gas than Fe II. Using quantitative morphological parameters derived from the HST imaging, we find that mergers are not a prerequisite for driving outflows. More face-on galaxies also show stronger winds than highly inclined systems, consistent with the canonical picture of winds emanating perpendicular to galactic disks. In light of clumpy galaxy morphologies, we develop a new physically motivated technique for estimating areas corresponding to star formation. We use these area measurements in tandem with GALEX-derived star formation rates (SFRs) to calculate SFR surface densities. At least 70% of the sample exceeds an SFR surface density of 0.1 M ⊙ yr-1 kpc-2, the threshold necessary for driving an outflow in local starbursts. At the same time, the outflow detection fraction of only 40% in Fe II absorption provides further evidence for an outflow geometry that is not spherically symmetric. We see a ~3σ trend between outflow velocity and SFR surface density, but no significant trend

  14. Broad [C II] Line Wings as Tracer of Molecular and Multi-phase Outflows in Infrared Bright Galaxies

    NASA Astrophysics Data System (ADS)

    Janssen, A. W.; Christopher, N.; Sturm, E.; Veilleux, S.; Contursi, A.; González-Alfonso, E.; Fischer, J.; Davies, R.; Verma, A.; Graciá-Carpio, J.; Genzel, R.; Lutz, D.; Sternberg, A.; Tacconi, L.; Burtscher, L.; Poglitsch, A.

    2016-05-01

    We report a tentative correlation between the outflow characteristics derived from OH absorption at 119 μm and [C II] emission at 158 μm in a sample of 22 local and bright ultraluminous infrared galaxies (ULIRGs). For this sample, we investigate whether [C II] broad wings are a good tracer of molecular outflows, and how the two tracers are connected. Fourteen objects in our sample have a broad wing component as traced by [C II], and all of these also show OH119 absorption indicative of an outflow (in one case an inflow). The other eight cases, where no broad [C II] component was found, are predominantly objects with no OH outflow or a low-velocity (≤100 km s-1) OH outflow. The FWHM of the broad [C II] component shows a trend with the OH119 blueshifted velocity, although with significant scatter. Moreover, and despite large uncertainties, the outflow masses derived from OH and broad [C II] show a 1:1 relation. The main conclusion is therefore that broad [C II] wings can be used to trace molecular outflows. This may be particularly relevant at high redshift, where the usual tracers of molecular gas (like low-J CO lines) become hard to observe. Additionally, observations of blueshifted Na I D λλ 5890, 5896 absorption are available for 10 of our sources. Outflow velocities of Na I D show a trend with OH velocity and broad [C II] FWHM. These observations suggest that the atomic and molecular gas phases of the outflow are connected.

  15. Determination of volume-time curves for the right ventricle and its outflow tract for functional analyses.

    PubMed

    Gabbert, Dominik D; Entenmann, Andreas; Jerosch-Herold, Michael; Frettlöh, Felicitas; Hart, Christopher; Voges, Inga; Pham, Minh; Andrade, Ana; Pardun, Eileen; Wegner, P; Hansen, Traudel; Kramer, Hans-Heiner; Rickers, Carsten

    2013-12-01

    The determination of right ventricular volumes and function is of increasing interest for the postoperative care of patients with congenital heart defects. The presentation of volumetry data in terms of volume-time curves allows a comprehensive functional assessment. By using manual contour tracing, the generation of volume-time curves is exceedingly time-consuming. This study describes a fast and precise method for determining volume-time curves for the right ventricle and for the right ventricular outflow tract. The method applies contour detection and includes a feature for identifying the right ventricular outflow tract volume. The segregation of the outflow tract is performed by four-dimensional curved smooth boundary surfaces defined by prespecified anatomical landmarks. The comparison with manual contour tracing demonstrates that the method is accurate and improves the precision of the measurement. Compared to manual contour tracing the bias is <0.1% ± 4.1% (right ventricle) and -2.6% ± 20.0% (right ventricular outflow tract). The standard deviations of inter- and intraobserver variabilities for determining the volume of the right ventricular outflow tract are reduced to less than half the values of manual contour tracing. The time consumption per patient is reduced from 341 ± 80 min (right ventricle) and 56 ± 11 min (right ventricular outflow tract) using manual contour tracing to 46 ± 9 min for a combined analysis of right ventricle and right ventricular outflow tract. The analysis of volume-time curves for the right ventricle and its outflow tract discloses new evaluation methods in clinical routine and science. Copyright © 2013 Wiley Periodicals, Inc.

  16. Infall and outflow motions towards a sample of massive star-forming regions from the RMS survey

    NASA Astrophysics Data System (ADS)

    Cunningham, N.; Lumsden, S. L.; Moore, T. J. T.; Maud, L. T.; Mendigutía, I.

    2018-06-01

    We present the results of an outflow and infall survey towards a distance-limited sample of 31 massive star-forming regions drawn from the Red MSX source (RMS) survey. The presence of young, active outflows is identified from SiO (8-7) emission and the infall dynamics are explored using HCO+/H13CO+ (4-3) emission. We investigate if the infall and outflow parameters vary with source properties, exploring whether regions hosting potentially young active outflows show similarities or differences with regions harbouring more evolved, possibly momentum-driven, `fossil' outflows. SiO emission is detected towards approximately 46 per cent of the sources. When considering sources with and without an SiO detection (i.e. potentially active and fossil outflows, respectively), only the 12CO outflow velocity shows a significant difference between samples, indicating SiO is more prevalent towards sources with higher outflow velocities. Furthermore, we find the SiO luminosity increases as a function of the Herschel 70 μm to WISE 22 μm flux ratio, suggesting the production of SiO is prevalent in younger, more embedded regions. Similarly, we find tentative evidence that sources with an SiO detection have a smaller bolometric luminosity-to-mass ratio, indicating SiO (8-7) emission is associated with potentially younger regions. We do not find a prevalence towards sources displaying signatures of infall in our sample. However, the higher energy HCO+ transitions may not be the best suited tracer of infall at this spatial resolution in these regions.

  17. Feeding the fire: tracing the mass-loading of 107 K galactic outflows with O VI absorption

    NASA Astrophysics Data System (ADS)

    Chisholm, J.; Bordoloi, R.; Rigby, J. R.; Bayliss, M.

    2018-02-01

    Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z ˜ 2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km s-1 the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.

  18. From bipolar to quadrupolar - The collimation processes of the Cepheus A outflow

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Verdes-Montenegro, Lourdes; Ho, Paul T. P.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    Results of new K-band observations of the (1, 1) and (2, 2) ammonia lines toward Cepheus A are reported. The lines are mapped with approximately 2 arcsec of angular resolution and 0.3 km/s of velocity resolution. A sensitivity of 10 mJy has been achieved. The observations reveal details of the spatial and kinematics structure of the ambient high-density gas. It is suggested that the interstellar high-density gas is diverting and redirecting the outflow in the sense that the quadrupolar structure of the molecular outflow is produced by the interaction with the ammonia condensationss, with Cep A-1 and Cep A-3 splitting in two halves, respectively the blue- and redshifted lobes of an east-west bipolar molecular outflow.

  19. A STUDY OF THE X-RAYED OUTFLOW OF APM 08279+5255 THROUGH PHOTOIONIZATION CODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez, Cristian; Chartas, George, E-mail: saez@astro.psu.edu, E-mail: chartasg@cofc.edu

    2011-08-20

    We present new results from our study of the X-rayed outflow of the z = 3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. These results are based on spectral fits to all the long exposure observations of APM 08279+5255 using a new quasar-outflow model. This model is based on CLOUDY{sup 3} CLOUDY is a photoionization code designed to simulate conditions in interstellar matter under a broad range of conditions. We have used version 08.00 of the code last described by Ferland et al. (1998). The atomic database used by CLOUDY is described in Ferguson et al. (2001) and http://www.pa.uky.edu/{approx}verner/atom.html.more » simulations of a near-relativistic quasar outflow. The main conclusions from our multi-epoch spectral re-analysis of Chandra, XMM-Newton, and Suzaku observations of APM 08279+5255 are the following. (1) In every observation, we confirm the presence of two strong features, one at rest-frame energies between 1-4 keV and the other between 7-18 keV. (2) We confirm that the low-energy absorption (1-4 keV rest frame) arises from a low-ionization absorber with log(N{sub H}/cm{sup -2}) {approx} 23 and the high-energy absorption (7-18 keV rest frame) arises from highly ionized (3 {approx}< log {xi} {approx}< 4, where {xi} is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation, we find that the velocities on the outflow could get up to {approx}0.7c. (3) We confirm a correlation between the maximum outflow velocity and the photon index and find possible trends between the maximum outflow velocity and the X-ray luminosity, and between the total column density and the photon index. We performed calculations of the force multipliers of material illuminated by absorbed power laws and a Mathews-Ferland spectral energy distribution (SED). We found that variations of the X-ray and UV parts of the SEDs and the presence of a moderate absorbing shield will produce important changes in the strength of

  20. Temporal changes in the geographic distribution, elevation, and potential origin of the Martian outflow channels

    NASA Technical Reports Server (NTRS)

    Tribe, S.; Clifford, S. M.

    1993-01-01

    Observational evidence of outflow channel activity on Mars suggests that water was abundant in the planet's early crust. However, with the decline in the planet's internal heat flow, a freezing front developed within the regolith that propagated downward with time and acted as a thermodynamic sink for crustal H2O. One result of this thermal evolution is that, if the initial inventory of water on Mars was small, the cryosphere may have grown to the point where all the available water was taken up as ground ice. Alternatively, if the inventory of H2O exceeds the current pore volume of the cryosphere, then Mars has always possessed extensive bodies of subpermafrost groundwater. We have investigated the relative age, geographic distribution, elevation, and geologic setting of the outflow channels in an effort to accomplish the following: (1) identify possible modes of origin and evolutionary trends in their formation; (2) gain evidence regarding the duration and spatial distribution of groundwater in the crust; and (3) better constraint estimates of the planetary inventory of H2O.

  1. An X-ray/SDSS sample. I. Multi-phase outflow incidence and dependence on AGN luminosity

    NASA Astrophysics Data System (ADS)

    Perna, M.; Lanzuisi, G.; Brusa, M.; Mignoli, M.; Cresci, G.

    2017-07-01

    Aims: The connection between the growth of super-massive black holes (SMBHs) and the evolution of their host galaxies is nowadays well established, although the underlying mechanisms explaining their mutual relations are still debated. Multi-phase fast, massive outflows have been postulated to play a crucial role in this process. The aim of this work is to constrain the nature and the fraction of outflowing gas in active galactic nuclei (AGNs) as well as the nuclear conditions possibly at the origin of such phenomena. Methods: We present a large spectroscopic sample of X-ray detected SDSS AGNs at z< 0.8 with a high signal-to-noise ratio in the [O III]λ5007 line to unveil the faint wings of the emission profile associated with AGN-driven outflows. We used X-ray and optical flux ratio diagnostics to select the sample. We derived physical and kinematic characterization by re-analysing optical (and X-ray) spectra. Results: We derive the incidence of ionized ( 40%) and atomic (<1%) outflows covering a wide range of AGN bolometric luminosity from 1042 to 1046 erg/s. We also derive bolometric luminosities and X-ray bolometric corrections to test whether the presence of outflows is associated with an X-ray loudness, as suggested by our recent results obtained by studying high-z QSOs. Conclusions: We study the relations between the outflow velocity inferred from [O III] kinematic analysis and different AGN power tracers, such as black hole mass (MBH), [O III], and X-ray luminosity. We show a well-defined positive trend between outflow velocity and LX, for the first time, over a range of 5 order of magnitudes. Overall, we find that in the QSO-luminosity regime and at MBH> 108M⊙ the fraction of AGNs with outflows becomes >50%. Finally, we discuss our results about X-ray bolometric corrections and outflow incidence in cold and ionized phases in the context of an evolutionary sequence allowing two distinct stages for the feedback phase: first, an initial stage characterized

  2. NGC 7538 IRS. 1. Interaction of a Polarized Dust Spiral and a Molecular Outflow

    NASA Astrophysics Data System (ADS)

    Wright, M. C. H.; Hull, Charles L. H.; Pillai, Thushara; Zhao, Jun-Hui; Sandell, Göran

    2014-12-01

    We present dust polarization and CO molecular line images of NGC 7538 IRS 1. We combined data from the Submillimeter Array, the Combined Array for Research in Millimeter-wave Astronomy, and the James Clerk Maxwell Telescope to make images with ~2.''5 resolution at 230 and 345 GHz. The images show a remarkable spiral pattern in both the dust polarization and molecular outflow. These data dramatically illustrate the interplay between a high infall rate onto IRS 1 and a powerful outflow disrupting the dense, clumpy medium surrounding the star. The images of the dust polarization and the CO outflow presented here provide observational evidence for the exchange of energy and angular momentum between the infall and the outflow. The spiral dust pattern, which rotates through over 180° from IRS 1, may be a clumpy filament wound up by conservation of angular momentum in the infalling material. The redshifted CO emission ridge traces the dust spiral closely through the MM dust cores, several of which may contain protostars. We propose that the CO maps the boundary layer where the outflow is ablating gas from the dense gas in the spiral.

  3. Accretion Disk Outflows from Compact Object Mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  4. Cold Ion Outflow Modulated by the Solar Wind Energy Input and Tilt of the Geomagnetic Dipole

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wei, Y.; André, M.; Eriksson, A.; Haaland, S.; Kronberg, E. A.; Nilsson, H.; Maes, L.; Rong, Z. J.; Wan, W. X.

    2017-10-01

    The solar wind energy input into the Earth's magnetosphere-ionosphere system drives ionospheric outflow, which plays an important role in both the magnetospheric dynamics and evolution of the atmosphere. However, little is known about the cold ion outflow with energies lower than a few tens of eV, as the direct measurement of cold ions is difficult because a spacecraft gains a positive electric charge due to the photoemission effect, which prevents cold ions from reaching the onboard detectors. A recent breakthrough in the measurement technique using Cluster spacecraft revealed that cold ions dominate the ion population in the magnetosphere. This new technique yields a comprehensive data set containing measurements of the velocities and densities of cold ions for the years 2001-2010. In this paper, this data set is used to analyze the cold ion outflow from the ionosphere. We found that about 0.1% of the solar wind energy input is transformed to the kinetic energy of cold ion outflow at the topside ionosphere. We also found that the geomagnetic dipole tilt can significantly affect the density of cold ion outflow, modulating the outflow rate of cold ion kinetic energy. These results give us clues to study the evolution of ionospheric outflow with changing global magnetic field and solar wind condition in the history.

  5. Cloud Formation and Water Transport on Mars after Major Outflow Events

    NASA Technical Reports Server (NTRS)

    Santiago, D. L.; Colaprete, A.; Kreslavsky, M.; Kahre, M. A.; Asphaug, E.

    2012-01-01

    The triggering of a robust water cycle on Mars might have been caused by the gigantic flooding events evidenced by outflow channels. We use the Ames Mars General Circulation Model (MGCM) to test this hypothesis, studying how these presumably abrupt eruptions of water might have affected the climate of Mars in the past. We model where the water ultimately went as part of a transient atmospheric water cycle, to answer questions including: (1) Can sudden introductions of large amounts of water on the Martian surface lead to a new equilibrated water cycle? (2) What are the roles of water vapor and water ice clouds to sudden changes in the water cycle on Mars? (3) How are radiative feedbacks involved with this? (4) What is the ultimate fate of the outflow water? (5) Can we tie certain geological features to outflow water redistributed by the atmosphere?

  6. Discrete potentials guided radiofrequency ablation for idiopathic outflow tract ventricular arrhythmias.

    PubMed

    Liu, Enzhao; Xu, Gang; Liu, Tong; Ye, Lan; Zhang, Qitong; Zhao, Yanshu; Li, Guangping

    2015-03-01

    Discrete potentials (DPs) have been recorded and targeted as the site of ablation of the outflow tract arrhythmias. The aim of the present study was to investigate the significance of DPs with respect to mapping and ablation for idiopathic outflow tract premature ventricular contractions (PVCs) or ventricular tachycardias (VTs). Seventeen consecutive patients with idiopathic right or left ventricular outflow tract PVCs/VTs who underwent radiofrequency catheter ablation were included. Intracardiac electrograms during the mapping and ablation were analysed. During sinus rhythm, sharp high-frequency DPs that displayed double or multiple components were recorded following or buried in the local ventricular electrograms in all of the 17 patients, peak amplitude 0.51 ± 0.21 mV. The same potential was recorded prior to the local ventricular potential of the PVCs/VTs. Spontaneous reversal of the relationship of the DPs to the local ventricular electrogram during the arrhythmias was noted. The DPs were related to a region of low voltage showed by intracardiac high-density contact mapping. At the sites with DPs, lower unipolar and bipolar ventricular voltage of sinus beats were noted compared with the adjacent regions without DPs (unipolar: 6.1 ± 1.8 vs. 8.3 ± 2.3 mV, P < 0.05; bipolar: 0.62 ± 0.45 vs. 1.03 ± 0.60 mV, P < 0.05). The targeted DPs were still present in 12 patients after successful elimination of the ectopies. Discrete potentials were not present in seven controls. Discrete potentials and related low-voltage regions were common in idiopathic outflow tract ventricular arrhythmias. Discrete potential- and substrate-guided ablation strategy will help to reduce the recurrence of idiopathic outflow tract arrhythmias. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  7. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  8. Kinetic modeling of auroral ion outflows observed by the VISIONS sounding rocket

    NASA Astrophysics Data System (ADS)

    Albarran, R. M.; Zettergren, M. D.

    2017-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  9. Kinetic modeling of auroral ion Outflows observed by the VISIONS sounding rocket

    NASA Astrophysics Data System (ADS)

    Albarran, R. M.; Zettergren, M. D.; Rowland, D. E.; Klenzing, J.; Clemmons, J. H.

    2016-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  10. Nascent bipolar outflows associated with the first hydrostatic core candidates Barnard 1b-N and 1b-S

    NASA Astrophysics Data System (ADS)

    Gerin, M.; Pety, J.; Fuente, A.; Cernicharo, J.; Commerçon, B.; Marcelino, N.

    2015-05-01

    In the theory of star formation, the first hydrostatic core (FHSC) phase is a critical step in which a condensed object emerges from a prestellar core. This step lasts about one thousand years, a very short time compared with the lifetime of prestellar cores, and therefore is hard to detect unambiguously. We present IRAM Plateau de Bure observations of the Barnard 1b dense molecular core, combining detections of H2CO and CH3OH spectral lines and dust continuum at 2.3'' resolution (~500 AU). The two compact cores B1b-N and B1b-S are detected in the dust continuum at 2 mm, with fluxes that agree with their spectral energy distribution. Molecular outflows associated with both cores are detected. They are inclined relative to the direction of the magnetic field, in agreement with predictions of collapse in turbulent and magnetized gas with a ratio of mass to magnetic flux somewhat higher than the critical value, μ ~ 2-7. The outflow associated with B1b-S presents sharp spatial structures, with ejection velocities of up to ~7 km s-1 from the mean velocity. Its dynamical age is estimated to be ~2000 yr. The B1b-N outflow is smaller and slower, with a short dynamical age of ~1000 yr. The B1b-N outflow mass, mass-loss rate, and mechanical luminosity agree well with theoretical predictions of FHSC. These observations confirm the early evolutionary stage of B1b-N and the slightly more evolved stage of B1b-S. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendices are available in electronic form at http://www.aanda.orgFITS files for the H2CO and CH3OH mosaics are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/L2

  11. Quasar Outflows and AGN Feedback in the Extreme UV: HST/COS Observations of QSO HE0238-1904

    NASA Astrophysics Data System (ADS)

    Arav, Nahum; Borguet, B.; Chamberlain, C.; Edmonds, D.; Danforth, C.

    2014-01-01

    Spectroscopic observations of quasar outflows at rest-frame 500-1000 Angstrom have immense diagnostic power. We present analyses of such data, where absorption troughs from three important ions are measured: first, O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionization phase of the outflow. Their inferred column densities, combined with those of troughs from O VI, N IV, and H I, yield two important results: 1) The outflow shows two ionization phases, where the high ionization phase carries the bulk of the material. This is similar to the situation seen in x-ray warm absorber studies. Furthermore, the low ionization phase is inferred to have a volume filling factor of 10^(-5)-10^(-6). 2) From the O IV to O IV* column density ratio, and the knowledge of the ionization parameter, we determine a distance of 3000 pc. from the outflow to the central source. Since this is a typical high ionization outflow, we can determine robust values for the mass flux and kinetic luminosity of the outflow: 40 solar masses per year and 10^45 ergs/s, respectively, where the latter is roughly equal to 1% of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high ionization wind suggests that quasar outflows are a major contributor to AGN feedback mechanisms.

  12. Stochastic External Accretion and Asymmetric Outflows in NGC 4388

    NASA Astrophysics Data System (ADS)

    Shaver, Skylar; Mueller Sanchez, Francisco; Malkan, Matthew Arnold; Hicks, Erin K. S.

    2018-06-01

    We present here our findings on the Seyfert 2 galaxy, NGC 4388, one of the 40 active galactic nuclei (AGN) studied in the Keck/OSIRIS nearby AGN survey (KONA). NGC 4388 is located in the heart of the dense Virgo cluster, making it susceptible to interactions with neighboring galaxies and the intra-cluster medium. Using near-Infrared Adaptive-Optics Integral-Field Spectroscopy, we examined the two-dimensional spatial distribution and kinematics of the molecular and ionized gas in NGC 4388. We found that the nearly edge on galaxy exhibits an asymmetric outflow and signatures of external accretion feeding the AGN. To the southwest an outflow of ionized gas is extended along a position angle (PA) of 35 degrees and to the northeast a position angle between 30 to 60 degrees. This indicates a misalignment between the AGN torus and the galactic plane. As a result of the outflow in the southwest, molecular gas in the disk has been pushed to the west. Examining the molecular gas further led us to determine the presence of a warped disk surrounding the nucleus. In comparing our near-Infrared kinematic results to studies in different multi-wavelength datasets, we found evidence for a past minor merger event that drives gas inward to feed the AGN.

  13. Physical Processes for Driving Ionospheric Outflows in Global Simulations

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Strangeway, Robert J.

    2009-01-01

    We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.

  14. Characterizing the origin and impact of the most extreme molecular outflows in the nearby universe

    NASA Astrophysics Data System (ADS)

    Gowardhan, Avani; Riechers, Dominik A.; Spoon, Henrik; Farrah, Duncan

    2018-01-01

    Observations over the last decade have revealed that feedback in the form of molecular gas outflows is ubiquitous in local ultra luminous infrared galaxies (ULIRGs). Such outflows can clear the nuclear environments of gas and dust, quench star formation and active galactic nuclei (AGN) growth, and they are a key step in the evolution of dust-obscured AGN to optically luminous quasars. We here present multi-spectral line observations of feedback in the two most powerful molecular gas outflows in the local universe. We spatially resolve the outflows to determine their kinematics and structure and find that they can drive out the molecular gas and quench star formation within ~ few Myr. Applying mid-IR diagnostics to constrain the relative contributions of AGN and nuclear starburst activity, we find that starburst activity plays a significant role in driving the outflow. We discuss the implications for future studies of feedback in the local universe and obscured AGN at high redshift, which is a key target population for JWST and ALMA over the next decade.

  15. Inferring Polar Ion Outflows from Topside Ionograms

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Rice, D. D.; Eccles, V.; Schunk, R. W.; David, M.; Benson, R. F.; James, H. G.

    2017-12-01

    The high-latitude topside ionosphere is dominated by O+ ions from the F-region peak around 300 km to over 1000 km altitude. The O+ profile shape provides information on the thermal structure, field aligned plasma dynamics, and outflows into the magnetosphere. Topside electron density profiles (EDP) are either obtained from topside sounders or Incoherent Scatter Radars. There is a large archive of topside sounder ionograms and hand scaled EDPs from the Alouette and ISIS satellites between 1962 and 1990. Recent NASA data enhancement efforts have augmented these EDP archives by producing digital topside ionograms both from the 7-track analog telemetry tapes and from 35 mm topside film ionograms. Rice et al [2017] in their 35 mm ionogram recovery emphasized high latitude ionograms taken during disturbed conditions. The figure below contrasts ISIS-II EDPs extracted from 35 mm films before and during a major storm (Dst -200nT) on 9 April 1972 (left panel: quiet period before the storm; right panel: during the peak of the storm). Both satellite passes used for these EDPs were centered on the Resolute Bay location that in 1972 was close to the magnetic pole. They begin at auroral latitudes around 2100 MLT and end on the dayside around 0900MLT. We will present results of how ionospheric models replicate both the quiet and disturbed conditions shown in the figure. Three types of models will be contrasted: an empirical ionosphere (IRI), a physics based ionospheric model (TDIM), and a fluid-based polar-wind model (PW). During the storm pass, when it is expected that substantial heating is present, the ISIS-II topside EDPs provide severe constraints on the usage of these models. These constraints enable estimates of the outflow fluxes as well as the heating that has occurred. The comparisons with the empirical model establish how well the pre-storm topside is modeled and identifies the challenges as the storm magnitude increases. The physics-based TDIM does have storm drivers

  16. Dysregulated endocardial TGFβ signaling and mesenchymal transformation result in heart outflow tract septation failure.

    PubMed

    Ma, Mancheong; Li, Peng; Shen, Hua; Estrada, Kristine D; Xu, Jian; Kumar, S Ram; Sucov, Henry M

    2016-01-01

    Heart outflow tract septation in mouse embryos carrying mutations in retinoic acid receptor genes fails with complete penetrance. In this mutant background, ectopic TGFβ signaling in the distal outflow tract is responsible for septation failure, but it was uncertain what tissue was responsive to ectopic TGFβ and why this response interfered with septation. By combining RAR gene mutation with tissue-specific Cre drivers and a conditional type II TGFβ receptor (Tgfbr2) allele, we determined that ectopic activation of TGFβ signaling in the endocardium is responsible for septation defects. Ectopic TGFβ signaling results in ectopic mesenchymal transformation of the endocardium and thereby in improperly constituted distal OFT cushions. Our analysis highlights the interactions between myocardium, endocardium, and neural crest cells in outflow tract morphogenesis, and demonstrates the requirement for proper TGFβ signaling in outflow tract cushion organization and septation. Copyright © 2015. Published by Elsevier Inc.

  17. Pulmonary damage following right ventricular outflow tachycardia ablation in a child: When electroanatomical mapping isn't good enough.

    PubMed

    Bansal, Neha; Kobayashi, Daisuke; Karpawich, Peter P

    2017-11-11

    A 14-year-old female was referred for severe pulmonary valve insufficiency after undergoing radiofrequency ablation for a right ventricular outflow tract tachycardia that originated in the proximal pulmonary artery at 10 years of age. Clinical records indicated that ablation was guided solely by electrograms and electroanatomical mapping. Due to myocardial tissue extensions, mapping failed to identify the level of the pulmonary valve annulus, which resulted in delivery of energy on the valve proper and into the pulmonary artery. She developed severe pulmonary valve insufficiency and moderate proximal pulmonary artery stenosis necessitating intravascular stent placement 4 years later with an associated transcatheter valve. Although the nonfluoroscopic approach during ablation has gained wide acceptance for use in children, this report highlights the benefits of adjunctive imaging to identify the precise location of the pulmonary valve when ablation therapy is contemplated in the right ventricle outflow tract. © 2017 Wiley Periodicals, Inc.

  18. An ultra-relativistic outflow from a neutron star accreting gas from a companion.

    PubMed

    Fender, Rob; Wu, Kinwah; Johnston, Helen; Tzioumis, Tasso; Jonker, Peter; Spencer, Ralph; Van Der Klis, Michiel

    2004-01-15

    Collimated relativistic outflows-also known as jets-are amongst the most energetic phenomena in the Universe. They are associated with supermassive black holes in distant active galactic nuclei, accreting stellar-mass black holes and neutron stars in binary systems and are believed to be responsible for gamma-ray bursts. The physics of these jets, however, remains something of a mystery in that their bulk velocities, compositions and energetics remain poorly determined. Here we report the discovery of an ultra-relativistic outflow from a neutron star accreting gas within a binary stellar system. The velocity of the outflow is comparable to the fastest-moving flows observed from active galactic nuclei, and its strength is modulated by the rate of accretion of material onto the neutron star. Shocks are energized further downstream in the flow, which are themselves moving at mildly relativistic bulk velocities and are the sites of the observed synchrotron emission from the jet. We conclude that the generation of highly relativistic outflows does not require properties that are unique to black holes, such as an event horizon.

  19. Mock X-ray Observations of Localized LMC Outflows

    NASA Astrophysics Data System (ADS)

    Tomesh, Teague; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    The Milky Way’s nearest neighbor, the Large Magellanic Cloud (LMC), is a perfect testing ground for modeling a variety of astrophysical phenomena. Specifically, the LMC provides a unique opportunity for the study of possible localized outflows driven by star formation and their x-ray signatures. We have developed FLASH simulations of theoretical outflows originating in the LMC that we have used to generate predicted observations of X-ray luminosity. This X-ray emission can be a useful probe of the hot gas in these winds which may couple to the cool gas and drive it from the disk. Future observations of the LMC may provide us with valuable checks on our model. This work is partially supported by the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  20. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  1. Observations of the Evolution of Ion Outflow During a Sawtooth Event

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Frey, H. U.

    2015-12-01

    Sawtooth oscillations are one of several convection modes known to exist in the magnetosphere. Recent simulations have suggested that O+^+ ions transported from the high-latitude ionosphere to the magnetotail can drive sawtooth events. We present observational case studies of sawtooth events using data from FAST near the noon-midnight meridional plane, Cluster in the magnetotail, GOES and LANL energetic particle sensors at geosynchronous orbit, and ACE solar wind data to investigate the evolution of ion outflow during sawtooth events and the question of whether O+^+ outflow from one tooth helps to drive subsequent teeth. We find that oxygen enters the tail from the lobes after each tooth onset, the oxygen fraction in the magnetotail often increases after a tooth onset, and that the oxygen fraction of outflowing ions increases after a tooth event both in the cusp and on the nightside. However, a significant amount of low energy oxygen (≲1 keV) can end up in the dayside inner magnetosphere.

  2. Resistance to outflow of cerebrospinal fluid after central infusions of angiotensin

    NASA Technical Reports Server (NTRS)

    Morrow, B. A.; Keil, L. C.; Severs, W. B.

    1992-01-01

    Infusions of artificial cerebrospinal fluid (CSF) into the cerebroventricles of conscious rats can raise CSF pressure (CSFp). This response can be modified by some neuropeptides. One of these, angiotensin, facilitates the rise in CSFp. We measured CSFp in conscious rats with a computerized system and evaluated resistance to CSF outflow during infusion of artificial CSF, with or without angiotensin, from the decay kinetics of superimposed bolus injections. Angiotensin (10 ng/min) raised CSFp (P less than 0.05) compared with solvent, but the resistance to CSF outflow of the two groups was similar (P greater than 0.05). Because CSFp was increased by angiotensin without an increase in the outflow resistance, a change in some volume compartment is likely. Angiotensin may raise CSFp by increasing CSF synthesis; this possibility is supported, since the choroid plexuses contain an intrinsic isorenin-angiotensin system. Alternatively, angiotensin may dilate pial arteries, leading to an increased intracranial blood volume.

  3. Understanding Satellite-based Monthly-to-Seasonal Reservoir Outflow Estimation as a function of Hydrologic Controls

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Sikder, M. S.; Hossain, F.; Chen, X.; Miao, Y.; Lee, H.

    2015-12-01

    Growing population and increased demand for water in developing nations is causing an increase in dam construction in these regions. Entities and stakeholders downstream of dams experience drastically altered river flows. When rivers cross international boundaries, these downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multi-sensor precipitation products can be used as a way to provide downstream stakeholders with the upstream information needed to make important water management decisions. This study uses a mass balance between three hydraulic controls, precipitation induced inflow, evaporation, and reservoir storage change, to estimate reservoir outflow at a monthly time scale. Two reservoirs were examined in differing regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the outflow of Kaptai Reservoir with reasonable skill when compared with observed flows. The estimation of outflow from Hungry Horse Reservoir was similarly skillful for outflows in winter and fall months, but summer and spring outflow estimates had high errors due to snowmelt effects. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation induced inflow being the most important control for the Kaptai Reservoir and storage change being the most important for Hungry Horse Reservoir. In both cases, a standard energy balance approach of evaporation estimation appeared to have little effect on the accuracy of outflow estimation.

  4. An Archival COS Study of Multi-phase Galactic Outflows and Their Dependence on Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Chisholm, John

    2013-10-01

    Galactic outflows have become vital for understanding galaxy evolution. Outflows have been used to explain the mass-metallicity relation, the star formation history of the universe, and the shape of the baryonic mass function. However, few studies have focused on the basic question of how outflow velocities depend upon the physical properties of their host galaxies. Here we propose an archival project utilizing 52 COS spectra of local star-forming galaxies spanning four decades of star formation rate, and stellar mass. We will preform a self-consistent analysis of trends between galactic properties {star formation rate, stellar mass, specific star formation rate and star formation rate surface density} and outflow velocities measured from interstellar metal absorption lines {e.g., CII 1335}. We will extend this analysis to different gas phases - cold, warm, and hot - to gain a more comprehensive understanding of the physics of multi-phase outflows. The trends we observe will provide insights into the feedback process and will be crucial new benchmarks for simulations.

  5. Left ventricular outflow obstruction and necrotizing enterocolitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, H.A.; Haney, P.J.

    1984-02-01

    Two neonates had unusually rapid development of necrotizing enterocolitis within 24 hours of birth. Both patients had decreased systemic perfusion secondary to aortic atresia. Onset of either clinical or radiographic manifestations of necrotizing enterocolitis in the first day of life should alert one to the possible presence of severe left ventricular outflow obstruction.

  6. YSO Jets in the Galactic Plane from UWISH2. IV. Jets and Outflows in Cygnus-X

    NASA Astrophysics Data System (ADS)

    Makin, S. V.; Froebrich, D.

    2018-01-01

    We have performed an unbiased search for outflows from young stars in Cygnus-X using 42 deg2 of data from the UKIRT Widefield Infrared Survey for H2 (UWISH2 Survey), to identify shock-excited near-IR H2 emission in the 1–0 S(1) 2.122 μm line. We uncovered 572 outflows, of which 465 are new discoveries, increasing the number of known objects by more than 430%. This large and unbiased sample allows us to statistically determine the typical properties of outflows from young stars. We found 261 bipolar outflows, and 16% of these are parsec scale. The typical bipolar outflow is 0.45 pc in length and has gaps of 0.025–0.1 pc between large knots. The median luminosity in the 1–0 S(1) line is 10‑3 {L}ȯ . The bipolar flows are typically asymmetrical, with the two lobes misaligned by 5°, one lobe 30% shorter than the other, and one lobe twice as bright as the other. Of the remaining outflows, 152 are single-sided and 159 are groups of extended, shock-excited H2 emission without identifiable driving sources. Half of all driving sources have sufficient WISE data to determine their evolutionary status as either protostars (80%) or classical T Tauri stars (20%). One-fifth of the driving sources are variable by more than 0.5 mag in the K-band continuum over several years. Several of the newly identified outflows provide excellent targets for follow-up studies. We particularly encourage the study of the outflows and young stars identified in a bright-rimmed cloud near IRAS 20294+4255, which seems to represent a textbook example of triggered star formation.

  7. Removal of MCs by Bi2O2CO3: adsorption and the potential of photocatalytic degradation.

    PubMed

    Wang, Yujiao; Cao, Yanqiu; Li, Hongmei; Gong, Aijun; Han, Jintao; Qian, Zhen; Chao, Wenran

    2018-04-01

    Microcystins (MCs) is a kind of hepatotoxin, which is the secondary metabolite of cyanobacteria. Bi 2 O 2 CO 3 (BOC) is a kind of cheap and nontoxic semiconductor material. BOC was synthetized by solvothermal method and then microcystin-LR (MC-LR) and microcystin-RR (MC-RR) were removed by BOC, through adsorption and photocatalytic degradation. When the dosage of BOC is 6 g/L, the MC-LR and MC-RR in the natural water sample can be completely adsorbed in 30 min and then after 12 h irradiation, MC-LR and MC-RR were photocatalytically degraded by BOC.

  8. Submillimeter array observations of NGC 2264-C: molecular outflows and driving sources

    NASA Astrophysics Data System (ADS)

    Cunningham, Nichol; Lumsden, Stuart L.; Cyganowski, Claudia J.; Maud, Luke T.; Purcell, Cormac

    2016-05-01

    We present 1.3 mm Submillimeter Array (SMA) observations at ˜3 arcsec resolution towards the brightest section of the intermediate/massive star-forming cluster NGC 2264-C. The millimetre continuum emission reveals ten 1.3 mm continuum peaks, of which four are new detections. The observed frequency range includes the known molecular jet/outflow tracer SiO (5-4), thus providing the first high-resolution observations of SiO towards NGC 2264-C. We also detect molecular lines of 12 additional species towards this region, including CH3CN, CH3OH, SO, H2CO, DCN, HC3N, and 12CO. The SiO (5-4) emission reveals the presence of two collimated, high-velocity (up to 30 km s-1 with respect to the systemic velocity) bipolar outflows in NGC 2264-C. In addition, the outflows are traced by emission from 12CO, SO, H2CO, and CH3OH. We find an evolutionary spread between cores residing in the same parent cloud. The two unambiguous outflows are driven by the brightest mm continuum cores, which are IR-dark, molecular line weak, and likely the youngest cores in the region. Furthermore, towards the Red MSX Source AFGL 989-IRS1, the IR-bright and most evolved source in NGC 2264-C, we observe no molecular outflow emission. A molecular line rich ridge feature, with no obvious directly associated continuum source, lies on the edge of a low-density cavity and may be formed from a wind driven by AFGL 989-IRS1. In addition, 229 GHz class I maser emission is detected towards this feature.

  9. Colocalization of outflow segmentation and pores along the inner wall of Schlemm's canal.

    PubMed

    Braakman, Sietse T; Read, A Thomas; Chan, Darren W-H; Ethier, C Ross; Overby, Darryl R

    2015-01-01

    All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm's canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular "I" and paracellular "B" pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 μm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD(2) and nD(3)) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores

  10. Outflows from black hole hyperaccretion systems: short and long-short gamma-ray bursts and `quasi-supernovae'

    NASA Astrophysics Data System (ADS)

    Song, Cui-Ying; Liu, Tong; Li, Ang

    2018-06-01

    The detections of some long gamma-ray bursts (LGRBs) relevant to mergers of neutron star (NS)-NS or black hole (BH)-NS, as well as some short gamma-ray bursts (SGRBs) probably produced by collapsars, muddle the boundary of two categories of gamma-ray bursts (GRBs). In both cases, a plausible candidate of central engine is a BH surrounded by a hyperaccretion disc with strong outflows, launching relativistic jets driven by Blandford-Znajek mechanism. In the framework of compact binary mergers, we test the applicability of the BH hyperaccretion inflow-outflow model on powering observed GRBs. We find that, for a low outflow ratio, ˜ 50 per cent, post-merger hyperaccretion processes could power not only all SGRBs but also most of LGRBs. Some LGRBs might originate from merger events in the BH hyperaccretion scenario, at least on the energy requirement. Moreover, kilonovae might be produced by neutron-rich outflows, and their luminosities and time-scales significantly depend on the outflow strengths. GRBs and their associated kilonovae are competitive with each other on the disc mass and total energy budgets. The stronger the outflow, the more similar the characteristics of kilonovae to supernovae (SNe). This kind of `nova' might be called `quasi-SN'.

  11. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    PubMed

    Rodriguez, J Alexis P; Kargel, Jeffrey S; Baker, Victor R; Gulick, Virginia C; Berman, Daniel C; Fairén, Alberto G; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-09-08

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System's most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet's upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which at the time was completely submerged under a primordial northern plains ocean [corrected]. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation.

  12. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    PubMed Central

    Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; Berman, Daniel C.; Fairén, Alberto G.; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-01-01

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet’s upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform Boundary. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which was then completely submerged under a primordial northern plains ocean. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation. PMID:26346067

  13. Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes

    2001-05-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  14. Analysis of in situ measurements of cirrus anvil outflow dynamics

    NASA Astrophysics Data System (ADS)

    Lederman, J. I.; Whiteway, J. A.

    2012-12-01

    The airborne campaign, EMERALD 2 (Egrett Microphysics Experiment with Radiation, Lidar, and Dynamics,) was conducted out of Darwin, Australia in 2002. Objectives included characterization of the dynamics in the cirrus anvil outflow from tropical deep convection. Two aircraft, the Egrett and King Air, were flown in tandem in the upper troposphere (7 km - 15 km) to collect in situ measurements in the anvil outflow from a storm named "Hector" that occurs on a regular basis over the Tiwi Islands north of Darwin during November and December. Turbulence probes mounted on the wings of the Egrett aircraft were used to measure the wind fluctuations across the anvil and along its length with a spatial resolution of 2 meters. The in situ measurements from the Egrett were coincident with lidar measurements of the cloud structure from the King Air aircraft flying directly below. The presentation will show results of the analysis of the measurements with an emphasis on the turbulence, gravity waves, and coherent structures that are particular to the cirrus anvil outflow environment. Emphasis is placed on the dynamics associated with the generation of mammatus formations at the base of the anvil clouds.

  15. Right Ventricular Outflow Tract Stenting in Tetralogy of Fallot Infants With Risk Factors for Early Primary Repair.

    PubMed

    Sandoval, Juan Pablo; Chaturvedi, Rajiv R; Benson, Lee; Morgan, Gareth; Van Arsdell, Glen; Honjo, Osami; Caldarone, Christopher; Lee, Kyong-Jin

    2016-12-01

    Tetralogy of Fallot with cyanosis requiring surgical repair in early infancy reflects poor anatomy and is associated with more clinical instability and longer hospitalization than those who can be electively repaired later. We bridged symptomatic infants with risk factors for early primary repair by right ventricular outflow tract stenting (stent). Four groups of tetralogy of Fallot with confluent central pulmonary arteries were studied: stent group (n=42), primary repair (aged <3 months) with pulmonary stenosis (early-PS group; n=44), primary repair (aged <3 months) with pulmonary atresia (early-PA group; n=49), and primary repair between 3 and 11 months of age (surg>3mo group; n=45). Stent patients had the smallest pulmonary arteries with a median (95% credible intervals) Nakata index (mm 2 /m 2 ) of 79 (66-85) compared with the early-PA 139 (129-154), early-PS 136 (121-153), and surg>3mo 167 (153-200) groups. Only stent infants required unifocalization of aortopulmonary collaterals (17%). Stent and early-PA infants had younger age and lower weight than early-PS infants. Stent infants had the most multiple comorbidities. Stenting allowed deferral of complete surgical repair to an age (6 months), weight (6.3 [5.8-7.0] kg), and Nakata index (147 [132-165]) similar to the low-risk surg>3mo group. The 3 early treatment groups had similar intensive care unit/hospital stays and high reintervention rates in the first 12 months after repair, compared with the surg>3mo group. Right ventricular outflow tract stenting of symptomatic tetralogy of Fallot with poor anatomy (small pulmonary arteries) and adverse factors (multiple comorbidities, low weight) relieves cyanosis and defers surgical repair. This allowed pulmonary arterial and somatic growth with clinical results comparable to early surgical repair in more favorable patients. © 2016 American Heart Association, Inc.

  16. Lomonosov Ridge, Arctic Ocean: New MCS Data for the Definition of Targets for Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Y.; Coakley, B.; Hall, J. K.

    2001-12-01

    The 1500 km long and 50-150 km wide Lomonosov Ridge rises more than 3000 m above the adjacent abyssal plains, separating the Mesozoic-aged Amerasian basin from the Cenozoic-Recent Eurasian basin. Multichannel seismic reflection data collected from icebreakers on four cruises together with swath bathymetry and high resolution chirp sonar data collected by nuclear submarines across the central ridge show a cap of hemipelagic drape (c. 450 m thick) on top of normal faulted and peneplained sedimentary sequences, the remnants of the Mesozoic Barents margin, which pre-dates the opening of the Eurasian Basin. A new multichannel seismic survey to augment the site survey data base for ODP proposal 533 was carried out on the Lomonosov Ridge under difficult ice conditions in late July 2001 from the Swedish icebreaker Oden. The primary objectives of ODP Proposal 533 are to obtain continuous paleoceanographic records for most of the Cenozoic from the hemipelagic sequence and to sample the underlying passive margin sequence below the regional unconformity, which would provide the first direct constraints on the early tectonic history of the ridge. Of particular interest is the extent of mass wasting along the ridge perimeter. This regional unconformity offers an opportunity for implementing a strategy of offset shallow drill holes to obtain a complete hemi-pelagic section as well as to penetrate the regional unconformity. The new data, which will, in conjunction with the existing MCS data base, provide the first 3-D control on the passive margin structures and overlying unconformity, will be presented.

  17. Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic controls

    NASA Astrophysics Data System (ADS)

    Bonnema, Matthew; Sikder, Safat; Miao, Yabin; Chen, Xiaodong; Hossain, Faisal; Ara Pervin, Ismat; Mahbubur Rahman, S. M.; Lee, Hyongki

    2016-05-01

    Growing population and increased demand for water is causing an increase in dam and reservoir construction in developing nations. When rivers cross international boundaries, the downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multisensor precipitation products can be used as a practical way to provide downstream stakeholders with the fundamentally elusive upstream information on reservoir outflow needed to make important and proactive water management decisions. This study uses a mass balance approach of three hydrologic controls to estimate reservoir outflow from satellite data at monthly and annual time scales: precipitation-induced inflow, evaporation, and reservoir storage change. Furthermore, this study explores the importance of each of these hydrologic controls to the accuracy of outflow estimation. The hydrologic controls found to be unimportant could potentially be neglected from similar future studies. Two reservoirs were examined in contrasting regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the annual outflow of both reservoirs with reasonable skill. The estimation of monthly outflow from both reservoirs was however less accurate. The Kaptai basin exhibited a shift in basin behavior resulting in variable accuracy across the 9 year study period. Monthly outflow estimation from Hungry Horse Reservoir was compounded by snow accumulation and melt processes, reflected by relatively low accuracy in summer and fall, when snow processes control runoff. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation-induced inflow being the most important control for the Kaptai

  18. Evidence for Fluorescent Fe II Emission from Extended Low Ionization Outflows in Obscured Quasars

    NASA Astrophysics Data System (ADS)

    Wang, Tinggui; Ferland, Gary J.; Yang, Chenwei; Wang, Huiyuan; Zhang, Shaohua

    2016-06-01

    Recent studies have shown that outflows in at least some broad absorption line (BAL) quasars are extended well beyond the putative dusty torus. Such outflows should be detectable in obscured quasars. We present four WISE selected infrared red quasars with very strong and peculiar ultraviolet Fe II emission lines: strong UV Fe II UV arising from transitions to ground/low excitation levels, and very weak Fe II at wavelengths longer than 2800 Å. The spectra of these quasars display strong resonant emission lines, such as C IV, Al III and Mg II but sometimes, a lack of non-resonant lines such as C III], S III and He II. We interpret the Fe II lines as resonantly scattered light from the extended outflows that are viewed nearly edge-on, so that the accretion disk and broad line region are obscured by the dusty torus, while the extended outflows are not. We show that dust free gas exposed to strong radiation longward of 912 Å produces Fe II emission very similar to that observed. The gas is too cool to collisionally excite Fe II lines, accounting for the lack of optical emission. The spectral energy distribution from the UV to the mid-infrared can be modeled as emission from a clumpy dusty torus, with UV emission being reflected/scattered light either by the dusty torus or the outflow. Within this scenario, we estimate a minimum covering factor of the outflows from a few to 20% for the Fe II scattering region, suggesting that Fe II BAL quasars are at a special stage of quasar evolution.

  19. Chemical Characteristics of Continental Outflow Over the Tropical South Atlantic Ocean from Brazil and Africa

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Bradshaw, J. D.; Sandholm, S. T.; Smyth, S.; Blake, D. R.; Blake, N. R.; Sachse, G. W.; Collins, J. E.; Heikes, B. G.; Anderson, B. E.; hide

    1996-01-01

    The chemical characteristics of air parcels over the tropical South Atlantic during September - October 1992 are summarized by analysis of aged marine and continental outflow classifications. Positive correlations between CO and CH3CL and minimal enhancements of C2CL40, and various ChloroFluoroCarbon (CFC) species in air parcels recently advected over the South Atlantic basin strongly suggest an impact on tropospheric chemistry from biomass burning on adjacent continental areas of Brazil and Africa. Comparison of the composition of aged Pacific air with aged marine air over the South Atlantic basin from 0.3 to 12.5 km altitude indicates potential accumulation of long-lived species during the local dry season. This may amount to enhancements of up to two-fold for C2H6, 30% for CO, and 10% for CH3Cl. Nitric oxide and NO(x) were significantly enhanced (up to approx. 1 part per billion by volume (ppbv)) above 10 km altitude and poorly correlated with CO and CH3Cl. In addition, median mixing ratios of NO and NO(x) were essentially identical in aged marine and continental outflow air masses. It appears that in addition to biomass burning, lightning or recycled reactive nitrogen may be an important source of NO(x) to the upper troposphere. Methane exhibited a monotonic increase with altitude from approx. 1690 to 1720 ppbv in both aged marine and continental outflow air masses. The largest mixing ratios in the upper troposphere were often anticorrelated with CO, CH3Cl, and CO2, suggesting CH, contributions from natural sources. We also argue, based on CH4/CO ratios and relationships with various hydrocarbon and CFC species, that inputs from biomass burning and the northern hemisphere are unlikely to be the dominant sources of CO, CH4 and C2H6 in aged marine air. Emissions from urban areas would seem to be necessary to account for the distribution of at least CH4 and C2H6. Over the African and South American continents an efficient mechanism of convective vertical transport

  20. Colocalization of Outflow Segmentation and Pores Along the Inner Wall of Schlemm’s Canal

    PubMed Central

    Braakman, Sietse T.; Read, A. Thomas; Chan, Darren W.-H.; Ethier, C. Ross; Overby, Darryl R.

    2014-01-01

    All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm’s canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular “I” and paracellular “B” pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 μm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD2 and nD3) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores and

  1. ALMA Detection of Bipolar Outflows: Evidence for Low-mass Star Formation within 1 pc of Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Kunneriath, D.; Royster, M.; Wootten, A.; Roberts, D. A.

    2017-12-01

    We report the discovery of 11 bipolar outflows within a projected distance of 1 pc from Sgr A* based on deep ALMA observations of 13CO, H30α, and SiO (5-4) lines with subarcsecond and ˜1.3 km s-1 resolutions. These unambiguous signatures of young protostars manifest as approaching and receding lobes of dense gas swept up by the jets created during the formation and early evolution of stars. The lobe masses and momentum transfer rates are consistent with young protostellar outflows found throughout the disk of the Galaxy. The mean dynamical age of the outflow population is estimated to be {6.5}-3.6+8.1× {10}3 years. The rate of star formation is ˜5 × 10-4 {M}⊙ yr-1 assuming a mean stellar mass of ˜0.3 {M}⊙ . This discovery provides evidence that star formation is taking place within clouds surprisingly close to Sgr A*, perhaps due to events that compress the host cloud, creating condensations with sufficient self-gravity to resist tidal disruption by Sgr A*. Low-mass star formation over the past few billion years at this level would contribute significantly to the stellar mass budget in the central few parsecs of the Galaxy. The presence of many dense clumps of molecular material within 1 pc of Sgr A* suggests that star formation could take place in the immediate vicinity of supermassive black holes in the nuclei of external galaxies.

  2. ALMA Cycle 1 Observations of the HH46/47 Molecular Outflow: Structure, Entrainment, and Core Impact

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Arce, Héctor G.; Mardones, Diego; Cabrit, Sylvie; Dunham, Michael M.; Garay, Guido; Noriega-Crespo, Alberto; Offner, Stella S. R.; Raga, Alejandro C.; Corder, Stuartt A.

    2016-12-01

    We present Atacama Large Millimeter/sub-millimeter Array Cycle 1 observations of the HH 46/47 molecular outflow using combined 12 m array and Atacama Compact Array observations. The improved angular resolution and sensitivity of our multi-line maps reveal structures that help us study the entrainment process in much more detail and allow us to obtain more precise estimates of outflow properties than in previous observations. We use {}13{{CO}} (1-0) and {{{C}}}18{{O}} (1-0) emission to correct for the {}12{{CO}} (1-0) optical depth to accurately estimate the outflow mass, momentum, and kinetic energy. This correction increases the estimates of the mass, momentum, and kinetic energy by factors of about 9, 5, and 2, respectively, with respect to estimates assuming optically thin emission. The new {}13{{CO}} and {{{C}}}18{{O}} data also allow us to trace denser and slower outflow material than that traced by the {}12{{CO}} maps, and they reveal an outflow cavity wall at very low velocities (as low as 0.2 {\\text{km s}}-1 with respect to the core’s central velocity). Adding the slower material traced only by {}13{{CO}} and {{{C}}}18{{O}}, there is another factor of three increase in the mass estimate and 50% increase in the momentum estimate. The estimated outflow properties indicate that the outflow is capable of dispersing the parent core within the typical lifetime of the embedded phase of a low-mass protostar and that it is responsible for a core-to-star efficiency of 1/4 to 1/3. We find that the outflow cavity wall is composed of multiple shells associated with a series of jet bow-shock events. Within about 3000 au of the protostar the {}13{{CO}} and {{{C}}}18{{O}} emission trace a circumstellar envelope with both rotation and infall motions, which we compare with a simple analytic model. The CS (2-1) emission reveals tentative evidence of a slowly moving rotating outflow, which we suggest is entrained not only poloidally but also toroidally by a disk wind that

  3. Morphology of Fresh Outflow Channel Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Rice, J. W., Jr.; Parker, T. J.; Russell, A. J.; Knudsen, O.

    2002-01-01

    We interpret the channel surface of Athabasca and Marte Valles to be fresh former ice-rich fluvial (hyperconcentrated) deposits rather than volcanic flows. Simply stated, this is what a fresh outflow channel deposit would look like. Additional information is contained in the original extended abstract.

  4. Impacts of auroral current systems on ionospheric upflow/outflow

    NASA Astrophysics Data System (ADS)

    Burleigh, M.; Zettergren, M. D.; Lynch, K. A.; Lessard, M.; Harrington, M.; Varney, R. H.; Reimer, A.

    2017-12-01

    The downward current region of an auroral current system often contains large perpendicular DC electric fields. These DC electric fields frictionally heat the local ion population resulting in anisotropic increases in ion temperature that cause large pressure gradients which push the ions outward and upward. These ions may undergo further acceleration from transverse heating by broadband ELF waves and at high altitudes the mirror force can propel ions to escape velocities, resulting in outflow to the magnetosphere. Despite these processes being generally well-known, ion outflow remains difficult to predict due to the myriad of processes acting over a large range of altitudes and physical regimes. The resulting temperature anisotropies, which are known to be able to affect upflow, have an unclear degree of impact in highly variable situations like substorm expansions on the nightside or PMAFs/FTEs on the dayside.In this study we use an anisotropic fluid model, GEMINI-TIA, to examine detailed features of temperature anisotropies and resulting ion downflows/upflows/outflows occurring during the ISINGLASS and RENU2 sounding rocket campaigns. GEMINI-TIA is a 2D ionospheric model is based on a truncated 16-moment description and solves the conservation of mass, momentum, parallel energy, and perpendicular energy for species relevant to the E, F, and topside ionospheric regions. This model encapsulates ionospheric upflow and outflow processes through the inclusion of DC electric fields, and empirical descriptions of heating by soft electron precipitation and BBELF waves. The fluid transport equations are accompanied by an electrostatic current continuity equation to self-consistently describe auroral electric fields. Data used to constrain the model can include perpendicular electric fields, characteristic energy, and total energy flux from incoherent scatter radar, any available neutral density and wind measurements, and precipitating electron fluxes. Results from these

  5. Ion Outflow Observations

    NASA Technical Reports Server (NTRS)

    Mellot, Mary (Technical Monitor)

    2002-01-01

    The characteristics of out-flowing ions have been investigated under various circumstances. In particular the upwelling of ions from the cleft region has been studied to attempt to look at source characteristics (e.g., temperature, altitude). High altitude (6-8 Re) data tend to show ions species that have the same velocity and are adiabatically cooled. Such ions, while representative of their source, can not provide an accurate picture. Ion observations from the TIDE detector on the Polar spacecraft show an energy (or equivalently a velocity) spectrum of ions as they undo the geomagnetic mass spectrometer effect due to convection-gravity separation of the different species. Consolidation of this type of data into a complete representation of the source spectrum can be attempted by building a set of maximum-phase-space- density-velocity pairs and attributing the total to the source.

  6. Mars Energy Spectrum studies from Assimilated MCS data using the UK MGCM

    NASA Astrophysics Data System (ADS)

    Valeanu, Alexandru; Read, Peter; Wang, Yixiong; Lewis, Stephen; Montabone, Luca; Tabataba-Vakili, Fachreddin

    2015-04-01

    Introduction The energy spectrum (ES) analysis is a renowned tool for understanding the driving mechanisms behind atmospheric turbulence (Lindborg, 1998). We aim to investigate whether energy and enstrophy inertial ranges exist in the kinetic energy spectrum (KES), and to quantify the corresponding cascades (with their ranges), and relationship with the atmospheric forcing and energy dissipation scales. The calculation of the ES from observational data is known to be highly non-trivial due to the lack of global coverage in space and time. Gage and Nastrom (1984) were the first to overcome this problem for Earth but this has not so far been attempted for Mars. Our approach is to take the sparse observational data and assimilate it using a global numerical model. We present preliminary results using the Mars Climate Sounder (MCS) retrievals and the LMD-UK Mars GCM (MGCM). This was pioneered by Lewis and Read (1999). Methodology The equations we used to calculate the Eddy and Zonal Mean kinetic energies are derived from total KES formula presented in Lindborg and Augier (2013). Hence, adding the two spectra together, we obtain the full KES spectrum as presented in their paper. For the Available Potential Energy Spectrum (APES), we have used a preliminary simplified version of the approach presented in Lindborg and Augier (2013). The Energy Spectra To date we have assimilated the MCS data at the resolution of T31 (triangular truncation), hence the ES only spans up to total wavenumber 31. This encompasses a portion of the energy inertial range, which might be expected to manifest the -3 exponential law by analogy with the Earth (Gage & Nastrom, 1984). Features: - velocities and corresponding KEs are higher with increasing height compared to Earth, - "-3" slope is restricted to ~30 km altitude, suggesting an early departure from the enstrophy inertial range, - boundary layer velocities are similar to Earth References 1. Gage and Nastrom, A Climatology of Atmospheric

  7. Data-Model and Inter-Model Comparisons of the GEM Outflow Events Using the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Eccles, J. V.; Barakat, A. R.; Kistler, L. M.; Haaland, S.; Schunk, R. W.; Chappell, C. R.

    2015-12-01

    Two storm periods were selected by the Geospace Environment Modeling Ionospheric Outflow focus group for community collaborative study because of its high magnetospheric activity and extensive data coverage: the September 27 - October 4, 2002 corotating interaction region event and the October 22 - 29 coronal mass ejection event. During both events, the FAST, Polar, Cluster, and other missions made key observations, creating prime periods for data-model comparison. The GEM community has come together to simulate this period using many different methods in order to evaluate models, compare results, and expand our knowledge of ionospheric outflow and its effects on global dynamics. This paper presents Space Weather Modeling Framework (SWMF) simulations of these important periods compared against observations from the Polar TIDE, Cluster CODIF and EFW instruments. Emphasis will be given to the second event. Density and velocity of oxygen and hydrogen throughout the lobes, plasma sheet, and inner magnetosphere will be the focus of these comparisons. For these simulations, the SWMF couples the multifluid version of BATS-R-US MHD to a variety of ionospheric outflow models of varying complexity. The simplest is outflow arising from constant MHD inner boundary conditions. Two first-principles-based models are also leveraged: the Polar Wind Outflow Model (PWOM), a fluid treatment of outflow dynamics, and the Generalized Polar Wind (GPW) model, which combines fluid and particle-in-cell approaches. Each model is capable of capturing a different set of energization mechanisms, yielding different outflow results. The data-model comparisons will illustrate how well each approach captures reality and which energization mechanisms are most important. Inter-model comparisons will illustrate how the different outflow specifications affect the magnetosphere. Specifically, it is found that the GPW provides increased heavy ion outflow over a broader spatial range than the alternative

  8. The Martian Outflow Channels: Mgs Sheds New Light On Viking and Pathfinder Results

    NASA Astrophysics Data System (ADS)

    Lanz, J.; Jaumann, R.

    The Mars Global Surveyor (MGS) Mission has, as most successful missions before, given stunningly new insights in the processes that shaped the Martian surface. But how do these findings and observations fit in the context of our pre-MGS knowledge? and do they fit at all? Combining data from the Viking, Pathfinder and MGS Missions, erosion processes in the circum-Chryse Region have been newly and extensively examined. Maximum discharge rates and flow velocities within the major outflow channels were calculated as well as sediment transport and sediment volumes eroded by the flows evaluating the erosion balance of the region. In a second step a detailed study of the available high resolution MOC-Images and lower resolution MOC and Viking context images was performed to evaluate the geologic and morphologic inventory of the outflow chan- nels. Focusing on morphologic and hydrologic differences to terrestrial outflow chan- nels as well as differences to earlier pre-MGS studies, theories and hypothesis con- cerning the outflow channels have been tested for their validity. New hydrologic cal- culations e.g. give different results than previously measured (e.g. Carr 1979, Robin- son &Tanaka 1990, Komatsu &Baker 1997). Maximum discharge rates are generally smaller (see also Williams et al. 2000), in some cases up to a factor of 2 to 3 (e.g. Ares Vallis), having a strong impact on the northern ocean theory. Some morphologic fea- tures that are typical for terrestrial flood features (such as inner channels, bar deposits, gravel dunes, etc) could not or not clearly be identified in any of the large outflow channels even in high resolution MOC-imagery. Younger resurfacing processes might have covered or obscured them. Others are hard to distinguish from non-fluvial, i.e. eo- lian, features from satellite images. Nevertheless, the overall absence of such features in the outflow channels is striking and shows again that processes on Mars differ sig- nificantly from those on

  9. The nuclear high excitation outflow cone in NGC 1365

    NASA Astrophysics Data System (ADS)

    Per Lindblad, Olof; Hjelm, Maja; Jörsäter, Steven; Kristen, Helmuth

    The morphology and kinematics of the high excitation outflow cone in the nuclear region of the Seyfert 1.5 galaxy NGC 1365 is investigated. An empirical model based on ground-based [OIII] emission line data consists of a somewhat hollow double cone with its apex at the Seyfert nucleus. The cone axis is well aligned in space with the normal to the symmetry plane of the galaxy and the position angle of its projection on the sky coincides closely with that of a jet-like radio feature. The opening angle of the cone is 100° and the orientation such that the line of sight to the Seyfert 1.5 nucleus falls inside the cone. The outflow velocities within the cone are accelerated and fall off towards the edge.

  10. The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Liemohn, M. W.; Ridley, A. J.

    2012-12-01

    It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric

  11. Outflows in the narrow-line region of bright Seyfert galaxies - I. GMOS-IFU data

    NASA Astrophysics Data System (ADS)

    Freitas, I. C.; Riffel, R. A.; Storchi-Bergmann, T.; Elvis, M.; Robinson, A.; Crenshaw, D. M.; Nagar, N. M.; Lena, D.; Schmitt, H. R.; Kraemer, S. B.

    2018-05-01

    We present two-dimensional maps of emission-line fluxes and kinematics, as well as of the stellar kinematics of the central few kpc of five bright nearby Seyfert galaxies - Mrk 6, Mrk 79, Mrk 348, Mrk 607, and Mrk 1058 - obtained from observations with the Gemini Multi-Object Spectrograph Integral Field Unit on the Gemini North Telescope. The data cover the inner 3.5 arcsec × 5.0 arcsec - corresponding to physical scales in the range 0.6 × 0.9-1.5 × 2.2 kpc2 - at a spatial resolution ranging from 110 to 280 pc with a spectral coverage of 4300-7100 Å and velocity resolution of ≈90 km s-1. The gas excitation is Seyfert like everywhere but show excitation gradients that are correlated with the gas kinematics, reddening and/or the gas density. The gas kinematics show in all cases two components: a rotation one similar to that observed in the stellar velocity field, and an outflow component. In the case of Mrk607, the gas is counter-rotating relative to the stars. Enhanced gas velocity dispersion is observed in association with the outflows according to two patterns: at the locations of the highest outflow velocities along the ionization axis or perpendicularly to it in a strip centred at the nucleus that we attribute to an equatorial outflow. Bipolar outflows are observed in Mrk 348 and Mrk 79, while in Mrk 1058 only the blueshifted part is clearly observed, while in cases of Mrk 6 and Mrk 607, the geometry of the outflow needs further constraints from modelling to be presented in a forthcoming study, where the mass flow rate and powers will also be obtained.

  12. Geometric and Kinematic Structure of the Outflow/Envelope System of L1527 Revealed by Subarcsecond-resolution Observation of CS

    NASA Astrophysics Data System (ADS)

    Oya, Yoko; Sakai, Nami; Lefloch, Bertrand; López-Sepulcre, Ana; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Yamamoto, Satoshi

    2015-10-01

    Subarcsecond-resolution images of the rotational line emissions of CS and c-C3H2 obtained toward the low-mass protostar IRAS 04368+2557 in L1527 with the Atacama Large Millimeter/submillimeter Array are investigated to constrain the orientation of the outflow/envelope system. The distribution of CS consists of an envelope component extending from north to south and a faint butterfly shaped outflow component. The kinematic structure of the envelope is well reproduced by a simple ballistic model of an infalling rotating envelope. Although the envelope has a nearly edge-on configuration, we find that the western side of the envelope faces the observer. This configuration is opposite to the direction of the large-scale (˜104 AU) outflow suggested previously from the 12CO (J = 3-2) observation, and to the morphology of infrared reflection near the protostar (˜200 AU). The latter discrepancy could originate from high extinction by the outflow cavity of the western side, or may indicate that the outflow axis is not parallel to the rotation axis of the envelope. Position-velocity diagrams show the accelerated outflow cavity wall, and its kinematic structure in the 2000 AU scale is explained by a standard parabolic model with the inclination angle derived from the analysis of the envelope. The different orientation of the outflow between the small and large scale implies a possibility of precession of the outflow axis. The shape and the velocity of the outflow in the vicinity of the protostar are compared with those of other protostars.

  13. TRACING INFALL AND ROTATION ALONG THE OUTFLOW CAVITY WALLS OF THE L483 PROTOSTELLAR ENVELOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Gigi Y.C.; Lim, Jeremy; Takakuwa, Shigehisa

    2016-12-10

    Single-dish observations in CS(7–6) reveal emission extending out to thousands of au along the outflow axis of low-mass protostars and having a velocity gradient in the opposite direction to that of their outflows. This emission has been attributed to dense and warm gas flowing outward along the walls of bipolar outflow cavities. Here, we present combined single-dish and interferometric CS(7–6) maps for the low-mass protostar L483, revealing a newly discovered compact central component (radius ≲800 au) and previously unknown features in its extended component (visible out to ∼4000 au). The velocity gradient and skewed (toward the redshifted side) brightness distributionmore » of the extended component are detectable out to a radius of ∼2000 au, but not beyond. The compact central component exhibits a velocity gradient in the same direction as, but which is steeper than that of, the extended component. Furthermore, both components exhibit a velocity gradient with an approximately constant magnitude across the outflow axis, apparent in the extended component not just through but also away from the center out to 2000 au. We point out contradictions between our results and model predictions for outflowing gas and propose a new model in which all of the aforementioned emission can be qualitatively explained by gas inflowing along the outflow cavity walls of a rigidly rotating envelope. Our model also can explain the extended CS(7–6) emission observed around other low-mass protostars.« less

  14. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  15. THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Dell, C. R.; Ferland, G. J.; Henney, W. J.

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks aremore » the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database.« less

  16. The relationship between groundwater ages, streamflow ages, and storage selection functions under stationary conditions

    NASA Astrophysics Data System (ADS)

    Berghuijs, W.; Kirchner, J. W.

    2017-12-01

    Waters in aquifers are often much older than the streamwaters that drain them. Simple physically based reasoning suggests that these age contrasts should be expected wherever catchments are heterogeneous. However, a general quantitative catchment-scale explanation of these age contrasts remains elusive. We show that under stationary conditions conservation of mass and age dictate that the age distribution of water stored in a catchment can be directly estimated from the age distribution of its outflows, and vice versa. This in turn implies that the catchment's preference for the release or retention of waters of different ages can be estimated directly from the age distribution of outflow under stationary conditions. Using simple models of transit times, we show that the mean age of stored water can range from half as old as the mean age of streamflow (for plug flow conditions) to almost infinitely older (for strongly preferential flow). Streamflow age distributions reported in the literature often have long upper tails, consistent with preferential flow and implying that storage ages are substantially older than streamflow ages. Mean streamflow ages reported in the literature imply that most streamflow originates from a thin veneer of total groundwater storage. This preferential release of young streamflow implies that most groundwater is exchanged only slowly with the surface, and consequently must be very old. Where information is available for both storage ages and streamflow ages, our analysis establishes consistency relationships through which each could be used to better constrain the other. By quantifying the relationship between groundwater and streamflow ages, our analysis provides tools to jointly assess both of these important catchment properties.

  17. Nonlinear waves and instabilities leading to secondary reconnection in reconnection outflows

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Pucci, Francesco; Olshevsky, Vyacheslav; Servidio, Sergio; Sorriso-Valvo, Luca; Newman, David L.; Goldman, Martin V.

    2018-02-01

    Reconnection outflows have been under intense recent scrutiny, from in situ observations and from simulations. These regions are host to a variety of instabilities and intense energy exchanges, often even superior to the main reconnection site. We report here a number of results drawn from an investigation of simulations. First, the outflows are observed to become unstable to drift instabilities. Second, these instabilities lead to the formation of secondary reconnection sites. Third, the secondary processes are responsible for large energy exchanges and particle energization. Finally, the particle distribution function are modified to become non-Maxwellian and include multiple interpenetrating populations.

  18. Differential Canalograms Detect Outflow Changes from Trabecular Micro-Bypass Stents and Ab Interno Trabeculectomy.

    PubMed

    Parikh, Hardik A; Loewen, Ralitsa T; Roy, Pritha; Schuman, Joel S; Lathrop, Kira L; Loewen, Nils A

    2016-11-04

    Recently introduced microincisional glaucoma surgeries that enhance conventional outflow offer a favorable risk profile over traditional surgeries, but can be unpredictable. Two paramount challenges are the lack of an adequate training model for angle surgeries and the absence of an intraoperative quantification of surgical success. To address both, we developed an ex vivo training system and a differential, quantitative canalography method that uses slope-adjusted fluorescence intensities of two different chromophores to avoid quenching. We assessed outflow enhancement by trabecular micro-bypass (TMB) implantation or by ab interno trabeculectomy (AIT). In this porcine model, TMB resulted in an insignificant (p > 0.05) outflow increase of 13 ± 5%, 14 ± 8%, 9 ± 3%, and 24 ± 9% in the inferonasal, superonasal, superotemporal, and inferotemporal quadrant, respectively. AIT caused a 100 ± 50% (p = 0.002), 75 ± 28% (p = 0.002), 19 ± 8%, and 40 ± 21% increase in those quadrants. The direct gonioscopy and tactile feedback provided a surgical experience that was very similar to that in human patients. Despite the more narrow and discontinuous circumferential drainage elements in the pig with potential for underperformance or partial stent obstruction, unequivocal patterns of focal outflow enhancement by TMB were seen in this training model. AIT achieved extensive access to outflow pathways beyond the surgical site itself.

  19. Differential Canalograms Detect Outflow Changes from Trabecular Micro-Bypass Stents and Ab Interno Trabeculectomy

    PubMed Central

    Parikh, Hardik A.; Loewen, Ralitsa T.; Roy, Pritha; Schuman, Joel S.; Lathrop, Kira L.; Loewen, Nils A.

    2016-01-01

    Recently introduced microincisional glaucoma surgeries that enhance conventional outflow offer a favorable risk profile over traditional surgeries, but can be unpredictable. Two paramount challenges are the lack of an adequate training model for angle surgeries and the absence of an intraoperative quantification of surgical success. To address both, we developed an ex vivo training system and a differential, quantitative canalography method that uses slope-adjusted fluorescence intensities of two different chromophores to avoid quenching. We assessed outflow enhancement by trabecular micro-bypass (TMB) implantation or by ab interno trabeculectomy (AIT). In this porcine model, TMB resulted in an insignificant (p > 0.05) outflow increase of 13 ± 5%, 14 ± 8%, 9 ± 3%, and 24 ± 9% in the inferonasal, superonasal, superotemporal, and inferotemporal quadrant, respectively. AIT caused a 100 ± 50% (p = 0.002), 75 ± 28% (p = 0.002), 19 ± 8%, and 40 ± 21% increase in those quadrants. The direct gonioscopy and tactile feedback provided a surgical experience that was very similar to that in human patients. Despite the more narrow and discontinuous circumferential drainage elements in the pig with potential for underperformance or partial stent obstruction, unequivocal patterns of focal outflow enhancement by TMB were seen in this training model. AIT achieved extensive access to outflow pathways beyond the surgical site itself. PMID:27811973

  20. OUTFLOWS IN SODIUM EXCESS OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jongwon; Yi, Sukyoung K.; Jeong, Hyunjin, E-mail: yi@yonsei.ac.kr

    2015-08-10

    Van Dokkum and Conroy revisited the unexpectedly strong Na i lines at 8200 Å found in some giant elliptical galaxies and interpreted them as evidence for an unusually bottom-heavy initial mass function. Jeong et al. later found a large population of galaxies showing equally extraordinary Na D doublet absorption lines at 5900 Å (Na D excess objects: NEOs) and showed that their origins can be different for different types of galaxies. While a Na D excess seems to be related to the interstellar medium (ISM) in late-type galaxies, smooth-looking early-type NEOs show little or no dust extinction and hence nomore » compelling signs of ISM contributions. To further test this finding, we measured the Doppler components in the Na D lines. We hypothesized that the ISM would have a better (albeit not definite) chance of showing a blueshift Doppler departure from the bulk of the stellar population due to outflow caused by either star formation or AGN activities. Many of the late-type NEOs clearly show blueshift in their Na D lines, which is consistent with the former interpretation that the Na D excess found in them is related to gas outflow caused by star formation. On the contrary, smooth-looking early-type NEOs do not show any notable Doppler components, which is also consistent with the interpretation of Jeong et al. that the Na D excess in early-type NEOs is likely not related to ISM activities but is purely stellar in origin.« less

  1. Ancient Streamlined Islands of the Palos Outflow Channel

    NASA Image and Video Library

    2016-08-24

    This image shows the northern terminus of an outflow channel located in the volcanic terrains of Amenthes Planum. The channel sources from the Palos impact crater to the south, where water flowed into the crater from Tinto Vallis and eventually formed a paleo lake. As rising lake levels breached through the crater's rim and inundated the plains to the north, the resulting high velocity, large discharge floods plucked out and eroded the volcanic plains scouring out the "Palos Outflow Channel" and the streamlined mesa-islands on its floor. These streamlined forms are the eroded remnants of plains material sculpted by catastrophic floods and are not sediment deposits emplaced by lower magnitude stream flows. Both the fluvial channel floor and the volcanic island surfaces are densely cratered by impacts suggesting that both the surfaces and the flood events are ancient. The morphology (shape) of the channel system and its islands have been preserved through the eons, but water has long been absent from this drainage system. Since then, winds have transported light-toned sediments across this terrain forming extensive dune fields within the channel system, on the floors of impact craters, and in other protected locations in the Palos Outflow Channel region. A closer look shows chevron, or fish-bone shaped, light-toned dunes located near the top of the image where numerous smaller channels have cut through the landscape. These dunes likely started out as Transverse Aeolian Ridges (TAR) that form perpendicular to the prevailing wind direction where the wind-blown sediment supply is scarce. This intriguing morphology likely reflects changes in the prevailing wind environment over time. http://photojournal.jpl.nasa.gov/catalog/PIA21023

  2. The near-infrared outflow and cavity of the proto-brown dwarf candidate ISO-Oph 200

    NASA Astrophysics Data System (ADS)

    Whelan, E. T.; Riaz, B.; Rouzé, B.

    2018-03-01

    In this Letter a near-infrared integral field study of a proto-brown dwarf candidate is presented. A 0.''5 blue-shifted outflow is detected in both H2 and [Fe II] lines at Vsys = (–35 ± 2) km s-1 and Vsys = (–51 ± 5) km s-1 respectively. In addition, slower ( ±10 km s-1) H2 emission is detected out to <5.''4, in the direction of both the blue and red-shifted outflow lobes but along a different position angle to the more compact faster emission. It is argued that the more compact emission is a jet and the extended H2 emission is tracing a cavity. The source extinction is estimated at Av = 18 ± 1 mag and the outflow extinction at Av = 9 ± 0.4 mag. The H2 outflow temperature is calculated to be 1422 ± 255 K and the electron density of the [Fe II] outflow is measured at 10 000 cm-3. Furthermore, the mass outflow rate is estimated at Ṁout [H2] = 3.8 × 10-10 M⊙ yr-1 and Ṁout[Fe II] = 1 × 10-8 M⊙ yr-1. Ṁout[Fe II] takes a Fe depletion of 88% into account. The depletion is investigated using the ratio of the [Fe II] 1.257 μm and [P II] 1.188 μm lines. Using the Paβ and Brγ lines and a range in stellar mass and radius Ṁacc is calculated to be (3–10) × 10-8 M⊙ yr-/1. Comparing these rates puts the jet efficiency in line with predictions of magneto-centrifugal models of jet launching in low mass protostars. This is a further case of a brown dwarf outflow exhibiting analogous properties to protostellar jets. Based on Observations collected with SINFONI at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID: 097.C-0732(A).

  3. Low-Altitude Reconnection Inflow-Outflow Observations During a 2010 November 3 Solar Eruption

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina L.a; Holman, Gordon; Reeves, Katharine K.; Seaton, Daniel B.; McKenzie, David E.; Su, Yang

    2012-01-01

    For a solar flare occurring on 2010 November 3, we present observations us- ing several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from approximately 150 - 690 km s-1 with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high- temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be approximately 10(exp 2) km s-1 with outflow speeds ranging from approximately 10(exp 2) - 10(exp 33 km s-1 indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops presumably exiting the reconnection site.

  4. LOW-ALTITUDE RECONNECTION INFLOW-OUTFLOW OBSERVATIONS DURING A 2010 NOVEMBER 3 SOLAR ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Sabrina L.; Holman, Gordon; Su, Yang

    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion-an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from {approx}150 to 690 km s{sup -1} with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appearsmore » to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be {approx}10{sup 2} km s{sup -1} with outflow speeds ranging from {approx}10{sup 2} to 10{sup 3} km s{sup -1}-indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops-presumably exiting the reconnection site.« less

  5. Acromegaly-induced cardiomyopathy with dobutamine-induced outflow tract obstruction.

    PubMed

    Abdelsalam, Mahmoud A; Nippoldt, Todd B; Geske, Jeffrey B

    2016-03-09

    A 50-year-old man with a history of acromegaly was referred for preoperative cardiac evaluation preceding trans-sphenoidal resection of a pituitary macroadenoma. Dobutamine stress echocardiography was negative for myocardial ischaemia. Resting left ventricular (LV) LV ejection fraction (LVEF) was 64% and there was hypertrophy of ventricular septum (18 mm) without resting LV outflow tract obstruction. With 40 µg/kg/min of dobutamine, the LVEF became hyperdynamic at 80%, and there was a maximal instantaneous LV outflow tract gradient of 77 mm Hg. There was no delayed myocardial enhancement on cardiac MRI and the pattern of hypertrophy was concentric. Acromegaly-induced cardiomyopathy can mimic hypertrophic cardiomyopathy in the setting of dobutamine provocation. Because cardiomyopathy is an important cause of mortality in acromegaly, diagnosis and appropriate management are critical to improve survival. 2016 BMJ Publishing Group Ltd.

  6. Inference and analysis of xenon outflow curves under multi-pulse injection in two-dimensional chromatography.

    PubMed

    Shu-Jiang, Liu; Zhan-Ying, Chen; Yin-Zhong, Chang; Shi-Lian, Wang; Qi, Li; Yuan-Qing, Fan

    2013-10-11

    Multidimensional gas chromatography is widely applied to atmospheric xenon monitoring for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). To improve the capability for xenon sampling from the atmosphere, sampling techniques have been investigated in detail. The sampling techniques are designed by xenon outflow curves which are influenced by many factors, and the injecting condition is one of the key factors that could influence the xenon outflow curves. In this paper, the xenon outflow curves of single-pulse injection in two-dimensional gas chromatography has been tested and fitted as a function of exponential modified Gaussian distribution. An inference formula of the xenon outflow curve for six-pulse injection is derived, and the inference formula is also tested to compare with its fitting formula of the xenon outflow curve. As a result, the curves of both the one-pulse and six-pulse injections obey the exponential modified Gaussian distribution when the temperature of the activated carbon column's temperature is 26°C and the flow rate of the carrier gas is 35.6mLmin(-1). The retention time of the xenon peak for one-pulse injection is 215min, and the peak width is 138min. For the six-pulse injection, however, the retention time is delayed to 255min, and the peak width broadens to 222min. According to the inferred formula of the xenon outflow curve for the six-pulse injection, the inferred retention time is 243min, the relative deviation of the retention time is 4.7%, and the inferred peak width is 225min, with a relative deviation of 1.3%. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Disks and Outflows Around Young Stars

    NASA Astrophysics Data System (ADS)

    Beckwith, Steven; Staude, Jakob; Quetz, Axel; Natta, Antonella

    The subject of the book, the ubiquitous circumstellar disks around very young stars and the corresponding jets of outflowing matter, has recently become one of the hottest areas in astrophysics. The disks are thought to be precursors to planetary systems, and the outflows are thought to be a necessary phase in the formation of a young star, helping the star to get rid of angular momentum and energy as it makes its way onto the main sequence. The possible connections to planetary systems and stellar astrophysics makes these topics especially broad, appealing to generalists and specialists alike. The CD not only contains papers that could not be printed in the book but allows the authors to include a fair amount of data, often displayed as color images. The CD-ROM contains all the contributions printed in the corresponding book (Lecture Notes in Physics Vol. 465) and, in addition, those presented exclusively in digital form. Each contribution consists of a file in portable document format (PDF). The electronic version allows full-text searching within each file using Adobe's Acrobat Reader providing instructions for installation on Unix (Sun), PC and Macintosh computers, respectively. All contributions can be printed out; the color diagrams and color frames, which are printed in black and white in the book, can be viewed in color on screen.

  8. CHANG-ES. VII. Magnetic Outflows from the Virgo Cluster Galaxy NGC 4388

    NASA Astrophysics Data System (ADS)

    Damas-Segovia, A.; Beck, R.; Vollmer, B.; Wiegert, T.; Krause, M.; Irwin, J.; Weżgowiec, M.; Li, J.; Dettmar, R.-J.; English, J.; Wang, Q. D.

    2016-06-01

    We investigate the effects of ram pressure on the ordered magnetic field of a galaxy hosting a radio halo and strong nuclear outflows. New radio images in total and polarized intensity of the edge-on Virgo galaxy NGC 4388 were obtained within the CHANG-ES EVLA project. The unprecedented noise level reached allows us to detect striking new features of the ordered magnetic field. The nuclear outflow extends far into the halo to about 5 kpc from the center and is spatially correlated with the {{H}}α and X-ray emission. For the first time, the southern outflow is detected. Above and below both spiral arms we find extended blobs of polarized emission with an ordered field oriented perpendicular to the disk. The synchrotron lifetime of the cosmic-ray electrons (CREs) in these regions yields a mean outflow velocity of 270+/- 70 {km} {{{s}}}-1, in agreement with a galactic wind scenario. The observed symmetry of the polarized halo features in NGC 4388 excludes a compression of the halo gas by the ram pressure of the intracluster medium (ICM). The assumption of equilibrium between the halo pressure and the ICM ram pressure yields an estimate of the ICM density that is consistent with both the ICM density derived from X-ray observations and the recent Planck Sunyaev-Zel’dovich measurements. The detection of a faint radio halo around cluster galaxies could thus be used for an estimate of ICM ram pressure.

  9. The Independence of Neutral and Ionized Gas Outflows in Low-z Galaxies

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Jin; Woo, Jong-Hak

    2018-02-01

    Using a large sample of emission line galaxies selected from the Sloan Digital Sky Survey, we investigate the kinematics of the neutral gas in the interstellar medium (ISM) based on the Na I λλ5890,5896 (Na D) doublet absorption line. By removing the Na D contribution from stellar atmospheres, we isolate the line profile of the Na D excess, which represents the neutral gas in the ISM. The kinematics traced by the Na D excess show high velocity and velocity dispersion for a fraction of galaxies, indicating the presence of neutral gas outflows. We find that the kinematics measured from the Na D excess are similar between AGNs and star-forming galaxies. Moreover, by comparing the kinematics traced by the Na D excess and those by the [O III] λ5007 line taken from Woo et al., which traces ionized outflows driven by AGNs, we find no correlation between them. These results demonstrate that the neutral gas in the ISM traced by the Na D excess and the ionized gas traced by [O III] are kinematically independent, and AGNs have no impact on the neutral gas outflows. In contrast to [O III], we find that the measured line-of-sight velocity shift and velocity dispersion of the Na D excess increase for more face-on galaxies due to the projection effect, supporting that Na D outflows are radially driven (i.e., perpendicular to the major axis of galaxies), presumably due to star formation.

  10. Improvement in Outflow Facility by Two Novel Microinvasive Glaucoma Surgery Implants

    PubMed Central

    Hays, Cassandra L.; Gulati, Vikas; Fan, Shan; Samuelson, Thomas W.; Ahmed, Iqbal Ike K.; Toris, Carol B.

    2014-01-01

    Purpose. To determine improvement in outflow facility (C) in human anterior segments implanted with a novel Schlemm's canal scaffold or two trabecular micro-bypasses. Methods. Human anterior segments were isolated from 12 pairs of eyes from donors with no history of ocular disease and then perfused at 50, 40, 30, 20, and 10 mm Hg pressures for 10 minutes each. Baseline C was calculated from perfusion pressures and flow rates. The scaffold was implanted into Schlemm's canal of one anterior segment, and two micro-bypasses were implanted three clock-hours apart in the contralateral anterior segment. Outflow facility and resistance were compared at various standardized perfusion pressures and between each device. Results. Compared to baseline, C increased by 0.16 ± 0.12 μL/min/mm Hg (74%) with the scaffold, and 0.08 ± 0.12 μL/min/mm Hg (34%) with two micro-bypasses. The scaffold increased C at perfusion pressures of 50, 40, 30, and 20 mm Hg (P < 0.005). Two micro-bypasses increased C at a perfusion pressure of 40 mm Hg (P < 0.05). Conclusions. Both implants effectively increased C in human eyes ex vivo. The scaffold increased C by a greater percentage (73% vs. 34%) and at a greater range of perfusion pressures (20 to 50 mm Hg vs. 40 mm Hg) than the two micro-bypasses, suggesting that the 8-mm dilation of Schlemm's canal by the scaffold may have additional benefits in lowering the outflow resistance. The Hydrus Microstent scaffold may be an effective therapy for increasing outflow facility and thus reducing the IOP in patients with glaucoma. PMID:24550367

  11. Understanding the ion distributions near the boundaries of reconnection outflow region

    NASA Astrophysics Data System (ADS)

    Zhou, Xu-Zhi; Pan, Dong-Xiao; Angelopoulos, Vassilis; Runov, Andrei; Zong, Qiu-Gang; Pu, Zu-Yin

    2016-10-01

    An interesting signature observed shortly after the onset of magnetotail reconnection is the gradual appearance of a local peak of ion phase space density (PSD) in the duskward and downstream direction separated from the colder, nearly isotropic ion population. Such a characteristic ion distribution, served as a diagnostic signature of magnetotail reconnection and well reproduced by a particle-tracing Liouville simulation, are found to appear only near the off-equatorial boundaries of the reconnection outflow region. Further analysis on ion trajectories suggests that the ions within the local peak and within the neighboring PSD cleft both belong to the outflowing population; on top of their outflowing motion, they both meander across the neutral sheet to exhibit duskward velocities near the off-equatorial edges of their trajectories. The difference between them is that the local peak originates from ions previously constituting the preonset plasma sheet, whereas the cleft corresponds to the inflowing lobe ions before they are repelled in the downstream direction. As reconnection proceeds, the local PSD peak gradually attenuates and then disappears, which is a signature of reconnection flushing effect that depletes the ions in the preonset plasma sheet and eventually replaces them by lobe ions.

  12. Bipolar Molecular Outflows within 1pc of Sgr A*:Evidence for Low-mass Star Formation Activity

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, Farhad; Wardle, Mark; Kunneriath, Devaky; Royster, Marc; Wootten, Al; Roberts, Douglas

    2018-01-01

    The 4 million solar mass black hole, Sgr A*, is expected to suppress star formation because the measured density of the cloud is insufficient for self-gravity to overcome tidal disruption by the black hole's gravitational field. Nevertheless, objects resembling dust-enshrouded young stars and photo-evaporative flows from their disks have been identified within 2pc of Sgr A*. Clear identification of the nature of these objects has been hampered by the Galactic center's distance, 30 magnitudes of foreground extinction, and stellar crowding. Here, we report the discovery of 11 bipolar molecular outflows using ALMA within a projected distance of one pc from Sgr A*. These unambiguous signatures of young protostars manifest as approaching and receding lobes of dense gas swept up by the jets created during the formation and early evolution of low-mass stars. The mean dynamical age of the outflow sources and the rate of star formation are estimated to be ~6500 years and ~5x10^{-4} solar mass per year, respectively. These measurements suggest that star formation could take place in the immediate vicinity of supermassive black holes in the nuclei of external galaxies.

  13. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    NASA Astrophysics Data System (ADS)

    Voss, P. B.; Zaveri, R. A.; Flocke, F. M.; Mao, H.; Hartley, T. P.; Deamicis, P.; Deonandan, I.; Contreras-Jiménez, G.; Martínez-Antonio, O.; Figueroa Estrada, M.; Greenberg, D.; Campos, T. L.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Crounse, J. D.; Wennberg, P. O.; Apel, E.; Madronich, S.; de Foy, B.

    2010-08-01

    One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18-19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c) low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models used in the

  14. Blowin' in the wind: both `negative' and `positive' feedback in an outflowing quasar at z~1.6

    NASA Astrophysics Data System (ADS)

    Cresci, Giovanni

    2015-02-01

    Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation, preventing massive galaxies to over-grow and producing the red colors of ellipticals. On the other hand, some models are also requiring `positive' AGN feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively-driven winds are available. We present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z=1.59 QSO, in which we clearly resolve a fast (1500 km/s) and extended (up to 13 kpc from the black hole) outflow in the [OIII] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U band flux show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy (`negative feedback'), but also triggering star formation by outflow induced pressure at the edges (`positive feedback'). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.

  15. Impact of earliest activation site location in the septal right ventricular outflow tract for identification of left vs right outflow tract origin of idiopathic ventricular arrhythmias.

    PubMed

    Acosta, Juan; Penela, Diego; Herczku, Csaba; Macías, Yolanda; Andreu, David; Fernández-Armenta, Juan; Cipolletta, Laura; Díaz, Andrés; Korshunov, Viatcheslav; Brugada, Josep; Mont, Lluis; Cabrera, Jose A; Sánchez-Quintana, Damián; Berruezo, Antonio

    2015-04-01

    The earliest activation site (EAS) location in the septal right ventricular outflow tract (RVOT) could be an additional mapping data predictor of left ventricular outflow tract (LVOT) vs RVOT origin of idiopathic ventricular arrhythmias (VAs). The purpose of this study was to assess the impact of EAS location in predicting LVOT vs RVOT origin. Macroscopic and histologic study was performed in 12 postmortem hearts. Electroanatomic maps (EAMs) from 37 patients with outflow tract (OT) VA with the EAS in the septal RVOT were analyzed. Pulmonary valve (PV) was defined by voltage scanning after validation of voltage thresholds by image integration. EAM measurements were correlated with those of macroscopic/histologic study. A cutoff value of 1.9 mV discriminated between subvalvular and supravalvular positions (90% sensitivity, 96% specificity). EAS ≥1 cm below PV excluded RVOT site of origin (SOO). According to anatomic findings (distance PV-left coronary cusp = 5 ± 3 vs PV-right coronary cusp = 11 ± 5 mm), EAS-PV distance was significantly shorter in VAs arising from left coronary cusp than from the other LVOT locations (4.2 ± 5.4 mm vs 9.2 ± 7 mm; P = .034). The 10-ms isochronal longitudinal/perpendicular diameter ratio was higher in the RVOT vs the LVOT SOO group (1.97 ± 1.2 vs 0.79 ± 0.49; P = .001). An algorithm based on EAS-PV distance and the 10-ms isochronal longitudinal/perpendicular diameter ratio predicted LVOT SOO with 91% sensitivity and 100% specificity. An algorithm based on the EAS-PV distance and the 10-ms isochronal longitudinal/perpendicular diameter ratio accurately predicts LVOT vs RVOT SOO in outflow tract VAs with EAS in the septal RVOT. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  16. Chemical Characteristics of Continental Outflow from Asia to the Troposphere Over the Western Pacific Ocean during February - March 1994: Results from PEM-West B

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Dibb, J. E.; Lefer, B. L.; Bradshaw, J. D.; Sandholm, S. T.; Blake, D. R.; Blake, N. J.; Sachse, G. W.; Sachse, G. W.; Heikes, B. G.; hide

    1997-01-01

    We present here the chemical composition of outflow from the Asian continent to the atmosphere over the western Pacific basin during the Pacific Exploratory Mission-West (PEM-West B) in February-March 1994. Comprehensive measurements of important tropospheric trace gases and aerosol particulate matter were performed from the NASA DC-8 airborne laboratory. Backward 5 day isentropic trajectories were used to partition the outflow from two major source regions- continental north (greater than 20 deg N) and continental south (less than 20 deg N). Air parcels that had not passed over continental areas for the previous 5 days were classified as originating from an aged marine source. The trajectories and the chemistry together indicated that there was extensive rapid outflow of air parcels at altitudes below 5 km, while aged marine air was rarely encountered and only at less than 20 deg N latitude. The outflow at low altitudes had enhancements in common industrial solvent vapors such as C2Cl4, CH3CCl3, and C6H6, intermixed with the combustion emission products C2H2, C2H6, CO, and NO. The mixing ratios of all species were up to tenfold greater in outflow from the continental north compared to the continental south source region, with Pb-210 concentrations reaching 38 fCi (10(exp -15) curies) per standard cubic meter. In the upper troposphere we again observed significant enhancements in combustion-derived species in the 8-10 km altitude range, but water-soluble trace gases and aerosol species were depleted. These observations suggest that ground level emissions were lofted to the upper troposphere by wet convective systems which stripped water-soluble components from these air parcels. There were good correlations between C2H2 and CO and C2H6 (r(sup 2) = 0.70 - 0.97) in these air parcels and much weaker ones between C2H2 and H2O2 or CH3OOH (r(sup 2) = 0.50). These correlations were the strongest in the continental north outflow where combustion inputs appeared to be

  17. Compact objects at the heart of outflows in large and small systems

    NASA Astrophysics Data System (ADS)

    Sell, Paul Harrison

    2013-12-01

    This thesis focuses on studying and assessing high-energy feedback generated by both stellar mass and supermassive compact objects. From these two perspectives, I help bridge the gap in understanding how jets and winds can transform their much larger environments in thousands to millions of years, astronomically short timescales. I have acquired X-ray and optical data that aim to elucidate the role these objects play in powering parsec-scale shockwaves in the ISM and in driving kiloparsec-scale outflows in galaxies. I present Chandra X-ray imaging, Hubble Space Telescope imaging, and WIYN Hydra multi-object optical spectroscopic observations. The data reveal the morphologies of the systems and constrain on a range of interesting parameters: power, outflow velocity, density, accretion efficiency, and timescale. My analysis provides perspective on the importance of black holes, both large and small, and neutron stars for driving outflows into the interstellar and intergalactic medium. On kiloparsec scales, I explore the nature of what appear to be merging or recently merging post-starburst galaxies with very high-velocity winds. This work is part of a multiwavelength effort to characterize the niche these galaxies fill in the larger scheme of galaxy evolution. My focus is on the accretion activity of the coalescing supermassive black holes in their cores. This work leads us to compare the relative importance of a massive starburst to the supermassive black holes in the cores of the galaxies. On parsec scales, I present case studies of two prominent microquasars, Galactic X-ray binaries with jets, Circinus X-1 and Cygnus X-1. In the case of Circinus X-1, I present very deep follow-up observations of parsec-scale shock plumes driven by a powerful, bipolar jet. In the case of Cygnus X-1, I present follow-up observations to probe a recently discovered outflow near the binary. I calculate robust, physically motivated limits on the total power needed to drive the outflows

  18. The effect of medical clowns on performance of spirometry among preschool aged children.

    PubMed

    Nir, Vered; Schichter-Konfino, Vered; Kassem, Eias; Klein, Adi

    2018-04-02

    Medical clowns (MCs) are known to assist in reducing pain and alleviating anxiety. The objective of this study is to evaluate the ability of MCs to assist preschoolers in performing spirometry. A prospective, randomized controlled trial. Children aged 3-6 years participated. After a first spirometry, children were divided into two groups: the first performed a second spirometry with an MC. The second repeated spirometry with the technician. Primary outcome was second spirometry values compared between the groups. Secondary outcome were change in spirometry values within groups, and difference between the groups. A total of 140 children participated. The groups did not differ in age, sex, mother tongue, or weight. Nor in mean FVC (MC 89.2% ± 16.7, control 89.5% ± 16.3) mean FEV1 (MC 91.3% ± 15.6, control 94.2% ± 16.8), and expiratory time (MC 1.58 ± 0.43, control 1.7 ± 0.44) in first spirometry. In second spirometry the control group had a similar FVC, FEV1, and expiratory time. The MC group had a significant improvement in all parameters: FVC: MC 95.3% ± 15.5, control 89.3% ± 19.1, FEV1: MC 98.0% ± 15.6, control 91.8% ± 19.3, and expiratory time MC 1.96 ± 0.55, control 1.84 ± 0.52. The differences between the groups between first and second attempt were significant (P-value FVC 0.000, FEV1 0.000, expiratory time 0.003). MCs improved performance of spirometry among preschoolers. It is possible that laughter and relief of stress had a physiological effect. Further studies are required to better establish the ability of MCs to improve active participation and to better understand whether the mechanism of the improvement is better cooperation or true physiological change. © 2018 Wiley Periodicals, Inc.

  19. Dependence of Ca outflow and depression of frog myocardium contraction on ryodipine concentration.

    PubMed

    Narusevicius, E; Gendviliene, V; Macianskiene, R; Hmelj-Dunai, G; Velena, A; Duburs, G

    1988-02-01

    The effect of ryodipine on calcium outflow from tissues, on contraction force, the duration of action potentials and the relaxation phase time-constant in the contraction cycles of myocardial strips was studied using frog heart preparations. It was found that calcium outflow (delta Ca) as a function on ryodipine concentration can be represented as: (formula; see text) A linear correlation exists between Ca2+, contraction blocking and the shortening of the action potential in the presence of various ryodipine concentrations. Ryodipine (10(-5) mol/l) decreased the relaxation time-constant by about 20% as compared to controls. It was concluded that calcium outflow from myocardial tissues in response to ryodipine is due to blockade of calcium entry into the cells and their output through the Na+--Ca2+ exchange system. Frog heart myocardial contractions are essentially under the control of calcium entry through sarcolemmal calcium channels.

  20. Better Than Nothing: A Rational Approach for Minimizing the Impact of Outflow Strategy on Cerebrovascular Simulations.

    PubMed

    Chnafa, C; Brina, O; Pereira, V M; Steinman, D A

    2018-02-01

    Computational fluid dynamics simulations of neurovascular diseases are impacted by various modeling assumptions and uncertainties, including outlet boundary conditions. Many studies of intracranial aneurysms, for example, assume zero pressure at all outlets, often the default ("do-nothing") strategy, with no physiological basis. Others divide outflow according to the outlet diameters cubed, nominally based on the more physiological Murray's law but still susceptible to subjective choices about the segmented model extent. Here we demonstrate the limitations and impact of these outflow strategies, against a novel "splitting" method introduced here. With our method, the segmented lumen is split into its constituent bifurcations, where flow divisions are estimated locally using a power law. Together these provide the global outflow rate boundary conditions. The impact of outflow strategy on flow rates was tested for 70 cases of MCA aneurysm with 0D simulations. The impact on hemodynamic indices used for rupture status assessment was tested for 10 cases with 3D simulations. Differences in flow rates among the various strategies were up to 70%, with a non-negligible impact on average and oscillatory wall shear stresses in some cases. Murray-law and splitting methods gave flow rates closest to physiological values reported in the literature; however, only the splitting method was insensitive to arbitrary truncation of the model extent. Cerebrovascular simulations can depend strongly on the outflow strategy. The default zero-pressure method should be avoided in favor of Murray-law or splitting methods, the latter being released as an open-source tool to encourage the standardization of outflow strategies. © 2018 by American Journal of Neuroradiology.

  1. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    NASA Astrophysics Data System (ADS)

    Voss, P. B.; Zaveri, R. A.; Flocke, F. M.; Mao, H.; Hartley, T. P.; Deamicis, P.; Deonandan, I.; Contreras-Jiménez, G.; Martínez-Antonio, O.; Figueroa Estrada, M.; Greenberg, D.; Campos, T. L.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Crounse, J. D.; Wennberg, P. O.; Apel, E.; Madronich, S.; de Foy, B.

    2010-02-01

    One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis based on the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three different transport pathways on 18-19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf, and (c) low-altitude outflow with entrainment into a cleaner westerly jet below the plateau. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways. In all three cases, distinct peaks in the urban tracer signatures and LIDAR backscatter imagery were consistent with MCMA pollution. The coherence of the high-altitude outflow was well preserved after one day

  2. A Three Parsec-Scale Jet-Driven Outflow from Sgr A

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, F.; Arendt, R.; Bushouse, H.; Cotton, W.; Haggard, D.; Pound, M. W.; Roberts, D. A.; Royster, M.; Wardle, M.

    2012-01-01

    The compact radio source Sgr A* is coincident with a 4x 10(exp 6) solar Mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central 3' and report a faint continuous linear structure centered on Sgr A*. This feature is rotated by 28 deg in PA with respect to the Galactic plane. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. In addition, the continuous linear feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, approx 75" from Sgr A*. The linear structure is best characterized by a mildly relativistic jet-driven outflow from Sgr A*, and an outflow rate 10(exp 6) solar M / yr. The near and far-sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for the origin of a 2" hole, the "minicavity", where disturbed kinematics, enhanced FeII/III line emission, and diffuse X-ray gas have been detected. The estimated kinetic luminosity of the outflow is approx 1.2 X 10(exp 41) erg/s which can produce the Galactic center X-ray flash that has recently been identified

  3. The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Faucher-Giguère, Claude-André

    2018-03-01

    We explore the origin of fast molecular outflows that have been observed in active galactic nuclei (AGNs). Previous numerical studies have shown that it is difficult to create such an outflow by accelerating existing molecular clouds in the host galaxy, as the clouds will be destroyed before they can reach the high velocities that are observed. In this work, we consider an alternative scenario where molecules form in situ within the AGN outflow. We present a series of hydro-chemical simulations of an isotropic AGN wind interacting with a uniform medium. We follow the time-dependent chemistry of 157 species, including 20 molecules, to determine whether molecules can form rapidly enough to produce the observed molecular outflows. We find H2 outflow rates up to 140 M_{⊙} yr^{-1}, which is sensitive to density, AGN luminosity, and metallicity. We compute emission and absorption lines of CO, OH, and warm (a few hundred K) H2 from the simulations in post-processing. The CO-derived outflow rates and OH absorption strengths at solar metallicity agree with observations, although the maximum line-of-sight velocities from the model CO spectra are a factor ≈2 lower than is observed. We derive a CO (1-0) to H2 conversion factor of α _{CO (1-0)} = 0.13 M_{⊙} (K km s^{-1} pc2)^{-1}, 6 times lower than is commonly assumed in observations of such systems. We find strong emission from the mid-infrared lines of H2. The mass of H2 traced by this infrared emission is within a few per cent of the total H2 mass. This H2 emission may be observable by James Webb Space Telescope.

  4. A compliant, banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices.

    PubMed

    Gregory, Shaun D; Schummy, Emma; Pearcy, Mark; Pauls, Jo P; Tansley, Geoff; Fraser, John F; Timms, Daniel

    2015-02-01

    Biventricular support with dual rotary ventricular assist devices (VADs) has been implemented clinically with restriction of the right VAD (RVAD) outflow cannula to artificially increase afterload and, therefore, operate within recommended design speed ranges. However, the low preload and high afterload sensitivity of these devices increase the susceptibility of suction events. Active control systems are prone to sensor drift or inaccurate inferred (sensor-less) data, therefore an alternative solution may be of benefit. This study presents the in vitro evaluation of a compliant outflow cannula designed to passively decrease the afterload sensitivity of rotary RVADs and minimize left-sided suction events. A one-way fluid-structure interaction model was initially used to produce a design with suitable flow dynamics and radial deformation. The resultant geometry was cast with different initial cross-sectional restrictions and concentrations of a softening diluent before evaluation in a mock circulation loop. Pulmonary vascular resistance (PVR) was increased from 50 dyne s/cm(5) until left-sided suction events occurred with each compliant cannula and a rigid, 4.5 mm diameter outflow cannula for comparison. Early suction events (PVR ∼ 300 dyne s/cm(5) ) were observed with the rigid outflow cannula. Addition of the compliant section with an initial 3 mm diameter restriction and 10% diluent expanded the outflow restriction as PVR increased, thus increasing RVAD flow rate and preventing left-sided suction events at PVR levels beyond 1000 dyne s/cm(5) . Therefore, the compliant, restricted outflow cannula provided a passive control system to assist in the prevention of suction events with rotary biventricular support while maintaining pump speeds within normal ranges of operation. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Ultrafast outflows in Super-Eddington Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Kara, Erin

    2017-08-01

    The disruption of a star from the strong tidal forces of a supermassive black hole can cause the stellar debris to fall back towards the black hole at super Eddington rates. Efficient circularization of the debris can lead to the formation of an accretion disc with luminosities close to or potentially exceeding Eddington limit. Most super-Eddington accretion flow models (including recent magnetohydrodynamic simulations) predict large scale height, optically thick equatorial winds at relativistic velocities. In this talk, we will present observational results from two of the most well-observed X-ray emitting Tidal Disruption Events, Swift J1644+57 and ASASSN-14li. Both of these objects show evidence for massive outflows at tens of percent of the speed of light. The outflow in Swift J1644+57 was detected via blue shifted emission and reverberation of the iron K alpha line, and ASASSN-14li shows a potential P Cygni profile of the OVIII line. We will discuss the constraints that these observations put on the geometry of the super-Eddington accretion flows in tidal disruption events.

  6. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    PubMed

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xi<1&solm0;2). The Bernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  7. Outflow monitoring of a pneumatic ventricular assist device using external pressure sensors.

    PubMed

    Kang, Seong Min; Her, Keun; Choi, Seong Wook

    2016-08-25

    In this study, a new algorithm was developed for estimating the pump outflow of a pneumatic ventricular assist device (p-VAD). The pump outflow estimation algorithm was derived from the ideal gas equation and determined the change in blood-sac volume of a p-VAD using two external pressure sensors. Based on in vitro experiments, the algorithm was revised to consider the effects of structural compliance caused by volume changes in an implanted unit, an air driveline, and the pressure difference between the sensors and the implanted unit. In animal experiments, p-VADs were connected to the left ventricles and the descending aorta of three calves (70-100 kg). Their outflows were estimated using the new algorithm and compared to the results obtained using an ultrasonic blood flow meter (UBF) (TS-410, Transonic Systems Inc., Ithaca, NY, USA). The estimated and measured values had a Pearson's correlation coefficient of 0.864. The pressure sensors were installed at the external controller and connected to the air driveline on the same side as the external actuator, which made the sensors easy to manage.

  8. Flow splitting in numerical simulations of oceanic dense-water outflows

    NASA Astrophysics Data System (ADS)

    Marques, Gustavo M.; Wells, Mathew G.; Padman, Laurie; Özgökmen, Tamay M.

    2017-05-01

    Flow splitting occurs when part of a gravity current becomes neutrally buoyant and separates from the bottom-trapped plume as an interflow. This phenomenon has been previously observed in laboratory experiments, small-scale water bodies (e.g., lakes) and numerical studies of small-scale systems. Here, the potential for flow splitting in oceanic gravity currents is investigated using high-resolution (Δx = Δz = 5 m) two-dimensional numerical simulations of gravity flows into linearly stratified environments. The model is configured to solve the non-hydrostatic Boussinesq equations without rotation. A set of experiments is conducted by varying the initial buoyancy number B0 =Q0N3 /g‧2 (where Q0 is the volume flux of the dense water flow per unit width, N is the ambient stratification and g‧ is the reduced gravity), the bottom slope (α) and the turbulent Prandtl number (Pr). Regardless of α or Pr, when B0 ≤ 0.002 the outflow always reaches the deep ocean forming an underflow. Similarly, when B0 ≥ 0.13 the outflow always equilibrates at intermediate depths, forming an interflow. However, when B0 ∼ 0.016, flow splitting always occurs when Pr ≥ 10, while interflows always occur for Pr = 1. An important characteristic of simulations that result in flow splitting is the development of Holmboe-like interfacial instabilities and flow transition from a supercritical condition, where the Froude number (Fr) is greater than one, to a slower and more uniform subcritical condition (Fr < 1). This transition is associated with an internal hydraulic jump and consequent mixing enhancement. Although our experiments do not take into account three-dimensionality and rotation, which are likely to influence mixing and the transition between flow regimes, a comparison between our results and oceanic observations suggests that flow splitting may occur in dense-water outflows with weak ambient stratification, such as Antarctic outflows.

  9. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    PubMed

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  10. On the effect of galactic outflows in cosmological simulations of disc galaxies

    NASA Astrophysics Data System (ADS)

    Valentini, Milena; Murante, Giuseppe; Borgani, Stefano; Monaco, Pierluigi; Bressan, Alessandro; Beck, Alexander M.

    2017-09-01

    We investigate the impact of galactic outflow modelling on the formation and evolution of a disc galaxy, by performing a suite of cosmological simulations with zoomed-in initial conditions (ICs) of a Milky Way-sized halo. We verify how sensitive the general properties of the simulated galaxy are to the way in which stellar feedback triggered outflows are implemented, keeping ICs, simulation code and star formation (SF) model all fixed. We present simulations that are based on a version of the gadget3 code where our sub-resolution model is coupled with an advanced implementation of smoothed particle hydrodynamics that ensures a more accurate fluid sampling and an improved description of gas mixing and hydrodynamical instabilities. We quantify the strong interplay between the adopted hydrodynamic scheme and the sub-resolution model describing SF and feedback. We consider four different galactic outflow models, including the one introduced by Dalla Vecchia & Schaye (2012) and a scheme that is inspired by the Springel & Hernquist (2003) model. We find that the sub-resolution prescriptions adopted to generate galactic outflows are the main shaping factor of the stellar disc component at low redshift. The key requirement that a feedback model must have to be successful in producing a disc-dominated galaxy is the ability to regulate the high-redshift SF (responsible for the formation of the bulge component), the cosmological infall of gas from the large-scale environment, and gas fall-back within the galactic radius at low redshift, in order to avoid a too high SF rate at z = 0.

  11. Molecular Gas toward the Gemini OB1 Molecular Cloud Complex. II. CO Outflow Candidates with Possible WISE Associations

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Li, Fa-Cheng; Xu, Ye; Wang, Chen; Du, Xin-Yu; Yang, Wenjin; Yang, Ji

    2018-03-01

    We present a large-scale survey of CO outflows in the Gem OB1 molecular cloud complex and its surroundings, using the Purple Mountain Observatory Delingha 13.7 m telescope. A total of 198 outflow candidates were identified over a large area (∼58.5 square degrees), of which 193 are newly detected. Approximately 68% (134/198) are associated with the Gem OB1 molecular cloud complex, including clouds GGMC 1, GGMC 2, BFS 52, GGMC 3, and GGMC 4. Other regions studied are: the Local arm (Local Lynds, West Front), Swallow, Horn, and Remote cloud. Outflow candidates in GGMC 1, BFS 52, and Swallow are mainly located at ring-like or filamentary structures. To avoid excessive uncertainty in distant regions (≳3.8 kpc), we only estimated the physical parameters for clouds in the Gem OB1 molecular cloud complex and in the Local arm. In those clouds, the total kinetic energy and the energy injection rate of the identified outflow candidates are ≲1% and ≲3% of the turbulent energy and the turbulent dissipation rate of each cloud, indicating that the identified outflow candidates cannot provide enough energy to balance turbulence of their host cloud at the scale of the entire cloud (several to dozens of parsecs). The gravitational binding energy of each cloud is ≳135 times the total kinetic energy of the identified outflow candidates within the corresponding cloud, indicating that the identified outflow candidates cannot cause major disruptions to the integrity of their host cloud at the scale of the entire cloud.

  12. Massive Molecular Outflows Toward Methanol Masers: by Eye and Machine Learning

    NASA Astrophysics Data System (ADS)

    de Villiers, Helena

    2013-07-01

    The best known evolutionary state of massive stars is that of the UC HII region, occurring a few 10^5 years after the initial formation of a massive YSO. Currently objects in the "hot core" phase, occurring prior to the UC HII region, are studied with great interest. Because the YSO is still supposed to be accreting at this stage, one would expect outflows from the central object to develop during this phase, entraining surrounding cold molecular gas in their wake. During this time, 6.7 GHz (Class II) methanol masers will also turn on. They are uniquely associated with massive YSO's, thus serve as a useful signpost. We searched for molecular outflows with the JCMT and HARP focal plane array in a sample of targets toward 6.7 GHz methanol maser coordinates within 20 < Glon < 34. We found 58 CO clumps but only 47 of them were closely associated with the methanol masers. Their spectra were analyzed for broadened line wings, which were found to be present in 46 of the spectra, indicating either bi- or mono-polar outflows. This is a 98% detection frequency. The velocity ranges of these spectrum wings were used to create two dimensional blue and red maps. The out flows' physical parameters were calculated and compared with literature. We created a catalog of kinematic distances and properties of all the 13CO outflows associated with Class II methanol masers, as well as their associated H_2 core and virial masses as derived from the C18O data. In the the light of our results we emphasize the need for an automated detection process, especially with the increasing number of wide-area surveys. We are currently exploring the use of machine learning algorithms (specifically Support Vector Machines) in the detection of high velocity structures in p-p-v cubes.

  13. On the X-Ray Low- and High-Velocity Outflows in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Tombesi, F.

    2012-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v approx. 100-1000 km/s, and on comparable but less stringent grounds the ultrafast outflows, v approx. 0.03-0.3c. If comparable with the escape velocity of the system, the first is naturally located at distances of the dusty torus, '" I pc, and the second at subparsec scales, approx.0.01 pc, in accordance with large set of observational evidence existing in the literature. The presentation of this relationship might give us key clues for our understanding of the different physical mechanisms acting in the centre of galaxies, the feedback process and its impact on the evolution of the host galaxy.

  14. Effects of Y27632 on aqueous humor outflow facility with changes in hydrodynamic pattern and morphology in human eyes.

    PubMed

    Yang, Chen-Yuan Charlie; Liu, Ye; Lu, Zhaozeng; Ren, Ruiyi; Gong, Haiyan

    2013-08-28

    To determine the effect of Y27632, a Rho-kinase inhibitor on aqueous outflow facility, flow pattern, and juxtacanalicular tissue (JCT)/trabecular meshwork (TM) morphology in human eyes. Sixteen enucleated human eyes were perfused with PBS plus glucose (GPBS) at 15 mm Hg to establish the baseline outflow facility. Six eyes were perfused for short-duration (30 minute) with either 50 μM Y27632 or GPBS (n = 3 per group). Ten eyes were perfused for long duration (3 hours) with either 50 μM Y27632 or GPBS (n = 5 per group). Outflow pattern was labeled using fluorescent microspheres, and effective filtration length (EFL) was measured. Morphologic changes and their relationship to EFL and facility were analyzed. Outflow facility significantly increased after short-duration perfusion with Y27632 compared with its own baseline (P = 0.03), but did not reach statistical significance compared with its controls (P = 0.07). Outflow facility (P = 0.01) and EFL (P < 0.05) were significantly increased after long-duration perfusion with Y27632 compared with its controls. Increases in outflow facility and EFL demonstrated a positive correlation. Morphologically, the TM and JCT of high-tracer regions were more expanded compared with low-tracer regions. A significant increase in JCT thickness was found in the long-duration Y27632 group compared with its control group (10.0 vs. 8.0 μm, P < 0.01). Y27632 increases outflow facility in human eyes. This increase correlates positively with an increase in EFL, which is associated with an increased expansion in the JCT. Our data suggest that EFL could serve as a novel parameter to correlate with outflow facility.

  15. The detection of high-velocity outflows from M8E-IR

    NASA Technical Reports Server (NTRS)

    Mitchell, George F.; Allen, Mark; Beer, Reinhard; Dekany, Richard; Huntress, Wesley

    1988-01-01

    A high-resolution (0.059/cm) M band (4.6 micron) spectrum of the embedded young stellar object M8E-IR is presented and discussed. The spectrum shows strong absorption to large blueshifts in the rotational lines of the fundamental vibrational band, v = 1-0, of CO. The absorption is interpreted as being due to gas near to, and flowing from, the central object. The outflowing gas is warm (95-330 K) and consists of discrete velocity components with the very high velocities of 90, 130, 150, and 160 km/s. On the basis of a simple model, it is estimated that the observed outflows are less than 100 yr old.

  16. Geometrically Thick Obscuration by Radiation-driven Outflow from Magnetized Tori of Active Galactic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Chi-Ho; Krolik, Julian H.

    2017-07-01

    Near-Eddington radiation from active galactic nuclei (AGNs) has significant dynamical influence on the surrounding dusty gas, plausibly furnishing AGNs with geometrically thick obscuration. We investigate this paradigm with radiative magnetohydrodynamics simulations. The simulations solve the magnetohydrodynamics equations simultaneously with the infrared (IR) and ultraviolet (UV) radiative transfer (RT) equations; no approximate closure is used for RT. We find that our torus, when given a suitable sub-Keplerian angular momentum profile, spontaneously evolves toward a state in which its opening angle, density distribution, and flow pattern change only slowly. This “steady” state lasts for as long as there is gas resupply towardmore » the inner edge. The torus is best described as a midplane inflow and a high-latitude outflow. The outflow is launched from the torus inner edge by UV radiation and expands in solid angle as it ascends; IR radiation continues to drive the wide-angle outflow outside the central hole. The dusty outflow obscures the central source in soft X-rays, the IR, and the UV over three-quarters of solid angle, and each decade in column density covers roughly equal solid angle around the central source; these obscuration properties are similar to what observations imply.« less

  17. Combined technetium radioisotope penile plethysmography and xenon washout: A technique for evaluating corpora cavernosal inflow and outflow during early tumescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A.N.; Graham, M.M.

    1991-03-01

    Combined technetium radioisotope penile plethysmography and xenon washout is a new technique that measures both corporal arterial inflow and venous sinusoidal outflow during early tumescence in patients with erectile dysfunction. Fourteen patients were studied using 99mTc-RBCs to measure inflow and 133Xe or 127Xe in saline to measure outflow. Tumescence was induced by injecting papaverine intracorporally. Peak corporal rates corrected for inflow (r = 0.88) and uncorrected for outflow (r = 0.91) and change in volume over 2 min centered around peak inflow (r = 0.96) all correlated with angiography. Outflow measurements did not correlate with intracorporal resistance. Thus, outflow ratesmore » alone could not be used to predict venous sinusoidal competence. Normal inflow rate is greater than 20 ml/min; probable normal 12-20; indeterminate inflow 7-12; and abnormal inflow less than 7 ml/min. Technetium-99m radioisotope penile plethysmography and xenon washout can be performed together and both provide a method for simultaneously evaluating the relationship between corporal inflow and outflow rates in patients with erectile dysfunction.« less

  18. The Retrograde Transvenous Push-Through Method: A Novel Treatment of Peripheral Arteriovenous Malformations with Dominant Venous Outflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlgemuth, Walter A., E-mail: walter.wohlgemuth@ukr.de; Müller-Wille, René, E-mail: Rene.Mueller-Wille@ukr.de; Teusch, Veronika I., E-mail: Veronika.Teusch@gmx.de

    2015-06-15

    PurposeTo evaluate the efficacy and safety of a novel retrograde transvenous embolization technique of peripheral arteriovenous malformations (AVMs) using Onyx.Materials and MethodsWe conducted a retrospective analysis of all patients who underwent transvenous retrograde Onyx embolization of peripheral AVMs with dominant venous outflow over a 29-month period. The embolization is aimed at retrograde filling of the nidus after building a solid plug in the dominant venous outflow (push-through). Classification, clinical signs, technical aspects, clinical and technical success rates, and complications were recorded. Short-term outcome was assessed.Results11 Symptomatic patients (8 female; mean age 31.4 years) were treated at our Vascular Anomalies Center withmore » this method between January 2012 and May 2014. The AVMs were located on the upper extremity (n = 3), pelvis (n = 2), buttock (n = 2), and lower extremity (n = 4). Retrograde embolization was successfully carried out after preparatory transarterial-flow reduction in eight cases (73 %) and venous-flow reduction with Amplatzer Vascular Plugs in four cases (36 %). Complete devascularization (n = 10; 91 %) or 95 % devascularization (n = 1; 9 %) led to complete resolution (n = 8; 73 %) or improvement of clinical symptoms (n = 3; 27 %). One minor complication occurred (pain and swelling). During a mean follow-up time of 8 months, one clinically asymptomatic recurrence of AVM was detected.ConclusionInitial results suggest that retrograde transvenous Onyx embolization of peripheral AVMs with dominant venous outflow is a safe and effective novel technique with a low complication rate.« less

  19. Is there any evidence that ionized outflows quench star formation in type 1 quasars at z < 1?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Marconi, A.; Brusa, M.; Carniani, S.; Cresci, G.; Lusso, E.; Maiolino, R.; Mannucci, F.; Nagao, T.

    2016-01-01

    Aims: The aim of this paper is to test the basic model of negative active galactic nuclei (AGN) feedback. According to this model, once the central black hole accretes at the Eddington limit and reaches a certain critical mass, AGN driven outflows blow out gas, suppressing star formation in the host galaxy and self-regulating black hole growth. Methods: We consider a sample of 224 quasars selected from the Sloan Digital Sky Survey (SDSS) at z< 1 observed in the infrared band by the Herschel Space Observatory in point source photometry mode. We evaluate the star formation rate in relation to several outflow signatures traced by the [O III] λ4959, 5007 and [O II] λ3726, 3729 emission lines in about half of the sample with high quality spectra. Results: Most of the quasars show asymmetric and broad wings in [O III], which we interpret as outflow signatures. We separate the quasars in two groups, "weakly" and "strongly" outflowing, using three different criteria. When we compare the mean star formation rate in five redshift bins in the two groups, we find that the star formation rate (SFR) are comparable or slightly larger in the strongly outflowing quasars. We estimate the stellar mass from spectral energy distribution (SED) fitting and the quasars are distributed along the star formation main sequence, although with a large scatter. The scatter from this relation is uncorrelated with respect to the kinematic properties of the outflow. Moreover, for quasars dominated in the infrared by starburst or by AGN emission, we do not find any correlation between the star formation rate and the velocity of the outflow, a trend previously reported in the literature for pure starburst galaxies. Conclusions: We conclude that the basic AGN negative feedback scenario seems not to agree with our results. Although we use a large sample of quasars, we did not find any evidence that the star formation rate is suppressed in the presence of AGN driven outflows on large scale. A

  20. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  1. MULTIPLE OUTFLOWS IN THE GIANT ERUPTION OF A MASSIVE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, Roberta M.; Gordon, Michael S.; Jones, Terry J.

    The supernova impostor PSN J09132750+7627410 in NGC 2748 reached a maximum luminosity of ≈−14 mag. It was quickly realized that it was not a true supernova, but another example of a nonterminal giant eruption. PSN J09132750+7627410 is distinguished by multiple P Cygni absorption minima in the Balmer emission lines that correspond to outflow velocities of −400, −1100, and −1600 km s{sup −1}. Multiple outflows have been observed in only a few other objects. In this paper we describe the evolution of the spectrum and the P Cygni profiles for 3 months past maximum, the post-maximum formation of a cool, densemore » wind, and the identification of a possible progenitor. One of the possible progenitors is an infrared source. Its pre-eruption spectral energy distribution suggests a bolometric luminosity of −8.3 mag and a dust temperature of 780 K. If it is the progenitor, it is above the AGB limit, unlike the intermediate-luminosity red transients. The three P Cygni profiles could be due to ejecta from the current eruption, the wind of the progenitor, or previous mass-loss events. We suggest that they were all formed as part of the same high-mass-loss event and are due to material ejected at different velocities or energies. We also suggest that multiple outflows during giant eruptions may be more common than reported.« less

  2. Figuring Out Gas and Galaxies in Enzo (FOGGIE): Simulating effects of feedback on galactic outflows

    NASA Astrophysics Data System (ADS)

    Morris, Melissa Elizabeth; Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton

    2018-01-01

    The circumgalactic medium (CGM) is the region beyond the galactic disk in which gas is accreted through pristine inflows from the intergalactic medium and expelled from the galaxy by stellar feedback in large outflows that can then be recycled back onto the disk. These gas cycles connect the galactic disk with its cosmic environment, making the CGM a vital component of galaxy evolution. However, the CGM is primarily observed in absorption, which can be difficult to interpret. In this study, we use high resolution cosmological hydrodynamic simulations of a Milky Way mass halo evolved with the code Enzo to aid the interpretation of these observations. In our simulations, we vary feedback strength and observe the effect it has on galactic outflows and the evolution of the galaxy’s CGM. We compare the star formation rate of the galaxy with the velocity flux and mass outflow rate as a function of height above the plane of the galaxy in order to measure the strength of the outflows and how far they extend outside of the galaxy.This work was supported by The Space Astronomy Summer Program at STScI and NSF grant AST-1517908.

  3. Solar Jets as Sources of Outflows, Heating and Waves

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.

    2013-05-01

    Recent space solar observations of the Sun, such as Hinode and SDO, have revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Especially recent Hinode observations has found various types of tiny chromospheric jets, such as chromospheric anemone jets, penumbral microjets and light bridge jets from sunspot umbra. It was also found that the corona is full of tiny X-ray jets. Often they are seen as helical spinning jets with Alfvenic waves in the corona. Sometimes they are seen as chromospheric jets with slow-mode magnetoacoustic waves and sometimes as unresolved jet-like events at the footpoint of recurrent outflows and waves at the edge of the active region. There is increasing evidence of magnetic reconnection in these tiny jets and its association with waves. The origin of outflows and waves is one of the issues concerning coronal heating and solar wind acceleration. To answer this question, we had a challenge to reproduce solar jets with laboratory plasma experiment and directly measured outflows and waves. As a result, we could find a propagating wave excited by magnetic reconnection, whose energy flux is 10% of the released magnetic energy. That is enough for solar wind acceleration and locally enough for coronal heating, consistent with numerical MHD simulations of solar jets. Here we would discuss recent observations with Hinode, theories and experimental results related to jets and waves by magnetic reconnection, and discuss possible implication to reconnection physics, coronal heating and solar wind acceleration.

  4. Intercostal muscle twitching: An unusual manifestation of extracardiac stimulation related to right ventricular outflow tract pacing

    PubMed Central

    Erdogan, Okan

    2007-01-01

    The present case report describes a patient who underwent successful dual-chamber pacemaker implantation with active ventricular lead fixation at a high septal region in the right ventricular outflow tract. Unexpectedly, stimulation at a high output in the right ventricular outflow tract caused an unusual extracardiac stimulation, specifically, intercostal muscle twitching. PMID:17703261

  5. Positive and negative influences of social participation on physical and mental health among community-dwelling elderly aged 65-70 years: a cross-sectional study in Japan.

    PubMed

    Tomioka, Kimiko; Kurumatani, Norio; Hosoi, Hiroshi

    2017-05-19

    Although numerous investigations have indicated that social participation (SP) has positive effects on the health of older adults, there have been few studies on its negative health consequences. We examined the cross-sectional associations of the type, frequency, and autonomy for SP with physical and mental health. The analytical subjects were 5126 males and 7006 females who were functionally independent, born between 1945 and 1949, and covered by A City's medical insurance system. Physical and mental health were measured using the SF-8 Health Survey. SP was measured through six types of social groups. These social groups included volunteer groups, sports groups, hobby clubs, senior citizens' clubs, neighborhood community associations, and cultural groups. Analysis of covariance was conducted to compare adjusted physical health component summary scores (PCS) and mental health component summary scores (MCS) by the frequency and autonomy of SP. Age, family size, body mass index, chronic conditions, smoking, alcohol intake, depression and cognitive functioning were included as covariates. To examine whether the associations between SP and PCS/MCS are different between genders, we performed analyses stratified by gender. Overall, positive associations of the frequency and autonomy of SP with PCS and MCS were stronger in females than males. As to frequency, frequent participation in sports groups and hobby clubs had significantly better PCS among both genders and better MCS among females than non-participation. None of the groups differed significantly in the MCS among males. As to autonomy, among both genders, voluntary participation in sports groups and hobby clubs had significantly better PCS than non-participation, and better MCS than not only non-participation, but also obligatory participation. Among females, obligatory participation in all groups had significantly poorer MCS than voluntary participation, and obligatory participation in sports groups had

  6. The molecular gas content of the Pipe Nebula. I. Direct evidence of outflow-generated turbulence in B59?

    NASA Astrophysics Data System (ADS)

    Duarte-Cabral, A.; Chrysostomou, A.; Peretto, N.; Fuller, G. A.; Matthews, B.; Schieven, G.; Davis, G. R.

    2012-07-01

    Context. Star forming regions may share many characteristics, but the specific interplay between gravity, magnetic fields, large-scale dynamics, and protostellar feedback will have an impact on the star formation history of each region. The importance of feedback from outflows is a particular subject to debate, as we are yet to understand the details of their impact on clouds and star formation. Aims: The Pipe Nebula is a nearby molecular cloud hosting the B59 region as its only active star-forming clump. This paper focuses on the global dynamics of B59, its temperature structure, and its outflowing gas, with the goal of revealing the local and global impact of the protostellar outflows. Methods: Using HARP at the James Clerk Maxwell Telescope, we have mapped the B59 region in the J = 3 → 2 transition of 12CO to study the kinematics and energetics of the outflows, and the same transitions of 13CO and C18O to study the overall dynamics of the ambient cloud, the physical properties of the gas, and the hierarchical structure of the region. Results: The B59 region has a total of ~30 M⊙ of cold and quiescent material, mostly gravitationally bound, with narrow line widths throughout. Such low levels of turbulence in the non-star-forming regions within B59 are indicative of the intrinsic initial conditions of the cloud. On the other hand, close to the protostars the impact of the outflows is observed as a localised increase of both C18O line widths from ~0.3 km s-1 to ~1 km s-1, and 13CO excitation temperatures by ~2-3 K. The impact of the outflows is also evident in the low column density material which shows signs of being shaped by the outflow bow shocks as they pierce their way out of the cloud. Much of this structure is readily apparent in a dendrogram analysis of the cloud and demonstrates that when decomposing clouds using such techniques a careful interpretation of the results is needed. Conclusions: The low mass of B59 together with its intrinsically

  7. The Cosmological Impact of AGN Outflows: Measuring Absolute Abundances and Kinetic Luminosities

    NASA Astrophysics Data System (ADS)

    Arav, Nahum

    2009-07-01

    AGN outflows are increasingly invoked as a major contributor to the formation and evolution of supermassive black holes, their host galaxies, the surrounding IGM, and cluster cooling flows. Our HST/COS proposal will determine reliable absolute chemical abundances in six AGN outflows, which influences several of the processes mentioned above. To date there is only one such determination, done by our team on Mrk 279 using 16 HST/STIS orbits and 100 ksec of FUSE time. The advent of COS and its high sensitivity allows us to choose among fainter objects at redshifts high enough to preclude the need for FUSE. This will allow us to determine the absolute abundances for six AGN {all fainter than Mrk 279} using only 40 HST COS orbits. This will put abundances studies in AGN on a firm footing, an elusive goal for the past four decades. In addition, prior FUSE observations of four of these targets indicate that it is probable that the COS observations will detect troughs from excited levels of C III. These will allow us to measure the distances of the outflows and thereby determine their kinetic luminosity, a major goal in AGN feedback research. We will use our state of the art column density extraction methods and velocity-dependent photoionization models to determine the abundances and kinetic luminosity. Previous AGN outflow projects suffered from the constraints of deciding what science we could do using ONE of the handful of bright targets that were observable. With COS we can choose the best sample for our experiment. As an added bonus, most of the spectral range of our targets has not been observed previously, greatly increasing the discovery phase space.

  8. Superwind Outflow in Seyfert Galaxies? : Optical Observations of an Edge-On Sample

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.; Lehnert, M.

    1994-12-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst are thought to provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, X-rays and radio synchrotron emission. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. Diffuse radio emission has been found (Baum et al. 1993, ApJ, 419, 553) to extend out to kpc-scales in a number of edge-on Seyfert galaxies. We have therefore launched a systematic search for superwind outflows in Seyferts. We present here narrow-band optical images and optical spectra for a sample of edge-on Seyferts. These data have been used to estimate the frequency of occurence of superwinds. Approximately half of the sample objects show evidence for extended emission-line regions which are preferentially oriented perpendicular to the galaxy disk. It is possible that these emission-line regions may be energized by a superwind outflow from a circumnuclear starburst, although there may also be a contribution from the AGN itself. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  9. Circumstellar Disks and Outflows in Turbulent Molecular Cloud Cores: Possible Formation Mechanism for Misaligned Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Tomoaki; Machida, Masahiro N.; Inutsuka, Shu-ichiro, E-mail: matsu@hosei.ac.jp

    2017-04-10

    We investigate the formation of circumstellar disks and outflows subsequent to the collapse of molecular cloud cores with the magnetic field and turbulence. Numerical simulations are performed by using an adaptive mesh refinement to follow the evolution up to ∼1000 years after the formation of a protostar. In the simulations, circumstellar disks are formed around the protostars; those in magnetized models are considerably smaller than those in nonmagnetized models, but their size increases with time. The models with stronger magnetic fields tend to produce smaller disks. During evolution in the magnetized models, the mass ratios of a disk to amore » protostar is approximately constant at ∼1%–10%. The circumstellar disks are aligned according to their angular momentum, and the outflows accelerate along the magnetic field on the 10–100 au scale; this produces a disk that is misaligned with the outflow. The outflows are classified into two types: a magnetocentrifugal wind and a spiral flow. In the latter, because of the geometry, the axis of rotation is misaligned with the magnetic field. The magnetic field has an internal structure in the cloud cores, which also causes misalignment between the outflows and the magnetic field on the scale of the cloud core. The distribution of the angular momentum vectors in a core also has a non-monotonic internal structure. This should create a time-dependent accretion of angular momenta onto the circumstellar disk. Therefore, the circumstellar disks are expected to change their orientation as well as their sizes in the long-term evolutions.« less

  10. Imaging the molecular outflows of the prototypical ULIRG NGC 6240 with ALMA

    NASA Astrophysics Data System (ADS)

    Saito, T.; Iono, D.; Ueda, J.; Espada, D.; Sliwa, K.; Nakanishi, K.; Lu, N.; Xu, C. K.; Michiyama, T.; Kaneko, H.; Yamashita, T.; Ando, M.; Yun, M. S.; Motohara, K.; Kawabe, R.

    2018-03-01

    We present 0.97 × 0.53 arcsec2 (470 pc × 250 pc) resolution CO (J = 2-1) observations towards the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the central 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes (˜11 kpc). We found that the CO emission around the central, a few kpc, has extremely broad velocity wings with full width at zero intensity ˜ 2000 km s-1, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO data cube. The distribution of the broad CO components shows four extremely large line width regions (˜1000 km s-1) located 1-2 kpc away from both nuclei. Spatial coincidence of the large line width regions with H α, near-IR H2, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.

  11. Does an Intrinsic Magnetic Field Inhibit or Enhance Planetary Ionosphere Outflow and Loss?

    NASA Astrophysics Data System (ADS)

    Strangeway, R. J.; Russell, C. T.; Luhmann, J. G.; Moore, T. E.; Foster, J. C.; Barabash, S. V.; Nilsson, H.

    2017-12-01

    A characteristic feature of the planets Earth, Venus and Mars is the observation of the outflow of ionospheric ions, most notably oxygen. The oxygen ion outflow is frequently assumed to be a proxy for the loss of water from the planetary atmosphere. In terms of global outflow rates for the Earth the rate varies from 1025 to 1026 s-1, depending on geomagnetic activity. For both Venus and Mars global rates of the order 5x1024 s-1 have been reported. Venus and Mars do not have a large-scale intrinsic magnetic field, and there are several pathways for atmospheric and ionospheric loss. At Mars, because of its low gravity, neutral oxygen can escape through dissociative recombination. At Venus only processes related to the solar wind interaction with the planet such as sputtering and direct scavenging of the ionosphere by the solar wind can result in oxygen escape. At the Earth the intrinsic magnetic field forms a barrier to the solar wind, but reconnection of the Earth's magnetic field with the Interplanetary Magnetic Field allows solar wind energy and momentum to be transferred into the magnetosphere, resulting in ionospheric outflows. Observations of oxygen ions at the dayside magnetopause suggest that at least some of these ions escape. In terms of the evolution of planetary atmospheres how the solar-wind driven escape rates vary for magnetized versus umagnetized planets is also not clear. An enhanced solar wind dynamic pressure will increase escape from the unmagnetized planets, but it may also result in enhanced reconnection at the Earth, increasing outflow and loss rates for the Earth as well. Continued improvement in our understanding of the different pathways for ionospheric and atmospheric loss will allow us to determine how effective an intrinsic planetary field is in preserving a planetary atmosphere, or if we have to look for other explanations as to why the atmospheres of Venus and Mars have evolved to their desiccated state.

  12. Seasonal changes and driving forces of inflow and outflow through the Bohai Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Qiao, Fangli; Guo, Jingsong; Guo, Binghuo

    2018-02-01

    This work focuses on analyzing seasonal variation of inflow and outflow through the Bohai Strait that greatly affect the marine environment in the Bohai Sea, using observational data including sea bed mounted acoustic Doppler current profiler currents, CTD salinity data on deck, sea level anomalies of coastal tide gauge stations, and climatological monthly sea level anomalies from Archiving, Validation and Interpretation of Satellite Oceanographic data. Our results show three patterns of outflow and inflow through the Bohai Strait. The first is such that outflow and inflow occur respectively in the southern and northern parts of the strait, as in the traditional understanding. Our results suggest that this pattern occurs only in autumn and winter. Beginning in late September, Ekman currents driven by the northwesterly monsoon carry Bohai Sea water that piles up in the southern part of that sea and then exits eastward to the Yellow Sea. In this process, the pressure and current fields are continuously adjusted, until a quasi balance state between wind stress, Coriolis force and pressure gradient force is reached in winter. Inflow with a compensating property through the northern channel is close to the outflow through the southern channel in winter. The second pattern is a single inflow in spring, and the current and pressure fields are in adjustment. In early spring, the northwesterly monsoon ceases, Yellow Sea water enters the Bohai Sea under the pressure gradient force. With southeasterly monsoon establishment and strengthening, northern Yellow Sea water continually flows into the Bohai Sea and causes sea level rise northward. In the third pattern, outflow is much greater than inflow in summer. The currents run eastward in the central Bohai Sea and then enter the northern Yellow Sea through the northern channel and upper layer of the southern channel, while a westward current with a compensating property enters via the lower layer of the southern channel. Larger

  13. Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard

    2015-08-01

    Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  14. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    NASA Astrophysics Data System (ADS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  15. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves inmore » the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.« less

  16. Biodegradability and Molecular Composition of Dissolved Organic Nitrogen in Urban Stormwater Runoff and Outflow Water from a Stormwater Retention Pond.

    PubMed

    Lusk, Mary G; Toor, Gurpal S

    2016-04-05

    Dissolved organic nitrogen (DON) can be a significant part of the reactive N in aquatic ecosystems and can accelerate eutrophication and harmful algal blooms. A bioassay method was coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to determine the biodegradability and molecular composition of DON in the urban stormwater runoff and outflow water from an urban stormwater retention pond. The biodegradability of DON increased from 10% in the stormwater runoff to 40% in the pond outflow water and DON was less aromatic and had lower overall molecular weight in the pond outflow water than in the stormwater runoff. More than 1227 N-bearing organic formulas were identified with FT-ICR-MS in the stormwater runoff and pond outflow water, which were only 13% different in runoff and outflow water. These molecular formulas represented a wide range of biomolecules such as lipids, proteins, amino sugars, lignins, and tannins in DON from runoff and pond outflow water. This work implies that the urban infrastructure (i.e., stormwater retention ponds) has the potential to influence biogeochemical processes in downstream water bodies because retention ponds are often a junction between the natural and the built environment.

  17. Image digitising and analysis of outflows from young stars

    NASA Astrophysics Data System (ADS)

    Zealey, W. J.; Mader, S. L.

    1997-08-01

    We present IIIaJ, IIIaF and IVN band images of Herbig-Haro objects digitised from the ESO/SERC Southern Sky Survey plates. These form part of a digital image database of southern HH objects, which allows the identification of emission and reflection nebulosity and the location of the obscured sources of outflows.

  18. Discovery of the Rotating Molecular Outflow and Disk in the CLASS-0/I Protostar [BHB2007]#11 in Pipe

    NASA Astrophysics Data System (ADS)

    Chihomi, Hara; Ryohei, Kawabe; Yoshito, Shimajiri; Junko, Ueda; Takashi, Tsukagoshi; Yasutaka, Kurono; Kazuya, Saigo; Fumitaka, Nakamura; Masao, Saito; Wilner, David

    2013-07-01

    The loss of angular momentum is inevitable in star formation processes, and the transportation of angular momentum by a molecular flow is widely thought to be one of the important processes. We present the results of our 2'h resolution Submillimeter Array (SMA) observations in CO, 13CO, and C18O(2-1) emissions toward a low-mass Class-0/I protostar, [BHB2007]#11 (hereafter B59#11) at the nearby star forming region, Barnard 59 in the Pipe Nebula (d=130 pc). B59#11 ejects a molecular outflow whose axis lies almost on the plane of the sky, and one of the best targets to investigate the envelope/disk rotation and the velocity structure of the molecular outflow. The 13CO and C18O observations have revealed that a compact (r ˜ 800 AU) and elongated structure of dense gas is associated with B59#11, which orients perpendicular to the outflow axis. Their distributions show the velocity gradients along their major axes, which are considered to arise from the envelope/disk rotation. The specific angular momentum is estimated to be (1.6+/-0.6)e-3 km/s pc. The power-law index of the radial profile of the rotation velocity changes from steeper one, i.e., ˜ -1 to -1/2 at a radius of 140 AU, suggesting the Keplerian disk is formed inside the radius. The central stellar mass is estimated to be ˜1.3 Msun. A collimated molecular outflow is detected from the CO observations. We found in the outflow a velocity gradient which direction is the same as that seen in the dense gas. This is interpreted to be due to the outflow rotation. The specific angular momentum of the outflow is comparable to that of the envelope, suggesting that this outflow play an important role to the ejection of the angular momentum from the envelope/disk system. This is the first case where both the Keplerian disk and the rotation of the molecular outflow were found in the Class-0 or I protostar, and provides one of good targets for ALMA to address the angular momentum ejection in course of star formation.

  19. Glue Embolization of a Blunt Traumatic Hepatic Arteriovenous Fistula under Inflow and Outflow Control.

    PubMed

    Mine, Takahiko; Murata, Satoru; Yasui, Daisuke; Yokota, Hiroyuki; Tajima, Hiroyuki; Kumita, Shin-ichiro

    2016-01-01

    We report on a rare case of blunt traumatic hepatic arteriovenous fistula arising from a pseudoaneurysm in a 35-year-old woman. Transarterial embolization was performed with n-butyl-2-cyanoacrylate, under inflow control with loose coil packing within the pseudoaneurysm and outflow control by balloon occlusion of the hepatic vein. A promising therapeutic outcome was achieved without any serious adverse events. Thus, the combination of these techniques to control inflow and outflow was successfully used to treat this rare hepatic vascular injury.

  20. The Second Digital Divide and Its Effect on African-American (K-12) School-Age Children

    ERIC Educational Resources Information Center

    Barrett, Christopher A.

    2010-01-01

    The qualitative phenomenological study explored the perceptions of educators and parents of African-American (K-12) school-age children on how the children were using technology. The study was conducted in the Memphis City Public School System (MCS) and was limited to three schools in a school district. Common themes emerged from the analysis of…

  1. Configuring calendar variation based on time series regression method for forecasting of monthly currency inflow and outflow in Central Java

    NASA Astrophysics Data System (ADS)

    Setiawan, Suhartono, Ahmad, Imam Safawi; Rahmawati, Noorgam Ika

    2015-12-01

    Bank Indonesia (BI) as the central bank of Republic Indonesiahas a single overarching objective to establish and maintain rupiah stability. This objective could be achieved by monitoring traffic of inflow and outflow money currency. Inflow and outflow are related to stock and distribution of money currency around Indonesia territory. It will effect of economic activities. Economic activities of Indonesia,as one of Moslem country, absolutely related to Islamic Calendar (lunar calendar), that different with Gregorian calendar. This research aims to forecast the inflow and outflow money currency of Representative Office (RO) of BI Semarang Central Java region. The results of the analysis shows that the characteristics of inflow and outflow money currency influenced by the effects of the calendar variations, that is the day of Eid al-Fitr (moslem holyday) as well as seasonal patterns. In addition, the period of a certain week during Eid al-Fitr also affect the increase of inflow and outflow money currency. The best model based on the value of the smallestRoot Mean Square Error (RMSE) for inflow data is ARIMA model. While the best model for predicting the outflow data in RO of BI Semarang is ARIMAX model or Time Series Regression, because both of them have the same model. The results forecast in a period of 2015 shows an increase of inflow money currency happened in August, while the increase in outflow money currency happened in July.

  2. Lens-Aided Multi-Angle Spectroscopy (LAMAS) Reveals Small-Scale Outflow Structure in Quasars

    NASA Astrophysics Data System (ADS)

    Green, Paul J.

    2006-06-01

    Spectral differences between lensed quasar image components are common. Since lensing is intrinsically achromatic, these differences are typically explained as the effect of either microlensing, or as light path time delays sampling intrinsic quasar spectral variability. Here we advance a novel third hypothesis: some spectral differences are due to small line-of-sight differences through quasar disk wind outflows. In particular, we propose that variable spectral differences seen only in component A of the widest separation lens SDSS J1004+4112 are due to differential absorption along the sight lines. The absorber properties required by this hypothesis are akin to known broad absorption line (BAL) outflows but must have a broader, smoother velocity profile. We interpret the observed C IV emission-line variability as further evidence for spatial fine structure transverse to the line of sight. Since outflows are likely to be rotating, such absorber fine structure can consistently explain some of the UV and X-ray variability seen in AGNs. The implications are many: (1) Spectroscopic differences in other lensed objects may be due to this ``lens-aided multi-angle spectroscopy'' (LAMAS). (2) Outflows have fine structure on size scales of arcseconds, as seen from the nucleus. (3) Assuming either broad absorption line region sizes proposed in recent wind models, or typically assumed continuum emission region sizes, LAMAS and/or variability provide broadly consistent absorber size scale estimates of ~1015 cm. (4) Very broad smooth absorption may be ubiquitous in quasar spectra, even when no obvious troughs are seen.

  3. Anatomy of the AGN in NGC 5548: Discovery of a fast and massive outflow

    NASA Astrophysics Data System (ADS)

    Kaastra, J.; Kriss, G.; Cappi, M.; Mehdipour, M.; Petrucci, P.; Steenbrugge, K.; Arav, N.; Behar, E.; Bianchi, S.; Boissay, R.; Branduardi-Raymont, G.; Chamberlain, C.; Costantini, E.; Ely, J.; Ebrero, J.; Di Gesu, L.; Harrison, F.; kaspi, S.; Malzac, J.; De Marco, B.; Matt, G.; Nandra, K.; Paltani, S.; Person, R.; Peterson, B.; Pinto, C.; Ponti, G.; Pozo Nuñez, F.; De Rosa, A.; Seta, H.; Ursini, F.; De Vries, C.; Walton, D.; Whewell, M.

    2014-07-01

    After a very succesfull multi-satellite campaign on Mrk 509 in 2009, we conducted a similar campaign on the AGN NGC 5548 in 2013. This archetype Seyfert 1 galaxy NGC 5548 has been studied for decades, and high-resolution X-ray and UV observations have previously shown an outflow with standard physical characteristics. However, our recent observing campaign with six space observatories (XMM-Newton, HST, Swift, NuSTAR, Chandra and INTEGRAL) shows the nucleus to be obscured by a stream of new ionized gas never seen before in this source. The gas with hydrogen column densities of 1E26-1E27 per m2 blocks 90% of the soft X-ray emission and causes deep and broad UV absorption troughs. The outflow velocities are up to five times faster than the persistent normal outflow. It is located at a distance of only a few light days from the nucleus close to the broad line region; this might indicate an origin from the accretion disk.

  4. Nature of shocks revealed by SOFIA OI observations in the Cepheus E protostellar outflow

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Anderl, S.; Lefloch, B.; Leurini, S.; Wiesemeyer, H.; Güsten, R.; Benedettini, M.; Codella, C.; Godard, B.; Gómez-Ruiz, A. I.; Jacobs, K.; Kristensen, L. E.; Lesaffre, P.; Pineau des Forêts, G.; Lis, D. C.

    2017-06-01

    Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify their chemical and energetic impacts on the surrounding medium. Aims: We performed a high-spectral resolution study of the [OI]63μm emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow, to constrain the chemical conditions in the various components, and to understand the nature of the underlying shocks, thus probing the origin of the mass-loss phenomenon. Methods: We present observations of the O I 3P1 → 3P2, OH between 2Π1/2J = 3/2 and J = 1/2 at 1837.8 GHz, and CO (16-15) lines with the GREAT receiver onboard SOFIA towards three positions in the Cep E protostellar outflow: Cep E-mm (the driving protostar), Cep E-BI (in the southern lobe), and Cep E-BII (the terminal position in the southern lobe). Results: The CO (16-15) line is detected at all three positions. The [OI]63μm line is detected in Cep E-BI and BII, whereas the OH line is not detected. In Cep E-BII, we identify three kinematical components in O I and CO. These were already detected in CO transitions and relate to spatial components: the jet, the HH377 terminal bow-shock, and the outflow cavity. We measure line temperature and line integrated intensity ratios for all components. The O I column density is higher in the outflow cavity than in the jet, which itself is higher than in the terminal shock. The terminal shock is the region where the abundance ratio of O I to CO is the lowest (about 0.2), whereas the jet component is atomic (N(O I)/N(CO) 2.7). In the jet, we compare the [OI]63μm observations with shock models that successfully fit the integrated intensity of 10 CO lines. We find that these models most likely do not fit the [OI]63

  5. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Cappi, M.; Reeves, J.; Nemmen, R.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to the AGN feedback.

  6. Chandra imaging of the kpc extended outflow in 1H 0419-577

    NASA Astrophysics Data System (ADS)

    Di Gesu, L.; Costantini, E.; Piconcelli, E.; Kaastra, J. S.; Mehdipour, M.; Paltani, S.

    2017-12-01

    The Seyfert 1 galaxy 1H 0419-577 hosts a kpc extended outflow that is evident in the [O III] image and that is also detected as a warm absorber in the UV/X-ray spectrum. Here, we analyze a 30 ks Chandra-ACIS X-ray image, with the aim of resolving the diffuse extranuclear X-ray emission and of investigating its relationship with the galactic outflow. Thanks to its sub-arcsecond spatial resolution, Chandra resolves the circumnuclear X-ray emission, which extends up to a projected distance of at least 16 kpc from the center. The morphology of the diffuse X-ray emission is spherically symmetrical. We could not recover a morphological resemblance between the soft X-ray emission and the ionization bicone that is traced by the [O III] outflow. Our spectral analysis indicates that one of the possible explanations for the extended emission is thermal emission from a low-density (nH 10-3 cm-3) hot plasma (Te 0.22 keV). If this is the case, we may be witnessing the cooling of a shock-heated wind bubble. In this scenario, the [O III] emission line and the X-ray/UV absorption lines may trace cooler clumps that are entrained in the hot outflow. Alternatively, the extended emission could be to due to a blend of emission lines from a photoionized gas component having a hydrogen column density of NH 2.1 × 1022 cm-2 and an ionization parameter of log ξ 1.3. Because the source is viewed almost edge-on we argue that the photoionized gas nebula must be distributed mostly along the polar directions, outside our line of sight. In this geometry, the X-ray/UV warm absorber must trace a different gas component, physically disconnected from the emitting gas, and located closer to the equatorial plane.

  7. Measurements of outflow velocities in on-disk plumes from EIS/Hinode observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Hui; Xia, Lidong; Li, Bo

    2014-10-20

    The contribution of plumes to the solar wind has been subject to hot debate in the past decades. The EUV Imaging Spectrometer (EIS) on board Hinode provides a unique means to deduce outflow velocities at coronal heights via direct Doppler shift measurements of coronal emission lines. Such direct Doppler shift measurements were not possible with previous spectrometers. We measure the outflow velocity at coronal heights in several on-disk long-duration plumes, which are located in coronal holes (CHs) and show significant blueshifts throughout the entire observational period. In one case, a plume is measured four hours apart. The deduced outflow velocitiesmore » are consistent, suggesting that the flows are quasi-steady. Furthermore, we provide an outflow velocity profile along the plumes, finding that the velocity corrected for the line-of-sight effect can reach 10 km s{sup –1} at 1.02 R {sub ☉}, 15 km s{sup –1} at 1.03 R {sub ☉}, and 25 km s{sup –1} at 1.05 R {sub ☉}. This clear signature of steady acceleration, combined with the fact that there is no significant blueshift at the base of plumes, provides an important constraint on plume models. At the height of 1.03 R {sub ☉}, EIS also deduced a density of 1.3 × 10{sup 8} cm{sup –3}, resulting in a proton flux of about 4.2 × 10{sup 9} cm{sup –2} s{sup –1} scaled to 1 AU, which is an order of magnitude higher than the proton input to a typical solar wind if a radial expansion is assumed. This suggests that CH plumes may be an important source of the solar wind.« less

  8. Quasar outflows at z ≥ 6: the impact on the host galaxies

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Gallerani, Simona; Pallottini, Andrea; Ferrara, Andrea; Marconi, Alessandro; Cicone, Claudia; Maiolino, Roberto; Carniani, Stefano

    2018-01-01

    We investigate quasar outflows at z ≥ 6 by performing zoom-in cosmological hydrodynamical simulations. By employing the smoothed particle hydrodynamics code GADGET-3, we zoom in the 2R200 region around a 2 × 1012 M⊙ halo at z = 6, inside a (500 Mpc)3 comoving volume. We compare the results of our active galactic nuclei (AGN) runs with a control simulation in which only stellar/SN feedback is considered. Seeding 105 M⊙ black holes (BHs) at the centres of 109 M⊙ haloes, we find the following results. BHs accrete gas at the Eddington rate over z = 9-6. At z = 6, our most-massive BH has grown to MBH = 4 × 109 M⊙. Fast (vr > 1000 km s-1), powerful (\\dot{M}_out ˜ 2000 M_{⊙} yr-1) outflows of shock-heated low-density gas form at z ∼ 7, and propagate up to hundreds kpc. Star formation is quenched over z = 8-6, and the total star formation rate (SFR surface density near the galaxy centre) is reduced by a factor of 5 (1000). We analyse the relative contribution of multiple physical process: (i) disrupting cosmic filamentary cold gas inflows, (ii) reducing central gas density, (iii) ejecting gas outside the galaxy; and find that AGN feedback has the following effects at z = 6. The inflowing gas mass fraction is reduced by ∼ 12 per cent, the high-density gas fraction is lowered by ∼ 13 per cent, and ∼ 20 per cent of the gas outflows at a speed larger than the escape velocity (500 km s-1). We conclude that quasar-host galaxies at z ≥ 6 are accreting non-negligible amount of cosmic gas, nevertheless AGN feedback quenches their star formation dominantly by powerful outflows ejecting gas out of the host galaxy halo.

  9. Power law "thermalization" of ion pickup and ionospheric outflows

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Ofman, L.; Glocer, A.; Gershman, D. J.; Khazanov, G. V.; Paterson, W. R.

    2016-12-01

    One observed feature of ionospheric outflows is that the active ion heating processes produce power law tails of the core plasma velocity distribution, as well as transverse or conic peaks in the angular distributions. This characteristic is shared with hot ion distributions produced by ion pickup in the solar wind, resulting from cometary or interstellar gas ionization, and with hot ions observed around the Space Transportation System during gas releases. We revisit relevant observations and consider the hypothesis that the ion pickup thermalization process tends to produce power law (𝛋) energy distributions, using a simulation of the instability of a simple pickup (ring) distribution. Simulation results are derived for cases representative of both solar wind pickup, where ion velocities exceed the local Alfvén speed, and ionospheric pickup, where the local Alfvén speed exceeds ion velocities. The sub-Alfvenic pickup ring distribution appears to have a slow growth rate (per ion gyro period), that is, the instability evolves more slowly in the latter case than in the former. Implications for ionospheric outflow are discussed.

  10. Flood routing of the Maja outflow across Xanthe Terra

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.

    1991-01-01

    The object is to trace a single flood crest through the Maja outflow system and to evaluate the effects of topography on ponding and multiple channel routing. Maja Valles provides a good model because it has a single source and a well defined channel system. The 1500 km long Maja Valles originates in Juventae Chasma. The outflow system stretches 1100 km northward along the Lunae Planum/Xanthe Terra boundary, then eastward across the Xanthe Terra highlands. It descends to Chryse Planitia where it extends northeastward toward the middle of the basin. It is concluded that flood routing through multiple channels and retardation in local impoundments are responsible for breakup of the initial flood crest and the formation of multiple flood crests. Recombined flow near the mouths of these canyons results in an extended flow regime and multiple flood surges. As a result of ponding along the flood course, depositional sites are localized and renewed erosion downstream (from ponded sites) results in sediment source areas not greatly removed from depositional sites.

  11. Nature and characteristics of the flows that carved the Simud and Tiu outflow channels, Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Tanaka, K.L.; Miyamoto, H.; Sasaki, S.

    2006-01-01

    Geomorphic and topographic relations of higher and lower levels of dissection within the Simud and Tiu Valles outflow channels on Mars reveal new insights into their formational histories. We find that the water floods that carved the higher channel floors were primarily sourced from Hydaspis Chaos. The floods apparently branched into distributaries downstream that promoted rapid freezing and sublimation of water and limited discharge into the lowlands. In contrast, we suggest that the lower outflow channels were carved by debris flows from Hydraotes Chaos. Surges within individual debris flows possessed variable volatile contents and led to the deposition of smooth deposits marked by low relief longitudinal ridges. Lower outflow channel discharges resulted in widespread deposition within the Simud/Tiu Valles as well as within the northern plains of Mars. Copyright 2006 by the American Geophysical Union.

  12. A Model of Silicate Grain Nucleation and Growth in Circumstellar Outflows

    NASA Technical Reports Server (NTRS)

    Paquette, John A.; Ferguson, Frank T.; Nuth, Joseph A., III

    2011-01-01

    Based on its abundance, high bond energy, and recent measurements of its vapor pressure SiO is a natural candidate for dust nucleation in circumstellar outflows around asymptotic giant branch stars. In this paper, we describe a model of the nucleation and growth of silicate dust in such outflows. The sensitivity of the model to varying choices of poorly constrained chemical parameters is explored, and the merits of using scaled rather than classical nucleation theory are briefly considered, An elaboration of the model that includes magnesium and iron as growth species is then presented and discussed. The composition of the bulk of the grains derived from the model is consistent with olivines and pyroxenes, but somewhat metal-rich grains and very small, nearly pure SiO grains are also produced,

  13. Deep Seismic Imaging of the Hellenic Subduction Zone with New MCS Data of the SISMED Project

    NASA Astrophysics Data System (ADS)

    Becel, A.; Mireille, L.; Hussni, S.; Dessa, J. X.; Schenini, L.; Sachpazi, M.; Vitard, C.

    2016-12-01

    The southwestern segment of the Hellenic subduction zone has generated a M>8 tsunamigenic earthquake in the past (365 AD), the largest event ever reported in Europe, but fundamental questions remain about the deep geometry and characteristics of the interplate fault and connected splay faults in the overriding plate that might be rooted in the megathrust. In the Fall 2012, the ULYSSE seismic program acquired deep penetration multichannel seismic (MCS) and OBS refraction profiles across a 300-km-wide section of the forearc domain. MCS data were acquired with a 4.5 km-long streamer on board the R/V Le Pourquoi Pas? from the French IFREMER facilities. The two 240 km-long seismic reflection dip profiles reveal a large and rough topography of the top of the forearc crust in both the outer and inner domains, including a several km thick forearc basin. Despite the thick Messinian evaporites at shallow depths, the 11000 cu.in airgun source reveal several discontinuous arcward-dipping reflections at 15 km depth beneath the outer forearc domain that could be related to the top of the subducting oceanic crust. Unfortunately, the 4.5 km-long streamer is too short for improving their lateral continuity and getting more detailed constraints on their geometry. In the Fall 2015, we chartered the R/V Marcus Langseth equipped with unmatched seismic facilities in the European academic fleet by means of a strong mobilization of the French and American involved laboratories (Géoazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Pau Univ.) and their research agencies (CNRS, NSF, OCA, and UCA). During the SISMED survey (Seismic Imaging inveStigation in MEDiterranean Sea for deep seismogenic faults), we collected with the R/V Marcus Langseth a 210 km-long profile coincident with the eastern ULYSSE transect with the 8 km-long streamer and a 6600 cu.in tuned airgun array shot every 50 meters. The source and the streamer were towed at a depth of 12 m to maximize low frequencies and deep imaging. Here

  14. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE PAGES

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; ...

    2014-07-03

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1–2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products ofmore » both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  15. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs) and Eosinophils (Eos) with Host Mast Cells (MCs) and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!

    PubMed

    Khatami, Mahin

    2014-01-27

    Ongoing debates, misunderstandings and controversies on the role of inflammation in cancer have been extremely costly for taxpayers and cancer patients for over four decades. A reason for repeated failed clinical trials (90% ± 5 failure rates) is heavy investment on numerous genetic mutations (molecular false-flags) in the chaotic molecular landscape of site-specific cancers which are used for "targeted" therapies or "personalized" medicine. Recently, unresolved/chronic inflammation was defined as loss of balance between two tightly regulated and biologically opposing arms of acute inflammation ("Yin"-"Yang" or immune surveillance). Chronic inflammation could differentially erode architectural integrities in host immune-privileged or immune-responsive tissues as a common denominator in initiation and progression of nearly all age-associated neurodegenerative and autoimmune diseases and/or cancer. Analyses of data on our "accidental" discoveries in 1980s on models of acute and chronic inflammatory diseases in conjunctival-associated lymphoid tissues (CALTs) demonstrated at least three stages of interactions between resident (host) and recruited immune cells: (a), acute phase; activation of mast cells (MCs), IgE Abs, histamine and prostaglandin synthesis; (b), intermediate phase; down-regulation phenomenon, exhausted/degranulated MCs, heavy eosinophils (Eos) infiltrations into epithelia and goblet cells (GCs), tissue hypertrophy and neovascularization; and (c), chronic phase; induction of lymphoid hyperplasia, activated macrophages (Mfs), increased (irregular size) B and plasma cells, loss of integrity of lymphoid tissue capsular membrane, presence of histiocytes, follicular and germinal center formation, increased ratios of local IgG1/IgG2, epithelial thickening (growth) and/or thinning (necrosis) and angiogenesis. Results are suggestive of first evidence for direct association between inflammation and identifiable phases of immune dysfunction in the direction of

  16. Interferometric Mapping of Perseus Outflows with MASSES

    NASA Astrophysics Data System (ADS)

    Stephens, Ian; Dunham, Michael; Myers, Philip C.; MASSES Team

    2017-01-01

    The MASSES (Mass Assembly of Stellar Systems and their Evolution with the SMA) survey, a Submillimeter Array (SMA) large-scale program, is mapping molecular lines and continuum emission about the 75 known Class 0/I sources in the Perseus Molecular Cloud. In this talk, I present some of the key results of this project, with a focus on the CO(2-1) maps of the molecular outflows. In particular, I investigate how protostars inherit their rotation axes from large-scale magnetic fields and filamentary structure.

  17. Outflowing OH+ in Markarian 231: The Ionization Rate of the Molecular Gas

    NASA Astrophysics Data System (ADS)

    González-Alfonso, E.; Fischer, J.; Bruderer, S.; Ashby, M. L. N.; Smith, H. A.; Veilleux, S.; Müller, H. S. P.; Stewart, K. P.; Sturm, E.

    2018-04-01

    The oxygen-bearing molecular ions OH+, H2O+, and H3O+ are key species that probe the ionization rate of (partially) molecular gas that is ionized by X-rays and cosmic-rays permeating the interstellar medium. We report Herschel far-infrared and submillimeter spectroscopic observations of OH+ in Mrk 231, showing both ground-state P-Cygni profiles, and excited line profiles with blueshifted absorption wings extending up to ≈1000 km s‑1. In addition, OH+ probes an excited component peaking at central velocities, likely arising from the torus probed by the OH centimeter-wave megamaser. Four lines of H2O+ are also detected at systemic velocities, but H3O+ is undetected. Based on our earlier OH studies, we estimate an abundance ratio of {OH}/{OH}}+∼ 5{--}10 for the outflowing components and ≈20 for the torus, and an OH+ abundance relative to H nuclei of ≳10‑7. We also find high OH+/H2O+ and OH+/H3O+ ratios; both are ≳4 in the torus and ≳10–20 in the outflowing gas components. Chemical models indicate that these high OH+ abundances relative to OH, H2O+, and H3O+ are characteristic of gas with a high ionization rate per unit density, \\zeta /{n}{{H}}∼ (1{--}5)× {10}-17 cm3 s‑1 and ∼(1–2) × 10‑16 cm3 s‑1 for the above components, respectively, an ionization rate of ζ ∼ (0.5–2) × 10‑12 s‑1, and a low molecular fraction, {f}{{{H}}2}∼ 0.25. X-rays appear to be unable to explain the inferred ionization rate, and thus we suggest that low-energy (10–400 MeV) cosmic-rays are primarily responsible for the ionization, with {\\dot{M}}CR}∼ 0.01 M ⊙ yr‑1 and {\\dot{E}}CR}∼ {10}44 erg s‑1 the latter corresponds to ∼1% of the luminosity of the active galactic nucleus and is similar to the energetics of the molecular outflow. We suggest that cosmic-rays accelerated in the forward shock associated with the molecular outflow are responsible for the ionization, as they diffuse through the outflowing molecular phase downstream.

  18. The sacral autonomic outflow is parasympathetic: Langley got it right.

    PubMed

    Horn, John P

    2018-04-01

    A recent developmental study of gene expression by Espinosa-Medina, Brunet and colleagues sparked controversy by asserting a revised nomenclature for divisions of the autonomic motor system. Should we re-classify the sacral autonomic outflow as sympathetic, as now suggested, or does it rightly belong to the parasympathetic system, as defined by Langley nearly 100 years ago? Arguments for rejecting Espinosa-Medina, Brunet et al.'s scheme subsequently appeared in e-letters and brief reviews. A more recent commentary in this journal by Brunet and colleagues responded to these criticisms by labeling Langley's scheme as a historical myth perpetuated by ignorance. In reaction to this heated exchange, I now examine both sides to the controversy, together with purported errors by the pioneers in the field. I then explain, once more, why the sacral outflow should remain known as parasympathetic, and outline suggestions for future experimentation to advance the understanding of cellular identity in the autonomic motor system.

  19. Introducing CGOLS: The Cholla Galactic Outflow Simulation Suite

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Robertson, Brant E.

    2018-06-01

    We present the Cholla Galactic OutfLow Simulations (CGOLS) suite, a set of extremely high resolution global simulations of isolated disk galaxies designed to clarify the nature of multiphase structure in galactic winds. Using the GPU-based code Cholla, we achieve unprecedented resolution in these simulations, modeling galaxies over a 20 kpc region at a constant resolution of 5 pc. The simulations include a feedback model designed to test the effects of different mass- and energy-loading factors on galactic outflows over kiloparsec scales. In addition to describing the simulation methodology in detail, we also present the results from an adiabatic simulation that tests the frequently adopted analytic galactic wind model of Chevalier & Clegg. Our results indicate that the Chevalier & Clegg model is a good fit to nuclear starburst winds in the nonradiative region of parameter space. Finally, we investigate the role of resolution and convergence in large-scale simulations of multiphase galactic winds. While our largest-scale simulations show convergence of observable features like soft X-ray emission, our tests demonstrate that simulations of this kind with resolutions greater than 10 pc are not yet converged, confirming the need for extreme resolution in order to study the structure of winds and their effects on the circumgalactic medium.

  20. A model to measure fluid outflow in rabbit capsules post glaucoma implant surgery.

    PubMed

    Nguyen, Dan Q; Ross, Craig M; Li, Yu Qin; Pandav, Surinder; Gardiner, Bruce; Smith, David; How, Alicia C; Crowston, Jonathan G; Coote, Michael A

    2012-10-05

    Prior models of glaucoma filtration surgery assess bleb morphology, which does not always reflect function. Our aim is to establish a model that directly measures tissue hydraulic conductivity of postsurgical outflow in rabbit bleb capsules following experimental glaucoma filtration surgery. Nine rabbits underwent insertion of a single-plate pediatric Molteno implant into the anterior chamber of their left eye. Right eyes were used as controls. The rabbits were then allocated to one of two groups. Group one had outflow measurements performed at 1 week after surgery (n = 5), and group two had measurements performed at 4 weeks (n = 4). Measurements were performed by cannulating the drainage tube ostium in situ with a needle attached to a pressure transducer and a fluid column at 15 mm Hg. The drop in the fluid column was measured every minute for 5 minutes. For the control eyes (n = 6), the anterior chamber of the unoperated fellow eye was cannulated. Animals were euthanized with the implant and its surrounding capsule dissected and fixed in 4% paraformaldehyde, and embedded in paraffin before 6-μm sections were cut for histologic staining. By 7 days after surgery, tube outflow was 0.117 ± 0.036 μL/min/mm Hg at 15 mm Hg (mean ± SEM), whereas at 28 days, it was 0.009 ± 0.003 μL/min/mm Hg. Control eyes had an outflow of 0.136 ± 0.007 μL/min/mm Hg (P = 0.004, one-way ANOVA). Hematoxylin and eosin staining demonstrated a thinner and looser arrangement of collagenous tissue in the capsules at 1 week compared with that at 4 weeks, which had thicker and more densely arranged collagen. We describe a new model to directly measure hydraulic conductivity in a rabbit glaucoma surgery implant model. The principal physiologic endpoint of glaucoma surgery can be reliably quantified and consistently measured with this model. At 28 days post glaucoma filtration surgery, a rabbit bleb capsule has significantly reduced tissue hydraulic conductivity, in line with loss of implant

  1. Comparing the contributions of ionospheric outflow and high-altitude production to O+ loss at Mars

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael; Curry, Shannon; Fang, Xiaohua; Johnson, Blake; Fraenz, Markus; Ma, Yingjuan

    2013-04-01

    The Mars total O+ escape rate is highly dependent on both the ionospheric and high-altitude source terms. Because of their different source locations, they appear in velocity space distributions as distinct populations. The Mars Test Particle model is used (with background parameters from the BATS-R-US magnetohydrodynamic code) to simulate the transport of ions in the near-Mars space environment. Because it is a collisionless model, the MTP's inner boundary is placed at 300 km altitude for this study. The MHD values at this altitude are used to define an ionospheric outflow source of ions for the MTP. The resulting loss distributions (in both real and velocity space) from this ionospheric source term are compared against those from high-altitude ionization mechanisms, in particular photoionization, charge exchange, and electron impact ionization, each of which have their own (albeit overlapping) source regions. In subsequent simulations, the MHD values defining the ionospheric outflow are systematically varied to parametrically explore possible ionospheric outflow scenarios. For the nominal MHD ionospheric outflow settings, this source contributes only 10% to the total O+ loss rate, nearly all via the central tail region. There is very little dependence of this percentage on the initial temperature, but a change in the initial density or bulk velocity directly alters this loss through the central tail. However, a density or bulk velocity increase of a factor of 10 makes the ionospheric outflow loss comparable in magnitude to the loss from the combined high-altitude sources. The spatial and velocity space distributions of escaping O+ are examined and compared for the various source terms, identifying features specific to each ion source mechanism. These results are applied to a specific Mars Express orbit and used to interpret high-altitude observations from the ion mass analyzer onboard MEX.

  2. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-12-01

    We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A < 130 nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of r-process elements in metal poor stars. Disc outflows reach the third peak (A ˜ 195) in most of our simulations, although the amounts produced depend sensitively on the disc viscosity, initial mass or entropy of the torus, and nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  3. Three-dimensional structure of clumpy outflow from supercritical accretion flow onto black holes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Ohsuga, Ken; Takahashi, Hiroyuki R.; Kawashima, Tomohisa; Asahina, Yuta; Takeuchi, Shun; Mineshige, Shin

    2018-03-01

    We perform global three-dimensional (3D) radiation-hydrodynamic (RHD) simulations of outflow from supercritical accretion flow around a 10 M⊙ black hole. We only solve the outflow part, starting from the axisymmetric 2D simulation data in a nearly steady state but with small perturbations in a sinusoidal form being added in the azimuthal direction. The mass accretion rate onto the black hole is ˜102LE/c2 in the underlying 2D simulation data, and the outflow rate is ˜10 LE/c2 (with LE and c being the Eddington luminosity and speed of light, respectively). We first confirm the emergence of clumpy outflow, which was discovered by the 2D RHD simulations, above the photosphere located at a few hundreds of Schwarzschild radii (rS) from the central black hole. As prominent 3D features we find that the clumps have the shape of a torn sheet, rather than a cut string, and that they are rotating around the central black hole with a sub-Keplerian velocity at a distance of ˜103 rS from the center. The typical clump size is ˜30 rS or less in the radial direction, and is more elongated in the angular directions, ˜ hundreds of rS at most. The sheet separation ranges from 50 to 150 rS. We expect stochastic time variations when clumps pass across the line of the sight of a distant observer. Variation timescales are estimated to be several seconds for a black hole with mass of ten to several tens of M⊙, in rough agreement with the observations of some ultra-luminous X-ray sources.

  4. Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-05-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξc[erg cm s-1]) ≃ 5-6 and a column density on the order of NH ≃ 1023 cm-2 outflowing at a characteristic velocity of vc/c ≃ 0.1-0.2 (where c is the speed of light). The best-fit model favors its radial location at rc ≃ 200 Ro (Ro is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at Rt ≃ 30 Ro. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.

  5. Effect of amiodarone-induced hyperthyroidism on left ventricular outflow obstruction after septal myectomy for hypertrophic cardiomyopathy.

    PubMed

    Pokorney, Sean D; Stone, Neil J; Passman, Rod; Oyer, David; Rigolin, Vera H; Bonow, Robert O

    2010-12-01

    Patients with obstructive hypertrophic cardiomyopathy who undergo septal myectomy are at risk for developing postoperative atrial fibrillation. Amiodarone is effective in treating this arrhythmia but is associated with multiple adverse effects, often with delayed onset. A novel case is described of a patient who developed type 2 amiodarone-induced hyperthyroidism that presented as recurrence of outflow obstruction after septal myectomy. The patient's symptoms and echocardiographic findings of outflow obstruction resolved substantially with the treatment of the amiodarone-induced hyperthyroidism. Amiodarone-induced hyperthyroidism of delayed onset can be a subtle diagnosis, requiring a high index of suspicion. In conclusion, recognition of this diagnosis in patients with recurrence of outflow obstruction by symptoms and cardiac imaging after septal myectomy may avoid unnecessary repeat surgical intervention. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Foreign direct investment outflows in the forest products industry: the case of the United States and Japan

    Treesearch

    R.V. Nagubadi; D. Zhang

    2008-01-01

    This paper investigates the determinants of foreign direct investment (FDI) outflows from two major forest product importing countries: the U.S. and Japan. Exchange rate, per capita income, cost of capital, and cost of labour in host countries have significant impacts on the FDI outflows from these two countries. A complementary relationship is found between forest...

  7. Storm phase-partitioned rates and budgets of global Alfvénic energy deposition, electron precipitation, and ion outflow

    NASA Astrophysics Data System (ADS)

    Hatch, Spencer M.; LaBelle, James; Chaston, Christopher C.

    2018-01-01

    We review the role of Alfvén waves in magnetosphere-ionosphere coupling during geomagnetically active periods, and use three years of high-latitude FAST satellite observations of inertial Alfvén waves (IAWs) together with 55 years of tabulated measurements of the Dst index to answer the following questions: 1) How do global rates of IAW-related energy deposition, electron precipitation, and ion outflow during storm main phase and storm recovery phase compare with global rates during geomagnetically quiet periods? 2) What fraction of net IAW-related energy deposition, electron precipitation, and ion outflow is associated with storm main phase and storm recovery phase; that is, how are these budgets partitioned by storm phase? We find that during the period between October 1996 and November 1999, rates of IAW-related energy deposition, electron precipitation, and ion outflow during geomagnetically quiet periods are increased by factors of 4-5 during storm phases. We also find that ∼62-68% of the net Alfvénic energy deposition, electron precipitation, and ion outflow in the auroral ionosphere occurred during storm main and recovery phases, despite storm phases comprising only 31% of this period. In particular storm main phase, which comprised less than 14% of the three-year period, was associated with roughly a third of the total Alfvénic energy input and ion outflow in the auroral ionosphere. Measures of geomagnetic activity during the IAW study period fall near corresponding 55-year median values, from which we conclude that each storm phase is associated with a fraction of total Alfvénic energy, precipitation, and outflow budgets in the auroral ionosphere that is, in the long term, probably as great or greater than the fraction associated with geomagnetic quiescence for all times except possibly those when geomagnetic activity is protractedly weak, such as solar minimum. These results suggest that the budgets of IAW-related energy deposition, electron

  8. Finite Gyroradius Effects in the Electron Outflow of Asymmetric Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Norgren, C.; Graham, D. B.; Khotyaintsev, Yu. V.; Andre, M.; Vaivads, A.; Chen, Li-Jen; Lindqvist, P.-A.; Marklund, G. T.; Ergun, R. E.; Magnes, W.; hide

    2016-01-01

    We present observations of asymmetric magnetic reconnection showing evidence of electron demagnetization in the electron outflow. The observations were made at the magnetopause by the four Magnetospheric Multiscale (MMS) spacecraft, separated by approximately 15 km. The reconnecting current sheet has negligible guide field, and all four spacecraft likely pass close to the electron diffusion region just south of the X line. In the electron outflow near the X line, all four spacecraft observe highly structured electron distributions in a region comparable to a few electron gyroradii. The distributions consist of a core with T(sub parallel) greater than T(sub perpendicular) and a nongyrotropic crescent perpendicular to the magnetic field. The crescents are associated with finite gyroradius effects of partly demagnetized electrons. These observations clearly demonstrate the manifestation of finite gyroradius effects in an electron-scale reconnection current sheet.

  9. Analysis of Asian Outflow over the Western Pacific using Observations from Trace-P

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.

    2004-01-01

    Our analysis of the TRACE-P data focused on answering the following questions: 1) How do anthropogenic sources in Asia contribute to chemical outflow over the western Pacific in spring? 2) How does biomass burning in southeast Asia contribute to this outflow? 3) How can the TRACE-P observations be used to better quantify the sources of environmentally important gases in eastern Asia? Our strategy drew on a combination of data analysis and global 3-D modeling, as described below. We also contributed to the planning and execution of TRACE-P through service as mission scientist and by providing chemical model forecasts in the field.

  10. A Massive Molecular Outflow in the Dense Dust Core AGAL G337.916-00.477

    NASA Astrophysics Data System (ADS)

    Torii, Kazufumi; Hattori, Yusuke; Hasegawa, Keisuke; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo; Tokuda, Kazuki; Onishi, Toshikazu; Hattori, Yasuki; Ishihara, Daisuke; Kaneda, Hidehiro; Fukui, Yasuo

    2017-05-01

    Massive molecular outflows erupting from high-mass young stellar objects (YSOs) provide important clues to understanding the mechanism of high-mass star formation. Based on new CO J = 3-2 and J = 1-0 observations using the Atacama Submillimeter Telescope Experiment (ASTE) and Mopra telescope facilities, we discovered a massive bipolar outflow associated with the dense dust core AGAL G337.916-00.477 (AGAL337.9-S), located 3.48 kpc from the Sun. The outflow lobes have extensions of less than 1 pc—and thus were not fully resolved in the angular resolutions of ASTE and Mopra—and masses of ˜50 M ⊙. The maximum velocities of the outflow lobes are as high as 36-40 {km} {{{s}}}-1. Our analysis of the infrared and submillimeter data indicates that AGAL337.9-S is in an early evolutionary stage of high-mass star formation, having the total far-infrared luminosity of ˜ 5× {10}4 {L}⊙ . We also found that another dust core, AGAL G337.922-00.456 (AGAL337.9-N), located 2‧ north of AGAL337.9-S, is a high-mass YSO in an earlier evolutionary stage than AGAL337.9-S, as it is less bright in the mid-infrared than AGAL337.9-S.

  11. Mechanisms of cardiac cell damage due to catecholamines: significance of drugs regulating central sympathetic outflow.

    PubMed

    Rupp, H; Dhalla, K S; Dhalla, N S

    1994-01-01

    A chronically increased rate of catecholamine release has various deleterious actions. Isoproterenol injections (80 mg/kg body weight) resulted in depressed Ca2+ transport in the sarcolemma (ATP-dependent Ca2+ uptake, Na(+)-dependent Ca2+ uptake) and sarcoplasmic reticulum (Ca2+ uptake) of rat heart. The formation of malondialdehyde owing to lipid peroxidation was increased. Pretreatment with vitamin E (10-25 mg/kg/day) strongly inhibited the membrane damage. The toxic effects of catecholamines arise most probably from their oxidation, and it is therefore important either to reduce the central sympathetic outflow or to prevent the oxidation. An inappropriately high sympathetic outflow is a typical feature of Western affluent societies, and is linked to psychosocial stress and hypercaloric nutrition. However, established pharmacologic interventions to reduce sympathetic outflow have proven not practicable because of marked side effects. Using radiotelemetry for monitoring cardiovascular parameters of spontaneously hypertensive rats treated with clonidine or moxonidine, we showed that clonidine, unlike moxonidine, resulted in rebound hypertension after drug withdrawal. Because the rebound blood pressure and the typical side effects of clonidine associated with low patient compliance are mainly mediated by alpha-adrenoceptors, it can be inferred that the I1-imidazoline agonist moxonidine does not exhibit the side effects commonly seen with clonidine and therefore represents a promising approach for reducing an inappropriately high central sympathetic outflow.

  12. The IRS 1 circumstellar disk, and the origin of the jet and CO outflow in B5

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Velusamy, T.; Xie, T.; Levin, S. M. (Principal Investigator)

    1996-01-01

    We report the discovery of the inner edge of the high velocity CO outflow associated with the bipolar jet originating from IRS 1 in Barnard 5 and the first ever resolution of its circumstellar disk in the 2.6 mm dust continuum and C18O. From high spatial resolution observations made with the Owens Valley Millimeter Array we are able to locate the origin of the outflow to within approximately 500 AU on either side of IRS 1 and apparently at the edge of, or possibly within, its circumstellar disk. The orientation of the continuum disk is perpendicular to the highly collimated jet outflow recently seen in optical emission at much farther distances. The disk has been detected in C18O giving a disk mass approximately 0.16 M (solar). Our HCO+ and HCN maps indicate significant chemical differentiation in the circumstellar region on small scales with HCO+ tracing an extended disk of material. The 12CO interferometer maps of the outflow show two conelike features originating at IRS 1, the blue one fanning open to the northeast and the red one to the southwest. The vertices of the cones are on either side of the circumstellar disk and have a projected opening angle of about 90 degrees. The intrinsic opening angle is in the range of 60 degrees-90 degrees which leads to significant interaction between outflow and infall.

  13. Factors Controlling Water Volumes and Release Rates in Martian Outflow Channels

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Head, J. W.; Leask, H. J.; Ghatan, G.; Mitchell, K. L.

    2004-01-01

    We discuss estimates of water fluxes on Mars and suggest that many are overestimates. Even so, we can only explain very high martian outflow rates by either unusually permeable aquifer systems or sudden release of shallow concentrations of water.

  14. Multi-scale evolution of a derecho-producing MCS

    NASA Astrophysics Data System (ADS)

    Bernardet, Ligia Ribeiro

    1997-12-01

    In this dissertation we address one type of severe weather: strong straight-line winds. In particular, we focus on derechos, a type of wind storm caused by a convective system and characterized by its long duration and by the large area it covers. One interesting characteristic of these storms is that they develop at night, on the cold side of a thermal boundary. This region is not characterized by large convective instability. In fact, surface parcels are generally stable with respect to vertical displacements. To gain understanding of the physical processes involved in these storms, we focused on the case of a MCS that developed in eastern Colorado on 12-13 May, 1985. The system formed in the afternoon, was active until early morning, and caused strong winds during the night. A multi-scale full physics simulation of this case was performed using a non-hydrostatic mesoscale model. Four telescopically nested grids covering from the synoptic scale down to cloud scale circulations were used. A Lagrangian model was used to follow trajectories of parcels that took part in the updraft and in the downdraft, and balance of forces were computed along the trajectories. Our results show that the synoptic and mesoscale environment of the storm largely influences convective organization and cloud-scale circulations. During the day, when the boundary layer is well mixed, the source of air for the clouds is located within the boundary layer. At night, when the boundary layer becomes stable, the source of air shifts to the top of the boundary layer. It is composed of warm, moist air that is brought by the nocturnal low-level jet. The downdraft structure also changes from day to night. During the day, parcels acquire negative buoyancy because of cooling due to evaporation and melting. As they sink, they remain colder than the environment, and end up at the surface constituting the cold pool. During the night, downdrafts are stronger, generating the strong surface winds. The most

  15. Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.

    2017-06-01

    Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.

  16. CO outflows from high-mass Class 0 protostars in Cygnus-X

    NASA Astrophysics Data System (ADS)

    Duarte-Cabral, A.; Bontemps, S.; Motte, F.; Hennemann, M.; Schneider, N.; André, Ph.

    2013-10-01

    Context. The earliest phases of the formation of high-mass stars are not well known. It is unclear whether high-mass cores in monolithic collapse exist or not, and what the accretion process and origin of the material feeding the precursors of high-mass stars are. As outflows are natural consequences of the accretion process, they represent one of the few (indirect) tracers of accretion. Aims: We aim to search for individual outflows from high-mass cores in Cygnus X and to study the characteristics of the detected ejections. We compare these to what has been found for the low-mass protostars, to understand how ejection and accretion change and behave with final stellar mass. Methods: We used CO (2-1) PdBI observations towards six massive dense clumps, containing a total of 9 high-mass cores. We estimated the bolometric luminosities and masses of the 9 high-mass cores and measured the energetics of outflows. We compared our sample to low-mass objects studied in the literature and developed simple evolutionary models to reproduce the observables. Results: We find that 8 out of 9 high-mass cores are driving clear individual outflows. They are therefore true equivalents of Class 0 protostars in the high-mass regime. The remaining core, CygX-N53 MM2, has only a tentative outflow detection. It could be one of the first examples of a true individual high-mass prestellar core. We also find that the momentum flux of high-mass objects has a linear relation to the reservoir of mass in the envelope, as a scale up of the relations previously found for low-mass protostars. This suggests a fundamental proportionality between accretion rates and envelope masses. The linear dependency implies that the timescale for accretion is similar for high- and low-mass stars. Conclusions: The existence of strong outflows driven by high-mass cores in Cygnus X clearly indicates that high-mass Class 0 protostars exist. The collapsing envelopes of these Class 0 objects have similar sizes and a

  17. Percutaneous pulmonary valve implantation for free pulmonary regurgitation following conduit-free surgery of the right ventricular outflow tract.

    PubMed

    Cools, Bjorn; Brown, Stephen C; Heying, Ruth; Jansen, Katrijn; Boshoff, Derize E; Budts, Werner; Gewillig, Marc

    2015-01-01

    Pulmonary regurgitation (PR) following surgery of the right ventricular outflow tract (RVOT) is not innocent and leads to significant right heart dysfunction over time. Recent studies have demonstrated that percutaneous valves can be implanted in conduit free outflow tracts with good outcomes. To evaluate in patients with severe PR--anticipated to require future pulmonary valve replacement--the feasibility and safety of pre-stenting dilated non-stenotic patched conduit-free right ventricular outflow tracts before excessive dilation occurs, followed by percutaneous pulmonary valve implantation (PPVI). Twenty seven patients were evaluated, but only 23 were deemed suitable based on the presence of an adequate retention zone ≤ 24 mm defined by semi-compliant balloon interrogation of the RVOT. A 2 step procedure was performed: first the landing zone was prepared by deploying a bare stent, followed 2 months later by valve implantation. RVOT pre-stenting with an open cell bare metal stent (Andrastent XXL range) was performed at a median age of 13.0 years (range: 6.0-44.9) with a median weight of 44.3 kg (range: 20.0-88.0). Ninety six percent (22/23) of patients proceeded to PPVI a median of 2.4 months (range: 1.4-3.4) after initial pre-stent placement. Twenty one Melody valves and one 26 mm Edwards SAPIEN™ valve were implanted. Complications consisted of embolization of prestent (n = 1), scrunching (n = 4) and mild stent dislocation (n = 2). During follow-up, no stent fractures were observed and right ventricular dimensions decreased significantly. Post-surgical conduit-free non-stenotic RVOT with free pulmonary regurgitation can be treated percutaneously with a valved stent if anatomical (predominantly size) criteria are met. In experienced hands, the technique is feasible with low morbidity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. What's in the Wind? Determining the Properties of Outflowing Gas in Powerful Broad Absorption Line Quasars

    NASA Astrophysics Data System (ADS)

    Leighly, Karen

    2017-08-01

    A significant fraction of quasars exhibits blueshifted broadabsorption lines (BALs) in their rest-UV spectra, indicating powerfuloutflows emerging from the central engine. These outflows may removeangular momentum to enable black hole growth, enrich the intergalacticmedium with metals, and trigger quenching of star formation ingalaxies. Despite years of study, the physical conditions of theoutflowing gas are poorly understood. The handful of objects that havebeen subjected to detailed analysis are atypical and characterized byrelatively narrow lines where blending is unimportant. However,investigating more powerful BAL quasars will give us better insightinto the types of outflows much more likely to impact galaxyevolution.SimBAL is a novel spectral synthesis fitting method for BAL quasarsthat uses Bayesian model calibration to compare synthetic to observedspectra. With the model inputs of ionization parameter, columndensity, and covering fraction specified, the gas properties givingrise to the BAL features can be determined. We propose to applySimBAL to archival spectra of a sample of 14 luminous BAL quasars to characterize their bulk outflow properties as a function of velocityfor the first time. Our results will show the range of parameterstypical of powerful outflows, an essential step towards constrainingthe physics behind quasar winds and thus their impact on theirenvironments.

  19. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.

    2015-01-16

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1–2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction productsmore » of both aromatics and alkanes, especially those with relatively low carbon numbers (C4–15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  20. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE PAGES

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; ...

    2015-01-16

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1–2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction productsmore » of both aromatics and alkanes, especially those with relatively low carbon numbers (C4–15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. Here, the results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  1. Maja Valles, Mars: A Multi-Source Fluvio-Volcanic Outflow Channel System

    NASA Astrophysics Data System (ADS)

    Keske, A.; Christensen, P. R.

    2017-12-01

    The resemblance of martian outflow channels to the channeled scablands of the Pacific Northwest has led to general consensus that they were eroded by large-scale flooding. However, the observation that many of these channels are coated in lava issuing from the same source as the water source has motivated the alternative hypothesis that the channels were carved by fluid, turbulent lava. Maja Valles is a circum-Chryse outflow channel whose origin was placed in the late Hesperian by Baker and Kochel (1979), with more recent studies of crater density variations suggesting that its formation history involved multiple resurfacing events (Chapman et al., 2003). In this study, we have found that while Maja Valles indeed host a suite of standard fluvial landforms, its northern portion is thinly coated with lava that has buried much of the older channel landforms and overprinted them with effusive flow features, such as polygons and bathtub rings. Adjacent to crater pedestals and streamlined islands are patches of dark, relatively pristine material pooled in local topographic lows that we have interpreted as ponds of lava remaining from one or more fluid lava flows that flooded the channel system and subsequently drained, leaving marks of the local lava high stand. Despite the presence of fluvial landforms throughout the valles, lava flow features exist in the northern reaches of the system alone, 500-1200 km from the channels' source. The flows can instead be traced to a collection of vents in Lunae Plaum, west of the valles. In previously studied fluvio-volcanic outflow systems, such as Athabasca Valles, the sources of the volcanic activity and fluvial activity have been indistinguishable. In contrast, Maja Valles features numerous fluvio-volcanic landforms bearing similarity to those identified in other channel systems, yet the source of its lava flows is distinct from the source of its channels. Furthermore, in the absence of any channels between the source of the lava

  2. Backscatter-to-Extinction Ratios in the Top Layers of Tropical Mesoscale Convective Systems and in Isolated Cirrus from LITE Observations

    NASA Technical Reports Server (NTRS)

    Platt, C. M. R.; Winker, D. M.; Vaughan, M. A.; Miller, S. D.

    1999-01-01

    Cloud-integrated attenuated backscatter from observations with the Lidar In-Space Technology Experiment (LITE) was studied over a range of cirrus clouds capping some extensive mesoscale convective systems (MCSS) in the Tropical West Pacific. The integrated backscatter when the cloud is completely attenuating, and when corrected for multiple scattering, is a measure of the cloud particle backscatter phase function. Four different cases of MCS were studied. The first was very large, very intense, and fully attenuating, with cloud tops extending to 17 km and a maximum lidar pulse penetration of about 3 km. It also exhibited the highest integrated attenuated isotropic backscatter, with values in the 532-nm channel of up to 2.5 near the center of the system, falling to 0.6 near the edges. The second MCS had cloud tops that extended to 14.8 km. Although MCS2 was almost fully attenuating, the pulse penetration into the cloud was up to 7 km and the MCS2 had a more diffuse appearance than MCS1. The integrated backscatter values were much lower in this system but with some systematic variations between 0.44 and 0.75. The third MCS was Typhoon Melissa. Values of integrated backscatter in tt-ds case varied from 1.64 near the eye of the typhoon to between 0.44 and 1.0 in the areas of typhoon outflow and in the 532-nm channel. Mean pulse penetration through the cloud top was 2-3 km, the lowest penetration of any of the systems. The fourth MCS consisted of a region of outflow from Typhoon Melissa. The cloud was semitransparent for more than half of the image time. During that time, maximum cloud depth was about 7 km. The integrated backscatter varied from about 0.38 to 0.63 in the 532-nm channel when the cloud was fully attenuating. In some isolated cirrus between the main systems, a plot of integrated backscatter against one minus the two-way transmittance gave a linear dependence with a maximum value of 0.35 when the clouds were fully attenuating. The effective backscatter

  3. Myocardialization of the cardiac outflow tract

    NASA Technical Reports Server (NTRS)

    van den Hoff, M. J.; Moorman, A. F.; Ruijter, J. M.; Lamers, W. H.; Bennington, R. W.; Markwald, R. R.; Wessels, A.

    1999-01-01

    During development, the single-circuited cardiac tube transforms into a double-circuited four-chambered heart by a complex process of remodeling, differential growth, and septation. In this process the endocardial cushion tissues of the atrioventricular junction and outflow tract (OFT) play a crucial role as they contribute to the mesenchymal components of the developing septa and valves in the developing heart. After fusion, the endocardial ridges in the proximal portion of the OFT initially form a mesenchymal outlet septum. In the adult heart, however, this outlet septum is basically a muscular structure. Hence, the mesenchyme of the proximal outlet septum has to be replaced by cardiomyocytes. We have dubbed this process "myocardialization." Our immunohistochemical analysis of staged chicken hearts demonstrates that myocardialization takes place by ingrowth of existing myocardium into the mesenchymal outlet septum. Compared to other events in cardiac septation, it is a relatively late process, being initialized around stage H/H28 and being basically completed around stage H/H38. To unravel the molecular mechanisms that are responsible for the induction and regulation of myocardialization, an in vitro culture system in which myocardialization could be mimicked and manipulated was developed. Using this in vitro myocardialization assay it was observed that under the standard culture conditions (i) whole OFT explants from stage H/H20 and younger did not spontaneously myocardialize the collagen matrix, (ii) explants from stage H/H21 and older spontaneously formed extensive myocardial networks, (iii) the myocardium of the OFT could be induced to myocardialize and was therefore "myocardialization-competent" at all stages tested (H/H16-30), (iv) myocardialization was induced by factors produced by, most likely, the nonmyocardial component of the outflow tract, (v) at none of the embryonic stages analyzed was ventricular myocardium myocardialization-competent, and finally

  4. Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Cresci, G.; Daddi, E.; Paladino, R.; Perna, M.; Bongiorno, A.; Lusso, E.; Sargent, M. T.; Casasola, V.; Feruglio, C.; Fraternali, F.; Georgiev, I.; Mainieri, V.; Carniani, S.; Comastri, A.; Duras, F.; Fiore, F.; Mannucci, F.; Marconi, A.; Piconcelli, E.; Zamorani, G.; Gilli, R.; La Franca, F.; Lanzuisi, G.; Lutz, D.; Santini, P.; Scoville, N. Z.; Vignali, C.; Vito, F.; Rabien, S.; Busoni, L.; Bonaglia, M.

    2018-04-01

    We imaged, with ALMA and ARGOS/LUCI, the molecular gas and dust and stellar continuum in XID2028, which is an obscured quasi-stellar object (QSO) at z = 1.593, where the presence of a massive outflow in the ionised gas component traced by the [OIII]5007 emission has been resolved up to 10 kpc. This target represents a unique test case to study QSO feedback in action at the peak epoch of AGN-galaxy co-evolution. The QSO was detected in the CO(5 - 4) transition and in the 1.3 mm continuum at 30 and 20σ significance, respectively; both emissions are confined in the central (<2 kpc) radius area. Our analysis suggests the presence of a fast rotating molecular disc (v 400 km s-1) on very compact scales well inside the galaxy extent seen in the rest-frame optical light ( 10 kpc, as inferred from the LUCI data). Adding available measurements in additional two CO transitions, CO(2 - 1) and CO(3 - 2), we could derive a total gas mass of 1010 M⊙, thanks to a critical assessment of CO excitation and the comparison with the Rayleigh-Jeans continuum estimate. This translates into a very low gas fraction (<5%) and depletion timescales of 40-75 Myr, reinforcing the result of atypical gas consumption conditions in XID2028, possibly because of feedback effects on the host galaxy. Finally, we also detect the presence of high velocity CO gas at 5σ, which we interpret as a signature of galaxy-scale molecular outflow that is spatially coincident with the ionised gas outflow. XID2028 therefore represents a unique case in which the measurement of total outflowing mass, of 500-800 M⊙ yr-1 including the molecular and atomic components in both the ionised and neutral phases, was attempted for a high-z QSO.

  5. A Search for H I Lyα Counterparts to Ultrafast X-Ray Outflows

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.; Lee, Julia C.; Danehkar, Ashkbiz

    2018-06-01

    Prompted by the H I Lyα absorption associated with the X-ray ultrafast outflow at ‑17,300 km s‑1 in the quasar PG 1211+143, we have searched archival UV spectra at the expected locations of H I Lyα absorption for a large sample of ultrafast outflows identified in XMM-Newton and Suzaku observations. Sixteen of the X-ray outflows have predicted H I Lyα wavelengths falling within the bandpass of spectra from either the Far Ultraviolet Spectroscopic Explorer or the Hubble Space Telescope, although none of the archival observations were simultaneous with the X-ray observations in which ultrafast X-ray outflows (UFOs) were detected. In our spectra broad features with FWHM of 1000 km s‑1 have 2σ upper limits on the H I column density of generally ≲2 × 1013 cm‑2. Using grids of photoionization models covering a broad range of spectral energy distributions (SEDs), we find that producing Fe XXVI Lyα X-ray absorption with equivalent widths >30 eV and associated H I Lyα absorption with {N}{{H}{{I}}}< 2× {10}13 {cm}}-2 requires total absorbing column densities {N}{{H}}> 5× {10}22 {cm}}-2 and ionization parameters log ξ ≳ 3.7. Nevertheless, a wide range of SEDs would predict observable H I Lyα absorption if ionization parameters are only slightly below peak ionization fractions for Fe XXV and Fe XXVI. The lack of Lyα features in the archival UV spectra indicates that the UFOs have very high ionization parameters, that they have very hard UV-ionizing spectra, or that they were not present at the time of the UV spectral observations owing to variability.

  6. Revealing the ultrafast outflow in IRAS 13224-3809 through spectral variability

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Alston, W. N.; Buisson, D. J. K.; Fabian, A. C.; Jiang, J.; Kara, E.; Lohfink, A.; Pinto, C.; Reynolds, C. S.

    2017-08-01

    We present an analysis of the long-term X-ray variability of the extreme narrow-line Seyfert 1 galaxy IRAS 13224-3809 using principal component analysis (PCA) and fractional excess variability (Fvar) spectra to identify model-independent spectral components. We identify a series of variability peaks in both the first PCA component and Fvar spectrum which correspond to the strongest predicted absorption lines from the ultrafast outflow (UFO) discovered by Parker et al. (2017). We also find higher order PCA components, which correspond to variability of the soft excess and reflection features. The subtle differences between RMS and PCA results argue that the observed flux-dependence of the absorption is due to increased ionization of the gas, rather than changes in column density or covering fraction. This result demonstrates that we can detect outflows from variability alone and that variability studies of UFOs are an extremely promising avenue for future research.

  7. Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling.

    PubMed

    Zhang, Rui; Cao, Peijuan; Yang, Zhongzhou; Wang, Zhenzhen; Wu, Jiu-Lin; Chen, Yan; Pan, Yi

    2015-01-01

    Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing Ext1 hypomorphic mutant and conditional knockout mice. Outflow tract alignment is sensitive to the dosage of Ext1. Deletion of Ext1 in the mesoderm induces a cardiac phenotype similar to that of a mutant with conditional deletion of UDP-glucose dehydrogenase, a key enzyme responsible for synthesis of all glycosaminoglycans. The outflow tract defect in conditional Ext1 knockout(Ext1f/f:Mesp1Cre) mice is attributable to the reduced contribution of second heart field and neural crest cells. Ext1 deletion leads to downregulation of FGF signaling in the pharyngeal mesoderm. Exogenous FGF8 ameliorates the defects in the outflow tract and pharyngeal explants. In addition, Ext1 expression in second heart field and neural crest cells is required for outflow tract remodeling. Our results collectively indicate that Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate modulates FGF signaling during early heart development.

  8. MASS OUTFLOW AND CHROMOSPHERIC ACTIVITY OF RED GIANT STARS IN GLOBULAR CLUSTERS. II. M13 AND M92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meszaros, Sz.; Dupree, A. K.; Szalai, T.

    High-resolution spectra of 123 red giant stars in the globular cluster M13 and 64 red giant stars in M92 were obtained with Hectochelle at the MMT telescope. Emission and line asymmetries in H{alpha} and Ca II K are identified, characterizing motions in the extended atmospheres and seeking differences attributable to metallicity in these clusters and M15. On the red giant branch, emission in H{alpha} generally appears in stars with T {sub eff} {approx}< 4500 K and log L/L {sub sun}{approx}> 2.75. Fainter stars showing emission are asymptotic giant branch (AGB) stars or perhaps binary stars. The line-bisector for H{alpha} revealsmore » the onset of chromospheric expansion in stars more luminous than log (L/L {sub sun}) {approx} 2.5 in all clusters, and this outflow velocity increases with stellar luminosity. However, the coolest giants in the metal-rich M13 show greatly reduced outflow in H{alpha} most probably due to decreased T {sub eff} and changing atmospheric structure. The Ca II K{sub 3} outflow velocities are larger than shown by H{alpha} at the same luminosity and signal accelerating outflows in the chromospheres. Stars clearly on the AGB show faster chromospheric outflows in H{alpha} than RGB objects. While the H{alpha} velocities on the RGB are similar for all metallicities, the AGB stars in the metal-poor M15 and M92 have higher outflow velocities than in the metal-rich M13. Comparison of these chromospheric line profiles in the paired metal-poor clusters, M15 and M92, shows remarkable similarities in the presence of emission and dynamical signatures, and does not reveal a source of the 'second-parameter' effect.« less

  9. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows

    NASA Astrophysics Data System (ADS)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.

  10. Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-scale Molecular Outflow

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Bolatto, A.; Tombesi, F.; Meléndez, M.; Sturm, E.; González-Alfonso, E.; Fischer, J.; Rupke, D. S. N.

    2017-07-01

    In Tombesi et al., we reported the first direct evidence for a quasar accretion disk wind driving a massive (>100 M ⊙ yr-1) molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type 1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the mass outflow rate, momentum flux, and mechanical power of the outflowing molecular gas were estimated from the optically thick OH 119 μm transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of ˜±1000 km s-1 blue- and redshifted wings in the CO(1-0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (˜2.″8 resolution). The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ˜7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) {R}7-1 M ⊙ yr-1, (1.5-3.0) {R}7-1 L AGN/c, and (0.15-0.40)% {R}7-1 {L}{AGN}, respectively, are inferred from these data, assuming a CO-to-H2 conversion factor appropriate for a ULIRG (R 7 is the radius of the outflow normalized to 7 kpc, and L AGN is the AGN luminosity). These rates are time-averaged over a flow timescale of 7 × 106 yr. They are similar to the OH-based rates time-averaged over a flow timescale of 4 × 105 yr, but about a factor of 4 smaller than the local (“instantaneous” ≲105 yr) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow

  11. Dynamic Changes of QRS Morphology of Premature Ventricular Contractions During Ablation in the Right Ventricular Outflow Tract: A Case Report.

    PubMed

    Yue-Chun, Li; Jia-Feng, Lin; Jia-Xuan, Lin

    2015-10-01

    Electrocardiographic characteristics can be useful in differentiating between right ventricular outflow tract (RVOT) and aortic sinus cusp (ASC) ventricular arrhythmias. Ventricular arrhythmias originating from ASC, however, show preferential conduction to RVOT that may render the algorithms of electrocardiographic characteristics less reliable. Even though there are few reports describing ventricular arrhythmias with ASC origins and endocardial breakout sites of RVOT, progressive dynamic changes in QRS morphology of the ventricular arrhythmias during ablation obtained were rare.This case report describes a patient with symptomatic premature ventricular contractions of left ASC origin presenting an electrocardiogram (ECG) characteristic of right ventricular outflow tract before ablation. Pacing at right ventricular outflow tract reproduced an excellent pace map. When radiofrequency catheter ablation was applied to the right ventricular outflow tract, the QRS morphology of premature ventricular contractions progressively changed from ECG characteristics of right ventricular outflow tract origin to ECG characteristics of left ASC origin.Successful radiofrequency catheter ablation was achieved at the site of the earliest ventricular activation in the left ASC. The distance between the successful ablation site of the left ASC and the site with an excellent pace map of the RVOT was 20 mm.The ndings could be strong evidence for a preferential conduction via the myocardial bers from the ASC origin to the breakout site in the right ventricular outflow tract. This case demonstrates that ventricular arrhythmias with a single origin and exit shift may exhibit QRS morphology changes.

  12. Arteriovenous Hybrid Graft with Outflow in the Proximal Axillary Vein.

    PubMed

    Murga, Allen G; Chiriano, Jason; Kiang, Sharon C; Patel, Sheela; Bianchi, Christian; Abou-Zamzam, Ahmed M; Teruya, Theodore H

    2017-07-01

    The patency of long-term hemodialysis access in end-stage renal disease patients remains a significant challenge. Often these patients are affected with limited venous outflow options, requiring limb abandonment, and creation of new access in the contralateral arm. Vascular surgeons are familiar with the exposure of the proximal axillary artery via an infraclavicular incision. The axillary vein is easily exposed through this technique. The use of the hybrid Gore graft can make the venous anastomosis easier. A hybrid graft with its venous outflow placed in the proximal axillary vein can extend the options of upper extremity access procedures. We reviewed our early experience with this technique. A review of dialysis procedures at the Loma Linda VA was performed. All patients undergoing placement of arteriovenous grafts utilizing the Gore hybrid placed into the proximal axillary vein for outflow were identified. Outcomes in terms of primary and secondary patency rates were determined. Eight patients had placement of an arteriovenous hybrid graft in the proximal axillary vein via an infraclavicular incision. All patients had exhausted other options for hemodialysis access in the ipsilateral upper extremity. All grafts were used successfully for dialysis. The mean primary and secondary patency rates at 6 months were 37.5% and 62.5%, respectively. One patient developed steal syndrome, requiring proximalization of the graft. Seven out of the 8 patients required secondary procedures including thrombectomy (n = 16) and angioplasty (n = 17). Placement of a hybrid graft in the proximal axillary vein is an effective and suitable option for patients who have exhausted arteriovenous access sites in the arm. This procedure can easily be performed in an outpatient setting with a low complication rate and allowing for preservation of the contralateral upper extremity for future use. Published by Elsevier Inc.

  13. Multiple Outflows in the Giant Eruption of a Massive Star

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Martin, John C.; Gordon, Michael S.; Jones, Terry J.

    2016-08-01

    The supernova impostor PSN J09132750+7627410 in NGC 2748 reached a maximum luminosity of ≈-14 mag. It was quickly realized that it was not a true supernova, but another example of a nonterminal giant eruption. PSN J09132750+7627410 is distinguished by multiple P Cygni absorption minima in the Balmer emission lines that correspond to outflow velocities of -400, -1100, and -1600 km s-1. Multiple outflows have been observed in only a few other objects. In this paper we describe the evolution of the spectrum and the P Cygni profiles for 3 months past maximum, the post-maximum formation of a cool, dense wind, and the identification of a possible progenitor. One of the possible progenitors is an infrared source. Its pre-eruption spectral energy distribution suggests a bolometric luminosity of -8.3 mag and a dust temperature of 780 K. If it is the progenitor, it is above the AGB limit, unlike the intermediate-luminosity red transients. The three P Cygni profiles could be due to ejecta from the current eruption, the wind of the progenitor, or previous mass-loss events. We suggest that they were all formed as part of the same high-mass-loss event and are due to material ejected at different velocities or energies. We also suggest that multiple outflows during giant eruptions may be more common than reported. Based on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  14. Discovering a misaligned CO outflow related to the red MSX source G034.5964-01.0292

    NASA Astrophysics Data System (ADS)

    Paron, S.; Ortega, M. E.; Petriella, A.; Rubio, M.

    2014-07-01

    Aims: The red MSX source G034.5964-01.0292 (MSXG34), catalogued as a massive young stellar object, was observed in molecular lines with the aim of discovering and studying molecular outflows. Methods: We mapped a region of 3'× 3' centred at MSXG34 using the Atacama Submillimeter Telescope Experiment in the 12CO J = 3-2 and HCO+J = 4-3 lines with an angular and spectral resolution of 22'' and 0.11 km s-1. Additionally, public 13CO J = 1-0 and near-IR UKIDSS data obtained from the Galactic Ring Survey and the WFCAM Sciencie Archive were analysed. Results: We found that the 12CO spectra towards the YSO present a self-absorption dip, as is common in star-forming regions, and spectral wings that indicate outflow activity. The HCO+ was detected only towards the MSXG34 position at vLSR ~ 14.2 km s-1, in coincidence with the 12CO absorption dip and approximately with the velocity of previous ammonia observations. HCO+ and NH3 are known to be enhanced in molecular outflows. When we analysed the spectral wings of the 12CO line, we discovered misaligned red- and blue-shifted molecular outflows associated with MSXG34. The near-IR emission shows a cone-like nebulosity composed of two arc-like features related to the YSO, which might be due to a cavity cleared in the circumstellar material by a precessing jet. This can explain the misalignment in the molecular outflows. From the analysis of the 13CO J = 1-0 data we suggest that the YSO is very likely related to a molecular clump ranging between 10 and 14 km s-1. This suggests that MSXG34, with an associated central velocity of about 14 km s-1, may be located in the background of this clump. Thus, the blue-shifted outflow is probably deflected by the interaction with dense gas along the line of sight. From a spectral energy distribution analysis of MSXG34 we found that its central object probably is an intermediate-mass protostar.

  15. Correction to "Asian chemical Outflow to the Pacific in Spring: Origins, Pathways, and Budgets" by Isabelle Bey et al.

    NASA Technical Reports Server (NTRS)

    Bey, Isabelle; Jacob, Daniel J.; Logan, Jennifer A.; Yantosca, Robert M.

    2003-01-01

    We analyze the Asian outflow of CO, ozone, and nitrogen oxides (NOx) to the Pacific in spring by using the GEOS-CHEM global three-dimensional model of tropospheric chemistry and simulating the Pacific Exploratory Mission-West (PEM-West B) aircraft mission in February-March 1994. The GEOS-CHEM model uses assimilated meteorological fields from the NASA Goddard Earth Observing System (GEOS). It reproduces relatively well the main features of tropospheric ozone, CO, and reactive nitrogen species observed in PEM-West B, including latitudinal and vertical gradients of the Asian pollution outflow over the western Pacific although simulated concentrations of CO tend to be too low (possibly because biogenic sources are underestimated). We use CO as a long-lived tracer to diagnose the processes contributing to the outflow. The highest concentrations in the outflow are in the boundary layer (0-2 km), but the strongest outflow fluxes are in the lower free troposphere (2-5 km) and reflect episodic lifting of pollution over central and eastern China ahead of eastward moving cold fronts. This frontal lifting, followed by westerly transport in the lower free troposphere, is the principal process responsible for export of both anthropogenic and biomass burning pollution from Asia. Anthropogenic emissions from Europe and biomass burning emissions from Africa make also major contributions to the Asian outflow over the western Pacific; European sources dominate in the lower troposphere north of 40 degrees N, while African sources are important in the upper troposphere at low latitudes. For the period of PEM-West B (February-March) we estimate that fossil fuel combustion and biomass burning make comparable contributions to the budgets of CO, ozone, and NO, in the Asian outflow. We find that 13% of NO, emitted in Asia is exported as NO, or PAN, a smaller fraction than for the United States because of higher aerosol concentrations that promote heterogeneous conversion of NOx to HNO3

  16. North-south asymmetries in cold ion outflow and lobe density

    NASA Astrophysics Data System (ADS)

    Haaland, Stein; Laundal, Karl; Maes, Lukas; Baddeley, Lisa; Lybekk, Bjørn

    2016-04-01

    A significant fraction of the plasma in the terrestrial magnetosphere is supplied by the high-latitude ionosphere. The filling process starts with ionization of atoms and gas molecules in the thermosphere, and is often accompanied by upflow due to thermal and electromagnetic forces. Some of this material can reach escape velocities and be further accelerated and eventually evacuated into space. Ions are governed by electromagnetic forces and their transport path from the ionosphere to the magnetosphere go through the magnetotail lobes. The transport is largely dictated by magnetospheric convection. External influences, such as daily and seasonal variations in the Earth's tilt angle, but also non-dipolar terms in the Earth's internal magnetic field introduce north-south asymmetries in the magnetic field and thus north-south asymmetries in the ion outflow and lobe filling. In this presentation, we show observational results of this asymmetry. The results are based on more than a full solar cycle of cold ion measurements from the Cluster constellation of spacecraft, and allows us to quantify the outflow, identify sources of asymmetry and estimate transport paths.

  17. Screen channel liquid acquisition device outflow tests in liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Chato, D. J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2014-11-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325 × 2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3-24.2 K), pressures (100-350 kPa), and flow rates (0.010-0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  18. Screen Channel Liquid Acquisition Device Outflow Tests in Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; Chato, David J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2013-01-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325x2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3 - 24.2 K), pressures (100 - 350 kPa), and flow rates (0.010 - 0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  19. Surgical treatment of left ventricular outflow tract obstruction with apicoaortic valved conduit.

    PubMed

    Cooley, D A; Norman, J C; Reul, G J; Kidd, J N; Nihill, M R

    1976-12-01

    From Aug. 13, 1975, through May, 1976, nine patients underwent creation of a left ventricular "vent" for relief of severe left ventricular outflow tract obstruction. A Dacron fabric graft containing a heterograft valve was used to establish a conduit from the left ventricle to the abdominal aorta. There were five male and four female patients in this group; their ages ranged from 4 to 72 years. All had valvular, subvalvular, or supravalvular aortic stenosis, and all but two had undergone previous surgical procedures for relief of the stenosis. All patients survived the operation and none are receiving anticoagulant therapy. All are asymptomatic at present and follow-up is approaching one year. Postoperative cardiac catheterization studies revealed gradients across the aortic valve to be reduced by approximately 90% and mean ventricular systolic pressures by 45%. Although this concept is not new, it has not been used widely and we believe its effectiveness warrants further application.

  20. The Environment and Outflow of the G-type T Tauri Star SU Aur

    NASA Astrophysics Data System (ADS)

    Grady, C.; Stapelfeldt, K.; Clampin, M.; Padgett, D.; Woodgate, B.; Henning, T.; Grinin, V.; Quirrenbach, A.; Stecklum, B.; Sitko, M.; Biggs, J.

    2001-12-01

    We present HST/STIS white light coronagraphic imaging data for the optically bright, classical T Tauri star, SU Aur. Previous optical imagery has detected "cometary" nebulosity beginning north of the star and wrapping around to the west and ultimately south (Nakajima & Golimowski 1995). The STIS data demonstrate that this nebulosity consists of a fan of nebulosity similar to that seen around R CrA, with wisp and clump structure down to the resolution limit of the telescope. This nebulosity has an opening angle of 70 degrees and a vertical extent of at least 12.2" (1842 AU at d=151 pc). The fan is visible in WFPC2 V, R, and I images, in addition to the STIS broad-band (0.2-1.0 micron) data, indicating detection of reflection nebulosity. A distinctive feature of the HST imagery of SU Aur is the presence of radial streamers seen at V and in the STIS data. The central streamer, which roughly bisects the fan of nebulosity, extends at least 8" (1200 AU) from the star at PA=295+/-1 degrees. The STIS data demonstrate that this feature is accompanied, on the opposite side of the star, by a string of bow-shaped nebulosities, extending 7.3" (1100 AU) from the star at PA=114+/-1 degrees. We interpret the fan of nebulosity as arising from the walls of a partially exposed outflow cavity. The scale and morphology of the central streamer and the PA=114 string of knots are consistent with the appearance of bipolar outflows as seen by STIS. SU Aur is a 4 Myr old (de Warf et al. 1998), 1.9+/-0.1 solar mass star. The bipolar outflow reported here is the second collimated outflow detected in association with an isolated, several million year old intermediate-mass star. Given the small number of coronagraphically imaged intermediate-mass stars, this result indicates that collimated outflows, similar to those routinely detected in association with lower mass T Tauri stars, appear to be common among their higher mass analogs and to persist for much of the star's pre-main sequence lifetime

  1. The influence of large-scale magnetic field in the structure of supercritical accretion flow with outflow

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad, Maryam; Abbassi, Shahram

    2017-08-01

    We present the effects of ordered large-scale magnetic field on the structure of supercritical accretion flow in the presence of an outflow. In the cylindrical coordinates (r, φ, z), we write the 1.5-dimensional, steady-state (partial /partial t= 0) and axisymmetric (partial /partial \\varphi = 0) inflow-outflow equations by using self-similar solutions. Also, a model for radiation pressure supported accretion flow threaded by both toroidal and vertical components of magnetic field has been formulated. For studying the outflows, we adopt a radius-dependent mass accretion rate as \\dot{M}=\\dot{M}_{out}{(r/r_{out})^{s+1/2}} with s = 1/2. Also, by following the previous works, we have considered the interchange of mass, radial and angular momentum and the energy between inflow and outflow. We have found numerically that two components of magnetic field have the opposite effects on the thickness of the disc and similar effects on the radial and angular velocities of the flow. We have found that the existence of the toroidal component of magnetic field will lead to an increase in the radial and azimuthal velocities as well as the relative thickness of the disc. Moreover, in a magnetized flow, the thickness of the disc decreases with increase in the vertical component of magnetic field. The solutions indicated that the mass inflow rate and the specific energy of outflow strongly affect the advection parameter. We have shown that by increasing the two components of magnetic field, the temperature of the accretion flow decreases significantly. On the other hand, we have shown that the bolometric luminosity of the slim discs for high values of \\dot{m} (\\dot{m}>>1)\\dot{m} (\\dot{m}≫ 1) is not sensitive to mass accretion rate and is kept constant (L ≈ 10LE).

  2. Military Hydrology. Report 20. Reservoir Outflow (RESOUT) Model

    DTIC Science & Technology

    1991-04-01

    and/or be withdrawn from the river at some distance below the dam . In other cases, the outlet works discharges directly into a canal or pipe conveyance... dams are cited in Table 3 (USAGE 1965). 150. Darcy-Weisbach eguation, The head loss resulting from pipe fric- tion may also be determined using the Darcy... dam breach and computes the resulting outflow hydrograph. Example 8 Dam Breach Simulation ID Example 8 ID Dam Breach Simulation ID 10 1 0 KK Teton CG

  3. Right ventricular outflow tract aneurysm with thrombus

    PubMed Central

    Peer, Syed Murfad; Bhat, P.S. Seetharama; Furtado, Arul Dominic; Chikkatur, Raghavendra

    2012-01-01

    Right ventricular outflow tract (RVOT) aneurysm is a known complication of tetralogy of Fallot repair when a ventriculotomy is done. It leads to RV dysfunction and may require re-operation. We describe a rare instance of a patient who developed an RVOT aneurysm after trans-ventricular repair of tetralogy of Fallot, which was complicated with the formation of a thrombus in the aneurysm sac. The patient underwent re-operation with thrombectomy, excision of the RVOT aneurysm and pulmonary valve replacement. To the best of our knowledge, the occurrence of this combination and its implications have not been reported. PMID:22232231

  4. Similar Hydrodynamic and Morphological Changes in the Aqueous Humor Outflow Pathway after Washout and Y27632 Treatment in Monkey Eyes

    PubMed Central

    Lu, Zhaozeng; Zhang, Yuyan; Freddo, Thomas F.; Gong, Haiyan

    2011-01-01

    Our previous studies in bovine eyes demonstrated that the structural correlate to the increase in outflow facility after either Rho-kinase inhibitor Y-27632 (Y27) treatment or washout appeared to be separation between the juxtacanalicular tissue (JCT) and inner wall (IW) of the aqueous plexus, the bovine equivalent of Schlemm's canal (SC). While these findings suggest that Y27 and washout may increase outflow facility through a similar mechanism, the anatomy of bovine outflow pathway differs considerably from both the human and monkey outflow pathway; however, only the human eye does not exhibit washout. In light of this, we compared the effects of Y27 and washout on outflow facility, hydrodynamic patterns of outflow, and the morphology of the IW and JCT in monkey eyes, given that their anatomy is closer to human eyes. Twelve freshly enucleated monkey eyes were used in this study. Eyes were perfused with Dulbecco's PBS containing 5.5 mM glucose (GPBS) to establish a baseline facility at 15 mmHg. Four eyes were perfused for a short-duration (30 min) as a control, 4 eyes for a long-duration (180 min) to induce washout, and 4 eyes with GPBS+50 μM Y27 for 30 min. All eyes were then perfused with fluorescent microspheres (0.5μm; 0.002%) to label the hydrodynamic patterns of outflow and then perfusion-fixed. Confocal images of frontal sections were taken along the IW of SC. The total length (TL) and the tracer decorated length (FL) of the IW were measured to calculate the average percent effective filtration length (PEFL=FL/TL). Sections with SC were examined by light and electron microscopy. The TL of the IW and the length exhibiting separation (SL) in the JCT were measured to calculate the average percent separation length (PSL= SL/TL). Outflow facility increased 149.2% (p<0.01) from baseline after washout during long-duration perfusion, and 114.9% (p=0.004) after Y27 treatment, but did not change significantly after short-duration perfusion in control eyes (p=0

  5. The presence of Waddell signs depends on age and gender, not diagnosis.

    PubMed

    Yoo, J U; McIver, T C; Hiratzka, J; Carlson, H; Carlson, N; Radoslovich, S S; Gernhart, T; Boshears, E; Kane, M S

    2018-02-01

    The aim of this study was to determine if positive Waddell signs were related to patients' demographics or to perception of their quality of life. This prospective cross-sectional study included 479 adult patients with back pain from a university spine centre. Each completed SF-12 and Oswestry Disability Index (ODI) questionnaires and underwent standard spinal examinations to elicit Waddell signs. The relationship between Waddell signs and age, gender, ODI, Mental Component Score (MCS), and Physical Component Score (PCS) scores was determined. Of the 479 patients, 128 (27%) had at least one positive Waddell sign. There were significantly more women with two or more Waddell signs than men. The proportion of patients with at least one positive Waddell sign increased with age until 55 years, and then declined rapidly; none had a positive sign over the age of 75 years. Functional outcome scores were significantly worse in those with a single Waddell sign (p < 0.01). With one or more Waddell signs, patients' PCS and ODI scores indicated a perception of severe disability; with three or more Waddell signs, patients' MCS scores indicated severe disability. With five Waddell signs, ODI scores indicated that patients perceived themselves as crippled. Positive Waddell signs, a potential indicator of central sensitization, indicated a likelihood of having functional limitations and an impaired quality of life, particularly in young women. Cite this article: Bone Joint J 2018;100-B:219-25. ©2018 The British Editorial Society of Bone & Joint Surgery.

  6. Galactic outflows, star formation histories, and time-scales in starburst dwarf galaxies from STARBIRDS

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-07-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their time-scales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16 per cent efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr time-scale, somewhat higher than simulations predict. The outflows have likely been sustained for time-scales comparable to the duration of the starbursts (i.e. 100s Myr), after taking into account the time for the development and cessation of the wind. The wind time-scales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short time-scales. In the detected outflows, the expelled hot gas shows various morphologies that are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the life cycle and impact of starburst activity in low-mass systems.

  7. Endogenous Production of Extracellular Adenosine by Trabecular Meshwork Cells: Potential Role in Outflow Regulation

    PubMed Central

    Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro

    2012-01-01

    Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289

  8. Searching for outflows in ultraluminous X-ray sources through high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosec, P.; Pinto, C.; Fabian, A. C.; Walton, D. J.

    2018-02-01

    Ultraluminous X-ray sources (ULXs) are non-nuclear point sources exceeding the Eddington luminosity of a 10 M⊙ black hole. Modern consensus for a majority of the ULX population is that they are powered by stellar-mass black holes or neutron stars accreting well above the Eddington limit. Theoretical models of super-Eddington accretion predict existence of powerful outflows of moderately ionized gas at mildly relativistic velocities. So far, these winds have been found in three systems: NGC 1313 X-1, NGC 5408 X-1 and NGC 55 ULX. In this work, we create a sample of all ULXs with usable archival high-resolution X-ray data, with 10 sources in total, in which we aim to find more signatures of outflows. We perform Gaussian line scans to find any narrow spectral signatures, and physical wind model scans where possible. We tentatively identify an outflow in NGC 5204 X-1, blueshifted to 0.34c, which produces emission features with a total significance of at least 3σ. Next we compare ULXs with similar hardness ratios. Holmberg IX X-1 shows absorption features that could be associated with a photoionized outflowing absorber, similar to that seen in NGC 1313 X-1. The spectrum of Holmberg II X-1 possesses features similar to NGC 5408 X-1 and NGC 6946 X-1 shows O VIII rest-frame emission. All other sources from the sample also show tentative evidence of spectral features in their high-resolution spectra. Further observations with the XMM-Newton and Chandra gratings will place stronger constraints. Future missions like XARM and Athena will be able to detect them at larger distances and increase our sample.

  9. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.

    PubMed

    Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J

    2014-12-04

    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.

  10. 3D modelling of the climatic impact of outflow channel formation events on early Mars

    NASA Astrophysics Data System (ADS)

    Turbet, Martin; Forget, Francois; Head, James W.; Wordsworth, Robin

    2017-05-01

    Mars was characterized by cataclysmic groundwater-sourced surface flooding that formed large outflow channels and that may have altered the climate for extensive periods during the Hesperian era. In particular, it has been speculated that such events could have induced significant rainfall and caused the formation of late-stage valley networks. We present the results of 3-D Global Climate Model simulations reproducing the short and long term climatic impact of a wide range of outflow channel formation events under cold ancient Mars conditions. We find that the most intense of these events (volumes of water up to 107 km3 and released at temperatures up to 320 K) cannot trigger long-term greenhouse global warming, regardless of how favorable are the external conditions (e.g. obliquity and seasons). Furthermore, the intensity of the response of the events is significantly affected by the atmospheric pressure, a parameter not well constrained for the Hesperian era. Thin atmospheres (P < 80 mbar) can be heated efficiently because of their low volumetric heat capacity, triggering the formation of a convective plume that is very efficient in transporting water vapor and ice at the global scale. Thick atmospheres (P > 0.5 bar) have difficulty in producing precipitation far from the water flow area, and are more efficient in generating snowmelt. In any case, outflow channel formation events at any atmospheric pressure are unable to produce rainfall or significant snowmelt at latitudes below 40°N. As an example, for an outflow channel event (under a 0.2 bar atmospheric pressure and 45° obliquity) releasing 106 km3 of water heated at 300 K and at a discharge rate of 109 m3 s-1 , the flow of water reaches the lowest point of the northern lowlands (around ∼70°N, 30°W) after ∼3 days and forms a 200 m deep lake of 4.2 × 106 km2 after ∼20 days; the lake becomes entirely covered by an ice layer after ∼500 days. Over the short term, such an event leaves 6.5 × 103 km3

  11. Measuring the Outflows from Massive Young Stellar Objects in the Large Magellanic Cloud (LMC)

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret

    2015-10-01

    The formation of massive stars has been difficult to study because they evolve quickly and evolutionary phases are short-lived. Using the GREAT instrument, we propose to measure the molecular gas outflows in 4 massive young stellar objects (YSOs) that we discovered in the Large Magellanic Cloud (LMC) with our Herschel and Spitzer surveys. We have in hand ALMA observations of the CO J=2-1 for all 4 targets. Three of these YSOs mark active young star formation sites in N159W that is the most intense and concentrated molecular cloud in the LMC. The fourth YSO, located in N79, is the most massive/luminous YSO in the LMC. One of the N159W YSOs has been detected with an outflow in the CO J=2-1 line. We will observe the CO J=11-10 line in these 4 YSOs because the shock excited outflows are very bright in this line and it can be used to quantify the mass loss rate. We will also map the most massive YSO in the [CII] 158 micron line to probe the physical conditions of the region.

  12. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice

    PubMed Central

    Ash, Jessica A.; Velazquez, Ramon; Kelley, Christy M.; Powers, Brian E.; Ginsberg, Stephen D.; Mufson, Elliott J.; Strupp, Barbara J.

    2014-01-01

    Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimer’s disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) lessens hippocampal dysfunction and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1 g/kg choline chloride) or choline supplemented (5.0 g/kg choline chloride) diet. Between 13 and 17 months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial learning and memory followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing powerful support for a functional relationship between these behavioral and morphometric effects of MCS for the trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large. PMID:24932939

  13. Accretion and outflow in the proplyd-like objects near Cygnus OB2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarcello, M. G.; Drake, J. J.; Wright, N. J.

    2014-09-20

    Cygnus OB2 is the most massive association within 2 kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14 pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud that are hosting a protostar inside or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. Inmore » this paper, we present a study based on low-resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy, mounted on the 10.4 m Gran Telescopio CANARIAS, of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects as well as in the accretion and outflow diagnostics.« less

  14. Device specific analysis of neonatal aortic outflow cannula jet flows for improved cardiopulmonary bypass hemodynamics

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem

    2011-11-01

    Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.

  15. Do Radio Jets Contribute to Driving Ionized Gas Outflows in Moderate Luminosity Type 2 AGN?

    NASA Astrophysics Data System (ADS)

    Fowler, Julia; Sajina, Anna; Lacy, Mark

    2016-01-01

    This poster examines the role of AGN-driven feedback in low to intermediate power radio galaxies. We begin with [OIII] measurements of ionized gas outflows in 29 moderate AGN-luminosity z~0.3-0.7 dust-obscured Type 2 AGN. We aim to examine the relative role of the AGN itself, of star-formation and of nascent radio jets in driving these outflows. The strength of the AGN and star formation are based on the [OIII] luminosities, and the far-IR luminosities respectively. For the radio jets, we present multi-frequency radio (X, S, and L-bands) JVLA imaging of our sample, which allows us both to constrain the overall radio power, but also look for signatures of young radio sources, including Giga-hertz Peaked Spectrum (GPS) sources, as well as small-scale jets. While radio jet-driven outflows are well known for powerful radio-loud galaxies, this study allows us to constrain the degree to which this mechanism is significant at more modest radio luminosities of L5GHz~10^22-25 W/Hz.

  16. Radiative cooling of swept up gas in AGN-driven galactic winds and its implications for molecular outflows

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Faucher-Giguére, Claude-André

    2018-05-01

    We recently used hydro-chemical simulations to demonstrate that molecular outflows observed in luminous quasars can be explained by molecule formation within the AGN wind. However, these simulations cover a limited parameter space, due to their computational cost. We have therefore developed an analytic model to follow cooling in the shocked ISM layer of an AGN wind. We explore different ambient densities (1-104 {cm}^{-3}), density profile slopes (0-1.5), AGN luminosities (1044-10^{47} {erg} {s}^{-1}), and metallicities (0.1-3 Z⊙). The swept up gas mostly cools within ˜1 Myr. Based on our previous simulations, we predict that this gas would produce observable molecular outflows. The instantaneous momentum boost initially increases as the outflow decelerates. However, it reaches a maximum of ≈20, due to work done against the gravitational potential. The predicted time-averaged observational estimate of the molecular outflow momentum boost reaches a maximum of ≈1 -2, partly due to our assumed molecular fraction, 0.2, but also because the instantaneous and observational, time-averaged definitions are not equivalent. Thus recent observational estimates of order unity momentum boosts do not necessarily rule out energy-driven outflows. Finally, we find that dust grains are likely to re-form by accretion of metals after the shocked ISM layer has cooled, assuming that a small fraction of dust grains swept up after this layer has cooled are able to mix into the cool phase, and assuming that grain growth remains efficient in the presence of the strong AGN radiation field. This would enable rapid molecule formation, as assumed in our models.

  17. AGN-enhanced outflows of low-ionization gas in star-forming galaxies at 1.7 < z < 4.6*

    NASA Astrophysics Data System (ADS)

    Talia, M.; Brusa, M.; Cimatti, A.; Lemaux, B. C.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Cucciati, O.; Garilli, B.; Grazian, A.; Guaita, L.; Hathi, N. P.; Koekemoer, A.; Le Fèvre, O.; Maccagni, D.; Nakajima, K.; Pentericci, L.; Pforr, J.; Schaerer, D.; Vanzella, E.; Vergani, D.; Zamorani, G.; Zucca, E.

    2017-11-01

    Fast and energetic winds are invoked by galaxy formation models as essential processes in the evolution of galaxies. These outflows can be powered either by star formation (SF) and/or active galactic nucleus (AGN) activity, but the relative dominance of the two mechanisms is still under debate. We use spectroscopic stacking analysis to study the properties of the low-ionization phase of the outflow in a sample of 1330 star-forming galaxies (SFGs) and 79 X-ray-detected (1042 < LX < 1045 erg s-1) Type 2 AGN at 1.7 < z < 4.6 selected from a compilation of deep optical spectroscopic surveys, mostly zCOSMOS-Deep and VIMOS Ultra Deep Survey (VUDS). We measure mean velocity offsets of ˜- 150 km s-1 in the SFGs, while in the AGN sample the velocity is much higher (˜- 950 km s-1), suggesting that the AGN is boosting the outflow up to velocities that could not be reached only with the SF contribution. The sample of X-ray AGN has on average a lower SF rate than non-AGN SFGs of similar mass: this, combined with the enhanced outflow velocity in AGN hosts, is consistent with AGN feedback in action. We further divide our sample of AGN into two X-ray luminosity bins: we measure the same velocity offsets in both stacked spectra, at odds with results reported for the highly ionized phase in local AGN, suggesting that the two phases of the outflow may be mixed only up to relatively low velocities, while the highest velocities can be reached only by the highly ionized phase.

  18. Complex Organic Molecules tracing shocks along the outflow cavity in the high-mass protostar IRAS 20126+4104.

    PubMed

    Palau, Aina; Walsh, Catherine; Sánchez-Monge, Álvaro; Girart, Josep M; Cesaroni, Riccardo; Jiménez-Serra, Izaskun; Fuente, Asunción; Zapata, Luis A; Neri, Roberto

    2017-06-01

    We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS 20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H 2 13 CO, we detect emission from CH 3 CN, CH 3 OH, HCOOH, HCOOCH 3 , CH 3 OCH 3 , CH 3 CH 2 CN, CH 3 COCH 3 , NH 2 CN, and (CH 2 OH) 2 . SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H 2 knot from the jet at about 800-1000 au from the protostar. This is especially clear in the case of H 2 13 CO and CH 3 OCH 3 . We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for ∼ 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS 20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow.

  19. Complex Organic Molecules tracing shocks along the outflow cavity in the high-mass protostar IRAS 20126+4104

    PubMed Central

    Palau, Aina; Walsh, Catherine; Sánchez-Monge, Álvaro; Girart, Josep M.; Cesaroni, Riccardo; Jiménez-Serra, Izaskun; Fuente, Asunción; Zapata, Luis A.; Neri, Roberto

    2017-01-01

    We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS 20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H213CO, we detect emission from CH3CN, CH3OH, HCOOH, HCOOCH3, CH3OCH3, CH3CH2CN, CH3COCH3, NH2CN, and (CH2OH)2. SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H2 knot from the jet at about 800–1000 au from the protostar. This is especially clear in the case of H213CO and CH3OCH3. We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for ∼ 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS 20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow. PMID:28579644

  20. Stellar physics. Observing the onset of outflow collimation in a massive protostar.

    PubMed

    Carrasco-González, C; Torrelles, J M; Cantó, J; Curiel, S; Surcis, G; Vlemmings, W H T; van Langevelde, H J; Goddi, C; Anglada, G; Kim, S-W; Kim, J-S; Gómez, J F

    2015-04-03

    The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification. Copyright © 2015, American Association for the Advancement of Science.