Science.gov

Sample records for aged mice compared

  1. Rodents for comparative aging studies: from mice to beavers

    PubMed Central

    Bozzella, Michael J.; Seluanov, Andrei

    2008-01-01

    After humans, mice are the best-studied mammalian species in terms of their biology and genetics. Gerontological research has used mice and rats extensively to generate short- and long-lived mutants, study caloric restriction and more. Mice and rats are valuable model organisms thanks to their small size, short lifespans and fast reproduction. However, when the goal is to further extend the already long human lifespan, studying fast aging species may not provide all the answers. Remarkably, in addition to the fast-aging species, the order Rodentia contains multiple long-lived species with lifespans exceeding 20 years (naked mole-rat, beavers, porcupines, and some squirrels). This diversity opens great opportunities for comparative aging studies. Here we discuss the evolution of lifespan in rodents, review the biology of slow-aging rodents, and show an example of how the use of a comparative approach revealed that telomerase activity coevolved with body mass in rodents. PMID:19424861

  2. Rodents for comparative aging studies: from mice to beavers.

    PubMed

    Gorbunova, Vera; Bozzella, Michael J; Seluanov, Andrei

    2008-09-01

    After humans, mice are the best-studied mammalian species in terms of their biology and genetics. Gerontological research has used mice and rats extensively to generate short- and long-lived mutants, study caloric restriction and more. Mice and rats are valuable model organisms thanks to their small size, short lifespans and fast reproduction. However, when the goal is to further extend the already long human lifespan, studying fast aging species may not provide all the answers. Remarkably, in addition to the fast-aging species, the order Rodentia contains multiple long-lived species with lifespans exceeding 20 years (naked mole-rat, beavers, porcupines, and some squirrels). This diversity opens great opportunities for comparative aging studies. Here we discuss the evolution of lifespan in rodents, review the biology of slow-aging rodents, and show an example of how the use of a comparative approach revealed that telomerase activity coevolved with body mass in rodents. PMID:19424861

  3. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    ERIC Educational Resources Information Center

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  4. A Comparative Study of Age-Related Hearing Loss in Wild Type and Insulin-Like Growth Factor I Deficient Mice

    PubMed Central

    Riquelme, Raquel; Cediel, Rafael; Contreras, Julio; Lourdes, Rodriguez-de la Rosa; Murillo-Cuesta, Silvia; Hernandez-Sanchez, Catalina; Zubeldia, Jose M.; Cerdan, Sebastian; Varela-Nieto, Isabel

    2010-01-01

    Insulin-like growth factor-I (IGF-I) belongs to the family of insulin-related peptides that fulfils a key role during the late development of the nervous system. Human IGF1 mutations cause profound deafness, poor growth and mental retardation. Accordingly, Igf1−/− null mice are dwarfs that have low survival rates, cochlear alterations and severe sensorineural deafness. Presbycusis (age-related hearing loss) is a common disorder associated with aging that causes social and cognitive problems. Aging is also associated with a decrease in circulating IGF-I levels and this reduction has been related to cognitive and brain alterations, although there is no information as yet regarding the relationship between presbycusis and IGF-I biodisponibility. Here we present a longitudinal study of wild type Igf1+/+ and null Igf1−/− mice from 2 to 12 months of age comparing the temporal progression of several parameters: hearing, brain morphology, cochlear cytoarchitecture, insulin-related factors and IGF gene expression and IGF-I serum levels. Complementary invasive and non-invasive techniques were used, including auditory brainstem-evoked response (ABR) recordings and in vivo MRI brain imaging. Igf1−/− null mice presented profound deafness at all the ages studied, without any obvious worsening of hearing parameters with aging. Igf1+/+ wild type mice suffered significant age-related hearing loss, their auditory thresholds and peak I latencies augmenting as they aged, in parallel with a decrease in the circulating levels of IGF-I. Accordingly, there was an age-related spiral ganglion degeneration in wild type mice that was not evident in the Igf1 null mice. However, the Igf1−/− null mice in turn developed a prematurely aged stria vascularis reminiscent of the diabetic strial phenotype. Our data indicate that IGF-I is required for the correct development and maintenance of hearing, supporting the idea that IGF-I-based therapies could contribute to prevent or

  5. Practical pathology of aging mice.

    PubMed

    Pettan-Brewer, Christina; Treuting, Piper M

    2011-01-01

    Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington. PMID:22953032

  6. Practical pathology of aging mice

    PubMed Central

    Pettan-Brewer, Christina; Treuting, Piper M.

    2011-01-01

    Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington. PMID:22953032

  7. The Akt/mTOR pathway: Data comparing young and aged mice with leucine supplementation at the onset of skeletal muscle regeneration.

    PubMed

    Perry, Richard A; Brown, Lemuel A; Lee, David E; Brown, Jacob L; Baum, Jamie I; Greene, Nicholas P; Washington, Tyrone A

    2016-09-01

    The data described herein is related to the article "Differential Effects of Leucine Supplementation in Young and Aged Mice at the Onset of Skeletal Muscle Regeneration" [1]. Aging is associated with a decreased ability of skeletal muscle to regenerate following injury. Leucine supplementation has been extensively shown, in young subjects, to promote protein synthesis during regeneration; however, the effects of leucine supplementation on the Akt/mTOR pathway in aged mice at the onset of muscle regeneration are not fully elucidated. In this article, we present data on the Akt/mTOR protein synthesis pathway at the onset of muscle regeneration in young and aged C57BL/6J mice that are and are not receiving leucine supplementation. More specifically, protein content of total Akt, mTOR, p70S6K and 4EBP-1 are presented. Additionally, we provide relative (phosphorylated:total) protein content comparisons of these targets as they present themselves in young and aged mice who have neither been injured nor received leucine supplementation. Lastly, markers of atrophy (FoxO1/O3, MuRF-1, Atrogin-1) are also reported in these young and aged control groups. PMID:27617277

  8. Vitamin E pretreatment prevents the immunotoxicity of dithiocarbamate pesticide mancozeb in vitro: A comparative age-related assessment in mice and chick.

    PubMed

    Singh, Saurabh Kumar; Bano, Farhad; Mohanty, Banalata

    2016-01-01

    Pesticides used for crop protection cause life-threatening diseases affecting the immune system of non-target organisms including birds and mammals. Functionality of immune system is age-dependent; early- as well as old-life stages are more susceptible to toxic exposures because of less competent immune system. Vitamins are so far known to reduce toxic effect of several pesticides and/or xenobiotics. The present in vitro study elucidated immunotoxicity of fungicide mancozeb through comparable stages of immune system maturation in mice (1, 3, and 12months) and chicks (4, 8, and 11weeks). In vitro splenocytes viability on exposure to mancozeb was quantitatively assessed by MTT assay and qualitatively by acridine orange and ethidium bromide (AO/EB) double fluorescence staining. Mancozeb exposure dose dependently (250, 500, 1000, 2500, 5000 and 10,000ng/ml) decreased the splenocytes viability. The in vitro preventive effect of Vitamin E has also been explored on toxicity induced by mancozeb. The increased susceptibility observed both in early and aged groups was due to less/decline competence of the immune system. PMID:26778438

  9. Functional recovery in aging mice after experimental stroke.

    PubMed

    Manwani, Bharti; Liu, Fudong; Xu, Yan; Persky, Rebecca; Li, Jun; McCullough, Louise D

    2011-11-01

    Aging is a non-modifiable risk factor for stroke. Since not all strokes can be prevented, a major emerging area of research is the development of effective strategies to enhance functional recovery after stroke. However, in the vast majority of pre-clinical stroke studies, the behavioral tests used to assess functional recovery have only been validated for use in young animals, or are designed for rats. Mice are increasingly utilized in stroke models but well validated behavioral tests designed for rats are not necessarily reproducible in mice. We examined a battery of behavioral tests to evaluate functional recovery in an aging murine model of stroke. We found that the vertical pole, hanging wire and open field can accurately assess acute behavioral impairments after stroke in both young and aging male mice, but animals recover rapidly on these tasks. The corner test can accurately and repeatedly differentiate stroke from sham animals up to 30 days post stroke and can be performed reliably in aging mice. Aging male mice had significantly worse behavioral impairment compared to young male mice in the first two weeks after stroke but eventually recovered to the same degree as young mice. In contrast, chronic infarct size, as measured by ipsilateral cerebral atrophy, was significantly lower in aging male mice compared to young male mice. Reactive gliosis, formation of glial scar, and an enhanced innate immune response was seen in the aging brain and may contribute to the delayed behavioral recovery seen in the aging animals.

  10. Sendai viral pneumonia in aged BALB/c mice.

    PubMed

    Jacoby, R O; Bhatt, P N; Barthold, S W; Brownstein, D G

    1994-01-01

    Sendai virus (SV) infection in aged BALB/c mice was evaluated as a natural model for age-associated susceptibility to viral pneumonia. Young (2 month-old) and aged (22-24 month-old) BALB/c mice were inoculated intranasally with 100 median pneumonia doses (PD50) of SV and examined at 6, 10, and 20 days by virus titration, immunohistochemistry, histopathology, and serology. The aged mice had significantly higher virus titers in lung, prolonged infection, delayed development, and resolution of pneumonia and significantly lower serum antibody titers. In a second experiment, the responses of young mice were compared to intermediate-aged mice (11-13 and 17-18 months old). The intermediate-aged mice had some characteristics of young mice and others of aged mice. The results indicate that SV infection can be used to study aging-associated susceptibility to a pneumotropic virus in a natural host, and that susceptibility of mice to viral pneumonia increases gradually during aging.

  11. Minor influence of lifelong voluntary exercise on composition, structure, and incidence of osteoarthritis in tibial articular cartilage of mice compared with major effects caused by growth, maturation, and aging.

    PubMed

    Närhi, Tommi; Siitonen, Ulrika; Lehto, Lauri J; Hyttinen, Mika M; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J; Julkunen, Petro

    2011-10-01

    We investigated the effects of lifelong voluntary exercise on articular cartilage of mice. At the age of 4 weeks C57BL mice (n = 152) were divided into two groups, with one group serving as a sedentary control whereas the other was allowed free access to a running wheel from the age of 1 month onward. Mice were euthanized at four different time points (1, 2, 6, and 18 months of age). Articular cartilage samples were gathered from the load-bearing area of the tibial medial plateaus, and osteoarthritis was graded. Additionally, the proteoglycan content distribution was assessed using digital densitometry, collagen fibril orientation, and parallelism with polarized light microscopy, and collagen content using Fourier transform infrared imaging spectroscopy. The incidence of osteoarthritis increased with aging, but exercise had no effect on this trend. Furthermore, the structure and composition revealed significant growth, maturation, and age-dependent properties. Exercise exerted a minor effect on collagen fibril orientation in the superficial zone. Fibril orientation at 2 months of age was more perpendicular to surface (p < 0.05) in controls compared with runners, whereas the situation was reversed at the age of 18 months (p < 0.05). The collagen content of the superficial zone was higher (p < 0.01) at the age of 18 months in controls compared with runners but the proteoglycan content did not display any exercise-dependent changes. In conclusion, growth, maturation, and aging exerted a clear effect on integrity, structure, and composition of medial tibial plateau articular cartilage in mice, whereas lifelong voluntary exercise had only a minor effect on collagen architecture and content.

  12. Infection susceptibility and immune senescence with advancing age replicated in accelerated aging Lmna(Dhe) mice.

    PubMed

    Xin, Lijun; Jiang, Tony T; Kinder, Jeremy M; Ertelt, James M; Way, Sing Sing

    2015-12-01

    Aging confers increased susceptibility to common pathogens including influenza A virus. Despite shared vulnerability to infection with advancing age in humans and rodents, the relatively long time required for immune senescence to take hold practically restricts the use of naturally aged mice to investigate aging-induced immunological shifts. Here, we show accelerated aging Lmna(Dhe) mice with spontaneous mutation in the nuclear scaffolding protein, lamin A, replicate infection susceptibility, and substantial immune cell shifts that occur with advancing age. Naturally aged (≥ 20 month) and 2- to 3-month-old Lmna(Dhe) mice share near identically increased influenza A susceptibility compared with age-matched Lmna(WT) control mice. Increased mortality and higher viral burden after influenza infection in Lmna(Dhe) mice parallel reduced accumulation of lung alveolar macrophage cells, systemic expansion of immune suppressive Foxp3⁺ regulatory T cells, and skewed immune dominance among viral-specific CD8⁺T cells similar to the immunological phenotype of naturally aged mice. Thus, aging-induced infection susceptibility and immune senescence are replicated in accelerated aging Lmna(Dhe) mice. PMID:26248606

  13. Age dependent course of EAE in Aire-/- mice.

    PubMed

    Aharoni, Rina; Aricha, Revital; Eilam, Raya; From, Ido; Mizrahi, Keren; Arnon, Ruth; Souroujon, Miriam C; Fuchs, Sara

    2013-09-15

    This study explores the consequences of deficiency in the autoimmune regulator (Aire) on the susceptibility to experimental autoimmune encephalomyelitis (EAE). Increased susceptibility to EAE was found in Aire knockout (KO) compared to wild type (WT) in 6month old mice. In contrast, 2month old Aire KO mice were less susceptible to EAE than WT mice, and this age-related resistance correlated with elevated proportions of T regulatory (Treg) cells in their spleen and brain. Combined with our previous findings in experimental autoimmune myasthenia gravis, we suggest an age-related association between Aire and Treg cells in the susceptibility to autoimmunity.

  14. Comparative Endocrinology of Aging and Longevity Regulation

    PubMed Central

    Allard, John B.; Duan, Cunming

    2011-01-01

    Hormones regulate growth, development, metabolism, and other complex processes in multicellular animals. For many years it has been suggested that hormones may also influence the rate of the aging process. Aging is a multifactorial process that causes biological systems to break down and cease to function in adult organisms as time passes, eventually leading to death. The exact underlying causes of the aging process remain a topic for debate, and clues that may shed light on these causes are eagerly sought after. In the last two decades, gene mutations that result in delayed aging and extended longevity have been discovered, and many of the affected genes have been components of endocrine signaling pathways. In this review we summarize the current knowledge on the roles of endocrine signaling in the regulation of aging and longevity in various animals. We begin by discussing the notion that conserved systems, including endocrine signaling pathways, “regulate” the aging process. Findings from the major model organisms: worms, flies, and rodents, are then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in humans, including changes in hormone levels with age, and the involvement of hormones in aging-related diseases. The most well studied and widely conserved endocrine pathway that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also suggests this pathway’s involvement in human aging. Other hormones including steroids have been linked to aging only in a subset of the models studied. Because of the value of comparative studies, it is suggested that the aging field could benefit from adoption of additional model organisms. PMID:22654825

  15. Caspase-2 Deficiency Enhances Aging-Related Traits in Mice

    PubMed Central

    Zhang, Yingpei; Padalecki, Susan S; Chaudhuri, Asish R; Waal, Eric De; Goins, Beth A; Grubbs, Barry; Ikeno, Yuji; Richardson, Arlan; Mundy, Gregory R; Herman, Brian

    2007-01-01

    Alteration of apoptotic activity has been observed in a number of tissues in aging mammals, but it remains unclear whether and/or how apoptosis may affect aging. Caspase-2 is a member of the cysteine protease family that plays a critical role in apoptosis. To understand the impact of compromised apoptosis function on mammalian aging, we conducted a comparative study on caspase-2 deficient mice and their wild-type littermates with a specific focus on the aging-related traits at advanced ages. We found that caspase-2 deficiency enhanced a number of traits commonly seen in premature aging animals. Loss of caspase-2 was associated with shortened maximum lifespan, impaired hair growth, increased bone loss, and reduced body fat content. In addition, we found that the livers of caspase-2 deficient mice had higher levels of oxidized proteins than those of age-matched wild-type mice, suggesting that caspase-2 deficiency compromised the animal's ability to clear oxidatively damaged cells. Collectively, these results suggest that caspase-2 deficiency affects aging in the mice. This study thus demonstrates for the first time that disruption of a key apoptotic gene has a significant impact on aging. PMID:17188333

  16. Absence of cytoglobin promotes multiple organ abnormalities in aged mice

    PubMed Central

    Thuy, Le Thi Thanh; Van Thuy, Tuong Thi; Matsumoto, Yoshinari; Hai, Hoang; Ikura, Yoshihiro; Yoshizato, Katsutoshi; Kawada, Norifumi

    2016-01-01

    Cytoglobin (Cygb) was identified in hepatic stellate cells (HSCs) and pericytes of all organs; however, the effects of Cygb on cellular functions remain unclear. Here, we report spontaneous and age-dependent malformations in multiple organs of Cygb−/− mice. Twenty-six percent of young Cygb−/− mice (<1 year old) showed heart hypertrophy, cystic disease in the kidney or ovary, loss of balance, liver fibrosis and lymphoma. Furthermore, 71.3% (82/115) of aged Cygb−/− mice (1–2 years old) exhibited abnormalities, such as heart hypertrophy and cancer development in multiple organs; by contrast, 5.8% (4/68) of aged wild-type (WT) mice had abnormalities (p < 0.0001). Interestingly, serum and urine analysis demonstrated that the concentration of nitric oxide metabolites increased significantly in Cygb−/− mice, resulting in an imbalance in the oxidative stress and antioxidant defence system that was reversed by NG-monomethyl-L-arginine treatment. A senescent phenotype and evidence of DNA damage were found in primary HSCs and the liver of aged Cygb−/− mice. Moreover, compared with HSC+/+, HSC−/− showed high expression of Il-6 and chemokine mRNA when cocultured with mouse Hepa 1–6 cells. Thus, the absence of Cygb in pericytes provokes organ abnormalities, possibly via derangement of the nitric oxide and antioxidant defence system and through accelerated cellular senescence. PMID:27146058

  17. Memory Deficits Are Associated with Impaired Ability to Modulate Neuronal Excitability in Middle-Aged Mice

    ERIC Educational Resources Information Center

    Kaczorowski, Catherine C.; Disterhoft, John F.

    2009-01-01

    Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…

  18. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    PubMed

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.

  19. Age-Related Deterioration of Rod Vision in Mice

    PubMed Central

    Kolesnikov, Alexander V.; Fan, Jie; Crouch, Rosalie K.; Kefalov, Vladimir J.

    2010-01-01

    Even in healthy individuals, aging leads to deterioration in visual acuity, contrast sensitivity, visual field, and dark adaptation. Little is known about the neural mechanisms that drive the age-related changes of the retina and more specifically of photoreceptors. According to one hypothesis, the age-related deterioration in rod function is due to the limited availability of 11-cis-retinal for rod pigment formation. To determine how aging affects rod photoreceptors and to test the retinoid deficiency hypothesis, we compared the morphological and functional properties of rods of adult and aged B6D2F1/J mice. We found that the number of rods and the length of their outer segments were significantly reduced in 2.5 year-old mice compared to 4 month-old animals. Aging also resulted in a 2-fold reduction in the total level of opsin in the retina. Behavioral tests revealed that scotopic visual acuity and contrast sensitivity were decreased by 2-fold in aged mice, and rod ERG recordings demonstrated reduced amplitudes of both a- and b-waves. Sensitivity of aged rods determined from single-cell recordings was also decreased by 1.5-fold, corresponding to not more than 1% free opsin in these photoreceptors, and kinetic parameters of dim flash response were not altered. Notably, the rate of rod dark adaptation was unaffected by age. Thus, our results argue against age-related deficiency of 11-cis-retinal in the B6D2F1/J mouse rod visual cycle. Surprisingly, the level of cellular dark noise was increased in aged rods providing an alternative mechanism for their desensitization. PMID:20720130

  20. Complement C3-Deficient Mice Fail to Display Age-Related Hippocampal Decline.

    PubMed

    Shi, Qiaoqiao; Colodner, Kenneth J; Matousek, Sarah B; Merry, Katherine; Hong, Soyon; Kenison, Jessica E; Frost, Jeffrey L; Le, Kevin X; Li, Shaomin; Dodart, Jean-Cosme; Caldarone, Barbara J; Stevens, Beth; Lemere, Cynthia A

    2015-09-23

    The complement system is part of the innate immune response responsible for removing pathogens and cellular debris, in addition to helping to refine CNS neuronal connections via microglia-mediated pruning of inappropriate synapses during brain development. However, less is known about the role of complement during normal aging. Here, we studied the role of the central complement component, C3, in synaptic health and aging. We examined behavior as well as electrophysiological, synaptic, and neuronal changes in the brains of C3-deficient male mice (C3 KO) compared with age-, strain-, and gender-matched C57BL/6J (wild-type, WT) control mice at postnatal day 30, 4 months, and 16 months of age. We found the following: (1) region-specific and age-dependent synapse loss in aged WT mice that was not observed in C3 KO mice; (2) age-dependent neuron loss in hippocampal CA3 (but not in CA1) that followed synapse loss in aged WT mice, neither of which were observed in aged C3 KO mice; and (3) significantly enhanced LTP and cognition and less anxiety in aged C3 KO mice compared with aged WT mice. Importantly, CA3 synaptic puncta were similar between WT and C3 KO mice at P30. Together, our results suggest a novel and prominent role for complement protein C3 in mediating aged-related and region-specific changes in synaptic function and plasticity in the aging brain. Significance statement: The complement cascade, part of the innate immune response to remove pathogens, also plays a role in synaptic refinement during brain development by the removal of weak synapses. We investigated whether complement C3, a central component, affects synapse loss during aging. Wild-type (WT) and C3 knock-out (C3 KO) mice were examined at different ages. The mice were similar at 1 month of age. However, with aging, WT mice lost synapses in specific brain regions, especially in hippocampus, an area important for memory, whereas C3 KO mice were protected. Aged C3 KO mice also performed better on

  1. Effects of chronic estrogen treatment on modulating age-related bone loss in female mice.

    PubMed

    Syed, Farhan A; Mödder, Ulrike Il; Roforth, Matthew; Hensen, Ira; Fraser, Daniel G; Peterson, James M; Oursler, Merry Jo; Khosla, Sundeep

    2010-11-01

    While female mice do not have the equivalent of a menopause, they do undergo reproductive senescence. Thus, to dissociate the effects of aging versus estrogen deficiency on age-related bone loss, we sham-operated, ovariectomized, or ovariectomized and estrogen-replaced female C57/BL6 mice at 6 months of age and followed them to age 18 to 22 months. Lumbar spines and femurs were excised for analysis, and bone marrow hematopoietic lineage negative (lin-) cells (enriched for osteoprogenitor cells) were isolated for gene expression studies. Six-month-old intact control mice were euthanized to define baseline parameters. Compared with young mice, aged/sham-operated mice had a 42% reduction in lumbar spine bone volume/total volume (BV/TV), and maintaining constant estrogen levels over life in ovariectomized/estrogen-treated mice did not prevent age-related trabecular bone loss at this site. By contrast, lifelong estrogen treatment of ovariectomized mice completely prevented the age-related reduction in cortical volumetric bone mineral density (vBMD) and thickness at the tibial diaphysis present in the aged/sham-operated mice. As compared with cells from young mice, lin- cells from aged/sham-operated mice expressed significantly higher mRNA levels for osteoblast differentiation and proliferation marker genes. These data thus demonstrate that, in mice, age-related loss of cortical bone in the appendicular skeleton, but not loss of trabecular bone in the spine, can be prevented by maintaining constant estrogen levels over life. The observed increase in osteoblastic differentiation and proliferation marker gene expression in progenitor bone marrow cells from aged versus young mice may represent a compensatory mechanism in response to ongoing bone loss. PMID:20499336

  2. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice

    PubMed Central

    Mirsoian, Annie; Bouchlaka, Myriam N.; Sckisel, Gail D.; Chen, Mingyi; Pai, Chien-Chun Steven; Maverakis, Emanuel; Spencer, Richard G.; Fishbein, Kenneth W.; Siddiqui, Sana; Monjazeb, Arta M.; Martin, Bronwen; Maudsley, Stuart; Hesdorffer, Charles; Ferrucci, Luigi; Longo, Dan L.; Blazar, Bruce R.; Wiltrout, Robert H.; Taub, Dennis D.

    2014-01-01

    Aging is a contributing factor in cancer occurrence. We recently demonstrated that systemic immunotherapy (IT) administration in aged, but not young, mice resulted in induction of rapid and lethal cytokine storm. We found that aging was accompanied by increases in visceral fat similar to that seen in young obese (ob/ob or diet-induced obese [DIO]) mice. Yet, the effects of aging and obesity on inflammatory responses to immunotherapeutics are not well defined. We determine the effects of adiposity on systemic IT tolerance in aged compared with young obese mice. Both young ob/ob- and DIO-generated proinflammatory cytokine levels and organ pathologies are comparable to those in aged ad libitum mice after IT, culminating in lethality. Young obese mice exhibited greater ratios of M1/M2 macrophages within the peritoneal and visceral adipose tissues and higher percentages of TNF+ macrophages in response to αCD40/IL-2 as compared with young lean mice. Macrophage depletion or TNF blockade in conjunction with αCD40/IL-2 prevented cytokine storms in young obese mice and protected from lethality. Calorie-restricted aged mice contain less visceral fat and displayed reduced cytokine levels, protection from organ pathology, and protection from lethality upon αCD40/IL-2 administration. Our data demonstrate that adiposity is a critical factor in the age-associated pathological responses to systemic anti-cancer IT. PMID:25366964

  3. Influence of Aging and Gender Differences on Feeding Behavior and Ghrelin-Related Factors during Social Isolation in Mice

    PubMed Central

    Yamada, Chihiro; Saegusa, Yayoi; Nahata, Miwa; Sadakane, Chiharu; Hattori, Tomohisa; Takeda, Hiroshi

    2015-01-01

    Psychological stress due to social isolation is known to cause abnormal feeding behaviors, but the influences of gender and aging on subchronic stress-induced changes in feeding behaviors are unknown. Thus, we examined the changes in body weight, food intake, and orexigenic ghrelin-related factors during 2 weeks of isolation stress in young and aged mice. Food intake increased significantly in young mice in the isolation group compared with the group-housed control throughout the experimental period. This isolation-induced increase in food intake was not observed in aged mice. In young mice, there were no significant differences in body weight between the isolated group and group-housed control up to 2 weeks. However, aged male mice exhibited significant weight loss at 2 weeks and a similar tendency was observed in aged female mice. Young male mice, but not female mice, had significantly increased (2.2-fold) plasma acylated ghrelin levels after 1 week of isolation compared with the group-housed control. A significant but lower increase (1.3-fold) was also observed in aged male mice. Hypothalamic preproghrelin gene expression decreased significantly with isolation in young male mice, whereas it increased significantly in female mice. The expression levels of NPY and AGRP in the hypothalamus, which are transmitted by elevated peripheral ghrelin signals, increased significantly in isolated young male mice, whereas the AGRP expression levels decreased significantly in young female mice. Isolation caused no significant differences in the expression levels of these genes in aged mice. In isolation, young female mice exhibited markedly increased dark- and light-phase locomotor activities compared with male mice, whereas male and female aged mice exhibited no obvious increases in activity immediately after the dark phase started. We conclude that the gender-specific homeostatic regulatory mechanisms required to maintain body weight operated during subchronic psychological

  4. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice.

    PubMed

    Selvaratnam, Johanna S; Robaire, Bernard

    2016-09-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat(-/-)) and SOD1-null (Sod(-/-)) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod(-/-) mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod(-/-) mice, while aged Cat(-/-) mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat(-/-) mice but was consistently low in young and aged Sod(-/-) mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod(-/-) and Cat(-/-) mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat(-/-) and in Sod(-/-) mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod(-/-) mice and with age in all mice. These studies show that aged Sod(-/-) mice display severe redox dysfunction, while wild-type and Cat(-/-) mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. PMID:27465136

  5. Mucosal and systemic immunity to intestinal reovirus infection in aged mice.

    PubMed

    Fulton, Jonathan R; Cuff, Christopher F

    2004-09-01

    Systemic immunity is progressively impaired in aging, predisposing to morbidity and mortality from neoplasia and infectious disease. However, the effect of aging on mucosal immunity is controversial. To assess intestinal immunity in aging, young and aged mice were orally exposed to reovirus or cholera toxin (CT) and specific antibody and reovirus-specific cytotoxic T-cell (CTL) responses were assessed. As previously reported, aged mice immunized orally with CT mounted diminished intestinal IgA responses to CT compared to young mice. In contrast, aged mice yielded two to three-fold more reovirus-specific IgA-producing cells in the Peyers's patches (PP) compared to young mice, and higher titers of reovirus-specific IgA in fragment culture supernatants. Cytotoxicity and CTL frequencies from aged mice were not different from those of young mice. Together, these results suggest a diminished potential for systemic and intestinal immunity to orally applied protein antigens in aging, but an intact ability to respond to intestinal virus infection. Infection with a replicating virus may induce inflammatory mediators and innate immune factors that potentiate the priming of mucosal immunity; overcoming aging related deficits otherwise observed following oral immunization with non-replicating antigens, and suggests the importance of antigen replication to antigen-specific immunotherapy strategies in the elderly. PMID:15489051

  6. Age sensitivity of behavioral tests and brain substrates of normal aging in mice.

    PubMed

    Kennard, John A; Woodruff-Pak, Diana S

    2011-01-01

    Knowledge of age sensitivity, the capacity of a behavioral test to reliably detect age-related changes, has utility in the design of experiments to elucidate processes of normal aging. We review the application of these tests in studies of normal aging and compare and contrast the age sensitivity of the Barnes maze, eyeblink classical conditioning, fear conditioning, Morris water maze, and rotorod. These tests have all been implemented to assess normal age-related changes in learning and memory in rodents, which generalize in many cases to age-related changes in learning and memory in all mammals, including humans. Behavioral assessments are a valuable means to measure functional outcomes of neuroscientific studies of aging. Highlighted in this review are the attributes and limitations of these measures in mice in the context of age sensitivity and processes of brain aging. Attributes of these tests include reliability and validity as assessments of learning and memory, well-defined neural substrates, and sensitivity to neural and pharmacological manipulations and disruptions. These tests engage the hippocampus and/or the cerebellum, two structures centrally involved in learning and memory that undergo functional and anatomical changes in normal aging. A test that is less well represented in studies of normal aging, the context pre-exposure facilitation effect (CPFE) in fear conditioning, is described as a method to increase sensitivity of contextual fear conditioning to changes in the hippocampus. Recommendations for increasing the age sensitivity of all measures of normal aging in mice are included, as well as a discussion of the potential of the under-studied CPFE to advance understanding of subtle hippocampus-mediated phenomena.

  7. A metabolic signature predicts biological age in mice

    PubMed Central

    Tomás-Loba, Antonia; de Jesus, Bruno Bernardes; Mato, Jose M.; Blasco, Maria A.

    2012-01-01

    Our understanding of the mechanisms by which aging is produced is still very limited. Here, we have determined the sera metabolite profile of 117 wild-type mice of different genetic backgrounds ranging from 8-129 weeks of age. This has allowed us to define a robust metabolomic signature and a derived metabolomic score that reliably/accurately predicts the age of wild-type mice. In the case of telomerase-deficient mice, which have a shortened lifespan, their metabolomic score predicts older ages than expected. Conversely, in the case of mice that over-express telomerase, their metabolic score corresponded to younger ages than expected. Importantly, telomerase reactivation late in life by using a TERT based gene therapy recently described by us, significantly reverted the metabolic profile of old mice to that of younger mice, further confirming an anti-aging role for telomerase. Thus, the metabolomic signature associated to natural mouse aging accurately predicts aging produced by telomere shortening, suggesting that natural mouse aging is in part produced by presence of short telomeres. These results indicate that the metabolomic signature is associated to the biological age rather than to the chronological age. This constitutes one of the first aging-associated metabolomic signatures in a mammalian organism. PMID:23107558

  8. Neutrophil depletion delays wound repair in aged mice

    PubMed Central

    Nishio, Naomi; Okawa, Yayoi; Sakurai, Hidetoshi

    2008-01-01

    One of the most important clinical problems in caring for elderly patients is treatment of pressure ulcers. One component of normal wound healing is the generation of an inflammatory reaction, which is characterized by the sequential infiltration of neutrophils, macrophages and lymphocytes. Neutrophils migrate early in the wound healing process. In aged C57BL/6 mice, wound healing is relatively inefficient. We examined the effects of neutrophil numbers on wound healing in both young and aged mice. We found that the depletion of neutrophils by anti-Gr-1 antibody dramatically delayed wound healing in aged mice. The depletion of neutrophils in young mice had less effect on the kinetics of wound healing. Intravenous G-CSF injection increased the migration of neutrophils to the wound site. While the rate of wound repair did not change significantly in young mice following G-CSF injection, it increased significantly in old mice. PMID:19424869

  9. Exercise Enhances Learning and Hippocampal Neurogenesis in Aged Mice

    PubMed Central

    Praag, Henriette van; Shubert, Tiffany; Zhao, Chunmei; Gage, Fred H.

    2005-01-01

    Aging causes changes in the hippocampus that may lead to cognitive decline in older adults. In young animals, exercise increases hippocampal neurogenesis and improves learning. We investigated whether voluntary wheel running would benefit mice that were sedentary until 19 months of age. Specifically, young and aged mice were housed with or without a running wheel and injected with bromodeoxyuridine or retrovirus to label newborn cells. After 1 month, learning was tested in the Morris water maze. Aged runners showed faster acquisition and better retention of the maze than age-matched controls. The decline in neurogenesis in aged mice was reversed to 50% of young control levels by running. Moreover, fine morphology of new neurons did not differ between young and aged runners, indicating that the initial maturation of newborn neurons was not affected by aging. Thus, voluntary exercise ameliorates some of the deleterious morphological and behavioral consequences of aging. PMID:16177036

  10. A novel radial water tread maze tracks age-related cognitive decline in mice

    PubMed Central

    Pettan-Brewer, Christina; Touch, Dylan V.; Wiley, Jesse C.; Hopkins, Heather C.; Rabinovitch, Peter S.; Ladiges, Warren C.

    2013-01-01

    There is currently no treatment and cure for age-related dementia and cognitive impairment in humans. Mice suffer from age-related cognitive decline just as people do, but assessment is challenging because of cumbersome and at times stressful performance tasks. We developed a novel radial water tread (RWT) maze and tested male C57BL/6 (B6) and C57BL/6 x Balb/c F1 (CB6F1) mice at ages 4, 12, 20, and 28 months. B6 mice showed a consistent learning experience and memory retention that gradually decreased with age. CB6F1 mice showed a moderate learning experience in the 4 and 12 month groups, which was not evident in the 20 and 28 month groups. In conclusion, CB6F1 mice showed more severe age-related cognitive impairment compared to B6 mice and might be a suitable model for intervention studies. In addition, the RWT maze has a number of operational advantages compared to currently accepted tasks and can be used to assess age-related cognition impairment in B6 and CB6F1 mice as early as 12 months of age. PMID:24106580

  11. Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice.

    PubMed

    Dubrovsky, Yulia V; Samsa, William E; Kondratov, Roman V

    2010-12-01

    Circadian clock is implicated in the regulation of aging. The transcription factor CLOCK, a core component of the circadian system, operates in complex with another circadian clock protein BMAL1. Recently it was demonstrated that BMAL1 deficiency results in premature aging in mice. Here we investigate the aging of mice deficient for CLOCK protein. Deficiency of the CLOCK protein significantly affects longevity: the average lifespan of Clock-/- mice is reduced by 15% compared with wild type mice, while maximum lifespan is reduced by more than 20%. CLOCK deficiency also results in the development of two age-specific pathologies in these mice, cataracts and dermatitis, at a much higher rate than in wild type mice. In contrast to BMAL1 deficient animals, Clock-/- mice do not develop a premature aging phenotype and do not develop the multiple age-associated pathologies characteristic of BMAL1 deficiency. Thus, although CLOCK and BMAL1 form a transcriptional complex, the physiological result of their deficiency is different. Our results suggest that CLOCK plays an important role in aging, specifically; CLOCK activity is critical for the regulation of normal physiology and aging of the lens and skin.

  12. Comparing different classifiers for automatic age estimation.

    PubMed

    Lanitis, Andreas; Draganova, Chrisina; Christodoulou, Chris

    2004-02-01

    We describe a quantitative evaluation of the performance of different classifiers in the task of automatic age estimation. In this context, we generate a statistical model of facial appearance, which is subsequently used as the basis for obtaining a compact parametric description of face images. The aim of our work is to design classifiers that accept the model-based representation of unseen images and produce an estimate of the age of the person in the corresponding face image. For this application, we have tested different classifiers: a classifier based on the use of quadratic functions for modeling the relationship between face model parameters and age, a shortest distance classifier, and artificial neural network based classifiers. We also describe variations to the basic method where we use age-specific and/or appearance specific age estimation methods. In this context, we use age estimation classifiers for each age group and/or classifiers for different clusters of subjects within our training set. In those cases, part of the classification procedure is devoted to choosing the most appropriate classifier for the subject/age range in question, so that more accurate age estimates can be obtained. We also present comparative results concerning the performance of humans and computers in the task of age estimation. Our results indicate that machines can estimate the age of a person almost as reliably as humans.

  13. Treadmill Exercise Attenuates Retinal Oxidative Stress in Naturally-Aged Mice: An Immunohistochemical Study.

    PubMed

    Kim, Chan-Sik; Park, Sok; Chun, Yoonseok; Song, Wook; Kim, Hee-Jae; Kim, Junghyun

    2015-01-01

    In the retina, a number of degenerative diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration, may occur as a result of aging. Oxidative damage is believed to contribute to the pathogenesis of aging as well as to age-related retinal disease. Although physiological exercise has been shown to reduce oxidative stress in rats and mice, it is not known whether it has a similar effect in retinal tissues. The aim of this study was to evaluate retinal oxidative stress in naturally-aged mice. In addition, we evaluated the effects of aerobic training on retinal oxidative stress by immunohistochemically evaluating oxidative stress markers. A group of twelve-week-old male mice were not exercised (young control). Two groups of twenty-two-month-old male mice were created: an old control group and a treadmill exercise group. The old control group mice were not exercised. The treadmill exercise group mice ran on a treadmill (5 to 12 m/min, 30 to 60 min/day, 3 days/week for 12 weeks). The retinal thickness and number of cells in the ganglion cell layer of the naturally-aged mice were reduced compared to those in the young control mice. However, treadmill exercise reversed these morphological changes in the retinas. We evaluated retinal expression of carboxymethyllysine (CML), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nitrotyrosine. The retinas from the aged mice showed increased CML, 8-OHdG, and nitrotyrosine immunostaining intensities compared to young control mice. The exercise group exhibited significantly lower CML levels and nitro-oxidative stress than the old control group. These results suggest that regular exercise can reduce retinal oxidative stress and that physiological exercise may be distinctly advantageous in reducing retinal oxidative stress. PMID:26404251

  14. Prodynorphin knockout mice demonstrate diminished age-associated impairment in spatial water maze performance.

    PubMed

    Nguyen, Xuan V; Masse, James; Kumar, Ashok; Vijitruth, Rattanavijit; Kulik, Cynthia; Liu, Mei; Choi, Dong-Young; Foster, Thomas C; Usynin, Ivan; Bakalkin, Georgy; Bing, Guoying

    2005-06-20

    Dynorphins, endogenous kappa-opioid agonists widely expressed in the central nervous system, have been reported to increase following diverse pathophysiological processes, including excitotoxicity, chronic inflammation, and traumatic injury. These peptides have been implicated in cognitive impairment, especially that associated with aging. To determine whether absence of dynorphin confers any beneficial effect on spatial learning and memory, knockout mice lacking the coding exons of the gene encoding its precursor prodynorphin (Pdyn) were tested in a water maze task. Learning and memory assessment using a 3-day water maze protocol demonstrated that aged Pdyn knockout mice (13-17 months) perform comparatively better than similarly aged wild-type (WT) mice, based on acquisition and retention probe trial indices. There was no genotype effect on performance in the cued version of the swim task nor on average swim speed, suggesting the observed genotype effects are likely attributable to differences in cognitive rather than motor function. Young (3-6 months) mice performed significantly better than aged mice, but in young mice, no genotype difference was observed. To investigate the relationship between aging and brain dynorphin expression in mice, we examined dynorphin peptide levels at varying ages in hippocampus and frontal cortex of WT 129SvEv mice. Quantitative radioimmunoassay demonstrated that dynorphin A levels in frontal cortex, but not hippocampus, of 12- and 24-month mice were significantly elevated compared to 3-month mice. Although the underlying mechanisms have yet to be elucidated, the results suggest that chronic increases in endogenous dynorphin expression with age, especially in frontal cortex, may adversely affect learning and memory.

  15. Memory-Enhancing Effects of the Crude Extract of Polygala tenuifolia on Aged Mice.

    PubMed

    Li, Zongyang; Liu, Yamin; Wang, Liwei; Liu, Xinmin; Chang, Qi; Guo, Zhi; Liao, Yonghong; Pan, Ruile; Fan, Tai-Ping

    2014-01-01

    Learning and memory disorders arise from distinct age-associated processes, and aging animals are often used as a model of memory impairment. The root of Polygala tenuifolia has been commonly used in some Asian countries as memory enhancer and its memory improvement has been reported in various animal models. However, there is less research to verify its effect on memory functions in aged animals. Herein, the memory-enhancing effects of the crude extract of Polygala tenuifolia (EPT) on normal aged mice were assessed by Morris water maze (MWM) and step-down passive avoidance tests. In MWM tests, the impaired spatial memory of the aged mice was partly reversed by EPT (100 and 200 mg/kg; P < 0.05) as compared with the aged control mice. In step-down tests, the nonspatial memory of the aged mice was improved by EPT (100 and 200 mg/kg; P < 0.05). Additionally, EPT could increase superoxide dismutase (SOD) and catalase (CAT) activities, inhibit monoamine oxidase (MAO) and acetyl cholinesterase (AChE) activities, and decrease the levels of malondialdehyde (MDA) in the brain tissue of the aged mice. The results showed that EPT improved memory functions of the aged mice probably via its antioxidant properties and via decreasing the activities of MAO and AChE.

  16. Age-related proteostasis and metabolic alterations in Caspase-2-deficient mice

    PubMed Central

    Wilson, C H; Shalini, S; Filipovska, A; Richman, T R; Davies, S; Martin, S D; McGee, S L; Puccini, J; Nikolic, A; Dorstyn, L; Kumar, S

    2015-01-01

    Ageing is a complex biological process for which underlying biochemical changes are still largely unknown. We performed comparative profiling of the cellular proteome and metabolome to understand the molecular basis of ageing in Caspase-2-deficient (Casp2−/−) mice that are a model of premature ageing in the absence of overt disease. Age-related changes were determined in the liver and serum of young (6–9 week) and aged (18–24 month) wild-type and Casp2−/− mice. We identified perturbed metabolic pathways, decreased levels of ribosomal and respiratory complex proteins and altered mitochondrial function that contribute to premature ageing in the Casp2−/− mice. We show that the metabolic profile changes in the young Casp2−/− mice resemble those found in aged wild-type mice. Intriguingly, aged Casp2−/− mice were found to have reduced blood glucose and improved glucose tolerance. These results demonstrate an important role for caspase-2 in regulating proteome and metabolome remodelling during ageing. PMID:25611376

  17. Hhip haploinsufficiency sensitizes mice to age-related emphysema.

    PubMed

    Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong; Qiu, Weiliang; Guo, Feng; Huang, Chunfang; Mancini, John Dominic; Gupta, Kushagra; Laucho-Contreras, Maria E; Naing, Zun Zar Chi; Zhang, Li; Perrella, Mark A; Owen, Caroline A; Silverman, Edwin K; Zhou, Xiaobo

    2016-08-01

    Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip. PMID:27444019

  18. Peripheral Surgical Wounding and Age-Dependent Neuroinflammation in Mice

    PubMed Central

    Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction is associated with morbidity and mortality. However, its neuropathogenesis remains largely to be determined. Neuroinflammation and accumulation of β-amyloid (Aβ) have been reported to contribute to cognitive dysfunction in humans and cognitive impairment in animals. Our recent studies have established a pre-clinical model in mice, and have found that the peripheral surgical wounding without the influence of general anesthesia induces an age-dependent Aβ accumulation and cognitive impairment in mice. We therefore set out to assess the effects of peripheral surgical wounding, in the absence of general anesthesia, on neuroinflammation in mice with different ages. Abdominal surgery under local anesthesia was established in 9 and 18 month-old mice. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), Iba1 positive cells (the marker of microglia activation), CD33, and cognitive function in mice were determined. The peripheral surgical wounding increased the levels of TNF-α, IL-6, and Iba1 positive cells in the hippocampus of both 9 and 18 month-old mice, and age potentiated these effects. The peripheral surgical wounding increased the levels of CD33 in the hippocampus of 18, but not 9, month-old mice. Finally, anti-inflammatory drug ibuprofen ameliorated the peripheral surgical wounding-induced cognitive impairment in 18 month-old mice. These data suggested that the peripheral surgical wounding could induce an age-dependent neuroinflammation and elevation of CD33 levels in the hippocampus of mice, which could lead to cognitive impairment in aged mice. Pending further studies, anti-inflammatory therapies may reduce the risk of postoperative cognitive dysfunction in elderly patients. PMID:24796537

  19. Respiratory and sniffing behaviors throughout adulthood and aging in mice

    PubMed Central

    Wesson, Daniel W.; Varga-Wesson, Adrienn G.; Borkowski, Anne H.; Wilson, Donald A.

    2011-01-01

    Orienting responses are physiological and active behavioral reactions evoked by novel stimulus perception and are critical for survival. We explored whether odor orienting responses are impacted throughout both adulthood and normal and pathological aging in mice. Novel odor investigation (including duration and bout numbers) and its subsequent habituation as assayed in the odor habituation task were preserved in adult C57BL/6J mice up to 12mo of age with <6% variability between age groups in investigation time. Separately, using whole-body plethysmography we found that both spontaneous respiration and odor-evoked sniffing behaviors were strikingly preserved in wildtype (WT) mice up to 26mo of age. In contrast, mice accumulating amyloid-β protein in the brain by means of overexpressing mutations in the human amyloid precursor protein gene (APP) showed preserved spontaneous respiration up to 12mo, but starting at 14mo showed significant differences from WT. Similar to WTs, odor-evoked sniffing was not impacted in APP mice up to 26mo. These results show that odor-orienting responses are minimally impacted throughout aging in mice, and suggest that the olfactomotor network is mostly spared of insults due to aging. PMID:21524667

  20. Hormone-sensitive lipase-knockout mice maintain high bone density during aging.

    PubMed

    Shen, Wen-Jun; Liu, Li-Fen; Patel, Shailja; Kraemer, Fredric B

    2011-08-01

    We tested the hypothesis that the actions of hormone-sensitive lipase (HSL) affect the microenvironment of the bone marrow and that removal of HSL function by gene deletion maintains high bone mass in aging mice. We compared littermate control wild-type (WT) and HSL(-/-) mice during aging for changes in serum biochemical values, trabecular bone density using micro-computed tomography, bone histomorphometry, and characteristics of primary bone marrow cells and preosteoblasts. There is a regulated expression of HSL and genes involved in lipid metabolism in the bone marrow during aging. HSL(-/-) mice have increased serum levels of insulin and osteocalcin with decreased leptin levels. Compared with the marked adipocyte infiltration in WT bone marrow (65% by area) at 14 mo, HSL(-/-) mice have fewer (16%, P<0.05) and smaller adipocytes in bone marrow. While peak bone density is similar, HSL(-/-) mice maintain a higher bone density (bone volume/total volume 6.1%) with age than WT mice (2.6%, P<0.05). Primary osteoblasts from HSL(-/-) mice show increased growth rates and higher osteogenic potential, manifested by increased expression of Runx2 (3.5-fold, P<0.05) and osteocalcin (4-fold, P<0.05). The absence of HSL directs cells within the bone marrow toward osteoblast differentiation and favors the maintenance of bone density with aging.

  1. Age-associated changes in hippocampal-dependent cognition in Diversity Outbred mice.

    PubMed

    Koh, Ming Teng; Spiegel, Amy M; Gallagher, Michela

    2014-11-01

    Episodic memory impairment due to aging has been linked to hippocampal dysfunction. Evidence exists for alterations in specific circuits within the hippocampal system that are closely coupled to individual differences in the presence and severity of such memory loss. Here, we used the newly developed Diversity Outbred (DO) mouse that was designed to model the genetic diversity in human populations. Young and aged DO mice were tested in a hippocampal-dependent water maze task. Young mice showed higher proficiency and more robust memory compared to the overall performance of aged mice. A substantial number of the older mice, however, performed on par with the normative performance of the younger mice. Stereological quantification of somatostatin-immunoreactive neurons in the dentate hilus showed that high-performing young and unimpaired aged mice had similar numbers of somatostatin-positive interneurons, while aged mice that were impaired in the spatial task had significantly fewer such neurons. These data in the DO model tie loss of hilar inhibitory network integrity to age-related memory impairment, paralleling data in other rodent models.

  2. Premature aging in vitamin D receptor mutant mice.

    PubMed

    Keisala, Tiina; Minasyan, Anna; Lou, Yan-Ru; Zou, Jing; Kalueff, Allan V; Pyykkö, Ilmari; Tuohimaa, Pentti

    2009-07-01

    Hypervitaminosis vitamin D(3) has been recently implicated in premature aging through the regulation of 1alpha hydroxylase expression by klotho and fibroblast growth factor-23 (Fgf-23). Here we examined whether the lack of hormonal function of vitamin D(3) in mice is linked to aging phenomena. For this, we used vitamin D(3) receptor (VDR) "Tokyo" knockout (KO) mice (fed with a special rescue diet) and analyzed their growth, skin and cerebellar morphology, as well as overall motor performance. We also studied the expression of aging-related genes, such as Fgf-23, nuclear factor kappaB (NF-kappaB), p53, insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R), in liver, as well as klotho in liver, kidney and prostate tissues. Overall, VDR KO mice showed several aging related phenotypes, including poorer survival, early alopecia, thickened skin, enlarged sebaceous glands and development of epidermal cysts. There was no difference either in the structure of cerebellum or in the number of Purkinje cells. Unlike the wildtype controls, VDR KO mice lose their ability to swim after 6 months of age. Expression of all the genes was lower in old VDR KO mice, but only NF-kappaB, Fgf-23, p53 and IGF1R were significantly lower. Since the phenotype of aged VDR knockout mice is similar to mouse models with hypervitaminosis D(3), our study suggests that VDR genetic ablation promotes premature aging in mice, and that vitamin D(3) homeostasis regulates physiological aging.

  3. Impaired burrowing is the most prominent behavioral deficit of aging htau mice.

    PubMed

    Geiszler, Philippine Camilla; Barron, Matthew Richard; Pardon, Marie-Christine

    2016-08-01

    htau mice are deficient of murine tau but express all six human tau isoforms, leading to gradual tau misprocessing and aggregation in brain areas relevant to Alzheimer's disease. While histopathological changes in htau mice have been researched in the past, we focused here on functional consequences of human tau accumulation. htau mice and their background controls - murine tau knock-out (mtau(-/-)) and C57Bl/6J mice - underwent a comprehensive trial battery to investigate species-specific behavior, locomotor activity, emotional responses, exploratory traits, spatial and recognition memory as well as acquisition, retention and extinction of contextual fear at two, four, six, nine and twelve months of age. In htau mice, tau pathology was already present at two months of age, whereas deficits in food burrowing and spatial working memory were first noted at four months of age. At later stages the presence of human tau on a mtau(-/-) background appeared to guard cognitive performance; as mtau(-/-) but not htau mice differed from C57Bl/6J mice in the food burrowing, spontaneous alternation and object discrimination tasks. Aging mtau(-/-) mice also exhibited increased body mass and locomotor activity. These data highlight that reduced food-burrowing performance was the most robust aspect of the htau phenotype with aging. htau and mtau(-/-) deficits in food burrowing pointed at the necessity of intact tau systems for daily life activities. While some htau and mtau(-/-) deficits overlap, age differences between the two genotypes may reflect distinct functional effects and compared to C57Bl/6J mice, the htau phenotype appeared stronger than the mtau(-/-) phenotype at young ages but milder with aging. PMID:27167086

  4. Day/night food consumption in mice is strain and age-dependent.

    PubMed

    Kowal, Małgorzata; Buda-Lewandowska, Dorota; Płytycz, Barbara; Styrna, Józefa

    2002-01-01

    Food consumption was measured during the day (lights on) and the night (lights off) and compared between one outbred and 9 inbred strains of mice (CBA/Kw, C3H, DBA2, KP, BALB/c, C57BL, B10.Amst, B10.BR, B10.BR Y-del) in age groups 30-60, 60-90, 90-120, and more than 120 days. Outbred mice and animals from B10 sublines ate significantly more during nocturnal darkness. Day and night food consumption was similar in KP animals. In mice from the remaining strains there was an apparent age-related shift from nocturnal towards diurnal eating habits.

  5. Phenotypic abnormalities observed in aged cloned mice from embryonic stem cells after long-term maintenance.

    PubMed

    Shimozawa, Nobuhiro; Sotomaru, Yusuke; Eguchi, Natsuko; Suzuki, Shuzo; Hioki, Kyoji; Usui, Toshimi; Kono, Tomohiro; Ito, Mamoru

    2006-09-01

    Somatic/embryonic stem cell cloning has made it possible to produce an individual genomically identical to another individual. However, the cloned animals have a variety of abnormalities caused by the aberrant gene modification, with insufficient reprogramming in cloning. We previously reported abnormalities in cloned mice at birth. In this study, we examined what abnormalities could be seen in cloned mice after long-term maintenance. The aged cloned mice showed multiple abnormalities: increase of body weight, some phenotypic abnormalities in the kidneys, testes and thymus, and lower urea nitrogen in their serum biochemical values. The kidneys of all cloned mice were hypertrophied, with a metamorphic or whitish appearance. The multiple lesions, including the enlarged renal pelvis and distension of the renal veins in histology, might be the result of urine accumulation by urinary tract obstruction. The testes of the cloned mice were atrophied, and showed no sperm formation in histology. In contrast, the thymus was rather hypertrophied, and a comparably increased number of lymphocytes were observed in the medulla, consisting mainly of T cells. By conducting a progeny test between the cloned mice, it was confirmed that these abnormalities in the aged cloned mice were not transmitted to their offspring, indicating that the incomplete reprogramming in clones might be in part responsible for the abnormalities detected in aged clones. These results indicate that the postnatal abnormalities observed in aged cloned mice are varied and can be restored through the germ line. PMID:16940284

  6. Running rescues a fear-based contextual discrimination deficit in aged mice

    PubMed Central

    Wu, Melody V.; Luna, Victor M.; Hen, René

    2015-01-01

    Normal aging and exercise exert extensive, often opposing, effects on the dentate gyrus (DG) of the hippocampus altering volume, synaptic function, and behaviors. The DG is especially important for behaviors requiring pattern separation—a cognitive process that enables animals to differentiate between highly similar contextual experiences. To determine how age and exercise modulate pattern separation in an aversive setting, young, aged, and aged mice provided with a running wheel were assayed on a fear-based contextual discrimination task. Aged mice showed a profound impairment in contextual discrimination compared to young animals. Voluntary exercise rescued this deficit to such an extent that behavioral pattern separation of aged-run mice was now similar to young animals. Running also resulted in a significant increase in the number of immature neurons with tertiary dendrites in aged mice. Despite this, neurogenesis levels in aged-run mice were still considerably lower than in young animals. Thus, mechanisms other than DG neurogenesis likely play significant roles in improving behavioral pattern separation elicited by exercise in aged animals. PMID:26321926

  7. Differential effects of relaxin deficiency on vascular aging in arteries of male mice.

    PubMed

    Jelinic, Maria; Tare, Marianne; Conrad, Kirk P; Parry, Laura J

    2015-08-01

    Exogenous treatment with the naturally occurring peptide relaxin increases arterial compliance and reduces vascular stiffness. In contrast, relaxin deficiency reduces the passive compliance of small renal arteries through geometric and compositional vascular remodeling. The role of endogenous relaxin on passive mechanical wall properties in other vascular beds is unknown. Importantly, no studies have investigated the effects of aging in arteries of relaxin-deficient mice. Therefore, we tested the hypothesis that mesenteric and femoral arteries stiffen with aging, and this is exacerbated with relaxin deficiency. Male wild-type (Rln (+/+)) and relaxin knockout (Rln (-/-)) mice were aged to 3, 6, 12, 18, and 23 months. Passive mechanical wall properties were assessed by pressure myography. In both genotypes, there was a significant increase in circumferential stiffening in mesenteric arteries with aging, whereas in the femoral artery, aging reduced volume compliance. This was associated with a reduced ability of the artery to lengthen with aging. The predominant phenotype observed in Rln (-/-) mice was reduced volume compliance in young mice in both mesenteric and femoral arteries. In summary, aging induces circumferential stiffening in mesenteric arteries and axial stiffening in femoral arteries. Passive mechanical wall properties of Rln (-/-) mouse arteries predominantly differ at younger ages compared with Rln (+/+) mice, suggesting that a lack of endogenous relaxin only has a minor effect on vascular aging.

  8. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice

    PubMed Central

    Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921

  9. Astaxanthin affects oxidative stress and hyposalivation in aging mice

    PubMed Central

    Kuraji, Manatsu; Matsuno, Tomonori; Satoh, Tazuko

    2016-01-01

    Oral dryness, a serious problem for the aging Japanese society, is induced by aging-related hyposalivation and causes dysphagia, dysgeusia, inadaptation of dentures, and growth of oral Candida albicans. Oxidative stress clearly plays a role in decreasing saliva secretion and treatment with antioxidants such astaxanthin supplements may be beneficial. Therefore, we evaluated the effects of astaxanthin on the oral saliva secretory function of aging mice. The saliva flow increased in astaxanthin-treated mice 72 weeks after administration while that of the control decreased by half. The plasma d-ROMs values of the control but not astaxanthin-treated group measured before and 72 weeks after treatment increased. The diacron-reactive oxygen metabolites (d-ROMs) value of astaxanthin-treated mice 72 weeks after treatment was significantly lower than that of the control group was. The plasma biological antioxidative potential (BAP) values of the control but not astaxanthin-treated mice before and 72 weeks after treatment decreased. Moreover, the BAP value of the astaxanthin-treated group 72 weeks after treatment was significantly higher than that of the control was. Furthermore, the submandibular glands of astaxanthin-treated mice had fewer inflammatory cells than the control did. Specifically, immunofluorescence revealed a significantly large aquaporin-5 positive cells in astaxanthin-treated mice. Our results suggest that astaxanthin treatment may prevent age-related decreased saliva secretion. PMID:27698533

  10. Astaxanthin affects oxidative stress and hyposalivation in aging mice

    PubMed Central

    Kuraji, Manatsu; Matsuno, Tomonori; Satoh, Tazuko

    2016-01-01

    Oral dryness, a serious problem for the aging Japanese society, is induced by aging-related hyposalivation and causes dysphagia, dysgeusia, inadaptation of dentures, and growth of oral Candida albicans. Oxidative stress clearly plays a role in decreasing saliva secretion and treatment with antioxidants such astaxanthin supplements may be beneficial. Therefore, we evaluated the effects of astaxanthin on the oral saliva secretory function of aging mice. The saliva flow increased in astaxanthin-treated mice 72 weeks after administration while that of the control decreased by half. The plasma d-ROMs values of the control but not astaxanthin-treated group measured before and 72 weeks after treatment increased. The diacron-reactive oxygen metabolites (d-ROMs) value of astaxanthin-treated mice 72 weeks after treatment was significantly lower than that of the control group was. The plasma biological antioxidative potential (BAP) values of the control but not astaxanthin-treated mice before and 72 weeks after treatment decreased. Moreover, the BAP value of the astaxanthin-treated group 72 weeks after treatment was significantly higher than that of the control was. Furthermore, the submandibular glands of astaxanthin-treated mice had fewer inflammatory cells than the control did. Specifically, immunofluorescence revealed a significantly large aquaporin-5 positive cells in astaxanthin-treated mice. Our results suggest that astaxanthin treatment may prevent age-related decreased saliva secretion.

  11. Cerebral lipid deposition in aged apolipoprotein-E-deficient mice.

    PubMed Central

    Walker, L. C.; Parker, C. A.; Lipinski, W. J.; Callahan, M. J.; Carroll, R. T.; Gandy, S. E.; Smith, J. D.; Jucker, M.; Bisgaier, C. L.

    1997-01-01

    To assess the influence of age and diet on cerebral pathology in mice lacking apolipoprotein E (apoE), four male apoE knockout mice (epsilon -/-), and five male wild-type (epsilon +/+) littermate controls were placed on a high-fat/high-cholesterol diet for 7 weeks beginning at 17 months of age. All four aged knockout mice developed xanthomatous lesions in the brain consisting mostly of crystalline cholesterol clefts, lipid globules, and foam cells. Smaller xanthomas were confined mainly to the choroid plexus and ventral fornix in the roof of the third ventricle, occasionally extending subpially along the choroidal fissure and into the adjacent parenchyma. More advanced xanthomas disrupted adjoining neural tissue in the fornix, hippocampus, and dorsal diencephalon; in one case, over 60% of one telencephalic hemisphere, including nearly the entire neocortex, was obliterated by the lesion. No xanthomas were observed in aged wild-type controls fed the high-fat/high-cholesterol diet. Brains from 42 additional animals, fed only conventional chow, were examined; 3 of 15 aged (15- to 23-month-old) apoE knockout mice developed small choroidal xanthomas. In contrast, no lesions were observed in five young (2- to 4-month-old) apoE knockout mice or in any wild-type controls between the ages of 2 and 23 months. Our findings indicate that disorders of lipid metabolism can induce significant pathological changes in the central nervous system of aged apoE knockout mice, particularly those on a high-fat/high-cholesterol diet. It may be fruitful to seek potential interactions between genetic factors and diet in modulating the risk of Alzheimer's disease and other neurodegenerative disorders in aged humans. Images Figure 1 Figure 2 PMID:9358763

  12. Increase of Calcium Sensing Receptor Expression Is Related to Compensatory Insulin Secretion during Aging in Mice

    PubMed Central

    Oh, Yoon Sin; Seo, Eun-Hui; Lee, Young-Sun; Cho, Sung Chun; Jung, Hye Seung; Park, Sang Chul; Jun, Hee-Sook

    2016-01-01

    Type 2 diabetes is caused by both insulin resistance and relative insulin deficiency. To investigate age-related changes in glucose metabolism and development of type 2 diabetes, we compared glucose homeostasis in different groups of C57BL/6J mice ranging in age from 4 months to 20 months (4, 8, 12, 16 and 20 months). Interestingly, we observed that non-fasting glucose levels were not significantly changed, but glucose tolerance gradually increased by 20 months of age, whereas insulin sensitivity declined with age. We found that the size of islets and glucose-stimulated insulin secretion increased with aging. However, mRNA expression of pancreatic and duodenal homeobox 1 and granuphilin was decreased in islets of older mice compared with that of 4-month-old mice. Serum calcium (Ca2+) levels were significantly decreased at 12, 20 and 28 months of age compared with 4 months and calcium sensing receptor (CaSR) mRNA expression in the islets significantly increased with age. An extracellular calcium depletion agent upregulated CaSR mRNA expression and consequently enhanced insulin secretion in INS-1 cells and mouse islets. In conclusion, we suggest that decreased Ca2+ levels and increased CaSR expression might be involved in increased insulin secretion to compensate for insulin resistance in aged mice. PMID:27441644

  13. Cholinergic system, rearing environment and trajectory learning during aging in mice.

    PubMed

    Thouvarecq, R; Caston, J; Protais, P

    2007-01-30

    Three, 12- and 20-month-old C57BL6/J mice, reared in standard conditions or in enriched environments, were administered subcutaneously either scopolamine hydrobromide, 0.6 or 1.2 mg kg(-1), or physiological saline (control mice) 15 min before testing their abilities to find an invisible platform in a modified version of the Morris water maze, the starting point being kept unchanged throughout the experiment to allow the aged animals to solve the task. The results demonstrated that: 1) All control mice, whatever their age, were able to learn the platform location, but the number of trials needed to reach the learning criterion (3 consecutive trials in less than 8 s) increased with age; 2) All the scopolamine-treated mice, whatever their age, were also able to learn the platform location. However, compared to age-matched controls, the number of trials needed to reach the learning criterion was greater; 3) Rearing the animals in an enriched environment antagonized the effect of scopolamine, but only in the youngest (3 month-old) mice. All control and scopolamine-treated mice, whatever their age and their rearing environment, remembered, 7 days later, the platform location.

  14. Gender differences between hypocretin/orexin knockout and wild type mice: age, body weight, body composition, metabolic markers, leptin and insulin resistance.

    PubMed

    Ramanathan, Lalini; Siegel, Jerome M

    2014-12-01

    Female hypocretin knockout (Hcrt KO) mice have increased body weight despite decreased food intake compared to wild type (WT) mice. In order to understand the nature of the increased body weight, we carried out a detailed study of Hcrt KO and WT, male, and female mice. Female KO mice showed consistently higher body weight than WT mice, from 4 to 20 months (20-60%). Fat, muscle, and free fluid levels were all significantly higher in adult (7-9 months) as well as old (18-20 months) female KO mice compared to age-matched WT mice. Old male KO mice showed significantly higher fat content (150%) compared to age-matched WT mice, but no significant change in body weight. Respiratory quotient (-19%) and metabolic rates (-14%) were significantly lower in KO mice compared to WT mice, regardless of gender or age. Female KO mice had significantly higher serum leptin levels (191%) than WT mice at 18-20 months, but no difference between male mice were observed. Conversely, insulin resistance was significantly higher in both male (73%) and female (93%) KO mice compared to age- and sex-matched WT mice. We conclude that absence of the Hcrt peptide has gender-specific effects. In contrast, Hcrt-ataxin mice and human narcoleptics, with loss of the whole Hcrt cell, show weight gain in both sexes.

  15. Ginseng berry extract supplementation improves age-related decline of insulin signaling in mice.

    PubMed

    Seo, Eunhui; Kim, Sunmi; Lee, Sang Jun; Oh, Byung-Chul; Jun, Hee-Sook

    2015-04-01

    The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old) were maintained on a regular diet (CON) or a regular diet supplemented with 0.05% ginseng berry extract (GBD) for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016) and insulin resistance scores (HOMA-IR) (p = 0.012), suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007). Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS)-1 (p = 0.047), and protein kinase B (AKT) (p = 0.037), were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1) (p = 0.036) and peroxisome proliferator-activated receptor gamma (PPARγ) (p = 0.032), which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice. PMID:25912041

  16. Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice

    PubMed Central

    Seo, Eunhui; Kim, Sunmi; Lee, Sang Jun; Oh, Byung-Chul; Jun, Hee-Sook

    2015-01-01

    The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old) were maintained on a regular diet (CON) or a regular diet supplemented with 0.05% ginseng berry extract (GBD) for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016) and insulin resistance scores (HOMA-IR) (p = 0.012), suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007). Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS)-1 (p = 0.047), and protein kinase B (AKT) (p = 0.037), were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1) (p = 0.036) and peroxisome proliferator-activated receptor gamma (PPARγ) (p = 0.032), which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice. PMID:25912041

  17. [PHARMACOLOGICAL CORRECTION OF APOPTOSIS LEVEL OF CORTICAL NEURONS IN AGED HER2/NEU TRANSGENIC MICE].

    PubMed

    Bazhanova, E D; Kozlova, Yu O; Anisimov, V N; Sukhanov, D S; Teply, D L

    2016-01-01

    Neurodegenerative changes and neuronal death are the basis for development of the nervous system aging. We investigated the mechanism of apoptosis of the sensorimotor cortex neurons of transgenic mice HER2/neu during aging, changes in the cortex function and the participation of exogenous neurometabolites (cytoflavin, piracetam) in regulation of neuronal death and locomotor and psycho-emotional status of mice. The level of apoptosis and expression of apoptosis markers (TUNEL, immunohistochemistry, Western blotting) in HER2/neu transgenic mice as compared to wild type mice (FBV line) were determined. In aging FBV mice the basal activity was shown to decrease and anxiety to increase correlating with the high level of neuronal apoptosis. We identified behavioral characteristics of transgenic HER2/neu mice and found that their low basal activity does not change with aging. Previously we have shown that in this strain of mice the apoptosis level is low, without any age-related changes, due to the suppression, first of all, of the p53-dependent pathway by HER2 (tyrosine kinase receptor) overexpression. Cytoflavin and piracetam were revealed to possess a marked neuroprotective effect, preserving and restoring functions of the nervous system (improving locomotion and psychological status) in both strains of mice. The effect of neurometabolites studied on neuronal apoptosis is ambiguous. In case of its low level it is a moderate stumulation of apoptosis via the external p53-dependent pathways with activation of caspase-3 in transgenic HER2/neu mice with high carcinogenesis level that can possibly prevent tumor development. On the contrary, in old wild-type animals we observed a significant decrease of age-dependent apoptosis level (by stimulating expression of the anti-apoptotic protein Mcl-1), which prevents neurodegeneration. PMID:27220241

  18. Exposure to light at night accelerates aging and spontaneous uterine carcinogenesis in female 129/Sv mice

    PubMed Central

    Popovich, Irina G.; Zabezhinski, Mark A.; Panchenko, Andrei V.; Piskunova, Tatiana S.; Semenchenko, Anna V.; Tyndyk, Maragriata L.; Yurova, Maria N.; Anisimov, Vladimir N.

    2013-01-01

    The effect of the constant illumination on the development of spontaneous tumors in female 129/Sv mice was investigated. Forty-six female 129/Sv mice starting from the age of 2 mo were kept under standard light/dark regimen [12 h light (70 lx):12hr dark; LD, control group], and 46 of 129/Sv mice were kept under constant illumination (24 h a day, 2,500 lx, LL) from the age of 5 mo until to natural death. The exposure to the LL regimen significantly accelerated body weight gain, increased body temperature as well as acceleration of age-related disturbances in estrous function, followed by significant acceleration of the development of the spontaneous uterine tumors in female 129/Sv mice. Total tumor incidence as well as a total number of total or malignant tumors was similar in LL and LD group (p > 0.05). The mice from the LL groups survived less than those from the LD group (χ2 = 8.5; p = 0.00351, log-rank test). According to the estimated parameters of the Cox’s regression model, constant light regimen increased the relative risk of death in female mice compared with the control (LD) group (p = 0.0041). The data demonstrate in the first time that the exposure to constant illumination was followed by the acceleration of aging and spontaneous uterine tumorigenesis in female 129/Sv mice. PMID:23656779

  19. Changes in lymphoid populations of ageing CBA and NZB mice

    PubMed Central

    Zatz, Marion M.; Mellors, R. C.; Lance, E. M.

    1971-01-01

    Changes in subpopulations of lymphoid cells of normal (CBA) and autoimmune (NZB) mice were studied as a function of age, by observing migration patterns of 51Cr labelled lymph node, spleen and thymus cells from donors aged 8 days to 12 months. The method permits analysis of the proportions and numbers of recirculating and non-recirculating lymphocytes in lymphoid compartments. Changes in the lymphoid populations of CBA mice were found, which could be attributed to the normal processes of maturation and senescence. In NZB mice relative and absolute decreases in the recirculating cell content of lymph node and spleen were observed which coincided with the time of development of autoimmunity. The significance of these results, in relation to altered immunocompetence with age, is discussed. PMID:5576663

  20. Transmitochondrial mito-miceΔ and mtDNA mutator mice, but not aged mice, share the same spectrum of musculoskeletal disorders.

    PubMed

    Mito, Takayuki; Ishizaki, Hikari; Suzuki, Michiko; Morishima, Hitomi; Ota, Azusa; Ishikawa, Kaori; Nakada, Kazuto; Maeno, Akiteru; Shiroishi, Toshihiko; Hayashi, Jun-Ichi

    2015-01-24

    The spectra of phenotypes associated with aging and mitochondrial diseases sometimes appear to overlap with each other. We used aged mice and a mouse model of mitochondrial diseases (transmitochondrial mito-miceΔ with deleted mtDNA) to study whether premature aging phenotypes observed in mtDNA mutator mice are associated with aging or mitochondrial diseases. Here, we provide convincing evidence that all the mice examined had musculoskeletal disorders of osteoporosis and muscle atrophy, which correspond to phenotypes prevalently observed in the elderly. However, precise investigation of musculoskeletal disorders revealed that the spectra of osteoporosis and muscle atrophy phenotypes in mtDNA mutator mice were very close to those in mito-miceΔ, but different from those of aged mice. Therefore, mtDNA mutator mice and mito-miceΔ, but not aged mice, share the spectra of musculoskeletal disorders.

  1. Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice.

    PubMed

    Jin, Sheng; Pu, Shi-Xin; Hou, Cui-Lan; Ma, Fen-Fen; Li, Na; Li, Xing-Hui; Tan, Bo; Tao, Bei-Bei; Wang, Ming-Jie; Zhu, Yi-Chun

    2015-01-01

    Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy. PMID:26078817

  2. Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice

    PubMed Central

    Jin, Sheng; Pu, Shi-Xin; Hou, Cui-Lan; Ma, Fen-Fen; Li, Na; Li, Xing-Hui; Tan, Bo; Tao, Bei-Bei; Wang, Ming-Jie; Zhu, Yi-Chun

    2015-01-01

    Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy. PMID:26078817

  3. HSP27 Alleviates Cardiac Aging in Mice via a Mechanism Involving Antioxidation and Mitophagy Activation

    PubMed Central

    Lin, Shenglan; Wang, Yana; Zhang, Xiaojin; Kong, Qiuyue; Li, Chuanfu; Li, Yuehua; Ding, Zhengnian

    2016-01-01

    Aging-induced cardiac dysfunction is a prominent feature of cardiac aging. Heat shock protein 27 (HSP27) protects cardiac function against ischemia or chemical challenge. We hypothesized that HSP27 attenuates cardiac aging. Transgenic (Tg) mice with cardiac-specific expression of the HSP27 gene and wild-type (WT) littermates were employed in the experiments. Echocardiography revealed a significant decline in the cardiac function of old WT mice compared with young WT mice. In striking contrast, the aging-induced impairment of cardiac function was attenuated in old Tg mice compared with old WT mice. Levels of cardiac aging markers were lower in old Tg mouse hearts than in old WT mouse hearts. Less interstitial fibrosis and lower contents of reactive oxygen species and ubiquitin-conjugated proteins were detected in old Tg hearts than in old WT hearts. Furthermore, old Tg hearts demonstrated lower accumulation of LC3-II and p62 than old WT hearts. Levels of Atg13, Vps34, and Rab7 were also higher in old Tg hearts than in old WT hearts. Additionally, old Tg hearts had higher levels of PINK1 and Parkin than old WT hearts, suggesting that mitophagy was activated in old Tg hearts. Taken together, HSP27 alleviated cardiac aging and this action involved antioxidation and mitophagy activation. PMID:27110324

  4. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats

    SciTech Connect

    Canada, A.T.; Calabrese, E.J.; Leonard, D.

    1986-09-01

    The effect of age on the metabolism of pentobarbital in mice and rats was investigated following exposure to 0.3 ppm of ozone for 3.75 hr. Young animals were 2.5 months of age and the mature were 18 months. The pentobarbital sleeping time was significantly prolonged following the ozone exposure in both the mice and rats when compared with an air control. No ozone effect on sleeping time was found in the young animals. The results indicate that there may be an age-related sensitivity to the occurrence of ozone-related inhibition of pentobarbital metabolism.

  5. Elevated Systolic Blood Pressure in Male GH Transgenic Mice Is Age Dependent

    PubMed Central

    Jara, Adam; Benner, Chance M.; Sim, Don; Liu, Xingbo; List, Edward O.; Householder, Lara A.; Berryman, Darlene E.

    2014-01-01

    Acromegaly is associated with an increased incidence of cardiovascular disease. Transgenic mice expressing bovine GH (bGH) gene have previously been used to examine the effects of chronic GH stimulation on cardiovascular function. Results concerning systolic blood pressure (SBP) in bGH mice are conflicting. We hypothesized that these discrepancies may be the result of the various ages of the mice used in previous studies. In the current study, SBP was assessed monthly in male bGH mice from 3–12 months of age. Factors known to alter blood pressure were assessed during this time and included: levels of brain natriuretic peptide (BNP) and glucose homeostasis markers, and renal levels of angiotensin-converting enzyme 2 and endothelial nitric oxide synthase. Beginning at 6 months of age bGH had increased SBP compared with wild-type controls, which remained elevated through 12 months of age. Despite having increased blood pressure and cardiac BNP mRNA, bGH mice had decreased circulating levels of BNP. Additionally, bGH mice had an age-dependent decline in insulin levels. For example, they were hyperinsulinemic at 3 months, but by 11 months of age were hypoinsulinemic relative to wild-type controls. This decrease in insulin was accompanied by improved glucose tolerance at 11 months. Finally, both angiotensin-converting enzyme 2 and endothelial nitric oxide synthase expression were severely depressed in kidneys of 11-month-old bGH mice. These results indicate that elevated SBP in bGH mice is dependent on age, independent of insulin resistance, and related to alterations in both the natriuretic peptide and renin-angiotensin systems. PMID:24424040

  6. Elevated systolic blood pressure in male GH transgenic mice is age dependent.

    PubMed

    Jara, Adam; Benner, Chance M; Sim, Don; Liu, Xingbo; List, Edward O; Householder, Lara A; Berryman, Darlene E; Kopchick, John J

    2014-03-01

    Acromegaly is associated with an increased incidence of cardiovascular disease. Transgenic mice expressing bovine GH (bGH) gene have previously been used to examine the effects of chronic GH stimulation on cardiovascular function. Results concerning systolic blood pressure (SBP) in bGH mice are conflicting. We hypothesized that these discrepancies may be the result of the various ages of the mice used in previous studies. In the current study, SBP was assessed monthly in male bGH mice from 3-12 months of age. Factors known to alter blood pressure were assessed during this time and included: levels of brain natriuretic peptide (BNP) and glucose homeostasis markers, and renal levels of angiotensin-converting enzyme 2 and endothelial nitric oxide synthase. Beginning at 6 months of age bGH had increased SBP compared with wild-type controls, which remained elevated through 12 months of age. Despite having increased blood pressure and cardiac BNP mRNA, bGH mice had decreased circulating levels of BNP. Additionally, bGH mice had an age-dependent decline in insulin levels. For example, they were hyperinsulinemic at 3 months, but by 11 months of age were hypoinsulinemic relative to wild-type controls. This decrease in insulin was accompanied by improved glucose tolerance at 11 months. Finally, both angiotensin-converting enzyme 2 and endothelial nitric oxide synthase expression were severely depressed in kidneys of 11-month-old bGH mice. These results indicate that elevated SBP in bGH mice is dependent on age, independent of insulin resistance, and related to alterations in both the natriuretic peptide and renin-angiotensin systems. PMID:24424040

  7. Neuromuscular synaptic transmission in aged ganglioside-deficient mice.

    PubMed

    Zitman, Femke M P; Todorov, Boyan; Verschuuren, Jan J; Jacobs, Bart C; Furukawa, Keiko; Furukawa, Koichi; Willison, Hugh J; Plomp, Jaap J

    2011-01-01

    Gangliosides are sialylated glycosphingolipids that are present in high density on neuronal membranes, especially at synapses, where they are assumed to play functional or modulating roles. Mice lacking GM2/GD2-synthase express only the simple gangliosides GD3 and GM3 and develop progressive motor behaviour deficits upon ageing, apparently due to failing complex ganglioside-dependent maintenance and/or repair processes or, alternatively, toxic GM3/GD3 accumulation. We investigated the function of neuromuscular junctions (NMJs) of aged (>9 month-old) GM2/GD2-synthase null-mutant mice, because synaptic dysfunction might develop with age and could potentially contribute to the late-onset motor phenotype. In addition, we studied NMJs of old mice lacking GD3-synthase (expressing only O- and a-series gangliosides), which do not show an overt neurological phenotype but may develop subclinical synaptic deficits. Detailed electrophysiological analyses showed subtle changes in presynaptic neurotransmitter release. Acetylcholine release at 40 Hz nerve stimulation at aged GM2/GD2-synthase null-mutant NMJs ran down slightly more pronounced than at wild-type NMJs, and spontaneous acetylcholine release rate at GD3-synthase null-mutant NMJs was somewhat higher than at wild-type, selectively at 25 °C bath temperature. Interestingly, we observed faster kinetics of postsynaptic electrophysiological responses at aged GD3-synthase null-mutant NMJs, not previously seen by us at NMJs of young GD3-synthase null-mutants or other types of (aged or young) ganglioside-deficient mice. These kinetic changes might reflect a change in postsynaptic acetylcholine receptor behaviour. Our data indicate that it is highly unlikely that transmission failure at NMJs contributes to the progressive motor defects of aged GM2/GD2-synthase null-mutants and that, despite some kinetic changes of synaptic signals, neuromuscular transmission remains successful in aged GD3-synthase null-mutant mice. Apparently

  8. Altered neurotransmission in the lateral amygdala in aged human apoE4 targeted replacement mice.

    PubMed

    Klein, Rebecca C; Acheson, Shawn K; Mace, Brian E; Sullivan, Patrick M; Moore, Scott D

    2014-09-01

    The human APOE4 allele is associated with an early age of onset and increased risk of Alzheimer's disease (AD). Apolipoprotein E is secreted as part of a high-density lipoprotein-like particle by glial cells in the brain for the primary purpose of transport of lipophilic compounds involved in the maintenance of synapses. Previous studies examining synaptic integrity in the amygdala of human apoE targeted replacement (TR) mice showed a decrease in spontaneous excitatory synaptic activity, dendritic arbor, and spine density associated with apoE4 compared with apoE3 and apoE2 in adult male mice. In the present study, we assessed how APOE genotype affects synaptic integrity of amygdala neurons by comparing electrophysiological and morphometric properties in human apoE3, E4, and E2/4 TR mice at the age of 18-20 months. In contrast to adult mice, we found that aged apoE4 TR mice exhibited the highest level of excitatory synaptic activity compared with other cohorts. Additionally, apoE4 mice had significantly greater spontaneous inhibitory activity than all other cohorts. Taken together, there was a significant interaction between genotypes when comparing inhibition relative to excitation; there was a simple main effect of frequency type with an imbalance toward inhibition in apoE4 mice but not in apoE3 or apoE2/4 mice. These results suggest that apoE isoforms differentially influence synaptic transmission throughout the life span, where aging coupled with apoE4 expression, results in an imbalance in maintaining integrity of synaptic transmission.

  9. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses

    PubMed Central

    Clark, Erica S.; Flannery, Brenna M.; Gardner, Elizabeth M.; Pestka, James J.

    2015-01-01

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes. PMID:26492270

  10. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses.

    PubMed

    Clark, Erica S; Flannery, Brenna M; Gardner, Elizabeth M; Pestka, James J

    2015-10-19

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  11. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  12. Survey on spontaneous systemic amyloidosis in aging mice.

    PubMed

    Majeed, S K

    1993-02-01

    The incidence of systemic amyloidosis in CD-1 mice (Charles River, caesarian derived) obtained from long term studies over more than a 15-year period is reported. The survey included samples of visceral organs, peripheral and central nervous tissues, bone and bone marrow. The total incidence in all mice of this survey did not show any clear evidence of a difference between males and females. Amyloidosis deposits were mainly seen in the stomach (glandular), heart, small intestines, kidney, liver, spleen, thyroid, parathyroid, adrenals, salivary glands and ovaries, but not in the brain, spinal cord, bone or bone marrow. The survey showed that amyloidosis in CD-1 mice was spontaneous, systemic and it is age-related. Amyloid deposition was extracellular and it stained positively with Congo Red and also stained positively with Oil Red O and Alcian blue. In general, amyloidosis in CD-1 mice, was higher in comparison with B6C3F (cross between C57BL/C6 NCRLB and C3H/HEN NCRLB, (bred by Charles River), CFLP strain (hysterectomy derived strain of Swiss origin) and MAGF: TIF (SPF). This survey also showed that spontaneous systemic amyloidosis in CD-1 mice, was one of the major factors contributory to death in aging CD-1 mice. PMID:8457241

  13. The menopause and aging, a comparative perspective

    PubMed Central

    Finch, Caleb E

    2013-01-01

    The neuroendocrinology of menopause is reviewed from a comparative perspective, with emphasis on laboratory rodent models. These changes are compared by the 2011 STRAW Criteria (Stages of Reproductive Aging Workshop). Ovarian cell loss begins prenatally in all mammals studied, with exponential depletion of primary follicles and oocytes in association with loss of fecundity by midlife. Rodents and humans also share progressively increasing irregularity in ovulatory cycles and increasing fetal aneuploidy as oocyte depletion become imminent. Hypothalamic impairments of the estrogen-induced surge of pituitary gonadotrophins (luteinizing hormone, LH; follicle stimulating hormone, FSH) are prominent in middle-aged rodents, but sporadic in peri-menopausal women. In aging rodents, hypothalamic impairments of the LH surge have been experimentally associated with prolonged phases of sustained estradiol (E2) and very low progesterone (P4) (‘unopposed estradiol’). Although peri-menopausal women also show hyper-estrogenic cycles, there is no indication for irreversible hypothalamic desensitization by E2. Ongoing cognitive assessments in clinical trials of estrogen therapy with and without P4 or other progestins may further inform about possible persisting effects of unopposed estrogens. PMID:23583565

  14. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice.

    PubMed

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana; Klein, Dennis; Martini, Rudolf; Krarup, Christian

    2016-03-01

    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice. With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na(+) channel isoform expression contributes to changes in motor axon function during aging. PMID:26923409

  15. Sirt1 is involved in decreased bone formation in aged apolipoprotein E-deficient mice

    PubMed Central

    Hong, Wei; Xu, Xiao-ya; Qiu, Zhao-hui; Gao, Jian-jun; Wei, Zhan-ying; Zhen, Li; Zhang, Xiao-li; Ye, Zhi-bing

    2015-01-01

    Aim: Apolipoprotein E (ApoE) plays an important role in the transport and metabolism of lipids. Recent studies show that bone mass is increased in young apoE−/− mice. In this study we investigated the bone phenotype and metabolism in aged apoE−/− mice. Methods: Femurs and tibias were collected from 18- and 72-week-old apoE−/− mice and their age-matched wild-type (WT) littermates, and examined using micro-CT and histological analysis. Serum levels of total cholesterol, oxidized low-density lipoprotein (ox-LDL) and bone turnover markers were measured. Cultured bone mesenchymal stem cells (BMSCs) from tibias and femurs of 18-week-old apoE−/− mice were used in experiments in vitro. The expression levels of Sirt1 and Runx2 in bone tissue and BMSCs were measured using RT-PCR and Western blot analysis. Results: Compared with age-matched WT littermates, young apoE−/− mice exhibited high bone mass with increased bone formation, accompanied by higher serum levels of bone turnover markers OCN and TRAP5b, and higher expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. In contrast, aged apoE−/− mice showed reduced bone formation and lower bone mass relative to age-matched WT mice, accompanied by lower serum OCN levels, and markedly reduced expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. After BMSCs were exposed to ox-LDL (20 μg/mL), the expression of Sirt1 and Runx2 proteins was significantly increased at 12 h, and then decreased at 72 h. Treatment with the Sirt1 inhibitor EX527 (10 μmol/L) suppressed the expression of Runx2, ALP and OCN in BMSCs. Conclusion: In contrast to young apoE−/− mice, aged apoE−/− mice showe lower bone mass than age-matched WT mice. Long-lasting exposure to ox-LDL decreases the expression of Sirt1 and Runx2 in BMSCs, which may explain the decreased bone formation in aged apoE−/− mice. PMID:26592520

  16. Pulmonary effects of inhaled diesel exhaust in aged mice

    PubMed Central

    Sunil, Vasanthi R.; Patel, Kinal J.; Mainelis, Gediminas; Turpin, Barbara J.; Ridgely, Sherritta; Laumbach, Robert J.; Kipen, Howard M.; Nazarenko, Yevgen; Veleeparambil, Manoj; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-01-01

    Pulmonary morbidity and mortality resulting from exposure to fine particulate matter (PM) increases with age. The present studies analyzed potential mechanisms underlying increased susceptibility of the elderly to PM using diesel exhaust (DE) as a model. Mice (2 m and 18 m) were exposed to DE (0, 300, and 1000 μg/m3) for 3 h once (single) or 3 h/day for 3 days (repeated). Bronchoalveolar lavage fluid (BAL), serum and lung tissue were collected 0 and 24 h later. Exposure to DE resulted in structural alterations in the lungs of older but not younger mice, including patchy thickening of the alveolar septa and inflammatory cell localization in alveolar spaces. These effects were most pronounced 24 h after a single exposure to the higher dose of DE. Significant increases in BAL nitrogen oxides were also noted in older mice, as well as expression of lipocalin 24p3, an oxidative stress marker in the lung with no effects in younger mice. Following DE inhalation, expression of Tumor Necrosis Factor alpha (TNFα) was upregulated in lungs of both younger and older mice; however, this was attenuated in older animals. Whereas exposure to DE resulted in increases in lung Interleukin-6 (IL-6) expression in both older and younger mice, IL-8 increased only in older animals. In younger mice, constitutive expression of manganese superoxide dismutase (MnSOD) decreased after DE exposure, while in older mice, constitutive MnSOD was not detectable and DE had no effect on expression of this antioxidant. Taken together, these results suggest that altered generation of inflammatory mediators and MnSOD may contribute to increased susceptibility of older mice to inhaled DE. PMID:19729031

  17. Pulmonary effects of inhaled diesel exhaust in aged mice

    SciTech Connect

    Sunil, Vasanthi R.; Patel, Kinal J.; Mainelis, Gediminas; Turpin, Barbara J.; Ridgely, Sherritta; Laumbach, Robert J.; Kipen, Howard M.; Nazarenko, Yevgen; Veleeparambil, Manoj; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2009-12-15

    Pulmonary morbidity and mortality resulting from exposure to fine particulate matter (PM) increases with age. The present studies analyzed potential mechanisms underlying increased susceptibility of the elderly to PM using diesel exhaust (DE) as a model. Mice (2 m and 18 m) were exposed to DE (0, 300, and 1000 mug/m{sup 3}) for 3 h once (single) or 3 h/day for 3 days (repeated). Bronchoalveolar lavage fluid (BAL), serum and lung tissue were collected 0 and 24 h later. Exposure to DE resulted in structural alterations in the lungs of older but not younger mice, including patchy thickening of the alveolar septa and inflammatory cell localization in alveolar spaces. These effects were most pronounced 24 h after a single exposure to the higher dose of DE. Significant increases in BAL nitrogen oxides were also noted in older mice, as well as expression of lipocalin 24p3, an oxidative stress marker in the lung with no effects in younger mice. Following DE inhalation, expression of Tumor Necrosis Factor alpha (TNFalpha) was upregulated in lungs of both younger and older mice; however, this was attenuated in older animals. Whereas exposure to DE resulted in increases in lung Interleukin-6 (IL-6) expression in both older and younger mice, IL-8 increased only in older animals. In younger mice, constitutive expression of manganese superoxide dismutase (MnSOD) decreased after DE exposure, while in older mice, constitutive MnSOD was not detectable and DE had no effect on expression of this antioxidant. Taken together, these results suggest that altered generation of inflammatory mediators and MnSOD may contribute to increased susceptibility of older mice to inhaled DE.

  18. Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice.

    PubMed

    Brandon, Amanda E; Stuart, Ella; Leslie, Simon J; Hoehn, Kyle L; James, David E; Kraegen, Edward W; Turner, Nigel; Cooney, Gregory J

    2016-03-01

    An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12-16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42-54 weeks of age, male WT and Acc2(-/-) mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2(-/-) mice, aged Acc2(-/-) mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2(-/-) mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic-euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2(-/-) mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action. PMID:26668208

  19. Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice.

    PubMed

    Brandon, Amanda E; Stuart, Ella; Leslie, Simon J; Hoehn, Kyle L; James, David E; Kraegen, Edward W; Turner, Nigel; Cooney, Gregory J

    2016-03-01

    An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12-16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42-54 weeks of age, male WT and Acc2(-/-) mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2(-/-) mice, aged Acc2(-/-) mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2(-/-) mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic-euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2(-/-) mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action.

  20. The response of aged mice to primary infection and re-infection with pneumonia virus of mice depends on their genetic background.

    PubMed

    Shrivastava, Pratima; Watkiss, Ellen; van Drunen Littel-van den Hurk, Sylvia

    2016-03-01

    The pneumonia virus of mice (PVM) model is used to study respiratory syncytial virus (RSV) pathogenesis. The outcome of PVM infection varies in different inbred mouse strains, BALB/c being highly susceptible and C57BL/6 more resistant. As the disease symptoms induced by RSV infection can become more severe as people age, we examined the primary and secondary immune responses to infection with PVM in aged BALB/c and C57BL/6 mice. Based on clinical parameters, aged C57BL/6 mice displayed less severe disease than young adult mice when infected with 3000pfu of PVM-15, while BALB/c mice were equally susceptible at both ages showing significant weight loss and high levels of virus replication. Furthermore, after primary infection the CD4(+) T cell numbers in the lungs were higher in young adult mice, while the CD8(+) T cell numbers were comparable in both age groups and strains. When either C57BL/6 or BALB/c mice were infected with PVM as young adults and then re-infected as aged mice, they were protected from clinical disease, while virus replication was reduced. In contrast to mice with a primary PVM-infection, re-infected mice did not have infiltration of neutrophils or inflammatory mediators in the lung. BALB/c mice had higher virus neutralizing antibody levels in the serum and lung than C57BL/6 mice upon re-infection. Re-infection with PVM led to significant influx of effector CD4(+) T cells into the lungs when compared to aged mice with a primary infection, while this cell population was decreased in the lung draining lymph nodes in both mouse strains. After re-infection the effector CD8(+) T cell population was also decreased in the lung draining lymph nodes in both mouse strain when compared to aged mice after primary infection. However, the central memory CD4(+) and CD8(+) T cells were significantly enhanced in numbers in the lungs and draining lymph nodes of both mouse strains after re-infection, and these numbers were higher for C57BL/6 mice.

  1. Effects of age on the synergistic interactions between lipopolysaccharide and mechanical ventilation in mice.

    PubMed

    Smith, Lincoln S; Gharib, Sina A; Frevert, Charles W; Martin, Thomas R

    2010-10-01

    Children have a lower incidence and mortality from acute lung injury (ALI) than adults, and infections are the most common event associated with ALI. To study the effects of age on susceptibility to ALI, we investigated the responses to microbial products combined with mechanical ventilation (MV) in juvenile (21-d-old) and adult (16-wk-old) mice. Juvenile and adult C57BL/6 mice were treated with inhaled Escherichia coli 0111:B4 lipopolysaccharide (LPS) and MV using tidal volume = 15 ml/kg. Comparison groups included mice treated with LPS or MV alone and untreated age-matched control mice. In adult animals treated for 3 hours, LPS plus MV caused synergistic increases in neutrophils (P < 0.01) and IgM in bronchoalveolar lavage fluid (P = 0.03) and IL-1β in whole lung homogenates (P < 0.01) as compared with either modality alone. Although juvenile and adult mice had similar responses to LPS or MV alone, the synergistic interactions between LPS and MV did not occur in juvenile mice. Computational analysis of gene expression array data suggest that the acquisition of synergy with increasing age results, in part, from the loss of antiapoptotic responses and the acquisition of proinflammatory responses to the combination of LPS and MV. These data suggest that the synergistic inflammatory and injury responses to inhaled LPS combined with MV are acquired with age as a result of coordinated changes in gene expression of inflammatory, apoptotic, and TGF-β pathways.

  2. CpG Improves Influenza Vaccine Efficacy in Young Adult but Not Aged Mice.

    PubMed

    Ramirez, Alejandro; Co, Mary; Mathew, Anuja

    2016-01-01

    Several studies have shown a reduced efficacy of influenza vaccines in the elderly compared to young adults. In this study, we evaluated the immunogenicity and protective efficacy of a commercially available inactivated influenza vaccine (Fluzone®) in young adult and aged mice. C57/BL6 mice were administered a single or double immunization of Fluzone® with or without CpG and challenged intranasally with H1N1 A/California/09 virus. A double immunization of Fluzone® adjuvanted with CpG elicited the highest level of protection in young adult mice which was associated with increases in influenza specific IgG, elevated HAI titres, reduced viral titres and lung inflammation. In contrast, the vaccine schedule which provided fully protective immunity in young adult mice conferred limited protection in aged mice. Antigen presenting cells from aged mice were found to be less responsive to in vitro stimulation by Fluzone and CpG which may partially explain this result. Our data are supportive of studies that have shown limited effectiveness of influenza vaccines in the elderly and provide important information relevant to the design of more immunogenic vaccines in this age group. PMID:26934728

  3. Blood coagulation and metabolic profiles in middle-aged male and female ob/ob mice.

    PubMed

    Ohkura, Naoki; Oishi, Katsutaka; Atsumi, Gen-ichi

    2015-07-01

    Obese and diabetic states in humans are associated with an increased incidence of thrombotic diseases caused by various coagulation abnormalities. Genetically obese ob/ob mice produce metabolic abnormalities similar to those associated with type 2 diabetes. However, little is known about their coagulation features or sex differences. The present study aimed to determine the effects of obese and diabetic complications on blood coagulation and vascular diseases by exploring correlations between blood coagulation and metabolic profiles in middle-aged male and female ob/ob mice. Plasma levels of plasminogen activator inhibitor 1 (PAI-1) were significantly increased, whereas those that of platelet factor-4 (PF-4) was slightly, but significantly increased in male and female ob/ob mice compared with lean counterparts. Prothrombin time (PT) was significantly shortened in female ob/ob mice and activated partial thrombin time (APTT) significantly differed between male and female ob/ob mice. Plasma levels of antithrombin (AT) were significantly increased in male and female ob/ob mice. None of the other coagulation and fibrinolytic factors examined significantly differed between ob/ob mice and lean counterparts. On the contrary, factors such as body weight and cholesterol levels significantly differed between ob/ob and lean mice, whereas glucose, fructosamine and insulin levels significantly differed only in one sex of each strain. These results provided fundamental information about blood coagulation and metabolic features for exploring the function of altered blood coagulation states in ob/ob mice.

  4. Evidence of adrenal failure in aging Dax1-deficient mice.

    PubMed

    Scheys, Joshua O; Heaton, Joanne H; Hammer, Gary D

    2011-09-01

    Dosage-sensitive sex reversal, adrenal hypoplasia congenita (AHC) critical region on the X chromosome, gene 1 (Dax1) is an orphan nuclear receptor essential for development and function of the mammalian adrenal cortex and gonads. DAX1 was cloned as the gene responsible for X-linked AHC, which is characterized by adrenocortical failure necessitating glucocorticoid replacement. Contrary to these human data, young mice with genetic Dax1 knockout (Dax1(-/Y)) exhibit adrenocortical hyperfunction, consistent with the historic description of Dax1 as a transcriptional repressor that inhibits steroidogenic factor 1-dependent steroidogenesis. This paradox of molecular function and two apparently opposite phenotypes associated with Dax1 deficiency in mice and humans is compounded by the recent observations that under certain circumstances, Dax1 can serve as a transcriptional activator of steroidogenic factor 1. The recently revealed role of Dax1 in embryonic stem cell pluripotency, together with the observation that its expression in the adult adrenal is restricted to the subcapsular cortex, where presumptive undifferentiated progenitor cells reside, has led us to reexamine the phenotype of Dax1(-/Y) mice in order to reconcile the conflicting mouse and human data. In this report, we demonstrate that although young Dax1(-/Y) mice have enhanced steroidogenesis and subcapsular adrenocortical proliferation, as these mice age, they exhibit declining adrenal growth, decreasing adrenal steroidogenic capacity, and a reversal of their initial enhanced hormonal sensitivity. Together with a marked adrenal dysplasia in aging mice, these data reveal that both Dax1(-/Y) mice and patients with X-linked AHC exhibit adrenal failure that is consistent with adrenocortical subcapsular progenitor cell depletion and argue for a significant role of Dax1 in maintenance of these cells.

  5. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling.

    PubMed

    Koopman, Jacob J E; van Heemst, Diana; van Bodegom, David; Bonkowski, Michael S; Sun, Liou Y; Bartke, Andrzej

    2016-03-01

    Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species.

  6. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling

    PubMed Central

    Koopman, Jacob J.E.; van Heemst, Diana; van Bodegom, David; Bonkowski, Michael S.; Sun, Liou Y.; Bartke, Andrzej

    2016-01-01

    Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species. PMID:26959761

  7. Immunization of AGE-modified albumin inhibits diabetic nephropathy progression in diabetic mice

    PubMed Central

    Mashitah, Musthika Wida; Azizah, Nurona; Samsu, Nur; Indra, Muhammad Rasjad; Bilal, Muhammad; Yunisa, Meti Verdian; Arisanti, Amildya Dwi

    2015-01-01

    Background Diabetic nephropathy (DN) is a serious vascular complication of diabetes and an important cause of end-stage renal disease. One mechanism by which hyperglycemia causes nephropathy is through the formation of advanced glycation end products (AGE). Development of vaccination would be a promising therapy for the future, while to date, anti-AGE therapy is based on medicines that are needed to be consumed lifelong. This study aimed to find out the effect of immunization of AGE-modified albumin against DN pathogenesis in streptozotocin-induced diabetic in mice. Methods We used 24 BALB/c male mice as experimental animals, which were divided into six groups, two nondiabetic groups (negative control and AGE-modified bovine serum albumin [BSA] preimmunized groups) and four streptozotocin-induced diabetic groups (diabetic control group and diabetic preimmunized groups for AGE-BSA, Keyhole limpet hemocyanin (KLH), and AGE-BSA-KLH, respectively). Results Diabetic preimmunized groups for AGE-BSA, KLH, and AGE-BSA-KLH showed amelioration in renal function and histopathology compared with the diabetic control group. Preimmunization also maintained nephrin intensity and decreased serum AGE level, kidney AGE deposition, and kidney cells apoptosis. Conclusion AGE-BSA and AGE-BSA-KLH immunizations inhibit the progression of DN. Our results strengthen the evidence that the anti-AGE antibodies have a protective role against diabetic vascular complication, especially DN. This study provides a basis for the development of DN-based immunotherapy with AGE immunization as a potential candidate. PMID:26346342

  8. DNA damage in normally and prematurely aged mice

    PubMed Central

    Maslov, Alexander Y.; Ganapathi, Shireen; Westerhof, Maaike; Quispe, Wilber; White, Ryan R.; Van Houten, Bennett; Reiling, Erwin; Dollé, Martijn E.T.; van Steeg, Harry; Hasty, Paul; Hoeijmakers, Jan H.J.; Vijg, Jan

    2013-01-01

    Summary Steady-state levels of spontaneous DNA damage, the by-product of normal metabolism and environmental exposure, are controlled by DNA repair pathways. Incomplete repair or an age-related increase in damage production and/or decline in repair could lead to an accumulation of DNA damage, increasing mutation rate, affecting transcription and/or activating programmed cell death or senescence. These consequences of DNA damage metabolism are highly conserved and the accumulation of lesions in the DNA of the genome could, therefore, provide a universal cause of aging. An important corollary of this hypothesis is that defects in DNA repair cause both premature aging and accelerated DNA damage accumulation. While the former has been well-documented, the reliable quantification of the various lesions thought to accumulate in DNA during aging has been a challenge. Here, we quantified inhibition of long distance PCR as a measure of DNA damage in liver and brain of both normal and prematurely aging, DNA repair defective mice. The results indicate a marginal, but statistically significant, increase of spontaneous DNA damage with age in normal mouse liver but not in brain. Increased levels of DNA damage were not observed in the DNA repair defective mice. We also show that oxidative lesions do not increase with age. These results indicate that neither normal nor premature aging is accompanied by a dramatic increase in DNA damage. This suggests that factors other than DNA damage per se, e.g., cellular responses to DNA damage, are responsible for the aging phenotype in mice. PMID:23496256

  9. Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders.

    PubMed

    Poon, H Fai; Farr, Susan A; Thongboonkerd, Visith; Lynn, Bert C; Banks, William A; Morley, John E; Klein, Jon B; Butterfield, D Allan

    2005-01-01

    Free radical-mediated damage to neuronal membrane components has been implicated in the etiology of Alzheimer's disease (AD) and aging. The senescence accelerated prone mouse strain 8 (SAMP8) exhibits age-related deterioration in memory and learning along with increased oxidative markers. Therefore, SAMP8 is a suitable model to study brain aging and, since aging is the major risk factor for AD and SAMP8 exhibits many of the biochemical findings of AD, perhaps as a model for and the early phase of AD. Our previous studies reported higher oxidative stress markers in brains of 12-month-old SAMP8 mice when compared to that of 4-month-old SAMP8 mice. Further, we have previously shown that injecting the mice with alpha-lipoic acid (LA) reversed brain lipid peroxidation, protein oxidation, as well as the learning and memory impairments in SAMP8 mice. Recently, we reported the use of proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. In order to understand how LA reverses the learning and memory deficits of aged SAMP8 mice, in the current study, we used proteomics to compare the expression levels and specific carbonyl levels of proteins in brains from 12-month-old SAMP8 mice treated or not treated with LA. We found that the expressions of the three brain proteins (neurofilament triplet L protein, alpha-enolase, and ubiquitous mitochondrial creatine kinase) were increased significantly and that the specific carbonyl levels of the three brain proteins (lactate dehydrogenase B, dihydropyrimidinase-like protein 2, and alpha-enolase) were significantly decreased in the aged SAMP8 mice treated with LA. These findings suggest that the improved learning and memory observed in LA-injected SAMP8 mice may be related to the restoration of the normal condition of specific proteins in aged SAMP8 mouse brain. Moreover, our current study implicates neurofilament triplet L protein, alpha-enolase, ubiquitous mitochondrial

  10. Premature skin aging features rescued by inhibition of NADPH oxidase activity in XPC-deficient mice.

    PubMed

    Hosseini, Mohsen; Mahfouf, Walid; Serrano-Sanchez, Martin; Raad, Houssam; Harfouche, Ghida; Bonneu, Marc; Claverol, Stephane; Mazurier, Frederic; Rossignol, Rodrigue; Taieb, Alain; Rezvani, Hamid Reza

    2015-04-01

    Xeroderma pigmentosum type C (XP-C) is characterized mostly by a predisposition to skin cancers and accelerated photoaging, but little is known about premature skin aging in this disease. By comparing young and old mice, we found that the level of progerin and p16(INK4a) expression, β-galactosidase activity, and reactive oxygen species, which increase with age, were higher in young Xpc(-/-) mice than in young Xpc(+/+) ones. The expression level of mitochondrial complexes and mitochondrial functions in the skin of young Xpc(-/-) was as low as in control aged Xpc(+/+)animals. Furthermore, the metabolic profile in young Xpc(-/-) mice resembled that found in aged Xpc(+/+) mice. Furthermore, premature skin aging features in young Xpc(-/-) mice were mostly rescued by inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) activity by using a NOX1 peptide inhibitor, suggesting that the continuous oxidative stress due to overactivation of NOX1 has a causative role in the underlying pathophysiology. PMID:25437426

  11. Tooth loss early in life accelerates age-related bone deterioration in mice.

    PubMed

    Kurahashi, Minori; Kondo, Hiroko; Iinuma, Mitsuo; Tamura, Yasuo; Chen, Huayue; Kubo, Kin-ya

    2015-01-01

    Both osteoporosis and tooth loss are health concerns that affect many older people. Osteoporosis is a common skeletal disease of the elderly, characterized by low bone mass and microstructural deterioration of bone tissue. Chronic mild stress is a risk factor for osteoporosis. Many studies showed that tooth loss induced neurological alterations through activation of a stress hormone, corticosterone, in mice. In this study, we tested the hypothesis that tooth loss early in life may accelerate age-related bone deterioration using a mouse model. Male senescence-accelerated mouse strain P8 (SAMP8) mice were randomly divided into control and toothless groups. Removal of the upper molar teeth was performed at one month of age. Bone response was evaluated at 2, 5 and 9 months of age. Tooth loss early in life caused a significant increase in circulating corticosterone level with age. Osteoblast bone formation was suppressed and osteoclast bone resorption was activated in the toothless mice. Trabecular bone volume fraction of the vertebra and femur was decreased in the toothless mice with age. The bone quality was reduced in the toothless mice at 5 and 9 months of age, compared with the age-matched control mice. These findings indicate that tooth loss early in life impairs the dynamic homeostasis of the bone formation and bone resorption, leading to reduced bone strength with age. Long-term tooth loss may have a cumulative detrimental effect on bone health. It is important to take appropriate measures to treat tooth loss in older people for preventing and/or treating senile osteoporosis.

  12. Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice.

    PubMed

    Guimaraes, Patricia; Zhu, Xiaoxia; Cannon, Trinitia; Kim, SungHee; Frisina, Robert D

    2004-06-01

    Age-related hearing loss--presbycusis--is the number one communication problem of the aged. A major contributor to presbycusis is the progressive degeneration of cochlear outer hair cells (OHCs). Distortion product otoacoustic emissions (DPOAEs) are effective in vivo, physiological measures of hearing, assessing the health and functioning of the OHCs in mammals. We and others have previously demonstrated that DPOAE amplitudes decline with age in humans and mice. The present study's objective was to measure age-related declines in the OHCs in CBA mice (slow, progressive age-related hearing loss) by comparing DPOAEs and auditory brainstem responses (ABRs) generated from females and males. Young adult (2.1-2.9 months) and middle-aged CBA (14.0-16.4 months) mice were tested, as well as old CBAs (24.3-29.0 months). DPOAE-grams were obtained with L1 = 65 and L2 = 50 dB SPL, f1/f2 = 1.25, using eight points per octave covering a frequency range from 5.6 to 44.8 kHz (geometric mean frequency). ABRs ranged from 3 to 48 kHz. Analyses revealed that DPOAE levels decreased with age for middle-aged and old male CBAs, but for female CBAs, declines did not occur until old age - after menopause. In contrast, ABR amplitudes for female and male young adult and middle-aged CBAs were the same. Female ABR thresholds were lower than males for old CBAs. In conclusion, we discovered that pre-menopausal CBA female mice have healthier OHCs relative to middle-aged males, but much of this relative advantage is lost post-menopause. Understanding sex differences in age-related sensory disorders will be quite helpful for the goals of preventing, slowing or curing sensory problems in old age for both women and men.

  13. Association of amyloid burden, brain atrophy and memory deficits in aged apolipoprotein ε4 mice.

    PubMed

    Yin, Junxiang; Turner, Gregory H; Coons, Stephen W; Maalouf, Marwan; Reiman, Eric M; Shi, Jiong

    2014-03-01

    Apolipoprotein E ε4 allele (ApoE4) has been associated with increased risk of sporadic Alzheimer's disease (AD) and of conversion from mild cognitive impairment to AD. But the underlying mechanism of ApoE4 affecting brain atrophy and cognition is not fully understood. We investigated the effect of ApoE4 on amyloid beta (Aβ) protein burden and its correlation with the structure change of hippocampus and cortex, cognitive and behavioral changes in ApoE4 transgenic mice. Male ApoE4 transgenic mice and age-matched control mice at age 12 months and 24 months were tested in the Morris Water Maze (MWM). Brain volume changes (including whole brain, hippocampus, cortex, total ventricles and caudate putamen) were assessed by using small animal 7T-MRI. Aβ level was assessed by immunohistochemistry (IHC) and immunoprecipitation/western blot. In MWM, escape latency was longer and time spent in the target quadrant was shorter in aged ApoE4 mice (12- and 24-month-old), suggesting age- and ApoE4-dependent visuospatial deficits. Atrophy on MRI was prominent in the hippocampus (p=0.039) and cortex (p=0.013) of ApoE4 mice (24-month-old) as compared to age-matched control mice. IHC revealed elevated Aβ deposition in the hippocampus. Consistently, both soluble and insoluble Aβ aggregates were increased in aged ApoE4 mice. This increase was correlated inversely with hippocampal atrophy and cognitive deficits. These data give further evidence that ApoE4 plays an important role in brain atrophy and memory impairment by modulating amyloid production and deposition.

  14. Reactive Oxygen Species Limit the Ability of Bone Marrow Stromal Cells to Support Hematopoietic Reconstitution in Aging Mice

    PubMed Central

    Khatri, Rahul; Krishnan, Shyam; Roy, Sushmita; Chattopadhyay, Saborni; Kumar, Vikash

    2016-01-01

    Aging of organ and abnormal tissue regeneration are recurrent problems in physiological and pathophysiological conditions. This is most crucial in case of high-turnover tissues, like bone marrow (BM). Using reciprocal transplantation experiments in mouse, we have shown that self-renewal potential of hematopoietic stem and progenitor cells (HSPCs) and BM cellularity are markedly influenced with the age of the recipient mice rather than donor mice. Moreover, accumulation of excessive reactive oxygen species (ROS) in BM stromal cells compared to HSPC compartment, in time-dependent manner, suggests that oxidative stress is involved in suppression of BM cellularity by affecting microenvironment in aged mice. Treatment of these mice with a polyphenolic antioxidant curcumin is found to partially quench ROS, thereby rescues stromal cells from oxidative stress-dependent cellular injury. This rejuvenation of stromal cells significantly improves hematopoietic reconstitution in 18-month-old mice compared to age control mice. In conclusion, this study implicates the role of ROS in perturbation of stromal cell function upon aging, which in turn affects BM's reconstitution ability in aged mice. Thus, a rejuvenation therapy using curcumin, before HSPC transplantation, is found to be an efficient strategy for successful marrow reconstitution in older mice. PMID:27140293

  15. Age-dependent reorganization of peri-infarct “premotor” cortex with task-specific rehabilitative training in mice

    PubMed Central

    Tennant, Kelly A.; Kerr, Abigail L.; Adkins, DeAnna L.; Donlan, Nicole; Thomas, Nagheme; Kleim, Jeffrey A.; Jones, Theresa A.

    2014-01-01

    Background The incidence of stroke in adulthood increases with advancing age, but there is little understanding of how post-stroke treatment should be tailored by age. Objective The goal of this study was to determine if age and task-specificity of rehabilitative training affect behavioral improvement and motor cortical organization after stroke. Methods Young and aged mice were trained to proficiency on the Pasta Matrix Reaching Task prior to lesion induction in primary motor cortex with endothelin-1. After a short recovery period, mice received 9 weeks of rehabilitative training on either the previously learned task: Pasta Matrix Reaching, a different reaching task: Tray Reaching, or no training. To determine the extent of relearning, mice were tested once weekly on the Pasta Matrix Reaching Task. Mice then underwent intracortical microstimulation mapping to resolve the remaining forelimb movement representations in peri-lesion motor cortex. Results Although aged mice had significantly larger lesions compared to young mice, Pasta Matrix Reaching served as effective rehabilitative training for both age groups. Young animals also showed improvement after Tray Reaching. Behavioral improvement in young mice was associated with an expansion of the rostral forelimb area (“premotor” cortex), but we failed to see reorganization in the aged brain, despite similar behavioral improvements. Conclusions Our results indicate that reorganization of motor cortex may be limited by either aging or greater tissue damage, but the capacity to improve motor function via task-specific rehabilitative training continues to be well maintained in aged animals. PMID:25009222

  16. Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice

    ERIC Educational Resources Information Center

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…

  17. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice

    PubMed Central

    Hu, Longyuan; Tan, Jia; Yang, Xiaomei; Tan, Haitao; Xu, Xiaozhen; You, Manhang; Qin, Wu; Huang, Liangzhao; Li, Siqi; Mo, Manqiu; Wei, Huifen; Li, Jing; Tan, Jiyong

    2016-01-01

    This study aimed to determine the effect of topically applied Laminaria polysaccharide (LP) on skin aging. We applied ointment containing LP (10, 25, and 50 μg/g) or vitamin E (10 μg/g) to the dorsal skin of aging mice for 12 months and young control mice for 4 weeks. Electron microscopy analysis of skin samples revealed that LP increased dermal thickness and skin collagen content. Tissue inhibitor of metalloprotease- (TIMP-) 1 expression was upregulated while that of matrix metalloproteinase- (MMP-) 1 was downregulated in skin tissue of LP-treated as compared to untreated aging mice. Additionally, phosphorylation of c-Jun N-terminal kinase (JNK) and p38 was higher in aging skin than in young skin, while LP treatment suppressed phospho-JNK expression. LP application also enhanced the expression of antioxidative enzymes in skin tissue, causing a decrease in malondialdehyde levels and increases in superoxide dismutase, catalase, and glutathione peroxidase levels relative to those in untreated aging mice. These results indicate that LP inhibits MMP-1 expression by preventing oxidative stress and JNK phosphorylation, thereby delaying skin collagen breakdown during aging. PMID:27143987

  18. Ca2+ dynamics in oocytes from naturally-aged mice

    PubMed Central

    Haverfield, Jenna; Nakagawa, Shoma; Love, Daniel; Tsichlaki, Elina; Nomikos, Michail; Lai, F. Anthony; Swann, Karl; FitzHarris, Greg

    2016-01-01

    The ability of human metaphase-II arrested eggs to activate following fertilisation declines with advancing maternal age. Egg activation is triggered by repetitive increases in intracellular Ca2+ concentration ([Ca2+]i) in the ooplasm as a result of sperm-egg fusion. We therefore hypothesised that eggs from older females feature a reduced ability to mount appropriate Ca2+ responses at fertilisation. To test this hypothesis we performed the first examination of Ca2+ dynamics in eggs from young and naturally-aged mice. Strikingly, we find that Ca2+ stores and resting [Ca2+]i are unchanged with age. Although eggs from aged mice feature a reduced ability to replenish intracellular Ca2+ stores following depletion, this difference had no effect on the duration, number, or amplitude of Ca2+ oscillations following intracytoplasmic sperm injection or expression of phospholipase C zeta. In contrast, we describe a substantial reduction in the frequency and duration of oscillations in aged eggs upon parthenogenetic activation with SrCl2. We conclude that the ability to mount and respond to an appropriate Ca2+ signal at fertilisation is largely unchanged by advancing maternal age, but subtle changes in Ca2+ handling occur that may have more substantial impacts upon commonly used means of parthenogenetic activation. PMID:26785810

  19. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice.

    PubMed

    Peferoen, Laura A N; Breur, Marjolein; van de Berg, Sarah; Peferoen-Baert, Regina; Boddeke, Erik H W G M; van der Valk, Paul; Pryce, Gareth; van Noort, Johannes M; Baker, David; Amor, Sandra

    2016-10-01

    Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical features of MS including relapsing-remitting episodes and secondary-progressive disability. To address the contribution of recurrent inflammatory events and ageing as factors that amplify progressive neurological disease, we examined EAE in 8- to 12-week-old and 12-month-old ABH mice. Compared with the relapsing-remitting (RREAE) and secondary progressive (SPEAE) EAE observed in young mice, old mice developed progressive disease from onset (PEAE) associated with pronounced axonal damage and increased numbers of CD3(+) T cells and microglia/macrophages, but not B cells. Whereas the clinical neurological features of PEAE and SPEAE were comparable, the pathology was distinct. SPEAE was associated with significantly reduced perivascular infiltrates and T-cell numbers in the central nervous system (CNS) compared with PEAE and the acute phase of RREAE. In contrast to perivascular infiltrates that declined during progression from RREAE into SPEAE, the numbers of microglia clusters remained constant. Similar to what is observed during MS, the microglia clusters emerging during EAE were associated with axonal damage and oligodendrocytes expressing heat-shock protein B5, but not lymphocytes. Taken together, our data reveal that the course of EAE is dependent on the age of the mice. Younger mice show a relapsing-remitting phase followed by progressive disease, whereas old mice immediately show progression. This indicates that recurrent episodes of inflammation in the CNS, as well as age, contribute to progressive neurological disease.

  20. Transcriptional profiling reveals progeroid Ercc1-/Δ mice as a model system for glomerular aging

    PubMed Central

    2013-01-01

    Background Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1-/Δ progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. Results In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1-/Δ mice showed cluster formation between young WT and Ercc1-/Δ as well as old WT and Ercc1-/Δ samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1-/Δ mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. Conclusion Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1-/Δ mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies. PMID:23947592

  1. Protective effect of flavonoids against aging- and lipopolysaccharide-induced cognitive impairment in mice.

    PubMed

    Patil, Chandrashekhar S; Singh, Vijay Pal; Satyanarayan, P S V; Jain, Naveen K; Singh, Amarjit; Kulkarni, Shrinivas K

    2003-10-01

    Flavonoids, naturally occurring polyphenolic compounds, are known to inhibit both lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha and interleukin 6 release which modulate the proinflammatory molecules that have been reported in many progressive neurodegenerative disorders, including Alzheimer's disease (AD), viral and bacterial meningitis, AIDS dementia complex, and stroke. The present experiments were performed to study the possible effects of exogenously administered flavonoids (apigenin-7-glucoside and quercetin) on the cognitive performance in aged and LPS-treated mice (an animal model for AD) using passive avoidance and elevated plus-maze tasks. Aged and LPS-treated mice showed poor retention of memory in step-through passive avoidance and in plus-maze tasks. Chronic administration of the flavonoids apigenin-7-glucoside (5-20 mg/kg i.p.) and quercetin (25-100 mg/kg i.p.) dose dependently reversed the age-induced and LPS-induced retention deficits in both test paradigms. However, flavonoids after chronic administration in young mice did not show any improvement of memory retention in both paradigms. Apigenin-7-glucoside showed more efficacy as compared with quercetin in both models that may be probably due to its greater efficacy to inhibit cyclooxygenase-2 and inducible nitric oxide synthase. Chronic treatment with flavonoids did not alter the locomotor activity in both young and aged mice; however, aged mice showed improvement of performance on Rota-Rod test. The results showed that chronic treatment with flavonoids reverses cognitive deficits in aged and LPS-intoxicated mice which suggests that modulation of cyclooxygenase-2 and inducible nitric synthase by flavonoids may be important in the prevention of memory deficits, one of the symptoms related to AD.

  2. Age-Related Impairment in the 250-Millisecond Delay Eyeblink Classical Conditioning Procedure in C57BL/6 Mice

    PubMed Central

    Vogel, Richard W.; Ewers, Michael; Ross, Charlene; Gould, Thomas J.; Woodruff-Pak, Diana S.

    2002-01-01

    In this study we tested 4-, 9-, 12-, and 18-month-old C57BL/6 mice in the 250-msec delay eyeblink classical conditioning procedure to study age-related changes in a form of associative learning. The short life expectancy of mice, complete knowledge about the mouse genome, and the availability of transgenic and knock-out mouse models of age-related impairments make the mouse an excellent species for expanding knowledge on the neurobiologically and behaviorally well-characterized eyeblink classical conditioning paradigm. Based on previous research with delay eyeblink conditioning in rabbits and humans, we predicted that mice would be impaired on this cerebellar-dependent associative learning task in middle-age, at ∼9 months. To fully examine age differences in behavior in mice, we used a battery of additional behavioral measures with which to compare young and older mice. These behaviors included the acoustic startle response, prepulse inhibition, rotorod, and the Morris water maze. Mice began to show impairment in cerebellar-dependent tasks such as rotorod and eyeblink conditioning at 9 to 12 months of age. Performance in hippocampally dependent tasks was not impaired in any group, including 18-month-old mice. These results in mice support results in other species, indicating that cerebellar-dependent tasks show age-related deficits earlier in adulthood than do hippocampally dependent tasks. PMID:12359840

  3. Comparative morphometry of the nasal cavity in rats and mice.

    PubMed Central

    Gross, E A; Swenberg, J A; Fields, S; Popp, J A

    1982-01-01

    The distribution of the various epithelial types lining the nasal cavity in normal 7 and 16 weeks old male Fischer-344 rats and male B6C3F1 mice has been mapped at the light microscopic level. Photographs of transverse sections of the nose were analysed using a Zeiss Videoplan computerized image analysis system programmed for measurement and evaluation of count, area, perimeter and length. In rats, the volumes of the nasal cavity at 7 and 16 weeks are 156 and 257 mm3 respectively; while in mice the nasal cavity volume is essentially the same (32 . 5 and 31 . 5 mm3) at the same two ages. Total surface areas of the nasal cavity in rats at 7 and 16 weeks are 799 and 1344 mm2 respectively; and in mice 278 and 289 mm2. The percentages of the nasal cavity surface lined by squamous, respiratory and olfactory epithelium are similar at both ages in both species. Applications and significance of these data are discussed. PMID:7130058

  4. Evidence of subclinical prion disease in aged mice following exposure to bovine spongiform encephalopathy.

    PubMed

    Brown, Karen L; Mabbott, Neil A

    2014-01-01

    The occurrence of variant Creutzfeldt-Jakob (vCJD) disease in humans was almost certainly the result of consumption of food contaminated with bovine spongiform encephalopathy (BSE) prions. Despite probable widespread exposure of the UK population to BSE-contaminated food in the 1980s, vCJD has been identified predominantly in young individuals, and there have been fewer cases of clinical disease than anticipated. The reasons for this are uncertain. Following peripheral exposure, many prions replicate within the lymphoid tissues before infecting the central nervous system. We have shown that the effects of host age on the microarchitecture of the spleen significantly impair susceptibility to mouse-adapted prions after peripheral exposure. The transmission of prions between different mammalian species is considered to be limited by the 'species barrier', which is dependent on several factors, including an intact immune system. Thus, cross-species prion transmission may be much less efficient in aged individuals. To test this hypothesis, we compared prion pathogenesis in groups of young (6-8 weeks old) and aged (600 days old) mice injected with primary BSE brain homogenate. We showed that prion pathogenesis was impaired dramatically in aged mice when compared with young animals. Whereas most young mice succumbed to clinical prion disease, all aged mice failed to develop clinical disease during their lifespans. However, the demonstration that prion accumulation was detected in the lymphoid tissues of some aged mice after injection with primary BSE brain homogenate, in the absence of clinical signs of prion disease, has important implications for human health.

  5. [Comparative ophthalmology in the Middle Ages].

    PubMed

    Norn, M; Norn, O

    2001-01-01

    Descriptions of animal eyes in the Middle Ages in the learned work Physiologus from the 4th century, based on Aristoteles, Plutarc, the Bible etc. are commented on. The modern biologist is horrified, the historian understands the ethical - religious aspects behind the edifying stories concerning the lion, gazelle, eagle, snake, lizard, swallow etc. Medical science and theology were not separated in the Middle Ages.

  6. Grip strength is potentially an early indicator of age-related decline in mice

    PubMed Central

    Ge, Xuan; Cho, Anthony; Ciol, Marcia A.; Pettan-Brewer, Christina; Snyder, Jessica; Rabinovitch, Peter; Ladiges, Warren

    2016-01-01

    The hand grip test has been correlated with mobility and physical performance in older people and has been shown to be a long-term predictor of mortality. Implementation of new strategies for enhancing healthy aging and maintaining independent living are dependent on predictable preclinical studies. The mouse is used extensively as a model in these types of studies, and the paw grip strength test is similar to the hand grip test for people in that it assesses the ability to grip a device with the paw, is non-invasive and easy to perform, and provides reproducible information. However, little has been reported on how grip strength declines with increasing age in mice. This report shows that grip strength was decreased in C57BL/6 (B6) NIA and C57BL/6×BALB/c F1 (CB6F1) NIA male mice at 12 months of age compared to 8-month-old mice, and continued a robust decline to 20 months and then 28 months of age, when the study was terminated. The decline was not related to lean muscle mass, but extensive age-related carpal and digital exostosis could help explain the decreased grip strength times with increasing age. In conclusion, the grip strength test could be useful in mouse preclinical studies to help make translational predictions on treatment strategies to enhance healthy aging. PMID:27613499

  7. Grip strength is potentially an early indicator of age-related decline in mice.

    PubMed

    Ge, Xuan; Cho, Anthony; Ciol, Marcia A; Pettan-Brewer, Christina; Snyder, Jessica; Rabinovitch, Peter; Ladiges, Warren

    2016-01-01

    The hand grip test has been correlated with mobility and physical performance in older people and has been shown to be a long-term predictor of mortality. Implementation of new strategies for enhancing healthy aging and maintaining independent living are dependent on predictable preclinical studies. The mouse is used extensively as a model in these types of studies, and the paw grip strength test is similar to the hand grip test for people in that it assesses the ability to grip a device with the paw, is non-invasive and easy to perform, and provides reproducible information. However, little has been reported on how grip strength declines with increasing age in mice. This report shows that grip strength was decreased in C57BL/6 (B6) NIA and C57BL/6×BALB/c F1 (CB6F1) NIA male mice at 12 months of age compared to 8-month-old mice, and continued a robust decline to 20 months and then 28 months of age, when the study was terminated. The decline was not related to lean muscle mass, but extensive age-related carpal and digital exostosis could help explain the decreased grip strength times with increasing age. In conclusion, the grip strength test could be useful in mouse preclinical studies to help make translational predictions on treatment strategies to enhance healthy aging. PMID:27613499

  8. Characterization of monoaminergic systems in brain regions of prematurely ageing mice.

    PubMed

    De la Fuente, Monica; Hernanz, Angel; Medina, Sonia; Guayerbas, Noelia; Fernández, Beatriz; Viveros, Maria Paz

    2003-07-01

    We have previously shown that differences in life span among members of Swiss mouse populations appear to be related to their exploration of a T-maze, with a slow exploration ("slow mice") being linked to increased levels of emotionality/anxiety, an impaired immune function and a shorter life span. Thus, we proposed the slow mice as prematurely ageing mice (PAM). We have now compared the monoaminergic systems of the PAM and of the non-prematurely ageing mice (NPAM), in discrete brain regions. PAM had decreased noradrenaline (NA) levels in all the brain regions analysed, whereas the 3-methoxy-4-hydroxyphenyl glycol (MHPG)/NA ratios were not significantly modified. PAM also showed decreased serotonine (5-HT) levels in hypothalamus, striatum and midbrain, as well as increased 5-hydroxyindol-3-acetic acid (5-HIAA)/5-HT ratios in hypothalamus and hippocampus. The dopamine (DA) content was lower in PAM in most regions, whereas the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA and homovanillic acid (HVA)/DA ratios were either increased or unchanged depending on the region analysed. In most cases, the differences between PAM and NPAM involved both sexes. One exception was the hypothalamus where the differences only affected the male mice. The neurochemical alterations found in PAM resemble some changes reported for aged animals and are related with their behavioural features.

  9. Radiometric Ages of Martian Meteorites compared to Martian Surfaces Ages

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.

    1999-01-01

    The surprisingly young Rb-Sr age of the Shergotty meteorite contributed to early suggestions that it might be of martian origin. their redox state and oxygen isotopic compositions linked the shergottites to the clino-pyroxenite nakhlites and the dunite Chassigny, causing them to be grouped as SNC meteorites. These characteristics, but especially the similarity of the elemental and isotopic compositions of gases trapped in shergottites to those of the martian atmosphere, have caused the martian origin of the SNC and related meteorites to be widely accepted. Although the young ages were one of the early hints of a martian origin for the SNC meteorites, their interpretation has remained somewhat ambiguous. We will review the radiometric ages of the martian meteorites and attempt to place them into the context of martian surface ages.

  10. Effects of voluntary wheel running on LPS-induced sickness behavior in aged mice.

    PubMed

    Martin, Stephen A; Pence, Brandt D; Greene, Ryan M; Johnson, Stephanie J; Dantzer, Robert; Kelley, Keith W; Woods, Jeffrey A

    2013-03-01

    Peripheral stimulation of the innate immune system with LPS causes exaggerated neuroinflammation and prolonged sickness behavior in aged mice. Regular moderate intensity exercise has been shown to exert anti-inflammatory effects that may protect against inappropriate neuroinflammation and sickness in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced sickness behavior and proinflammatory cytokine gene expression in ~22-month-old C57BL/6J mice. Mice were housed with a running wheel (VWR), locked-wheel (Locked), or no wheel (Standard) for 10 weeks, after which they were intraperitoneally injected with LPS across a range of doses (0.02, 0.08, 0.16, 0.33 mg/kg). VWR mice ran on average 3.5 km/day and lost significantly more body weight and body fat, and increased their forced exercise tolerance compared to Locked and Shoebox mice. VWR had no effect on LPS-induced anorexia, adipsia, weight-loss, or reductions in locomotor activity at any LPS dose when compared to Locked and Shoebox groups. LPS induced sickness behavior in a dose-dependent fashion (0.33>0.02 mg/kg). Twenty-four hours post-injection (0.33 mg/kg LPS or Saline) we found a LPS-induced upregulation of whole brain TNFα, IL-1β, and IL-10 mRNA, and increased IL-1β and IL-6 in the spleen and liver; these effects were not attenuated by VWR. We conclude that VWR does not reduce LPS-induced exaggerated or prolonged sickness behavior in aged animals, or 24h post-injection (0.33 mg/kg LPS or Saline) brain and peripheral proinflammatory cytokine gene expression. The necessity of the sickness response is critical for survival and may outweigh the subtle benefits of exercise training in aged animals.

  11. Reduced neuronal signaling in the ageing apolipoprotein-E4 targeted replacement female mice.

    PubMed

    Yong, Shan-May; Lim, Mei-Li; Low, Chian-Ming; Wong, Boon-Seng

    2014-10-10

    The effect of ApoE on NMDAR-dependent ERK/CREB signaling is isoform-dependent, and ApoE4 accelerates memory decline in ageing. However, this isoform-dependent function on neuronal signaling during ageing is unclear. In this study, we have examined NMDAR-associated ERK/CREB signal transduction in young and aged huApoE3 and huApoE4 targeted replacement (TR) mice. At 12 weeks huApoE4 mouse brain, increased NR1-S896 phosphorylation was linked to higher protein kinase C (PKC) activation. This up-regulation was accompanied by higher phosphorylation of AMPA GluR1-S831, CaMKII, ERK1/2 and CREB. But at 32 weeks, there was no significant difference between huApoE3 and huApoE4 TR mice on NMDAR-associated ERK/CREB signaling. Interestingly, in 72-week-old huApoE4 TR mice, protein phosphorylation that were increased in younger mice were significantly reduced. Lower NR1-S896 phosphorylation was linked to reduced PKC, GluR1-S831, CaMKII, ERK1/2 and CREB phosphorylation in huApoE4 TR mice as compared to huApoE3 TR mice. Furthermore, we have consistently detected lower ApoE levels in young and aged huApoE4 TR mouse brain, and this was associated with reduced expression of the ApoE receptor, LRP1 and NR2A-Y1246 phosphorylation. These results suggest age-specific, isoform-dependent effects of ApoE on neuronal signaling.

  12. Sex and age differences in mercury distribution and excretion in methylmercury-administered mice

    SciTech Connect

    Hirayama, K.; Yasutake, A.

    1986-01-01

    Sex differences in mercury distribution and excretion after single administration of methylmercury chloride (MMC, 5 mg/kg were studied in mice. A sex difference in urinary mercury excretion was found in sexually mature mice (age of 7 wk) of C57BL/6N and BALB/cA strains. Males showed higher mercury levels in urine than females, though no significant difference was found in fecal mercury levels 24 h post exposure to MMC. The higher urinary excretion rates in males accounted for significant lowering of mercury levels in the brain, liver, and blood, but not in the kidney, which showed higher values. At 5 min, however, the sex difference was found only in the kidney, showing higher levels in males. Changes in mercury distribution with time were studied in C57BL/6N mice. The brain mercury increased in both sexes up to 3 d, and decreased only in males on d 5. Liver and blood mercury decreased with time in both sexes, and these were constantly higher in females than in males. Renal mercury in males decreased to similar levels to females on d 3. The sex differences at various ages were studied with C57BL/6N mice 24 h after dosing. Two-week-old mice did not show significant sex differences in the mercury distribution and excretion, and their urinary mercury levels were much lower as compared to the older mice. Urinary mercury excretion in both sexes increased at 4 wk of age and then decreased at 45 wk of age. At 4, 7, 10, and 45 wk of age, males showed higher urinary mercury levels than females. From these findings, it has been suggested that urinary mercury excretion may be related to sex hormones, especially androgens.

  13. Age-related alterations in pituitary and testicular functions in long-lived growth hormone receptor gene-disrupted mice.

    PubMed

    Chandrashekar, Varadaraj; Dawson, Christina R; Martin, Eric R; Rocha, Juliana S; Bartke, Andrzej; Kopchick, John J

    2007-12-01

    The somatotropic axis, GH, and IGF-I interact with the hypothalamic-pituitary-gonadal axis in health and disease. GH-resistant GH receptor-disrupted knockout (GHRKO) male mice are fertile but exhibit delayed puberty and decreases in plasma FSH levels, testicular content of LH, and prolactin (PRL) receptors, whereas PRL levels are elevated. Because the lifespan of GHRKO mice is much greater than the lifespan of their normal siblings, it was of interest to compare age-related changes in the hypothalamic-pituitary-gonadal axis in GHRKO and normal animals. Plasma IGF-I, insulin, PRL, LH, FSH, androstenedione and testosterone levels, and acute responses to GnRH and LH were measured in young (2-4 and 5-6 months of age) and old (18-19 and 23-26 months of age) male GHRKO mice and their normal siblings. Plasma IGF-I was not detectable in GHRKO mice. Plasma PRL levels increased with age in normal mice but declined in GHRKO males, and did not differ in old GHRKO and normal animals. Plasma LH responses to acute GnRH stimulation were attenuated in GHRKO mice but increased with age only in normal mice. Plasma FSH levels were decreased in GHRKO mice regardless of age. Plasma testosterone responses to LH stimulation were attenuated in old mice regardless of genotype, whereas plasma androstenedione responses were reduced with age only in GHRKO mice. Testicular IGF-I mRNA levels were normal in young and increased in old GHRKO mice, whereas testicular concentrations and total IGF-I levels were decreased in these animals. These findings indicate that GH resistance due to targeted disruption of the GH receptor gene in mice leads to suppression of testicular IGF-I levels, and modifies the effects of aging on plasma PRL levels and responses of the pituitary and testes to GnRH and LH stimulation. Plasma testosterone levels declined during aging in normal but not in GHRKO mice, and the age-related increase in the LH responses to exogenous GnRH was absent in GHRKO mice, perhaps reflecting a

  14. Generating Chimeric Mice by Using Embryos from Nonsuperovulated BALB/c Mice Compared with Superovulated BALB/c and Albino C57BL/6 Mice.

    PubMed

    Esmail, Michael Y; Qi, Peimin; Connor, Aurora Burds; Fox, James G; García, Alexis

    2016-01-01

    The reliable generation of high-percentage chimeras from gene-targeted C57BL/6 embryonic stem cells has proven challenging, despite optimization of cell culture and microinjection techniques. To improve the efficiency of this procedure, we compared the generation of chimeras by using 3 different inbred, albino host, embryo-generating protocols: BALB/cAnNTac (BALB/c) donor mice superovulated at 4 wk of age, 12-wk-old BALB/c donor mice without superovulation, and C57BL/6NTac-Tyr(tm1Arte) (albino B6) mice superovulated at 4 wk of age. Key parameters measured included the average number of injectable embryos per donor, the percentage of live pups born from the total number of embryos transferred to recipients, and the number of chimeric pups with high embryonic-stem-cell contribution by coat color. Although albino B6 donors produced significantly more injectable embryos than did BALB/c donors, 12-wk-old BALB/c donor produced high-percentage (at least 70%) chimeras more than 2.5 times as often as did albino B6 mice and 20 times more efficiently than did 4-wk-old BALB/c donors. These findings clearly suggest that 12-wk-old BALB/c mice be used as blastocyst donors to reduce the number of mice used to generate each chimera, reduce the production of low-percentage chimeras, and maximize the generation of high-percentage chimeras from C57BL/6 embryonic stem cells. PMID:27423145

  15. Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization.

    PubMed

    Ota, Kuniaki; Quint, Patrick; Ruan, Ming; Pederson, Larry; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2013-08-01

    Osteoclast-mediated bone resorption precedes osteoblast-mediated bone formation through early adulthood, but formation fails to keep pace with resorption during aging. We previously identified several factors produced by osteoclasts that promote bone formation. In this study, we determined if osteoclast-produced factors contribute to the impaired bone formation with aging. We previously found that mice between the ages of 18 and 22 months develop age-related bone loss. Bone marrow-derived pre-osteoclasts were isolated from 6-week, 12-month, and 18- to 24-month-old mice and differentiated into osteoclasts in vitro. Conditioned media were collected and compared for osteoblast mineralization support. Conditioned medium from osteoclasts from all ages was able to support mineralization of bone marrow stromal cells. Concentrating the conditioned medium from 6-week-old and 12-month-old mouse marrow cells-derived osteoclasts enhanced mineralization support whereas concentrated conditioned medium from 18- to 24-month-old mouse marrow-derived osteoclasts repressed mineralization compared to base medium. This observation suggests that an inhibitor of mineralization was secreted by aged murine osteoclasts. Gene and protein analysis revealed that the Wnt antagonist sclerostin was significantly elevated in the conditioned media from 24-month-old mouse cells compared to 6-week-old mouse cells. Antibodies directed to sclerostin neutralized the influences of the aged mouse cell concentrated conditioned media on mineralization. Sclerostin is primarily produced by osteocytes in young animals. This study demonstrates that osteoclasts from aged mice also produce sclerostin in quantities that may contribute to the age-related impairment in bone formation.

  16. Effects of sleep deprivation and aging on long-term and remote memory in mice

    PubMed Central

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a month after training, sleep-deprived and control aged animals performed similarly, primarily due to remote memory decay in the control aged animals. Gene expression analysis supported the finding that SD has similar effects on the hippocampus in young and aged mice. PMID:25776037

  17. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice

    PubMed Central

    van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-01-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  18. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    PubMed

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model.

  19. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    PubMed

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  20. Mice Lacking the p43 Mitochondrial T3 Receptor Become Glucose Intolerant and Insulin Resistant during Aging

    PubMed Central

    Bertrand, Christelle; Blanchet, Emilie; Pessemesse, Laurence; Annicotte, Jean Sébastien; Feillet-Coudray, Christine; Chabi, Béatrice; Levin, Jonathan; Fajas, Lluis; Cabello, Gérard; Wrutniak-Cabello, Chantal; Casas, François

    2013-01-01

    Thyroid hormones (TH) play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3) receptor (p43) which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43−/− mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43−/− mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43−/− mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes. PMID:24098680

  1. Characteristics of bone marrow-derived endothelial progenitor cells in aged mice

    SciTech Connect

    Zhang Wei; Zhang Guoping; Jin Huiming . E-mail: hmjin@shmu.edu.cn; Hu Renming

    2006-09-29

    Evidence for dysfunction of endothelial repair in aged mice was sought by studying the pattern of induced differentiation, quantity, and function of bone marrow-derived endothelial progenitor cells (EPCs) in aged mice. The CD117-positive stem cell population was separated from bone marrow by magnetic activated cell-sorting system (MACS), and EPCs were defined by demonstrating the expression of CD117{sup +}CD34{sup +}Flk-1{sup +} by flow cytometry. After 7 days of culture, the number of clones formed was counted, and proliferation and migration of EPCs were analyzed by MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and modified Boyden chamber assay. The results demonstrated that compared to the control group, the quantity of bone marrow-derived CD117{sup +} stem cells and EPCs, as well as the proliferation, migration, the number of clones formed, and phagocytotic function of EPCs were significantly reduced in aged mice. There were no significant differences in the morphology and induced differentiation pattern of EPCs between the aged mouse group and the control group. Authors suggest that the dysfunction of EPCs may serve as a surrogate parameter of vascular function in old mice.

  2. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    PubMed

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  3. Role of F3/contactin expression profile in synaptic plasticity and memory in aged mice.

    PubMed

    Puzzo, Daniela; Bizzoca, Antonella; Loreto, Carla; Guida, Chiara A; Gulisano, Walter; Frasca, Giuseppina; Bellomo, Maria; Castorina, Sergio; Gennarini, Gianfranco; Palmeri, Agostino

    2015-04-01

    We have recently shown that overexpression of the F3/contactin adhesive glycoprotein (also known as Contactin-1) promotes neurogenesis in adult hippocampus, which correlates with improved synaptic plasticity and memory. Because F3/contactin levels physiologically decrease with age, here, we aim at investigating whether its overexpression might counteract the cognitive decline in aged animals. For this we use 20- to 24-month-old TAG/F3 transgenic mice in which F3/contactin overexpression is driven by regulatory sequences from the gene encoding the transient axonal glycoprotein TAG-1 throughout development. We show that aged TAG/F3 mice display improved hippocampal long-term potentiation and memory compared with wild-type littermates. The same mice undergo a decrease of neuronal apoptosis at the hippocampal level, which correlated to a decrease of active caspase-3; by contrast, procaspase-3 and Bax as well as the anti-apoptotic and plasticity-related pathway BDNF/CREB/Bcl-2 were rather increased. Interestingly, amyloid-precursor protein processing was shifted toward sAPPα generation, with a decrease of sAPPβ and amyloid-beta levels. Our data confirm that F3/contactin plays a role in hippocampal synaptic plasticity and memory also in aged mice, suggesting that it acts on molecular pathways related to apoptosis and amyloid-beta production.

  4. proBDNF Attenuates Hippocampal Neurogenesis and Induces Learning and Memory Deficits in Aged Mice.

    PubMed

    Chen, Jia; Li, Cheng-Ren; Yang, Heng; Liu, Juan; Zhang, Tao; Jiao, Shu-Sheng; Wang, Yan-Jiang; Xu, Zhi-Qiang

    2016-01-01

    Mature brain-derived neurotrophic factor has shown promotive effect on neural cells in rodents, including neural proliferation, differentiation, survival, and synaptic formation. Conversely, the precursor of brain-derived neurotrophic factor (proBDNF) has been emerging as a differing protein against its mature form, for its critical role in aging process and neurodegenerative diseases. In the present study, we investigated the role of proBDNF in neurogenesis in the hippocampal dentate gyrus of aged mice and examined the changes in mice learning and memory functions. The results showed that the newborn cells in the hippocampus revealed a significant decline in proBDNF-treated group compared with bovine serum albumin group, but an elevated level in anti-proBDNF group. During the maturation period, no significant change was observed in the proportions of phenotype of the newborn cells among the three groups. In water maze, proBDNF-treated mice had poorer scores in place navigation test and probe test, compared with those from any other group. Thus, we conclude that proBDNF attenuates neurogenesis in the hippocampus and induces the deficits in learning and memory functions of aged mice.

  5. Exogenous Hsp70 delays senescence and improves cognitive function in aging mice.

    PubMed

    Bobkova, Natalia V; Evgen'ev, Mikhail; Garbuz, David G; Kulikov, Alexei M; Morozov, Alexei; Samokhin, Alexander; Velmeshev, Dmitri; Medvinskaya, Natalia; Nesterova, Inna; Pollock, Andrew; Nudler, Evgeny

    2015-12-29

    Molecular chaperone Heat Shock Protein 70 (Hsp70) plays an important protective role in various neurodegenerative disorders often associated with aging, but its activity and availability in neuronal tissue decrease with age. Here we explored the effects of intranasal administration of exogenous recombinant human Hsp70 (eHsp70) on lifespan and neurological parameters in middle-aged and old mice. Long-term administration of eHsp70 significantly enhanced the lifespan of animals of different age groups. Behavioral assessment after 5 and 9 mo of chronic eHsp70 administration demonstrated improved learning and memory in old mice. Likewise, the investigation of locomotor and exploratory activities after eHsp70 treatment demonstrated a significant therapeutic effect of this chaperone. Measurements of synaptophysin show that eHsp70 treatment in old mice resulted in larger synaptophysin-immunopositive areas and higher neuron density compared with control animals. Furthermore, eHsp70 treatment decreased accumulation of lipofuscin, an aging-related marker, in the brain and enhanced proteasome activity. The potential of eHsp70 intranasal treatment to protect synaptic machinery in old animals offers a unique pharmacological approach for various neurodegenerative disorders associated with human aging.

  6. Exogenous Hsp70 delays senescence and improves cognitive function in aging mice

    PubMed Central

    Bobkova, Natalia V.; Evgen’ev, Mikhail; Garbuz, David G.; Kulikov, Alexei M.; Morozov, Alexei; Samokhin, Alexander; Velmeshev, Dmitri; Medvinskaya, Natalia; Nesterova, Inna; Pollock, Andrew; Nudler, Evgeny

    2015-01-01

    Molecular chaperone Heat Shock Protein 70 (Hsp70) plays an important protective role in various neurodegenerative disorders often associated with aging, but its activity and availability in neuronal tissue decrease with age. Here we explored the effects of intranasal administration of exogenous recombinant human Hsp70 (eHsp70) on lifespan and neurological parameters in middle-aged and old mice. Long-term administration of eHsp70 significantly enhanced the lifespan of animals of different age groups. Behavioral assessment after 5 and 9 mo of chronic eHsp70 administration demonstrated improved learning and memory in old mice. Likewise, the investigation of locomotor and exploratory activities after eHsp70 treatment demonstrated a significant therapeutic effect of this chaperone. Measurements of synaptophysin show that eHsp70 treatment in old mice resulted in larger synaptophysin-immunopositive areas and higher neuron density compared with control animals. Furthermore, eHsp70 treatment decreased accumulation of lipofuscin, an aging-related marker, in the brain and enhanced proteasome activity. The potential of eHsp70 intranasal treatment to protect synaptic machinery in old animals offers a unique pharmacological approach for various neurodegenerative disorders associated with human aging. PMID:26668376

  7. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice.

    PubMed

    Roos, Carolyn M; Hagler, Michael; Zhang, Bin; Oehler, Elise A; Arghami, Arman; Miller, Jordan D

    2013-11-15

    The purpose of this study was to characterize changes in antioxidant and age-related gene expression in aorta and aortic valve with aging, and test the hypothesis that increased mitochondrial oxidative stress accelerates age-related endothelial and aortic valve dysfunction. Wild-type (MnSOD(+/+)) and manganese SOD heterozygous haploinsufficient (MnSOD(+/-)) mice were studied at 3 and 18 mo of age. In aorta from wild-type mice, antioxidant expression was preserved, although there were age-associated increases in Nox2 expression. Haploinsufficiency of MnSOD did not alter antioxidant expression in aorta, but increased expression of Nox2. When compared with that of aorta, age-associated reductions in antioxidant expression were larger in aortic valves from wild-type and MnSOD haploinsufficient mice, although Nox2 expression was unchanged. Similarly, sirtuin expression was relatively well-preserved in aorta from both genotypes, whereas expression of SIRT1, SIRT2, SIRT3, SIRT4, and SIRT6 were significantly reduced in the aortic valve. Expression of p16(ink4a), a marker of cellular senescence, was profoundly increased in both aorta and aortic valve from MnSOD(+/+) and MnSOD(+/-) mice. Functionally, we observed comparable age-associated reductions in endothelial function in aorta from both MnSOD(+/+) and MnSOD(+/-) mice. Interestingly, inhibition of NAD(P)H oxidase with apocynin or gp91ds-tat improved endothelial function in MnSOD(+/+) mice but significantly impaired endothelial function in MnSOD(+/-) mice at both ages. Aortic valve function was not impaired by aging or MnSOD haploinsufficiency. Changes in antioxidant and sirtuin gene expression with aging differ dramatically between aorta and aortic valve. Furthermore, although MnSOD does not result in overt cardiovascular dysfunction with aging, compensatory transcriptional responses to MnSOD deficiency appear to be tissue specific. PMID:23997094

  8. Middle age has a significant impact on gene expression during skin wound healing in male mice.

    PubMed

    Yanai, Hagai; Lumenta, David Benjamin; Vierlinger, Klemens; Hofner, Manuela; Kitzinger, Hugo-Benito; Kamolz, Lars-Peter; Nöhammer, Christa; Chilosi, Marco; Fraifeld, Vadim E

    2016-08-01

    The vast majority of research on the impact of age on skin wound healing (WH) compares old animals to young ones. The middle age is often ignored in biogerontological research despite the fact that many functions that decline in an age-dependent manner have starting points in mid-life. With this in mind, we examined gene expression patterns during skin WH in late middle-aged versus young adult male mice, using the head and back punch models. The rationale behind this study was that the impact of age would first be detectable at the transcriptional level. We pinpointed several pathways which were over-activated in the middle-aged mice, both in the intact skin and during WH. Among them were various metabolic, immune-inflammatory and growth-promoting pathways. These transcriptional changes were much more pronounced in the head than in the back. In summary, the middle age has a significant impact on gene expression in intact and healing skin. It seems that the head punch model is more sensitive to the effect of age than the back model, and we suggest that it should be more widely applied in aging research on wound healing.

  9. Age-associated impairment of antitumor immunity in carcinoma-bearing mice and restoration by oral administration of Lentinula edodes mycelia extract.

    PubMed

    Ishikawa, Satoru; Matsui, Yasunori; Wachi, Satoshi; Yamaguchi, Hiroshi; Harashima, Nanae; Harada, Mamoru

    2016-08-01

    Because cancer is associated with aging, immunological features in the aged should be considered in anticancer immunotherapy. In this study, we investigated antitumor immunity in aged mice using a CT26 colon carcinoma model. The tumor growth of CT26 was accelerated in aged mice compared with that in young mice, but this difference was not observed in nude mice. The serum levels of IL-6 and TNF-α were higher in aged mice than those in young mice, irrespective of the CT26-bearing state. The in vitro induction of CT26-specific CTLs from aged mice that were vaccinated with doxorubicin (DTX)-treated CT26 cells was impaired. In vivo neutralization of IL-6, but not TNF-α, showed a tendency to restore the in vitro induction of CT26-specific CTLs from vaccinated aged mice. Analyses on tumor-infiltrating immune cells as early as day 5 after CT26 inoculation revealed that monocytic and granulocytic MDSCs preferentially infiltrated into tumor sites in aged mice compared with young mice. Alternatively, oral administration of Lentinula edodes mycelia (L.E.M.) extract, which has the potential to suppress inflammation in tumor-bearing hosts, decreased the serum levels of IL-6 in aged mice. When administration of L.E.M. extract was started 1 week earlier, CT26 growth was retarded in aged mice and the in vivo priming of tumor-specific CTLs was improved in CT26-vaccinated aged mice. These results indicate early infiltration of MDSCs is related to impaired immunity of aged hosts and that oral administration of L.E.M. extract can mitigate the impairment.

  10. Age-associated impairment of antitumor immunity in carcinoma-bearing mice and restoration by oral administration of Lentinula edodes mycelia extract.

    PubMed

    Ishikawa, Satoru; Matsui, Yasunori; Wachi, Satoshi; Yamaguchi, Hiroshi; Harashima, Nanae; Harada, Mamoru

    2016-08-01

    Because cancer is associated with aging, immunological features in the aged should be considered in anticancer immunotherapy. In this study, we investigated antitumor immunity in aged mice using a CT26 colon carcinoma model. The tumor growth of CT26 was accelerated in aged mice compared with that in young mice, but this difference was not observed in nude mice. The serum levels of IL-6 and TNF-α were higher in aged mice than those in young mice, irrespective of the CT26-bearing state. The in vitro induction of CT26-specific CTLs from aged mice that were vaccinated with doxorubicin (DTX)-treated CT26 cells was impaired. In vivo neutralization of IL-6, but not TNF-α, showed a tendency to restore the in vitro induction of CT26-specific CTLs from vaccinated aged mice. Analyses on tumor-infiltrating immune cells as early as day 5 after CT26 inoculation revealed that monocytic and granulocytic MDSCs preferentially infiltrated into tumor sites in aged mice compared with young mice. Alternatively, oral administration of Lentinula edodes mycelia (L.E.M.) extract, which has the potential to suppress inflammation in tumor-bearing hosts, decreased the serum levels of IL-6 in aged mice. When administration of L.E.M. extract was started 1 week earlier, CT26 growth was retarded in aged mice and the in vivo priming of tumor-specific CTLs was improved in CT26-vaccinated aged mice. These results indicate early infiltration of MDSCs is related to impaired immunity of aged hosts and that oral administration of L.E.M. extract can mitigate the impairment. PMID:27312060

  11. Estradiol reduces anxiety- and depression-like behavior of aged female mice

    PubMed Central

    Walf, Alicia A.; Frye, Cheryl A.

    2013-01-01

    Beneficial effects of the ovarian steroid, 17β-estradiol (E2), for affective behavior have been reported in young individuals, but less is known about the effects of E2 among older individuals, and the capacity of older individuals to respond to E2 following its decline. In the present study, the effects of acute E2 administration to aged mice for anxiety-like and depression-like behaviors were investigated. Intact female C57BL/6 mice (N=18) that were approximately 24 months old were administered vehicle (sesame oil, n=9) or E2 (10 μg, n=9) subcutaneously 1h prior to behavioral testing. Mice were tested for anxiety-like behavior (open field, elevated plus maze, mirror chamber, light–dark transition task, Vogel conflict task) and depression-like behavior (forced swim task). To assess the role of general motor behavior and coordination in these aged mice, performance in an activity monitor and rotarod task, and total entries made in tasks (open field, elevated plus maze, light–dark transition task) were determined. Mice administered E2, compared to vehicle, demonstrated anti-anxiety behavior in the open field, mirror chamber, and light–dark transition task, and anti-depressive-like behavior in the forced swim task. E2 also tended to have anti-anxiety effects in the elevated plus maze and Vogel task compared to vehicle administration, but these effects did not reach statistical significance. E2 did not alter motor behavior and/or coordination in the activity monitor, open field, or rotarod tasks. Thus, an acute E2 regimen produced specific anti-anxiety and anti-depressant effects, independent of effects on motor behavior, when administered to aged female C57BL/6 mice. PMID:19804793

  12. Long-lived growth hormone receptor knockout mice show a delay in age-related changes of body composition and bone characteristics.

    PubMed

    Bonkowski, Michael S; Pamenter, Richard W; Rocha, Juliana S; Masternak, Michal M; Panici, Jacob A; Bartke, Andrzej

    2006-06-01

    There is conflicting information on the physiological role of growth hormone (GH) in the control of aging. This study reports dual-energy x-ray absorptiometry (DXA) measurements of body composition and bone characteristics in young, adult, and aged long-lived GH receptor knockout (GHR-KO) and normal mice to determine the effects of GH resistance during aging. Compared to controls, GHR-KO mice showed an increased percentage of body fat. GHR-KO mice have reduced total-body bone mineral density (BMD), bone mineral content, and bone area, but these parameters increased with age. In addition, GHR-KO mice have decreased femur length, femur BMD, and lower lumbar BMD compared to controls in all age groups. These parameters also continued to increase with age. Our results indicate that GH resistance alters body composition, bone growth, and bone maintenance during aging in GHR-KO mice.

  13. Transcriptome composition of the preoptic area in mid-age and escitalopram treatment in male mice.

    PubMed

    Moriya, Shogo; Soga, Tomoko; Wong, Dutt Way; Parhar, Ishwar S

    2016-05-27

    The decrease in serotonergic neurotransmission during aging can increase the risk of neuropsychiatric diseases such as depression in elderly population and decline the reproductive system. Therefore, it is important to understand the age-associated molecular mechanisms of brain aging. In this study, the effect of aging and chronic escitalopram (antidepressant) treatment to admit mice was investigated by comparing transcriptomes in the preoptic area (POA) which is a key nucleus for reproduction. In the mid-aged brain, the immune system-related genes were increased and hormone response-related genes were decreased. In the escitalopram treated brains, transcription-, granule cell proliferation- and vasoconstriction-related genes were increased and olfactory receptors were decreased. Since homeostasis and neuroprotection-related genes were altered in both of mid-age and escitalopram treatment, these genes could be important for serotonin related physiologies in the POA. PMID:27113202

  14. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats

    PubMed Central

    AHN, JI HYEON; CHEN, BAI HUI; SHIN, BICH-NA; LEE, TAE-KYEONG; CHO, JEONG HWI; KIM, IN HYE; PARK, JOON HA; LEE, JAE-CHUL; TAE, HYUN-JIN; LEE, CHOONG-HYUN; WON, MOO-HO; LEE, YUN LYUL; CHOI, SOO YOUNG; HONG, SEONGKWEON

    2016-01-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  15. Dynamics of chromosomal aberrations in male mice of various strains during aging.

    PubMed

    Rozenfel'd, S V; Togo, E F; Mikheev, V S; Popovich, I G; Zabezhinskii, M A; Anisimov, V N

    2001-05-01

    We studied the incidence of chromosome aberrations in bone marrow cells and primary spermatocytes in various mouse strains. Experiments were performed on SAMP mice (accelerated aging), control SAMR mice, and long-living CBA and SHR mice. Experiments revealed a positive correlation between the age and the incidence of mutations in their somatic cells and gametes. PMID:11550060

  16. Effects of Resveratrol Supplementation and Exercise Training on Exercise Performance in Middle-Aged Mice.

    PubMed

    Kan, Nai-Wen; Ho, Chin-Shan; Chiu, Yen-Shuo; Huang, Wen-Ching; Chen, Pei-Yu; Tung, Yu-Tang; Huang, Chi-Chang

    2016-01-01

    Resveratrol (RES) has antioxidative, anti-inflammatory, anticancer, antidiabetic, antiasthmatic, antalgic, and anti-fatigue activities. Exercise training (ET) improves frailty resulting from aging. This study evaluated the effects of a combination of RES supplementation and ET on the exercise performance of aged mice. C57BL/6J mice (16 months old) were randomly divided into four groups: an older control group (OC group), supplementation with RES group (RES group), ET group (ET group), and a combination of ET and RES supplementation group (ET+RES group). Other 10-week-old mice were used as a young control group (Y-Ctrl group). In this study, exercise performance was evaluated using forelimb grip strength and exhaustive swimming time, as well as levels of plasma lactate, ammonia, glucose, and creatine kinase after an acute swimming exercise. Our results showed that the forelimb grip strength of mice in the ET+RES group was significantly higher than those in the OC, RES, and ET groups (by 1.3-, 1.2-, and 1.1-fold, respectively, p < 0.05), and exhibited no difference with the Y-Ctrl group. The endurance swimming test showed that swimming times of the ET and ET+RES groups were significantly longer than those of the OC and RES groups. Moreover, plasma lactate and ammonia levels of the ET + RES group after acute swimming exercise were significantly lower compared to the OC group (p < 0.05). Thus, it was suggested that by combining RES supplementation with ET for 4 weeks, the muscle strength and endurance performance of aged mice were significantly improved compared to the single intervention with either RES or ET alone. This combination might help shorten the extent of deterioration accompanying the aging process. PMID:27213310

  17. The neurotrophin receptor p75 mediates gp120-induced loss of synaptic spines in aging mice.

    PubMed

    Bachis, Alessia; Wenzel, Erin; Boelk, Allyssia; Becker, Jodi; Mocchetti, Italo

    2016-10-01

    Human immunodeficiency virus 1 and its envelope protein gp120 reduce synaptodendritic complexity. However, the mechanisms contributing to this pathological feature are still not understood. The proneurotrophin brain-derived neurotrophic factor promotes synaptic simplification through the activation of the p75 neurotrophin receptor (p75NTR). Here, we have used gp120 transgenic (gp120tg) mice to investigate whether p75NTR has a role in gp120-mediated neurotoxicity. Old (∼10 months) gp120tg mice exhibited an increase in proneurotrophin brain-derived neurotrophic factor levels in the hippocampus as well as a decrease in the number of dendritic spines when compared to age-matched wild type. These effects were not observed in 3- or 6-month-old mice. To test if the reduction in spine density and morphology is caused by the activation of p75NTR, we crossed gp120tg mice with p75NTR null mice. We found that deletion of only 1 copy of the p75NTR gene in gp120tg mice is sufficient to normalize the number of hippocampal spines, strongly suggesting that the neurotoxic effect of gp120 is mediated by p75NTR. These data indicate that p75NTR antagonists could provide an adjunct therapy against synaptic simplification caused by human immunodeficiency virus 1. PMID:27498053

  18. Adult but Not Aged C57BL/6 Male Mice Are Capable of Using Geometry for Orientation

    ERIC Educational Resources Information Center

    Schachner, Melitta; Morellini, Fabio; Fellini, Laetitia

    2006-01-01

    Geometry, e.g., the shape of the environment, can be used by numerous animal species to orientate, but data concerning the mouse are lacking. We addressed the question of whether mice are capable of using geometry for navigating. To test whether aging could affect searching strategies, we compared adult (3- to 5-mo old) and aged (20- to 21-mo old)…

  19. Qing'E formula alleviates the aging process in D-galactose-induced aging mice

    PubMed Central

    ZHONG, LIN; HUANG, FEI; SHI, HAILIAN; WU, HUI; ZHANG, BEIBEI; WU, XIAOJUN; WEI, XIAOHUI; WANG, ZHENGTAO

    2016-01-01

    Qing'E formula (QEF) is a clinically used prescription with four ingredients, Eucommiae Cortex, Psoraleae Fructus, Juglandis Semen and Garlic Rhizoma, from the Song dynasty (10th century CE). The present study aimed to investigate the anti-aging effect and mechanisms of QEF on D-galactose-induced aging mice. A mouse subacute aging model was established by subcutaneous injection of D-galactose at the neck consecutively for 8 weeks. Motor activity and memory impairment of the mice were evaluated by the rotarod test and passive avoidance test, respectively. Serum and liver parameters were analyzed with biochemical kits. Hippocampal mRNA and protein expression levels were examined by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. QEF administration significantly ameliorated the impaired motor and memory of aging mice. In the serum, QEF reduced blood urea nitrogen, creatinine, nitric oxide (NO) and malondialdehyde (MDA) levels, and inhibited alanine aminotransferase and aspartate aminotransferase activities. In the liver, QEF increased the glutathione level, enhanced total antioxidant capacity and catalase activity, deceased NO and MDA production, and reduced NO synthase activity. In the hippocampus, QEF elevated gene expression levels of Klotho, sirtuin 1 (SIRT1), forkhead box transcription factor O3, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), insulin-like growth factor-1 and peroxiredoxin-3. QEF increased protein expression levels of Klotho and SIRT1, and decreased that of PGC-1α in the hippocampus. In conclusion, QEF attenuated the aging process in D-galactose-treated mice, which may be mediated through enhancing the antioxidants in the body, protecting renal and hepatic health, and balancing hippocampal expression levels of the longevity-related genes. PMID:27347412

  20. Increased stress-induced intra-hippocampus corticosterone rise associated with memory impairments in middle-aged mice.

    PubMed

    Tronche, C; Piérard, C; Coutan, M; Chauveau, F; Liscia, P; Béracochéa, D

    2010-03-01

    The present study investigates the relationships between hippocampal corticosterone concentrations and memory retrieval performance in stress and non-stress conditions, in both young (6 month-old) and middle-aged (16 month-old) mice. For this purpose, the time-course evolution of stress-induced corticosterone rise in the dorsal hippocampus (dHPC) was investigated in both young and middle-aged mice. In parallel, the evolution of memory retrieval patterns was assessed using a contextual serial discrimination task (CSD). Finally, metyrapone (corticosterone synthesis inhibitor) was administered in order to evaluate the stress-induced impact of corticosterone rise on contextual memory retrieval in middle-aged animals. Results showed that: (i) non-stressed middle-aged mice exhibited a memory retrieval pattern opposite to that of non-stressed young animals, but similar to that of stressed young mice; (ii) the impact of stress on memory performance was transient (90 min) in young, as compared to middle-aged mice (120 min); (iii) dHPC basal (non-stress) corticosterone level was significantly increased by ageing; (iv) acute stress induced a rapid (15 min) and transient (90 min) dHPC corticosterone rise in young mice, while exhibiting greater magnitude and duration (120 min) in middle-aged animals; and (v) both the stress-induced endocrinal and memory effects were blocked by metyrapone in young and middle-aged mice. Finally, to our knowledge, the present work is the first study to directly measure the corticosterone rise in the hippocampus following exposure to stress and to directly correlate the corticosterone changes in the hippocampus with memory performance in both young and middle-aged mice.

  1. Long Term Dantrolene Treatment Reduced Intraneuronal Amyloid in Aged Alzheimer Triple Transgenic Mice

    PubMed Central

    Liu, Chunxia; Liang, Ge; Eckenhoff, Maryellen F.; Liu, Weixia; Pickup, Stephen; Meng, Qingcheng; Tian, Yuke; Li, Shitong; Wei, Huafeng

    2014-01-01

    Our previous study suggested that early dantrolene treatment reduced amyloid plaque burden and nearly abolished learning and memory loss in a triple transgenic Alzheimer's disease (3xTg-AD) mouse model. In this study, we investigated the long term treatment of dantrolene on amyloid and tau neuropathology, brain volume and cognitive function in aged 3xTg-AD mice. Fifteen month old 3xTg-AD mice and wild type controls were treated with oral dantrolene (5 mg/kg) or vehicle control twice a week for 6 months. Learning and memory were examined using the Morris Water Maze at 21 and again at 22 months of age. After the behavioral testing, hippocampal and cortical brain volumes were calculated with magnetic resonance imaging and motor function was evaluated using the rotorod. The amyloid burden and tau neurofibrillary tangles in the hippocampus were determined using immunohistochemistry. We found that dantrolene significantly decreased the intraneuronal amyloid accumulation by as much as 76% compared to its corresponding vehicle control, together with a trend to reduce phosphorylated tau in the hippocampus. No significant differences could be detected in hippocampal or cortical brain volume, motor function or cognition among all experimental groups, indicating that the mice were still pre-symptomatic for Alzheimer's disease. Thus, pre-symptomatic and long term dantrolene treatment significantly decreased the intraneuronal amyloid burden in aged 3xTg-AD mice prior to significant changes in brain volume, or cognition. PMID:25650693

  2. Anesthetic Activity of Alfaxalone Compared with Ketamine in Mice.

    PubMed

    Siriarchavatana, Parkpoom; Ayers, Jessica D; Kendall, Lon V

    2016-01-01

    Alfaxalone encased in hydroxypropyl-β -cyclodextrin is a neuroactive steroid compound that has recently been approved in the United States for use as an anesthetic in dogs and cats. We evaluated the use of alfaxalone compared with ketamine, both alone and in combination with xylazine, for anesthesia of C57BL/6 mice. We assessed time to onset of anesthesia, duration of action, reflex responses, respiratory rate, and clinical signs. Alfaxalone (80 mg/kg IP) induced a light surgical plane of anesthesia in all mice, with a time to onset of 2.2 ± 0.2 min and duration of 57.1 ± 3.8 min, whereas ketamine (80 mg/kg IP) provided only sedative effects (time to onset, 5.4 ± 0.4 min; duration, 6.9 ± 0.8 min). Clinically, alfaxalone caused a spectrum of activities, including popcorn-like jumping movements after injection, intense scratching of the face, hyperresponsiveness to noise or touch, and marked limb jerking during recovery. Adding xylazine to the single-agent protocols achieved deep surgical anesthesia (duration: alfaxalone + xylazine, 80.3 ± 17.8 min; ketamine + xylazine, 37.4 ± 8.2 min) and ameliorated the adverse clinical signs. Our preliminary analysis suggests that, because of its side effects, alfaxalone alone is not a viable anesthetic option for mice. Although alfaxalone combined with xylazine appeared to be a more viable option, some mice still experienced mild adverse reactions, and the long duration of action might be problematic regarding the maintenance of body temperature and monitoring of recovery. Further studies evaluating different routes of administration and drug combinations are warranted. PMID:27423149

  3. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    PubMed

    Kesby, James P; Kim, Jane J; Scadeng, Miriam; Woods, Gina; Kado, Deborah M; Olefsky, Jerrold M; Jeste, Dilip V; Achim, Cristian L; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions.

  4. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    PubMed

    Kesby, James P; Kim, Jane J; Scadeng, Miriam; Woods, Gina; Kado, Deborah M; Olefsky, Jerrold M; Jeste, Dilip V; Achim, Cristian L; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions. PMID:26448649

  5. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro.

    PubMed

    Guo, Yinting; Niu, Kaijun; Okazaki, Tatsuma; Wu, Hongmei; Yoshikawa, Takeo; Ohrui, Takashi; Furukawa, Katsutoshi; Ichinose, Masakazu; Yanai, Kazuhiko; Arai, Hiroyuki; Huang, Guowei; Nagatomi, Ryoichi

    2014-02-01

    Sarcopenia is characterized by the age-related loss of muscle mass and strength, which results in higher mortality in aged people. One of the mechanisms of the sarcopenia is the loss in the function and number of muscle satellite cells. Chronic low-grade inflammation plays a central role in the pathogenesis of age-related sarcopenia. Accumulating evidence suggests that coffee, one of the most widely consumed beverages in the world, has potential pharmacological benefits such as anti-inflammatory and anti-oxidant effects. Since these effects may improve sarcopenia and the functions of satellite cells, we examined the effects of coffee on the skeletal muscles in an animal model using aged mice. In vivo, coffee treatment attenuated the decrease in the muscle weight and grip strength, increased the regenerating capacity of injured muscles, and decreased the serum pro-inflammatory mediator levels compared to controls. In vitro, using satellite cells isolated from aged mice, coffee treatment increased the cell proliferation rate, augmented the cell cycle, and increased the activation level of Akt intra-cellular signaling pathway compared to controls. These findings suggest that the coffee treatment had a beneficial effect on age-related sarcopenia.

  6. Live Attenuated Leishmania donovani Centrin Knock Out Parasites Generate Non-inferior Protective Immune Response in Aged Mice against Visceral Leishmaniasis

    PubMed Central

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Joshi, Amritanshu B.; Ismail, Nevien; Gannavaram, Sreenivas; Debrabant, Alain; Akue, Adovi D.; KuKuruga, Mark A.; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L.

    2016-01-01

    Background Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Methodology Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells

  7. Sclerostin Immunoreactivity Increases in Cortical Bone Osteocytes and Decreases in Articular Cartilage Chondrocytes in Aging Mice.

    PubMed

    Thompson, Michelle L; Jimenez-Andrade, Juan Miguel; Mantyh, Patrick W

    2016-03-01

    Sclerostin is a 24-kDa secreted glycoprotein that has been identified as a negative modulator of new bone formation and may play a major role in age-related decline in skeletal function. Although serum levels of sclerostin markedly increase with age, relatively little is known about whether cells in the skeleton change their expression of sclerostin with aging. Using immunohistochemistry and confocal microscopy, we explored sclerostin immunoreactivity (sclerostin-IR) in the femurs of 4-, 9-, and 24-month-old adult C3H/HeJ male mice. In the femur, the only two cell types that expressed detectable levels of sclerostin-IR were bone osteocytes and articular cartilage chondrocytes. At three different sites along the diaphysis of the femur, only a subset of osteocytes expressed sclerostin-IR and the percentage of osteocytes that expressed sclerostin-IR increased from approximately 36% to 48% in 4- vs. 24-month-old mice. In marked contrast, in the same femurs, there were ~40% fewer hypertrophic chondrocytes of articular cartilage that expressed sclerostin-IR when comparing 24- vs. 4-month-old mice. Understanding the mechanism(s) that drive these divergent changes in sclerostin-IR may provide insight into understanding and treating the age-related decline of the skeleton.

  8. Macronutrient balance, reproductive function, and lifespan in aging mice.

    PubMed

    Solon-Biet, Samantha M; Walters, Kirsty A; Simanainen, Ulla K; McMahon, Aisling C; Ruohonen, Kari; Ballard, John William O; Raubenheimer, David; Handelsman, David J; Le Couteur, David G; Simpson, Stephen J

    2015-03-17

    In invertebrates, reproductive output and lifespan are profoundly impacted by dietary macronutrient balance, with these traits achieving their maxima on different diet compositions, giving the appearance of a resource-based tradeoff between reproduction and longevity. For the first time in a mammal, to our knowledge, we evaluate the effects of dietary protein (P), carbohydrate (C), fat (F), and energy (E) on lifespan and reproductive function in aging male and female mice. We show that, as in invertebrates, the balance of macronutrients has marked and largely opposing effects on reproductive and longevity outcomes. Mice were provided ad libitum access to one of 25 diets differing in P, C, F, and E content, with reproductive outcomes assessed at 15 months. An optimal balance of macronutrients exists for reproductive function, which, for most measures, differs from the diets that optimize lifespan, and this response differs with sex. Maximal longevity was achieved on diets containing a P:C ratio of 1:13 in males and 1:11 for females. Diets that optimized testes mass and epididymal sperm counts (indicators of gamete production) contained a higher P:C ratio (1:1) than those that maximized lifespan. In females, uterine mass (an indicator of estrogenic activity) was also greatest on high P:C diets (1:1) whereas ovarian follicle number was greatest on P:C 3:1 associated with high-F intakes. By contrast, estrous cycling was more likely in mice on lower P:C (1:8), and the number of corpora lutea, indicative of recent ovulations, was greatest on P:C similar to those supporting greatest longevity (1:11). PMID:25733862

  9. Macronutrient balance, reproductive function, and lifespan in aging mice.

    PubMed

    Solon-Biet, Samantha M; Walters, Kirsty A; Simanainen, Ulla K; McMahon, Aisling C; Ruohonen, Kari; Ballard, John William O; Raubenheimer, David; Handelsman, David J; Le Couteur, David G; Simpson, Stephen J

    2015-03-17

    In invertebrates, reproductive output and lifespan are profoundly impacted by dietary macronutrient balance, with these traits achieving their maxima on different diet compositions, giving the appearance of a resource-based tradeoff between reproduction and longevity. For the first time in a mammal, to our knowledge, we evaluate the effects of dietary protein (P), carbohydrate (C), fat (F), and energy (E) on lifespan and reproductive function in aging male and female mice. We show that, as in invertebrates, the balance of macronutrients has marked and largely opposing effects on reproductive and longevity outcomes. Mice were provided ad libitum access to one of 25 diets differing in P, C, F, and E content, with reproductive outcomes assessed at 15 months. An optimal balance of macronutrients exists for reproductive function, which, for most measures, differs from the diets that optimize lifespan, and this response differs with sex. Maximal longevity was achieved on diets containing a P:C ratio of 1:13 in males and 1:11 for females. Diets that optimized testes mass and epididymal sperm counts (indicators of gamete production) contained a higher P:C ratio (1:1) than those that maximized lifespan. In females, uterine mass (an indicator of estrogenic activity) was also greatest on high P:C diets (1:1) whereas ovarian follicle number was greatest on P:C 3:1 associated with high-F intakes. By contrast, estrous cycling was more likely in mice on lower P:C (1:8), and the number of corpora lutea, indicative of recent ovulations, was greatest on P:C similar to those supporting greatest longevity (1:11).

  10. Oxidative Stress Induced Age Dependent Meibomian Gland Dysfunction in Cu, Zn-Superoxide Dismutase-1 (Sod1) Knockout Mice

    PubMed Central

    Ibrahim, Osama M. A.; Dogru, Murat; Matsumoto, Yukihiro; Igarashi, Ayako; Kojima, Takashi; Wakamatsu, Tais Hitomi; Inaba, Takaaki; Shimizu, Takahiko; Shimazaki, Jun; Tsubota, Kazuo

    2014-01-01

    Purpose The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1−/−) mouse. Methods Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1−/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed. Results Corneal vital staining scores in the Sod1−/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1−/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1−/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1−/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1−/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1−/− mice. Conclusions Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1−/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations. PMID:25036096

  11. Deficiency in Poly(ADP-ribose) Polymerase-1 (PARP-1) Accelerates Aging and Spontaneous Carcinogenesis in Mice

    PubMed Central

    Piskunova, Tatiana S.; Yurova, Maria N.; Ovsyannikov, Anton I.; Semenchenko, Anna V.; Zabezhinski, Mark A.; Popovich, Irina G.; Wang, Zhao-Qi; Anisimov, Vladimir N.

    2008-01-01

    Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosyl)ation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosyl)ation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; P < .05). In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis. PMID:19415146

  12. Evidence that hematopoietic stem cell function is preserved during aging in long-lived S6K1 mutant mice

    PubMed Central

    Selman, Colin; Sinclair, Amy; Pedroni, Silvia M.A.; Irvine, Elaine E.; Michie, Alison M.; Withers, Dominic J.

    2016-01-01

    The mechanistic target of rapamycin (mTOR) signalling pathway plays a highly conserved role in aging; mice lacking ribosomal protein S6 kinase 1 (S6K1−/−) have extended lifespan and healthspan relative to wild type (WT) controls. Exactly how reduced mTOR signalling induces such effects is unclear, although preservation of stem cell function may be important. We show, using gene expression analyses, that there was a reduction in expression of cell cycle genes in young (12 week) and aged (80 week) S6K1−/− BM-derived c-Kit+ cells when compared to age-matched WT mice, suggesting that these cells are more quiescent in S6K1−/− mice. In addition, we investigated hematopoietic stem cell (HSC) frequency and function in young and aged S6K1−/− and WT mice. Young, but not aged, S6K1−/− mice had more LSK (lineage−, c-Kit+, Sca-1+) cells (% of bone marrow (BM)), including the most primitive long-term repopulating HSCs (LT-HSC) relative to WT controls. Donor-derived engraftment of LT-HSCs in recipient mice was unaffected by genotype in young mice, but was enhanced in transplants using LT-HSCs derived from aged S6K1−/− mice. Our results are the first to provide evidence that age-associated HSC functional decline is ameliorated in a long-lived mTOR mutant mouse. PMID:27083004

  13. Brain trauma in aged transgenic mice induces regression of established abeta deposits.

    PubMed

    Nakagawa, Y; Reed, L; Nakamura, M; McIntosh, T K; Smith, D H; Saatman, K E; Raghupathi, R; Clemens, J; Saido, T C; Lee, V M; Trojanowski, J Q

    2000-05-01

    Traumatic brain injury (TBI) increases susceptibility to Alzheimer's disease (AD), but it is not known if TBI affects the progression of AD. To address this question, we studied the neuropathological consequences of TBI in transgenic (TG) mice with a mutant human Abeta precursor protein (APP) mini-gene driven by a platelet-derived (PD) growth factor promoter resulting in overexpression of mutant APP (V717F), elevated brain Abeta levels, and AD-like amyloidosis. Since brain Abeta deposits first appear in 6-month-old TG (PDAPP) mice and accumulate with age, 2-year-old PDAPP and wild-type (WT) mice were subjected to controlled cortical impact (CCI) TBI or sham treatment. At 1, 9, and 16 weeks after TBI, neuron loss, gliosis, and atrophy were most prominent near the CCI site in PDAPP and WT mice. However, there also was a remarkable regression in the Abeta amyloid plaque burden in the hippocampus ipsilateral to TBI compared to the contralateral hippocampus of the PDAPP mice by 16 weeks postinjury. Thus, these data suggest that previously accumulated Abeta plaques resulting from progressive amyloidosis in the AD brain also may be reversible. PMID:10785464

  14. Zileuton restores memory impairments and reverses amyloid and tau pathology in aged AD mice

    PubMed Central

    Di Meco, Antonio; Lauretti, Elisabetta; Vagnozzi, Alana N.; Praticò, Domenico

    2014-01-01

    The enzyme 5-lipoxygenase (5LO) is up-regulated in Alzheimer’s disease (AD), and its pharmacological blockade with zileuton slows down the development of the AD-like phenotype in young AD mice. However, its efficacy after the AD pathology is established is unknown. To this end, starting at 12-months of age triple transgenic mice (3xTg) received zileuton, a selective 5LO inhibitor, or placebo for 3 months, and then the effect of this treatment on behavior, amyloid and tau pathology assessed. While mice on placebo showed worsening of their memory, treated mice performed even better than at baseline. Compared with placebo, treated mice had significant less Aβ deposits and tau phosphorylation secondary to reduced γ-secretase and CDK-5 activation, respectively. Our data provide novel insights into the disease-modifying action of pharmacologically inhibiting 5LO as a viable AD therapeutic approach. They represent the successful completion of preclinical studies for the development of this class of drug as clinically applicable therapy for the disease. PMID:24973121

  15. Protective Effect of RNase on Unilateral Nephrectomy-Induced Postoperative Cognitive Dysfunction in Aged Mice

    PubMed Central

    Gan, Lu; Dong, Yuanlin; Zhu, Tao; Ma, Gang; Li, Tao; Zhang, Xiyang; Li, Qian; Cheng, Xu; Wu, Chaomeng; Yang, Jing; Zuo, Yunxia; Liu, Jin

    2015-01-01

    Postoperative cognitive dysfunction (POCD) is a common complication after surgery, especially for elderly patients. Administration of RNase has been reported to exhibit neuroprotective effects in acute stroke. However, the potential role of RNase on POCD is unknown. Therefore, we sought to investigate whether RNase treatment could mitigate unilateral nephrectomy induced-cognitive deficit in aged mice. In the present study, twelve-month-old mice were administered RNase or an equal amount of normal saline perioperatively. All mice underwent Morris Water Maze (MWM) training 3 times per day for 7 days to acclimatize them to the water maze before surgical operation, and testing on days 1, 3 and 7 after surgery. We found that perioperative administration of RNase: 1) attenuated unilateral nephrectomy-induced cognitive impairment at day 3 after surgery; 2) reduced the hippocampal cytokines mRNA production and serum cytokines protein production at day 1 and day 7 (for MCP-1) after surgery, and; 3) inhibited hippocampal apoptosis as indicated by cleaved caspase-3 western blot and TUNEL staining at day 1 after surgery. In addition, a trend decrease of total serum RNA levels was detected in the RNase treated group after surgery compared with the untreated group. Further, our protocol of RNase administration had no impact on the arterial blood gas analysis right after surgery, kidney function and mortality rate at the observed days postoperatively. In conclusion, perioperative RNase treatment attenuated unilateral nephrectomy-induced cognitive impairment in aged mice. PMID:26225860

  16. Impaired musculoskeletal response to age and exercise in PPARβ(-/-) diabetic mice.

    PubMed

    Fu, He; Desvergne, Beatrice; Ferrari, Serge; Bonnet, Nicolas

    2014-12-01

    Fragility fractures are recognized complication of diabetes, but yet the underlying mechanisms remain poorly understood. This is particularly pronounced in type 2 diabetes in which the propensity to fall is increased but bone mass is not necessarily low. Thus, whether factors implicated in the development of insulin resistance and diabetes directly impact on the musculoskeletal system remains to be investigated. PPARβ(-/-) mice have reduced metabolic activity and are glucose intolerant. We examined changes in bone and muscle in PPARβ(-/-) mice and investigated both the mechanism behind those changes with age as well as their response to exercise. Compared with their wild type, PPARβ(-/-) mice had an accelerated and parallel decline in both muscle and bone strength with age. These changes were accompanied by increased myostatin expression, low bone formation, and increased resorption. In addition, mesenchymal cells from PPARβ(-/-) had a reduced proliferation capacity and appeared to differentiate into more of an adipogenic phenotype. Concomitantly we observed an increased expression of PPARγ, characteristic of adipocytes. The anabolic responses of muscle and bone to exercise were also diminished in PPARβ(-/-) mice. The periosteal bone formation response to direct bone compression was, however, maintained, indicating that PPARβ controls periosteal bone formation through muscle contraction and/or metabolism. Taken together, these data indicate that PPARβ deficiency leads to glucose intolerance, decreased muscle function, and reduced bone strength. On a molecular level, PPARβ appears to regulate myostatin and PPARγ expression in muscle and bone, thereby providing potential new targets to reverse bone fragility in patients with metabolic disturbances.

  17. Tadalafil enhances working memory, and reduces hippocampal oxidative stress in both young and aged mice.

    PubMed

    Al-Amin, Md Mamun; Hasan, S M Nageeb; Alam, Tanzir; Hasan, Ahmed Tasdid; Hossain, Imran; Didar, Rohini Rowshan; Alam, Md Ashraful; Rahman, Md Mahbubur

    2014-12-15

    Tadalafil, a type-5 phosphodiesterase enzyme inhibitor with long half-life used to treat erectile dysfunction. Recently it has been reported that tadalafil improves cognitive function. Here, we aimed to investigate the age dependent effects of tadalafil on memory, locomotor, behavior, and oxidative stress in the hippocampus. Tadalafil was orally administered everyday (5 mg/kg) to young (2 months) and old (16 months) healthy mice for 4 weeks. Control mice from each group received equal volume of 0.9% normal saline for the same duration. Memory and locomotor activity were tested using radial arm maze and open field test respectively. The level of malondialdehyde (MDA), nitric oxide (NO), and advanced protein oxidation product (APOP) was analyzed and catalase activity was determined from the isolated hippocampus. Treatment with tadalafil in aged mice improves working memory than the corresponding tadalafil treated young mice in radial arm maze test. Tadalafil treated mice traveled less distance in the center and the mean speed of tadalafil treated aged mice was significantly lower than the tadalafil treated young mice in open field test. Tadalafil treatment elicited a decrease of MDA level in the hippocampus of aged mice than that of young mice. APOP level was decreased only in aged mice treated with tadalafil. Treatment with tadalafil decreased NO and increased catalase activity in both young and aged mice. On the basis of previous and our findings, we conclude that tadalafil treatment reduces oxidative stress while increased cGMP level in the hippocampus might be responsible for memory enhancement.

  18. mTORC1 promotes aging-related venous thrombosis in mice via elevation of platelet volume and activation.

    PubMed

    Yang, Jun; Zhou, Xuan; Fan, Xiaorong; Xiao, Min; Yang, Dinghua; Liang, Bo; Dai, Meng; Shan, Lanlan; Lu, Jingbo; Lin, Zhiqi; Liu, Rong; Liu, Jun; Wang, Liping; Zhong, Mei; Jiang, Yu; Bai, Xiaochun

    2016-08-01

    Aging is associated with an increased incidence of venous thromboembolism (VTE), resulting in significant morbidity and mortality in the elderly. Platelet hyperactivation is linked to aging-related VTE. However, the mechanisms through which aging enhances platelet activation and susceptibility to VTE are poorly understood. In this study, we demonstrated that mechanistic target of rapamycin complex 1 (mTORC1) signaling is essential for aging-related platelet hyperactivation and VTE. mTORC1 was hyperactivated in platelets and megakaryocytes (MKs) from aged mice, accompanied by elevated mean platelet volume (MPV) and platelet activation. Inhibition of mTORC1 with rapamycin led to a significant reduction in susceptibility to experimental deep vein thrombosis (DVT) in aged mice (P < .01). To ascertain the specific role of platelet mTORC1 activation in DVT, we generated mice with conditional ablation of the mTORC1-specific component gene Raptor in MKs and platelets (Raptor knockout). These mice developed markedly smaller and lighter thrombi, compared with wild-type littermates (P < .01) in experimental DVT. Mechanistically, increased reactive oxygen species (ROS) production with aging induced activation of mTORC1 in MKs and platelets, which, in turn, enhanced bone marrow MK size, MPV, and platelet activation to promote aging-related VTE. ROS scavenger administration induced a significant decrease (P < .05) in MK size, MPV, and platelet activation in aged mice. Our findings collectively demonstrate that mTORC1 contributes to enhanced venous thrombotic susceptibility in aged mice via elevation of platelet size and activation. PMID:27288518

  19. High folic acid intake reduces natural killer cell cytotoxicity in aged mice.

    PubMed

    Sawaengsri, Hathairat; Wang, Junpeng; Reginaldo, Christina; Steluti, Josiane; Wu, Dayong; Meydani, Simin Nikbin; Selhub, Jacob; Paul, Ligi

    2016-04-01

    Presence of unmetabolized folic acid in plasma, which is indicative of folic acid intake beyond the metabolic capacity of the body, is associated with reduced natural killer (NK) cell cytotoxicity in postmenopausal women ≥50years. NK cells are cytotoxic lymphocytes that are part of the innate immune system critical for surveillance and defense against virus-infected and cancer cells. We determined if a high folic acid diet can result in reduced NK cell cytotoxicity in an aged mouse model. Female C57BL/6 mice (16-month-old) were fed an AIN-93M diet with the recommended daily allowance (1× RDA, control) or 20× RDA (high) folic acid for 3months. NK cytotoxicity was lower in splenocytes from mice fed a high folic acid diet when compared to mice on control diet (P<.04). The lower NK cell cytotoxicity in high folic acid fed mice could be due to their lower mature cytotoxic/naïve NK cell ratio (P=.03) when compared to the control mice. Splenocytes from mice on high folic acid diet produced less interleukin (IL)-10 when stimulated with lipopolysaccharide (P<.05). The difference in NK cell cytotoxicity between dietary groups was abolished when the splenocytes were supplemented with exogenous IL-10 prior to assessment of the NK cytotoxicity, suggesting that the reduced NK cell cytotoxicity of the high folic acid group was at least partially due to reduced IL-10 production. This study demonstrates a causal relationship between high folic acid intake and reduced NK cell cytotoxicity and provides some insights into the potential mechanisms behind this relationship.

  20. Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction.

    PubMed

    Coffey, Peter J; Gias, Carlos; McDermott, Caroline J; Lundh, Peter; Pickering, Matthew C; Sethi, Charanjit; Bird, Alan; Fitzke, Fred W; Maass, Annelie; Chen, Li Li; Holder, Graham E; Luthert, Philip J; Salt, Thomas E; Moss, Stephen E; Greenwood, John

    2007-10-16

    Age-related macular degeneration is the most common form of legal blindness in westernized societies, and polymorphisms in the gene encoding complement factor H (CFH) are associated with susceptibility to age-related macular degeneration in more than half of affected individuals. To investigate the relationship between complement factor H (CFH) and retinal disease, we performed functional and anatomical analysis in 2-year-old CFH-deficient (cfh(-/-)) mice. cfh(-/-) animals exhibited significantly reduced visual acuity and rod response amplitudes on electroretinography compared with age-matched controls. Retinal imaging by confocal scanning laser ophthalmoscopy revealed an increase in autofluorescent subretinal deposits in the cfh(-/-) mice, whereas the fundus and vasculature appeared normal. Examination of tissue sections showed an accumulation of complement C3 in the neural retina of the cfh(-/-) mice, together with a decrease in electron-dense material, thinning of Bruch's membrane, changes in the cellular distribution of retinal pigment epithelial cell organelles, and disorganization of rod photoreceptor outer segments. Collectively, these data show that, in the absence of any specific exogenous challenge to the innate immune system, CFH is critically required for the long-term functional health of the retina.

  1. Central inhibition of interleukin-6 trans-signaling during peripheral infection reduced neuroinflammation and sickness in aged mice

    PubMed Central

    Burton, Michael D; Rytych, Jennifer L; Freund, Gregory G; Johnson, Rodney W

    2013-01-01

    During systemic infection, inflammatory cytokines such as interleukin (IL)-6 are produced in excess in the brain of aged mice and induce severe behavioral deficits. However, no studies have examined how pro-inflammatory IL-6 trans-signaling is involved in the exaggerated production of IL-6 in the aged brain, nor the extent to which IL-6 trans-signaling affects other markers of neuroinflammation, adhesion molecules, and behavior. Therefore, this study investigated in aged mice the presence of IL-6 signaling subunits in microglia; the central effects of soluble gp130 (sgp130)—a natural inhibitor of the IL-6 trans-signaling pathway—on IL-6 production in microglia; and the effects of sgp130 given intracerebroventricularly (ICV) on neuroinflammation and sickness behavior caused by i.p. injection of lipopolysaccharide (LPS). Here we show that microglia isolated from aged mice have higher expression of IL-6 receptor (IL-6R) compared to microglia from adults; and the level of mRNA for ADAM17, the enzyme responsible for shedding membrane-bound IL-6R in trans-signaling, is higher in the hippocampus of aged mice compared to adults. Additionally, we show in aged mice that peripheral LPS challenge elicits a hyperactive IL-6 response in microglia, and selective blockade of trans-signaling by ICV injection of sgp130 mitigates this. The sgp130-associated inhibition of IL-6 was paralleled by amelioration of exaggerated and protracted sickness behavior in aged mice. Taken together, the results show that microglia are important regulators of the IL-6 trans-signaling response in the aged brain and sgp130 exerts an anti-inflammatory effect by inhibiting the pro-inflammatory arm of IL-6 signaling. PMID:23354002

  2. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus.

  3. Bupropion induced changes in exploratory and anxiety-like behaviour in NMRI male mice depends on the age.

    PubMed

    Carrasco, M Carmen; Vidal, Jose; Redolat, Rosa

    2013-09-01

    The aim of this study was to assess the effects of the antidepressant bupropion on anxiety and novelty-seeking in adolescent mice of different ages and adults. Behavioural differences between early adolescent, late adolescent and adult NMRI mice were measured both in the elevated plus-maze and the hole-board tasks following acute administration of bupropion (5, 10, 15, 20mg/kg) or saline. In the plus maze test, early and late adolescent mice treated with bupropion (10, 15mg/kg, respectively) had lower percentages of entries in the open-arms compared to their vehicle controls. Adult mice treated with bupropion did not differ from their vehicle controls. These results suggest that the effect of this drug on anxiety-like behaviour in mice depends on the age, showing adolescents an anxiogenic-like profile. In the hole-board, adolescents showed more elevated levels of novelty-seeking than adults, exhibiting shorter latency to the first head-dip (HD) and a higher number of HD's. Bupropion increases the latency to the first HD and decreases the number of HD's in all age-groups, indicating a decline in exploratory tendency. Findings reveal that the age can modulate the behaviour displayed by mice in both animal models, and that adolescents are more sensitive to bupropion's anxiogenic effects.

  4. Effects of velvet antler polypeptide on sexual behavior and testosterone synthesis in aging male mice

    PubMed Central

    Zang, Zhi-Jun; Tang, Hong-Feng; Tuo, Ying; Xing, Wei-Jie; Ji, Su-Yun; Gao, Yong; Deng, Chun-Hua

    2016-01-01

    Twenty-four-month-old male C57BL/6 mice with low serum testosterone levels were used as a late-onset hypogonadism (LOH) animal model for examining the effects of velvet antler polypeptide (VAP) on sexual function and testosterone synthesis. These mice received VAP for 5 consecutive weeks by daily gavage at doses of 100, 200, or 300 mg kg−1 body weight per day (n = 10 mice per dose). Control animals (n = 10) received the same weight-based volume of vehicle. Sexual behavior and testosterone levels in serum and interstitial tissue of testis were measured after the last administration of VAP. Furthermore, to investigate the mechanisms of how VAP affects sexual behavior and testosterone synthesis in vivo, the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in Leydig cells was also measured by immunofluorescence staining and quantitative real-time PCR. As a result, VAP produced a significant improvement in the sexual function of these aging male mice. Serum testosterone level and intratesticular testosterone (ITT) concentration also increased in the VAP-treated groups. The expression of StAR, P450scc, and 3β-HSD was also found to be enhanced in the VAP-treated groups compared with the control group. Our results suggested that VAP was effective in improving sexual function in aging male mice. The effect of velvet antler on sexual function was due to the increased expression of several rate-limiting enzymes of testosterone synthesis (StAR, P450scc, and 3β-HSD) and the following promotion of testosterone synthesis in vivo. PMID:26608944

  5. p47phox-Nox2-dependent ROS Signaling Inhibits Early Bone Development in Mice but Protects against Skeletal Aging*

    PubMed Central

    Chen, Jin-Ran; Lazarenko, Oxana P.; Blackburn, Michael L.; Mercer, Kelly E.; Badger, Thomas M.; Ronis, Martin J. J.

    2015-01-01

    Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Progressive accumulation of reactive oxygen species (ROS) has been suspected to be the leading cause of many inflammatory and degenerative diseases, as well as an important factor underlying many effects of aging. In contrast, how reduced ROS signaling regulates inflammation and remodeling in bone remains unknown. Here, we utilized a p47phox knock-out mouse model, in which an essential cytosolic co-activator of Nox2 is lost, to characterize bone metabolism at 6 weeks and 2 years of age. Compared with their age-matched wild type controls, loss of Nox2 function in p47phox−/− mice resulted in age-related switch of bone mass and strength. Differences in bone mass were associated with increased bone formation in 6-week-old p47phox−/− mice but decreased in 2-year-old p47phox−/− mice. Despite decreases in ROS generation in bone marrow cells and p47phox-Nox2 signaling in osteoblastic cells, 2-year-old p47phox−/− mice showed increased senescence-associated secretory phenotype in bone compared with their wild type controls. These in vivo findings were mechanistically recapitulated in ex vivo cell culture of primary fetal calvarial cells from p47phox−/− mice. These cells showed accelerated cell senescence pathway accompanied by increased inflammation. These data indicate that the observed age-related switch of bone mass in p47phox-deficient mice occurs through an increased inflammatory milieu in bone and that p47phox-Nox2-dependent physiological ROS signaling suppresses inflammation in aging. PMID:25922068

  6. Effects of Aging on Osteogenic Response and Heterotopic Ossification Following Burn Injury in Mice

    PubMed Central

    Peterson, Jonathan R.; Eboda, Oluwatobi N.; Brownley, R. Cameron; Cilwa, Katherine E.; Pratt, Lauren E.; De La Rosa, Sara; Agarwal, Shailesh; Buchman, Steven R.; Cederna, Paul S.; Morris, Michael D.; Wang, Stewart C.

    2015-01-01

    Heterotopic ossification (HO) is a common and debilitating complication of burns, traumatic brain injuries, and musculoskeletal trauma and surgery. Although the exact mechanism of ectopic bone formation is unknown, mesenchymal stem cells (MSCs) capable of osteogenic differentiation are known to play an essential role. Interestingly, the prevalence of HO in the elderly population is low despite the high overall occurrence of musculoskeletal injury and orthopedic procedures. We hypothesized that a lower osteogenicity of MSCs would be associated with blunted HO formation in old compared with young mice. In vitro osteogenic differentiation of adipose-derived MSCs from old (18–20 months) and young (6–8 weeks) C57/BL6 mice was assessed, with or without preceding burn injury. In vivo studies were then performed using an Achilles tenotomy with concurrent burn injury HO model. HO formation was quantified using μCT scans, Raman spectroscopy, and histology. MSCs from young mice had more in vitro bone formation, upregulation of bone formation pathways, and higher activation of Smad and nuclear factor kappa B (NF-κB) signaling following burn injury. This effect was absent or blunted in cells from old mice. In young mice, burn injury significantly increased HO formation, NF-κB activation, and osteoclast activity at the tenotomy site. This blunted, reactive osteogenic response in old mice follows trends seen clinically and may be related to differences in the ability to mount acute inflammatory responses. This unique characterization of HO and MSC osteogenic differentiation following inflammatory insult establishes differences between age populations and suggests potential pathways that could be targeted in the future with therapeutics. PMID:25122460

  7. Mice age - Does the age of the mother predict offspring behaviour?

    PubMed

    Lerch, Sandra; Brandwein, Christiane; Dormann, Christof; Gass, Peter; Chourbaji, Sabine

    2015-08-01

    Increasing paternal age is known to be associated with a great variety of psychiatric disorders such as schizophrenia or autism. Hence the factor "age" may be taken as strategic tool to analyse specific scientific hypotheses. Additionally, this finding also needs to be addressed in rather pragmatically performed breeding protocols of model organisms, since otherwise artefacts may challenge the validity of the results. Our study was performed to investigate influences of advanced age of mouse dams (30 vs. 16weeks) on maternal- and offspring behaviour. Adult offspring of both sexes was analysed in a test battery comprising paradigms for exploration, anxiety and depressive-like behaviours. Final blood sampling was conducted for stressphysiological analysis. Interestingly, advanced age of the mothers was associated with increased nest-building quality while maternal activity was unaffected. Moreover "maternal (mice) age" (MA) affected emotionality in the offspring, which became apparent in the dark-light box and the social recognition paradigm. These findings not only emphasize MA to model a potent risk factor with regard to emotional stability, but also underscore the vast necessity to include information about breeding protocols into the methods section of any animal study. PMID:25914174

  8. Mice age - Does the age of the mother predict offspring behaviour?

    PubMed

    Lerch, Sandra; Brandwein, Christiane; Dormann, Christof; Gass, Peter; Chourbaji, Sabine

    2015-08-01

    Increasing paternal age is known to be associated with a great variety of psychiatric disorders such as schizophrenia or autism. Hence the factor "age" may be taken as strategic tool to analyse specific scientific hypotheses. Additionally, this finding also needs to be addressed in rather pragmatically performed breeding protocols of model organisms, since otherwise artefacts may challenge the validity of the results. Our study was performed to investigate influences of advanced age of mouse dams (30 vs. 16weeks) on maternal- and offspring behaviour. Adult offspring of both sexes was analysed in a test battery comprising paradigms for exploration, anxiety and depressive-like behaviours. Final blood sampling was conducted for stressphysiological analysis. Interestingly, advanced age of the mothers was associated with increased nest-building quality while maternal activity was unaffected. Moreover "maternal (mice) age" (MA) affected emotionality in the offspring, which became apparent in the dark-light box and the social recognition paradigm. These findings not only emphasize MA to model a potent risk factor with regard to emotional stability, but also underscore the vast necessity to include information about breeding protocols into the methods section of any animal study.

  9. Metabolism and aging: effects of cold exposure on metabolic rate, body composition, and longevity in mice.

    PubMed

    Vaanholt, Lobke M; Daan, Serge; Schubert, Kristin A; Visser, G Henk

    2009-01-01

    The proposition that increased energy expenditure shortens life has a long history. The rate-of-living theory (Pearl 1928 ) states that life span and average mass-specific metabolic rate are inversely proportional. Originally based on interspecific allometric comparisons between species of mammals, the theory was later rejected on the basis of comparisons between taxa (e.g., birds have higher metabolic rates than mammals of the same size and yet live longer). It has rarely been experimentally tested within species. Here, we investigated the effects of increased energy expenditure, induced by cold exposure, on longevity in mice. Longevity was measured in groups of 60 male mice maintained at either 22 degrees C (WW) or 10 degrees C (CC) throughout adult life. Forty additional mice were maintained at both of these temperatures to determine metabolic rate (by stable isotope turnover, gas exchange, and food intake) as well as the mass of body and organs of subsets of animals at four different ages. Because energy expenditure might affect longevity by either accumulating damage or by instantaneously affecting mortality rate, we included a third group of mice exposed to 10 degrees C early in life and to 22 degrees C afterward (CW). Exposure to cold increased mean daily energy expenditure by ca. 48% (from 47.8 kJ d(-1) in WW to 70.6 kJ d(-1) in CC mice, with CW intermediate at 59.9 kJ d(-1)). However, we observed no significant differences in median life span among the groups (WW, 832 d; CC, 834 d; CW, 751 d). CC mice had reduced body mass (lifetime mean 30.7 g) compared with WW mice (33.8 g), and hence their lifetime energy potential (LEP) per gram whole-body mass had an even larger excess than per individual. Greenberg ( 1999 ) has pointed out that the size of the energetically costly organs, rather than that of the whole body, may be relevant for the rate-of-living idea. We therefore expressed LEP also in terms of energy expenditure per gram dry lean mass or per gram

  10. Differential effects of stimulatory factors on natural killer cell activities of young and aged mice.

    PubMed

    Nogusa, Shoko; Murasko, Donna M; Gardner, Elizabeth M

    2012-09-01

    Age-associated influences on natural killer (NK) cell functions following cytokine stimulation were examined in splenocytes from C57BL/6 mice. NK cells of both young and aged mice exhibited significantly increased: interferon-γ production after interleukin (IL)-12 or IL-15 alone or any combination of IL-12, IL-18, and IL-2; cytotoxicity after IL-2 or IL-15; and granzyme B expression after IL-15. The only significant age-associated differences were observed in interferon-γ production after IL-15 or IL-12 + 18 + 2 and in granzyme B expression following IL-2 or IL-15. Perforin expression did not increase following stimulation; however, NK cells from aged mice expressed significantly higher levels than young mice. These results underscore the complexity of the cytokine-induced functional activities of NK cells and illustrate the differential response of NK cells from young and aged mice to cytokine stimulation.

  11. Effect of age and vaccination on extent and spread of Chlamydia pneumoniae infection in C57BL/6 mice

    PubMed Central

    2012-01-01

    Background Chlamydia pneumoniae is an obligate intracellular respiratory pathogen for humans. Infection by C. pneumoniae may be linked etiologically to extra-respiratory diseases of aging, especially atherosclerosis. We have previously shown that age promotes C. pneumoniae respiratory infection and extra-respiratory spread in BALB/c mice. Findings Aged C57BL/6 mice had a greater propensity to develop chronic and/or progressive respiratory infections following experimental intranasal infection by Chlamydia pneumoniae when compared to young counterparts. A heptavalent CTL epitope minigene (CpnCTL7) vaccine conferred equal protection in the lungs of both aged and young mice. This vaccine was partially effective in protecting against C. pneumoniae spread to the cardiovascular system of young mice, but failed to provide cardiovascular protection in aged animals. Conclusions Our findings suggest that vaccine strategies that target the generation of a C. pneumoniae-specific CTL response can protect the respiratory system of both young and aged animals, but may not be adequate to prevent dissemination of C. pneumoniae to the cardiovascular system or control replication in those tissues in aged animals. PMID:22594698

  12. Intake of a milk-based wolfberry formulation enhances the immune response of young-adult and aged mice.

    PubMed

    Vidal, Karine; Benyacoub, Jalil; Sanchez-Garcia, José; Foata, Francis; Segura-Roggero, Iris; Serrant, Patrick; Moser, Mireille; Blum, Stephanie

    2010-02-01

    Aging is associated with alterations of immune responses. Wolfberry, a popular Chinese functional ingredient, is prized for its anti-aging properties; however, little is known about the immunological effect of wolfberry intake. The purpose of this study was to examine the effect of dietary intake of a milk-based formulation of wolfberry, named Lacto-Wolfberry, on in vivo and ex vivo parameters of adaptive immunity in young-adult and aged mice. Over 44 days, young-adult (2 months) and aged (21 months) C57BL/6J mice were fed ad libitum with a controlled diet and received drinking water supplemented or not with 0.5% (wt/vol) Lacto-Wolfberry. All mice were immunized on day 15 and challenged on day 22 with a T cell- dependent antigen, keyhole limpet hemocyanin (KLH). Lacto-Wolfberry supplementation significantly increased in vivo systemic immune markers that are known to decline with aging. Indeed, both antigen-(KLH) specific humoral response and cell-mediated immune responses in young-adult and aged mice were enhanced when compared to their respective controls. No significant effect of Lacto-Wolfberry supplementation was observed on ex vivo spleen cells proliferative response to mitogens and on splenocyte T cell subsets. In conclusion, dietary intake of Lacto-Wolfberry may favorably modulate the poor responsiveness to antigenic challenge observed with aging. PMID:20230278

  13. Enhanced humoral response to influenza vaccine in aged mice with a novel adjuvant, rOv-ASP-1.

    PubMed

    Jiang, Jiu; Fisher, Erin M; Concannon, Mark; Lustigman, Sara; Shen, Hao; Murasko, Donna M

    2016-02-10

    Immunization is the best way to prevent seasonal epidemics and pandemics of influenza. There are two kinds of influenza vaccines available in the United States: an inactivated vaccine (TIV) and an attenuated vaccine; however, only TIV is approved for immunization of the elderly population. While the aged population has the highest rate of influenza vaccination, the protective efficacy is low as evidenced by elderly individuals having the highest mortality associated with influenza. Recently, we reported that an adjuvant derived from the helminth parasite Onchocerca volvulus, named O. volvulus activation-associated secreted protein-1 (Ov-ASP-1), can significantly enhance the protective efficacy of an inactivated vaccine (TIV) in young adult mice. In the current study, we examined whether this recombinant Ov-ASP-1 (rOv-ASP-1) can enhance the efficacy of TIV in aged mice as well. While primary immunization with TIV alone produced only a low level of influenza-specific antibodies (total IgG, IgG1, and IgG2c) in aged mice, the antibody levels were significantly increased after immunization with TIV+rOv-ASP-1. More importantly, the level of the total IgG in aged mice administered TIV+rOv-ASP-1 was comparable to that of young adult mice immunized with TIV alone. Co-administration of rOv-ASP-1 induced a low level of cross-reactive antibody and enhanced the protective efficacy of TIV in aged mice, reflected by significantly increased survival after challenge with a heterologous influenza virus. rOv-ASP-1 was also superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice, and in conferring protection after challenge. These results demonstrate that rOv-ASP-1 may serve as a potential adjuvant for influenza vaccine to improve the efficacy of protection in the elderly.

  14. Enhanced humoral response to influenza vaccine in aged mice with a novel adjuvant, rOv-ASP-1.

    PubMed

    Jiang, Jiu; Fisher, Erin M; Concannon, Mark; Lustigman, Sara; Shen, Hao; Murasko, Donna M

    2016-02-10

    Immunization is the best way to prevent seasonal epidemics and pandemics of influenza. There are two kinds of influenza vaccines available in the United States: an inactivated vaccine (TIV) and an attenuated vaccine; however, only TIV is approved for immunization of the elderly population. While the aged population has the highest rate of influenza vaccination, the protective efficacy is low as evidenced by elderly individuals having the highest mortality associated with influenza. Recently, we reported that an adjuvant derived from the helminth parasite Onchocerca volvulus, named O. volvulus activation-associated secreted protein-1 (Ov-ASP-1), can significantly enhance the protective efficacy of an inactivated vaccine (TIV) in young adult mice. In the current study, we examined whether this recombinant Ov-ASP-1 (rOv-ASP-1) can enhance the efficacy of TIV in aged mice as well. While primary immunization with TIV alone produced only a low level of influenza-specific antibodies (total IgG, IgG1, and IgG2c) in aged mice, the antibody levels were significantly increased after immunization with TIV+rOv-ASP-1. More importantly, the level of the total IgG in aged mice administered TIV+rOv-ASP-1 was comparable to that of young adult mice immunized with TIV alone. Co-administration of rOv-ASP-1 induced a low level of cross-reactive antibody and enhanced the protective efficacy of TIV in aged mice, reflected by significantly increased survival after challenge with a heterologous influenza virus. rOv-ASP-1 was also superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice, and in conferring protection after challenge. These results demonstrate that rOv-ASP-1 may serve as a potential adjuvant for influenza vaccine to improve the efficacy of protection in the elderly. PMID:26795365

  15. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice.

    PubMed

    Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart

    2015-12-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.

  16. Ocular Surface Disease and Dacryoadenitis in Aging C57BL/6 Mice

    PubMed Central

    McClellan, Andrew J.; Volpe, Eugene A.; Zhang, Xiaobo; Darlington, Gretchen J.; Li, De-Quan; Pflugfelder, Stephen C.; de Paiva, Cintia S.

    2015-01-01

    Dry eye in humans displays increased prevalence in the aged and in women. Here, we investigated the ocular surfaces and lacrimal glands of aged mice of both sexes. We surveyed three different ages [young, middle-aged (6 to 9 months), and elderly] by investigating severity markers of dry eye disease (DED). We observed an age-dependent dry eye phenotype as early as 6 to 9 months: increased corneal surface irregularity, increased corneal barrier disruption, conjunctival CD4+ T-cell infiltration, and loss of mucin-filled goblet cells. Expression of interferon-γ, IL-17 mRNA transcripts was increased in the conjunctiva and IL-17A, matrix metallopeptidase 9, and chemokine ligand 20 in the corneas of elderly mice. Elderly male mice develop more of a skewed response of type 1 T helper cell, whereas female mice have a bias toward type 17 T helper cell in the conjunctiva. In the lacrimal gland, an increase in CD4+ and CD8+ T cells and B cells and a decrease in activated dendritic cells were observed. Adoptive transfer of CD4+ T cells isolated from elderly mice transferred DED into young immunodeficient recipients, which was more pronounced from male donors. Our findings show the development of DED in aging mice. Pathogenic CD4+ T cells that develop with aging are capable of transferring DED from older mice to naive immunodeficient recipients. Taken together, our results indicate that age-related autoimmunity contributes to development of DED with aging. PMID:24389165

  17. Rejuvenation of the inflammatory system stimulates fracture repair in aged mice

    PubMed Central

    Xing, Zhiqing; Lu, Chuanyong; Hu, Diane; Miclau, Theodore; Marcucio, Ralph S.

    2010-01-01

    Age significantly reduces the regenerative capacity of the skeleton, but the underlying causes are unknown. Here, we tested whether the functional status of inflammatory cells contributes to delayed healing in aged animals. We created chimeric mice by bone marrow transplantation after lethal irradiation. In this model chondrocytes and osteoblasts in the regenerate are derived exclusively from host cells while inflammatory cells are derived from the donor. Using this model, the inflammatory system of middle-aged mice (12-month-old) was replaced by transplanted bone marrow from juvenile mice (4-week-old), or age-matched controls. We found that the middle-aged mice receiving juvenile bone marrow had larger calluses and more bone formation during early stages and faster callus remodeling at late stages of fracture healing, indicating that inflammatory cells derived from the juvenile bone marrow accelerated bone repair in the middle-aged animals. In contrast, transplanting bone marrow from middle-age mice to juvenile mice did not alter the process of fracture healing in juvenile mice. Thus, the roles of inflammatory cells in fracture healing may be age-related, suggesting the possibility of enhancing fracture healing in aged animals by manipulating the inflammatory system. PMID:20108320

  18. Streptococcus pneumoniae Colonization Disrupts the Microbial Community within the Upper Respiratory Tract of Aging Mice

    PubMed Central

    Thevaranjan, Netusha; Whelan, Fiona J.; Puchta, Alicja; Ashu, Eta; Rossi, Laura; Surette, Michael G.

    2016-01-01

    Nasopharyngeal colonization by the Gram-positive bacterium Streptococcus pneumoniae is a prerequisite for pneumonia and invasive pneumococcal diseases. Colonization is asymptomatic, involving dynamic and complex interplay between commensals, the host immune system, and environmental factors. The elderly are at an increased risk of developing pneumonia, which might be due to changes in the respiratory microbiota that would impact bacterial colonization and persistence within this niche. We hypothesized that the composition of the upper respiratory tract (URT) microbiota changes with age and subsequently can contribute to sustained colonization and inefficient clearance of S. pneumoniae. To test this, we used a mouse model of pneumococcal colonization to compare the composition of the URT microbiota in young, middle-aged, and old mice in the naive state and during the course of colonization using nasal pharyngeal washes. Sequencing of variable region 3 (V3) of the 16S rRNA gene was used to identify changes occurring with age and throughout the course of S. pneumoniae colonization. We discovered that age affects the composition of the URT microbiota and that colonization with S. pneumoniae is more disruptive of preexisting communities in older mice. We have further shown that host-pathogen interactions following S. pneumoniae colonization can impact the populations of resident microbes, including Staphylococcus and Haemophilus. Together, our findings indicate alterations to the URT microbiota could be detrimental to the elderly, resulting in increased colonization of S. pneumoniae and decreased efficiency in its clearance. PMID:26787714

  19. Exogenous Testosterone, Aging, and Changes in Behavioral Response of Gonadally Intact Male Mice

    PubMed Central

    Onaolapo, Olakunle J.; Onaolapo, Adejoke Y.; Omololu, Tope A.; Oludimu, Adedunke T.; Segun-Busari, Toluwalase; Omoleke, Taofeeq

    2016-01-01

    This study tested the hypothesis that aging significantly affects the influence of exogenous testosterone on neurobehavior in gonadally intact male mice. Groups of prepubertal and aged male mice received daily vehicle or testosterone propionate (TP; 2.5 or 5.0 mg/kg intraperitoneal [i.p.]) for 21 days. Behaviors were assessed on days 1 and 21. Weight gain was significant in prepubertal mice. Locomotion and rearing increased in prepubertal mice after first dose and decreased after last dose of TP. Rearing was suppressed in aged mice throughout. Suppression of grooming occurred in both age groups at day 21. Significant increase in working memory in both age groups was seen in the radial-arm maze (at specific doses) and in prepubertal mice in the Y-maze. Elevated plus maze test showed mixed anxiolytic/anxiogenic effects. Aged mice had higher serum testosterone. In conclusion, age is an important determinant for the influence of exogenous testosterone on behavior in gonadally intact male mice. PMID:27158222

  20. Manipulation of Ovarian Function Significantly Influenced Sarcopenia in Postreproductive-Age Mice

    PubMed Central

    Peterson, Rhett L.

    2016-01-01

    Previously, transplantation of ovaries from young cycling mice into old postreproductive-age mice increased life span. We anticipated that the same factors that increased life span could also influence health span. Female CBA/J mice received new (60 d) ovaries at 12 and 17 months of age and were evaluated at 16 and 25 months of age, respectively. There were no significant differences in body weight among any age or treatment group. The percentage of fat mass was significantly increased at 13 and 16 months of age but was reduced by ovarian transplantation in 16-month-old mice. The percentages of lean body mass and total body water were significantly reduced in 13-month-old control mice but were restored in 16- and 25-month-old recipient mice by ovarian transplantation to the levels found in six-month-old control mice. In summary, we have shown that skeletal muscle mass, which is negatively influenced by aging, can be positively influenced or restored by reestablishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females. PMID:27747096

  1. Age- and sex-associated plasma proteomic changes in growth hormone receptor gene-disrupted mice.

    PubMed

    Ding, Juan; Berryman, Darlene E; Jara, Adam; Kopchick, John J

    2012-08-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice are dwarf, insulin sensitive, and long lived despite being obese. In order to identify characteristics associated with their increased longevity, we studied age-related plasma proteomic changes in these mice. Male and female GHR-/- mice and their littermate controls were followed longitudinally at 8, 16, and 24 months of ages for plasma proteomic analysis. Relative to control littermates, GHR-/- mice had increased levels of apolipoprotein A-4 and retinol-binding protein-4 and decreased levels of apolipoprotein E, haptoglobin, and mannose-binding protein-C. Female GHR-/- mice showed decreased inflammatory cytokines including interleukin-1β and monocyte chemotactic protein-1. Additionally, sex differences were found in specific isoforms of apolipoprotein E, RBP-4, haptoglobin, albumin, and hemoglobin subunit beta. In conclusion, we find plasma proteomic changes in GHR-/- mice that favor a longer life span as well as sex differences indicative of an improved health span in female mice. PMID:22156438

  2. A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice

    PubMed Central

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Haast, Roy; Lütjohann, Dieter; Broersen, Laus M.; Heerschap, Arend

    2016-01-01

    APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10–12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16–18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging. PMID:27034849

  3. A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice.

    PubMed

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Haast, Roy; Lütjohann, Dieter; Broersen, Laus M; Heerschap, Arend; Kiliaan, Amanda J

    2016-01-01

    APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10-12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16-18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging. PMID:27034849

  4. A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice.

    PubMed

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Haast, Roy; Lütjohann, Dieter; Broersen, Laus M; Heerschap, Arend; Kiliaan, Amanda J

    2016-01-01

    APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10-12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16-18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging.

  5. [The effect of mithochondria targeted antioxidant SkQ1 on aging, life span and spontaneous carcinogenesis in three mice strains].

    PubMed

    Iurova, M H; Zabezhinskiĭ, M A; Piskunova, T S; Tyndyk, M L; Popovich, I G; anisimov, V N

    2010-01-01

    Female outbred SHR mice, inbred 129/Sv mice and transgenic HER-2/neu mice were given mitochondria targeted antioxidant SkQ1 with drinking water in the various doses (0,5-2500 nmol/kg day) since the age of 2 months, whereas control animals received tap water. Age-related dynamics of the body weight and temperature, the amount of drinking water and consumed food, estrous function, as well as parameters of the life span and spontaneous carcinogenesis were estimated. As compared with controls, no difference in the parameters of body weight and temperature or amount of consumed food and water in the treated mice of all studied mice strains was revealed. In SkQ1-treated SHR mice, the tendencies of inhibition of the age-dependent disturbances of estrous function and aging appearance were observed. No effect of SkQ1 on estrous function and external view in inbred and transgenic mice was shown. SkQ1 treatment significantly decreased locomotor activity (in 12-15 months old SHR and 129/Sv mice) and exercise tolerance in old (20 months) SHR mice. The treatment with SkQ1 (0,5-50 nmol/kg day) increased parameters of the life span in SHR mice (mean life span, mean life span of the last 10% of survival, median and maximum life span) without significant effect on the life span in 129/Sv and HER-2/neu mice. There was no reliable difference in tumor development in all SkQ1-treated mice strains as compared with the control. The drug considerably inhibited the incidence of age-associated non-tumor pathology in SHR mice. Our data suggest geroprotective activity of SkQ1, and a lack of toxic or carcinogenic activities during long term use. PMID:21137217

  6. Establishment of a model of acetaminophen-induced hepatotoxicity in different weekly-aged ICR mice.

    PubMed

    Taguchi, K; Tokuno, M; Yamasaki, K; Kadowaki, D; Seo, H; Otagiri, M

    2015-10-01

    Acetaminophen (APAP), a widely used analgesic and antipyretic drug, has the potential to cause lethal hepatotoxicity. Mice are widely used for developing murine models of APAP-induced hepatotoxicity, and many researchers have used these models for APAP-related studies including the fields of biology, pharmacology and toxicology. Although drug-induced hepatotoxicity is dependent on a number of factors (species, gender and age), very few studies have investigated the effect of aging on APAP hepatotoxicity. In this study, we evaluated the effect of age on APAP-induced hepatotoxicity in different weekly-aged mice to establish a model of APAP-induced hepatotoxicity that is an accurate reflection of general experimental conditions. Male ICR mice 4, 6, 8, 10 and 12 weeks old were given APAP intraperitoneally, and mortality, hepatic damage and the plasma concentration of APAP metabolites were evaluated. It was found that younger male ICR mice were relatively resistant to hepatotoxicity induced by intraperitoneal APAP administration. In addition, the APAP-glucuronide concentration in plasma remained essentially the same among the differently-aged mice, while APAP-sulfate levels were dramatically decreased in an age-dependent manner. Thus, it is recommended that mice of the same ages be used in studies related to APAP-induced hepatotoxixity. These results provide evidence in support of not only the age-related changes in susceptibility to APAP-derived hepatotoxicity in mice but also in developing mouse models for APAP-related studies.

  7. Haemophilus influenzae LicB contributes to lung damage in an aged mice co-infection model.

    PubMed

    Bondy, Jessica; Osharovich, Sofya; Storm, Julie; Durning, Graham; McAuliffe, Timothy; Fan, Xin

    2016-01-01

    Phosphorylcholine (ChoP) decoration of lipopolysaccharides is an important virulence strategy adopted by Haemophilus influenzae to establish a niche on the mucosal surface and to promote adherence to the host cells. The incorporation of ChoP on the LPS surface involves the lic1 operon, which consists of the licA, licB, licC, and licD genes. Among which, licB is a choline transporter gene required for acquisition of choline from environmental sources. In this study, we investigated the pathogenesis of the licB gene in an aged mice infection model. Due to immediate clearance of H. influenzae upon infection in mice, we employed influenza A virus and H. influenzae co-infection model. Our data showed that in the co-infection model, the secondary bacterial infection with a very low H. influenzae concentration of 100 colony forming unit is lethal to the aged mice. Although we did not observe any differences in weight loss between parent and licB mutant strains during the course of infection, a significant reduction of lung tissue damage was observed in the licB mutant infected aged mice. These results suggest that the licB gene is a virulence factor during H. influenzae infection in the lung in aged mice, possibly due to the increased binding to the host cell receptor via ChoP expression on the bacterial surface. In addition, when aged mice and mature mice were compared in the challenge experiments, we did not observe any protective immunity in the co-infection model suggesting the detrimental effects of the secondary bacterial infection on the aged mice in contrast to obvious immune-protections observed in the mature mice. The results of our experiments also implied that the co-infection model with influenza A virus and H. influenzae may be employed as a model system to study H. influenzae pathogenesis in vivo in aged mice.

  8. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice.

    PubMed

    Roos, Carolyn M; Zhang, Bin; Palmer, Allyson K; Ogrodnik, Mikolaj B; Pirtskhalava, Tamar; Thalji, Nassir M; Hagler, Michael; Jurk, Diana; Smith, Leslie A; Casaclang-Verzosa, Grace; Zhu, Yi; Schafer, Marissa J; Tchkonia, Tamara; Kirkland, James L; Miller, Jordan D

    2016-10-01

    While reports suggest a single dose of senolytics may improve vasomotor function, the structural and functional impact of long-term senolytic treatment is unknown. To determine whether long-term senolytic treatment improves vasomotor function, vascular stiffness, and intimal plaque size and composition in aged or hypercholesterolemic mice with established disease. Senolytic treatment (intermittent treatment with Dasatinib + Quercetin via oral gavage) resulted in significant reductions in senescent cell markers (TAF(+) cells) in the medial layer of aorta from aged and hypercholesterolemic mice, but not in intimal atherosclerotic plaques. While senolytic treatment significantly improved vasomotor function (isolated organ chamber baths) in both groups of mice, this was due to increases in nitric oxide bioavailability in aged mice and increases in sensitivity to NO donors in hypercholesterolemic mice. Genetic clearance of senescent cells in aged normocholesterolemic INK-ATTAC mice phenocopied changes elicited by D+Q. Senolytics tended to reduce aortic calcification (alizarin red) and osteogenic signaling (qRT-PCR, immunohistochemistry) in aged mice, but both were significantly reduced by senolytic treatment in hypercholesterolemic mice. Intimal plaque fibrosis (picrosirius red) was not changed appreciably by chronic senolytic treatment. This is the first study to demonstrate that chronic clearance of senescent cells improves established vascular phenotypes associated with aging and chronic hypercholesterolemia, and may be a viable therapeutic intervention to reduce morbidity and mortality from cardiovascular diseases.

  9. Vitamin E Status and Metabolism in Adult and Aged Aryl Hydrocarbon Receptor Null Mice

    PubMed Central

    Traber, Maret G.; Mustacich, Debbie J.; Sullivan, Laura C.; Leonard, Scott W.; Ahern-Rindell, Amelia; Kerkvliet, Nancy

    2009-01-01

    The aryl hydrocarbon receptor (AhR) is involved in regulation of mechanisms for detoxification of xenobiotics, as well as vitamin A metabolism. Vitamin E is a fat-soluble nutrient whose metabolism is initialized via the cytochrome P450 system. Thus, AhR absence could alter hepatic regulation of α-tocopherol metabolism. To test this hypothesis, we assessed vitamin E status in adult (2–5 m) and old (21–22 m), wildtype and AhR-null mice. Plasma α-tocopherol concentrations in AhR null mice (2.3 ± 1.2 μmol/L, n= 19) were lower than those of wildtype mice (3.2 ± 1.2, n=17, P=0.0131); those in old mice (3.2 ± 1.2, n= 20) were higher than those of adults (2.2 ± 1.0, n=16, p=0.0075). Hepatic α-tocopherol concentrations were not different between genotypes, but were nearly double in old (32 ± 8 nmol/g, n=20) as compared with adult mice (17 ± 2, n=16, p<0.0001). Hepatic Cyp3a concentrations in AhR-null mice were greater than those in wildtypes (p=0.0011). Genotype (p=0.0047), sex (p<0.0001) and age (p<0.0001) were significant modifiers of liver α-tocopherol metabolite (α-CEHC) concentrations. In general, Cyp3a concentrations correlated with hepatic α-tocopherol (r= 0.3957, p<0.05) and α-CEHC (r=0.4260, p<0.05) concentrations. Since there were no significant genotype differences in the hepatic α- or γ-tocopherol concentrations, AhR null mice did not have dramatically altered vitamin E metabolism. Since they did have higher hepatic α-CEHC concentrations, these data suggest metabolism was up-regulated in the AhR null mice in order to maintain the hepatic tocopherol concentrations similar to those of wildtypes. PMID:20153623

  10. Reduced thermal sensitivity and Nav1.8 and TRPV1 channel expression in sensory neurons of aged mice.

    PubMed

    Wang, Shuying; Davis, Brian M; Zwick, Melissa; Waxman, Stephen G; Albers, Kathryn M

    2006-06-01

    Sensory neurons in aging mammals undergo changes in anatomy, physiology and gene expression that correlate with reduced sensory perception. In this study we compared young and aged mice to identify proteins that might contribute to this loss of sensation. We first show using behavioral testing that thermal sensitivity in aged male and female mice is reduced. Expression of sodium channel (Nav1.8 and Nav1.9) and transient receptor potential vanilloid (TRPV) channels in DRG and peripheral nerves of young and old male mice was then examined. Immunoblotting and RT-PCR assays showed reduced Nav1.8 levels in aged mice. No change was measured in TRPV1 mRNA levels in DRG though TRPV1 protein appeared reduced in the DRG and peripheral nerves. The GFRalpha3 receptor, which binds the growth factor artemin and is expressed by TRPV1-positive neurons, was also decreased in the DRG of aged animals. These findings indicate that loss of thermal sensitivity in aging animals may result from a decreased level of TRPV1 and Nav1.8 and decreased trophic support that inhibits efficient transport of channel proteins to peripheral afferents. PMID:15979214

  11. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  12. Evaluation of efficacies of different classes of antidepressants in the forced swimming test in mice at different ages.

    PubMed

    Bourin, M; Colombel, M C; Redrobe, J P; Nizard, J; Hascoët, M; Baker, G B

    1998-02-01

    1. The efficacies of different classes of antidepressants were investigated using the forced swimming test with mice at different ages. 2. Imipramine (4-32 mg/kg), desipramine (2-16 mg/kg) and bupropion (32, 64 mg/kg) showed activity in all age groups. 3. The selective serotonin reuptake inhibitors (SSRIs) citalopram (16 and 32 mg) and paroxetine (4 and 8 mg) were inactive in the oldest (40 weeks) group of mice, despite showing activity at the same doses in mice ranging in age from 4-24 weeks old. 4. Both SSRIs showed anti-immobility effects at low doses, (paroxetine: 1 and 2 mg/kg; citalopram: 4 and 8 mg/kg) in the 40-week old mice. These effects were not evident in the three younger groups of mice. 5. Moclobemide, a reversible selective inhibitor of monoamine oxidase-A, showed activity only at a high dose (128 mg/kg) and only in 12-week old animals. 6. Since SSRIs have been reported to have relatively selective effects on 5-HT1B receptors, the present results suggest that further studies comparing the effectiveness of SSRIs and other antidepressants in elderly patients should be done. Studies of the effects of aging on the density and/or affinity of 5-HT1A and 5-HT1B/1D receptors are also warranted.

  13. Reactive Oxygen Species Differentially Regulate Bone Turnover in an Age-Specific Manner in Catalase Transgenic Female Mice.

    PubMed

    Alund, Alexander W; Mercer, Kelly E; Suva, Larry J; Pulliam, Casey F; Chen, Jin-Ran; Badger, Thomas M; Van Remmen, Holly; Ronis, Martin J J

    2016-07-01

    Chronic ethyl alcohol (EtOH) consumption results in reactive oxygen species (ROS) generation in bone and osteopenia due to increased bone resorption and reduced bone formation. In this study, transgenic C57Bl/6J mice overexpressing human catalase (TgCAT) were used to test whether limiting excess hydrogen peroxide would protect against EtOH-mediated bone loss. Micro-computed tomography analysis of the skeletons of 6-week-old female chow-fed TgCAT mice revealed a high bone mass phenotype with increased cortical bone area and thickness as well as significantly increased trabecular bone volume (P < 0.05). Six-week-old wild-type (WT) and TgCAT female mice were chow fed or pair fed (PF) liquid diets with or without EtOH, approximately 30% of calories, for 8 weeks. Pair feeding of WT had no demonstrable effect on the skeleton; however, EtOH feeding of WT mice significantly reduced cortical and trabecular bone parameters along with bone strength compared with PF controls (P < 0.05). In contrast, EtOH feeding of TgCAT mice had no effect on trabecular bone compared with PF controls. At 14 weeks of age, there was significantly less trabecular bone and cortical cross-sectional area in TgCAT mice than WT mice (P < 0.05), suggesting impaired normal bone accrual with age. TgCAT mice expressed less collagen1α and higher sclerostin mRNA (P < 0.05), suggesting decreased bone formation in TgCAT mice. In conclusion, catalase overexpression resulted in greater bone mass than in WT mice at 6 weeks and lower bone mass at 14 weeks. EtOH feeding induced significant reductions in bone architecture and strength in WT mice, but TgCAT mice were partially protected. These data implicate ROS signaling in the regulation of bone turnover in an age-dependent manner, and indicate that excess hydrogen peroxide generation contributes to alcohol-induced osteopenia. PMID:27189961

  14. IMMMUNOPHENOTYPE OF SPONTANEOUS HEMATOLYMPHOID TUMORS OCCURRING IN YOUNG AND AGING FEMALE CD-1 MICE

    PubMed Central

    Rehg, Jerold E.; Rahija, Richard; Bush, Dorothy; Bradley, Alys; Ward, Jerrold M.

    2015-01-01

    A few reports indicated the incidence of hematolymphoid neoplasms in old CD-1 mice, but the cellular lineage of CD-1 mouse neoplasms has not be published. In this study, immunohistochemistry (IHC) was used to characterize the cellular lineage of spontaneous hematolymphoid neoplasms arising in young female CD-1 mice used as health monitoring sentinels and aging female CD-1 mice used as controls in 80 wk carcinogenesis studies. Lymphoblastic lymphomas of T-cell and B-cell lineage were common in mice 12 mo or less of age, whereas a wide range of non-lymphoblastic B-cell lymphomas and lymphoblastic T-cell lymphomas were common in mice > 12 mo old. Renal hyaline droplets positive for lysozyme were observed in aged mice with a histiocytic-associated large B-cell lymphoma (HA-BCL) and a myeloid leukemia. Endogenous ecotropic MuLV genes have been recovered from CD-1 mice, but MuLV protein expression has not been previously demonstrated. We reported for the first time the expression of MuLV protein by IHC in lymphomas and some normal tissues of both young and aging CD-1 mice. This report should help to differentiate spontaneous lymphomas and leukemias in CD-1 mice from those induced by chemicals and other methods. PMID:26224701

  15. Immunophenotype of Spontaneous Hematolymphoid Tumors Occurring in Young and Aging Female CD-1 Mice. [Corrected].

    PubMed

    Rehg, Jerold E; Rahija, Richard; Bush, Dorothy; Bradley, Alys; Ward, Jerrold M

    2015-10-01

    A few reports indicated the incidence of hematolymphoid neoplasms in old CD-1 mice, but the cellular lineage of CD-1 mouse neoplasms has not been published. In this study, immunohistochemistry (IHC) was used to characterize the cellular lineage of spontaneous hematolymphoid neoplasms arising in 24 young female CD-1 mice used as health-monitoring sentinels and 32 aging female CD-1 mice used as controls in 80-week carcinogenesis studies. Lymphoblastic lymphomas of T-cell and B-cell lineage were common in mice aged 12 months or less, whereas a wide range of non-lymphoblastic B-cell lymphomas and lymphoblastic B-cell lymphomas were common in mice >12-mo-old. Renal hyaline droplets positive for lysozyme were observed in aged mice with a histiocytic-associated large B-cell lymphoma (HA-BCL) and a myeloid leukemia. Endogenous ecotropic mouse leukemia virus (MuLV) genes have been recovered from CD-1 mice, but MuLV protein expression has not been previously demonstrated. We reported for the first time the expression of a MuLV protein p30 by IHC in lymphomas and some normal tissues of both young and aging CD-1 mice. This report should help to differentiate spontaneous lymphomas and leukemias in CD-1 mice from those induced by chemicals and other methods.

  16. Kcne4 deletion sex- and age-specifically impairs cardiac repolarization in mice.

    PubMed

    Crump, Shawn M; Hu, Zhaoyang; Kant, Ritu; Levy, Daniel I; Goldstein, Steve A N; Abbott, Geoffrey W

    2016-01-01

    Myocardial repolarization capacity varies with sex, age, and pathology; the molecular basis for this variation is incompletely understood. Here, we show that the transcript for KCNE4, a voltage-gated potassium (Kv) channel β subunit associated with human atrial fibrillation, was 8-fold more highly expressed in the male left ventricle compared with females in young adult C57BL/6 mice (P < 0.05). Similarly, Kv current density was 25% greater in ventricular myocytes from young adult males (P < 0.05). Germ-line Kcne4 deletion eliminated the sex-specific Kv current disparity by diminishing ventricular fast transient outward current (Ito,f) and slowly activating K(+) current (IK,slow1). Kcne4 deletion also reduced Kv currents in male mouse atrial myocytes, by >45% (P < 0.001). As we previously found for Kv4.2 (which generates mouse Ito,f), heterologously expressed KCNE4 functionally regulated Kv1.5 (the Kv α subunit that generates IKslow1 in mice). Of note, in postmenopausal female mice, ventricular repolarization was impaired by Kcne4 deletion, and ventricular Kcne4 expression increased to match that of males. Moreover, castration diminished male ventricular Kcne4 expression 2.8-fold, whereas 5α-dihydrotestosterone (DHT) implants in castrated mice increased Kcne4 expression >3-fold (P = 0.01) to match noncastrated levels. KCNE4 is thereby shown to be a DHT-regulated determinant of cardiac excitability and a molecular substrate for sex- and age-dependent cardiac arrhythmogenesis. PMID:26399785

  17. In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice.

    PubMed

    Logan, Angela; Shabalina, Irina G; Prime, Tracy A; Rogatti, Sebastian; Kalinovich, Anastasia V; Hartley, Richard C; Budd, Ralph C; Cannon, Barbara; Murphy, Michael P

    2014-08-01

    In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria-targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro-apoptotic and pro-inflammatory redox signaling pathways.

  18. Increased Learning and Brain Long-Term Potentiation in Aged Mice Lacking DNA Polymerase μ

    PubMed Central

    Lucas, Daniel; Delgado-García, José M.; Escudero, Beatriz; Albo, Carmen; Aza, Ana; Acín-Pérez, Rebeca; Torres, Yaima; Moreno, Paz; Enríquez, José Antonio; Samper, Enrique; Blanco, Luis; Fairén, Alfonso

    2013-01-01

    A definitive consequence of the aging process is the progressive deterioration of higher cognitive functions. Defects in DNA repair mechanisms mostly result in accelerated aging and reduced brain function. DNA polymerase µ is a novel accessory partner for the non-homologous end-joining DNA repair pathway for double-strand breaks, and its deficiency causes reduced DNA repair. Using associative learning and long-term potentiation experiments, we demonstrate that Polµ−/− mice, however, maintain the ability to learn at ages when wild-type mice do not. Expression and biochemical analyses suggest that brain aging is delayed in Polµ−/− mice, being associated with a reduced error-prone DNA oxidative repair activity and a more efficient mitochondrial function. This is the first example in which the genetic ablation of a DNA-repair function results in a substantially better maintenance of learning abilities, together with fewer signs of brain aging, in old mice. PMID:23301049

  19. Relationship between host age and persistence of Theiler's virus in the central nervous system of mice.

    PubMed

    Steiner, C M; Rozhon, E J; Lipton, H L

    1984-01-01

    This study has demonstrated that the ability of BeAn 8386 virus to persist in the central nervous system of mice declines with the increasing age of the host at the time of inoculation. Although persistent infection was established in 1-, 3-, 9-, and 40-week-old mice, there was a significant reduction in both the frequency of virus isolations and the mean virus titers in mice inoculated after 3 weeks of age. The incidence of clinical demyelinating disease (late disease) also decreased in animals infected after 3 weeks of age in parallel with the decline in virus persistence.

  20. A comparison of learning and memory characteristics of young and middle-aged wild-type mice in the IntelliCage.

    PubMed

    Mechan, Annis O; Wyss, Adrian; Rieger, Henry; Mohajeri, M Hasan

    2009-05-30

    We have tested the cognitive abilities of young (2.5 months) and middle-aged (14 months) wild-type C57Bl/6J mice in the IntelliCage, which enables automated monitoring of spontaneous and learning behaviour in a homecage-like environment. No differences were observed either in circadian activity or in performance in the novelty-induced exploration test, but middle-aged mice exhibited decreased exploratory activity overall. In the place learning test module, when mice were free to explore all corners without any negative reinforcement, young mice tended not to learn the task and performed less effectively than the middle-aged group. However, when an air-puff was administered as negative reinforcement following visits to an incorrect corner, young mice learned the task significantly better than middle-aged mice throughout the test period. Our data show that, in freely moving mice, the motivational cues for learning and retrieval of memory are age-dependent and dramatically influence learning and memory performance. Furthermore, the data reported here represent a step towards optimised cognitive test protocols when comparing young and middle-aged mice.

  1. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer

    PubMed Central

    Bernardes de Jesus, Bruno; Vera, Elsa; Schneeberger, Kerstin; Tejera, Agueda M; Ayuso, Eduard; Bosch, Fatima; Blasco, Maria A

    2012-01-01

    A major goal in aging research is to improve health during aging. In the case of mice, genetic manipulations that shorten or lengthen telomeres result, respectively, in decreased or increased longevity. Based on this, we have tested the effects of a telomerase gene therapy in adult (1 year of age) and old (2 years of age) mice. Treatment of 1- and 2-year old mice with an adeno associated virus (AAV) of wide tropism expressing mouse TERT had remarkable beneficial effects on health and fitness, including insulin sensitivity, osteoporosis, neuromuscular coordination and several molecular biomarkers of aging. Importantly, telomerase-treated mice did not develop more cancer than their control littermates, suggesting that the known tumorigenic activity of telomerase is severely decreased when expressed in adult or old organisms using AAV vectors. Finally, telomerase-treated mice, both at 1-year and at 2-year of age, had an increase in median lifespan of 24 and 13%, respectively. These beneficial effects were not observed with a catalytically inactive TERT, demonstrating that they require telomerase activity. Together, these results constitute a proof-of-principle of a role of TERT in delaying physiological aging and extending longevity in normal mice through a telomerase-based treatment, and demonstrate the feasibility of anti-aging gene therapy. PMID:22585399

  2. Decreased expression of organic cation transporters, Oct1 and Oct2, in brain microvessels and its implication to MPTP-induced dopaminergic toxicity in aged mice.

    PubMed

    Wu, Kuo-Chen; Lu, Ya-Hsuan; Peng, Yi-Hsuan; Tsai, Ting-Fen; Kao, Yu-Han; Yang, Hui-Ting; Lin, Chun-Jung

    2015-01-01

    This study was to investigate the influence of age on the expression of organic cation transporters (OCTs) that belong to the SLC22 family in brain microvessels (BMVs) and its implications for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic toxicity in mice. Here, we showed that Oct1 and Oct2, but not Oct3, mRNAs were detected and enriched (compared with cerebral cortex) in BMVs of C57BL/6 (B6) mice using reverse transcription-quantitative PCR (RT-qPCR), and immunofluorescence analysis further revealed that Oct1 and Oct2 proteins were colocalized with endothelial markers. Both the mRNA and protein levels of Oct1 and Oct2 were reduced in aged mice. After an intraperitoneal administration of MPTP, brain extracellular levels of MPTP and 1-methyl-4-phenyl-pyridinium (MPP(+)) were much lower in aged mice and in Oct1/2(-/-) mice compared with younger mice and wild-type control mice, respectively. Knockout of Oct1/Oct2 protected Oct1/2(-/-) mice from MPTP-induced neurotoxicity, whereas the loss of tyrosine hydroxylase (TH)-positive neurons was slightly greater in aged than in younger mice. However, intrastriatal infusion of low-dose MPTP caused more severe dopaminergic toxicity in the substantia nigra of both aged mice and Oct1/2(-/-) mice. These findings show that age-dependent downregulation or knockout of Oct1/Oct2 in BMVs may reduce the transport of MPTP, which, in part, affects its dopaminergic toxicity. PMID:25248837

  3. Aging in the cerebellum and hippocampus and associated behaviors over the adult life span of CB6F1 mice

    PubMed Central

    Kennard, John A.; Brown, Kevin L.; Woodruff-Pak, Diana S.

    2013-01-01

    In the present study we examined the effects of normal aging in the hippocampus and cerebellum, as well as behaviors associated with these substrates. A total of 67 CB6F1 hybrid mice were tested at one of five ages (4, 8, 12, 18 or 25 months) on the context pre-exposure facilitation effect modification of fear conditioning (CPFE), rotorod, Barnes maze, acoustic startle, Morris water maze (MWM) and 500 ms trace eyeblink classical conditioning (EBCC). Behavioral tasks were chosen to increase the ability to detect age-related changes in learning, as trace EBCC is considered a more difficult paradigm (compared to delay EBCC) and the CPFE has been found to be more sensitive to hippocampus insults than standard contextual fear conditioning. To assess the effects of age on the brain, hippocampus volume was calculated and unbiased stereology was used to estimate the number of Purkinje neurons in the cerebellar cortex. A significant, age-related loss of Purkinje neurons was found—beginning at 12 months of age—and hippocampus volume remained stable over the adult life span. Age-related impairment was found, beginning at 12–18 months in the rotorod, and mice with fewer Purkinje neurons showed greater impairment in this task. CB6F1 mice retained auditory acuity across the life span and mice aged 25 months showed significant age-related impairment in the EBCC task; however, deficits were not associated with the loss of Purkinje neurons. Although the CPFE task is considered more sensitive to hippocampus insult, no age-related impairment was found. Spatial memory retention was impaired in the Barnes maze at 25 months, but no significant deficits were seen in the MWM. These results support the finding of differential aging in the hippocampus and cerebellum. PMID:23764510

  4. Effects of dehydroepiandrosterone sulfate and progesterone on spatial learning and memory in young and aged mice.

    PubMed

    Bodensteiner, Karin J; Stone, Ivan J; Ghiraldi, Loraina L

    2008-07-01

    Young (2-4 months) and aged (14-16 months) male Swiss-Webster albino mice (n = 7 per group) were subcutaneously injected with 20 mg/kg/day dehydroepiandrosterone sulfate (DHEAS), progesterone (P), DHEAS + P, or vehicle control and trained over a 5-day period in a Morris water maze. The subjects were tested 48 hr after training for memory recall as measured by latencies to locate the hidden platform, and trunk blood was collected immediately thereafter. As expected, latency to platform decreased for all groups over the 6 testing days, with aged mice taking longer to reach platform than did young mice. However, results did not support the hypotheses that DHEAS-treated mice would exhibit shorter latencies and that P-treated mice would show longer latencies to platform in comparison with age-matched controls. These results raise doubts about the effectiveness of commercially available supplements claiming to promote enhanced memory in humans.

  5. Age-Dependent Impairment of Eyeblink Conditioning in Prion Protein-Deficient Mice

    PubMed Central

    Kishimoto, Yasushi; Hirono, Moritoshi; Atarashi, Ryuichiro; Sakaguchi, Suehiro; Yoshioka, Tohru; Katamine, Shigeru; Kirino, Yutaka

    2013-01-01

    Mice lacking the prion protein (PrPC) gene (Prnp), Ngsk Prnp0/0 mice, show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrPC-like protein (PrPLP/Dpl). Because PrPC is highly expressed in cerebellar neurons (including PCs and granule cells), it may be involved in cerebellar synaptic function and cerebellar cognitive function. However, no studies have been conducted to investigate the possible involvement of PrPC and/or PrPLP/Dpl in cerebellum-dependent discrete motor learning. Therefore, the present cross-sectional study was designed to examine cerebellum-dependent delay eyeblink conditioning in Ngsk Prnp0/0 mice in adulthood (16, 40, and 60 weeks of age). The aims of the present study were two-fold: (1) to examine the role of PrPC and/or PrPLP/Dpl in cerebellum-dependent motor learning and (2) to confirm the age-related deterioration of eyeblink conditioning in Ngsk Prnp0/0 mice as an animal model of progressive cerebellar degeneration. Ngsk Prnp0/0 mice aged 16 weeks exhibited intact acquisition of conditioned eyeblink responses (CRs), although the CR timing was altered. The same result was observed in another line of PrPc-deficient mice, ZrchI PrnP0/0 mice. However, at 40 weeks of age, CR incidence impairment was observed in Ngsk Prnp0/0 mice. Furthermore, Ngsk Prnp0/0 mice aged 60 weeks showed more significantly impaired CR acquisition than Ngsk Prnp0/0 mice aged 40 weeks, indicating the temporal correlation between cerebellar PC degeneration and motor learning deficits. Our findings indicate the importance of the cerebellar cortex in delay eyeblink conditioning and suggest an important physiological role of prion protein in cerebellar motor learning. PMID:23593266

  6. PROXIMAL GUT MUCOSAL EPITHELIAL HOMEOSTASIS IN AGED IL-1 TYPE I RECEPTOR KNOCKOUT MICE AFTER STARVATION

    PubMed Central

    Song, Juquan; Wolf, Steven E.; Wu, Xiao-Wu; Finnerty, Celeste C.; Herndon, David N.; Jeschke, Marc G.

    2010-01-01

    Background Previous studies have shown that starvation induces small bowel atrophy, and that atrophy diminishes with aging. In this experiment, we assessed whether starvation-induced atrophy of proximal gut mucosa is associated with the Interleukin-1 receptor (IL-1R) signaling pathway in aged mice. Materials and Methods Thirty 26-month-old IL-1R knockout mice and age-matched wild-type C57BL/6 mice were randomly divided into two groups: ad libitum fed and fasted. Mice were euthanized 12 or 48 hours after starvation. The proximal small bowel was harvested for morphologic analysis. Gut epithelial cell proliferation was detected using immunohistochemical staining for proliferating cell nuclear antigen (PCNA), and apoptosis was identified using terminal deoxyuridine nick-end labeling (TUNEL) staining. Results Aged IL-1R knockout mice were larger than aged-matched wild-type mice (p<0.05). Proximal gut mucosal height and mucosal cell number were not different between aged IL-1R knockout and wild-type groups. The apoptosis index in gut epithelial cells was higher in fed IL-1R knockout versus wild-type mice (p<0.05), while no significant difference in cell proliferation between both groups. Mucosal atrophy was induced in both aged IL-1R knockout and wild-type groups by starvation (p<0.05), however, aged IL-1R knockout mice experienced greater losses in proximal gut weight, mucosal length, and corresponding cell number than did wild-type mice at the 12-hour time point (p<0.05). The apoptosis index in gut epithelial cells significantly increased in both groups after starvation (p<0.05). Starvation decreased cell proliferation in IL-1R knockout mice (p<0.05), but not in wild-type mice. Conclusions The response in aged IL-1R knockout mice differs from wild-type mice in that starvation increases atrophy and is associated with decreased cell proliferation rather than increased apoptosis. PMID:20605606

  7. Comparing Aging and Fitness Effects on Brain Anatomy.

    PubMed

    Fletcher, Mark A; Low, Kathy A; Boyd, Rachel; Zimmerman, Benjamin; Gordon, Brian A; Tan, Chin H; Schneider-Garces, Nils; Sutton, Bradley P; Gratton, Gabriele; Fabiani, Monica

    2016-01-01

    Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain's atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55-87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors. PMID:27445740

  8. Comparing Aging and Fitness Effects on Brain Anatomy.

    PubMed

    Fletcher, Mark A; Low, Kathy A; Boyd, Rachel; Zimmerman, Benjamin; Gordon, Brian A; Tan, Chin H; Schneider-Garces, Nils; Sutton, Bradley P; Gratton, Gabriele; Fabiani, Monica

    2016-01-01

    Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain's atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55-87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors.

  9. Comparing Aging and Fitness Effects on Brain Anatomy

    PubMed Central

    Fletcher, Mark A.; Low, Kathy A.; Boyd, Rachel; Zimmerman, Benjamin; Gordon, Brian A.; Tan, Chin H.; Schneider-Garces, Nils; Sutton, Bradley P.; Gratton, Gabriele; Fabiani, Monica

    2016-01-01

    Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain’s atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55–87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors. PMID:27445740

  10. Comparative virulence of three species of Exophiala in mice.

    PubMed

    Calvo, Enrique; Rodríguez, M Mar; Mariné, Marçal; Mayayo, Emilio; Pastor, F Javier; Guarro, Josep

    2010-09-01

    The virulence of Exophiala dermatitidis, E. oligosperma and E. xenobiotica, three of the most common members of the genus that cause human infections, was evaluated using experimental models of disseminated infection in immunocompromised mice. Exophiala dermatitidis, and to a lesser extent E. oligosperma, were the two species causing the highest mortality, while mice infected with E. xenobiotica had the lowest mortality. Tissue burden and histopathology studies demonstrated the neurotropism of E. dermatitidis, while E. oligosperma and E. xenobiotica had a limited capacity for invading brain tissue. These models could be useful for testing new therapies against Exophiala infections. PMID:20144129

  11. Intake of Wild Blueberry Powder Improves Episodic-Like and Working Memory during Normal Aging in Mice.

    PubMed

    Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie

    2016-08-01

    The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity.

  12. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    PubMed

    Bjursell, Mikael; Wedin, Marianne; Admyre, Therése; Hermansson, Majlis; Böttcher, Gerhard; Göransson, Melker; Lindén, Daniel; Bamberg, Krister; Oscarsson, Jan; Bohlooly-Y, Mohammad

    2013-01-01

    Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR) is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH) and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  13. The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer's disease mice

    PubMed Central

    2013-01-01

    Introduction Despite years of research, there are no disease-modifying drugs for Alzheimer's disease (AD), a fatal, age-related neurodegenerative disorder. Screening for potential therapeutics in rodent models of AD has generally relied on testing compounds before pathology is present, thereby modeling disease prevention rather than disease modification. Furthermore, this approach to screening does not reflect the clinical presentation of AD patients which could explain the failure to translate compounds identified as beneficial in animal models to disease modifying compounds in clinical trials. Clearly a better approach to pre-clinical drug screening for AD is required. Methods To more accurately reflect the clinical setting, we used an alternative screening strategy involving the treatment of AD mice at a stage in the disease when pathology is already advanced. Aged (20-month-old) transgenic AD mice (APP/swePS1ΔE9) were fed an exceptionally potent, orally active, memory enhancing and neurotrophic molecule called J147. Cognitive behavioral assays, histology, ELISA and Western blotting were used to assay the effect of J147 on memory, amyloid metabolism and neuroprotective pathways. J147 was also investigated in a scopolamine-induced model of memory impairment in C57Bl/6J mice and compared to donepezil. Details on the pharmacology and safety of J147 are also included. Results Data presented here demonstrate that J147 has the ability to rescue cognitive deficits when administered at a late stage in the disease. The ability of J147 to improve memory in aged AD mice is correlated with its induction of the neurotrophic factors NGF (nerve growth factor) and BDNF (brain derived neurotrophic factor) as well as several BDNF-responsive proteins which are important for learning and memory. The comparison between J147 and donepezil in the scopolamine model showed that while both compounds were comparable at rescuing short term memory, J147 was superior at rescuing spatial

  14. Cardiac Aging in Mice and Humans: the Role of Mitochondrial Oxidative Stress

    PubMed Central

    Dai, Dao-Fu; Rabinovitch, Peter S.

    2009-01-01

    Age is a major risk factor for cardiovascular diseases, not only because it prolongs exposure to several other cardiovascular risks, but also owing to intrinsic cardiac aging, which reduces cardiac functional reserve, predisposes the heart to stress and contributes to increased cardiovascular mortality in the elderly. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans, including left ventricular hypertrophy, fibrosis and diastolic dysfunction. Cardiac aging in mice is accompanied by accumulation of mitochondrial protein oxidation, increased mitochondrial DNA mutations, increased mitochondrial biogenesis, as well as decreased cardiac SERCA2 protein. All of these age-related changes are significantly attenuated in mice overexpressing catalase targeted to mitochondria (mCAT). These findings demonstrate the critical role of mitochondrial reactive oxygen species (ROS) in cardiac aging and support the potential application of mitochondrial antioxidants to cardiac aging and age-related cardiovascular diseases. PMID:20382344

  15. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice

    PubMed Central

    García, Mayra; Misplon, Julia A.; Price, Graeme E.; Lo, Chia-Yun; Epstein, Suzanne L.

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234

  16. Shortened estrous cycle length, increased FSH levels, FSH variance, oocyte spindle aberrations, and early declining fertility in aging senescence-accelerated mouse prone-8 (SAMP8) mice: concomitant characteristics of human midlife female reproductive aging.

    PubMed

    Bernstein, Lori R; Mackenzie, Amelia C L; Kraemer, Duane C; Morley, John E; Farr, Susan; Chaffin, Charles L; Merchenthaler, István

    2014-06-01

    Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.

  17. Telomere shortening leads to earlier age of onset in ALS mice

    PubMed Central

    Linkus, Birgit; Wiesner, Diana; MeΔner, Martina; Karabatsiakis, Alexander; Scheffold, Annika; Rudolph, K. Lenhard; Thal, Dietmar R.; Weishaupt, Jochen H.; Ludolph, Albert C.; Danzer, Karin M.

    2016-01-01

    Telomere shortening has been linked to a variety of neurodegenerative diseases. Recent evidence suggests that reduced telomerase expression results in shorter telomeres in leukocytes from sporadic patients with amyotrophic lateral sclerosis (ALS) compared with healthy controls. Here, we have characterized telomere length in microglia, astroglia and neurons in human post mortem brain tissue from ALS patients and healthy controls. Moreover, we studied the consequences of telomerase deletion in a genetic mouse model for ALS. We found a trend towards longer telomeres in microglia in the brains of ALS patients compared to non-neurologic controls. Knockout of telomerase leading to telomere shortening accelerated the ALS phenotype in SOD1G93A–transgenic mice. Our results suggest that telomerase dysfunction might contribute to the age-related risk for ALS. PMID:26978042

  18. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection

    PubMed Central

    Toth, Peter; Tarantini, Stefano; Springo, Zsolt; Tucsek, Zsuzsanna; Gautam, Tripti; Giles, Cory B; Wren, Jonathan D; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-01-01

    Recent studies demonstrate that aging exacerbates hypertension-induced cognitive decline, but the specific age-related mechanisms remain elusive. Cerebral microhemorrhages (CMHs) are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function. To determine whether aging exacerbates hypertension-induced CMHs young (3 months) and aged (24 months) mice were treated with angiotensin II plus L-NAME. We found that the same level of hypertension leads to significantly earlier onset and increased incidence of CMHs in aged mice than in young mice, as shown by neurological examination, gait analysis, and histological assessment of CMHs in serial brain sections. Hypertension-induced cerebrovascular oxidative stress and redox-sensitive activation of matrix metalloproteinases (MMPs) were increased in aging. Treatment of aged mice with resveratrol significantly attenuated hypertension-induced oxidative stress, inhibited vascular MMP activation, significantly delayed the onset, and reduced the incidence of CMHs. Collectively, aging promotes CMHs in mice likely by exacerbating hypertension-induced oxidative stress and MMP activation. Therapeutic strategies that reduce microvascular oxidative stress and MMP activation may be useful for the prevention of CMHs, protecting neurocognitive function in high-risk elderly patients. PMID:25677910

  19. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection.

    PubMed

    Toth, Peter; Tarantini, Stefano; Springo, Zsolt; Tucsek, Zsuzsanna; Gautam, Tripti; Giles, Cory B; Wren, Jonathan D; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-06-01

    Recent studies demonstrate that aging exacerbates hypertension-induced cognitive decline, but the specific age-related mechanisms remain elusive. Cerebral microhemorrhages (CMHs) are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function. To determine whether aging exacerbates hypertension-induced CMHs young (3 months) and aged (24 months) mice were treated with angiotensin II plus L-NAME. We found that the same level of hypertension leads to significantly earlier onset and increased incidence of CMHs in aged mice than in young mice, as shown by neurological examination, gait analysis, and histological assessment of CMHs in serial brain sections. Hypertension-induced cerebrovascular oxidative stress and redox-sensitive activation of matrix metalloproteinases (MMPs) were increased in aging. Treatment of aged mice with resveratrol significantly attenuated hypertension-induced oxidative stress, inhibited vascular MMP activation, significantly delayed the onset, and reduced the incidence of CMHs. Collectively, aging promotes CMHs in mice likely by exacerbating hypertension-induced oxidative stress and MMP activation. Therapeutic strategies that reduce microvascular oxidative stress and MMP activation may be useful for the prevention of CMHs, protecting neurocognitive function in high-risk elderly patients. PMID:25677910

  20. A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice.

    PubMed

    Hosokawa, Masanori

    2002-11-01

    The SAM strain of mice is actually a group of related inbred strains consisting of series of SAMP (accelerated senescence-prone, short-lived) and SAMR (accelerated senescence-resistant, longer-lived) strains. Comparing with the SAMR strains, the SAMP strains of mice show a more accelerated senescence process, shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to several geriatric disorders observed in humans, including senile osteoporosis, degenerative joint disease, age-related deficits in learning and memory, olfactory bulb and forebrain atrophy, presbycusis and retinal atrophy, senile amyloidosis, immunosenescence, senile lungs, and diffuse medial thickening of the aorta. The higher oxidative stress observed in the SAMP strains of mice are partly caused by mitochondrial dysfunction, and may be one cause of the senescence acceleration and age-dependent alterations in cell structure and function, including neuronal cell degeneration. This senescence acceleration is also observed during senescence/crisis in cultures of isolated fibroblast-like cells from SAMP strains of mice, and was associated with a hyperoxidative status. These observations suggest that the SAM strains are useful tools in the attempt to understand the mechanisms of age-dependent degeneration of cells and tissues, and their aggravation, and to develop clinical interventions. PMID:12470893

  1. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.

  2. Experimental Induction of Type 2 Diabetes in Aging-Accelerated Mice Triggered Alzheimer-Like Pathology and Memory Deficits

    PubMed Central

    Mehla, Jogender; Chauhan, Balwantsinh C.; Chauhan, Neelima B.

    2014-01-01

    Alzheimer’s disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD. PMID:24121970

  3. Effect of Diet and Age on Arterial Stiffening Due to Atherosclerosis in ApoE(-/-) Mice.

    PubMed

    Cilla, M; Pérez, M M; Peña, E; Martínez, M A

    2016-07-01

    This work analyzes the progressive stiffening of the aorta due to atherosclerosis development of both ApoE(-/-) and C57BL/6J mice fed on a Western (n = 5) and a normal (n = 5) chow diet for the ApoE(-/-) group and on a normal chow diet (n = 5) for the C57BL/6J group. Sets of 5 animals from the three groups were killed after 10, 20, 30 and 40 weeks on their respective diets (corresponding to 17, 27, 37 and 47 weeks of age). Mechanical properties (inflation test and axial residual stress measurements) and histological properties were compared for both strains, ApoE(-/-) on the hyper-lipidic diet and both ApoE(-/-) and C57BL/6J on the normal diet, after the same period and after different periods of diet. The results indicated that the aorta stiffness in the ApoE(-/-) and C57BL/6J mice under normal diet remained approximately constant irrespective of their age. However, the arterial stiffness in the ApoE(-/-) on the hyper-lipidic diet increased over time. Statistical differences were found between the group after 10 weeks and the groups after 30 and 40 weeks of a hyper-lipidic diet. Comparing the hyper-lipidic and normal diet mice, statistical differences were also found between both diets in all cases after 40 weeks of diet, frequently after 30 weeks, and in some cases after 20 weeks. The early stages of lesion corresponded to the first 2 weeks of diet. Advanced lesions were found at 30 weeks and, finally, the aorta was completely damaged after 40 weeks of diet. In conclusion, we found substantial changes in the mechanical properties of the aorta walls of the ApoE(-/-) mice fed with the hyper-lipidic diet compared to the normal chow diet groups for both the ApoE(-/-) and C57BL/6J groups. These findings could serve as a reference for the study of changes in the arterial wall properties in cases of atherosclerosis.

  4. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice.

    PubMed

    Aso, Kazuyoshi; Tsuruhara, Akitoshi; Takagaki, Kentaro; Oki, Katsuyuki; Ota, Megumi; Nose, Yasuhiro; Tanemura, Hideki; Urushihata, Naoki; Sasanuma, Jinichi; Sano, Masayuki; Hirano, Atsuyuki; Aso, Rio; McGhee, Jerry R; Fujihashi, Kohtaro

    2016-01-01

    It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer's patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice. PMID:26840058

  5. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice

    PubMed Central

    Aso, Kazuyoshi; Tsuruhara, Akitoshi; Takagaki, Kentaro; Oki, Katsuyuki; Ota, Megumi; Nose, Yasuhiro; Tanemura, Hideki; Urushihata, Naoki; Sasanuma, Jinichi; Sano, Masayuki; Hirano, Atsuyuki; Aso, Rio; McGhee, Jerry R.; Fujihashi, Kohtaro

    2016-01-01

    It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer’s patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice. PMID:26840058

  6. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    PubMed

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  7. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation

    PubMed Central

    Hanai, Jun-ichi; Takenaka, Masaru

    2015-01-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosis in vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A. PMID:26232943

  8. Auditory Brainstem Gap Responses Start to Decline in Middle Age Mice: A Novel Physiological Biomarker for Age-Related Hearing Loss

    PubMed Central

    Williamson, Tanika T.; Zhu, Xiaoxia; Walton, Joseph P.; Frisina, Robert D.

    2014-01-01

    The CBA/CaJ mouse strain's auditory function is normal during the early phases of life and gradually declines over its lifespan, much like human age-related hearing loss (ARHL), but on a mouse life cycle “time frame”. This pattern of ARHL is relatively similar to that of most humans: difficult to clinically diagnose at its onset, and currently not treatable medically. To address the challenge of early diagnosis, CBA mice were used for the present study to analyze the beginning stages and functional onset biomarkers of ARHL. The results from Auditory Brainstem Response (ABR) audiogram and Gap-in-noise (GIN) ABR tests were compared for two groups of mice of different ages, young adult and middle age. ABR peak components from the middle age group displayed minor changes in audibility, but had a significantly higher prolonged peak latency and decreased peak amplitude in response to temporal gaps in comparison to the young adult group. The results for the younger subjects revealed gap thresholds and recovery rates that were comparable to previous studies of auditory neural gap coding. Our findings suggest that age-linked degeneration of the peripheral and brainstem auditory system is already beginning in middle age, allowing for the possibility of preventative biomedical or hearing protection measures to be implemented as a possibility for attenuating further damage to the auditory system due to ARHL. PMID:25307161

  9. Auditory brainstem gap responses start to decline in mice in middle age: a novel physiological biomarker for age-related hearing loss.

    PubMed

    Williamson, Tanika T; Zhu, Xiaoxia; Walton, Joseph P; Frisina, Robert D

    2015-07-01

    The auditory function of the CBA/CaJ mouse strain is normal during the early phases of life and gradually declines over its lifespan, much like human age-related hearing loss (ARHL) but within the "time frame" of a mouse life cycle. This pattern of ARHL is similar to that of most humans: difficult to diagnose clinically at its onset and currently not treatable medically. To address the challenge of early diagnosis, we use CBA mice to analyze the initial stages and functional onset biomarkers of ARHL. The results from Auditory Brainstem Response (ABR) audiogram and Gap-in-noise (GIN) ABR tests were compared for two groups of mice of different ages, namely young adult and middle age. ABR peak components from the middle age group displayed minor changes in audibility but had a significantly higher prolonged peak latency and decreased peak amplitude in response to temporal gaps in comparison with the young adult group. The results for the younger subjects revealed gap thresholds and recovery rates that were comparable with previous studies of auditory neural gap coding. Our findings suggest that age-linked degeneration of the peripheral and brainstem auditory system begins in middle age, allowing for the possibility of preventative biomedical or hearing protection measures to be implemented in order to attenuate further damage to the auditory system attributable to ARHL.

  10. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice.

    PubMed

    Varghese, George I; Zhu, Xiaoxia; Frisina, Robert D

    2005-11-01

    One role of the medial olivocochlear (MOC) auditory efferent system is to suppress cochlear outer hair cell (OHC) responses when presented with a contralateral sound. Using distortion product otoacoustic emissions (DPOAEs), the effects of active changes in OHC responses due to the MOC as a function of age can be observed when contralateral stimulation with a pure tone is applied. Previous studies have shown that there are age-related declines of the MOC when broad band noise is presented to the contralateral ear. In this study, we measured age-related changes in CBA/CaJ mice by comparing DPOAE generation with and without a contralateral pure tone at three different frequencies (12, 22, and 37 kHz). Young (n = 16), middle (n = 10) and old-aged (n = 10) CBA mice were tested. DPOAE-grams were obtained using L1 = 65 and L2 = 50 dB SPL, F1/F2 = 1.25, using eight points per octave covering a frequency range from 5.6-44.8 kHz. The pure tone was presented contralaterally at 55 dB SPL. DPOAE-grams and ABR levels indicated age-related hearing loss in the old mice. In addition, there was an overall change in DPOAEs in the middle-aged and old groups relative to the young. Pure tone stimulation was not as effective as a suppressor compared to broadband noise. An increase in pure tone frequency from 12 to 22 kHz induced greater suppression of DPOAEs, but the 37 kHz was least effective. These results indicate that as the mouse ages, there are significant changes in the efficiency of the suppression mechanism as elicited by contralateral narrowband stimuli. These findings reinforce the idea that age-related changes in the MOC or the operating points of OHCs play a role in the progression of presbycusis - age-related hearing loss in mammals.

  11. Sex differences in aging, life span and spontaneous tumorigenesis in 129/Sv mice neonatally exposed to metformin

    PubMed Central

    Anisimov, Vladimir N; Popovich, Irina G; Zabezhinski, Mark A; Egormin, Peter A; Yurova, Maria N; Semenchenko, Anna V; Tyndyk, Margarita L; Panchenko, Andrey V; Trashkov, Alexandr P; Vasiliev, Andrey G; Khaitsev, Nikolai V

    2015-01-01

    The perinatal (prenatal and early neonatal) period is a critical stage for hypothalamic programming of sexual differentiation as well as for the development of energy and metabolic homeostasis. We hypothesized that neonatal treatment with antidiabetic drug biguanide metformin would positively modify regulation of growth hormone – IGF-1 – insulin signaling pathway slowing down aging and improving cancer preventive patterns in rodents. To test this hypothesis male and female 129/Sv mice were s.c. injected with metformin (100 mg/kg) at the 3rd, 5th and 7th days after birth. Metformin-treated males consumed less food and water and their body weight was decreased as compared with control mice practically over their entire lifespan. There were no significant differences in age-related dynamics of food and water consumption in females and they were heavier than controls. The fraction of mice with regular estrous cycles decreased with age and demonstrated a tendency to decrease in the females neonatally treated with metformin. Neonatal exposure to metformin practically failed to change the extent of hormonal and metabolic parameters in blood serum of male and female mice. In males, neonatal metformin treatment significantly increased the mean life span (+20%, P < 0.05) and slightly increased the maximum life span (+3.5%). In females, the mean life span and median in metformin-treated groups were slightly decreased (−9.1% and −13.8% respectively, P > 0.05) in comparison to controls, whereas mean life span of last 10% survivors and maximum life span were the same as in controls. Almost half (45%) of control male mice and 71.8% male mice neonatally exposed to metformin survived up to 800 d of age, the same age was achieved by 54.3% of mice in control female group and 30% of metformin-treated females (P < 0.03). Thus, neonatal metformin exposure slows down aging and prolongs lifespan in male but not in female mice. PMID:25483062

  12. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice.

    PubMed

    de Picciotto, Natalie E; Gano, Lindsey B; Johnson, Lawrence C; Martens, Christopher R; Sindler, Amy L; Mills, Kathryn F; Imai, Shin-Ichiro; Seals, Douglas R

    2016-06-01

    We tested the hypothesis that supplementation of nicotinamide mononucleotide (NMN), a key NAD(+) intermediate, increases arterial SIRT1 activity and reverses age-associated arterial dysfunction and oxidative stress. Old control mice (OC) had impaired carotid artery endothelium-dependent dilation (EDD) (60 ± 5% vs. 84 ± 2%), a measure of endothelial function, and nitric oxide (NO)-mediated EDD (37 ± 4% vs. 66 ± 6%), compared with young mice (YC). This age-associated impairment in EDD was restored in OC by the superoxide (O2-) scavenger TEMPOL (82 ± 7%). OC also had increased aortic pulse wave velocity (aPWV, 464 ± 31 cm s(-1) vs. 337 ± 3 cm s(-1) ) and elastic modulus (EM, 6407 ± 876 kPa vs. 3119 ± 471 kPa), measures of large elastic artery stiffness, compared with YC. OC had greater aortic O2- production (2.0 ± 0.1 vs. 1.0 ± 0.1 AU), nitrotyrosine abundance (a marker of oxidative stress), and collagen-I, and reduced elastin and vascular SIRT1 activity, measured by the acetylation status of the p65 subunit of NFκB, compared with YC. Supplementation with NMN in old mice restored EDD (86 ± 2%) and NO-mediated EDD (61 ± 5%), reduced aPWV (359 ± 14 cm s(-1) ) and EM (3694 ± 315 kPa), normalized O2- production (0.9 ± 0.1 AU), decreased nitrotyrosine, reversed collagen-I, increased elastin, and restored vascular SIRT1 activity. Acute NMN incubation in isolated aortas increased NAD(+) threefold and manganese superoxide dismutase (MnSOD) by 50%. NMN supplementation may represent a novel therapy to restore SIRT1 activity and reverse age-related arterial dysfunction by decreasing oxidative stress.

  13. Comparative Analysis of Old-Age Mortality Estimations in Africa

    PubMed Central

    Bendavid, Eran; Seligman, Benjamin; Kubo, Jessica

    2011-01-01

    Background Survival to old ages is increasing in many African countries. While demographic tools for estimating mortality up to age 60 have improved greatly, mortality patterns above age 60 rely on models based on little or no demographic data. These estimates are important for social planning and demographic projections. We provide direct estimations of older-age mortality using survey data. Methods Since 2005, nationally representative household surveys in ten sub-Saharan countries record counts of living and recently deceased household members: Burkina Faso, Côte d'Ivoire, Ethiopia, Namibia, Nigeria, Swaziland, Tanzania, Uganda, Zambia, and Zimbabwe. After accounting for age heaping using multiple imputation, we use this information to estimate probability of death in 5-year intervals (5qx). We then compare our 5qx estimates to those provided by the World Health Organization (WHO) and the United Nations Population Division (UNPD) to estimate the differences in mortality estimates, especially among individuals older than 60 years old. Findings We obtained information on 505,827 individuals (18.4% over age 60, 1.64% deceased). WHO and UNPD mortality models match our estimates closely up to age 60 (mean difference in probability of death -1.1%). However, mortality probabilities above age 60 are lower using our estimations than either WHO or UNPD. The mean difference between our sample and the WHO is 5.9% (95% CI 3.8–7.9%) and between our sample is UNPD is 13.5% (95% CI 11.6–15.5%). Regardless of the comparator, the difference in mortality estimations rises monotonically above age 60. Interpretation Mortality estimations above age 60 in ten African countries exhibit large variations depending on the method of estimation. The observed patterns suggest the possibility that survival in some African countries among adults older than age 60 is better than previously thought. Improving the quality and coverage of vital information in developing countries will become

  14. Dietary Deficiency of Calcium and/or Iron, an Age-Related Risk Factor for Renal Accumulation of Cadmium in Mice.

    PubMed

    Min, Kyong-Son; Sano, Erika; Ueda, Hidenori; Sakazaki, Fumitoshi; Yamada, Keita; Takano, Masaoki; Tanaka, Keiichi

    2015-01-01

    The major route of cadmium (Cd) intake by non-smokers is through food ingestion. Cd is a non-essential metal absorbed through one or more transporters of essential metal ions. Expression of these transporters is affected by nutritional status. To investigate the risk factors for Cd toxicity, the effects of deficiency of essential metals on hepatic and renal accumulation of Cd were studied in mice of different ages. Mice were administered a control diet or one of the essential metal-deficient diets, administered Cd by gavage for 6 weeks, and killed; then, Cd accumulation was evaluated. Iron deficiency (FeDF) or calcium deficiency (CaDF) resulted in remarkable increases in hepatic and renal Cd accumulation compared with control-diet mice and other essential metal-deficient mice. Cd accumulation in hepatic and renal tissue was increased significantly at all ages tested in FeDF and CaDF mice. Renal Cd concentrations were higher in 4-week-old mice than in 8- and 25-week-old mice. Increase in intestinal mRNA expression of calcium transporter (CaT)1, divalent metal ion transporter-1, and metallothionein (MT)1 was also higher in 4-week-old mice than in other mice. Renal accumulation of Cd showed strong correlation with intestinal mRNA expression of CaT1 and MT1. These data suggest that CaDF and FeDF at younger ages can be a risk factor for Cd toxicity.

  15. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice.

    PubMed

    Maeda, Sumihiro; Djukic, Biljana; Taneja, Praveen; Yu, Gui-Qiu; Lo, Iris; Davis, Allyson; Craft, Ryan; Guo, Weikun; Wang, Xin; Kim, Daniel; Ponnusamy, Ravikumar; Gill, T Michael; Masliah, Eliezer; Mucke, Lennart

    2016-04-01

    A152T-variant human tau (hTau-A152T) increases risk for tauopathies, including Alzheimer's disease. Comparing mice with regulatable expression of hTau-A152T or wild-type hTau (hTau-WT), we find age-dependent neuronal loss, cognitive impairments, and spontaneous nonconvulsive epileptiform activity primarily in hTau-A152T mice. However, overexpression of either hTau species enhances neuronal responses to electrical stimulation of synaptic inputs and to an epileptogenic chemical. hTau-A152T mice have higher hTau protein/mRNA ratios in brain, suggesting that A152T increases production or decreases clearance of hTau protein. Despite their functional abnormalities, aging hTau-A152T mice show no evidence for accumulation of insoluble tau aggregates, suggesting that their dysfunctions are caused by soluble tau. In human amyloid precursor protein (hAPP) transgenic mice, co-expression of hTau-A152T enhances risk of early death and epileptic activity, suggesting copathogenic interactions between hTau-A152T and amyloid-β peptides or other hAPP metabolites. Thus, the A152T substitution may augment risk for neurodegenerative diseases by increasing hTau protein levels, promoting network hyperexcitability, and synergizing with the adverse effects of other pathogenic factors. PMID:26931567

  16. Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain.

    PubMed

    Poon, H F; Castegna, A; Farr, S A; Thongboonkerd, V; Lynn, B C; Banks, W A; Morley, J E; Klein, J B; Butterfield, D A

    2004-01-01

    The senescence-accelerated mouse (SAM) is a murine model of accelerated senescence that was established using phenotypic selection. The SAMP series includes nine substrains, each of which exhibits characteristic disorders. SAMP8 is known to exhibit age-dependent learning and memory deficits. In our previous study, we reported that brains from 12-month-old SAMP8 have greater protein oxidation, as well as lipid peroxidation, compared with brains from 4-month-old SAMP8 mice. In order to investigate the relation between age-associated oxidative stress on specific protein oxidation and age-related learning and memory deficits in SAMP8, we used proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. We report here that in 12 month SAMP8 mice brains the expressions of neurofilament triplet L protein, lactate dehydrogenase 2 (LDH-2), heat shock protein 86, and alpha-spectrin are significantly decreased, while the expression of triosephosphate isomerase (TPI) is increased compared with 4-month-old SAMP8 brains. We also report that the specific protein carbonyl levels of LDH-2, dihydropyrimidinase-like protein 2, alpha-spectrin and creatine kinase, are significantly increased in the brain of 12-month-old SAMP8 mice when compared with the 4-month-old SAMP8 brain. These findings are discussed in reference to the effect of specific protein oxidation and changes of expression on potential mechanisms of abnormal alterations in metabolism and neurochemicals, as well as to the learning and memory deficits in aged SAMP8 mice.

  17. Of Mice and Men-Warning: Intact Versus Castrated Adult Male Mice as Xenograft Hosts Are Equivalent to Hypogonadal Versus Abiraterone Treated Aging Human Males, Respectively

    PubMed Central

    Sedelaar, J.P. Michiel; Dalrymple, Susan S.; Isaacs, John T.

    2014-01-01

    BACKGROUND Immune deficient male mice bearing human prostate cancer xenografts are used to evaluate therapeutic response to novel androgen ablation approaches and the results compared to surgical castration based upon assumption that testosterone microenvironment in intact and castrated adult male mice mimics eugonadal and castrated aging adult human males. METHODS To test these assumptions, serum total testosterone (TT) and free testosterone (FT) were determined longitudinally in groups (n > 20) of intact versus castrated adult male nude, NOG, and immune competent C57BL/6 mice. RESULTS In adult male mice, TT and FT varies by 30- to 100-fold within the same animal providing a microenvironment that is only equivalent to hypogonadal, not eugonadal, adult human males (TT is 1.7 ± 1.2 ng/ml [5.8 ± 4.1 nM] in nude and 2.5 ± 1.3 ng/ml [8.7 ± 4.4 nM] in NOG mice versus >4.2 ng/ml [14.7 nM] in eugonadal humans). This was confirmed based upon enhanced growth of androgen dependent human prostate cancer xenografts inoculated into mice supplemented with exogenous testosterone to elevate and chronically maintain serum TT at a level (5 ng/ml [18 nM]) equivalent to a 50-year-old eugonadal human male. In castrated mice, TT and FT range from 2 to 20 pg/ml (7–70 pM) and <0.8 pg/ml (<2.6 pM), respectively, which is equivalent to castrate resistant prostate cancer (CRPC) patients treated with abiraterone. This was confirmed based upon the inability of another CYP17A1 inhibitor, ketoconazole, to inhibit the growth of CRPC xenografts in castrated mice. CONCLUSIONS Adult male mice supplemented with testosterone mimic eugonadal human males, while unsupplemented animals mimic standard androgen ablation and castrated animals mimic abiraterone treated patients. These studies confirm what is claimed in Robert Burns’ poem “To a Mouse” that “The best laid schemes of mice and men/often go awry. PMID:23775398

  18. Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent

    PubMed Central

    Rune, I.; Hansen, C. H. F.; Ellekilde, M.; Nielsen, D. S.; Skovgaard, K.; Rolin, B. C.; Lykkesfeldt, J.; Josefsen, K.; Tranberg, B.; Kihl, P.; Hansen, A. K.

    2013-01-01

    Ampicillin has been shown to improve glucose tolerance in mice. We hypothesized that this effect is present only if treatment is initiated prior to weaning and that it disappears when treatment is terminated. High-fat fed C57BL/6NTac mice were divided into groups that received Ampicillin at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study termination, expressions of mRNA coding for tumor necrosis factor, serum amyloid A, and lactase were upregulated, while the expression of tumor necrosis factor (ligand) superfamily member 15 was downregulated in the ileum of Ampicillin-treated mice. Higher dendritic cell percentages were found systemically in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found both in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a “window” exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well as development of gut immunity and that this window may disappear after weaning. PMID:24369539

  19. Restoration of Retarded Influenza Virus-specific Immunoglobulin Class Switch in Aged Mice

    PubMed Central

    Zhang, Yongxin; Wang, Ying; Zhang, Monica; Liu, Lin; Mbawuike, Innocent N

    2016-01-01

    Objective The declined immune response to infection causes significant higher morbidity and mortality in aging in spite of the coexisted hyperimmunoglobulinemia (HIG). This study is to reveal the cellular basis of HIG and mechanism of weakened HA-specific IgG response in aged mice and to test cell therapy in the treatment of age-related IgG antibody production deficiency with immunocyte adoptive transfer. Methods BALB/c mice was immunized with Influenza A/Taiwan vaccine and challenged with the same strain of virus. ELISA was used to assess the levels of total immunoglobulins and antigen specific antibody response. The flow cytometry and ELISPOT were used to evaluate the frequencies of total immunoglobulin- and specific antibody-producing and secreting B lymphocytes. In vitro expanded mononuclear cells, CD4+ T lymphocytes and CD20+ B lymphocytes from old and young mice were adoptively transferred into influenza virus-challenged aged mice, and HA-specific IgG responses were observed. Results It is found that old mice exhibited higher levels of total serum IgG, IgM and IgA, higher frequencies of IgG+, IgM+ and IgA+ cells, and greater antigen-specific IgM and IgA responses to influenza infection, in comparison to young mice. However, influenza antigen- specific IgG and its subclass responses in old mice were significantly lower. Conclusion The retarded specific IgG response could be attributed to an insufficiency of immunoglobulin class switch in aging. Correlation analysis indicated that HIG and deficient specific IgG production in aged mice could be independent to each other in their pathogenesis. Correction of deficient specific IgG production by adoptive transfer of in vitro expanded and unexpanded CD4+ cells from immunized young mice suggests the CD4+ cell dysfunction contributes to the insufficiency of immunoglobulin class switch in aged mice. The transfusion of in vitro expanded lymphocytes could be a potential effective therapy for the age

  20. Age-related changes in pial arterial structure and blood flow in mice.

    PubMed

    Kang, Hye-Min; Sohn, Inkyung; Jung, Junyang; Jeong, Joo-Won; Park, Chan

    2016-01-01

    Age-related cerebral blood flow decreases are thought to deteriorate cognition and cause senescence, although the related mechanism is unclear. To investigate the relationships between aging and changes in cerebral blood flow and vasculature, we obtained fluorescence images of young (2-month-old) and old (12-month-old) mice using indocyanine green (ICG). First, we found that the blood flow in old mice's brains is lower than that in young mice and that old mice had more curved pial arteries and fewer pial artery junctions than young mice. Second, using Western blotting, we determined that the ratio of collagen to elastin (related to cerebral vascular wall distensibility) increased with age. Finally, we found that the peak ICG intensity and blood flow index decreased, whereas the mean transit time increased, with age in the middle cerebral artery and superior sagittal sinus. Age-related changes in pial arterial structure and composition, concurrent with the observed changes in the blood flow parameters, suggest that age-related changes in the cerebral vasculature structure and distensibility may induce altered brain blood flow.

  1. Intrahippocampal glucocorticoids generated by 11β-HSD1 affect memory in aged mice.

    PubMed

    Yau, Joyce L W; Wheelan, Nicola; Noble, June; Walker, Brian R; Webster, Scott P; Kenyon, Christopher J; Ludwig, Mike; Seckl, Jonathan R

    2015-01-01

    11Beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) locally amplifies active glucocorticoids within specific tissues including in brain. In the hippocampus, 11β-HSD1 messenger RNA increases with aging. Here, we report significantly greater increases in intrahippocampal corticosterone (CORT) levels in aged wild-type (WT) mice during the acquisition and retrieval trials in a Y-maze than age-matched 11β-HSD1(-/-) mice, corresponding to impaired and intact spatial memory, respectively. Acute stress applied to young WT mice led to increases in intrahippocampal CORT levels similar to the effects of aging and impaired retrieval of spatial memory. 11β-HSD1(-/-) mice resisted the stress-induced memory impairment. Pharmacologic inhibition of 11β-HSD1 abolished increases in intrahippocampal CORT levels during the Y-maze trials and prevented spatial memory impairments in aged WT mice. These data provide the first in vivo evidence that dynamic increases in hippocampal 11β-HSD1 regenerated CORT levels during learning and retrieval play a key role in age- and stress-associated impairments of spatial memory.

  2. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice.

    PubMed

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice.

  3. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  4. COMPARATIVE STUDY ON IMMUNOBLOT VERSUS PCR IN DIAGNOSIS OF SCHISTOSOMIASIS MANSONI IN EXPERIMENTAL INFECTED MICE.

    PubMed

    Ismail, Mousa A M; Mousa, Wahed Mohammed Ali; Abu-Sarea, Enas Yahia; Basyouni, Maha M A; Mohammed, Samah Sayed

    2016-04-01

    This study compared PCR and Western blot techniques in diagnosis of schistosomiasis mansoni. Forty Swiss albino mice were used, thirty two mice were infected with cercariae of S. mansoni and eight mice were kept uninfected which were used as a control. Blood was obtained from four infected mice weekly beginning from the 1st week to the 8th week post infection. The study found that PCR was positive from the first week post infection, while Western blot technique was positive from the second week post infection. Thus, PCR diagnosed schistosomiasis mansoni earlier than Western blot technique, but both were able to diagnose. PMID:27363045

  5. Sex differences in neurochemical markers that correlate with behavior in aging mice.

    PubMed

    Frick, K M; Burlingame, L A; Delaney, S S; Berger-Sweeney, J

    2002-01-01

    Sex differences in neurochemical markers that correlate with behavior in aging mice NEUROBIOL AGING. We examined whether the enzymatic activities of choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) were altered similarly with age in male and female mice, and whether these changes were correlated with age-related alterations in memory and anxiety. ChAT and GAD activities were measured in neocortex, hippocampus, and striatum of behaviorally characterized male and female C57BL/6 mice (5, 17, and 25 months). Generally, ChAT activity was increased, and GAD activity decreased, with age. However, disparate changes were revealed between the sexes; activities of both enzymes were decreased in 17-month males, whereas alterations in females were not observed until 25-months. Furthermore, enzyme-behavior correlations differed between the sexes; in males, ChAT activity was related to one behavioral task, whereas in females, activities of both enzymes were correlated with multiple tasks. Significant enzyme-behavior correlations were most evident at 17 months of age, likely the result of behavioral and enzymatic sex differences at this age. These data represent the first comprehensive report illustrating differential alterations of ChAT and GAD activities in aging male and female mice.

  6. Longitudinal Attentional Engagement Rescues Mice from Age-Related Cognitive Declines and Cognitive Inflexibility

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm…

  7. Resistance exercise training increases the expression of irisin concomitant with improvement of muscle function in aging mice and humans.

    PubMed

    Kim, Hee-Jae; So, Byunghun; Choi, Mijung; Kang, Dongheon; Song, Wook

    2015-10-01

    We investigated the effect of resistance training on irisin expression with improvement in muscle strength and function in aged mice and human. In the mice study, 19 months old male C57BL/6 mice were randomly assigned into two groups; control group and resistance exercise group. Ladder climbing exercise with tail weight was performed 3 days per week for 12 weeks. In the human study, participants (aged over 65 years) were randomly assigned into exercise group or control group. Elastic band exercise program consisted of 12 weeks of 1-h session 2 days per week. In the mice study, we found an increase of irisin in serum and soleus muscle as well as improvement in muscle strength (p=0.02) and muscle quality (p=0.03) without body composition change in training animals. In the human study, isokinetic leg strength and grip strength were improved in the exercise group compared to the control group without change of body composition. In addition, the level of circulating irisin level was increased. It had a positive correlation with grip strength (R=0.526, p=0.002) and leg strength (R=0.414, p=0.003) in the exercise group. Thus, resistant training might be an efficient intervention method to increase irisin levels and prevent age-related decline in muscle function.

  8. Sexual rest and post-meiotic sperm ageing in house mice.

    PubMed

    Firman, R C; Young, F J; Rowe, D C; Duong, H T; Gasparini, C

    2015-07-01

    Fertilization by aged sperm can result in adverse fitness consequences for both males and females. Sperm storage during male sexual rest could provide an environment for post-meiotic sperm senescence causing a deterioration in the quality of stored sperm, possibly impacting on both sperm performance (e.g. swimming ability) and DNA quality. Here, we compared the proportion of sperm with fragmented DNA, an indicator of structural damage of DNA within the sperm cell, among males that had been sexually rested for approximately 2 months, to that of males that had mated recently. We found no evidence of intra-epididymal sperm DNA damage or any impairment in sperm performance, and consequently no evidence of post-meiotic sperm senescence. Our results suggest that male house mice are likely to possess mechanisms that function to ensure that their sperm reserves remain stocked with 'young', viable sperm during periods of sexual inactivity. We also discuss the possibility that our experimental design leads to no difference in the age of sperm among males from the two mating treatments. Post-meiotic sperm senescence is especially relevant under sperm competition. Thus, we sourced mice from populations that differed in their levels of post-copulatory sexual selection, enabling us to gain insight into how selection for higher sperm production influences the rate of sperm ageing and levels of DNA fragmentation. We found that males from the population that produced the highest number of sperm also had the smallest proportion of DNA-fragmented sperm and discuss this outcome in relation to selection acting upon males to ensure that they produce ejaculates with high-quality sperm that are successful in achieving fertilizations under competitive conditions. PMID:26012513

  9. Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice.

    PubMed

    Portal-Núñez, Sergio; Ardura, Juan Antonio; Lozano, Daniel; Bolívar, Oskarina Hernández; López-Herradón, Ana; Gutiérrez-Rojas, Irene; Proctor, Alexander; van der Eerden, Bram; Schreuders-Koedam, Marijke; van Leeuwen, Johannes; Alcaraz, María José; Mulero, Francisca; de la Fuente, Mónica; Esbrit, Pedro

    2016-03-01

    In the present study, the possibility that a diabetic (DM) status might worsen age-related bone deterioration was explored in mice. Male CD-1 mice aged 2 (young control group) or 16 months, nondiabetic or made diabetic by streptozotocin injections, were used. DM induced a decrease in bone volume, trabecular number, and eroded surface, and in mineral apposition and bone formation rates, but an increased trabecular separation, in L1-L3 vertebrae of aged mice. Three-point bending and reference point indentation tests showed slight changes pointing to increased frailty and brittleness in the mouse tibia of diabetic old mice. DM was related to a decreased expression of both vascular endothelial growth factor and its receptor 2, which paralleled that of femoral vasculature, and increased expression of the pro-adipogenic gene peroxisome proliferator-activated receptor γ and adipocyte number, without affecting β-catenin pathway in old mouse bone. Concomitant DM in old mice failed to affect total glutathione levels or activity of main anti-oxidative stress enzymes, although xanthine oxidase was slightly increased, in the bone marrow, but increased the senescence marker caveolin-1 gene. In conclusion, DM worsens bone alterations of aged mice, related to decreased bone turnover and bone vasculature and increased senescence, independently of the anti-oxidative stress machinery. PMID:26386012

  10. Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice.

    PubMed

    Portal-Núñez, Sergio; Ardura, Juan Antonio; Lozano, Daniel; Bolívar, Oskarina Hernández; López-Herradón, Ana; Gutiérrez-Rojas, Irene; Proctor, Alexander; van der Eerden, Bram; Schreuders-Koedam, Marijke; van Leeuwen, Johannes; Alcaraz, María José; Mulero, Francisca; de la Fuente, Mónica; Esbrit, Pedro

    2016-03-01

    In the present study, the possibility that a diabetic (DM) status might worsen age-related bone deterioration was explored in mice. Male CD-1 mice aged 2 (young control group) or 16 months, nondiabetic or made diabetic by streptozotocin injections, were used. DM induced a decrease in bone volume, trabecular number, and eroded surface, and in mineral apposition and bone formation rates, but an increased trabecular separation, in L1-L3 vertebrae of aged mice. Three-point bending and reference point indentation tests showed slight changes pointing to increased frailty and brittleness in the mouse tibia of diabetic old mice. DM was related to a decreased expression of both vascular endothelial growth factor and its receptor 2, which paralleled that of femoral vasculature, and increased expression of the pro-adipogenic gene peroxisome proliferator-activated receptor γ and adipocyte number, without affecting β-catenin pathway in old mouse bone. Concomitant DM in old mice failed to affect total glutathione levels or activity of main anti-oxidative stress enzymes, although xanthine oxidase was slightly increased, in the bone marrow, but increased the senescence marker caveolin-1 gene. In conclusion, DM worsens bone alterations of aged mice, related to decreased bone turnover and bone vasculature and increased senescence, independently of the anti-oxidative stress machinery.

  11. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  12. Neuronal erythropoietin overexpression protects mice against age-related hearing loss (presbycusis).

    PubMed

    Naldi, Arianne Monge; Belfrage, Celina; Jain, Neha; Wei, Eric T; Martorell, Belén Canto; Gassmann, Max; Vogel, Johannes

    2015-12-01

    So far, typical causes of presbycusis such as degeneration of hair cells and/or primary auditory (spiral ganglion) neurons cannot be treated. Because erythropoietin's (Epo) neuroprotective potential has been shown previously, we determined hearing thresholds of juvenile and aged mice overexpressing Epo in neuronal tissues. Behavioral audiometry revealed in contrast to 5 months of age, that 11-month-old Epo-transgenic mice had up to 35 dB lower hearing thresholds between 1.4 and 32 kHz, and at the highest frequencies (50-80 kHz), thresholds could be obtained in aged Epo-transgenic only but not anymore in old C57BL6 control mice. Click-evoked auditory brainstem response showed similar results. Numbers of spiral ganglion neurons in aged C57BL6 but not Epo-transgenic mice were dramatically reduced mainly in the basal turn, the location of high frequencies. In addition, there was a tendency to better preservation of inner and outer hair cells in Epo-transgenic mice. Hence, Epo's known neuroprotective action effectively suppresses the loss of spiral ganglion cells and probably also hair cells and, thus, development of presbycusis in mice. PMID:26364734

  13. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  14. CD36 expression contributes to age induced cardiomyopathy in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cardiac remodeling and impaired cardiac performance in the elderly significantly increase the risk of developing heart disease. Although vascular abnormalities associated with aging contribute to the age-related decline in cardiac function, myocardium-specific events may also be involved. We show th...

  15. Neuroendocrine aging in birds: comparing lifespan differences and conserved mechanisms.

    PubMed

    Ottinger, Mary Ann

    2007-05-01

    As more comparative data become available, it is clear that the process of aging has fundamental similarities across classes of vertebrates. Birds provide a fascinating collection of species because of the considerable range in reproductive lifespan and variation in reproductive strategies that often relate to lifespan. One fascinating aspect of the comparative biology of aging in different avian species is the conserved mechanisms that appear very similar to those observed in mammals. Despite marked differences in sexual differentiation and reproductive function, including a single functional ovary and the internal testes, there appears to be remarkable similarity in elements of neuroendocrine aging and their end results. Furthermore, although beyond the scope of this review, the intense endocrine and energetic demands on many species of temperate zone birds for long migration and the accompanying seasonal alterations in endocrine responses add an additional layer of complexity in understanding aging. It is the purpose of this review to focus on neuroendocrine changes that accompany aging in a short-lived bird, with mention of some of the available data in field birds and long-lived species. Unfortunately, few neuroendocrine data are available for these long-lived avian species. It would be very interesting to determine if these long-lived birds somehow manage to delay the cascade of changes that contribute to the demise of metabolic and reproductive endocrine function. This review will also attempt to integrate the time-related events that occur in the responses of the hypothalamus and the gonads, especially relative to the neuroregulatory systems that have been implicated in the age-related decline in reproductive function. Finally, emerging areas of interest will be considered in the context of future research areas. PMID:17452025

  16. Sex-specific alterations in glucose homeostasis and metabolic parameters during ageing of caspase-2-deficient mice.

    PubMed

    Wilson, C H; Nikolic, A; Kentish, S J; Shalini, S; Hatzinikolas, G; Page, A J; Dorstyn, L; Kumar, S

    2016-01-01

    Gender-specific differences are commonly found in metabolic pathways and in response to nutritional manipulation. Previously, we identified a role for caspase-2 in age-related glucose homeostasis and lipid metabolism using male caspase-2-deficient (Casp2 (-/-) ) mice. Here we show that the resistance to age-induced glucose tolerance does not occur in female Casp2 (-/-) mice and it appears to be independent of insulin sensitivity in males. Using fasting (18 h) as a means to further investigate the role of caspase-2 in energy and lipid metabolism, we identified sex-specific differences in the fasting response and lipid mobilization. In aged (18-22 months) male Casp2 (-/-) mice, a significant decrease in fasting liver mass, but not total body weight, was observed while in females, total body weight, but not liver mass, was reduced when compared with wild-type (WT) animals. Fasting-induced lipolysis of adipose tissue was enhanced in male Casp2 (-/-) mice as indicated by a significant reduction in white adipocyte cell size, and increased serum-free fatty acids. In females, white adipocyte cell size was significantly smaller in both fed and fasted Casp2 (-/-) mice. No difference in fasting-induced hepatosteatosis was observed in the absence of caspase-2. Further analysis of white adipose tissue (WAT) indicated that female Casp2 (-/-) mice may have enhanced fatty acid recycling and metabolism with expression of genes involved in glyceroneogenesis and fatty acid oxidation increased. Loss of Casp2 also increased fasting-induced autophagy in both male and female liver and in female skeletal muscle. Our observations suggest that caspase-2 can regulate glucose homeostasis and lipid metabolism in a tissue and sex-specific manner. PMID:27551503

  17. Sex-specific alterations in glucose homeostasis and metabolic parameters during ageing of caspase-2-deficient mice

    PubMed Central

    Wilson, C H; Nikolic, A; Kentish, S J; Shalini, S; Hatzinikolas, G; Page, A J; Dorstyn, L; Kumar, S

    2016-01-01

    Gender-specific differences are commonly found in metabolic pathways and in response to nutritional manipulation. Previously, we identified a role for caspase-2 in age-related glucose homeostasis and lipid metabolism using male caspase-2-deficient (Casp2−/−) mice. Here we show that the resistance to age-induced glucose tolerance does not occur in female Casp2−/− mice and it appears to be independent of insulin sensitivity in males. Using fasting (18 h) as a means to further investigate the role of caspase-2 in energy and lipid metabolism, we identified sex-specific differences in the fasting response and lipid mobilization. In aged (18–22 months) male Casp2−/− mice, a significant decrease in fasting liver mass, but not total body weight, was observed while in females, total body weight, but not liver mass, was reduced when compared with wild-type (WT) animals. Fasting-induced lipolysis of adipose tissue was enhanced in male Casp2−/− mice as indicated by a significant reduction in white adipocyte cell size, and increased serum-free fatty acids. In females, white adipocyte cell size was significantly smaller in both fed and fasted Casp2−/− mice. No difference in fasting-induced hepatosteatosis was observed in the absence of caspase-2. Further analysis of white adipose tissue (WAT) indicated that female Casp2−/− mice may have enhanced fatty acid recycling and metabolism with expression of genes involved in glyceroneogenesis and fatty acid oxidation increased. Loss of Casp2 also increased fasting-induced autophagy in both male and female liver and in female skeletal muscle. Our observations suggest that caspase-2 can regulate glucose homeostasis and lipid metabolism in a tissue and sex-specific manner. PMID:27551503

  18. Insights from comparative analyses of aging in birds and mammals

    PubMed Central

    Ricklefs, Robert E.

    2010-01-01

    Many laboratory models used in aging research are inappropriate for understanding senescence in mammals, including humans, because of fundamental differences in life history, maintenance in artificial environments, and selection for early aging and high reproductive rate. Comparative studies of senescence in birds and mammals reveal a broad range in rates of aging among a variety of taxa with similar physiology and patterns of development. These comparisons suggest that senescence is a shared property of all vertebrates with determinate growth, that the rate of senescence has been modified by evolution in response to the potential life span allowed by extrinsic mortality factors, and that most variation among species in the rate of senescence is independent of commonly ascribed causes of aging, such as oxidative damage. Individuals of potentially long-lived species, particularly birds, appear to maintain high condition to near the end of life. Because most individuals in natural populations of such species die of aging-related causes, these populations likely harbor little genetic variation for mechanisms that could extend life further, or these mechanisms are very costly. This, and the apparent evolutionary conservatism in the rate of increase in mortality with age, suggests that variation in the rate of senescence reflects fundamental changes in organism structure, likely associated with the rate of development, rather than physiological or biochemical processes influenced by a few genes. Understanding these evolved differences between long-lived and short-lived organisms would seem to be an essential foundation for designing therapeutic interventions with respect to human aging and longevity. PMID:20041859

  19. Comparative toxicity of acephate in laboratory mice, white-footed mice and meadow voles

    USGS Publications Warehouse

    Rattner, B.A.; Hoffman, D.J.

    1983-01-01

    The LD50 (95% confidence limits) of the organophosphorus insecticide acephate was estimated to be 351, 380, and 321 mg/kg (295?416, 280?516, and 266?388 mg/kg) for CD-1 laboratory mice (Mus musculus), white-footed mice (Peromyscus leucopus noveboracensis), and meadow voles (Microtus pennsylvanicus), respectively. In a second study, these species were provided mash containing 0, 25, 100, and 400 ppm acephate for five days. Brain and plasma cholinesterase activities were reduced in a dose-dependent manner to a similar extent in the three species (inhibition of brain acetyl-cholinesterase averaged for each species ranged from 13 to 22% at 25 ppm, 33 to 42% at 100 ppm, and 56 to 57% at 400 ppm). Mash intake, body or liver weight, plasma enzyme activities (alkaline phosphatase, alanine and aspartate aminotransferase), hepatic enzyme activities (aniline hydroxylase, 7-ethoxycoumarin O-deethylase, and glutathione S-transferase), and cytochrome content (P-450 and b5) were not affected by acephate ingestion, although values differed among species. In a third experiment, mice and voles received 400 ppm acephate for 5 days followed by untreated food for up to 2 weeks. Mean inhibition of brain acetylcholin-esterase for the three species ranged from 47 to 58% on day 5, but by days 12 and 19, activity had recovered to 66 to 76% and 81 to 88% of concurrent control values. These findings indicate that CD-1 laboratory mice, white-footed mice, and meadow voles are equally sensitive to acephate when maintained under uniform laboratory conditions. Several factors (e.g., behavior, food preference, habitat) could affect routes and degree of exposure in the field, thereby rendering some species of wild rodents ecologically more vulnerable to organophosphorus insecticides.

  20. Comparative toxicity of acephate in laboratory mice, white-footed mice, and meadow voles

    USGS Publications Warehouse

    Rattner, B.A.; Hoffman, D.J.

    1984-01-01

    The LD50 (95% confidence limits) of the organophosphorus insecticide acephate was estimated to be 351, 380, and 321 mg/kg (295?416, 280?516, and 266?388 mg/kg) for CD-1 laboratory mice (Mus musculus), white-footed mice (Peromyscus leucopus noveboracensis), and meadow voles (Microtus pennsylvanicus), respectively. In a second study, these species were provided mash containing 0, 25, 100, and 400 ppm acephate for five days. Brain and plasma cholinesterase activities were reduced in a dose-dependent manner to a similar extent in the three species (inhibition of brain acetyl-cholinesterase averaged for each species ranged from 13 to 22% at 25 ppm, 33 to 42% at 100 ppm, and 56 to 57% at 400 ppm). Mash intake, body or liver weight, plasma enzyme activities (alkaline phosphatase, alanine and aspartate aminotransferase), hepatic enzyme activities (aniline hydroxylase, 7-ethoxycoumarin O-deethylase, and glutathione S-transferase), and cytochrome content (P-450 and b5) were not affected by acephate ingestion, although values differed among species. In a third experiment, mice and voles received 400 ppm acephate for 5 days followed by untreated food for up to 2 weeks. Mean inhibition of brain acetylcholin-esterase for the three species ranged from 47 to 58% on day 5, but by days 12 and 19, activity had recovered to 66 to 76% and 81 to 88% of concurrent control values. These findings indicate that CD-1 laboratory mice, white-footed mice, and meadow voles are equally sensitive to acephate when maintained under uniform laboratory conditions. Several factors (e.g., behavior, food preference, habitat) could affect routes and degree of exposure in the field, thereby rendering some species of wild rodents ecologically more vulnerable to organophosphorus insecticides.

  1. Expression of human complement factor H prevents age-related macular degeneration-like retina damage and kidney abnormalities in aged Cfh knockout mice.

    PubMed

    Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M; Bowes Rickman, Catherine

    2015-01-01

    Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh(-/-)) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh(-/-) mice, and transgenics had a thicker outer nuclear layer and less sub-retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets.

  2. Expression of Human Complement Factor H Prevents Age-Related Macular Degeneration–Like Retina Damage and Kidney Abnormalities in Aged Cfh Knockout Mice

    PubMed Central

    Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B.; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G.; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M.; Bowes Rickman, Catherine

    2016-01-01

    Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh−/−) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh−/− mice, and transgenics had a thicker outer nuclear layer and less sub–retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets. PMID:25447048

  3. Role of TFEB Mediated Autophagy, Oxidative Stress, Inflammation, and Cell Death in Endotoxin Induced Myocardial Toxicity of Young and Aged Mice

    PubMed Central

    Li, Fang; Lang, Fangfang; Zhang, Huilin; Xu, Liangdong; Wang, Yidan; Hao, Enkui

    2016-01-01

    Elderly patients are susceptible to sepsis. LPS induced myocardial injury is a widely used animal model to assess sepsis induced cardiac dysfunction. The age dependent mechanisms behind sepsis susceptibility were not studied. We analyzed age associated changes to cardiac function, cell death, inflammation, oxidative stress, and autophagy in LPS induced myocardial injury. Both young and aged C57BL/6 mice were used for LPS administration. The results demonstrated that LPS induced more cardiac injury (creatine kinase, lactate dehydrogenase, troponin I, and cardiac myosin-light chains 1), cardiac dysfunction (left ventricular inner dimension, LVID, and ejection fraction (EF)), cell death, inflammation, and oxidative stress in aged mice compared to young mice. However, a significant age dependent decline in autophagy was observed. Translocation of Transcription Factor EB (TFEB) to nucleus and formation of LC3-II were significantly reduced in LPS administered aged mice compared to young ones. In addition to that, downstream effector of TFEB, LAMP-1, was induced in response to LPS challenge in young mice. The present study newly demonstrates that TFEB mediated autophagy is crucial for protection against LPS induced myocardial injury particularly in aging senescent heart. Targeting this autophagy-oxidative stress-inflammation-cell death axis may provide a novel therapeutic strategy for cardioprotection in the elderly. PMID:27200146

  4. Age and isolation influence steroids release and chemical signaling in male mice.

    PubMed

    Mucignat-Caretta, Carla; Cavaggioni, Andrea; Redaelli, Marco; Da Dalt, Laura; Zagotto, Giuseppe; Gabai, Gianfranco

    2014-05-01

    Social interactions in mice involve olfactory signals, which convey information about the emitter. In turn, the mouse social and physiological status may modify the release of chemical cues. In this study, the influences of age and social isolation on the endocrine response and the release of chemical signals were investigated in male CD1 mice, allocated into four groups: Young Isolated (from weaning till 60days; N=6), Adult Isolated (till 180days; N=6), Young Grouped (6 mice/cage; till 60days; N=18), Adult Grouped (6 mice/cage; till 180days; N=18). Mice were transferred in a clean cage to observe the micturition pattern and then sacrificed. Body and organs weights, serum testosterone, dehydroepiandrosterone, corticosterone and the ratio Major Urinary Protein/creatinine were measured. Urinary volatile molecules potentially involved in pheromonal communication were identified. Androgen secretion was greater in isolated mice (P<0.05), suggesting a greater reactivity of the Hypothalamic-Pituitary-Gonadal axis. Grouped mice presented a higher degree of adrenal activity, and young mice showed a higher serum corticosterone (P<0.05) suggesting a greater stimulation of the Hypothalamic-Pituitary-Adrenal axis. The micturition pattern typical of dominant male, consisting in voiding numerous droplets, was observed in Young Isolated mice only, which showed a higher protein/creatinine ratio (P<0.05). Urinary 2-s-butyl-thiazoline was higher in both Young and Adult Isolated mice (P<0.005). Young Isolated mice showed the most prominent difference in both micturition pattern and potentially active substance emission, while long term isolation resulted in a less extreme phenotype; therefore social isolation had a higher impact on young mice hormone and pheromone release.

  5. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV.

    PubMed

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0-2 months), young adult (2-4 months), and old adult (12-14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  6. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV.

    PubMed

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-09-20

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0-2 months), young adult (2-4 months), and old adult (12-14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults.

  7. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV

    PubMed Central

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0–2 months), young adult (2–4 months), and old adult (12–14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  8. The influence of gender, age and treatment time on brain oxidative stress and memory impairment induced by D-galactose in mice.

    PubMed

    Hao, Ling; Huang, Huang; Gao, Junying; Marshall, Charles; Chen, Yali; Xiao, Ming

    2014-06-13

    Chronic exposure to d-galactose (d-gal) serves as a model for age-related oxidative damage and cognitive dysfunction. However, methods used, including the dose and treatment time of d-gal as well as the gender, age and strain of animals used, vary greatly among published articles. In this study, we investigate the effect of gender, age and treatment time on brain oxidative stress and spatial memory deficits induced by d-gal in mice, respectively. Eight-week-old female mice injected with 100mg/kg d-gal per day, for 6 weeks, did not show spatial memory impairment or high levels of hydroxyl radical, protein carbonyl and malondialdehyde in brain homogenates, although brain reactive oxygen species were increased when compared with saline control mice. In contrast, both 8-week-old male mice and 24-week-old female mice receiving 100mg/kg d-gal for 6 weeks, or 8-week-old female mice receiving 100mg/kg d-gal for 10 weeks showed spatial memory deficits and significant increases in the above oxidative markers, compared with their corresponding controls. These results demonstrate that d-gal-induced brain oxidative stress and spatial memory impairment are dependent upon exposure time of d-gal, plus gender and age of the animals used. The findings can serve as a useful guide for successfully establishing d-gal induced age-related oxidative damage models.

  9. The influence of enriched environment on spatial memory in Swiss mice of different ages.

    PubMed

    Druzian, Alessandra Fernandes; Melo, José Aparecido de Oliveira; Souza, Albert Schiaveto de

    2015-08-01

    The objective of this study was to evaluate the influence of enriched environment on spatial memory acquisition in mice of three different age groups. Weanling, young, and young adult female Swiss mice were housed in a standard control or enriched environment for 50 days, and their spatial memory was tested with the Morris Water Maze. We did not observe an experimental effect for spatial memory acquisition, and there was neither an effect of time of analysis nor an interaction between experimental group and time of analysis. Regarding effects of experimental group and training day in relation to latency in finding the hidden platform, we did find an effect in the experimental young adult mice group (p = 0.027), but there was no interaction between these factors in all three groups. Based on these findings environmental enrichment did not enhance spatial memory acquisition in female Swiss mice in the tested age groups.

  10. Sod2 haploinsufficiency does not accelerate aging of telomere dysfunctional mice.

    PubMed

    Guachalla, Luis Miguel; Ju, Zhenyu; Koziel, Rafal; von Figura, Guido; Song, Zhangfa; Fusser, Markus; Epe, Bernd; Jansen-Durr, Pidder; Rudolph, K Lenhard

    2009-03-05

    Telomere shortening represents a causal factor of cellular senescence. At the same time, several lines of evidence indicate a pivotal role of oxidative DNA damage for the aging process in vivo. A causal connection between the two observations was suggested by experiments showing accelerated telomere shorting under conditions of oxidative stress in cultured cells, but has never been studied in vivo. We therefore have analysed whether an increase in mitochondrial derived oxidative stress in response to heterozygous deletion of superoxide dismutase (Sod2(+/-)) would exacerbate aging phenotypes in telomere dysfunctional (mTerc(-/-)) mice. Heterozygous deletion of Sod2 resulted in reduced SOD2 protein levels and increased oxidative stress in aging telomere dysfunctional mice, but this did not lead to an increase in basal levels of oxidative nuclear DNA damage, an accumulation of nuclear DNA breaks, or an increased rate of telomere shortening in the mice. Moreover, heterozygous deletion of Sod2 did not accelerate the depletion of stem cells and the impairment in organ maintenance in aging mTerc(-/-) mice. In agreement with these observations, Sod2 haploinsufficiency did not lead to a further reduction in lifespan of mTerc(-/-) mice. Together, these results indicate that a decrease in SOD2-dependent antioxidant defence does not exacerbate aging in the context of telomere dysfunction.

  11. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose

    PubMed Central

    Zhou, Yue-Yue; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance. PMID:26176541

  12. Paternal-age effects on sperm aneuploidy investigated in mice and humans by three-chromosome fluorescence in situ hybridization

    SciTech Connect

    Wyrobek, A.J.; Lowe, X.; Holland, N.T.

    1994-09-01

    We conducted a cross-species comparison of the effects of paternal age on sperm aneuploidy in mice and humans. A new murine assay was developed to detect sperm hyperhaploidy and polyploidy for chromosomes X, Y, and 8 using fluorescence in situ hybridization with chromosome-specific DNA probes, to serve as a direct corollate to the three-chromosome method developed early for human sperm. Sperm aneuploidy was evaluated in eight male B6C3F1 male mice (aged 22.5-30.5 mo) and compared to young controls (2.4 mo). The aged group showed significant ({approximately}2.0-fold) increases in hyperhaploidies involving chromosomes X, Y and 8, with the greatest effects seen in the oldest animals. Sperm aneuploidy was also evaluated in two groups of healthy men who differed in mean age [46.8{plus_minus}3.1 (n=4) vs. 28.5{plus_minus}5.0 (n=10) yrs], using the three-chromosome method. The older group showed a statistically significant increase in hyperhaploid sperm for both sex chromosomes. Additional controlled human studies are planned. Taken together, the murine and human data are consistent with a positive effect of paternal age on sperm aneuploidy. In both species, the strongest age effect was observed for hyperhaploidies of chromosome Y. Future studies are needed to investigate the shape of the age-effect curve and to evaluate chromosomal differences, especially for humans in their late reproductive years.

  13. Endocrine alterations and signaling changes associated with declining ovarian function and advanced biological aging in follicle-stimulating hormone receptor haploinsufficient mice.

    PubMed

    Danilovich, Natalia; Javeshghani, Danesh; Xing, Weirong; Sairam, M Ram

    2002-08-01

    Reproductive aging in female mammals is characterized by a progressive decline in fertility due to loss of follicles and reduced ovarian steroidogenesis. In this study we examined some of the endocrine and signaling parameters that might contribute to a decrease in ovulation and reproductive performance of mice with haploinsufficiency of the FSH receptor (FSH-R). For this purpose we compared ovarian changes and hormone levels in FSH-R heterozygous (+/-) and wild-type mice of different ages (3, 7, and 12 mo). Hormone-induced ovulations in immature and 3-mo-old +/- mice were consistently lower. The number of corpora lutea (CL) were lower at 3 and 7 mo, and none were present in 1-yr-old +/- females. The plasma steroid and gonadotropin levels exhibited changes associated with typical ovarian aging. Plasma FSH and LH levels were higher in 7-mo-old +/- mice, but FSH levels continued to rise in both genotypes by 1 yr. Serum estradiol and progesterone were lower in +/- mice at all ages, and testosterone was several-fold higher in 7-mo-old and 1-yr-old +/- mice. Inhibin alpha (Western blot) appeared to be lower in +/- ovaries at all ages. FSH-R (FSH* binding) declined steadily from 3 mo and reaching the lowest point at 1 yr. LH receptor (LH* binding) was high in the 1-yr-old ovary, and expression was localized in the stroma and interstitial cells. Our findings demonstrate that haploinsufficiency of the FSH-R gene could cause premature exhaustion of the gonadal reserves previously noted in these mice. This is accompanied by age-related changes in the hypothalamic-pituitary axis. As these features in our FSH-R +/- mice resemble reproductive failure occurring in middle-age women, further studies in this model might provide useful insights into the mechanisms underlying ovarian aging.

  14. [Effect of flavonoids from Sophora flavescens in aging mice induced by D-galactos].

    PubMed

    Fan, Hong-yan; Gu, Rao-sheng; Ren, Kuang; Wang, Yan-chun; Yao, Zhen; Shen, Nan; Liu, Shi-bing

    2015-11-01

    To investigate the effect of flavonoids from Sophora flavescens in aging mice induced by D-galactose and its mechanism. Totally 60 mice were randomly divided into six groups: the control group, the model group, the piracetam group (positive control group) and flavonoids from S. flavescens low, medium and high doses groups. Except for the control group, all of the rest groups were subcutaneously injected with D-galactose (160 mg x kg(-1)) for successively 30 days to establish the sub-acute senescent model. Meanwhile, flavonoids from S. flavescens low, medium and high doses groups were respectively administered with 150, 300 and 600 mg xkg-('1)of flavonoids from S. flavescens for 30 days. The learning and memory abilities of mice were determined by avoiding darkness ex-eriment and jumping stair experiment. The contents of malondialdehyde (MDA) tumor necrosis factor-aα NF-aα the activities of superoxide dismutase (SOD) monoamine oxidase-B (MAO-B) Na'(+)K'(+)-ATPase and Ca2(+ )-ATPase in the brain of mice were deter-ined respectively after the behavioral experiments. The activity of lactic dehydrogenase ( DH) in blood serum was also determined and analyzed by microscope after HE staining to observe the changes in hippocampal organizational structure. Compared with the model group, flavonoids from S. favescens medium and high doses groups showed significantly increases in the latency of avoiding darkness and jumping stair experiments; flavonoids from S. fllvescens low, medium and high doses groups and the piracetam group showed de-reases in the numbers of errors in avoiding darkness experiment; the flavonoids from S. flavescens high dose group and the piracetam group showed reduction- n the number of errors in jumping stair experiment (P <0 . 5 or P <0 . 1). Flavonoids from S. flavescens me-ium and high doses groups and the piracetam group showed improvements in the activities of SOD, Na'(+)K'(+)ATPase in the brain of mice and declines in the contents of MDA and TNF

  15. Aged complement factor H knockout mice kept in a clean barriered environment have reduced retinal pathology.

    PubMed

    Hoh Kam, Jaimie; Morgan, James E; Jeffery, Glen

    2016-08-01

    Age-related macular degeneration (AMD) is the largest cause of visual loss in those over 60 years in the West and is a condition increasing in prevalence. Many diseases result from genetic/environmental interactions and 50% of AMD cases have an association with polymorphisms of the complement system including complement factor H. Here we explore interactions between genetic predisposition and environmental conditions in triggering retinal pathology in two groups of aged complement factor H knock out (Cfh(-/-)) mice. Mice were maintained over 9 months in either a conventional open environment or a barriered pathogen free environment. Open environment Cfh(-/-) mice had significant increases in subretinal macrophage numbers, inflammatory and stress responses and reduced photoreceptor numbers over mice kept in a pathogen free environment. Hence, environmental factors can drive retinal disease in these mice when linked to complement deficits impairing immune function. Both groups of mice had similar levels of retinal amyloid beta accumulation. Consequently there is no direct link between this and inflammation in Cfh(-/-) mice.

  16. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    PubMed

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-01

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  17. Aging-related changes in respiratory system mechanics and morphometry in mice.

    PubMed

    Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C

    2016-07-01

    Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice.

  18. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice

    PubMed Central

    Li, Li; Xu, Meng; Shen, Bo; Li, Man; Gao, Qian; Wei, Shou-gang

    2016-01-01

    D-galactose has been widely used in aging research because of its efficacy in inducing senescence and accelerating aging in animal models. The present study investigated the benefits of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-galactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected to exercise training by running on a treadmill for 6 days a week. Shortened escape latency in a Morris water maze test indicated that exercise improved learning and memory in aging mice. The ameliorative changes were likely induced by an upregulation of Bcl-2 and brain-derived neurotrophic factor, the repression of apoptosis factors such as Fas and Bax, and an increase in the activity of glucose transporters-1 and 4. The data suggest moderate exercise may retard or inhibit neurodegeneration in D-galactose-induced aging mice. PMID:27335566

  19. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice.

    PubMed

    Li, Li; Xu, Meng; Shen, Bo; Li, Man; Gao, Qian; Wei, Shou-Gang

    2016-05-01

    D-galactose has been widely used in aging research because of its efficacy in inducing senescence and accelerating aging in animal models. The present study investigated the benefits of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-galactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected to exercise training by running on a treadmill for 6 days a week. Shortened escape latency in a Morris water maze test indicated that exercise improved learning and memory in aging mice. The ameliorative changes were likely induced by an upregulation of Bcl-2 and brain-derived neurotrophic factor, the repression of apoptosis factors such as Fas and Bax, and an increase in the activity of glucose transporters-1 and 4. The data suggest moderate exercise may retard or inhibit neurodegeneration in D-galactose-induced aging mice. PMID:27335566

  20. Adenomatous polyposis coli heterozygous knockout mice display hypoactivity and age-dependent working memory deficits

    PubMed Central

    Koshimizu, Hisatsugu; Fukui, Yasuyuki; Takao, Keizo; Ohira, Koji; Tanda, Koichi; Nakanishi, Kazuo; Toyama, Keiko; Oshima, Masanobu; Taketo, Makoto Mark; Miyakawa, Tsuyoshi

    2011-01-01

    A tumor suppressor gene, Adenomatous polyposis coli (Apc), is expressed in the nervous system from embryonic to adulthood stages, and transmits the Wnt signaling pathway in which schizophrenia susceptibility genes, including T-cell factor 4 (TCF4) and calcineurin (CN), are involved. However, the functions of Apc in the nervous system are largely unknown. In this study, as the first evaluation of Apc function in the nervous system, we have investigated the behavioral significance of the Apc gene, applying a battery of behavioral tests to Apc heterozygous knockout (Apc+/−) mice. Apc+/− mice showed no significant impairment in neurological reflexes or sensory and motor abilities. In various tests, including light/dark transition, open-field, social interaction, eight-arm radial maze, and fear conditioning tests, Apc+/− mice exhibited hypoactivity. In the eight-arm radial maze, Apc+/− mice 6–7 weeks of age displayed almost normal performance, whereas those 11–12 weeks of age showed a severe performance deficit in working memory, suggesting that Apc is involved in working memory performance in an age-dependent manner. The possibility that anemia, which Apc+/− mice develop by 17 weeks of age, impairs working memory performance, however, cannot be excluded. Our results suggest that Apc plays a role in the regulation of locomotor activity and presumably working memory performance. PMID:22347851

  1. Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice

    PubMed Central

    Bedrosian, Tracy A.; Herring, Kamillya L.; Weil, Zachary M.; Nelson, Randy J.

    2011-01-01

    Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is “sundowning syndrome,” which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomotor activity relative to adult mice near the end of the dark phase, and with time-dependent changes in basal forebrain acetylcholinesterase expression. Transgenic APP mice show a similar behavioral phenomenon that is not observed among age-matched wild-type mice. These results may have useful applications to the study and treatment of age- and dementia-related circadian behavioral disturbances, namely, sundowning syndrome. PMID:21709248

  2. Early-onset motor impairment and increased accumulation of phosphorylated α-synuclein in the motor cortex of normal aging mice are ameliorated by coenzyme Q.

    PubMed

    Takahashi, Kazuhide; Ohsawa, Ikuroh; Shirasawa, Takuji; Takahashi, Mayumi

    2016-08-01

    Brain mitochondrial function declines with age; however, the accompanying behavioral and histological alterations that are characteristic of Parkinson's disease (PD) are poorly understood. We found that the mitochondrial oxygen consumption rate (OCR) and coenzyme Q (CoQ) content were reduced in aged (15-month-old) male mice compared to those in young (6-month-old) male mice. Concomitantly, motor functions, including the rate of movement and exploratory and voluntary motor activities, were significantly reduced in the aged mice compared to the young mice. In the motor cortex of the aged mouse brain, the accumulation of α-synuclein (α-syn) phosphorylated at serine129 (Ser129) significantly increased, and the level of vesicular glutamate transporter 1 (VGluT1) decreased compared with that in the young mouse brain. The administration of exogenous water-soluble CoQ10 to aged mice via drinking water restored the mitochondrial OCR, motor function, and phosphorylated α-syn and VGluT1 levels in the motor cortex. These results suggest that early-onset motor impairment and the increased accumulation of Ser129-phosphorylated α-syn in the motor cortex are ameliorated by the exogenous administration of CoQ10. PMID:27143639

  3. Restoration of regenerative osteoblastogenesis in aged mice: Modulation of TNF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skeletal changes accompanying aging are associated with both increased risk of fractures and impaired fracture healing, which, in turn, is due to compromised bone regeneration potential. These changes are associated with increased serum levels of selected proinflammatory cytokines, e.g., tumor necro...

  4. Life span of C57 mice as influenced by radiation dose, dose rate, and age at exposure

    SciTech Connect

    Spalding, J.F.; Thomas, R.G.; Tietjen, G.L.

    1982-10-01

    This study was designed to measure the life shortening of C57BL/6J male mice as a result of exposure to five external doses from /sup 60/Co gamma radiation delivered at six different dose rates. Total doses ranged from 20 to 1620 rad at exposure rates ranging from 0.7 to 36,000 R/day. The ages of the mice at exposure were newborn, 2, 6, or 15 months. Two replications were completed. Although death was the primary endpoint, we did perform gross necropsies. The life span findings are variable, but we found no consistent shortening compared to control life spans. Therefore, we cannot logically extrapolate life shortening to lower doses, from the data we have obtained. In general, the younger the animals were at the beginning of exposure, the longer their life spans were compared to those of controls. This relationship weakened at the higher doses and dose rates, as mice in these categories tended not to have significantly different life spans from controls. Using life span as a criterion, we find this study suggests that some threshold dosage may exist beyond which effects of external irradiation may be manifested. Up to this threshold, there is no shortening effect on life span compared to that of control mice. Our results are in general agreement with the results of other researchers investigating human and other animal life span effects on irradiation.

  5. Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system.

    PubMed

    Chen, Jing; Buchanan, Jessica B; Sparkman, Nathan L; Godbout, Jonathan P; Freund, Gregory G; Johnson, Rodney W

    2008-03-01

    Acute cognitive disorders are common in elderly patients with peripheral infections but it is not clear why. Here, we injected old and young mice with Escherichia coli lipopolysaccharide (LPS) to mimic an acute peripheral infection and separated the hippocampal neuronal cell layers from the surrounding hippocampal tissue by laser capture microdissection and measured mRNA for several inflammatory cytokines (IL-1 beta, IL-6, and TNFalpha) that are known to disrupt cognition. The results showed that old mice had an increased inflammatory response in the hippocampus after LPS compared to younger cohorts. Immunohistochemistry further showed more microglial cells in the hippocampus of old mice compared to young adults, and that more IL-1 beta-positive cells were present in the dentate gyrus and in the CA1, CA2, and CA3 regions of LPS-treated old mice compared to young adults. In a test of cognition that required animals to effectively integrate new information with a preexisting schema to complete a spatial task, we found that hippocampal processing is more easily disrupted in old animals than in younger ones when the peripheral innate immune system is stimulated. Collectively, the results suggest that aging can facilitate neurobehavioral complications associated with peripheral infections probably by allowing the over expression of inflammatory cytokines in brain areas that mediate cognitive processing. PMID:17951027

  6. Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice

    PubMed Central

    Jensen, Cathy Joanna; Demol, Frauke; Bauwens, Romy; Kooijman, Ron; Massie, Ann; Villers, Agnès; Ris, Laurence; De Keyser, Jacques

    2016-01-01

    In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox) and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2). Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment) test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle) administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP) was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function. PMID:27776147

  7. Effects of Saikokaryukotsuboreito on Spermatogenesis and Fertility in Aging Male Mice

    PubMed Central

    Zang, Zhi-Jun; Ji, Su-Yun; Zhang, Ya-Nan; Gao, Yong; Zhang, Bin

    2016-01-01

    Background: Aspermia caused by exogenous testosterone limit its usage in late-onset hypogonadism (LOH) patients desiring fertility. Saikokaryukotsuboreito (SKRBT) is reported to improve serum testosterone and relieve LOH-related symptoms. However, it is unclear whether SKRBT affects fertility. We aimed to examine the effects of SKRBT on spermatogenesis and fertility in aging male mice. Methods: Thirty aging male mice were randomly assigned to three groups. Mice were orally administered with phosphate-buffer solution or SKRBT (300 mg/kg, daily) or received testosterone by subcutaneous injections (10 mg/kg, every 3 days). Thirty days later, each male mouse was mated with two female mice. All animals were sacrificed at the end of 90 days. Intratesticular testosterone (ITT) levels, quality of sperm, expression of synaptonemal complex protein 3 (SYCP3), and fertility were assayed. Results: In the SKRBT-treated group, ITT, quality of sperm, and expression of SYCP3 were all improved compared with the control group (ITT: 85.50 ± 12.31 ng/g vs. 74.10 ± 11.45 ng/g, P = 0.027; sperm number: [14.94 ± 4.63] × 106 cells/ml vs. [8.79 ± 4.38] × 106 cells/ml, P = 0.002; sperm motility: 43.16 ± 9.93% vs. 33.51 ± 6.98%, P = 0.015; the number of SYCP3-positive cells/tubule: 77.50 ± 11.01 ng/ml vs. 49.30 ± 8.73 ng/ml, P < 0.001; the expression of SYCP3 protein: 1.23 ± 0.09 vs. 0.84 ± 0.10, P < 0.001), but fertility was not significantly changed (P > 0.05, respectively). In the testosterone-treated group, ITT, quality of sperm, and expression of SYCP3 were markedly lower than the control group (ITT: 59.00 ± 8.67, P = 0.005; sperm number: [4.34 ± 2.45] × 106 cells/ml, P = 0.018; sperm motility: 19.53 ± 7.69%, P = 0.001; the number of SYCP3-positive cells/tubule: 30.00 ± 11.28, P < 0.001; the percentage of SYCP3-positive tubules/section 71.98 ± 8.88%, P = 0.001; the expression of SYCP3 protein: 0.71 ± 0.09, P < 0.001), and fertility was also suppressed (P < 0

  8. Increased Age-Related Cardiac Dysfunction in Bradykinin B2 Receptor-Deficient Mice.

    PubMed

    Feng, Wenjing; Xu, Xizhen; Zhao, Gang; Zhao, Junjie; Dong, Ruolan; Ma, Ben; Zhang, Yanjun; Long, Guangwen; Wang, Dao Wen; Tu, Ling

    2016-02-01

    Experimental evidence indicates that the kinin peptide binds to bradykinin B2 receptor (B2R) to trigger various beneficial effects on the cardiovascular system. However, the effects and underlying mechanisms of B2R in cardiac aging remain unknown. A significant age-dependent decrease in B2R expression in the myocardium was observed in C57BL/6J mice. Echocardiographic measurements showed that aging caused a significant cardiac dysfunction in C57BL/6J mice, and importantly B2R deficiency augmented this dysfunction in aging mice. The deficiency of B2R expression in the aging heart repressed p53-pGC-1α-induced mitochondria renewal, increased reactive oxygen species production, and destroyed mitochondrial ultrastructure. Age-related decrease or lack of B2R increased oxidative stress, macrophage infiltration, and inflammatory cytokine expression and compromised antioxidant enzyme expression. Moreover, the inflammatory signals were mainly mediated by the activation of p38 MAPK, JNK, and subsequent translocation of nuclear factor-kappa B to the nucleus. In summary, our data provide evidence that B2R deficiency contributes to the aging-induced cardiac dysfunction, which is likely mediated by increased mitochondrial dysfunction, oxidative stress, and inflammation. This study indicates that preventing the loss of cardioprotective B2R expression may be a novel approach for the prevention and treatment of age-related cardiac dysfunction.

  9. Soy biodiesel emissions have reduced inflammatory effects compared to diesel emissions in healthy and allergic mice.

    PubMed

    Gavett, Stephen H; Wood, Charles E; Williams, Marc A; Cyphert, Jaime M; Boykin, Elizabeth H; Daniels, Mary J; Copeland, Lisa B; King, Charly; Krantz, Todd Q; Richards, Judy H; Andrews, Debora L; Jaskot, Richard H; Gilmour, M Ian

    2015-01-01

    Toxicity of exhaust from combustion of petroleum diesel (B0), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM(2.5)) concentrations of 50, 150, or 500 μg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoalveolar lavage (BAL) fluid 2 h after a single 4-h exposure to B0 compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergic mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM-allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among B0-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to B0, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of T(H)2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 μg/m(3)) can induce inflammation acutely in healthy mice and exacerbate some components of allergic responses, while comparable concentrations of B20 or B100 soy biodiesel fuels did not elicit responses different from those caused by air exposure alone.

  10. Effect of Lactobacillus paracasei NCC2461 on antigen-specific T-cell mediated immune responses in aged mice.

    PubMed

    Vidal, Karine; Benyacoub, Jalil; Moser, Mireille; Sanchez-Garcia, J; Serrant, Patrick; Segura-Roggero, Iris; Reuteler, Gloria; Blum, Stephanie

    2008-10-01

    Aging is associated with a reduced capacity to mount proper immune responses, in particular to vaccines. Probiotic lactic acid bacteria may improve the immune status of the elderly; however, there is little evidence showing an effect of these bacteria on humoral and cellular immune responses. In the present study, the immunomodulatory capacity of the probiotic Lactobacillus paracasei NCC2461 combined or not with a prebiotic composition, FOS/inulin, was examined in aged mice. Male C57BL/6J mice (21-months-old) were allocated to one of three groups fed ad libitum for 44 days with different diets: a normal diet (control), a normal diet plus NCC2461 given in the drinking water, or a diet containing FOS/inulin plus NCC2461 in the drinking water. All mice were immunized on day 15 and challenged on day 22 with keyhole limpet hemocyanin (KLH). T helper (Th)1 cell-dependent immune responses (anti-KLH immunoglobulin G(2a) [IgG(2a)] levels and delayed type hypersensitivity response) were increased significantly in NCC2461-supplemented mice when compared to controls. Supplementation with FOS/inulin did not further improve the immune-enhancing effect mediated by the probiotic. Splenocyte proliferation, T cell subsets, systemic total IgG levels, and mucosal total IgA responses were not affected. Interestingly, supplementation with NCC2461 modulated the intestinal microbiota composition by increasing the numbers of bifidobacteria and lactobacilli. In conclusion, oral intake of L. paracasei NCC2461 by aged mice enhanced the specific adaptive immune response to in vivo antigenic challenge without altering other cellular and humoral immune responses. The poor responsiveness to antigenic challenge, frequently observed in elderly people, may be improved by supplementation with L. paracasei NCC2461. PMID:18922048

  11. Characterization of age-associated changes in peripheral organ and brain region weights in C57BL/6 mice.

    PubMed

    Lessard-Beaudoin, Mélissa; Laroche, Mélissa; Demers, Marie-Josée; Grenier, Guillaume; Graham, Rona K

    2015-03-01

    In order to further understand age-related physiological changes and to have in depth reference values for C57BL/6 mice, we undertook a study to assess the effects of aging on peripheral organ weights, and brain region weights in wild type C57BL/6 male mice. Peripheral organs, body and brain region weights were collected from young (3-4 months), mid (12 months), old (23-28 months) and very old (>30 months) mice. Significant increases are observed with aging in body, liver, heart, kidney and spleen organ weights. A decrease in organ weight is observed with aging in liver and kidney only in the very old mice. In contrast, testes weight decreases with age. Within the brain, hippocampi, striata and olfactory bulbs weight decreases with age. These data further our knowledge of the anatomical and biological changes that occur with aging and provide reference values for physiological-based pharmacokinetic studies in C57BL/6 mice.

  12. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    PubMed

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly.

  13. A comparative study of beef quality after ageing longissimus muscle using a dry ageing bag, traditional dry ageing or vacuum package ageing.

    PubMed

    Li, Xin; Babol, Jakub; Bredie, Wender L P; Nielsen, Belinda; Tománková, Jana; Lundström, Kerstin

    2014-08-01

    The objective of this study was to investigate beef quality of longissimus muscle after ageing in dry ageing bags, traditional dry ageing or vacuum for 8 or 19 days. Lower ageing weight loss, odour score and microbial growth were found in meat aged in dry ageing bags than after traditional dry ageing. The sensory panel detected no differences for most of the sensory attributes between samples using the two dry ageing methods, except for the odour of the cutting surface. The dry-aged steaks had more umami and butter fried meat taste compared with vacuum-aged steaks. Ageing time affected most of the sensory traits in this study, which improved as ageing time increased from 8 to 19 days. In a consumer test, meat aged for 21 days in dry ageing bags was preferred than the samples aged in vacuum. This may be due to the higher tenderness and juiciness obtained during storage in dry ageing bags than meat aged in vacuum.

  14. Towards the modelling of ageing and atherosclerosis effects in ApoE(-/-) mice aortic tissue.

    PubMed

    Waffenschmidt, Tobias; Cilla, Myriam; Sáez, Pablo; Pérez, Marta M; Martínez, Miguel A; Menzel, Andreas; Peña, Estefanía

    2016-08-16

    The goal of this work consists in a quantitative analysis and constitutive modelling of ageing processes associated to plaque formation in mice arteries. Reliable information on the characteristic evolution of pressure-stretch curves due to the ageing effects is extracted from previous inflation test experiments. Furthermore, characteristic age-dependent material parameters are identified on the basis of a continuum-mechanics-based parameter optimisation technique. The results indicate that the aorta-stiffness of the healthy control mice remains basically constant irrespective of the diet-time and age. In contrast, significant differences exist within the material response and in consequence within the material parameters between the ApoE(-/-) and the control mice as well as for the different locations over the aorta which is underlined by our experimental observations. With regard to the temporal evolution of the material parameters, we observe that the material parameters for the ApoE(-/-) mice aortas exhibit a saturation-type increase with respect to age. PMID:26924660

  15. Towards the modelling of ageing and atherosclerosis effects in ApoE(-/-) mice aortic tissue.

    PubMed

    Waffenschmidt, Tobias; Cilla, Myriam; Sáez, Pablo; Pérez, Marta M; Martínez, Miguel A; Menzel, Andreas; Peña, Estefanía

    2016-08-16

    The goal of this work consists in a quantitative analysis and constitutive modelling of ageing processes associated to plaque formation in mice arteries. Reliable information on the characteristic evolution of pressure-stretch curves due to the ageing effects is extracted from previous inflation test experiments. Furthermore, characteristic age-dependent material parameters are identified on the basis of a continuum-mechanics-based parameter optimisation technique. The results indicate that the aorta-stiffness of the healthy control mice remains basically constant irrespective of the diet-time and age. In contrast, significant differences exist within the material response and in consequence within the material parameters between the ApoE(-/-) and the control mice as well as for the different locations over the aorta which is underlined by our experimental observations. With regard to the temporal evolution of the material parameters, we observe that the material parameters for the ApoE(-/-) mice aortas exhibit a saturation-type increase with respect to age.

  16. Mito-protective autophagy is impaired in erythroid cells of aged mtDNA-mutator mice.

    PubMed

    Li-Harms, XiuJie; Milasta, Sandra; Lynch, John; Wright, Christopher; Joshi, Aashish; Iyengar, Rekha; Neale, Geoffrey; Wang, Xi; Wang, Yong-Dong; Prolla, Tomas A; Thompson, James E; Opferman, Joseph T; Green, Douglas R; Schuetz, John; Kundu, Mondira

    2015-01-01

    Somatic mitochondrial DNA (mtDNA) mutations contribute to the pathogenesis of age-related disorders, including myelodysplastic syndromes (MDS). The accumulation of mitochondria harboring mtDNA mutations in patients with these disorders suggests a failure of normal mitochondrial quality-control systems. The mtDNA-mutator mice acquire somatic mtDNA mutations via a targeted defect in the proofreading function of the mtDNA polymerase, PolgA, and develop macrocytic anemia similar to that of patients with MDS. We observed an unexpected defect in clearance of dysfunctional mitochondria at specific stages during erythroid maturation in hematopoietic cells from aged mtDNA-mutator mice. Mechanistically, aberrant activation of mechanistic target of rapamycin signaling and phosphorylation of uncoordinated 51-like kinase (ULK) 1 in mtDNA-mutator mice resulted in proteasome-mediated degradation of ULK1 and inhibition of autophagy in erythroid cells. To directly evaluate the consequence of inhibiting autophagy on mitochondrial function in erythroid cells harboring mtDNA mutations in vivo, we deleted Atg7 from erythroid progenitors of wild-type and mtDNA-mutator mice. Genetic disruption of autophagy did not cause anemia in wild-type mice but accelerated the decline in mitochondrial respiration and development of macrocytic anemia in mtDNA-mutator mice. These findings highlight a pathological feedback loop that explains how dysfunctional mitochondria can escape autophagy-mediated degradation and propagate in cells predisposed to somatic mtDNA mutations, leading to disease.

  17. Differential peptidomics assessment of strain and age differences in mice in response to acute cocaine administration.

    PubMed

    Romanova, Elena V; Rubakhin, Stanislav S; Ossyra, John R; Zombeck, Jonathan A; Nosek, Michael R; Sweedler, Jonathan V; Rhodes, Justin S

    2015-12-01

    Neurochemical differences in the hypothalamic-pituitary axis between individuals and between ages may contribute to differential susceptibility to cocaine abuse. This study measured peptide levels in the pituitary gland (Pit) and lateral hypothalamus (LH) in adolescent (age 30 days) and adult (age 65 days) mice from four standard inbred strains, FVB/NJ, DBA/2J, C57BL/6J, and BALB/cByJ, which have previously been characterized for acute locomotor responses to cocaine. Individual peptide profiles were analyzed using mass spectrometric profiling and principal component analysis. Sequences of assigned peptides were verified by tandem mass spectrometry. Principal component analysis classified all strains according to their distinct peptide profiles in Pit samples from adolescent mice, but not adults. Select pro-opiomelanocortin-derived peptides were significantly higher in adolescent BALB/cByJ and DBA/2J mice than in FVB/NJ or C57BL/6J mice. A subset of peptides in the LH, but not in the Pit, was altered by cocaine in adolescents. A 15 mg/kg dose of cocaine induced greater peptide alterations than a 30 mg/kg dose, particularly in FVB/NJ animals, with larger differences in adolescents than adults. Neuropeptides in the LH affected by acute cocaine administration included pro-opiomelanocortin-, myelin basic protein-, and glutamate transporter-derived peptides. The observed peptide differences could contribute to differential behavioral sensitivity to cocaine among strains and ages. Peptides were measured using mass spectrometry (MALDI-TOF) in individual lateral hypothalamus and pituitary samples from four strains and two ages of inbred mice in response to acute cocaine administration. Principal component analyses (PCA) classified the strains according to their peptide profiles from adolescent mice, and a subset of peptides in the lateral hypothalamus was altered by cocaine in adolescents.

  18. Comparative Pharmacokinetics of Perfluorononanoic acid in Rats and Mice

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a fluorinated organic chemical found at low levels in the environment, but is detectable in humans and wildlife. This study compared the pharmacokinetic properties of PFNA in two laboratory rodent species. Male and female Sprague-Dawley rats (n ...

  19. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice.

    PubMed

    Babcock, Alicia A; Ilkjær, Laura; Clausen, Bettina H; Villadsen, Birgitte; Dissing-Olesen, Lasse; Bendixen, Anita T M; Lyck, Lise; Lambertsen, Kate L; Finsen, Bente

    2015-08-01

    Beta-amyloid (Aβ) plaques and chronic neuroinflammation are significant neuropathological features of Alzheimer's disease. Microglial cells in aged brains have potential to produce cytokines such as TNF and IL-1 family members (IL-1α, IL-1β, and IL-1Ra) and to phagocytose Aβ in Alzheimer's disease, however the inter-relationship between these processes is poorly understood. Here we show that % Aβ plaque load followed a sigmoidal trajectory with age in the neocortex of APPswe/PS1ΔE9 Tg mice, and correlated positively with soluble Aβ40 and Aβ42. Aβ measures were moderately correlated with mRNA levels of CD11b, TNF, and IL-1Ra. Cytokine production and Aβ load were assessed in neocortical CD11b(+)(CD45(+)) microglia by flow cytometry. Whereas most microglia in aged mice produced IL-1Ra, relatively low proportions of microglia produced TNF, IL-1α, and IL-1β. However, microglial production of these latter cytokines was generally increased in APP/PS1 Tg mice. Microglia that phagocytosed endogenously-produced Aβ were only observed in APP/PS1 Tg mice. Differences in phagocytic index and total Aβ load were observed in microglia with specific cytokine profiles. Both phagocytic index and total Aβ load were higher in IL-1α(+) and IL-1Ra(+) microglia, than microglia that did not produce these cytokines. In contrast, total Aβ load was lower in IL-1β(+) and TNF(+) microglia, compared to IL-1β(-) and TNF(-) microglia, and TNF(+) microglia also had a lower phagocytic index. Using GFP bone marrow chimeric mice, we confirmed that the majority of neocortical CD11b(+)(CD45(+)) microglia were resident cells (GFP(-)) in APP/PS1 Tg mice, even after selectively analysing CD11b(+)CD45(high) cells, which are typically considered to be infiltrating cells. Together, our data demonstrate that cytokine expression is selectively correlated with age and Aβ pathology, and is associated with an altered Aβ load in phagocytic microglia from APP/PS1 Tg mice. These findings have

  20. Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice.

    PubMed

    Tong, Jing-Jing; Chen, Gui-Hai; Wang, Fang; Li, Xue-Wei; Cao, Lei; Sui, Xu; Tao, Fei; Yan, Wen-Wen; Wei, Zhao-Jun

    2015-05-01

    The administration of maintaining the homeostasis of insulin/insulin-like growth factor 1 (IGF-1) signaling and/or glucose metabolism may reverse brain aging. In the present study, we investigated the effect of acarbose, an inhibitor of α-glucosidase, on age-related behavioral and biochemical changes. The SAMP8 mice were randomly divided into old control group and acarbose-treatment group. The mice in the acarbose group were administered acarbose (20 mg/kg/d, dissolved in drinking water) orally from 3 to 9 months of age when a new group of 3-month-old mice was added as young controls. The results showed that the aged controls exhibited declines in sensorimotor ability, open field anxiety, spatial and non-spatial memory abilities, decreased serum insulin levels, increased IGF-1 receptor and synaptotagmin 1 (Syt1) levels and decreased insulin receptor, brain-derived neurotrophic factor (BDNF) and syntaxin 1 (Stx1) levels in the hippocampal layers. The age-related behavioral deficits correlated with the serological and histochemical data. Chronic acarbose treatment relieved these age-related changes, especially with respect to learning and memory abilities. This protective effect of acarbose on age-related behavioral impairments might be related to changes in the insulin system and the levels of BDNF, IGF-1R, and the pre-synaptic proteins Syt1 and Stx1. In conclusion, long-term treatment with acarbose ameliorated the behavioral deficits and biochemical changes in old SAMP8 mice and promoted successful aging. This study provides insight into the potential of acarbose for the treatment of brain aging.

  1. Effects of rhein lysinate on D-galactose-induced aging mice

    PubMed Central

    ZHEN, YONG-ZHAN; LIN, YA-JUN; LI, KAI-JI; ZHANG, GUANG-LING; ZHAO, YU-FANG; WANG, MEI-MEI; WEI, JING-BO; WEI, JIE; HU, GANG

    2016-01-01

    The aim of the present study was to investigate the anti-aging effects of rhein lysinate (RHL), and to explore its mechanism of action in a D-galactose-induced aging mouse model. Aging was induced by D-galactose (100 mg/kg/day) that was subcutaneously injected to animals for 8 weeks. RHL was simultaneously administered once a day by intragastric gavage. The appetite, mental condition, body weight and organ index of the mice were monitored. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined, and the levels of malondialdehyde (MDA) in the liver, kidney and serum were measured by appropriate assay kits. Western blot analysis was used to detect proteins associated with age. The results indicated that RHL may improve the appetite, mental state and organ conditions of the model mice, improve the activities of SOD and GSH-Px, reduce MDA levels and modulate the expression of age-associated proteins (Sirtuin 1, p21 and p16) in D-galactose-induced mice. Therefore, RHL may be effective at suppressing the aging process through a combination of enhancing antioxidant activity, scavenging free radicals and modulating aging-associated gene expression. PMID:26889258

  2. Mathematical modeling of left ventricular dimensional changes in mice during aging.

    PubMed

    Yang, Tianyi; Chiao, Ying Ann; Wang, Yunji; Voorhees, Andrew; Han, Hai-Chao; Lindsey, Merry L; Jin, Yu-Fang

    2012-01-01

    Cardiac aging is characterized by diastolic dysfunction of the left ventricle (LV), which is due in part to increased LV wall stiffness. In the diastolic phase, myocytes are relaxed and extracellular matrix (ECM) is a critical determinant to the changes of LV wall stiffness. To evaluate the effects of ECM composition on cardiac aging, we developed a mathematical model to predict LV dimension and wall stiffness changes in aging mice by integrating mechanical laws and our experimental results. We measured LV dimension, wall thickness, LV mass, and collagen content for wild type (WT) C57/BL6J mice of ages ranging from 7.3 months to those of 34.0 months. The model was established using the thick wall theory and stretch-induced tissue growth to an isotropic and homogeneous elastic composite with mixed constituents. The initial conditions of the simulation were set based on the data from the young mice. Matlab simulations of this mathematical model demonstrated that the model captured the major features of LV remodeling with age and closely approximated experimental results. Specifically, the temporal progression of the LV interior and exterior dimensions demonstrated the same trend and order-of-magnitude change as our experimental results. In conclusion, we present here a validated mathematical model of cardiac aging that applies the thick-wall theory and stretch-induced tissue growth to LV remodeling with age. PMID:23281647

  3. Procognitive effect of AC-3933 in aged mice, and synergistic effect of combination with donepezil in scopolamine-treated mice.

    PubMed

    Hashimoto, Takashi; Hatayama, Yuki; Nakamichi, Keiko; Yoshida, Naoyuki

    2014-12-15

    We have previously reported that AC-3933, a newly developed benzodiazepine receptor partial inverse agonist, facilitates acetylcholine release in the hippocampus and ameliorates scopolamine-induced memory deficits in rats. To further confirm the procognitive effect of AC-3933, we assessed in this study the beneficial effects of this compound in aged mice using the Y-maze and object recognition tests. In addition, we investigated the synergistic effect of AC-3933 and donepezil, a cholinesterase inhibitor, on scopolamine-induced memory impairment in mice. In aged mice, oral administration of AC-3933 at doses of 0.05-0.1 mg/kg and 0.05 mg/kg significantly improved spatial working memory and episodic memory, respectively. In scopolamine-treated mice, both AC-3933 and donepezil significantly ameliorated memory deficits in the Y-maze test at doses of 0.3-3 mg/kg and 10-15 mg/kg, respectively. The beneficial effect of AC-3933, but not that of donepezil, on scopolamine-induced memory impairment was antagonized by flumazenil, a benzodiazepine receptor antagonist, indicating that the procognitive action of AC-3933 arises via a mechanism different from that of donepezil. Co-administration of donepezil at the suboptimal dose of 3 mg/kg with AC-3933 at doses of 0.1-1 mg/kg significantly ameliorated scopolamine-induced memory impairment, suggesting that AC-3933 potentiates the effect of donepezil on memory impairment induced by cholinergic hypofunction. These findings indicate that AC-3933 not only has good potential as a cognitive enhancer by itself, but also is useful as a concomitant drug for the treatment of Alzheimer׳s disease.

  4. Long-term caloric restriction in mice may prevent age-related learning impairment via suppression of apoptosis.

    PubMed

    Ma, Lina; Wang, Rong; Dong, Wen; Li, Yun; Xu, Baolei; Zhang, Jingshuang; Zhao, Zhiwei

    2016-12-15

    Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. However, the underlying mechanisms have not yet been clearly defined. Therefore, we aimed to identify the underlying mechanisms of long-term CR on age-related learning impairment in C57/BL mice. Thirty six-week-old male C57/BL mice were randomly divided into three groups: normal control group (NC group, n=10), high energy group (HE group, n=10), and CR group (n=10). After 10 months, the Morris water maze test was performed to monitor learning abilities. Western blotting, immunohistochemistry and real-time polymerase chain reaction were used to monitor changes in protein and mRNA levels associated with apoptosis-related proteins in the hippocampus. The average escape latency was lower in the CR group compared with the NC group, and the average time taken to first cross the platform in the CR group was significantly shorter than the HE group. Both Bcl-2 protein and mRNA expression levels in the CR group were significantly higher than those of the NC group and HE group. The expression of Bax, Caspase-3 and PARP protein in the CR group was significantly lower than the NC group. Our findings demonstrate that long-term CR may prevent age-related learning impairments via suppressing apoptosis in mice. PMID:27452805

  5. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice.

    PubMed

    Bitto, Alessandro; Ito, Takashi K; Pineda, Victor V; LeTexier, Nicolas J; Huang, Heather Z; Sutlief, Elissa; Tung, Herman; Vizzini, Nicholas; Chen, Belle; Smith, Kaleb; Meza, Daniel; Yajima, Masanao; Beyer, Richard P; Kerr, Kathleen F; Davis, Daniel J; Gillespie, Catherine H; Snyder, Jessica M; Treuting, Piper M; Kaeberlein, Matt

    2016-01-01

    The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome. PMID:27549339

  6. Oral treatment with herbal formula B401 alleviates penile toxicity in aging mice with manganism.

    PubMed

    Hsu, Chih-Hsiang; Lin, Ching-Lung; Wang, Sheue-Er; Sheu, Shuenn-Jyi; Chien, Chiang-Ting; Wu, Chung-Hsin

    2015-01-01

    The present study aims to elucidate the roles of nitric oxide synthase activity, oxidative stress, inflammation, and apoptosis in penile toxicity of aging mice associated with excess manganese (Mn) treatment and to investigate the effect of oral treatment with the herbal formula B401 in this respect. ICR strain mice were divided into two groups: the vehicle (sham group) and the B401 (50 mg/kg) group. The mice were orally treated for 5 days; then a high single dose of MnCl2 (100 mg/kg) was given by intraperitoneal injection to the mice. One day after MnCl2 treatment, corpora cavernosal tissues of both Mn-treated mice and their controls were simultaneously sampled to examine their immunohistochemical staining and Western blot analysis. Nitric oxide (NO) production, levels of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS), expression levels of factors governing angiogenesis (vascular endothelial growth factor), oxidative stress (catalase, superoxide dismutase 2,4-hydroxynonenal), inflammation (tumor necrosis factor alpha), apoptosis (B-cell lymphoma 2 [Bcl-2], Bcl-2-associated X protein [Bax], cleaved poly(adenosine diphosphate-ribose) polymerase [c-PARP], cytochrome C, caspase-12, and caspase-3) were evaluated in penile corpus cavernosum of the mice. We found that penile toxicity in the mice was enhanced under excess Mn treatment through reduction of NOS activity and increase in oxidative stress, inflammation, and apoptosis in the penile cavernous tissue. Furthermore, the penile toxicity in mice with manganism was alleviated by oral B401 treatment through enhancement of both nitric oxide synthesis and angiogenesis, with simultaneous reduction of oxidative stress, inflammation, and apoptosis in penile corpus cavernosum. We suggest that the herbal formula B401 may serve as a potential dietotherapeutic supplement for penile toxicity or dysfunction in aging males.

  7. Oral treatment with herbal formula B401 alleviates penile toxicity in aging mice with manganism

    PubMed Central

    Hsu, Chih-Hsiang; Lin, Ching-Lung; Wang, Sheue-Er; Sheu, Shuenn-Jyi; Chien, Chiang-Ting; Wu, Chung-Hsin

    2015-01-01

    The present study aims to elucidate the roles of nitric oxide synthase activity, oxidative stress, inflammation, and apoptosis in penile toxicity of aging mice associated with excess manganese (Mn) treatment and to investigate the effect of oral treatment with the herbal formula B401 in this respect. ICR strain mice were divided into two groups: the vehicle (sham group) and the B401 (50 mg/kg) group. The mice were orally treated for 5 days; then a high single dose of MnCl2 (100 mg/kg) was given by intraperitoneal injection to the mice. One day after MnCl2 treatment, corpora cavernosal tissues of both Mn-treated mice and their controls were simultaneously sampled to examine their immunohistochemical staining and Western blot analysis. Nitric oxide (NO) production, levels of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS), expression levels of factors governing angiogenesis (vascular endothelial growth factor), oxidative stress (catalase, superoxide dismutase 2,4-hydroxynonenal), inflammation (tumor necrosis factor alpha), apoptosis (B-cell lymphoma 2 [Bcl-2], Bcl-2-associated X protein [Bax], cleaved poly(adenosine diphosphate-ribose) polymerase [c-PARP], cytochrome C, caspase-12, and caspase-3) were evaluated in penile corpus cavernosum of the mice. We found that penile toxicity in the mice was enhanced under excess Mn treatment through reduction of NOS activity and increase in oxidative stress, inflammation, and apoptosis in the penile cavernous tissue. Furthermore, the penile toxicity in mice with manganism was alleviated by oral B401 treatment through enhancement of both nitric oxide synthesis and angiogenesis, with simultaneous reduction of oxidative stress, inflammation, and apoptosis in penile corpus cavernosum. We suggest that the herbal formula B401 may serve as a potential dietotherapeutic supplement for penile toxicity or dysfunction in aging males. PMID:26064043

  8. The Cardioprotective Effect of Vitamin E (Alpha-Tocopherol) Is Strongly Related to Age and Gender in Mice

    PubMed Central

    Li, Yan; Lin, Ze-Bang; Liu, Xiang; Wang, Jing-Feng; Chen, Yang-Xin; Wang, Zhi-Ping; Zhang, Xi; Ou, Zhi-Jun; Ou, Jing-Song

    2015-01-01

    Vitamin E (VitE) only prevented cardiovascular diseases in some patients and the mechanisms remain unknown. VitE levels can be affected by aging and gender. We hypothesize that age and gender can influence VitE’s cardioprotective effect. Mice were divided into 4 groups according to age and gender, and each group of mice were divided into a control group and a VitE group. The mice were administered water or VitE for 21 days; Afterward, the cardiac function and myocardial infarct size and cardiomyocyte apoptosis were measured after myocardial ischemia reperfusion(MI/R). VitE may significantly improved cardiac function in young male mice and aged female mice by enhancing ERK1/2 activity and reducing JNK activity. Enhanced expression of HSP90 and Bcl-2 were also seen in young male mice. No changes in cardiac function and cardiac proteins were detected in aged male mice and VitE was even liked to exert a reverse effect in cardiac function in young mice by enhancing JNK activity and reducing Bcl-2 expression. Those effects were in accordance with the changes of myocardial infarction size and cardiomyocyte apoptosis in each group of mice. VitE may reduce MI/R injury by inhibiting cardiomyocyte apoptosis in young male mice and aged female mice but not in aged male mice. VitE was possibly harmful for young female mice, shown as increased cardiomyocyte apoptosis after MI/R. Thus, we speculated that the efficacy of VitE in cardiac protection was associated with age and gender. PMID:26331272

  9. A study of axonal degeneration in the optic nerves of aging mice

    NASA Technical Reports Server (NTRS)

    Johnson, J. E., Jr.; Philpott, D. E.; Miquel, J.

    1978-01-01

    The optic nerves of C57BL/6J mice ranging from 3 to 30 months were examined by electron microscopy. At all ages investigated, optic nerve axons contained enlarged mitochondria with abnormal cristae. With increasing age, a large number of necrotic axons were observed and were in the process of being phagocytized. The abnormal mitochondria may represent preliminary changes that eventually lead to necrosis of the axon.

  10. Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice.

    PubMed

    Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-10-01

    The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia.

  11. Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice.

    PubMed

    Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-10-01

    The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia. PMID:27435496

  12. Age-related trends in gene expression in the chemosensory-nasal mucosae of senescence-accelerated mice.

    PubMed

    Getchell, Thomas V; Peng, Xuejun; Stromberg, Arnold J; Chen, Kuey-Chu; Paul Green, C; Subhedar, Nishikant K; Shah, Dharmen S; Mattson, Mark P; Getchell, Marilyn L

    2003-04-01

    We have utilized high-density GeneChip oligonucleotide arrays to investigate the use of the senescence-accelerated mouse (SAM) as a biogerontological resource to identify patterns of gene expression in the chemosensory-nasal mucosa. Gene profiling in chronologically young and old mice of the senescence-resistant (SAMR) and senescence-prone (SAMP) strains revealed 133 known genes that were modulated by a three-fold or greater change either in one strain or the other or in both strains during aging. We also identified known genes in our study which based on their encoded proteins were identified as aging-related genes in the aging neocortex and cerebellum of mice as reported by Lee et al. (2000) [Nat. Genet. 25 (2000) 294]. Changes in gene profiles for chemosensory-related genes including olfactory and vomeronasal receptors, sensory transduction-associated proteins, and odor and pheromone transport molecules in the young SAMR and SAMP were compared with age-matched C57BL/6J mice. An analysis of known gene expression profiles suggests that changes in the expression of immune factor genes and genes associated with cell cycle progression and cell death were particularly prominent in the old SAM strains. A preliminary cellular validation study supported the dysregulation of cell cycle-related genes in the old SAM strains. The results of our initial study indicated that the use of the SAM models of aging could provide substantive information leading to a more fundamental understanding of the aging process in the chemosensory-nasal mucosa at the genomic, molecular, and cellular levels. PMID:12605961

  13. Content of stromal precursor cells in heterotopic transplants of bone marrow in CBA mice of various ages.

    PubMed

    Gorskaya, Yu F; Kuralesova, A I; Shuklina, E Yu; Nesterenko, V G

    2002-02-01

    Efficiency of colony formation of stromal precursor cells in cultured bone marrow transplants from old (24 month) CBA mice implanted to young (2-month-old) mice almost 3-fold surpassed that in cultured transplants implanted to old recipients. The content of nucleated cells in bone marrow transplants from senescence accelerated mice SAMP increased more than 2-fold, if SAMR mice with normal aging rate were used as the recipients instead of SAMP mice. Bone marrow taken from old and young CBA mice endured the same number of transplantations if the recipient mice were of the same age (5 month). It was concluded that stromal tissue considerably changes with age and is under strict control of the body. PMID:12432868

  14. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    PubMed

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.

  15. Ischemic postconditioning confers cardioprotection and prevents reduction of Trx-1 in young mice, but not in middle-aged and old mice.

    PubMed

    Perez, Virginia; D Annunzio, Verónica; Mazo, Tamara; Marchini, Timoteo; Caceres, Lourdes; Evelson, Pablo; Gelpi, Ricardo J

    2016-04-01

    Thioredoxin-1 (Trx-1) is part of an antioxidant system that maintains the cell redox homeostasis but their role on ischemic postconditioning (PostC) is unknown. The aim of this work was to determine whether Trx-1 participates in the cardioprotective mechanism of PostC in young, middle-aged, and old mice. Male FVB young (Y: 3 month-old), middle-aged (MA: 12 month-old), and old (O: 20 month-old) mice were used. Langendorff-perfused hearts were subjected to 30 min of ischemia and 120 min of reperfusion (I/R group). After ischemia, we performed 6 cycles of R/I (10 s each) followed by 120 min of reperfusion (PostC group). We measured the infarct size (triphenyltetrazolium); Trx-1, total and phosphorylated Akt, and GSK3β expression (Western blot); and the GSH/GSSG ratio (HPLC). PostC reduced the infarct size in young mice (I/R-Y: 52.3 ± 2.4 vs. PostC-Y: 40.0 ± 1.9, p < 0.05), but this protection was abolished in the middle-aged and old mice groups. Trx-1 expression decreased after I/R, and the PostC prevented the protein degradation in young animals (I/R-Y: 1.05 ± 0.1 vs. PostC-Y: 0.52 ± .0.07, p < 0.05). These changes were accompanied by an improvement in the GSH/GSSG ratio (I/R-Y: 1.25 ± 0.30 vs. PostC-Y: 7.10 ± 2.10, p < 0.05). However, no changes were observed in the middle-aged and old groups. Cytosolic Akt and GSK3β phosphorylation increased in the PostC compared with the I/R group only in young animals. Our results suggest that PostC prevents Trx-1 degradation, decreasing oxidative stress and allowing the activation of Akt and GSK3β to exert its cardioprotective effect. This protection mechanism is not activated in middle-aged and old animals. PMID:26932791

  16. Chronic social stress during adolescence induces cognitive impairment in aged mice.

    PubMed

    Sterlemann, Vera; Rammes, Gerhard; Wolf, Miriam; Liebl, Claudia; Ganea, Karin; Müller, Marianne B; Schmidt, Mathias V

    2010-04-01

    Age-related cognitive decline is one of the major aspects that impede successful aging in humans. Environmental factors, such as chronic stress, can accelerate or aggravate cognitive deficits during aging. While there is abundant evidence that chronic stress directly affects cognitive performance, the lasting consequences of stress exposures during vulnerable developmental time windows are largely unknown. This is especially true for the adolescent period, which is critical in terms of physical, sexual, and behavioral maturation. Here we used chronic social stress during adolescence in male mice and investigated the consequences of this treatment on cognitive performance during aging. We observed a substantial impairment of spatial memory, but not other memory domains, 12 months after the end of the stress period. This hippocampus-dependent cognitive dysfunction was supported by concomitant impairment in LTP induction in CA1 neurons in 15-month-old animals. Further, we observed a decrease of hippocampal BDNF mRNA and synaptophysin immunoreactivity, suggesting plasticity and structural alterations in formerly stressed mice. Finally, we identified expression changes of specific neurotransmitter subunits critically involved in learning and memory, specifically the NMDA receptor subunit NR2B. Taken together, our results identify possible molecular mechanisms underlying cognitive impairment during aging, demonstrating the detrimental impact of stress during adolescence on hippocampus-dependent cognitive function in aged mice. PMID:19489003

  17. Modeling early-onset post-ischemic seizures in aging mice

    PubMed Central

    Wu, Chiping; Wang, Justin; Peng, Jessie; Patel, Nisarg; Huang, Yayi; Gao, Xiaoxing; Aljarallah, Salman; Eubanks, James H; McDonald, Robert; Zhang, Liang

    2016-01-01

    Stroke is the leading cause of seizures and epilepsy in the aged population, with post-stroke seizures being a poor prognostic factor. The pathological processes underlying post-stroke seizures are not well understood and studies of these seizures in aging/aged animals remain scarce. Therefore, our primary objective was to model post-stroke seizures in aging mice (C57 black strain, 16–20 month-old), with a focus on early-onset, convulsive seizures that occur within 24-hours of brain ischemia. We utilized a middle cerebral artery occlusion model and examined seizure activity and brain injury using combined behavioral and electroencephalographic monitoring and histological assessments. Aging mice exhibited vigorous convulsive seizures within hours of the middle cerebral artery occlusion. These seizures manifested with jumping, rapid running, barrel-rolling and/or falling all in the absence of hippocampal-cortical electrographic discharges. Seizure development was closely associated with severe brain injury and acute mortality. Anticonvulsive treatments after seizure occurrence offered temporary seizure control but failed to improve animal survival. A separate cohort of adult mice (6–8 months-old) exhibited analogous early-onset convulsive seizures following the middle cerebral artery occlusion but had better survival outcomes following anticonvulsive treatment. Collectively, our data suggest that early-onset convulsive seizures are a result of severe brain ischemia in aging animals. PMID:25943585

  18. Modeling early-onset post-ischemic seizures in aging mice.

    PubMed

    Wu, Chiping; Wang, Justin; Peng, Jessie; Patel, Nisarg; Huang, Yayi; Gao, Xiaoxing; Aljarallah, Salman; Eubanks, James H; McDonald, Robert; Zhang, Liang

    2015-09-01

    Stroke is the leading cause of seizures and epilepsy in the aged population, with post-stroke seizures being a poor prognostic factor. The pathological processes underlying post-stroke seizures are not well understood and studies of these seizures in aging/aged animals remain scarce. Therefore, our primary objective was to model post-stroke seizures in aging mice (C57 black strain, 16-20 months-old), with a focus on early-onset, convulsive seizures that occur within 24-hours of brain ischemia. We utilized a middle cerebral artery occlusion model and examined seizure activity and brain injury using combined behavioral and electroencephalographic monitoring and histological assessments. Aging mice exhibited vigorous convulsive seizures within hours of the middle cerebral artery occlusion. These seizures manifested with jumping, rapid running, barrel-rolling and/or falling all in the absence of hippocampal-cortical electrographic discharges. Seizure development was closely associated with severe brain injury and acute mortality. Anticonvulsive treatments after seizure occurrence offered temporary seizure control but failed to improve animal survival. A separate cohort of adult mice (6-8 months-old) exhibited analogous early-onset convulsive seizures following the middle cerebral artery occlusion but had better survival outcomes following anticonvulsive treatment. Collectively, our data suggest that early-onset convulsive seizures are a result of severe brain ischemia in aging animals.

  19. Age and Sex of Mice Markedly Affect Survival Times Associated with Hyperoxic Acute Lung Injury.

    PubMed

    Prows, Daniel R; Gibbons, William J; Smith, Jessica J; Pilipenko, Valentina; Martin, Lisa J

    2015-01-01

    Mortality associated with acute lung injury (ALI) remains substantial, with recent estimates of 35-45% similar to those obtained decades ago. Although evidence for sex-related differences in ALI mortality remains equivocal, death rates differ markedly for age, with more than 3-fold increased mortality in older versus younger patients. Strains of mice also show large differences in ALI mortality. To tease out genetic factors affecting mortality, we established a mouse model of differential hyperoxic ALI (HALI) survival. Separate genetic analyses of backcross and F2 populations generated from sensitive C57BL/6J (B) and resistant 129X1/SvJ (X1) progenitor strains identified two quantitative trait loci (QTLs; Shali1 and Shali2) with strong, equal but opposite, within-strain effects on survival. Congenic lines confirmed these opposing QTL effects, but also retained the low penetrance seen in the 6-12 week X1 control strain. Sorting mice into distinct age groups revealed that 'age at exposure' inversely correlated with survival time and explained reduced penetrance of the resistance trait. While B mice were already sensitive by 6 weeks old, X1 mice maintained significant resistance up to 3-4 weeks longer. Reanalysis of F2 data gave analogous age-related findings, and also supported sex-specific linkage for Shali1 and Shali2. Importantly, we have demonstrated in congenic mice that these age effects on survival correspond with B alleles for Shali1 (6-week old mice more sensitive) and Shali2 (10-week old mice more resistant) placed on the X1 background. Further studies revealed significant sex-specific survival differences in subcongenics for both QTLs. Accounting for age and sex markedly improved penetrance of both QTLs, thereby reducing trait variability, refining Shali1 to <8.5Mb, and supporting several sub-QTLs within the Shali2 interval. Together, these congenics will allow age- and sex-specific studies to interrogate myriad subphenotypes affected during ALI

  20. Age and Sex of Mice Markedly Affect Survival Times Associated with Hyperoxic Acute Lung Injury

    PubMed Central

    Prows, Daniel R.; Gibbons, William J.; Smith, Jessica J.; Pilipenko, Valentina; Martin, Lisa J.

    2015-01-01

    Mortality associated with acute lung injury (ALI) remains substantial, with recent estimates of 35–45% similar to those obtained decades ago. Although evidence for sex-related differences in ALI mortality remains equivocal, death rates differ markedly for age, with more than 3-fold increased mortality in older versus younger patients. Strains of mice also show large differences in ALI mortality. To tease out genetic factors affecting mortality, we established a mouse model of differential hyperoxic ALI (HALI) survival. Separate genetic analyses of backcross and F2 populations generated from sensitive C57BL/6J (B) and resistant 129X1/SvJ (X1) progenitor strains identified two quantitative trait loci (QTLs; Shali1 and Shali2) with strong, equal but opposite, within-strain effects on survival. Congenic lines confirmed these opposing QTL effects, but also retained the low penetrance seen in the 6–12 week X1 control strain. Sorting mice into distinct age groups revealed that ‘age at exposure’ inversely correlated with survival time and explained reduced penetrance of the resistance trait. While B mice were already sensitive by 6 weeks old, X1 mice maintained significant resistance up to 3–4 weeks longer. Reanalysis of F2 data gave analogous age-related findings, and also supported sex-specific linkage for Shali1 and Shali2. Importantly, we have demonstrated in congenic mice that these age effects on survival correspond with B alleles for Shali1 (6-week old mice more sensitive) and Shali2 (10-week old mice more resistant) placed on the X1 background. Further studies revealed significant sex-specific survival differences in subcongenics for both QTLs. Accounting for age and sex markedly improved penetrance of both QTLs, thereby reducing trait variability, refining Shali1 to <8.5Mb, and supporting several sub-QTLs within the Shali2 interval. Together, these congenics will allow age- and sex-specific studies to interrogate myriad subphenotypes affected during ALI

  1. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Wang, Yingying; Shao, Lijian; Laberge, Remi-Martin; Demaria, Marco; Campisi, Judith; Janakiraman, Krishnamurthy; Sharpless, Norman E; Ding, Sheng; Feng, Wei; Luo, Yi; Wang, Xiaoyan; Aykin-Burns, Nukhet; Krager, Kimberly; Ponnappan, Usha; Hauer-Jensen, Martin; Meng, Aimin; Zhou, Daohong

    2016-01-01

    Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI). Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a 'senolytic' pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type- and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents. PMID:26657143

  2. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Wang, Yingying; Shao, Lijian; Laberge, Remi-Martin; Demaria, Marco; Campisi, Judith; Janakiraman, Krishnamurthy; Sharpless, Norman E; Ding, Sheng; Feng, Wei; Luo, Yi; Wang, Xiaoyan; Aykin-Burns, Nukhet; Krager, Kimberly; Ponnappan, Usha; Hauer-Jensen, Martin; Meng, Aimin; Zhou, Daohong

    2016-01-01

    Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI). Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a 'senolytic' pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type- and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents.

  3. Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 induce different age-related metabolic profiles revealed by 1H-NMR spectroscopy in urine and feces of mice.

    PubMed

    Brasili, Elisa; Mengheri, Elena; Tomassini, Alberta; Capuani, Giorgio; Roselli, Marianna; Finamore, Alberto; Sciubba, Fabio; Marini, Federico; Miccheli, Alfredo

    2013-10-01

    Age-related dysbioses of intestinal microbiota and decline in the overall metabolic homeostasis are frequently found in the elderly. Probiotic supplementation may represent a way to prevent or reduce the senescence-associated metabolic disorders. The present study evaluated the metabolic impact of Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 supplementation in relation to age by analyzing urine and feces metabolic profiles using (1)H-nuclear magnetic resonance spectroscopy and multivariate analysis. Adult (3 mo old) and aged (16 mo old) mice received an oral supplementation of the 2 probiotics (1 × 10(9) colony-forming units/d each) or phosphate buffered saline (control) daily for 30 d. Urine and feces were collected for 48 h before the end of the study. Partial least squares-discriminant analysis showed that the urinary discriminant metabolites for the probiotic treatment included higher dimethylglycine in adult and aged mice, lower sarcosine and nicotinate in adult mice, higher N-methylnicotinamide in adult mice and lower N-methylnicotinamide in aged mice compared with their controls. These results indicate a probiotic-induced modulation of homocysteine and NAD metabolism pathways, which have important implications because these pathways are involved in essential cellular processes that can be altered in senescence. The probiotic supplementation also modified the fecal metabolic profiles, inducing in both adult and aged mice higher 4-hydroxyphenylacetate and lower xylose in treated mice compared with their control mice, whereas valerate was greater in treated adult mice and lower in treated aged mice compared with their controls. The ANOVA simultaneous component analysis on urinary and fecal metabolic profiling showed an age × treatment interaction (P < 0.05), confirming the age-related modulation of the metabolic response to probiotic supplementation. The results suggest that L. acidophilus and B. lactis may prevent or reduce age

  4. Adipose stem cells' antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function.

    PubMed

    Wang, Haiying; Wei, Shuyue; Xue, Xinxin; You, Yuntian; Ma, Qiang

    2016-09-01

    This study aims to discuss adipose stem cells' (ASCs) antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function; the study also aims to explore a new mechanism of anti-aging to provide clinical anti-aging therapy with new thoughts and methods. We selected 40 healthy specific pathogen-free (SPF) nude mice and divided them randomly into four groups which were: blank control group; D-galactose + phosphate buffer saline (PBS) group; D-galactose + ASCs treatment group; and D-galactose + aminoguanidine (AG) group. Results showed that the superoxide dismutase (SOD) level of mice in the D-galactose-induced model group (87.15 ± 4.95 U/g) decreased significantly compared with that of control group (146.21 ± 4.76 U/g), while malonaldehyde (MDA) level of mice in D-galactose induced model group (11.12 ± 2.08 nmol/mg) increased significantly compared with that of control group (5.46 ± 2.05 nmol/mg) (P <0.05); thus D-galactose induced sub-acutely aging mice models were duplicated successfully. Results also indicated that transplantation of ASCs could reverse expression of aging-related biomarkers such as MDA, SOD, and advanced glycosylation end products (AGEs); hematoxylin and eosin (HE) staining showed that thickness of the dermis layer as well as the collagen content of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In addition, immunohistochemical assay showed that expression quantity of CD31 and vascular endothelial growth factor (VEGF) of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In conclusion, ASCs can trace cell distribution successfully through bioluminescence, and they survive for a short time in the skin after transplantation, which provides a basis for the application of ASC transplantation in clinical practices. Moreover, ASCs can control

  5. Acetaminophen hepatotoxicity in mice: Effect of age, frailty and exposure type.

    PubMed

    Kane, Alice E; Mitchell, Sarah J; Mach, John; Huizer-Pajkos, Aniko; McKenzie, Catriona; Jones, Brett; Cogger, Victoria; Le Couteur, David G; de Cabo, Rafael; Hilmer, Sarah N

    2016-01-01

    Acetaminophen is a commonly used analgesic that can cause severe hepatotoxicity in overdose. Despite old age and frailty being associated with extensive and long-term utilization of acetaminophen and a high prevalence of adverse drug reactions, there is limited information on the risks of toxicity from acetaminophen in old age and frailty. This study aimed to assess changes in the risk and mechanisms of hepatotoxicity from acute, chronic and sub-acute acetaminophen exposure with old age and frailty in mice. Young and old male C57BL/6 mice were exposed to either acute (300 mg/kg via oral gavage), chronic (100 mg/kg/day in diet for six weeks) or sub-acute (250 mg/kg, t.i.d., for three days) acetaminophen, or saline control. Pre-dosing mice were scored for the mouse clinical frailty index, and after dosing serum and liver tissue were collected for assessment of toxicity and mechanisms. There were no differences with old age or frailty in the degree of hepatotoxicity induced by acute, chronic or subacute acetaminophen exposure as assessed by serum liver enzymes and histology. Age-related changes in the acetaminophen toxicity pathways included increased liver GSH concentrations, increased NQO1 activity and an increased pro- and anti-inflammatory response to acetaminophen in old age. Frailty-related changes included a negative correlation between frailty index and serum protein, albumin and ALP concentrations for some mouse groups. In conclusion, although there were changes in some pathways that would be expected to influence susceptibility to acetaminophen toxicity, there was no overall increase in acetaminophen hepatotoxicity with old age or frailty in mice. PMID:26615879

  6. Beneficial behavioral, neurochemical and molecular effects of 1-(R)-aminoindan in aged mice.

    PubMed

    Badinter, Felix; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H; Weinreb, Orly

    2015-12-01

    Previous neuroprotective studies demonstrated that 1-(R)-aminoindan (AI), which is the major metabolite of the anti-Parkinsonian drug rasagiline, possesses beneficial pharmacological effects in various cell culture and animal models of neurodegeneration. The present study was aimed at investigating the possible neuroprotective effects of AI on cognitive impairments and neurochemical alterations in aged mice. Our findings provide evidence that following chronic systemic treatment with AI (5 mg/kg; daily; 3 months) of aged mice (24 months old), the compound exerted a significant positive impact on neuropsychiatric functions and cognitive behavior deficits, assessed in a variety of tasks (spatial learning and memory retention, working memory, learning abilities and nest building behavior) and produced an antidepressant-like effect. In addition, chronic AI treatment significantly enhanced expression levels of neurotrophins, including brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF), tyrosine kinase- B (Trk-B) receptor and synaptic plasticity markers, such as synapsin-1 and growth-associated protein-43 (GAP-43) in the striatum and hippocampus in aged mice. Our results also indicate that AI treatment up-regulated the expression levels of the pro-survival Bcl-2 mRNA, increased the anti-apoptotic index Bcl-2/Bax and enhanced the activity of the antioxidant enzyme catalase in the brain of aged mice. These effects of AI were also confirmed in aged rats (24 months old). Altogether, the present findings indicate that AI can induce neuroprotective effects on age-related alterations in neurobehavioral functions and exerts neurotrophic up-regulatory and anti-apoptotic properties in aged animals. PMID:26087462

  7. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    SciTech Connect

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  8. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice

    PubMed Central

    Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD. PMID:24441878

  9. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice

    NASA Astrophysics Data System (ADS)

    Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD.

  10. GSK-3α is a central regulator of age-related pathologies in mice

    PubMed Central

    Zhou, Jibin; Freeman, Theresa A.; Ahmad, Firdos; Shang, Xiying; Mangano, Emily; Gao, Erhe; Farber, John; Wang, Yajing; Ma, Xin-Liang; Woodgett, James; Vagnozzi, Ronald J.; Lal, Hind; Force, Thomas

    2013-01-01

    Aging is regulated by conserved signaling pathways. The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases regulates several of these pathways, but the role of GSK-3 in aging is unknown. Herein, we demonstrate premature death and acceleration of age-related pathologies in the Gsk3a global KO mouse. KO mice developed cardiac hypertrophy and contractile dysfunction as well as sarcomere disruption and striking sarcopenia in cardiac and skeletal muscle, a classical finding in aging. We also observed severe vacuolar degeneration of myofibers and large tubular aggregates in skeletal muscle, consistent with impaired clearance of insoluble cellular debris. Other organ systems, including gut, liver, and the skeletal system, also demonstrated age-related pathologies. Mechanistically, we found marked activation of mTORC1 and associated suppression of autophagy markers in KO mice. Loss of GSK-3α, either by pharmacologic inhibition or Gsk3a gene deletion, suppressed autophagy in fibroblasts. mTOR inhibition rescued this effect and reversed the established pathologies in the striated muscle of the KO mouse. Thus, GSK-3α is a critical regulator of mTORC1, autophagy, and aging. In its absence, aging/senescence is accelerated in multiple tissues. Strategies to maintain GSK-3α activity and/or inhibit mTOR in the elderly could retard the appearance of age-related pathologies. PMID:23549082

  11. Red ginseng delays age-related hearing and vestibular dysfunction in C57BL/6 mice.

    PubMed

    Tian, Chunjie; Kim, Yeon Ju; Lim, Hye Jin; Kim, Young Sun; Park, Hun Yi; Choung, Yun-Hoon

    2014-09-01

    Since Korean red ginseng (KRG) has been proven to protect against gentamicin-induced vestibular and hearing dysfunction, the effects of KRG on age-related inner ear disorder in C57BL/6 mice were investigated. While age-related hearing loss was detected at the age of 6months (32kHz) and 9months (16kHz) in the control group, it was significantly delayed (p<0.05) in the 150mg/kg KRG-treated group. Vestibular dysfunction was observed in the tail-hanging and swimming tests, with significantly different severity scores and swimming times detected between the control and 150mg/kg KRG-treated group at the age of 12months (p<0.05). Mice treated with 500mg/kg KRG exhibited irritability and aggravated inner ear dysfunction. Histological observation supported the findings of hearing and vestibular function defects. In conclusion, C57BL/6 mice showed early-onset hearing loss and progressive vestibular dysfunction with aging, which were delayed by treatment with 150mg/kg KRG. However, 500mg/kg KRG treatment may induce aggressive behavior. PMID:24952098

  12. Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice.

    PubMed

    Nakashima, Yuya; Ohsawa, Ikuroh; Konishi, Fumiko; Hasegawa, Takashi; Kumamoto, Shoichiro; Suzuki, Yoshihiko; Ohta, Shigeo

    2009-10-30

    Oxidative stress is one of the major causes of age-dependent memory loss and cognitive decline. Cytotoxic aldehydes are derived from lipid peroxides and their accumulation may be responsible for age-dependent neurodegeneration, including Alzheimer's disease. Since aldehyde dehydrogenases detoxify such aldehydes, we constructed transgenic mice with mitochondrial aldehyde dehydrogenase 2 (ALDH2) activity deficiency (DAL101 mice) as an age-dependent dementia model. This model animal is age-dependently progressed by persistent oxidative stress, and thus enables us to investigate foods that prevent dementia. Since Chlorella, a kind of alga, exhibits various anti-oxidative effects, we investigated whether Chlorella has the potential to prevent age-dependent cognitive impairment. We fed Chlorella to DAL101 mice and investigated its effects on oxidative stress and the progression of cognitive decline using the Morris water-maze and object recognition tests. The diet with Chlorella tended to reduce oxidative stress and significantly prevented the decline of cognitive ability, as shown by both methods. Moreover, consumption of Chlorella decreased the number of activated astrocytes in the DAL101 brain. These findings suggest that the prolonged consumption of Chlorella has the potential to prevent the progression of cognitive impairment.

  13. Chronic and progressive Parkinson's disease MPTP model in adult and aged mice.

    PubMed

    Muñoz-Manchado, Ana B; Villadiego, Javier; Romo-Madero, Sonia; Suárez-Luna, Nela; Bermejo-Navas, Alfonso; Rodríguez-Gómez, José A; Garrido-Gil, Pablo; Labandeira-García, José L; Echevarría, Miriam; López-Barneo, José; Toledo-Aral, Juan J

    2016-01-01

    Despite the different animal models of Parkinson's disease developed during the last years, they still present limitations modelling the slow and progressive process of neurodegeneration. Here, we undertook a histological, neurochemical and behavioural analysis of a new chronic parkinsonian mouse model generated by the subcutaneous administration of low doses of MPTP (20 mg/kg, 3 times per week) for 3 months, using both young adult and aged mice. The MPTP-induced nigrostriatal neurodegeneration was progressive and was accompanied by a decrease in striatal dopamine levels and motor impairment. We also demonstrated the characteristic neuroinflammatory changes (microglial activation and astrogliosis) associated with the neurodegenerative process. Aged animals showed both a faster time course of neurodegeneration and an altered neuroinflammatory response. The long-term systemic application of low MPTP doses did not induce any increase in mortality in either young adult or aged mice and better resembles the slow evolution of the neurodegenerative process. This treatment could be useful to model different stages of Parkinson's disease, providing a better understanding of the pathophysiology of the disease and facilitating the testing of both protective and restorative treatments. Here, we show a new chronic and progressive parkinsonian mouse model, in young and aged mice. This model produces a stable degeneration of the dopaminergic nigrostriatal pathway, continuous neuroinflammatory reaction and motor deficits. Aged animals showed a faster neurodegeneration and an altered neuroinflammatory response. This treatment could be useful to model different stages of PD and to test both protective and restorative therapeutic approaches.

  14. Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally-aging mice

    PubMed Central

    Dixit, Shilpy; Bernardo, Alexandra; Walker, Michelle Jennifer; Kennard, John Andrew; Kim, Grace Youngeun; Kessler, Eric Sean; Harrison, Fiona Edith

    2015-01-01

    Subclinical vitamin C deficiency is widespread in many populations, but its role in both Alzheimer’s disease and normal aging is understudied. In the present study we decreased brain vitamin C in the APPSWE/PSEN1deltaE9 mouse model of Alzheimer’s disease, by crossing APP/PSEN1+ bigenic mice with SVCT2+/− heterozygous knockout mice, which have lower numbers of the sodium-dependent vitamin C transporter required for neuronal vitamin C transport. SVCT2+/− mice performed less well on the rotarod task at both 5 and 12 months of age compared to littermates. SVCT2+/− and APP/PSEN1+, mice, and the combination genotype SVCT2+/−APP/PSEN1+, were also impaired on multiple tests of cognitive ability (olfactory memory task, Y-maze alternation, conditioned fear, Morris water maze). In younger mice, both low vitamin C (SVCT2+/−) and APP/PSEN1 mutations increased brain cortex oxidative stress (malondialdehyde, protein carbonyls, F2-isoprostanes) and decreased total glutathione compared to wild-type controls. SVCT2+/− mice also had increased amounts of both soluble and insoluble Aβ1-42 and a higher Aβ1-42/1-40 ratio. By 14 months of age, oxidative stress levels were similar among groups, but there were more amyloid-β plaque deposits in both hippocampus and cortex of SVCT2+/−APP/PSEN1+ mice compared to APP/PSEN1+ mice with normal brain vitamin C. The data suggest that even moderate intracellular vitamin C deficiency plays an important role in accelerating amyloid pathogenesis, particularly during early stages of disease development, and that these effects are likely modulated by oxidative stress pathways. PMID:25642732

  15. Behavioral Changes in Aging but Not Young Mice after Neonatal Exposure to the Polybrominated Flame Retardant DecaBDE

    PubMed Central

    Rice, Deborah C.; Thompson, W. Douglas; Reeve, Elizabeth A.; Onos, Kristen D.; Assadollahzadeh, Mina; Markowski, Vincent P.

    2009-01-01

    Background After several decades of commercial use, the flame-retardant chemicals polybrominated diphenyl ethers (PBDEs) and their metabolites are pervasive environmental contaminants and are detected in the human body. Decabrominated diphenyl ether (decaBDE) is currently the only PBDE in production in the United States. Objectives Little is known about the health effects of decaBDE. In the present study we examined the effects of neonatal decaBDE exposure on behavior in mice at two ages. Methods Neonatal male and female C57BL6/J mice were exposed to a daily oral dose of 0, 6, or 20 mg/kg decaBDE from postnatal days 2 through 15. Two age groups were examined: a cohort that began training during young adulthood and an aging cohort of littermates that began training at 16 months of age. Both cohorts were tested on a series of operant procedures that included a fixed-ratio 1 schedule of reinforcement, a fixed-interval (FI) 2-min schedule, and a light–dark visual discrimination. Results We observed minimal effects on the light–dark discrimination in the young cohort, with no effects on the other tasks. The performance of the aging cohort was significantly affected by decaBDE. On the FI schedule, decaBDE exposure increased the overall response rate. On the light–dark discrimination, older treated mice learned the task more slowly, made fewer errors on the first-response choice of a trial but more perseverative errors after an initial error, and had lower latencies to respond compared with controls. Effects were observed in both dose groups and sexes on various measures. Conclusions These findings suggest that neonatal decaBDE exposure produces effects on behavioral tasks in older but not younger animals. The behavioral mechanisms responsible for the pattern of observed effects may include increased impulsivity, although further research is required. PMID:20049210

  16. The effects of early bilateral deafening on calretinin expression in the dorsal cochlear nucleus of aged CBA/CaJ mice.

    PubMed

    Zettel, Martha L; O'Neill, William E; Trang, Tung T; Frisina, Robert D

    2003-09-01

    The aim of this study was to test the hypothesis that calretinin (CR) levels in the aged mouse auditory brainstem depend upon hearing ability. Old animals with good hearing, and thus higher sound-evoked activity levels, were predicted to have higher levels of CR immunoreactivity than old animals with hearing loss. CR immunoreactivity was analyzed in the deep layer (layer III) of the dorsal cochlear nucleus (DCN) in CBA/CaJ mice that were bilaterally deafened at 3 months of age with kanamycin, and then aged until 24 months. This manipulation partially mimics the lack of sound-evoked auditory activity experienced by old C57BL/6J mice, who are deaf at 24 months of age (but show residual hearing at 15 months) and have lower levels of CR immunoreactivity than old CBA mice with normal hearing [Hear. Res. 158 (2001) 131]. Cell counts revealed that the density of CR+ cells in DCN layer III of the deafened CBA mice was statistically different from old intact CBA mice raised under identical conditions. Old deafened CBAs showed a decline of 47% in the mean density of CR+ cells compared to old hearing CBAs, thus supporting the hypothesis. Interestingly, while there tended to be fewer CR+ cells in the old deaf C57s as compared to young C57s and young and old CBAs with normal hearing, the difference was not statistically significant. It is possible that the residual hearing of C57 mice at 15 months may provide sufficient auditory input to maintain CR at levels higher than CBA mice that are deafened completely at 3 months of age, and are profoundly deaf for a much longer time (21 months).

  17. Altered connexin 43 expression underlies age dependent decrease of Treg cell suppressor function in NOD mice

    PubMed Central

    Kuczma, Michal; Wang, Cong-Yi; Ignatowicz, Leszek; Gourdie, Robert; Kraj, Piotr

    2015-01-01

    Type I diabetes (T1D) is one of the most extensively studied autoimmune diseases but the cellular and molecular mechanisms leading to T cell-mediated destruction of insulin-producing β-cells are still not well understood. Here we show that Treg cells in NOD mice undergo age-dependent loss of suppressor functions exacerbated by the decreased ability of activated effector T cells to upregulate Foxp3 and generate Treg cells in the peripheral organs. This age-dependent loss is associated with reduced intercellular communication mediated by gap junctions, which is caused by impaired upregulation and decreased expression of connexin 43. Regulatory functions can be corrected, even in T cells isolated from aged, diabetic mice, by a synergistic activity of retinoic acid, TGF-β, and IL-2, which enhance connexin 43 and Foxp3 expression in Treg cells and restore the ability of conventional CD4+ T cells to upregulate Foxp3 and generate peripherally derived Treg cells. Moreover, we demonstrate that suppression mediated by Treg cells from diabetic mice is enhanced by a novel reagent, which facilitates gap junction aggregation. In summary, our report identifies gap junction-mediated intercellular communication as an important component of the Treg cell suppression mechanism compromised in NOD mice and suggests how Treg mediated immune regulation can be improved. PMID:25911751

  18. Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice.

    PubMed

    Wood, Lauren K; Kayupov, Erdan; Gumucio, Jonathan P; Mendias, Christopher L; Claflin, Dennis R; Brooks, Susan V

    2014-08-15

    Advanced age is associated with increases in muscle passive stiffness, but the contributors to the changes remain unclear. Our purpose was to determine the relative contributions of muscle fibers and extracellular matrix (ECM) to muscle passive stiffness in both adult and old animals. Passive mechanical properties were determined for isolated individual muscle fibers and bundles of muscle fibers that included their associated ECM, obtained from tibialis anterior muscles of adult (8-12 mo old) and old (28-30 mo old) mice. Maximum tangent moduli of individual muscle fibers from adult and old muscles were not different at any sarcomere length tested. In contrast, the moduli of bundles of fibers from old mice was more than twofold greater than that of fiber bundles from adult muscles at sarcomere lengths >2.5 μm. Because ECM mechanical behavior is determined by the composition and arrangement of its molecular constituents, we also examined the effect of aging on ECM collagen characteristics. With aging, muscle ECM hydroxyproline content increased twofold and advanced glycation end-product protein adducts increased threefold, whereas collagen fibril orientation and total ECM area were not different between muscles from adult and old mice. Taken together, these findings indicate that the ECM of tibialis anterior muscles from old mice has a higher modulus than the ECM of adult muscles, likely driven by an accumulation of densely packed extensively crosslinked collagen.

  19. Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice

    PubMed Central

    Wood, Lauren K.; Kayupov, Erdan; Gumucio, Jonathan P.; Mendias, Christopher L.; Claflin, Dennis R.

    2014-01-01

    Advanced age is associated with increases in muscle passive stiffness, but the contributors to the changes remain unclear. Our purpose was to determine the relative contributions of muscle fibers and extracellular matrix (ECM) to muscle passive stiffness in both adult and old animals. Passive mechanical properties were determined for isolated individual muscle fibers and bundles of muscle fibers that included their associated ECM, obtained from tibialis anterior muscles of adult (8–12 mo old) and old (28–30 mo old) mice. Maximum tangent moduli of individual muscle fibers from adult and old muscles were not different at any sarcomere length tested. In contrast, the moduli of bundles of fibers from old mice was more than twofold greater than that of fiber bundles from adult muscles at sarcomere lengths >2.5 μm. Because ECM mechanical behavior is determined by the composition and arrangement of its molecular constituents, we also examined the effect of aging on ECM collagen characteristics. With aging, muscle ECM hydroxyproline content increased twofold and advanced glycation end-product protein adducts increased threefold, whereas collagen fibril orientation and total ECM area were not different between muscles from adult and old mice. Taken together, these findings indicate that the ECM of tibialis anterior muscles from old mice has a higher modulus than the ECM of adult muscles, likely driven by an accumulation of densely packed extensively crosslinked collagen. PMID:24994884

  20. Age-dependent relevance of endogenous 5-lipoxygenase derivatives in anxiety-like behavior in mice.

    PubMed

    Leo, Luciana M; Almeida-Corrêa, Suellen; Canetti, Claudio A; Amaral, Olavo B; Bozza, Fernando A; Pamplona, Fabricio A

    2014-01-01

    When 5-lipoxygenase (5-LO) is inhibited, roughly half of the CNS effect of the prototypic endocannabinoid anandamide (AEA) is lost. Therefore, we decided to investigate whether inhibiting this enzyme would influence physiological functions classically described as being under control of the endocannabinoid system. Although 5-LO inhibition by MK-886 reduced lipoxin A4 levels in the brain, no effect was found in the elevated plus maze (EPM), even at the highest possible doses, via i.p. (10 mg/kg,) or i.c.v. (500 pmol/2 µl) routes. Accordingly, no alterations in anxiety-like behavior in the EPM test were observed in 5-LO KO mice. Interestingly, aged mice, which show reduced circulating lipoxin A4 levels, were sensitive to MK-886, displaying an anxiogenic-like state in response to treatment. Moreover, exogenous lipoxin A4 induced an anxiolytic-like profile in the EPM test. Our findings are in line with other reports showing no difference between FLAP KO or 5-LO KO and their control strains in adult mice, but increased anxiety-like behavior in aged mice. We also show for the first time that lipoxin A4 affects mouse behavior. In conclusion, we propose an age-dependent relevancy of endogenous 5-LO derivatives in the modulation of anxiety-like behavior, in addition to a potential for exogenous lipoxin A4 in producing an anxiolytic-like state.

  1. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice.

    PubMed

    Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W

    2015-04-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals.

  2. Exercise intervention increases spontaneous locomotion but fails to attenuate dopaminergic system loss in a progressive MPTP model in aged mice.

    PubMed

    Hood, Rebecca L; Liguore, William A; Moore, Cynthia; Pflibsen, Lacey; Meshul, Charles K

    2016-09-01

    While exercise is commonly recommended for PD patients to improve motor function, little is known about the disease-altering potential of exercise. Although others have demonstrated neuroprotective or neurorestorative effects of exercise in animal models of PD, the majority of these studies utilize young animals. In order to assess the effects of exercise intervention in a more clinically relevant model, we have subjected aged mice to progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesioning and daily treadmill exercise, initiated early in the course of the disease. The MPTP model elicited a 55% reduction in striatal TH as measured by immunohistochemistry compared to sedentary controls, and exercise did not attenuate this loss in exercised MPTP animals. Furthermore, striatal TH and DAT loss, as assessed by western blotting, were not significantly impacted by treadmill exercise in MPTP-lesioned mice. We did find an increase in spontaneous locomotion in exercised mice that was not decreased by MPTP lesioning. This finding may be due, in part, to an increase in TH expression in the motor cortex in exercised MPTP mice. PMID:27350080

  3. A multi-ingredient dietary supplement abolishes large-scale brain cell loss, improves sensory function, and prevents neuronal atrophy in aging mice.

    PubMed

    Lemon, J A; Aksenov, V; Samigullina, R; Aksenov, S; Rodgers, W H; Rollo, C D; Boreham, D R

    2016-06-01

    Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc. PMID:27199101

  4. Effect of Sex Differences on Brain Mitochondrial Function and Its Suppression by Ovariectomy and in Aged Mice.

    PubMed

    Gaignard, Pauline; Savouroux, Stéphane; Liere, Philippe; Pianos, Antoine; Thérond, Patrice; Schumacher, Michael; Slama, Abdelhamid; Guennoun, Rachida

    2015-08-01

    Sex steroids regulate brain function in both normal and pathological states. Mitochondria are an essential target of steroids, as demonstrated by the experimental administration of 17β-estradiol or progesterone (PROG) to ovariectomized female rodents, but the influence of endogenous sex steroids remains understudied. To address this issue, mitochondrial oxidative stress, the oxidative phosphorylation system, and brain steroid levels were analyzed under 3 different experimental sets of endocrine conditions. The first set was designed to study steroid-mediated sex differences in young male and female mice, intact and after gonadectomy. The second set concerned young female mice at 3 time points of the estrous cycle in order to analyze the influence of transient variations in steroid levels. The third set involved the evaluation of the effects of a permanent decrease in gonadal steroids in aged male and female mice. Our results show that young adult females have lower oxidative stress and a higher reduced nicotinamide adenine dinucleotide (NADH)-linked respiration rate, which is related to a higher pyruvate dehydrogenase complex activity as compared with young adult males. This sex difference did not depend on phases of the estrous cycle, was suppressed by ovariectomy but not by orchidectomy, and no longer existed in aged mice. Concomitant analysis of brain steroids showed that pregnenolone and PROG brain levels were higher in females during the reproductive period than in males and decreased with aging in females. These findings suggest that the major male/female differences in brain pregnenolone and PROG levels may contribute to the sex differences observed in brain mitochondrial function.

  5. Impact of the apolipoprotein E polymorphism, age and sex on neurogenesis in mice: pathophysiological relevance for Alzheimer's disease?

    PubMed

    Koutseff, Alexis; Mittelhaeuser, Christophe; Essabri, Karim; Auwerx, Johan; Meziane, Hamid

    2014-01-13

    Apolipoprotein E (ApoE) is found in three different forms in humans (ApoE2, ApoE3 and ApoE4), and ApoE polymorphism is recognized as a major risk factor for Alzheimer's disease (AD). ApoE is involved in lipid and cholesterol transport, cell repair, and amyloid-β deposition and certain studies suggest potential implications in neurogenesis. In this regard, we investigated the possible impact of the three different human ApoE isoforms on neurogenesis. We used ApoE knock-in mice of different ages and sex, and quantified newborn cells in the hippocampus by flow cytometry. Young adult ApoE4 mice (10-12 week-old) from both sexes displayed reduced neurogenesis compared with wild-types and the other genotypes. In addition, young adult ApoE2 female mice showed improved hippocampal progenitor cell proliferation. In older mice (1 year), hippocampal neurogenesis was globally decreased, particularly in females, and the difference between ApoE4 and the other genotypes observed in young animals disappeared for the two sexes, except for aged ApoE3 females. Indeed, a surprising protective effect of the ApoE3 genotype was observed in aged females. Our study highlights the role of ApoE in neurogenesis, and shows for the first time an early inequality between the ApoE genotypes. The reduced neurogenesis observed for the ApoE4 genotype and the improved results obtained in young ApoE2 females support the idea of a difference in the balance between neuronal birth and death modulated by the ApoE polymorphism in young animals. The maintenance of this balance and its modulation can influence pathophysiological mechanisms predisposing to neurodegenerative diseases like AD. PMID:24140109

  6. Absence of collagen XVIII in mice causes age-related insufficiency in retinal pigment epithelium proteostasis.

    PubMed

    Kivinen, Niko; Felszeghy, Szabolcs; Kinnunen, Aino I; Setälä, Niko; Aikio, Mari; Kinnunen, Kati; Sironen, Reijo; Pihlajaniemi, Taina; Kauppinen, Anu; Kaarniranta, Kai

    2016-08-01

    Collagen XVIII has the structural properties of both collagen and proteoglycan. It has been found at the basement membrane/stromal interface where it is thought to mediate their attachment. Endostatin, a proteolytic fragment from collagen XVIII C-terminal end has been reported to possess anti-angiogenic properties. Age-related vision loss in collagen XVIII mutant mice has been accompanied with a pathological accumulation of deposits under the retinal pigment epithelium (RPE). We have recently demonstrated that impaired proteasomal and autophagy clearance are associated with the pathogenesis of age-related macular degeneration. This study examined the staining levels of proteasomal and autophagy markers in the RPE of different ages of the Col18a1 (-/-) mice. Eyes from 3, 6-7, 10-13 and 18 months old mice were enucleated and embedded in paraffin according to the routine protocol. Sequential 5 μm-thick parasagittal samples were immunostained for proteasome and autophagy markers ubiquitin (ub), SQSTM1/p62 and beclin-1. The levels of immunopositivity in the RPE cells were evaluated by confocal microscopy. Collagen XVIII knock-out mice had undergone age-related RPE degeneration accompanied by an accumulation of drusen-like deposits. Ub protein conjugate staining was prominent in both RPE cytoplasm and extracellular space whereas SQSTM1/p62 and beclin-1 stainings were clearly present in the basal part of RPE cell cytoplasm in the Col18a1 (-/-) mice. SQSTM1/p62 displayed mild extracellular space staining. Disturbed proteostasis regulated by collagen XVIII might be responsible for the RPE degeneration, increased protein aggregation, ultimately leading to choroidal neovascularization. PMID:27125427

  7. Absence of collagen XVIII in mice causes age-related insufficiency in retinal pigment epithelium proteostasis.

    PubMed

    Kivinen, Niko; Felszeghy, Szabolcs; Kinnunen, Aino I; Setälä, Niko; Aikio, Mari; Kinnunen, Kati; Sironen, Reijo; Pihlajaniemi, Taina; Kauppinen, Anu; Kaarniranta, Kai

    2016-08-01

    Collagen XVIII has the structural properties of both collagen and proteoglycan. It has been found at the basement membrane/stromal interface where it is thought to mediate their attachment. Endostatin, a proteolytic fragment from collagen XVIII C-terminal end has been reported to possess anti-angiogenic properties. Age-related vision loss in collagen XVIII mutant mice has been accompanied with a pathological accumulation of deposits under the retinal pigment epithelium (RPE). We have recently demonstrated that impaired proteasomal and autophagy clearance are associated with the pathogenesis of age-related macular degeneration. This study examined the staining levels of proteasomal and autophagy markers in the RPE of different ages of the Col18a1 (-/-) mice. Eyes from 3, 6-7, 10-13 and 18 months old mice were enucleated and embedded in paraffin according to the routine protocol. Sequential 5 μm-thick parasagittal samples were immunostained for proteasome and autophagy markers ubiquitin (ub), SQSTM1/p62 and beclin-1. The levels of immunopositivity in the RPE cells were evaluated by confocal microscopy. Collagen XVIII knock-out mice had undergone age-related RPE degeneration accompanied by an accumulation of drusen-like deposits. Ub protein conjugate staining was prominent in both RPE cytoplasm and extracellular space whereas SQSTM1/p62 and beclin-1 stainings were clearly present in the basal part of RPE cell cytoplasm in the Col18a1 (-/-) mice. SQSTM1/p62 displayed mild extracellular space staining. Disturbed proteostasis regulated by collagen XVIII might be responsible for the RPE degeneration, increased protein aggregation, ultimately leading to choroidal neovascularization.

  8. Effect of protein diet on age-dependent methylation of liver nuclear components of mice administered N-nitrosodimethylamine

    SciTech Connect

    Klaude, M.; von der Decken, A.

    1984-10-01

    Protein diets deficient or enriched in DL-methionine were studied for the effect of methylation of nuclear components in subadult and adult outbred albino male mice given N-nitrosodimethylamine. After the mice were fed diets for 6 days, they were given ip injections of (/sup 14/C)N-nitrosodimethylamine (5 mg/kg body wt) and killed 45 minutes later. Liver nuclei were isolated; incorporation of /sup 14/C into nuclear proteins and methylation of DNA and RNA were determined. In the subadult and adult animals the nuclear protein content was diminished by shortage of a single essential amino acid. Incorporation of /sup 14/C into the total protein was reduced. The reduction amounted to 55% in the subadult and 23% in the adult animals. Neither an age-dependent nor a diet-dependent change in the specific methylation of DNA and RNA was observed. Analysis of methylation of DNA and RNA was observed. Analysis of methylated purine bases showed an age-related rise in O6-methylguanine in the adult as compared with the subadult mice.

  9. Dietary Polyphenol Supplementation Prevents Alterations of Spatial Navigation in Middle-Aged Mice.

    PubMed

    Bensalem, Julien; Servant, Laure; Alfos, Serge; Gaudout, David; Layé, Sophie; Pallet, Véronique; Lafenetre, Pauline

    2016-01-01

    Spatial learning and memory deficits associated with hippocampal synaptic plasticity impairments are commonly observed during aging. Besides, the beneficial role of dietary polyphenols has been suggested as potential functional food candidates to prevent this memory decline. Indeed, polyphenols could potentiate the signaling pathways of synaptic plasticity underlying learning and memory. In this study, spatial learning deficits of middle-aged mice were first highlighted and characterized according to their navigation patterns in the Morris water maze task. An eight-week polyphenol-enriched diet, containing a polyphenol-rich extract from grape and blueberry (PEGB; from the Neurophenols Consortium) with high contents of flavonoids, stilbenes and phenolic acids, was then successful in reversing these age-induced effects. The use of spatial strategies was indeed delayed with aging whereas a polyphenol supplementation could promote the occurrence of spatial strategies. These behavioral results were associated with neurobiological changes: while the expression of hippocampal calmodulin kinase II (CaMKII) mRNA levels was reduced in middle-aged animals, the polyphenol-enriched diet could rescue them. Besides, an increased expression of nerve growth neurotrophic factor (NGF) mRNA levels was also observed in supplemented adult and middle-aged mice. Thus these data suggest that supplementation with polyphenols could be an efficient nutritional way to prevent age-induced cognitive decline. PMID:26903826

  10. Dietary Polyphenol Supplementation Prevents Alterations of Spatial Navigation in Middle-Aged Mice

    PubMed Central

    Bensalem, Julien; Servant, Laure; Alfos, Serge; Gaudout, David; Layé, Sophie; Pallet, Véronique; Lafenetre, Pauline

    2016-01-01

    Spatial learning and memory deficits associated with hippocampal synaptic plasticity impairments are commonly observed during aging. Besides, the beneficial role of dietary polyphenols has been suggested as potential functional food candidates to prevent this memory decline. Indeed, polyphenols could potentiate the signaling pathways of synaptic plasticity underlying learning and memory. In this study, spatial learning deficits of middle-aged mice were first highlighted and characterized according to their navigation patterns in the Morris water maze task. An eight-week polyphenol-enriched diet, containing a polyphenol-rich extract from grape and blueberry (PEGB; from the Neurophenols Consortium) with high contents of flavonoids, stilbenes and phenolic acids, was then successful in reversing these age-induced effects. The use of spatial strategies was indeed delayed with aging whereas a polyphenol supplementation could promote the occurrence of spatial strategies. These behavioral results were associated with neurobiological changes: while the expression of hippocampal calmodulin kinase II (CaMKII) mRNA levels was reduced in middle-aged animals, the polyphenol-enriched diet could rescue them. Besides, an increased expression of nerve growth neurotrophic factor (NGF) mRNA levels was also observed in supplemented adult and middle-aged mice. Thus these data suggest that supplementation with polyphenols could be an efficient nutritional way to prevent age-induced cognitive decline. PMID:26903826

  11. Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue.

    PubMed

    Treiber, Nicolai; Maity, Pallab; Singh, Karmveer; Kohn, Matthias; Keist, Alexander F; Ferchiu, Florentina; Sante, Lea; Frese, Sebastian; Bloch, Wilhelm; Kreppel, Florian; Kochanek, Stefan; Sindrilaru, Anca; Iben, Sebastian; Högel, Josef; Ohnmacht, Michael; Claes, Lutz E; Ignatius, Anita; Chung, Jin H; Lee, Min J; Kamenisch, York; Berneburg, Mark; Nikolaus, Thorsten; Braunstein, Kerstin; Sperfeld, Anne-Dorte; Ludolph, Albert C; Briviba, Karlis; Wlaschek, Meinhard; Florin, Lore; Angel, Peter; Scharffetter-Kochanek, Karin

    2011-04-01

    The free radical theory of aging postulates that the production of mitochondrial reactive oxygen species is the major determinant of aging and lifespan. Its role in aging of the connective tissue has not yet been established, even though the incidence of aging-related disorders in connective tissue-rich organs is high, causing major disability in the elderly. We have now addressed this question experimentally by creating mice with conditional deficiency of the mitochondrial manganese superoxide dismutase in fibroblasts and other mesenchyme-derived cells of connective tissues in all organs. Here, we have shown for the first time that the connective tissue-specific lack of superoxide anion detoxification in the mitochondria results in reduced lifespan and premature onset of aging-related phenotypes such as weight loss, skin atrophy, kyphosis (curvature of the spine), osteoporosis and muscle degeneration in mutant mice. Increase in p16(INK4a) , a robust in vivo marker for fibroblast aging, may contribute to the observed phenotype. This novel model is particularly suited to decipher the underlying mechanisms and to develop hopefully novel connective tissue-specific anti-aging strategies.

  12. Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice

    PubMed Central

    2013-01-01

    Background Aging is associated with low-grade neuroinflammation that includes basal increases in proinflammatory cytokines and expression of inflammatory markers on microglia. Exercise can reduce neuroinflammation following infection in aged animals, but whether exercise modulates basal changes in microglia activation is unknown. Therefore, we evaluated changes in basal microglia activation in cells isolated from the hippocampus and remaining brain following running-wheel access. Methods Adult (4 months) and aged (22 months) male and female BALB/c mice were housed with or without running wheels for 10 weeks. Microglia were isolated from the hippocampus or remaining brain. Flow cytometry was used to determine microglia (CD11b+ and CD45low) that co-labeled with CD86, CD206, and MHC II. Results Aged mice showed a greater proportion of CD86 and MHC II positive microglia. In aged females, access to a running wheel decreased proportion of CD86+ and MHC II+ microglia in the hippocampus whereas aged males in the running group showed a decrease in the proportion of CD86+ microglia in the brain and an increase in the proportion of MHC II+ microglia in hippocampus and brain. Conclusion Overall, these data indicate that running-wheel access modulates microglia activation, but these effects vary by age, sex, and brain region. PMID:24044641

  13. EXPRESSION PATTERNS OF ESTROGEN RECEPTORS IN THE CENTRAL AUDITORY SYSTEM CHANGE IN PREPUBERTAL AND AGED MICE

    PubMed Central

    Charitidi, K.; Frisina, R. D.; Vasilyeva, O. N.; Zhu, X.; Canlon, B.

    2011-01-01

    Estrogens are important in the development, maintenance and physiology of the CNS. Several studies have shown their effects on the processing of hearing in both males and females, and these effects, in part, are thought to result from regulation of the transcription of genes via their classical estrogen receptor (ER) pathway. In order to understand the spatiotemporal changes that occur with age, we have studied the expression of ERs in the central auditory pathway in prepubertal and aged CBA mice with immunohistochemistry. In prepubertal mice a clear dichotomy was noted between the expression of ERα and ERβ. ERβ-positive neurons were found in the metencephalon whereas the majority of ERα was found in mesencephalon, diencephalon or the telencephalon. In the aged animals a different pattern of ER expression was found in terms of location and overall intensity. These age-induced changes in the expression pattern were generally not uniform, suggesting that region-specific mechanisms regulate the ERs’ age-related expression. Neither the prepubertal nor the aged animals showed sex differences in any auditory structure. Our results demonstrate different age-dependent spatial and temporal changes in the pattern of expression of ERα and ERβ, suggesting that each ER type may be involved in distinct roles across the central auditory pathway in different periods of maturation. PMID:20736049

  14. Postnatal Elongation of Eye Size in DBA/2J Mice Compared with C57BL/6J Mice: In Vivo Analysis with Whole-Eye OCT

    PubMed Central

    Chou, Tsung-Han; Kocaoglu, Omer P.; Borja, David; Ruggeri, Marco; Uhlhorn, Stephen R.; Manns, Fabrice

    2011-01-01

    Purpose. To characterize postnatal changes in eye size in glaucomatous DBA/2J (D2) mice and in nonglaucomatous C57BL/6J mice (B6) in vivo by means of whole-eye optical coherence tomography (OCT). Methods. D2 (n = 32) and B6 (n = 36) mice were tested between 2 and 20 months of age in eight age bins. A custom time-domain OCT system with a center wavelength of 825 nm and an axial scan length of 7.1 mm produced axial A-scan interferograms at a rate of 20 A-lines/s with a resolution of 8 μm. Axial length (AL), corneal thickness (CT), anterior chamber depth (ACD), lens thickness (LT), vitreous chamber depth (VCD), and retinal thickness (RT) were measured in the optical axis and adjusted with corresponding refractive indices. Corneal curvature (CC) and IOP were also measured. Results. AL increased (P < 0.001) more in the D2 (21%) than in the B6 (9%) mice. There was an interaction effect (two-way ANOVA, P < 0.001) between age and strain for AL, CT, ACD, and VCD. In the D2 mice, the lens became dislocated posteriorly. Multiple regression analysis in the D2 mice revealed an independent effect of age and IOP (P ≤ 0.01) on axial length. CC steepened in the older D2 mice, whereas it flattened in the B6 mice. Conclusions. In D2 mice, postnatal elongation of AL is larger than that in B6 mice and is associated with a greater increase in ACD and IOP, which seems to be a causal factor. The ease of use, short acquisition time, and noninvasiveness of whole-eye OCT make it suitable for routine use in longitudinal studies of mouse models. PMID:21372015

  15. Oral treatment with herbal formula B307 alleviates cardiac failure in aging R6/2 mice with Huntington's disease via suppressing oxidative stress, inflammation, and apoptosis.

    PubMed

    Lin, Ching-Lung; Wang, Sheue-Er; Hsu, Chih-Hsiang; Sheu, Shuenn-Jyi; Wu, Chung-Hsin

    2015-01-01

    Cardiac failure is often observed in aging patients with Huntington's disease (HD). However, conventional pharmacological treatments for cardiac failure in HD patients have rarely been studied. Chinese herbal medicines, especially combined herbal formulas, have been widely used to treat cardiac dysfunctions over the centuries. Thus, we assess whether oral treatment with herbal formula B307 can alleviate cardiac failure in transgenic mice with HD. After oral B307 or vehicle treatment for 2 weeks, cardiac function and cardiomyocytes in 12-week-old male R6/2 HD mice and their wild-type littermate controls (WT) were examined and then compared via echocardiography, immunohistochemistry, and Western blotting. We found that cardiac performance in aging R6/2 HD mice had significantly deteriorated in comparison with their WT (P<0.01). Cardiac expressions of superoxide dismutase 2 (SOD2) and B-cell lymphoma 2 (Bcl-2) in aging R6/2 HD mice were significantly lower than their WT (P<0.01), but cardiac expressions of tumor necrosis factor alpha (TNF-α), neurotrophin-3 (3-NT), 4-hydroxynonenal (4-HNE), Bcl-2-associated X protein (Bax), calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly higher than their WT (P<0.05). Furthermore, we found that cardiac performance in aging R6/2 HD mice had significantly improved under oral B307 treatment (P<0.05). Cardiac expressions of SOD2 and Bcl-2 of aging R6/2 HD mice were significantly higher under oral B307 treatment (P<0.01), but cardiac expressions of TNF-α, 3-NT, 4-HNE, Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly reduced under oral B307 treatment (P<0.05). Oral B307 treatment may briefly alleviate cardiac failure in aging HD R6/2 mice via suppressing cardiac oxidative stress, inflammation, and apoptosis. We suggested that the herbal formula B307 may be further developed as a potential health supplement for ameliorating cardiac failure associated with

  16. A noninflammatory immune response in aged DNA Aβ42-immunized mice supports its safety for possible use as immunotherapy in AD patients.

    PubMed

    Lambracht-Washington, Doris; Rosenberg, Roger N

    2015-03-01

    Aging in the immune system results in tendency to proinflammatory responses. Intradermal DNA immunization showed Th2 polarized noninflammatory immune responses. We tested here 18-month-old mice which were immunized with Aβ42 peptide, DNA Aβ42 trimer, or 2 different prime boost protocols identical to previous experiments. High Aβ42 antibody levels were found in aged mice which had received peptide immunizations (900 μg/mL plasma), and in mice which had received peptide prime and DNA boost immunizations (500 μg/mL), compared with antibodies in DNA Aβ42 immunized mice with 50 μg/mL. Although we found T-cell proliferation and inflammatory cytokines in mice which had received peptide or prime boost immunization, these were not found in DNA-immunized mice. The results are concordant with proinflammatory responses because of immunosenescence and contraindicate the use of Aβ42 peptide immunizations or prime boost immunization protocols for the use in elderly Alzheimer's disease patients. DNA Aβ42 immunization only on the other hand does lead to effective levels of antibodies without inflammatory cytokine or T-cell responses in the aged animal model tested. PMID:25725942

  17. A noninflammatory immune response in aged DNA Aβ42-immunized mice supports its safety for possible use as immunotherapy in AD patients.

    PubMed

    Lambracht-Washington, Doris; Rosenberg, Roger N

    2015-03-01

    Aging in the immune system results in tendency to proinflammatory responses. Intradermal DNA immunization showed Th2 polarized noninflammatory immune responses. We tested here 18-month-old mice which were immunized with Aβ42 peptide, DNA Aβ42 trimer, or 2 different prime boost protocols identical to previous experiments. High Aβ42 antibody levels were found in aged mice which had received peptide immunizations (900 μg/mL plasma), and in mice which had received peptide prime and DNA boost immunizations (500 μg/mL), compared with antibodies in DNA Aβ42 immunized mice with 50 μg/mL. Although we found T-cell proliferation and inflammatory cytokines in mice which had received peptide or prime boost immunization, these were not found in DNA-immunized mice. The results are concordant with proinflammatory responses because of immunosenescence and contraindicate the use of Aβ42 peptide immunizations or prime boost immunization protocols for the use in elderly Alzheimer's disease patients. DNA Aβ42 immunization only on the other hand does lead to effective levels of antibodies without inflammatory cytokine or T-cell responses in the aged animal model tested.

  18. Effects of Portulaca oleracea ethanolic extract on reproductive system of aging female mice

    PubMed Central

    Ahangarpour, Akram; Lamoochi, Zohreh; Fathi Moghaddam, Hadi; Mansouri, Seyed Mohamad Taghi

    2016-01-01

    Background: Aging contains morphological and functional deterioration in biological systems. D-galactose (D-gal) generates free radicals and accelerates aging. Portulaca oleracea (Purslane) may have protective effect against oxidative stress. Objective: Purslane ethanolic extract effects were evaluated on antioxidant indices and sex hormone in D-gal aging female mice. Materials and Methods: 48 female NMRI mice (25-35 gr) were randomly divided into, 6 groups: 1- control (normal saline for 45 days), 2- Purslane (200 mg/kg for last 3 weeks), 3-D-gal (500 mg/kg for 45 days), 4-D-gal+Purslane, 5- Aging, 6-Aging+Purslane. Sex hormones, antioxidants and malondialdehyde (MDA) level of ovary and uterus were measured. Histological assessment was also done. Results: In D-gal treated and aging animals, LH and FSH levels were significantly increased (p<0.001) while estrogen and progesterone levels were significantly reduced (p<0.001) in comparison with control group. MDA contents were significantly increased in ovaries and uterus of D-gal and aging groups (p<0.01). Superoxide dismutase (SOD) (p<0.001) and catalase (p<0.01) activities were significantly decreased in both aging and D-gal treated animals. Ovarian follicles were degenerated and atrophy on uterine wall and endometrial glands was observed in D-gal and aging groups. Alteration in hormone levels, MDA contents and antioxidant activity were significantly reversed by Purslane (p<0.05). Purslane could also improve histological changes such as atrophy of endometrium. Conclusion: These findings indicate that Purslane can attenuate aging alternations induced by D-gal and aging in female reproductive system. PMID:27294220

  19. C-phycocyanin protects against low fertility by inhibiting reactive oxygen species in aging mice

    PubMed Central

    Li, Yan-Jiao; Han, Zhe; Ge, Lei; Zhou, Cheng-Jie; Zhao, Yue-Fang; Wang, Dong-Hui; Ren, Jing; Niu, Xin-Xin; Liang, Cheng-Guang

    2016-01-01

    Women over 35 have higher rates of infertility, largely due to deterioration of oocyte quality characterized by fragmentation, abnormal meiotic spindle-chromosome complexes, and oxidative stress. C-phycocyanin (PC) is a biliprotein enriched in Spirulina platensis that is known to possess antioxidant, anti-inflammatory, and radical-scavenging properties. D-galactose-induced aging acceleration in mice has been extensively used to study aging mechanisms and for pharmaceutical screening. In this study, adult female B6D2F/1 mice injected with D-galactose were used as a model to test the age-reversing effects of PC on degenerated reproductive ability. Our results show that PC can prevent oocyte fragmentation and aneuploidy by maintaining cytoskeletal integrity. Moreover, PC can reverse the expression of antioxidant genes, increase superoxide dismutase (SOD) activity and decrease methane dicarboxylic aldehyde (MDA) content, and normalize mitochondria distribution. PC exerts its benefit by inhibiting reactive oxygen species (ROS) production, which decreases apoptosis. Finally, we observe a significant increase in litter size after PC administration to D-galactose-induced aging mice. Our study demonstrates for the first time that D-galactose-induced impaired female reproductive capability can be partially rescued by the antioxidant effects of PC. PMID:27008700

  20. C-phycocyanin protects against low fertility by inhibiting reactive oxygen species in aging mice.

    PubMed

    Li, Yan-Jiao; Han, Zhe; Ge, Lei; Zhou, Cheng-Jie; Zhao, Yue-Fang; Wang, Dong-Hui; Ren, Jing; Niu, Xin-Xin; Liang, Cheng-Guang

    2016-04-01

    Women over 35 have higher rates of infertility, largely due to deterioration of oocyte quality characterized by fragmentation, abnormal meiotic spindle-chromosome complexes, and oxidative stress. C-phycocyanin (PC) is a biliprotein enriched in Spirulina platensis that is known to possess antioxidant, anti-inflammatory, and radical-scavenging properties. D-galactose-induced aging acceleration in mice has been extensively used to study aging mechanisms and for pharmaceutical screening. In this study, adult female B6D2F/1 mice injected with D-galactose were used as a model to test the age-reversing effects of PC on degenerated reproductive ability. Our results show that PC can prevent oocyte fragmentation and aneuploidy by maintaining cytoskeletal integrity. Moreover, PC can reverse the expression of antioxidant genes, increase superoxide dismutase (SOD) activity and decrease methane dicarboxylic aldehyde (MDA) content, and normalize mitochondria distribution. PC exerts its benefit by inhibiting reactive oxygen species (ROS) production, which decreases apoptosis. Finally, we observe a significant increase in litter size after PC administration to D-galactose-induced aging mice. Our study demonstrates for the first time that D-galactose-induced impaired female reproductive capability can be partially rescued by the antioxidant effects of PC. PMID:27008700

  1. Restoration of the immune functions in aged mice by supplementation with a new herbal composition, HemoHIM.

    PubMed

    Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee; Yee, Sung-Tae

    2008-01-01

    The effect of a new herbal composition, HemoHIM, on immune functions was examined in aged mice, in which various immune responses had been impaired. The composition HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Supplementation to the aged mice with HemoHIM restored the proliferative response and cytokine production of splenocytes with a response to ConA. Also, HemoHIM recovered the NK cell activity which had been impaired in the aged mice. Meanwhile aging is known to reduce the Th1-like function, but not the Th2-like function, resulting in a Th1/Th2 imbalance. HemoHIM restored the Th1/Th2 balance in the aged mice through enhanced IFN-gamma and IgG2a production, and conversely a reduced IL-4 and IgG1 production. It was found that one factor for the Th1/Th2 imbalance in the aged mice was a lower production of IL-12p70. However, HemoHIM restored the IL-12p70 production in the aged mice. These results suggested that HemoHIM was effective for the restoration of impaired immune functions of the aged mice and therefore could be a good recommendation for immune restoration in elderly humans. PMID:17705143

  2. Restoration of the immune functions in aged mice by supplementation with a new herbal composition, HemoHIM.

    PubMed

    Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee; Yee, Sung-Tae

    2008-01-01

    The effect of a new herbal composition, HemoHIM, on immune functions was examined in aged mice, in which various immune responses had been impaired. The composition HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Supplementation to the aged mice with HemoHIM restored the proliferative response and cytokine production of splenocytes with a response to ConA. Also, HemoHIM recovered the NK cell activity which had been impaired in the aged mice. Meanwhile aging is known to reduce the Th1-like function, but not the Th2-like function, resulting in a Th1/Th2 imbalance. HemoHIM restored the Th1/Th2 balance in the aged mice through enhanced IFN-gamma and IgG2a production, and conversely a reduced IL-4 and IgG1 production. It was found that one factor for the Th1/Th2 imbalance in the aged mice was a lower production of IL-12p70. However, HemoHIM restored the IL-12p70 production in the aged mice. These results suggested that HemoHIM was effective for the restoration of impaired immune functions of the aged mice and therefore could be a good recommendation for immune restoration in elderly humans.

  3. Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress.

    PubMed

    Arp, J Marit; Ter Horst, Judith P; Loi, Manila; den Blaauwen, Jan; Bangert, Eline; Fernández, Guillén; Joëls, Marian; Oitzl, Melly S; Krugers, Harm J

    2016-09-01

    Early life adversity can have long-lasting impact on learning and memory processes and increase the risk to develop stress-related psychopathologies later in life. In this study we investigated (i) how chronic early life stress (ELS) - elicited by limited nesting and bedding material from postnatal day 2 to 9 - affects conditioned fear in adult mice and (ii) whether these effects can be prevented by blocking glucocorticoid receptors (GRs) at adolescent age. In adult male and female mice, ELS did not affect freezing behavior to the first tone 24h after training in an auditory fear-conditioning paradigm. Exposure to repeated tones 24h after training also resulted in comparable freezing behavior in ELS and control mice, both in males and females. However, male (but not female) ELS compared to control mice showed significantly more freezing behavior between the tone-exposures, i.e. during the cue-off periods. Intraperitoneal administration of the GR antagonist RU38486 during adolescence (on postnatal days 28-30) fully prevented enhanced freezing behavior during the cue-off period in adult ELS males. Western blot analysis revealed no effects of ELS on hippocampal expression of glucocorticoid receptors, neither at postnatal day 28 nor at adult age, when mice were behaviorally tested. We conclude that ELS enhances freezing behavior in adult mice in a potentially safe context after cue-exposure, which can be normalized by brief blockade of glucocorticoid receptors during the critical developmental window of adolescence. PMID:27246249

  4. Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke.

    PubMed

    Stodieck, Sophia Katharina; Greifzu, Franziska; Goetze, Bianka; Schmidt, Karl-Friedrich; Löwel, Siegrid

    2014-12-01

    In the primary visual cortex (V1), monocular deprivation (MD) induces a shift in the ocular dominance (OD) of binocular neurons towards the open eye (Wiesel and Hubel, 1963; Gordon and Stryker, 1996). In V1 of C57Bl/6J mice, this OD-plasticity is maximal in juveniles, declines in adults and is absent beyond postnatal day (PD) 110 (Lehmann and Löwel, 2008) if mice are raised in standard cages. Since it was recently shown that brief dark exposure (DE) restored OD-plasticity in young adult rats (PD70-100) (He et al., 2006), we wondered whether DE would restore OD-plasticity also in adult and old mice and after a cortical stroke. To this end, we raised mice in standard cages until adulthood and transferred them to a darkroom for 10-14 days. Using intrinsic signal optical imaging we demonstrate that short-term DE can restore OD-plasticity after MD in both adult (PD138) and old mice (PD535), and that OD-shifts were mediated by an increase of open eye responses in V1. Interestingly, restored OD-plasticity after DE was accompanied by a reduction of both parvalbumin expressing cells and perineuronal nets and was prevented by increasing intracortical inhibition with diazepam. DE also maintained OD-plasticity in adult mice (PD150) after a stroke in the primary somatosensory cortex. In contrast, short-term DE did not affect basic visual parameters as measured by optomotry. In conclusion, short-term DE was able to restore OD-plasticity in both adult and aging mice and even preserved plasticity after a cortical stroke, most likely mediated by reducing intracortical inhibition.

  5. Plasma metabolic profiling reveals age-dependency of systemic effects of green tea polyphenols in mice with and without prostate cancer.

    PubMed

    Teichert, Friederike; Verschoyle, Richard D; Greaves, Peter; Jones, Donald J L; Wilson, Ian D; Farmer, Peter B; Steward, William P; Gescher, Andreas J; Keun, Hector C

    2010-10-01

    Green tea polyphenols (GTP) have been widely investigated for their potential to prevent prostate cancer. However, results from epidemiological and clinical studies are equivocal. Studies in the TRAMP (TRansgenic Adenocarcinoma of the Mouse Prostate) mouse suggest that the chemopreventive efficacy of GTP is higher in young animals with early stages of carcinogenesis than in old ones. Here, effects of GTP on prostate carcinogenesis in TRAMP mice were assessed by comparing pathological changes with (1)H-NMR metabolic profiling of plasma and extracts of prostate tissue. Mice received 0.05% GTP in their drinking water for 4 or 25 weeks after weaning. Age-matched wild-type mice were included in the study in order to establish differences in GTP effects between normal and TRAMP mice. Dietary GTP did not markedly alter prostate carcinogenesis as reflected by pathology and prostate tissue metabolic profile. However, a systemic effect of GTP consumption was observed in young mice, regardless of genotype. Plasma lipid signals were decreased in 8 week old mice which received GTP compared to age-matched controls by 19, 61, 27, 34 and 15% (p mice. These results suggest that age rather than disease state determines systemic effects of GTP. More studies are required to investigate factors, such as age or metabolic make-up, inherent to a population or an individual, which may modulate the chemopreventive efficacy of GTP.

  6. Lead-induced modifications of immune responses in aging male and female mice

    SciTech Connect

    Genova, T.F.

    1982-01-01

    This study was designed to analyze the effects of lead intoxication on the immunological responses of aging male and female Balb/c mice. Both males and females on the lead diet exhibited a loss of weight after one week of treatment. The animals began to gain weight again after eight or fifteen weeks for males and females respectively. Although both groups continued to gain weight at a rate consistent with control animals, they never reached the same weights as their same-sex control counterparts. Immunofluorescent staining indicated the presence of greater renal pathology in lead-fed animals as compared to controls. Lead-fed males demonstrated the greatest pathology of any group. Both T and B cell mitogenic responses declined during the early phases of the experiment. This was followed, at age 25-27 weeks, by an increase in activity to levels greater than those of control animals. The depression and subsequent increase in mitogenic responses was mirrored in the ability of T cells to regulate B cell plaque formation when stimulated with sheep red blood cells. T cell function returned to control levels in coincidence with the increase in T and B cell mitogenicity. The return of T cell functionality to control levels coincides with the increased mitogenesis noted in T and B cell populations and the onset of weight gains by lead-fed animals. This coincidence suggests the occurrence of a physiological or immunological change which is compensating for the continued lead intoxication. One such change may be a lead induced reduction in the number or function of a T cell subset, eg. T suppressors.

  7. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion.

    PubMed

    Chen, Jichun; Bryant, Mark A; Dent, James J; Sun, Yu; Desierto, Marie J; Young, Neal S

    2015-12-01

    A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals. PMID:26523501

  8. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion.

    PubMed

    Chen, Jichun; Bryant, Mark A; Dent, James J; Sun, Yu; Desierto, Marie J; Young, Neal S

    2015-12-01

    A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals.

  9. Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice

    PubMed Central

    Anisimov, Vladimir N.; Piskunova, Tatiana S.; Popovich, Irina G.; Zabezhinski, Mark A.; Tyndyk, Margarita L.; Egormin, Peter A.; Yurova, Maria N.; Rosenfeld, Svetlana V.; Semenchenko, Anna V.; Kovalenko, Irina G.; Poroshina, Tatiana E.; Berstein, Lev M.

    2010-01-01

    Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors both in aging and in the development of cancer. It is possible that the life-prolonging effects of calorie restriction are due to decreasing IGF-1 levels. A search of pharmacological modulators of insulin/IGF-1 signaling pathway (which mimetic effects of life span extending mutations or calorie restriction) could be a perspective direction in regulation of longevity. Antidiabetic biguanides are most promising among them. The chronic treatment of inbred 129/Sv mice with metformin (100 mg/kg in drinking water) slightly modified the food consumption but failed to influence the dynamics of body weight, decreased by 13.4% the mean life span of male mice and slightly increased the mean life span of female mice (by 4.4%). The treatment with metformin failed influence spontaneous tumor incidence in male 129/Sv mice, decreased by 3.5 times the incidence of malignant neoplasms in female mice while somewhat stimulated formation of benign vascular tumors in the latter. PMID:21164223

  10. Protein synthesis and antioxidant capacity in aging mice: effects of long-term voluntary exercise.

    PubMed

    Vaanholt, Lobke M; Speakman, John R; Garland, Theodore; Lobley, Gerald E; Visser, G Henk

    2008-01-01

    Exercise increases metabolic rate and the production of reactive oxygen species (ROS) but also elevates protein turnover. ROS cause damage to macromolecules (e.g., proteins) and thereby contribute to aging. Protein turnover removes and replaces damaged proteins. The balance between these two responses may underlie beneficial effects of physical activity on aging. Effects of lifelong exercise on antioxidant enzyme activities and fractional synthesis rate of protein (FSRP) were examined at various ages (2-26 mo) in heart, liver, and muscle of mice that had been selectively bred for high wheel-running activity, housed with (S+) or without (S-) a running wheel, and their random-bred controls (C+) housed with running wheels. FSRP decreased with age and increased in muscle of young, but not old, activity-selected mice. Enzyme activity of superoxide dismutase and glutathione peroxidase decreased with age and showed a peak at 10 mo of age in liver. Selection for wheel-running activity did not affect antioxidant enzyme activity. Daily energy expenditure correlated positively with antioxidant levels in liver. This might indicate that oxidative stress (ROS production) increases with metabolic rate, driving upregulation of antioxidant enzymes. Alternatively, the elevated energy expenditure may reflect the energetic cost of elevated protection, consistent with the disposable-soma hypothesis and with other studies showing positive links between energy expenditure and life span. Long-term elevations in voluntary exercise did not result in elevations in antioxidant enzyme activities or protein synthesis rates.

  11. Effects of glucocorticoids on age-related impairments of hippocampal structure and function in mice.

    PubMed

    He, Wen-Bin; Zhang, Jun-Long; Hu, Jin-Feng; Zhang, Yun; Machida, Takeo; Chen, Nai-Hong

    2008-02-01

    Effects of glucocorticoids (GCs) on maze-learning performances and hippocampal morphology were observed in male C57BL/6Cr mice. Correlations between aging, GCs and maze-learning performances were also studied. (2) Eight-arm radial maze was used in maze-learning tests. Learning performance was assessed by the parameters of time of getting all the bait, number of reentry errors into the already-entered arm with bait, and number of missed entries into an unbaited arm. Brain sections, 8 mum thick, were Nissl-stained with cresyl violet or stained immunocytochemically with antibodies against neurofilaments. (3) With aging, normal pyramidal cells decreased gradually in amount, and degenerating cells increased since the age of 18 months, accompanied with the maze-learning deficit. Here we have suggested that these changes were associated with the age-related deficits in adaptation tolerance of neurons to stress. In addition, the age-related deficits in plasticity of hippocampal neurons to GCs in young mice (3 months of age) resulted in an increase in plasma corticosterone (CORT) concentrations, degeneration of hippocampal pyramidal cells, as well as maze-learning deficits. (4) In conclusion, our data indicated that CORT caused the degeneration of hippocampal pyramidal cells and the impairment of memory.

  12. Comparative Toxicity of Soy Biodiesel and Diesel Emissions in Healthy and Allergic Mice

    EPA Science Inventory

    Toxicity from combustion of 100% soy-based biodiesel (B100) was compared to that of petrodiesel (B0) or a 20% biodiesel / 80% petrodiesel mix (B20) in healthy and house dust mite (HDM)-allergic Balb/cJ mice. Exhaust from combustion of B0, B20, or B100 was diluted to target conce...

  13. Soy Biodiesel Emissions Have Reduced Inflammatory Effects Compared to Diesel Emissions in Healthy and Allergic Mice

    EPA Science Inventory

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrat...

  14. COMPARATIVE METABOLISM OF ARSENIC IN MICE AFTER A SINGLE OR REPEATED ORAL ADMINISTRATION OF ARSENATE

    EPA Science Inventory

    COMPARATIVE METABOLISM OF ARSENIC IN MICE AFTER A SINGLE OR REPEATED ORAL ADMINISTRATION OF ARSENATE
    Michael F. Hughes*1, Elaina M. Kenyon1, Brenda C. Edwards1, Carol T. Mitchell1, Luz Maria Del Razo2 and David J. Thomas1
    1US EPA, ORD, NHEERL, ETD, PKB, Research Triangle Pa...

  15. Reversal of the Detrimental Effects of Post-Stroke Social Isolation by Pair-Housing is Mediated by Activation of BDNF-MAPK/ERK in Aged Mice

    PubMed Central

    Verma, Rajkumar; Harris, Nia M.; Friedler, Brett D.; Crapser, Joshua; Patel, Anita R.; Venna, Venugopal; McCullough, Louise D.

    2016-01-01

    Social isolation (SI) increases stroke-related mortality and morbidity in clinical populations. The detrimental effects of SI have been successfully modeled in the laboratory using young animals. Mechanistically, the negative effects of SI in young animals are primarily mediated by an enhanced inflammatory response to injury and a reduction in neurotrophic factors. However, the response to brain injury differs considerably in the aged. Given that SI is more prevalent in aged populations, we hypothesized that isolation, even when initiated after stroke, would delay recovery in aged mice. We found that aged isolated male mice had significantly increased infarct volume, neurological deficits, and serum IL-6 levels three days after stroke compared to pair housed (PH) mice. Using RT2 Profiler PCR Array and real-time quantitative PCR we found several important synaptic plasticity genes were differentially expressed in post-stroke SI mice. Furthermore, paired mice showed improved memory and neurobehavioral recovery four weeks after injury. Mechanistic and histological studies showed that the beneficial effects of pair housing are partially mediated by BDNF via downstream MAPK/ERK signaling and restoration of axonal basic myelin protein levels. PMID:27125783

  16. Aged neuronal nitric oxide knockout mice show preserved olfactory learning in both social recognition and odor-conditioning tasks.

    PubMed

    James, Bronwen M; Li, Qin; Luo, Lizhu; Kendrick, Keith M

    2015-01-01

    There is evidence for both neurotoxic and neuroprotective roles of nitric oxide (NO) in the brain and changes in the expression of the neuronal isoform of NO synthase (nNOS) gene occur during aging. The current studies have investigated potential support for either a neurotoxic or neuroprotective role of NO derived from nNOS in the context of aging by comparing olfactory learning and locomotor function in young compared to old nNOS knockout (nNOS(-/-)) and wildtype control mice. Tasks involving social recognition and olfactory conditioning paradigms showed that old nNOS(-/-) animals had improved retention of learning compared to similar aged wildtype controls. Young nNOS(-/-) animals showed superior reversal learning to wildtypes in a conditioned learning task, although their performance was weakened with age. Interestingly, whereas young nNOS(-/-) animals were impaired in long term memory for social odors compared to wildtype controls, in old animals this pattern was reversed, possibly indicating beneficial compensatory changes influencing olfactory memory may occur during aging in nNOS(-/-) animals. Possibly such compensatory changes may have involved increased NO from other NOS isoforms since the memory deficit in young nNOS(-/-) animals could be rescued by the NO-donor, molsidomine. Both nNOS(-/-) and wildtype animals showed an age-associated decline in locomotor activity although young nNOS(-/-) animals were significantly more active than wildtypes, possibly due to an increased interest in novelty. Overall our findings suggest that lack of NO release via nNOS may protect animals to some extent against age-associated cognitive decline in memory tasks typically involving olfactory and hippocampal regions, but not against declines in reversal learning or locomotor activity.

  17. Restoration of synaptic plasticity and learning in young and aged NCAM-deficient mice by enhancing neurotransmission mediated by GluN2A-containing NMDA receptors.

    PubMed

    Kochlamazashvili, Gaga; Bukalo, Olena; Senkov, Oleg; Salmen, Benedikt; Gerardy-Schahn, Rita; Engel, Andreas K; Schachner, Melitta; Dityatev, Alexander

    2012-02-15

    Neural cell adhesion molecule (NCAM) is the predominant carrier of the unusual glycan polysialic acid (PSA). Deficits in PSA and/or NCAM expression cause impairments in hippocampal long-term potentiation and depression (LTP and LTD) and are associated with schizophrenia and aging. In this study, we show that impaired LTP in adult NCAM-deficient (NCAM(-/-)) mice is restored by increasing the activity of the NMDA subtype of glutamate receptor (GluN) through either reducing the extracellular Mg2+ concentration or applying d-cycloserine (DCS), a partial agonist of the GluN glycine binding site. Pharmacological inhibition of the GluN2A subtype reduced LTP to the same level in NCAM(-/-) and wild-type (NCAM(+/+)) littermate mice and abolished the rescue by DCS in NCAM(-/-) mice, suggesting that the effects of DCS are mainly mediated by GluN2A. The insufficient contribution of GluN to LTD in NCAM(-/-) mice was also compensated for by DCS. Furthermore, impaired contextual and cued fear conditioning levels were restored in NCAM(-/-) mice by administration of DCS before conditioning. In 12-month-old NCAM(-/-), but not NCAM(+/+) mice, there was a decline in LTP compared with 3-month-old mice that could be rescued by DCS. In 24-month-old mice of both genotypes, there was a reduction in LTP that could be fully restored by DCS in NCAM(+/+) mice but only partially restored in NCAM(-/-) mice. Thus, several deficiencies of NCAM(-/-) mice can be ameliorated by enhancing GluN2A-mediated neurotransmission with DCS.

  18. Reduced IGF-1 Signaling Delays Age-associated Proteotoxicity in Mice

    PubMed Central

    Cohen, Ehud; Paulsson, Johan F.; Blinder, Pablo; Burstyn-Cohen, Tal; Du, Deguo; Estepa, Gabriela; Adame, Anthony; Pham, Hang M.; Holzenberger, Martin; Kelly, Jeffery W.; Masliah, Eliezer; Dillin, Andrew

    2009-01-01

    Summary The Insulin/IGF signaling pathway (IIS) is a prominent regulator of aging of worms, flies, mice and likely humans. Delayed aging by IIS reduction protects the nematode, C. elegans, from toxicity associated with the aggregation of the Alzheimer's disease linked human peptide, Aβ. We reduced IGF signaling in Alzheimer's model mice and discovered that these animals are protected from the Alzheimer's-like disease symptoms including reduced behavioral impairment, neruoinflammation, neuronal and synpatic loss. This protection is correlated with the hyper-aggregation of Aβ leading to tightly packed, ordered plaques suggesting that one aspect of the protection conferred by reduced IGF signaling is the possible sequestration of soluble Aβ oligomers into dense aggregates of lower toxicity. These findings indicate that the IGF signaling regulated mechanism that protects from Aβ toxicity is conserved from worms to mammals and point to the modulation of this signaling pathway as a promising strategy for the development of Alzheimer's disease therapy. PMID:20005808

  19. DECREASED OXIDATIVE STRESS AND GREATER BONE ANABOLISM IN THE AGED, AS COMPARED TO THE YOUNG, MURINE SKELETON BY PARATHYROID HORMONE

    PubMed Central

    Jilka, R.L.; Almeida, M.; Ambrogini, E.; Han, L.; Roberson, P. K.; Weinstein, R.S.; Manolagas, S.C.

    2010-01-01

    Summary Because of recent insights into the pathogenesis of age-related bone loss, we investigated whether intermittent parathyroid hormone (PTH) administration antagonizes the molecular mechanisms of the adverse effects of aging on bone. PTH produced a greater increase in vertebral trabecular bone mineral density and bone volume as well as a greater expansion of the endocortical bone surface in the femur of 26 as compared to 6 month old female C57BL/6 mice. Moreover, PTH increased trabecular connectivity in vertebrae and the toughness of both vertebrae and femora in old, but not young, mice. PTH also increased the rate of bone formation and reduced osteoblast apoptosis to a greater extent in the old mice. Most strikingly, PTH reduced reactive oxygen species (ROS), p66Shc phosphorylation and expression of the lipoxygenase Alox15; and it increased glutathione and stimulated Wnt signaling in bone of old mice. PTH also antagonized the effects of oxidative stress on p66Shc phosphorylation, FoxO transcriptional activity, osteoblast apoptosis, and Wnt signaling in vitro. In contrast, administration of the antioxidants N-acetyl cysteine or pegylated catalase reduced osteoblast progenitors, and attenuated proliferation and Wnt signaling. These results suggest that PTH has a greater bone anabolic efficacy in old age because in addition to its other positive actions on bone formation it antagonizes the age-associated increase in oxidative stress and its adverse effects on the birth and survival of osteoblasts. On the other hand, ordinary antioxidants cannot restore bone mass in old age because they slow remodeling and attenuate osteoblastogenesis by interfering with Wnt signaling. PMID:20698835

  20. Age and Workers' Perceptions of Workplace Safety: A Comparative Study

    ERIC Educational Resources Information Center

    Gyekye, Seth Ayim; Salminen, Simo

    2009-01-01

    The study examined the relationship between age and I) safety perception; ii) job satisfaction; iii) compliance with safety management policies; and (iv) accident frequency. Participants were Ghanaian industrial workers (N = 320) categorized into 4 age groups: 19-29 years; 30-39 years; 40-50 years; and 51 years and above. Workplace safety…

  1. Undergraduate Knowledge of Aging: A Comparative Study of Biopsychosocial Content

    ERIC Educational Resources Information Center

    Damron-Rodriguez, JoAnn; Funderburk, Brooke; Lee, Martin; Solomon, David H.

    2004-01-01

    This study assesses undergraduate knowledge of aging, distinguishing between types of deficits (ignorance vs. misinformation) and content areas as delineated by a biopsychosocial framework. Knowledge is examined as an outcome of taking an aging elective, while accounting for course rating and knowledge retention. A diverse body of UCLA…

  2. Environmental enrichment improves cognition in aged Alzheimer's transgenic mice despite stable beta-amyloid deposition.

    PubMed

    Arendash, Gary W; Garcia, Marcos F; Costa, David A; Cracchiolo, Jennifer R; Wefes, Inge M; Potter, H

    2004-08-01

    Environmental enrichment (EE) has been shown to improve cognitive performance and brain indices of cognition in normal mice and rats. Because the therapeutic potential of intensive, long-term EE to benefit patients with Alzheimer's disease (AD) has yet to be explored, the present study evaluated the effect of long-term EE on cognition in an animal model of AD, the APPsw transgenic mouse. Beginning at 16 months of age, APPsw mice were put into EE or standard housing for 4 months and then tested in four cognitive-based tasks (Morris maze, circular platform, platform recognition, and radial arm water maze) between 20 and 22 months of age. Our results indicate that long-term EE of aged APPsw mice results in global, overall improvement in cognitive function across these tasks without decreasing brain beta-amyloid (A beta) deposition. The results suggest that long-term EE/cognitive stimulation could provide cognitive stabilization or improvement to AD patients through mechanisms independent of A beta deposition and clearance.

  3. p16INK4a reporter mice reveal age-promoting effects of environmental toxicants

    PubMed Central

    Sorrentino, Jessica A.; Krishnamurthy, Janakiraman; Tilley, Stephen; Alb, James G.; Burd, Christin E.; Sharpless, Norman E.

    2013-01-01

    While murine-based systems to identify cancer-promoting agents (carcinogens) are established, models to identify compounds that promote aging (gerontogens) have not been described. For this purpose, we exploited the transcription of p16INK4a, which rises dynamically with aging and correlates with age-associated disease. Activation of p16INK4a was visualized in vivo using a murine strain that harbors a knockin of the luciferase gene into the Cdkn2a locus (p16LUC mice). We exposed p16LUC mice to candidate gerontogens, including arsenic, high-fat diet, UV light, and cigarette smoke and serially imaged animals to monitor senescence induction. We show that exposure to a high-fat diet did not accelerate p16INK4a expression, whereas arsenic modestly augmented, and cigarette smoke and UV light potently augmented, activation of p16INK4a-mediated senescence. This work provides a toxicological platform to study mammalian aging and suggests agents that directly damage DNA promote molecular aging. PMID:24334456

  4. LiCl-induced flavor avoidance compared between rats and mice using a nondeprivation protocol.

    PubMed

    Rowland, Neil E; Nasrallah, Nicholas A; Robertson, Kimberly L

    2004-02-01

    The present studies examine some parameters involved in flavor avoidance learning, using LiCl to induce malaise, in a novel nondeprivation protocol that allows direct comparison between rats and mice. The procedure involves daily presentation of a gelatin dessert that contains carbohydrate (Polycose) and a distinctive food flavor. Regular chow is additionally available at all times. Both rats and mice showed robust intakes of these gels with little change of gram intake as concentration of Polycose was varied in the range 2-30%; at the highest concentration, the caloric yield was approximately 7% of normal daily intake in both species. Rats that were injected on three occasions with LiCl (0.75 meq/kg) 1 h after consumption of a flavored gel formed a complete and sustained conditioned flavor avoidance (CFA). In a two-flavor discrimination protocol, in which a second flavor was followed by injections of saline, rats showed complete avoidance of the LiCl-paired flavor and partial avoidance of the saline-paired flavor. Mice injected on three occasions with LiCl (6 meq/kg) 1 h after intake of a flavored gel formed a partial CFA; a more complete CFA was formed when there was no delay between removal of the flavor and the injection. Using this no-delay protocol, mice, like rats, showed avoidance of a saline-paired flavor in a two-flavor discrimination protocol, and the CFA was strong when the dose of LiCl was reduced to that used in rats (0.75 meq/kg). In comparable protocols, mice thus are able to form complete CFAs using low doses of LiCl that are comparable to CFAs observed in rats, but the interval between flavor and sickness over which associative learning can occur may be shorter in mice.

  5. Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters.

    PubMed

    Del Campo, Andrea; Jaimovich, Enrique; Tevy, Maria Florencia

    2016-01-01

    Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice.

  6. Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters.

    PubMed

    Del Campo, Andrea; Jaimovich, Enrique; Tevy, Maria Florencia

    2016-01-01

    Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice. PMID:27630760

  7. Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters

    PubMed Central

    2016-01-01

    Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice.

  8. Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters

    PubMed Central

    2016-01-01

    Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice. PMID:27630760

  9. Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice.

    PubMed

    Mitchell, Sarah J; Madrigal-Matute, Julio; Scheibye-Knudsen, Morten; Fang, Evandro; Aon, Miguel; González-Reyes, José A; Cortassa, Sonia; Kaushik, Susmita; Gonzalez-Freire, Marta; Patel, Bindi; Wahl, Devin; Ali, Ahmed; Calvo-Rubio, Miguel; Burón, María I; Guiterrez, Vincent; Ward, Theresa M; Palacios, Hector H; Cai, Huan; Frederick, David W; Hine, Christopher; Broeskamp, Filomena; Habering, Lukas; Dawson, John; Beasley, T Mark; Wan, Junxiang; Ikeno, Yuji; Hubbard, Gene; Becker, Kevin G; Zhang, Yongqing; Bohr, Vilhelm A; Longo, Dan L; Navas, Placido; Ferrucci, Luigi; Sinclair, David A; Cohen, Pinchas; Egan, Josephine M; Mitchell, James R; Baur, Joseph A; Allison, David B; Anson, R Michael; Villalba, José M; Madeo, Frank; Cuervo, Ana Maria; Pearson, Kevin J; Ingram, Donald K; Bernier, Michel; de Cabo, Rafael

    2016-06-14

    Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions. PMID:27304509

  10. Molecular detection of chromosomal abnormalities in germ and somatic cells of aged male mice

    SciTech Connect

    Lowe, X.; Baulch, J.; Quintana, L.; Ramsey, M.; Breneman, J.; Tucker, J.; Wyrobek, A.; Collins, B.; Allen, J.; Holland, N.

    1994-12-31

    Three cytogenetic methods were applied to eight B6C3F1 male mice aged 22.5 - 30.5mo to determine if advanced age was associated with an elevated risk of producing chromosomally defective germinal and somatic cells; sperm aneuploidy analysis by multi-color fluorescence in situ hybridization for three chromosomes, spermatid micronucleus analysis with anti-kinetochore antibodies, and translocation analysis of somatic metaphases by {open_quotes}painting{close_quotes} for two chromosomes. Eight mice aged 2.4mo served as controls. Sperm aneuploidy was measured by multi-color fluorescence in situ co-hybridization with DNA probes specific for chromosomes X, Y and 8, scoring 10,000 cells per animal. The aged group showed significant 1.5 - 2.0 fold increases in the hyperhaploidy phenotypes X-X-8, Y-Y-8, 8-8-Y, and 8-8-X with the greater effects appearing in animals aged >29mo. The aged group also showed significantly increased frequencies of micronucleated spermatids (2.0 vs 0.4 per 1000; all were kinetochore negative). Analysis of metaphase chromosomes from blood by {open_quotes}painting{close_quotes} of chromosomes 2 and 8 yielded 4 translocation per 858 cell-equivalents in the aged group which was a non-significant elevation over 0/202 in controls. Although interpretation must be cautious due to the small number of animals analyzed, these findings suggest that advanced paternal age may be a risk factor for chromosomal abnormalities of reproductive and somatic importance.

  11. Autoimmunity and aging: the age-related response of mice of a long-lived strain to trinitrophenylated syngeneic mouse red blood cells.

    PubMed

    Naor, D; Bonavida, B; Walford, R L

    1976-12-01

    Mice of 1.5, 9, 22, and 31 to 32 months of age were injected with the thymus-dependent antigen, TNP-SRC, or the thymus-independent antigen, TNP-SRC, TNP-MRC. The anti-SRC and TNP immune responses to TNP-SRC were markedly reduced in older mice, whereas the anti-TNP response to the TNP-MRC showed no substantial decline. Young mice produced higher anti-TNP plaque-forming cell responses after injection of TNP-SRC than after TNP-MRC, whereas in older mice the reverse obtained. Old mice but not young mice displayed a high anti-SRC cross-reactive response after injection of TNP-MRC. The avidity of anti-TNP antibody of young mice immunized with TNP-SRC was higher than that following immunization with TNP-MRC, whereas the avidities of anti-TNP antibodies from old mice injected with these two reagents were the same. Those individual mice which showed a poorly regulated immune response also displayed an autologous anti-MRC plaque-forming cell response after injection of either TNP-SRC or TNP-MRC. It is suggested that mechanisms mediated by suppressor T cells may be responsible for regulating the autoimmune response to modified self antigens, and that these are severely impaired in age individuals.

  12. Effects of age of pups and removal of existing litter on pup survival during cross-fostering between multiparous outbred mice.

    PubMed

    Hickman, Debra L; Swan, Melissa P

    2011-09-01

    Periparturient manipulation of mice is a valuable tool for modern research facilities. Although fostering and Caesarian section frequently are used to eradicate pathogens, an often overlooked use is to rescue poorly breeding strains of mice. Here we characterized the weaning success rates after fostering outbred pups of variable ages (younger than 24 h; 5 to 7 d; 10 to 12 d) with full or partial replacement of litters and multiparous dams. There were no significant differences between most groups when analyzed by full or partial replacement or age of donor pups as compared with control groups, in which pups were manipulated but returned to the birth dam or the birth dam was not disturbed. However, significant differences were associated with fostering of 10- to 12-d-old pups in combination with younger pups. Overall, these findings suggest that limiting fostering to pups that are within 48 h of age and age-matching litters when fostering are unnecessary.

  13. Fluidizing effects of centrophenoxine in vitro on brain and liver membranes from different age groups of mice.

    PubMed

    Wood, W G; Gorka, C; Armbrecht, H J; Williamson, L S; Strong, R

    1986-12-01

    This study examined the effects of different concentrations of centrophenoxine on physical properties of synaptic plasma membranes and liver microsomes using electron spin resonance procedures. Membranes of different age groups of mice were labeled with the 5-doxyl stearic acid spin-label and membrane fluidity determined in the presence and absence of different concentrations of centrophenoxine. Centrophenoxine had a direct effect on membranes as shown by a significant increase in membrane fluidity. This effect was greatest in liver microsomes as compared to synaptic plasma membranes. Age differences were not observed in centrophenoxine-induced fluidization. Effects of centrophenoxine in vivo may be due in part to the drug acting directly on the physical properties of the membrane lipid environment.

  14. The roles of sex and serotonin transporter levels in age- and stress-related emotionality in mice.

    PubMed

    Joeyen-Waldorf, Jennifer; Edgar, Nicole; Sibille, Etienne

    2009-08-25

    Mood disorders are influenced by genetic make-up and differentially affect men and women. The s/l promoter polymorphism in the serotonin transporter (SERT) gene moderates both trait emotion and the vulnerability to develop depressive states in humans. Similarly, male mice lacking SERT (Knockout/KO) display an elevated emotionality phenotype. We now report that the SERT-KO phenotype is maintained throughout late-adulthood, and that female KO mice develop a larger emotionality phenotype with increasing age. Thus, to test the hypothesis that these findings reflected a putative sexual dimorphism in SERT-mediated modulation of emotionality, we submitted adult male and female wild-type, heterozygous (HZ) and KO mice to unpredictable chronic mild stress (UCMS) and assessed behavioral changes. In males, the elevated SERT-KO emotion-related behavior converged with other groups after UCMS. Conversely, female SERT-KO displayed a normal non-stressed baseline, but highest UCMS-induced emotionality. SERT-HZ displayed variable and intermediate phenotypes in both experiments. Thus, consistent results across different biological modalities (age, stress) revealed a high contribution of SERT genotype for baseline "trait" emotionality in males, and low contribution for females. In contrast, age-correlated and stress-induced behavioral changes resulted in a high SERT genotype-mediated behavioral variance in females, but low in males. This suggests that high emotionality states associated with low SERT were differentially achieved in males (high baseline/trait) compared to females (increased vulnerability to develop high emotionality). This sex-by-SERT double dissociation provides a framework to investigate molecular substrates of emotionality regulation in concert with serotonin function and may contribute to the sexually dimorphic features of mood disorders. PMID:19577546

  15. Insulin sensitivity improvement of fermented Korean Red Ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice

    PubMed Central

    Cheon, Jeong-Mu; Kim, Dae-Ik; Kim, Kil-Soo

    2015-01-01

    Background The biological actions of various ginseng extracts have been studied for treating obesity and diabetes mellitus. However, few studies have evaluated the effects of fermented Korean Red Ginseng (Panax ginseng Meyer) on metabolic syndrome. The present study evaluated the antiobesity and antidiabetic effects of fermented red ginseng (FRG) on old-aged, obese, leptin-deficient (B6.V-Lepob, “ob/ob”) mice. Methods The animals were divided into three groups and given water containing 0%, 0.5%, and 1.0% FRG for 16 wk. The effect of FRG on ob/ob mice was determined by measuring changes in body weight, levels of blood glucose, serum contents of triglycerides, total cholesterol and free fatty acids, messenger RNA (mRNA) expressions of key factors associated with insulin action, such as insulin receptor (IR), lipoprotein lipase (LPL), glucose transporter 1 and 4 (GLUT1 and GLUT4), peroxisome proliferators-activated receptor gamma (PPAR-γ), and phosphoenolpyruvate carboxykinase (PEPCK) in the liver and in muscle, and histology of the liver and pancreas. Results FRG-treated mice had decreased body weight and blood glucose levels compared with control ob/ob mice. However, anti-obesity effect of FRG was not evident rather than hypoglycemic effect in old aged ob/ob mice. The hyperlipidemia in control group was attenuated in FRG-treated ob/ob mice. The mRNA expressions of IR, LPL, GLUT1, GLUT4, PPAR-γ, and PEPCK in the liver and in muscle were increased in the FRG-treated groups compared with the control group. Conclusion These results suggest that FRG may play a vital role in improving insulin sensitivity relative to reducing body weight in old-aged ob/ob mice. PMID:26869825

  16. Soluble Abeta and cognitive function in aged F-344 rats and Tg2576 mice.

    PubMed

    Lindner, Mark D; Hogan, John B; Krause, Rudolph G; Machet, Frederic; Bourin, Clotilde; Hodges, Donald B; Corsa, Jason A; Barten, Donna M; Toyn, Jeremy H; Stock, David A; Rose, Gregory M; Gribkoff, Valentin K

    2006-10-01

    Recent findings suggest that Alzheimer's dementia may be mediated by soluble beta amyloid (Abeta) more than the deposits of aggregated, insoluble Abeta, and vulnerability to cognitive deficits after scopolamine challenge may help identify AD even in patients that are still pre-symptomatic. The objectives of the present experiments were to determine if vulnerability to cognitive deficits after scopolamine challenge is related to levels of soluble Abeta, and if levels of soluble Abeta are more closely related to cognitive deficits than levels of insoluble Abeta, even in aged, transgenic mice, after they have developed very high levels of insoluble Abeta. Aged F-344 rats and young mice over-expressing the Swedish mutation in the human amyloid precursor protein (APPsw; Tg2576+) had elevated levels of soluble Abeta, and were more vulnerable to scopolamine challenge in the Morris water maze (MWM), relative to young rats and Tg2576- mice; but, among individual animals, higher levels of soluble Abeta were not correlated with vulnerability to scopolamine. On the other hand, in aged Tg2576+ mice, cognitive deficits were related to levels of soluble Abeta, not insoluble Abeta, despite the fact that the levels of insoluble Abeta were thousands of times higher than the levels of soluble Abeta. The results of the present experiments suggest that vulnerability to cognitive deficits after scopolamine challenge is not related to elevated levels of soluble Abeta, but that high levels of soluble Abeta are more closely correlated with cognitive deficits than the amount insoluble Abeta, even after large amounts of aggregated, insoluble Abeta have been deposited.

  17. Genetic determinants of fibro-osseous lesions in aged inbred mice.

    PubMed

    Berndt, Annerose; Ackert-Bicknell, Cheryl; Silva, Kathleen A; Kennedy, Victoria E; Sundberg, Beth A; Cates, Justin M; Schofield, Paul N; Sundberg, John P

    2016-02-01

    Fibro-osseous lesions in mice are progressive aging changes in which the bone marrow is replaced to various degrees by fibrovascular stroma and bony trabeculae in a wide variety of bones. The frequency and severity varied greatly among 28 different inbred mouse stains, predominantly affecting females, ranging from 0% for 10 strains to 100% for KK/HlJ and NZW/LacJ female mice. Few lesions were observed in male mice and for 23 of the strains, no lesions were observed in males for any of the cohorts. There were no significant correlations between strain-specific severities of fibro-osseous lesions and ovarian (r=0.11; P=0.57) or endometrial (r=0.03; P=0.89) cyst formation frequency or abnormalities in parathyroid glands. Frequency of fibro-osseous lesions was most strongly associated (P<10(-6)) with genome variations on chromosome (Chr) 8 at 90.6 and 90.8Mb (rs33108071, rs33500669; P=5.0·10(-10), 1.3·10(-6)), Chr 15 at 23.6 and 23.8Mb (rs32087871, rs45770368; P=7.3·10(-7), 2.7·10(-6)), and Chr 19 at 33.2, 33.4, and 33.6Mb (rs311004232, rs30524929, rs30448815; P=2.8·10(-6), 2.8·10(-6), 2.8·10(-6)) in genome-wide association studies (GWAS). The relatively large number of candidate genes identified in the GWAS analyses suggests that this may be an extremely complex polygenic disease. These results indicate that fibro-osseous lesions are surprisingly common in many inbred strains of laboratory mice as they age. While this presents little problem in most studies that utilize young animals, it may complicate aging studies, particularly those focused on bone. PMID:26589134

  18. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1.

    PubMed

    Li, Ji; Jiang, Ting-Xin; Hughes, Michael W; Wu, Ping; Yu, Juehua; Widelitz, Randall B; Fan, Guoping; Chuong, Cheng-Ming

    2012-12-01

    To examine the roles of epigenetic modulation on hair follicle regeneration, we generated mice with a K14-Cre-mediated loss of DNA methyltransferase 1 (DNMT1). The mutant shows an uneven epidermal thickness and alterations in hair follicle size. When formed, hair follicle architecture and differentiation appear normal. Hair subtypes exist but hair fibers are shorter and thinner. Hair numbers appear normal at birth but gradually decrease to <50% of control in 1-year-old mice. Sections of old mutant skin show follicles in prolonged telogen with hyperplastic sebaceous glands. Anagen follicles in mutants exhibit decreased proliferation and increased apoptosis in matrix transient-amplifying cells. Although K15-positive stem cells in the mutant bulge are comparable in number to the control, their ability to proliferate and become activated to form a hair germ is reduced. As mice age, residual DNMT activity declines further, and the probability of successful anagen reentry decreases, leading to progressive alopecia. Paradoxically, there is increased proliferation in the epidermis, which also shows aberrant differentiation. These results highlight the importance of DNA methylation in maintaining stem cell homeostasis during the development and regeneration of ectodermal organs.

  19. Differential effects of leucine supplementation in young and aged mice at the onset of skeletal muscle regeneration.

    PubMed

    Perry, Richard A; Brown, Lemuel A; Lee, David E; Brown, Jacob L; Baum, Jamie I; Greene, Nicholas P; Washington, Tyrone A

    2016-07-01

    Aging decreases the ability of skeletal muscle to respond to injury. Leucine has been demonstrated to target protein synthetic pathways in skeletal muscle thereby enhancing this response. However, the effect of aging on leucine-induced alterations in protein synthesis at the onset of skeletal muscle regeneration has not been fully elucidated. The purpose of this study was to determine if aging alters skeletal muscle regeneration and leucine-induced alterations in markers of protein synthesis. The tibialis anterior of young (3 months) and aged (24 months) female C57BL/6J mice were injected with either bupivacaine or PBS, and the mice were given ad libitum access to leucine-supplemented or normal drinking water. Protein and gene expression of markers of protein synthesis and degradation, respectively, were analyzed at three days post-injection. Following injury in young mice, leucine supplementation was observed to elevate only p-p70S6K. In aged mice, leucine was shown to elicit higher p-mTOR content with and without injury, and p-4EBP-1 content post-injury. Additionally in aged mice, leucine was shown to elicit higher content of relative p70S6K post-injury. Our study shows that leucine supplementation affects markers of protein synthesis at the onset of skeletal muscle regeneration differentially in young and aged mice. PMID:27327351

  20. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age.

    PubMed

    Hwee, Darren T; Baehr, Leslie M; Philp, Andrew; Baar, Keith; Bodine, Sue C

    2014-02-01

    Age-related loss of muscle mass occurs to varying degrees in all individuals and has a detrimental effect on morbidity and mortality. Muscle RING Finger 1 (MuRF1), a muscle-specific E3 ubiquitin ligase, is believed to mediate muscle atrophy through the ubiquitin proteasome system (UPS). Deletion of MuRF1 (KO) in mice attenuates the loss of muscle mass following denervation, disuse, and glucocorticoid treatment; however, its role in age-related muscle loss is unknown. In this study, skeletal muscle from male wild-type (WT) and MuRF1 KO mice was studied up to the age of 24 months. Muscle mass and fiber cross-sectional area decreased significantly with age in WT, but not in KO mice. In aged WT muscle, significant decreases in proteasome activities, especially 20S and 26S β5 (20-40% decrease), were measured and were associated with significant increases in the maladaptive endoplasmic reticulum (ER) stress marker, CHOP. Conversely, in aged MuRF1 KO mice, 20S or 26S β5 proteasome activity was maintained or decreased to a lesser extent than in WT mice, and no increase in CHOP expression was measured. Examination of the growth response of older (18 months) mice to functional overload revealed that old WT mice had significantly less growth relative to young mice (1.37- vs. 1.83-fold), whereas old MuRF1 KO mice had a normal growth response (1.74- vs. 1.90-fold). These data collectively suggest that with age, MuRF1 plays an important role in the control of skeletal muscle mass and growth capacity through the regulation of cellular stress.

  1. Global gene profiling of aging lungs in Atp8b1 mutant mice

    PubMed Central

    Soundararajan, Ramani; Stearns, Timothy M.; Czachor, Alexander; Fukumoto, Jutaro; Turn, Christina; Westermann-Clark, Emma; Breitzig, Mason; Tan, Lee; Lockey, Richard F.; King, Benjamin L.; Kolliputi, Narasaiah

    2016-01-01

    Objective Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. Methods We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). Results Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. Conclusion Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases. PMID:27689529

  2. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice

    PubMed Central

    Bitto, Alessandro; Ito, Takashi K; Pineda, Victor V; LeTexier, Nicolas J; Huang, Heather Z; Sutlief, Elissa; Tung, Herman; Vizzini, Nicholas; Chen, Belle; Smith, Kaleb; Meza, Daniel; Yajima, Masanao; Beyer, Richard P; Kerr, Kathleen F; Davis, Daniel J; Gillespie, Catherine H; Snyder, Jessica M; Treuting, Piper M; Kaeberlein, Matt

    2016-01-01

    The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome. DOI: http://dx.doi.org/10.7554/eLife.16351.001 PMID:27549339

  3. Proteomic Profiling of Aging in Glomeruli of Mice by using Two-Dimensional Differential Gel Electrophoresis

    PubMed Central

    Liu, Xiaodan; Fan, Qiuling; Yang, Gang; Wang, Lining

    2015-01-01

    Background Glomerular proteins were analyzed by proteomics to screen proteins participating in maturation of glomeruli before senescence and to find key proteins involved in the aging process. Material/Methods Glomeruli of C57BL/6 mice at 8 and 20 weeks were separated by kidney perfusion. Proteomic profiles of glomeruli were investigated by using two-dimensional differential gel electrophoresis and MALDI-TOF mass spectrometry. Results We identified 22 differentially expressed proteins. Among them, 3 proteins were significantly up-regulated and 19 proteins were significantly down-regulated in mature mice. Out of these 22 proteins, 18% take part in protein transport, protein targeting, and proteolysis; 5% in glycolysis; 14% in transcription; 9% in electron transport; 9% were chaperones; and 9% were hydrolases. Conclusions Our results provide insights into the glomerular differentially expressed proteins correlated with renal aging. In this study we found that aging altered the expression of ATP synthase subunit beta. Further studies on this protein might help to understand the mechanism of renal aging. PMID:25659849

  4. Cytokinetic Failure-induced Tetraploidy Develops into Aneuploidy, Triggering Skin Aging in Phosphovimentin-deficient Mice.

    PubMed

    Tanaka, Hiroki; Goto, Hidemasa; Inoko, Akihito; Makihara, Hiroyuki; Enomoto, Atsushi; Horimoto, Katsuhisa; Matsuyama, Makoto; Kurita, Kenichi; Izawa, Ichiro; Inagaki, Masaki

    2015-05-22

    Tetraploidy, a state in which cells have doubled chromosomal sets, is observed in ∼20% of solid tumors and is considered to frequently precede aneuploidy in carcinogenesis. Tetraploidy is also detected during terminal differentiation and represents a hallmark of aging. Most tetraploid cultured cells are arrested by p53 stabilization. However, the fate of tetraploid cells in vivo remains largely unknown. Here, we analyze the ability to repair wounds in the skin of phosphovimentin-deficient (VIM(SA/SA)) mice. Early into wound healing, subcutaneous fibroblasts failed to undergo cytokinesis, resulting in binucleate tetraploidy. Accordingly, the mRNA level of p21 (a p53-responsive gene) was elevated in a VIM(SA/SA)-specific manner. Disappearance of tetraploidy coincided with an increase in aneuploidy. Thereafter, senescence-related markers were significantly elevated in VIM(SA/SA) mice. Because our tetraploidy-prone mouse model also exhibited subcutaneous fat loss at the age of 14 months, another premature aging phenotype, our data suggest that following cytokinetic failure, a subset of tetraploid cells enters a new cell cycle and develops into aneuploid cells in vivo, which promote premature aging.

  5. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, attenuates postoperative cognitive dysfunction in aging mice

    PubMed Central

    Jia, Min; Liu, Wen-Xue; Sun, He-Liang; Chang, Yan-Qing; Yang, Jiao-Jiao; Ji, Mu-Huo; Yang, Jian-Jun; Feng, Chen-Zhuo

    2015-01-01

    Postoperative cognitive dysfunction (POCD) is a recognized clinical entity characterized with cognitive deficits after anesthesia and surgery, especially in aged patients. Previous studies have shown that histone acetylation plays a key role in hippocampal synaptic plasticity and memory formation. However, its role in POCD remains to be determined. Here, we show that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, attenuates POCD in aging Mice. After exposed to the laparotomy, a surgical procedure involving an incision into abdominal walls to examine the abdominal organs, 16- but not 3-month old male C57BL/6 mice developed obvious cognitive impairments in the test of long-term contextual fear conditioning. Intracerebroventricular (i.c.v.) injection of SAHA at the dose of (20 μg/2 μl) 3 h before and daily after the laparotomy restored the laparotomy-induced reduction of hippocampal acetyl-H3 and acetyl-H4 levels and significantly attenuated the hippocampus-dependent long-term memory (LTM) impairments in 16-month old mice. SAHA also reduced the expression of cleaved caspase-3, inducible nitric oxide synthase (iNOS) and N-methyl-D-aspartate (NMDA) receptor-calcium/calmodulin dependent kinase II (CaMKII) pathway, and increased the expression of brain-derived neurotrophic factor (BDNF), synapsin 1, and postsynaptic density 95 (PSD95). Taken together, our data suggest that the decrease of histone acetylation contributes to POCD and may serve as a target to improve the neurological outcome of POCD. PMID:26441515

  6. Left Atrial Volume and Pulmonary Artery Diameter Are Noninvasive Measures of Age-Related Diastolic Dysfunction in Mice.

    PubMed

    Medrano, Guillermo; Hermosillo-Rodriguez, Jesus; Pham, Thuy; Granillo, Alejandro; Hartley, Craig J; Reddy, Anilkumar; Osuna, Patricia Mejia; Entman, Mark L; Taffet, George E

    2016-09-01

    Impaired cardiac diastolic function occurs with aging in many species and may be difficult to measure noninvasively. In humans, left atrial (LA) volume is a robust measure of chronic diastolic function as the LA is exposed to increased left ventricular filling pressures. We hypothesized that LA volume would be a useful indicator of diastolic function in aging mice. Further, we asked whether pressures were propagated backwards affecting pulmonary arteries (PAs) and right ventricle (RV). We measured LA, PA, and RV infundibulum dimensions with echocardiography and used mouse-specific Doppler systems and pressure catheters for noninvasive and invasive measures. As C57BL/6 mice aged from 3 to 29-31 months, LA volume almost tripled. LA volume increases correlated with traditional diastolic function measures. Within groups of 14- and 31-month-old mice, LA volume correlated with diastolic function measured invasively. In serial studies, mice evaluated at 20 and 24 months showed monotonic increases in LA volume; other parameters changed less predictably. PA diameters, larger in 30-month-old mice than 6-month-old mice, correlated with LA volumes. Noninvasive LA volume and PA diameter assessments are useful and state independent measures of diastolic function in mice, correlating with other measures of diastolic dysfunction in aging. Furthermore, serial measurements over 4 months demonstrated consistent increases in LA volume suitable for longitudinal cardiac aging studies.

  7. Left Atrial Volume and Pulmonary Artery Diameter Are Noninvasive Measures of Age-Related Diastolic Dysfunction in Mice.

    PubMed

    Medrano, Guillermo; Hermosillo-Rodriguez, Jesus; Pham, Thuy; Granillo, Alejandro; Hartley, Craig J; Reddy, Anilkumar; Osuna, Patricia Mejia; Entman, Mark L; Taffet, George E

    2016-09-01

    Impaired cardiac diastolic function occurs with aging in many species and may be difficult to measure noninvasively. In humans, left atrial (LA) volume is a robust measure of chronic diastolic function as the LA is exposed to increased left ventricular filling pressures. We hypothesized that LA volume would be a useful indicator of diastolic function in aging mice. Further, we asked whether pressures were propagated backwards affecting pulmonary arteries (PAs) and right ventricle (RV). We measured LA, PA, and RV infundibulum dimensions with echocardiography and used mouse-specific Doppler systems and pressure catheters for noninvasive and invasive measures. As C57BL/6 mice aged from 3 to 29-31 months, LA volume almost tripled. LA volume increases correlated with traditional diastolic function measures. Within groups of 14- and 31-month-old mice, LA volume correlated with diastolic function measured invasively. In serial studies, mice evaluated at 20 and 24 months showed monotonic increases in LA volume; other parameters changed less predictably. PA diameters, larger in 30-month-old mice than 6-month-old mice, correlated with LA volumes. Noninvasive LA volume and PA diameter assessments are useful and state independent measures of diastolic function in mice, correlating with other measures of diastolic dysfunction in aging. Furthermore, serial measurements over 4 months demonstrated consistent increases in LA volume suitable for longitudinal cardiac aging studies. PMID:26511013

  8. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice.

    PubMed

    Zhu, Xiaoxia; Vasilyeva, Olga N; Kim, Sunghee; Jacobson, Michael; Romney, Joshua; Waterman, Marjorie S; Tuttle, David; Frisina, Robert D

    2007-08-10

    The C57BL/6J mouse has been a useful model of presbycusis, as it displays an accelerated age-related peripheral hearing loss. The medial olivocochlear efferent feedback (MOC) system plays a role in suppressing cochlear outer hair cell (OHC) responses, particularly for background noise. Neurons of the MOC system are located in the superior olivary complex, particularly in the dorsomedial periolivary nucleus (DMPO) and in the ventral nucleus of the trapezoid body (VNTB). We previously discovered that the function of the MOC system declines with age prior to OHC degeneration, as measured by contralateral suppression (CS) of distortion product otoacoustic emissions (DPOAEs) in humans and CBA mice. The present study aimed to determine the time course of age changes in MOC function in C57s. DPOAE amplitudes and CS of DPOAEs were collected for C57s from 6 to 40 weeks of age. MOC responses were observed at 6 weeks but were gone at middle (15-30 kHz) and high (30-45 kHz) frequencies by 8 weeks. Quantitative stereological analyses of Nissl sections revealed smaller neurons in the DMPO and VNTB of young adult C57s compared with CBAs. These findings suggest that reduced neuron size may underlie part of the noteworthy rapid decline of the C57 efferent system. In conclusion, the C57 mouse has MOC function at 6 weeks, but it declines quickly, preceding the progression of peripheral age-related sensitivity deficits and hearing loss in this mouse strain.

  9. Proteome wide reduction in AGE modification in streptozotocin induced diabetic mice by hydralazine mediated transglycation

    PubMed Central

    Kesavan, Suresh K.; Bhat, Shweta; Golegaonkar, Sandeep B.; Jagadeeshaprasad, Mashanipalya G.; Deshmukh, Arati B.; Patil, Harshal S.; Bhosale, Santosh D.; Shaikh, Mahemud L.; Thulasiram, Hirekodathakallu V.; Boppana, Ramanamurthy; Kulkarni, Mahesh J.

    2013-01-01

    The non-enzymatic reaction between glucose and protein can be chemically reversed by transglycation. Here we report the transglycation activity of hydralazine using a newly developed MALDI-TOF-MS based assay. Hydralazine mediated transglycation of HbA1c, plasma proteins and kidney proteins was demonstrated in streptozotocin (STZ) induced diabetic mice, as evidenced by decrease in protein glycation, as well as presence of hydralazine-glucose conjugate in urine of diabetic mice treated with hydralazine. Hydralazine down regulated the expression of Receptor for Advanced Glycation End products (RAGE), NADPH oxidase (NOX), and super oxide dismutase (SOD). These findings will provide a new dimension for developing intervention strategies for the treatment of glycation associated diseases such as diabetes complications, atherosclerosis, and aging. PMID:24126953

  10. [Effects of bee pollen on lipid peroxides and immune response in aging and malnourished mice].

    PubMed

    Qian, B; Zang, X; Liu, X

    1990-05-01

    The results showed that the level of hemolysin (HC), the numbers of plaque forming cells (PFC) and specific rosette forming cells (SRFC) in primary response to sheep red blood cells (SRBC) were markedly lowered and the lipoperoxide level in brain, liver and serum was increased in aging (over 18 months) and malnourished mice fed with ground corn in comparison to normal controls, while HC and the numbers of PFC and SRFC were significantly increased and the lipoperoxide level was markedly decreased after treatment with bee pollen 10 g/kg/d orally for 3 months and with 20% bee pollen-containing ground corn for 3 weeks respectively. The reduction of total protein and albumin contents of serum, DNA, RNA and protein contents of spleen and thymus in mice fed with ground corn can be prevented by adding 20% bee pollen in ground corn diet.

  11. Proteome wide reduction in AGE modification in streptozotocin induced diabetic mice by hydralazine mediated transglycation.

    PubMed

    Kesavan, Suresh K; Bhat, Shweta; Golegaonkar, Sandeep B; Jagadeeshaprasad, Mashanipalya G; Deshmukh, Arati B; Patil, Harshal S; Bhosale, Santosh D; Shaikh, Mahemud L; Thulasiram, Hirekodathakallu V; Boppana, Ramanamurthy; Kulkarni, Mahesh J

    2013-10-15

    The non-enzymatic reaction between glucose and protein can be chemically reversed by transglycation. Here we report the transglycation activity of hydralazine using a newly developed MALDI-TOF-MS based assay. Hydralazine mediated transglycation of HbA1c, plasma proteins and kidney proteins was demonstrated in streptozotocin (STZ) induced diabetic mice, as evidenced by decrease in protein glycation, as well as presence of hydralazine-glucose conjugate in urine of diabetic mice treated with hydralazine. Hydralazine down regulated the expression of Receptor for Advanced Glycation End products (RAGE), NADPH oxidase (NOX), and super oxide dismutase (SOD). These findings will provide a new dimension for developing intervention strategies for the treatment of glycation associated diseases such as diabetes complications, atherosclerosis, and aging.

  12. Sex and age mortality responses in zinc acetate-treated mice

    SciTech Connect

    Hogan, G.R.; Cole, B.S.; Lovelace, J.M.

    1987-07-01

    In regard to trace metal treatment or exposure, a number of variables are known to affect the expression of toxicity concerning its time course and degree. For example, known variables are route of administration, anionic component of the test substance, and sex and age of the recipient animal. Concerning the latter, little, if any, data have been reported dealing with sex- and age-related responses to excess zinc in mammalian systems. The primary purpose of the short communication presented here focuses on the determination of median lethal dose in sexually immature, i.e., juvenile, and adult female and male mice following a single zinc acetate insult. In addition, variation of lethality responses was examined with the age and sex groups to a divided treatment of a lethal dosage of zinc acetate, the injections of which were separated by various intervals.

  13. Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging.

    PubMed

    Brink, Thore C; Demetrius, Lloyd; Lehrach, Hans; Adjaye, James

    2009-10-01

    Individual differences in the rate of aging are determined by the efficiency with which an organism transforms resources into metabolic energy thus maintaining the homeostatic condition of its cells and tissues. This observation has been integrated with analytical studies of the metabolic process to derive the following principle: The metabolic stability of regulatory networks, that is the ability of cells to maintain stable concentrations of reactive oxygen species (ROS) and other critical metabolites is the prime determinant of life span. The metabolic stability of a regulatory network is determined by the diversity of the metabolic pathways or the degree of connectivity of genes in the network. These properties can be empirically evaluated in terms of transcriptional changes in gene expression. We use microarrays to investigate the age-dependence of transcriptional changes of genes in the insulin signaling, oxidative phosphorylation and glutathione metabolism pathways in mice. Our studies delineate age and tissue specific patterns of transcriptional changes which are consistent with the metabolic stability-longevity principle. This study, in addition, rejects the free radical hypothesis which postulates that the production rate of ROS, and not its stability, determines life span.

  14. A human apolipoprotein E mimetic peptide reduces atherosclerosis in aged apolipoprotein E null mice

    PubMed Central

    Xu, Yanyong; Liu, Hongmei; Liu, Mengting; Li, Feifei; Liu, Liangchen; Du, Fen; Fan, Daping; Yu, Hong

    2016-01-01

    Apolipoprotein E (apoE) is well known as an antiatherogenic protein via regulating lipid metabolism and inflammation. We previously reported that a human apoE mimetic peptide, EpK, reduced atherosclerosis in apoE null (apoE-/-) mice through reducing inflammation without affecting plasma lipid levels. Here, we construct another human apoE mimetic peptide, named hEp, and investigate whether expression of hEp can reduce atherosclerotic lesion development in aged female apoE-/- mice with pre-existing lesions. We found that chemically synthesized hEp significantly decreased cholesterol accumulation induced by oxidized low density lipoprotein and the expression of inflammatory cytokines TNFα and IL-6 induced by lipopolysaccharide in macrophages. In an in vivo study, Lv-hEp-GFP lentiviruses were intravenously injected into 9 month-old apoE-/- mice. Mice were then fed a chow diet for 18 weeks. Results showed that in comparison to the Lv-GFP lentivirus injection (Lv-GFP) group, Lv-hEp-GFP lentivirus injection achieved hepatic hEp expression and secretion in apoE-/- mice. It was observed that hEp expression significantly reduced plasma VLDL and LDL cholesterol levels and decreased aortic atherosclerotic lesions. This was accompanied by an increase of LDL receptor expression and a reduction of TNFα and IL-6 mRNA levels in the liver. Moreover, expression of hEp increased plasma paraoxonase-1 activity and decreased plasma myeloperoxidase activity and serum amyloid A levels. Our study provides evidence that hEp may be developed as a promising therapeutic apoE mimetic peptide for atherosclerosis-related cardiovascular diseases through its induction of plasma VLDL/LDL cholesterol clearance as well as its anti-oxidative and anti-inflammatory activities.

  15. A human apolipoprotein E mimetic peptide reduces atherosclerosis in aged apolipoprotein E null mice.

    PubMed

    Xu, Yanyong; Liu, Hongmei; Liu, Mengting; Li, Feifei; Liu, Liangchen; Du, Fen; Fan, Daping; Yu, Hong

    2016-01-01

    Apolipoprotein E (apoE) is well known as an antiatherogenic protein via regulating lipid metabolism and inflammation. We previously reported that a human apoE mimetic peptide, EpK, reduced atherosclerosis in apoE null (apoE(-/-)) mice through reducing inflammation without affecting plasma lipid levels. Here, we construct another human apoE mimetic peptide, named hEp, and investigate whether expression of hEp can reduce atherosclerotic lesion development in aged female apoE(-/-) mice with pre-existing lesions. We found that chemically synthesized hEp significantly decreased cholesterol accumulation induced by oxidized low density lipoprotein and the expression of inflammatory cytokines TNFα and IL-6 induced by lipopolysaccharide in macrophages. In an in vivo study, Lv-hEp-GFP lentiviruses were intravenously injected into 9 month-old apoE(-/-) mice. Mice were then fed a chow diet for 18 weeks. Results showed that in comparison to the Lv-GFP lentivirus injection (Lv-GFP) group, Lv-hEp-GFP lentivirus injection achieved hepatic hEp expression and secretion in apoE(-/-) mice. It was observed that hEp expression significantly reduced plasma VLDL and LDL cholesterol levels and decreased aortic atherosclerotic lesions. This was accompanied by an increase of LDL receptor expression and a reduction of TNFα and IL-6 mRNA levels in the liver. Moreover, expression of hEp increased plasma paraoxonase-1 activity and decreased plasma myeloperoxidase activity and serum amyloid A levels. Our study provides evidence that hEp may be developed as a promising therapeutic apoE mimetic peptide for atherosclerosis-related cardiovascular diseases through its induction of plasma VLDL/LDL cholesterol clearance as well as its anti-oxidative and anti-inflammatory activities. PMID:27648138

  16. A human apolipoprotein E mimetic peptide reduces atherosclerosis in aged apolipoprotein E null mice

    PubMed Central

    Xu, Yanyong; Liu, Hongmei; Liu, Mengting; Li, Feifei; Liu, Liangchen; Du, Fen; Fan, Daping; Yu, Hong

    2016-01-01

    Apolipoprotein E (apoE) is well known as an antiatherogenic protein via regulating lipid metabolism and inflammation. We previously reported that a human apoE mimetic peptide, EpK, reduced atherosclerosis in apoE null (apoE-/-) mice through reducing inflammation without affecting plasma lipid levels. Here, we construct another human apoE mimetic peptide, named hEp, and investigate whether expression of hEp can reduce atherosclerotic lesion development in aged female apoE-/- mice with pre-existing lesions. We found that chemically synthesized hEp significantly decreased cholesterol accumulation induced by oxidized low density lipoprotein and the expression of inflammatory cytokines TNFα and IL-6 induced by lipopolysaccharide in macrophages. In an in vivo study, Lv-hEp-GFP lentiviruses were intravenously injected into 9 month-old apoE-/- mice. Mice were then fed a chow diet for 18 weeks. Results showed that in comparison to the Lv-GFP lentivirus injection (Lv-GFP) group, Lv-hEp-GFP lentivirus injection achieved hepatic hEp expression and secretion in apoE-/- mice. It was observed that hEp expression significantly reduced plasma VLDL and LDL cholesterol levels and decreased aortic atherosclerotic lesions. This was accompanied by an increase of LDL receptor expression and a reduction of TNFα and IL-6 mRNA levels in the liver. Moreover, expression of hEp increased plasma paraoxonase-1 activity and decreased plasma myeloperoxidase activity and serum amyloid A levels. Our study provides evidence that hEp may be developed as a promising therapeutic apoE mimetic peptide for atherosclerosis-related cardiovascular diseases through its induction of plasma VLDL/LDL cholesterol clearance as well as its anti-oxidative and anti-inflammatory activities. PMID:27648138

  17. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice

    PubMed Central

    van Hummel, Annika; Bi, Mian; Ippati, Stefania; van der Hoven, Julia; Volkerling, Alexander; Lee, Wei S.; Tan, Daniel C. S.; Bongers, Andre; Ittner, Arne; Ke, Yazi D.; Ittner, Lars M.

    2016-01-01

    Several mouse lines with knockout of the tau-encoding MAPT gene have been reported in the past; they received recent attention due to reports that tau reduction prevented Aβ-induced deficits in mouse models of Alzheimer’s disease. However, the effects of long-term depletion of tau in vivo remained controversial. Here, we used the tau-deficient GFP knockin line Mapttm1(EGFP)kit on a pure C57Bl/6 background and subjected a large cohort of males and females to a range of motor, memory and behavior tests and imaging analysis, at the advanced age of over 16 months. Neither heterozygous nor homozygous Mapttm1(EGFP)kit mice presented with deficits or abnormalities compared to wild-type littermates. Differences to reports using other tau knockout models may be due to different genetic backgrounds, respective gene targeting strategies or other confounding factors, such as nutrition. To this end, we report no functional or morphological deficits upon tau reduction or depletion in aged mice. PMID:27736877

  18. Phenotype screening for genetically deermined age-onset disorders and increased longevity in ENU-mutagenized mice

    SciTech Connect

    Johnson, Dabney K; Rinchik, Eugene M; Moustaid-Moussa, Naima; Miller, Darla R; Williams, Robert; Michaud III, Edward J; Jablonski, Monica M.; Elberger, Andrea; Hamre, Kristin M.; Smeyne, Richard; Chesler, Elissa J; Goldowitz, Daniel

    2005-01-01

    With the goal of discovering genes that contribute to late-onset neurological and ocular disorders and also genes that extend the healthy life span in mammals, we are phenotyping mice carrying new mutations induced by the chemical N-ethyl-N-nitrosourea (ENU). The phenotyping plan includes basic behavioral, neurohistological, and vision testing in sibling cohorts of mice aged to 18 months, and then evaluation for markers of growth trajectory and stress response in these same cohorts aged up to 28 months. Statistical outliers are identified by comparison to test results of similar aged cohorts, and potential mutants are recovered for re-aging to confirm heritability of the phenotype.

  19. Time- and age-dependent effects of serotonin on gasping and autoresuscitation in neonatal mice.

    PubMed

    Chen, Jianping; Magnusson, Jennifer; Karsenty, Gerard; Cummings, Kevin J

    2013-06-15

    The role of brain stem serotonin (5-hydroxytryptamine, 5-HT) in autoresuscitation in neonatal life is unclear. We hypothesized that a specific loss of 5-HT would compromise gasping and autoresuscitation mainly in the second postnatal week and that acute restoration of 5-HT would reverse the defects. We exposed postnatal day (P)4-5, P8-9, and P11-12 tryptophan-hydroxylase-2 knockout (TPH2(-/-)) and wild-type littermates (WT) to 10 episodes of anoxia (97% N2, 3% CO2), measuring survival, gasp latency, gasp frequency (fB), and the time required to restore eupnea and heart rate. We also tested P8-9 TPH2(-/-) mice after restoring 5-HT with a single injection of 5-hydroxytryptophan (5-HTP) 1-2 h before testing or with multiple injections beginning 24 h before testing. At P4-5 and P8-9, but not at P11-12, gasp latency and the recovery of eupnea were delayed ~2- to 3-fold in TPH2(-/-) pups compared with WT (P < 0.001). At all ages, TPH2(-/-) pups displayed reduced gasp fB (~20-30%; P < 0.001) and delayed heart rate recovery (~60%; P = 0.002) compared with WT littermates. TPH2(-/-) survival was reduced compared with WT (P < 0.001), especially at P8-9 and P11-12 (P = 0.004). Whereas 1-2 h of 5-HTP treatment improved the gasp latency and fB of P8-9 TPH2(-/-) pups, improved cardiorespiratory recovery and survival required 24 h of treatment. Our data suggest that 5-HT operates over a long time span (24 h) to improve survival during episodic severe hypoxia. Early in development (P4-9), 5-HT is critical for both respiratory and cardiovascular components of autoresuscitation; later (P11-12), it is critical mainly for cardiovascular components. Nevertheless, the effect of 5-HT deficiency on survival is most striking from P8 to P12. PMID:23558391

  20. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage.

    PubMed

    He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen

    2014-11-15

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that

  1. The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells.

    PubMed

    Liu, Hen-Yu; Chiou, Jeng-Fong; Wu, Alexander T H; Tsai, Ching-Yu; Leu, Jyh-Der; Ting, Lai-Lei; Wang, Ming-Fu; Chen, Hsuan-Yu; Lin, Che-Tong; Williams, David F; Deng, Win-Ping

    2012-09-01

    Adipose-derived stem cells (ADSCs) have been shown to be pluoripotent and explored for their usage in tissue engineering. Previously, we have established a cell-based approach comprised of platelet-enriched plasma and osteo-progenitor cells for treating osteoporosis in an ovariectomized-senescence-accelerated mice (OVX-SAMP8) model. In the present study, we intend to explore the feasibility of using ADSCs as a cell-based therapeutic approach for treating osteoporosis, and to examine the effects of aging on the pluoripotency of ADSCs and the efficiency of bone formation both in vitro and in vivo. Flow cytometry was used to characterize ADSCs isolated from young and aged female SAMP8 mice and showed that the highly positive expression of surface markers such as CD44 and CD105 and negative for CD34 and CD45. Therefore, to compare the aging effects on the growth kinetics and differentia