Science.gov

Sample records for aged mice fed

  1. Increased Aβ pathology in aged Tg2576 mice born to mothers fed a high fat diet

    PubMed Central

    Nizari, Shereen; Carare, Roxana O.; Hawkes, Cheryl A.

    2016-01-01

    Maternal obesity is associated with increased risk of developing diabetes, obesity and premature death in adult offspring. Mid-life diabetes, hypertension and hypercholesterolaemia are risk factors for the development of sporadic Alzheimer’s disease (AD). A key pathogenic feature of AD is the accumulation of β-amyloid (Aβ) in the brain. The purpose of this study was to investigate the effect of high fat diet feeding during early life on Aβ pathology in the Tg2576 mouse model of AD. Female mice were fed a standard (C) or high fat (HF) diet before mating and during gestation and lactation. At weaning, male offspring were fed a C diet. Significantly higher levels of guanidine-soluble Aβ and plaque loads were observed in the hippocampi of 11-month old Tg2576 mice born to mothers fed a HF diet. Changes in the extracellular matrix led to increased retention of Aβ within the parenchyma. These data support a role for maternal and gestational health on the health of the aged brain and pathologies associated with AD and may provide a novel target for both the prevention and treatment of AD. PMID:26911528

  2. Tolerance, fermentation, and cytokine expression in healthy aged male C57BL/6J mice fed resistant starch

    PubMed Central

    Zhou, June; Keenan, Michael J.; Keller, Jeffrey; Fernandez-Kim, Sun Ok; Pistell, Paul J.; Tulley, Richard T.; Raggio, Anne M.; Shen, Li; Zhang, Hanjie; Martin, Roy J.; Blackman, Marc R.

    2013-01-01

    Health benefits of resistant starch (RS), a dietary fermentable fiber, have been well documented in young, but not in old populations. As the essential step of more comprehensive evaluations of RS on healthy aging, we examined the effects of dietary RS on tolerance, colonic fermentation, and cytokine expression in aged mice. Healthy older (18–20 months) C57BL/6J male mice were fed control, 18% RS, or 36% RS diets for 10 weeks. Body weight gain, body composition, and fat pad weights did not differ among the three groups after 10 weeks, indicating good tolerance of the RS diet. Fermentation indicators (cecum weights, and cecal proglucagon and PYY mRNA expression) were enhanced in a RS dose dependent manner (P<0.01). Serum concentrations of soluble cytokine receptors (sTNF-Rb; sIL-4R; sIL-2Rα sVEGFR1; and sRAGE) and TNFα expression (gene and protein) in visceral fat did not differ significantly among groups. Adiponectin protein concentrations, but not gene expression, were greater in epididymal fat of the 36% RS versus control groups (P<0.05). Conclusion: in aged mice, dietary RS is well tolerated, fermented in the colon, and stimulates colonic expression of proglucagon and PYY mRNA, and adiponectin protein in visceral fat. PMID:22174009

  3. Mitochondrial ultrastructure and markers of dynamics in hepatocytes from aged, calorie restricted mice fed with different dietary fats

    PubMed Central

    Khraiwesh, Husam; López-Domínguez, José A.; del Río, Lucía Fernández; Gutierrez-Casado, Elena; López-Lluch, Guillermo; Navas, Plácido; de Cabo, Rafael; Ramsey, Jon J.; Burón, María I.; Villalba, José M.; González-Reyes, José A.

    2014-01-01

    In this paper we analyzed changes in hepatocyte mitochondrial mass and ultrastructure as well as in mitochondrial markers of fission/fusion and biogenesis in mice subjected to 40% calorie restriction (CR) for 18 months versus ad libitum-fed controls. Animals subjected to CR were separated into three groups with different dietary fats: soybean oil (also in controls),fish oil and lard. Therefore, the effect of the dietary fat under CR was studied as well. Our results show that CR induced changes in hepatocyte and mitochondrial size, in the volume fraction occupied by mitochondria, and in the number of mitochondria per hepatocyte. Also, mean number of mitochondrial cristae and lengths were significantly higher in all CR groups compared with controls. Finally, CR had no remarkable effects on the expression levels of fission and fusion protein markers. However, considerable differences in many of these parameters were found when comparing the CR groups, supporting the idea that dietary fat plays a relevant role in the modulation of CR effects in aged mice. PMID:24704714

  4. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals; our lab has demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against put...

  5. Mice Fed Rapamycin Have an Increase in Lifespan Associated with Major Changes in the Liver Transcriptome

    PubMed Central

    Fok, Wilson C.; Chen, Yidong; Bokov, Alex; Zhang, Yiqiang; Salmon, Adam B.; Diaz, Vivian; Javors, Martin; Wood, William H.; Zhang, Yongqing; Becker, Kevin G.; Pérez, Viviana I.; Richardson, Arlan

    2014-01-01

    Rapamycin was found to increase (11% to 16%) the lifespan of male and female C57BL/6J mice most likely by reducing the increase in the hazard for mortality (i.e., the rate of aging) term in the Gompertz mortality analysis. To identify the pathways that could be responsible for rapamycin's longevity effect, we analyzed the transcriptome of liver from 25-month-old male and female mice fed rapamycin starting at 4 months of age. Few changes (<300 transcripts) were observed in transcriptome of rapamycin-fed males; however, a large number of transcripts (>4,500) changed significantly in females. Using multidimensional scaling and heatmap analyses, the male mice fed rapamycin were found to segregate into two groups: one group that is almost identical to control males (Rapa-1) and a second group (Rapa-2) that shows a change in gene expression (>4,000 transcripts) with more than 60% of the genes shared with female mice fed Rapa. Using ingenuity pathway analysis, 13 pathways were significantly altered in both Rapa-2 males and rapamycin-fed females with mitochondrial function as the most significantly changed pathway. Our findings show that rapamycin has a major effect on the transcriptome and point to several pathways that would likely impact the longevity. PMID:24409289

  6. Ultrastructural analysis of testes from mice fed on genetically modified soybean.

    PubMed

    Vecchio, L; Cisterna, B; Malatesta, M; Martin, T E; Biggiogera, M

    2004-01-01

    We have considered the possible effects of a diet containing genetically modified (GM) soybean on mouse testis. This organ, in fact, is a well known bioindicator and it has already been utilized, for instance, to monitor pollution by heavy metals. In this preliminary study, we have focussed our attention on Sertoli cells, spermatogonia and spermatocytes by means of immunoelectron microscopy. Our results point out that the immunolabelling for Sm antigen, hnRNPs, SC35 and RNA Polymerase II is decreased in 2 and 5 month-old GM-fed mice, and is restored to normal at 8 months. In GM-fed mice of all ages considered, the number of perichromatin granules is higher and the nuclear pore density lower. Moreover, we found enlargements in the smooth endoplasmic reticulum in GM-fed mice Sertoli cells. A possible role played by traces of the herbicide to which the soybean is resistant is discussed. PMID:15718213

  7. Practical pathology of aging mice

    PubMed Central

    Pettan-Brewer, Christina; Treuting, Piper M.

    2011-01-01

    Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington. PMID:22953032

  8. Practical pathology of aging mice.

    PubMed

    Pettan-Brewer, Christina; Treuting, Piper M

    2011-01-01

    Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington. PMID:22953032

  9. Impaired Lipid and Glucose Homeostasis in Hexabromocyclododecane-Exposed Mice Fed a High-Fat Diet

    PubMed Central

    Koike, Eiko; Win-Shwe, Tin-Tin; Yamamoto, Megumi; Takano, Hirohisa

    2014-01-01

    Background: Hexabromocyclododecane (HBCD) is an additive flame retardant used in the textile industry and in polystyrene foam manufacturing. Because of its lipophilicity and persistency, HBCD accumulates in adipose tissue and thus has the potential of causing metabolic disorders through disruption of lipid and glucose homeostasis. However, the association between HBCD and obesity remains unclear. Objectives: We investigated whether exposure to HBCD contributes to initiation and progression of obesity and related metabolic dysfunction in mice fed a normal diet (ND) or a high-fat diet (HFD). Methods: Male C57BL/6J mice were fed a HFD (62.2 kcal% fat) or a ND and treated orally with HBCD (0, 1.75, 35, or 700 μg/kg body weight) weekly from 6 to 20 weeks of age. We examined body weight, liver weight, blood biochemistry, histopathological changes, and gene expression profiles in the liver and adipose tissue. Results: In HFD-fed mice, body and liver weight were markedly increased in mice treated with the high (700 μg/kg) and medium (35 μg/kg) doses of HBCD compared with vehicle. This effect was more prominent in the high-dose group. These increases were paralleled by increases in random blood glucose and insulin levels and enhancement of microvesicular steatosis and macrophage accumulation in adipose tissue. HBCD-treated HFD-fed mice also had increased mRNA levels of Pparg (peroxisome proliferator-activated receptor-γ) in the liver and decreased mRNA levels of Glut4 (glucose transporter 4) in adipose tissue compared with vehicle-treated HFD-fed mice. Conclusions: Our findings suggest that HBCD may contribute to enhancement of diet-induced body weight gain and metabolic dysfunction through disruption of lipid and glucose homeostasis, resulting in accelerated progression of obesity. Citation: Yanagisawa R, Koike E, Win-Shwe TT, Yamamoto M, Takano H. 2014. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet. Environ Health

  10. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets

    PubMed Central

    Lindenmaier, Laurence B.; Philbrick, Kenneth A.; Branscum, Adam J.; Kalra, Satya P.; Turner, Russell T.; Iwaniec, Urszula T.

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 107 particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  11. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets.

    PubMed

    Lindenmaier, Laurence B; Philbrick, Kenneth A; Branscum, Adam J; Kalra, Satya P; Turner, Russell T; Iwaniec, Urszula T

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 10(7) particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  12. EPA prevents fat mass expansion and metabolic disturbances in mice fed with a Western diet.

    PubMed

    Pinel, Alexandre; Pitois, Elodie; Rigaudiere, Jean-Paul; Jouve, Chrystele; De Saint-Vincent, Sarah; Laillet, Brigitte; Montaurier, Christophe; Huertas, Alain; Morio, Beatrice; Capel, Frederic

    2016-08-01

    The impact of alpha linolenic acid (ALA), EPA, and DHA on obesity and metabolic complications was studied in mice fed a high-fat, high-sucrose (HF) diet. HF diets were supplemented with ALA, EPA, or DHA (1% w/w) and given to C57BL/6J mice for 16 weeks and to Ob/Ob mice for 6 weeks. In C57BL/6J mice, EPA reduced plasma cholesterol (-20%), limited fat mass accumulation (-23%) and adipose cell hypertrophy (-50%), and reduced plasma leptin concentration (-60%) compared with HF-fed mice. Furthermore, mice supplemented with EPA exhibited a higher insulin sensitivity (+24%) and glucose tolerance (+20%) compared with HF-fed mice. Similar effects were observed in EPA-supplemented Ob/Ob mice, although fat mass accumulation was not prevented. By contrast, in comparison with HF-fed mice, DHA did not prevent fat mass accumulation, increased plasma leptin concentration (+128%) in C57BL/6J mice, and did not improve glucose homeostasis in C57BL/6J and Ob/Ob mice. In 3T3-L1 adipocytes, DHA stimulated leptin expression whereas EPA induced adiponectin expression, suggesting that improved leptin/adiponectin balance may contribute to the protective effect of EPA. In conclusion, supplementation with EPA, but not ALA and DHA, could preserve glucose homeostasis in an obesogenic environment and limit fat mass accumulation in the early stage of weight gain. PMID:27307576

  13. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice

    PubMed Central

    Harada, Naoki; Hanaoka, Ryo; Horiuchi, Hiroko; Kitakaze, Tomoya; Mitani, Takakazu; Inui, Hiroshi; Yamaji, Ryoichi

    2016-01-01

    Late-onset hypogonadism (i.e. androgen deficiency) raises the risk for abdominal obesity in men. The mechanism for this obesity is unclear. Here, we demonstrated that hypogonadism after castration caused abdominal obesity in high-fat diet (HFD)-fed, but not in standard diet (SD)-fed, C57BL/6J mice. Furthermore, the phenotype was not induced in mice treated with antibiotics that disrupt the intestinal microflora. In HFD-fed mice, castration increased feed efficiency and decreased fecal weight per food intake. Castration also induced in an increase of visceral fat mass only in the absence of antibiotics in HFD-fed mice, whereas subcutaneous fat mass was increased by castration irrespective of antibiotics. Castration reduced the expression in the mesenteric fat of both adipose triglyceride lipase and hormone-sensitive lipase in HFD-fed mice, which was not observed in the presence of antibiotics. Castration decreased thigh muscle (i.e. quadriceps and hamstrings) mass, elevated fasting blood glucose levels, and increased liver triglyceride levels in a HFD-dependent manner, whereas these changes were not observed in castrated mice treated with antibiotics. The Firmicutes/Bacteroidetes ratio and Lactobacillus species increased in the feces of HFD-fed castrated mice. These results show that androgen (e.g. testosterone) deficiency can alter the intestinal microbiome and induce abdominal obesity in a diet-dependent manner. PMID:26961573

  14. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice.

    PubMed

    Harada, Naoki; Hanaoka, Ryo; Horiuchi, Hiroko; Kitakaze, Tomoya; Mitani, Takakazu; Inui, Hiroshi; Yamaji, Ryoichi

    2016-01-01

    Late-onset hypogonadism (i.e. androgen deficiency) raises the risk for abdominal obesity in men. The mechanism for this obesity is unclear. Here, we demonstrated that hypogonadism after castration caused abdominal obesity in high-fat diet (HFD)-fed, but not in standard diet (SD)-fed, C57BL/6J mice. Furthermore, the phenotype was not induced in mice treated with antibiotics that disrupt the intestinal microflora. In HFD-fed mice, castration increased feed efficiency and decreased fecal weight per food intake. Castration also induced in an increase of visceral fat mass only in the absence of antibiotics in HFD-fed mice, whereas subcutaneous fat mass was increased by castration irrespective of antibiotics. Castration reduced the expression in the mesenteric fat of both adipose triglyceride lipase and hormone-sensitive lipase in HFD-fed mice, which was not observed in the presence of antibiotics. Castration decreased thigh muscle (i.e. quadriceps and hamstrings) mass, elevated fasting blood glucose levels, and increased liver triglyceride levels in a HFD-dependent manner, whereas these changes were not observed in castrated mice treated with antibiotics. The Firmicutes/Bacteroidetes ratio and Lactobacillus species increased in the feces of HFD-fed castrated mice. These results show that androgen (e.g. testosterone) deficiency can alter the intestinal microbiome and induce abdominal obesity in a diet-dependent manner. PMID:26961573

  15. Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice

    PubMed Central

    Seo, Eunhui; Kim, Sunmi; Lee, Sang Jun; Oh, Byung-Chul; Jun, Hee-Sook

    2015-01-01

    The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old) were maintained on a regular diet (CON) or a regular diet supplemented with 0.05% ginseng berry extract (GBD) for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016) and insulin resistance scores (HOMA-IR) (p = 0.012), suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007). Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS)-1 (p = 0.047), and protein kinase B (AKT) (p = 0.037), were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1) (p = 0.036) and peroxisome proliferator-activated receptor gamma (PPARγ) (p = 0.032), which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice. PMID:25912041

  16. Ginseng berry extract supplementation improves age-related decline of insulin signaling in mice.

    PubMed

    Seo, Eunhui; Kim, Sunmi; Lee, Sang Jun; Oh, Byung-Chul; Jun, Hee-Sook

    2015-04-01

    The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old) were maintained on a regular diet (CON) or a regular diet supplemented with 0.05% ginseng berry extract (GBD) for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016) and insulin resistance scores (HOMA-IR) (p = 0.012), suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007). Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS)-1 (p = 0.047), and protein kinase B (AKT) (p = 0.037), were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1) (p = 0.036) and peroxisome proliferator-activated receptor gamma (PPARγ) (p = 0.032), which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice. PMID:25912041

  17. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male C57BL/6J mice (25 days of age) were fed a control low-fat diet (10% kcal from fat)(C-LF) or a high-fat diet (45% kcal from fat)(HF45) for a period of 72 days. Dietary treatments included: 1) C-LF; 2) C-LF + blueberry juice in place of drinking water; 3) C-LF + anthocyanins in the drinking water...

  18. Exercise Improves Glucose Disposal and Insulin Signaling in Pregnant Mice Fed a High Fat Diet

    PubMed Central

    Carter, Lindsay G; Ngo Tenlep, Sara Y; Woollett, Laura A; Pearson, Kevin J

    2016-01-01

    Objective Physical activity has been suggested as a non-pharmacological intervention that can be used to improve glucose homeostasis in women with gestational diabetes mellitus. The purpose of this study was to determine the effects of voluntary exercise on glucose tolerance and body composition in pregnant high fat diet fed mice. Methods Female mice were put on a standard diet or high fat diet for two weeks. The mice were then split into 4 groups; control standard diet fed, exercise standard diet fed, control high fat diet fed, and exercise high fat diet fed. Exercise mice had voluntary access to a running wheel in their home cage one week prior to mating, during mating, and throughout pregnancy. Glucose tolerance and body composition were measured during pregnancy. Akt levels were quantified in skeletal muscle and adipose tissue isolated from saline or insulin injected pregnant dams as a marker for insulin signaling. Results Consumption of the high fat diet led to significantly increased body weight, fat mass, and impaired glucose tolerance in control mice. However, voluntary running in the high fat diet fed dams significantly reduced weight gain and fat mass and ultimately improved glucose tolerance compared to control high fat diet fed dams. Further, body weight, fat mass, and glucose disposal in exercise high fat diet dams were indistinguishable from control dams fed the standard diet. High fat diet fed exercise dams also had significantly increased insulin stimulated phosphorylated Akt expression in adipose tissue, but not skeletal muscle, compared to control dams on high fat diet. Conclusion The use of voluntary exercise improves glucose homeostasis and body composition in pregnant female mice. Thus, future studies could investigate potential long-term health benefits in offspring born to obese exercising dams. PMID:26966635

  19. Time-restricted feeding reduces adiposity in mice fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disruption of the circadian rhythm contributes to obesity. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity in male C57BL/6 mice. Three-week-old mice were fed a low-fat or high-fat diet (16% or 45% of energy from corn oil) ad libitum (ad l...

  20. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr-/- mice, but not when fed Western style diet

    PubMed Central

    Meydani, Mohsen; Kwan, Paul; Band, Michael; Knight, Ashley; Guo, Weimin; Goutis, Jason; Ordovas, Jose

    2014-01-01

    Objectives Epidemiological and experimental evidence have indicated potential health benefits of vitamin E supplementation on coronary heart disease (CHD), but several clinical trials have reported no benefit from vitamin E supplementation on CHD. We hypothesized that supplemental intake of vitamin E from an early age may prevent or retard the development and progression of atherosclerosis and CHD mortality. Methods To test this hypothesis, 300 Ldlr-/- mice were divided into groups receiving Western style high fat/cholesterol (HFHC), moderate fat/cholesterol (MFMC), or low fat/cholesterol (LFLC) diets all containing 50 IU of vitamin E. These dietary groups were further subdivided into four sub-groups (N=25) receiving their respective diets with no vitamin E supplementation or additionally supplemented with vitamin E (500 IU/kg diet) starting at the early age of 5 wks, or 6 mo, or 12 mo. All mice remained on their assigned diets until age 18 mo. Body weight, health status and survival rate of mice were monitored and recorded. After 18 mo of dietary treatments, mice were sacrificed. Results Body weight was the highest in HFHC groups and the lowest in LFLC groups. Plasma concentration of cholesterol and triglycerides was high in all dietary groups, and plasma vitamin E was high in vitamin E supplemented groups. Fifty percent of mice fed Western style HFHC diet and 53% of mice fed MFMC diet survived during the 18 mo, whereas 75% of mice fed LFLC diet survived during the 18 mo dietary treatments. At the age of 18 mo, all the Ldlr-/- mice, regardless of dietary treatments, had several advanced atherosclerotic lesions in both aortic root and aortic tree. Within the LFLC groups, those that received vitamin E supplements from age 5 wks up to 18 mo had a significantly higher survival rate of 88% (p=0.04) and lower mortality (12%) compared to mice that did not receive vitamin E supplements (64%). This lower mortality rate and higher survival rate coincided with significantly

  1. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    ERIC Educational Resources Information Center

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  2. Streptozotocin is equally diabetogenic whether administered to fed or fasted mice

    PubMed Central

    Chaudhry, Zunaira Z; Morris, David L; Moss, Dan R; Sims, Emily K; Chiong, Yien; Kono, Tatsuyoshi; Evans-Molina, Carmella

    2013-01-01

    Streptozotocin (STZ) is a selective pancreatic β cell toxin used to generate experimental hyperglycemia in rodent models. Several laboratory animal protocols suggest that STZ be administered to fasted rodents to minimize competition between STZ and glucose for low affinity GLUT2 transporters on β cells. However, whether the diabetogenic effects of multiple low dose (MLD)-STZ administration are enhanced by fasting has not been addressed. Given that repeated bouts of fasting can cause undue metabolic stress in mice, we compared the efficacy of MLD-STZ injections (50 mg/kg body weight daily for 5 days) to induce experimental hyperglycemia in both NOD/SCID/γchainnull and C57BL/6J mice that were either ad libitum fed (STZ-Fed) or that had been fasted for 6 h (STZ-Fasted) prior to the time of STZ administration. Both STZ-Fed and STZ-Fasted mice had significantly worse glucose tolerance than vehicle-treated control mice 10 days after initiation of the MLD-STZ regimen. In C57BL/6J mice, fasting glucose levels, serum insulin levels, β cell mass, and glucose disposal during intraperitoneal glucose tolerance tests (IPGTTs) were indistinguishable between STZ-Fed and STZ-Fasted mice 20 days after MLD-STZ. The glucose intolerant phenotypes persisted for 20 weeks thereafter, irrespective of whether C57BL/6J mice were fed or fasted at the time of STZ injections. However, STZ-Fasted C57BL/6J mice experienced significant weight loss during the repeated bouts of fasting/re-feeding that were required to complete the MLD-STZ protocol. In summary, induction of experimental hyperglycemia can be achieved using the MLD-STZ protocol without repeated bouts of fasting, which have the potential to cause metabolic stress in laboratory mice. PMID:23760565

  3. Induction of Fatal Inflammation in LDL Receptor and ApoA-I Double-Knockout Mice Fed Dietary Fat and Cholesterol

    PubMed Central

    Zabalawi, Manal; Bhat, Shaila; Loughlin, Tara; Thomas, Michael J.; Alexander, Eric; Cline, Mark; Bullock, Bill; Willingham, Mark; Sorci-Thomas, Mary G.

    2003-01-01

    Atherogenic response to dietary fat and cholesterol challenge was evaluated in mice lacking both the LDL receptor (LDLr−/−) and apoA-I (apoA-I−/−) gene, LDLr−/−/apoA-I−/− or double-knockout mice. Gender- and age-matched LDLr−/−/apoA-I−/− mice were fed a diet consisting of 0.1% cholesterol and 10% palm oil for 16 weeks and compared to LDLr−/− mice or single-knockout mice. The LDLr−/− mice showed a 6- to 7-fold increase in total plasma cholesterol (TPC) compared to their chow-fed mice counterparts, while LDLr−/−/apoA-I−/− mice showed only a 2- to 3-fold increase in TPC compared to their chow-fed controls. This differential response to the atherogenic diet was unanticipated, since chow-fed LDLr−/− and LDLr−/−/apoA-I−/− mice began the study with similar LDL levels and differed primarily in their HDL concentration. The 6-fold diet-induced increase in TPC observed in the LDLr−/− mice occurred mainly in VLDL/LDL and not in HDL. Mid-study plasma samples taken after 8 weeks of diet feeding showed that LDLr−/− mice had TPC concentrations approximately 60% of their 16-week level, while the LDLr−/−/apoA-I−/− mice had reached 100% of their 16-week TPC concentration after only 8 weeks of diet. Male LDLr−/− mice showed similar aortic cholesterol levels to male LDLr−/−/apoA-I−/− mice despite a 4-fold higher VLDL/LDL concentration in the LDLr−/− mice. A direct comparison of the severity of aortic atherosclerosis between female LDLr−/− and LDLr−/−/apoA-I−/− mice was compromised due to the loss of female LDLr−/−/apoA-I−/− mice between 10 and 14 weeks into the study. Diet-fed female and, with time, male LDLr−/−/apoA-I−/− mice suffered from severe ulcerated cutaneous xanthomatosis. This condition, combined with a complete depletion of adrenal cholesterol, manifested in fatal wasting of the affected mice. In conclusion, LDLr−/− and LDLr−/−/apoA-I−/− mice showed

  4. Thermoneutrality decreases thermogenic program and promotes adiposity in high-fat diet-fed mice.

    PubMed

    Cui, Xin; Nguyen, Ngoc Ly T; Zarebidaki, Eleen; Cao, Qiang; Li, Fenfen; Zha, Lin; Bartness, Timothy; Shi, Hang; Xue, Bingzhong

    2016-05-01

    Brown/beige adipocytes are therapeutic targets to combat obesity due to their abilities to dissipate energy through adaptive thermogenesis. Most studies investigating induction of brown/beige adipocytes were conducted in cold condition (e.g., 4°C); much is unknown about how the thermogenic program of brown/beige adipocytes is regulated in thermoneutral condition (e.g., 30°C), which is within the thermal comfort zone of human dwellings in daily life. Therefore, this study aims to characterize the thermogenic program of brown/beige adipocytes in mice housed under ambient (22°C) versus thermoneutral condition (30°C). Male mice raised at 22°C or 30°C were fed either chow diet or high-fat (HF) diet for 20 weeks. Despite less food intake, chow-fed mice housed at 30°C remained the same body weight compared to mice at 22°C. However, these thermoneutrally housed mice displayed a decrease in the expression of thermogenic program in both brown and white fat depots with larger adipocytes. When pair-fed with chow diet, thermoneutrally housed mice showed an increase in body weight. Moreover, thermoneutrality increased body weight of mice fed with HF diet. This was associated with decreased expression of the thermogenic program in both brown and white fat depots of the thermoneutrally housed mice. The downregulation of the thermogenic program might have resulted from decreased sympathetic drive in the thermoneutrally housed mice evident by decreased expression of tyrosine hydroxylase expression and norepinephrine turnover in both brown and white fat depots. Our data demonstrate that thermoneutrality may negatively regulate the thermogenic program and sympathetic drive, leading to increased adiposity in mice. PMID:27230905

  5. Integrin α1-null Mice Exhibit Improved Fatty Liver When Fed a High Fat Diet Despite Severe Hepatic Insulin Resistance*

    PubMed Central

    Williams, Ashley S.; Kang, Li; Zheng, Jenny; Grueter, Carrie; Bracy, Deanna P.; James, Freyja D.; Pozzi, Ambra; Wasserman, David H.

    2015-01-01

    Hepatic insulin resistance is associated with increased collagen. Integrin α1β1 is a collagen-binding receptor expressed on hepatocytes. Here, we show that expression of the α1 subunit is increased in hepatocytes isolated from high fat (HF)-fed mice. To determine whether the integrin α1 subunit protects against impairments in hepatic glucose metabolism, we analyzed glucose tolerance and insulin sensitivity in HF-fed integrin α1-null (itga1−/−) and wild-type (itga1+/+) littermates. Using the insulin clamp, we found that insulin-stimulated hepatic glucose production was suppressed by ∼50% in HF-fed itga1+/+ mice. In contrast, it was not suppressed in HF-fed itga1−/− mice, indicating severe hepatic insulin resistance. This was associated with decreased hepatic insulin signaling in HF-fed itga1−/− mice. Interestingly, hepatic triglyceride and diglyceride contents were normalized to chow-fed levels in HF-fed itga1−/− mice. This indicates that hepatic steatosis is dissociated from insulin resistance in HF-fed itga1−/− mice. The decrease in hepatic lipid accumulation in HF-fed itga1−/− mice was associated with altered free fatty acid metabolism. These studies establish a role for integrin signaling in facilitating hepatic insulin action while promoting lipid accumulation in mice challenged with a HF diet. PMID:25593319

  6. Adipokine production in mice fed high-fat diets containing different types of dietary fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study compared high-fat diets containing different types of dietary fats with various levels of linoleic acid (18:2n6, LA) and a-linolenic acid (18:3n3, ALA) on adipokine production in male C57BL/6 mice. Three-week old mice were fed AIN93G diet (15% of energy from corn oil, control) or ...

  7. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet

    PubMed Central

    Kesby, James P.; Kim, Jane J.; Scadeng, Miriam; Woods, Gina; Kado, Deborah M.; Olefsky, Jerrold M.; Jeste, Dilip V.; Achim, Cristian L.; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions. PMID:26448649

  8. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    PubMed

    Kesby, James P; Kim, Jane J; Scadeng, Miriam; Woods, Gina; Kado, Deborah M; Olefsky, Jerrold M; Jeste, Dilip V; Achim, Cristian L; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions. PMID:26448649

  9. Dietary cocoa ameliorates obesity-related inflammation in high fat-fed mice

    PubMed Central

    Gu, Yeyi; Yu, Shan

    2013-01-01

    Purpose To investigate the effect of cocoa powder supplementation on obesity-related inflammation in high fat (HF)-fed obese mice. Methods Male C57BL/6J (n = 126) were fed with either low-fat (LF, 10 % kcal from fat) or HF (60 % kcal from fat) diet for 18 weeks. After 8 weeks, mice from HF group were randomized to HF diet or HF diet supplemented with 8 % cocoa powder (HF–HFC group) for 10 weeks. Blood and tissue samples were collected for biochemical analyses. Results Cocoa powder supplementation significantly reduced the rate of body weight gain (15.8 %) and increased fecal lipid content (55.2 %) compared to HF-fed control mice. Further, cocoa supplementation attenuated insulin resistance, as indicated by improved HOMA-IR, and reduced the severity of obesity-related fatty liver disease (decreased plasma alanine aminotransferase and liver triglyceride) compared to HF group. Cocoa supplementation also significantly decreased plasma levels of the pro-inflammatory mediators interleukin-6 (IL-6, 30.4 %), monocyte chemoattractant protein-1 (MCP-1, 25.2 %), and increased adiponectin (33.7 %) compared to HF-fed mice. Expression of pro-inflammatory genes (Il6, Il12b, Nos2, and Emr1) in the stromal vascular fraction (SVF) of the epididymal white adipose tissue (WAT) was significantly reduced (37–56 %) in the cocoa-supplemented mice. Conclusions Dietary supplementation with cocoa ameliorates obesity-related inflammation, insulin resistance, and fatty liver disease in HF-fed obese mice, principally through the down-regulation of pro-inflammatory gene expression in WAT. These effects appear to be mediated in part by a modulation of dietary fat absorption and inhibition of macrophage infiltration in WAT. PMID:23494741

  10. ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet

    PubMed Central

    Terasaka, Naoki; Yu, Shuiqing; Yvan-Charvet, Laurent; Wang, Nan; Mzhavia, Nino; Langlois, Read; Pagler, Tamara; Li, Rong; Welch, Carrie L.; Goldberg, Ira J.; Tall, Alan R.

    2008-01-01

    Plasma HDL levels are inversely related to the incidence of atherosclerotic disease. Some of the atheroprotective effects of HDL are likely mediated via preservation of EC function. Whether the beneficial effects of HDL on ECs depend on its involvement in cholesterol efflux via the ATP-binding cassette transporters ABCA1 and ABCG1, which promote efflux of cholesterol and oxysterols from macrophages, has not been investigated. To address this, we assessed endothelial function in Abca1–/–, Abcg1–/–, and Abca1–/–Abcg1–/– mice fed either a high-cholesterol diet (HCD) or a Western diet (WTD). Non-atherosclerotic arteries from WTD-fed Abcg1–/– and Abca1–/–Abcg1–/– mice exhibited a marked decrease in endothelium-dependent vasorelaxation, while Abca1–/– mice had a milder defect. In addition, eNOS activity was reduced in aortic homogenates generated from Abcg1–/– mice fed either a HCD or a WTD, and this correlated with decreased levels of the active dimeric form of eNOS. More detailed analysis indicated that ABCG1 was expressed primarily in ECs, and that these cells accumulated the oxysterol 7-ketocholesterol (7-KC) when Abcg1–/– mice were fed a WTD. Consistent with these data, ABCG1 had a major role in promoting efflux of cholesterol and 7-KC in cultured human aortic ECs (HAECs). Furthermore, HDL treatment of HAECs prevented 7-KC–induced ROS production and active eNOS dimer disruption in an ABCG1-dependent manner. Our data suggest that ABCG1 and HDL maintain EC function in HCD-fed mice by promoting efflux of cholesterol and 7-oxysterols and preserving active eNOS dimer levels. PMID:18924609

  11. Estrogen receptor alpha activation enhances mitochondrial function and systemic metabolism in high-fat-fed ovariectomized mice.

    PubMed

    Hamilton, Dale J; Minze, Laurie J; Kumar, Tanvi; Cao, Tram N; Lyon, Christopher J; Geiger, Paige C; Hsueh, Willa A; Gupte, Anisha A

    2016-09-01

    Estrogen impacts insulin action and cardiac metabolism, and menopause dramatically increases cardiometabolic risk in women. However, the mechanism(s) of cardiometabolic protection by estrogen remain incompletely understood. Here, we tested the effects of selective activation of E2 receptor alpha (ERα) on systemic metabolism, insulin action, and cardiac mitochondrial function in a mouse model of metabolic dysfunction (ovariectomy [OVX], insulin resistance, hyperlipidemia, and advanced age). Middle-aged (12-month-old) female low-density lipoprotein receptor (Ldlr)(-/-) mice were subjected to OVX or sham surgery and fed "western" high-fat diet (WHFD) for 3 months. Selective ERα activation with 4,4',4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl) (PPT), prevented weight gain, improved insulin action, and reduced visceral fat accumulation in WHFD-fed OVX mice. PPT treatment also elevated systemic metabolism, increasing oxygen consumption and core body temperature, induced expression of several metabolic genes such as peroxisome proliferator-activated receptor gamma, coactivator 1 alpha, and nuclear respiratory factor 1 in heart, liver, skeletal muscle, and adipose tissue, and increased cardiac mitochondrial function. Taken together, selective activation of ERα with PPT enhances metabolic effects including insulin resistance, whole body energy metabolism, and mitochondrial function in OVX mice with metabolic syndrome. PMID:27582063

  12. PROLONGED SURVIVAL OF FEMALE AKR MICE FED DIETS SUPPLEMENTED WITH METHIONINE AND CHOLINE

    EPA Science Inventory

    Female mice of the AKR/J(AK) strain were fed a control diet (Purina chow) or a lipotrope-supplemented diet (Purina chow plus 2% D.L-methionine and 1% choline chloride) beginning at one week after weaning. ice of this inbred strain spontaneously develop thymic lymphoma, with close...

  13. Cow milk allergy symptoms are reduced in mice fed dietary synbiotics during oral sensitization with whey.

    PubMed

    Schouten, Bastiaan; van Esch, Betty C A M; Hofman, Gerard A; van Doorn, Suzan A C M; Knol, Jan; Nauta, Alma J; Garssen, Johan; Willemsen, Linette E M; Knippels, Léon M J

    2009-07-01

    Cow milk allergy is the most common food allergy in children. So far, no effective treatment is available to prevent or cure food allergy. The purpose of this study was to compare effects of dietary supplementation with a prebiotic mixture (Immunofortis), a probiotic strain [Bifidobacterium breve M-16V], or a synbiotic diet combining both on the outcome of the allergic response when provided during oral sensitization with whey in mice. Mice were fed diets containing 2% (wt:wt) Immunofortis and/or the B. breve M-16V (n = 6/group). The acute allergic skin response was determined by measuring ear swelling. Antigen-induced anaphylaxis was scored. Furthermore, whey-specific serum immunoglobulins and mouse mast cell protease-1 (mMCP-1) were determined. In mice fed the synbiotic mixture, the allergic skin response and the anaphylactic reaction were strongly reduced compared with whey-sensitized mice fed the control diet (P < 0.01). Immunofortis or B. breve M-16V alone were significantly less effective in reducing the allergic skin response than the synbiotic diet and did not reduce the anaphylactic reaction. The whey-specific IgE and IgG(1) responses were not affected; however, IgG(2a) was greater in all treated groups than in the control group (P < 0.05). Serum mMCP-1 concentrations, reflecting mucosal mast cell degranulation, were lower in mice fed synbiotics compared with those fed the control diet (P < 0.01). Dietary supplementation with Immunofortis, B. breve M-16V, and particularly the synbiotic mixture, provided during sensitization, reduces the allergic effector response in a murine model of IgE-mediated hypersensitivity that mimics the human route of sensitization. This model shows the potential for dietary intervention with synbiotics in reducing the allergic response to food allergens. PMID:19474160

  14. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    PubMed Central

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  15. Data on biochemical indexes of HFD-fed mice treatment with metformin or resveratrol.

    PubMed

    Zhao, Wenjun; Li, Aiyun; Feng, Xin; Hou, Ting; Liu, Kang; Liu, Baolin; Zhang, Ning

    2016-09-01

    To investigate the changes of physiological and biochemical indexes, male mice were fed a regular diet or short time high fat diet (HFD) for 10 days with oral administration of saline, metformin, resveratrol, or injected intraperitoneally (ip) with digoxin respectively every day. Food intake and body weight were recorded simultaneously. Blood was collected after mice were sacrificed and then tested with commercial kits. The data manifested that metformin and resveratrol only ameliorate free fatty acids and glycerol in HFD-fed mice. Data interpretation of this part can be found in the research article "Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue" (Zhao et al.,) [1]. PMID:27547796

  16. Kinetics of cell-mediated cytotoxicity in mice fed diets of various fat contents.

    PubMed

    Olson, L M; Visek, W J

    1990-06-01

    We previously reported lower mitogen-induced blastogenic and cytotoxic activity of splenocytes from C3H/OUJ female mice fed 20% soybean oil (SBO) in their diet compared to those fed 5% SBO. The present study examined the kinetics of cell-mediated cytotoxicity using the same animal model and dietary treatments. Kinetic parameters were determined by analyzing the lytic efficiency of splenocytes cultured for various times with several concentrations of radiolabeled P815 mastocytoma cells. The apparent avidity constant (K1/2) of the reaction was not changed by dietary SBO intake (1.0 +/- 0.2 x 10(5) cells for 20% SBO versus 1.3 +/- 0.3 x 10(5) cells for 5% SBO). However, the maximum velocity (Vmax) of the reaction for splenocytes from mice fed 20% SBO was significantly lower than that for splenocytes from mice fed 5% SBO (1.4 +/- 0.2 x 10(4) cells/h for 20% SBO versus 2.3 +/- 0.4 x 10(4) cells/h for 5% SBO, p less than 0.05). The evidence indicates that the rate of target cell lysis, but not the avidity of the lymphocytes for the target cell antigen, was altered by increasing dietary SBO concentration. PMID:2352036

  17. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice

    PubMed Central

    Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.

    2015-01-01

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793

  18. Suggestive evidence for the induction of colonic aberrant crypts in mice fed sodium nitrite.

    PubMed

    Zhou, Lin; Zahid, Muhammad; Anwar, Muhammad M; Pennington, Karen L; Cohen, Samuel M; Wisecarver, James L; Shostrom, Valerie; Mirvish, Sidney S

    2016-01-01

    A reported linkage between processed (nitrite-treated) meat products and the incidence of colon cancer could be due to sodium nitrite (NaNO2) itself or to N-nitroso compounds produced from the nitrite. Exposure to nitrite occurs due to residual nitrite in processed meat and to salivary nitrite arising by reduction of nitrate in vegetables and drinking water. Here we tested whether NaNO2 could induce colonic aberrant crypts (ABC) or ABC foci (ACF), which are putative precursors of colon cancer. We fed NaNO2 in drinking water for 20-25 wk to groups of 8-20 adult female mice. After sacrifice, ABC and ACF were counted in 2-cm distal colonic segments. In Experiment 1, no significant differences in ABC/ACF induction were seen between groups of 13-14 A/J mice fed 0, 0.5, or 1.0 g NaNO2/l drinking water. NaNO2 also did not affect fasting blood glucose levels. In Experiment 2, we fed 0, 1.0, 1.25, or 1.5 g NaNO2/l water to groups of 15 CF-1 mice. Five of the mice fed 1.5 g NaNO2/l showed ABC, whereas all other groups showed only 0-2 ABC/group, including 0 ABC for the group fed 1.25 g NaNO2/l. Overall statistical analysis indicated a dose-response p trends of 0.04. Pairwise comparison of ABC between groups fed 1.25 and 1.5 g NaNO2/l showed p 0.02 for both ABC and ACF, but a similar comparison between the untreated and 1.5 g/l groups showed no significant effects. In Experiment 3, hot dogs (18% of diet), which were fed to CF-1 mice previously treated with azoxymethane, inhibited ABC and ACF induction, but this effect was not significant (P = 0.10-0.12). In conclusion, these results support the view that NaNO2 may be a risk factor for colon carcinogenesis. PMID:26699517

  19. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    PubMed

    Zheng, Guodong; Lin, Lezhen; Zhong, Shusheng; Zhang, Qingfeng; Li, Dongming

    2015-01-01

    In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD), and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT) weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK), carnitine acyltransferase (CAT) and hormone-sensitive lipase (HSL) were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2) was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases. PMID:25822741

  20. Unexpected regeneration in middle-aged mice.

    PubMed

    Reines, Brandon; Cheng, Lily I; Matzinger, Polly

    2009-02-01

    Complete regeneration of damaged extremities, including both the epithelium and the underlying tissues, is thought to occur mainly in embryos, fetuses, and juvenile mammals, but only very rarely in adult mammals. Surprisingly, we found that common strains of mice are able to regenerate all of the tissues necessary to completely fill experimentally punched ear holes, but only if punched at middle age. Although young postweaning mice regrew the epithelium without typical pre-scar granulation tissue, they showed only minimal regeneration of connective tissues. In contrast, mice punched at 5-11 months of age showed true amphibian-like blastema formation and regrowth of cartilage, fat, and dermis, with blood vessels, sebaceous glands, hair follicles, and, in black mice, melanocytes. These data suggest that at least partial appendage regeneration may be more common in adult mammals than previously thought and call into question the common view that regenerative ability is lost with age. The data suggest that the age at which various inbred mouse strains become capable of epimorphic regeneration may be correlated with adult body weight. PMID:19226206

  1. Effect of Weight-Reduction in Obese Mice Lacking Toll-Like Receptor 5 and C57BL/6 Mice Fed a Low-Fat Diet

    PubMed Central

    Wu, Shao-Chun; Rau, Cheng-Shyuan; Lu, Tsu-Hsiang; Tzeng, Siou-Ling; Wu, Yi-Chan; Wu, Chia-Jung; Lin, Chia-Wei; Hsieh, Ching-Hua

    2015-01-01

    Background. This study aims to investigate the effect of feeding low-fat diet (LFD) to diet-induced obesity (DIO) mice lacking TLR5 (TLR5−/−), which have a tendency to develop glucose intolerance with increased adiposity, compared to that in C57BL/6 mice. Results. TLR5−/− and C57BL/6 male mice were divided into three subgroups: (1) control, mice were fed a standard AIN-76A (fat: 11.5 kcal%) diet for 12 weeks; (2) DIO, mice were fed a 58 kcal% high-fat diet (HFD) for 12 weeks; and (3) diet, mice were fed a HFD for 8 weeks to induce obesity and then switched to a 10.5 kcal% LFD for 4 weeks. The glucose intolerance in DIO TLR5−/− mice was more significant than that in DIO C57BL/6 mice and was not attenuated by a switch to the LFD. Weight-reduction with LFD had significantly decreased the epididymal fat mass in C57BL/6 mice but not in TLR5−/− mice. In addition, the LFD-fed TLR5−/− mice showed significantly higher expression of ghrelin in the serum and resistin in the epididymal fat than that in C57BL/6 mice. Conclusions. This study demonstrated that TLR5 gene knockout impairs some effects of weight-reduction in DIO. PMID:26681840

  2. Time-restricted feeding reduces adiposity in mice fed a high-fat diet.

    PubMed

    Sundaram, Sneha; Yan, Lin

    2016-06-01

    Disruption of the circadian rhythm contributes to obesity. This study tested the hypothesis that time-restricted feeding (TRF) reduces high-fat diet-induced increase in adiposity. Male C57BL/6 mice were fed the AIN93G or the high-fat diet ad libitum (ad lib); TRF of the high-fat diet for 12 or 8hours during the dark cycle was initiated when high-fat diet-fed mice exhibited significant increases in body weight. Energy intake of the TRF 12-hour group was not different from that of the high-fat ad lib group, although that of the TRF 8-hour group was slightly but significantly lower. Restricted feeding of the high-fat diet reduced body fat mass and body weight compared with mice fed the high-fat diet ad lib. There were no differences in respiratory exchange ratio (RER) among TRF and high-fat ad lib groups, but the RER of these groups was lower than that of the AIN93G group. Energy expenditure of the TRF groups was slightly but significantly lower than that of the high-fat ad lib group. Plasma concentrations of ghrelin were increased in TRF groups compared with both AIN93G and high-fat ad lib groups. Elevations of plasma concentrations of insulin, leptin, monocyte chemoattractant protein-1, and tissue inhibitor metalloproteinase-1 by high-fat ad lib feeding were reduced by TRF to the levels of mice fed the AIN93G diet. In conclusion, TRF during the dark cycle reduces high-fat diet-induced increases in adiposity and proinflammatory cytokines. These results indicate that circadian timing of food intake may prevent obesity and abate obesity-related metabolic disturbance. PMID:27188906

  3. Fish Oil-Fed Mice Have Impaired Resistance to Influenza Infection12

    PubMed Central

    Schwerbrock, Nicole M. J.; Karlsson, Erik A.; Shi, Qing; Sheridan, Patricia A.; Beck, Melinda A.

    2009-01-01

    Dietary fish oils, rich in (n-3) PUFA, including eicosapentaenoic acid and docosahexaenoic acid, have been shown to have antiinflammatory properties. Although the antiinflammatory properties of fish oil may be beneficial during a chronic inflammatory illness, the same antiinflammatory properties can suppress the inflammatory responses necessary to combat acute viral infection. Given that (n-3) fatty acid-rich fish oil supplementation is on the rise and with the increasing threat of an influenza pandemic, we tested the effect of fish oil feeding for 2 wk on the immune response to influenza virus infection. Male C57BL/6 mice fed either a menhaden fish oil/corn oil diet (4 g fish oil:1 g corn oil, wt:wt at 5 g/100 g diet) or a control corn oil diet were infected with influenza A/PuertoRico/8/34 and analyzed for lung pathology and immune function. Although fish oil-fed mice had lower lung inflammation compared with controls, fish oil feeding also resulted in a 40% higher mortality rate, a 70% higher lung viral load at d 7 post infection, and a prolonged recovery period following infection. Although splenic natural killer (NK) cell activity was suppressed in fish oil-fed mice, lung NK activity was not affected. Additionally, lungs of infected fish oil-fed mice had significantly fewer CD8+ T cells and decreased mRNA expression of macrophage inflammatory protein-1-α, tumor necrosis factor-α, and interleukin-6. These results suggest that the antiinflammatory properties of fish oil feeding can alter the immune response to influenza infection, resulting in increased morbidity and mortality. PMID:19549756

  4. TNF-α upregulates sclerostin expression in obese mice fed a high-fat diet.

    PubMed

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S; Ko, Seong-Hee; Woo, Kyung Mi; Ryoo, Hyun-Mo; Kim, Gwan-Shik; Baek, Jeong-Hwa

    2014-05-01

    Sclerostin decreases bone mass by antagonizing the Wnt signaling pathway. We examined whether obesity-induced bone loss is associated with the expression of sclerostin. Five-week-old male mice were assigned to one of two groups (n = 10 each) and fed either a control diet (10% kcal from fat; CON) or a high-fat diet (60% kcal from fat; HF) for 12 weeks. Thex final body weight and whole body fat mass of the HF mice were higher than those of the CON mice. The distal femur cancellous bone mineral density and bone formation rate was lower in HF mice than in CON mice. The percent erosion surface was higher in the HF mice than the CON mice. The serum levels and femoral osteocytic protein expression levels of tumor necrosis factor-α (TNF-α) were significantly higher in HF mice than in CON mice. Sclerostin mRNA levels and osteocytic sclerostin protein levels in femoral cortex were also higher in HF mice than in CON mice. Sclerostin expression in MLO-Y4 osteocytes increased with TNF-α treatment, and TNF-α-induced sclerostin expression was blocked by the inhibition of NF-κB activation. Chromatin immunoprecipitation and a luciferase reporter assay demonstrated that NF-κB directly binds to the NF-κB binding elements on the mouse sost promoter and stimulates sclerostin expression. These results support a model in which, in the context of obesity or other inflammatory diseases that increase the production of TNF-α, TNF-α upregulates the expression of sclerostin through NF-κB signaling pathway, thus contributing to bone loss. PMID:24446199

  5. Modeling Energy Dynamics in Mice with Skeletal Muscle Hypertrophy Fed High Calorie Diets

    PubMed Central

    Bond, Nichole D.; Guo, Juen; Hall, Kevin D.; McPherron, Alexandra C.

    2016-01-01

    Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain. PMID:27076790

  6. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    SciTech Connect

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  7. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    PubMed

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD. PMID:27133432

  8. Nrf2 Deficiency Improves Glucose Tolerance in Mice Fed a High-Fat Diet

    PubMed Central

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. PMID:23017736

  9. Age- and sex-related effects in German cockroaches fed an allopurinol diet (Dictyoptera: Blattellidae).

    PubMed

    Suiter, D R; Koehler, P G; Patterson, R S

    1993-09-01

    The effects of feeding several ages of adult and nymphal German cockroaches a laboratory rat chow diet containing 0.10% allopurinol were investigated. All cockroaches fed the allopurinol diet suffered increased mortality. The range of LT50 values (the time required to kill 50% of an experimental cohort) for four ages of nymphs (1-8, 16-23, 21-28, and 28-35 d old following hatch) continuously fed the allopurinol diet was 1.36 wk (4.72-6.08 wk). Regardless of sex, young adult (1-7 d old following eclosion) cockroaches fed the allopurinol diet died significantly sooner than older adults (28-35 d old following eclosion); males died significantly sooner than females. All females fed the allopurinol diet as nymphs aborted their oothecae. Although an initial ootheca were hatched from cockroaches fed the allopurinol diet as adults, all subsequent oothecae were aborted. Untreated females mated with allopurinol-fed males experienced successful reproduction, but allopurinol-fed females mated with either allopurinol- or control diet-fed males failed to reproduce. Evidence suggests that cockroaches suffer increased mortality and reproductive failure from increased levels of hypoxanthine and xanthine. PMID:8254639

  10. Dietary krill oil supplementation reduces hepatic steatosis, glycemia, and hypercholesterolemia in high-fat-fed mice.

    PubMed

    Tandy, Sally; Chung, Rosanna W S; Wat, Elaine; Kamili, Alvin; Berge, Kjetil; Griinari, Mikko; Cohn, Jeffrey S

    2009-10-14

    Krill oil (KO) is rich in n-3 fatty acids that are present in phospholipids rather than in triglycerides. In the present study, we investigated the effects of dietary KO on cardiometabolic risk factors in male C57BL/6 mice fed a high-fat diet. Mice (n = 6-10 per group) were fed for 8 weeks either: (1) a nonpurified chow diet (N); (2) a high-fat semipurified diet containing 21 wt % buttermilk + 0.15 wt % cholesterol (HF); (3) HF supplemented with 1.25 wt % KO (HFKO1.25); (4) HF with 2.5 wt % KO (HFKO2.5); or (5) HF with 5 wt % KO (HFKO5.0). Dietary KO supplementation caused a significant reduction in liver wt (i.e., hepatomegaly) and total liver fat (i.e., hepatic steatosis), due to a dose-dependent reduction in hepatic triglyceride (mean +/- SEM: 35 +/- 6, 47 +/- 4, and 51 +/- 5% for HFKO1.25, -2.5, and -5.0 vs HF, respectively, P < 0.001) and cholesterol (55 +/- 5, 66 +/- 3, and 71 +/- 3%, P < 0.001). Serum cholesterol levels were reduced by 20 +/- 3, 29 +/- 4, and 29 +/- 5%, and blood glucose was reduced by 36 +/- 5, 34 +/- 6, and 42 +/- 6%, respectively. Serum adiponectin was increased in KO-fed animals (HF vs HFKO5.0: 5.0 +/- 0.2 vs 7.5 +/- 0.6 microg/mL, P < 0.01). These results demonstrate that dietary KO is effective in improving metabolic parameters in mice fed a high-fat diet, suggesting that KO may be of therapeutic value in patients with the metabolic syndrome and/or nonalcoholic fatty liver disease. PMID:19761211

  11. 17β-estradiol increases liver and serum docosahexaenoic acid in mice fed varying levels of α-linolenic acid.

    PubMed

    Mason, Julie K; Kharotia, Shikhil; Wiggins, Ashleigh K A; Kitson, Alex P; Chen, Jianmin; Bazinet, Richard P; Thompson, Lilian U

    2014-08-01

    Docosahexaenoic acid (DHA) is considered to be important for cardiac and brain function, and 17β-estradiol (E2) appears to increase the conversion of α-linolenic acid (ALA) into DHA. However, the effect of varying ALA intake on the positive effect of E2 on DHA synthesis is not known. Therefore, the objective of this study was to investigate the effects of E2 supplementation on tissue and serum fatty acids in mice fed a low-ALA corn oil-based diet (CO, providing 0.6 % fatty acids as ALA) or a high ALA flaxseed meal-based diet (FS, providing 11.2 % ALA). Ovariectomized mice were implanted with a slow-release E2 pellet at 3 weeks of age and half the mice had the pellet removed at 7 weeks of age. Mice were then randomized onto either the CO or FS diet. After 4 weeks, the DHA concentration was measured in serum, liver and brain. A significant main effect of E2 was found for liver and serum DHA, corresponding to 25 and 15 % higher DHA in livers of CO and FS rats, respectively, and 19 and 13 % in serum of CO and FS rats, respectively, compared to unsupplemented mice. There was no effect of E2 on brain DHA. E2 results in higher DHA in serum and liver, at both levels of dietary ALA investigated presently, suggesting that higher ALA intake may result in higher DHA in individuals with higher E2 status. PMID:24913495

  12. Atopic dermatitis-like symptoms in HR-1 hairless mice fed a diet low in magnesium and zinc.

    PubMed

    Makiura, M; Akamatsu, H; Akita, H; Yagami, A; Shimizu, Y; Eiro, H; Kuramoto, M; Suzuki, K; Matsunaga, K

    2004-01-01

    We aimed to develop an animal model for atopic dermatitis. HR-1 hairless mice fed a diet with reduced magnesium and zinc levels were compared with mice fed a standard diet. Skin dryness and wrinkle-like changes, scratching behaviour, decreased skin water content, increased transepidermal water loss and raised blood immunoglobulin E levels were seen in the group receiving the reduced magnesium and zinc diet compared with control mice. There were no significant differences in body weight or the weight of the major organs between the two groups. Haematological examination in both groups was normal apart from increased immunoglobulin E levels in mice fed a reduced magnesium and zinc diet. These mice may be useful models of atopic dermatitis; preparation of the animals is not particularly time consuming, the reproducibility is 100%, and atopic dermatitis symptoms occur even in a specific pathogen-free environment. PMID:15303770

  13. PROXIMAL GUT MUCOSAL EPITHELIAL HOMEOSTASIS IN AGED IL-1 TYPE I RECEPTOR KNOCKOUT MICE AFTER STARVATION

    PubMed Central

    Song, Juquan; Wolf, Steven E.; Wu, Xiao-Wu; Finnerty, Celeste C.; Herndon, David N.; Jeschke, Marc G.

    2010-01-01

    Background Previous studies have shown that starvation induces small bowel atrophy, and that atrophy diminishes with aging. In this experiment, we assessed whether starvation-induced atrophy of proximal gut mucosa is associated with the Interleukin-1 receptor (IL-1R) signaling pathway in aged mice. Materials and Methods Thirty 26-month-old IL-1R knockout mice and age-matched wild-type C57BL/6 mice were randomly divided into two groups: ad libitum fed and fasted. Mice were euthanized 12 or 48 hours after starvation. The proximal small bowel was harvested for morphologic analysis. Gut epithelial cell proliferation was detected using immunohistochemical staining for proliferating cell nuclear antigen (PCNA), and apoptosis was identified using terminal deoxyuridine nick-end labeling (TUNEL) staining. Results Aged IL-1R knockout mice were larger than aged-matched wild-type mice (p<0.05). Proximal gut mucosal height and mucosal cell number were not different between aged IL-1R knockout and wild-type groups. The apoptosis index in gut epithelial cells was higher in fed IL-1R knockout versus wild-type mice (p<0.05), while no significant difference in cell proliferation between both groups. Mucosal atrophy was induced in both aged IL-1R knockout and wild-type groups by starvation (p<0.05), however, aged IL-1R knockout mice experienced greater losses in proximal gut weight, mucosal length, and corresponding cell number than did wild-type mice at the 12-hour time point (p<0.05). The apoptosis index in gut epithelial cells significantly increased in both groups after starvation (p<0.05). Starvation decreased cell proliferation in IL-1R knockout mice (p<0.05), but not in wild-type mice. Conclusions The response in aged IL-1R knockout mice differs from wild-type mice in that starvation increases atrophy and is associated with decreased cell proliferation rather than increased apoptosis. PMID:20605606

  14. Relaxin Treatment Reverses Insulin Resistance in Mice Fed a High-Fat Diet

    PubMed Central

    Bonner, Jeffrey S.; Lantier, Louise; Hocking, Kyle M.; Kang, Li; Owolabi, Mark; James, Freyja D.; Bracy, Deanna P.; Brophy, Colleen M.; Wasserman, David H.

    2013-01-01

    The endogenous hormone relaxin increases vascular reactivity and angiogenesis. We demonstrate that acute relaxin infusion in lean C57BL/6J mice enhances skeletal muscle perfusion and augments muscle glucose uptake during a hyperinsulinemic-euglycemic clamp. However, an acute effect was absent in mice fed a high-fat (HF) diet for 13 weeks. In contrast, mice fed an HF diet for 13 weeks and continuously treated with relaxin for the final 3 weeks of the diet exhibited decreased fasting blood glucose. Insulin-stimulated whole-body glucose disappearance and percent suppression of hepatic glucose production are corrected by chronic relaxin. The increase in peripheral glucose utilization is a result of augmented in vivo skeletal muscle glucose uptake. Relaxin intervention improves endothelial-dependent vascular reactivity and induces a two-fold proliferation in skeletal muscle capillarity. The metabolic effects of the treatment are not attributed to changes in myocellular insulin signaling. Relaxin intervention reverses the accumulation of collagen III in the liver and collagen III and collagen IV in the heart; this is induced by HF feeding. These studies show the potential of relaxin in the treatment of diet-induced insulin resistance and vascular dysfunction. Relaxin provides a novel therapeutic approach targeting the extramyocellular barriers to insulin action, which are critical to the pathogenesis of insulin resistance. PMID:23801576

  15. [Dynamic changes of circulating monocyte subsets in high-NaCl diet fed mice].

    PubMed

    Feng, Xiaotong; Luo, Yanwei; Ma, Yongqiang; Zhao, Ying; Zhao, Qian; Ji, Wenjie; Li, Yuming; Zhou, Xin

    2016-06-01

    Objective To observe the dynamic changes of the circulating monocyte subsets in C57BL/6 mice fed with high-NaCl diet. Methods Male C57BL/6 mice were randomly divided into three groups: 9, 40 and 80 g/L NaCl groups. Before the treatment and 4, 8 and 12 weeks after the treatment, the cardiac function was dynamically determined by echocardiography and the blood pressure was measured by tail-cuff plethysmography. Flow cytometry analysis of circulating monocyte subsets was performed. HE staining was used to observe cardiac pathological changes at the time of sacrifice. Results Systolic blood pressure significantly increased with the progression of the high-salt diet. Compared with 9 g/L NaCl group, the ejection fraction of the other two groups slightly increased at week 4, followed by a significant decreasing trend up to week 12, in addition, the percentage of Ly6C(high) monocyte subset showed a progressive increase during high-salt feeding and reached a plateau at week 4, and then abruptly went down up to week 12. On the contrary, Ly6C(low) monocyte subset had an opposite trend, whereas Ly6C(int) monocyte subset remained constant. HE staining showed that cardiomyocyte size, as determined by the myocyte cross-sectional area, became enlarged obviously in the latter two groups. Conclusion Circulating monocyte subsets dynamically changed in the mice fed with high-salt diet. PMID:27371845

  16. (-)-Epicatechin improves insulin sensitivity in high fat diet-fed mice.

    PubMed

    Cremonini, Eleonora; Bettaieb, Ahmed; Haj, Fawaz G; Fraga, Cesar G; Oteiza, Patricia I

    2016-06-01

    Obesity constitutes a major public health concern, being frequently associated with type 2 diabetes (T2D). Evidence from studies in humans and experimental animals suggest that consumption of the flavan-3-ol (-)-epicatechin (EC) and of EC-rich foods may improve insulin sensitivity. To further understand the potential benefits of dietary EC consumption on insulin resistance, this study investigated the capacity of EC supplementation to prevent high fat diet (HFD)-induced insulin resistance in mice. To assess the underlying mechanisms, the effects of HFD and EC consumption on the activation of the insulin cascade and of its negative modulators were evaluated. HFD consumption for 15 w caused obesity and insulin resistance in C57BL/6J mice as evidenced by high fasted and fed plasma glucose and insulin levels, and impaired ITT and GTT tests. This was associated with alterations in the activation of components of the insulin-triggered signaling cascade (insulin receptor, IRS1, ERK1/2, Akt) in adipose and liver tissues. EC supplementation prevented/ameliorated all these parameters. EC acted improving insulin sensitivity in the HFD-fed mice in part through a downregulation of the inhibitory molecules JNK, IKK, PKC and protein tyrosine phosphatase 1B (PTP1B). Thus, the above results suggest that consumption of EC-rich foods could constitute a dietary strategy to mitigate obesity-associated insulin resistance. PMID:26968772

  17. Tea Dietary Fiber Improves Serum and Hepatic Lipid Profiles in Mice Fed a High Cholesterol Diet.

    PubMed

    Guo, Wenxin; Shu, Yang; Yang, Xiaoping

    2016-06-01

    Tea dietary fiber (TDF) was prepared from tea residues and modified to get cellulose-modified TDF (CTDF) by cellulase or micronized TDF (MTDF) by ultrafine grinding. The in vitro lipid-binding capacities of the three fibers and their effects on serum and hepatic lipid profiles in mice fed a high cholesterol diet were evaluated. The results showed that the three fibers had excellent lipid-binding capacities, and the cholesterol- and sodium cholate-binding capacities of CTDF and MTDF were significantly higher than those of TDF. Animal studies showed that, compared to model control, the three fibers significantly decreased mice average daily gain, gain: feed, and liver index, reduced total cholesterol (TC), triglyceride, and low density lipoprotein-cholesterol of serum and liver, increased serum and hepatic high density lipoprotein-cholesterol to TC ratio, and promoted the excretion of fecal lipids, and they also significantly increased the activities of superoxide dismutase and glutathione peroxidase of serum and liver, and decreased lipid peroxidation; moreover, the effects of CTDF and MTDF were better than that of TDF. It was concluded that the three fibers could improve serum and hepatic lipid profiles in mice fed a high cholesterol diet and the mechanism of action might be due to the promotion of fecal excretion of lipids through their lipid-binding ability and the inhibition of lipid peroxidation. These findings suggest that tea dietary fiber has the potential to be used as a functional ingredient to control cardiovascular disease. PMID:27040277

  18. Ghrelin O-acyltransferase knockout mice show resistance to obesity when fed high-sucrose diet.

    PubMed

    Kouno, Tetsuya; Akiyama, Nobuteru; Ito, Takahito; Okuda, Tomohiko; Nanchi, Isamu; Notoya, Mitsuru; Oka, Shogo; Yukioka, Hideo

    2016-02-01

    Ghrelin is an appetite-stimulating hormone secreted from stomach. Since the discovery that acylation of the serine-3 residue by ghrelin O-acyltransferase (GOAT) is essential for exerting its functions, GOAT has been regarded as an therapeutic target for attenuating appetite, and thus for the treatment of obesity and diabetes. However, contrary to the expectations, GOAT-knockout (KO) mice have not shown meaningful body weight reduction, under high-fat diet. Here, in this study, we sought to determine whether GOAT has a role in body weight regulation and glucose metabolism with a focus on dietary sucrose, because macronutrient composition of diet is important for appetite regulation. We found that peripherally administered acylated-ghrelin, but not unacylated one, stimulated sucrose consumption in a two-bottle-drinking test. The role of acylated-ghrelin in sucrose preference was further supported by the finding that GOAT KO mice consumed less sucrose solution compared with WT littermates. Then, we investigated the effect of dietary composition of sucrose on food intake and body weight in GOAT KO and WT mice. As a result, when fed on high-fat diet, food intake and body weight were similar between GOAT KO and WT mice. However, when fed on high-fat, high-sucrose diet, GOAT KO mice showed significantly reduced food intake and marked resistance to obesity, leading to amelioration of glucose metabolism. These results suggest that blockade of acylated-ghrelin production offers therapeutic potential for obesity and metabolic disorders caused by overeating of palatable food. PMID:26645250

  19. Inhibitory effects of Leonurus sibiricus on weight gain after menopause in ovariectomized and high-fat diet-fed mice.

    PubMed

    Kim, Jangseon; Kim, Mi Hye; Choi, You Yeon; Hong, Jongki; Yang, Woong Mo

    2016-07-01

    Leonurus sibiricus, also called motherwort, is a well-known functional food and medicinal herb. It has been known to possess beneficial properties for women's health, especially for aged women. Estrogen deficiency in the menopause could induce lipid metabolic abnormalities in body fat, resulting in obesity. In this study, the inhibitory effects of L. sibiricus on obesity after the menopause were investigated. Female C57BL/6 mice were ovariectomized and fed high-fat diet (HFD) for 12 weeks. Following an induction period, aqueous extracts of L. sibiricus (LS) were orally administrated for 6 weeks. The body, uterine, and visceral fat weights were measured immediately after the animals were killed. Histological analysis was performed to monitor fat and liver. Serum levels of glucose, triglyceride, total cholesterol, and LDL-cholesterol were evaluated. In addition, the expression of lipases was analyzed. Total body weight was significantly decreased by LS treatment. Histological changes in adipocyte size were shown along with a decrease of visceral fat weight in the LS-treated group. In addition, the fat infiltration of liver was reduced by LS administration. LS-treated mice experienced decreases of serum triglyceride, total cholesterol, and LDL-cholesterol levels. The expression of HSL and ATGL was significantly increased by LS treatment. These results suggest that LS could regulate the lipid metabolism via an increase of lipases expression in ovariectomized and HFD-fed mice. LS might be a novel candidate for a functional food to inhibit weight gain after the menopause. PMID:26899238

  20. Daumone fed late in life improves survival and reduces hepatic inflammation and fibrosis in mice

    PubMed Central

    Park, Jong Hee; Chung, Hae Young; Kim, Minkyu; Lee, Jung Hwa; Jung, Mankil; Ha, Hunjoo

    2014-01-01

    The liver is one of the most susceptible organs to aging, and hepatic inflammation and fibrosis increase with age. Chronic inflammation has been proposed as the major molecular mechanism underlying aging and age-related diseases, whereas calorie restriction has been shown to be the most effective in extending mammalian lifespan and to have anti-aging effects through its anti-inflammatory action. Thus, it is necessary to develop effective calorie restriction mimetics. Daumone [(2)-(6R)-(3,5-dihydroxy-6-methyltetrahydropyran-2-yloxy)heptanoic acid], a pheromone secreted by Caenorhabditis elegans, forces them to enter the dauer stage when facing inadequate conditions. Because Caenorhabditis elegans live longer during the dauer stage under energy deprivation, it was hypothesized that daumone may improve survival in mammals by mimicking calorie restriction. Daumone (2 mg kg−1 day−1) was administered orally for 5 months to 24-month-old male C57BL/6J mice. Daumone was found to reduce the risk of death by 48% compared with age-matched control mice, and the increased plasma insulin normally presented in old mice was significantly reduced by daumone. The increased hepatic hypertrophy, senescence-associated β-galactosidase activity, insulin resistance, lipid accumulation, inflammation, oxidative stress, and fibrosis in old mice were significantly attenuated by daumone. From a mechanistic view, daumone reduced the phosphorylation of the IκBα and upregulation of Rela and Nfkbia mRNA in the livers of old mice. The anti-inflammatory effect of daumone was confirmed in lipopolysaccharide-induced liver injury model. Oral administration of daumone improves survival in mice and delivers anti-aging effects to the aged liver by modulating chronic inflammation, indicating that daumone could be developed as an anti-aging compound. PMID:24796965

  1. NADPH oxidase is implicated in the pathogenesis of oxidative phosphorylation dysfunction in mice fed a high-fat diet

    PubMed Central

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Grau, Montserrat; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A.

    2016-01-01

    The aim of this study was to evaluate the role of NADPH oxidase (NADPHox) in the pathogenesis of oxidative phosphorylation (OXPHOS) dysfunction as found in mice fed a high-fat diet (HFD). C57BL/6J mice were distributed in four groups: WT/SCD: six wild-type (WT) mice fed a standard chow diet (SCD); WT/HFD, six WT mice fed a HFD; NOX2−/−/SCD, six NADPHox-deficient mice on a SCD; (4) NOX2−/−/HFD, six NADPHox-deficient mice on a HFD. After 32 weeks, we studied the liver for: histology; OXPHOS complex activity; fully assembled OXPHOS complexes and their subunits; gene expression of OXPHOS subunits; oxidative and nitrosative stress; and oxidative DNA damage. In the liver of WT/HFD mice, we found a significant decreased in the activity of all OXPHOS complexes, in fully assembled complexes, in the amount of OXPHOS subunits, and in gene expression of mitochondrial DNA-encoded subunits. 8-hydroxy-2′-deoxyguanosine was only increased in mitochondrial DNA. The liver of NOX−/−/HFD mice showed mild steatosis but no non-alcoholic steatohepatitis (NASH) lesions were found. OXPHOS activity, OXPHOS subunits, and assembly of subunits into OXPHOS complexes were normal in these mice. We conclude that this study shows that NADPH deficiency protects mice from developing OXPHOS dysfunction and NASH caused by a HFD. PMID:27173483

  2. NADPH oxidase is implicated in the pathogenesis of oxidative phosphorylation dysfunction in mice fed a high-fat diet.

    PubMed

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Grau, Montserrat; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A

    2016-01-01

    The aim of this study was to evaluate the role of NADPH oxidase (NADPHox) in the pathogenesis of oxidative phosphorylation (OXPHOS) dysfunction as found in mice fed a high-fat diet (HFD). C57BL/6J mice were distributed in four groups: WT/SCD: six wild-type (WT) mice fed a standard chow diet (SCD); WT/HFD, six WT mice fed a HFD; NOX2(-/-)/SCD, six NADPHox-deficient mice on a SCD; (4) NOX2(-/-)/HFD, six NADPHox-deficient mice on a HFD. After 32 weeks, we studied the liver for: histology; OXPHOS complex activity; fully assembled OXPHOS complexes and their subunits; gene expression of OXPHOS subunits; oxidative and nitrosative stress; and oxidative DNA damage. In the liver of WT/HFD mice, we found a significant decreased in the activity of all OXPHOS complexes, in fully assembled complexes, in the amount of OXPHOS subunits, and in gene expression of mitochondrial DNA-encoded subunits. 8-hydroxy-2'-deoxyguanosine was only increased in mitochondrial DNA. The liver of NOX(-/-)/HFD mice showed mild steatosis but no non-alcoholic steatohepatitis (NASH) lesions were found. OXPHOS activity, OXPHOS subunits, and assembly of subunits into OXPHOS complexes were normal in these mice. We conclude that this study shows that NADPH deficiency protects mice from developing OXPHOS dysfunction and NASH caused by a HFD. PMID:27173483

  3. Dietary Cocoa Reduces Metabolic Endotoxemia and Adipose Tissue Inflammation in High-Fat Fed Mice

    PubMed Central

    Gu, Yeyi; Yu, Shan; Park, Jong Yung; Harvatine, Kevin; Lambert, Joshua D.

    2014-01-01

    In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 wk. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40 – 60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cycloxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia. PMID:24561154

  4. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice.

    PubMed

    Gu, Yeyi; Yu, Shan; Park, Jong Yung; Harvatine, Kevin; Lambert, Joshua D

    2014-04-01

    In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6 J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 weeks. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40-60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cyclooxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia. PMID:24561154

  5. Allomyrina dichotoma (Arthropoda: Insecta) Larvae Confer Resistance to Obesity in Mice Fed a High-Fat Diet

    PubMed Central

    Yoon, Young-Il; Chung, Mi Yeon; Hwang, Jae-Sam; Han, Myung Sae; Goo, Tae-Won; Yun, Eun-Young

    2015-01-01

    To clarify the anti-obesity effect of Allomyrina dichotoma larvae (ADL), we previously reported that ADL block adipocyte differentiation on 3T3-L1 cell lines through downregulation of transcription factors, such as peroxisome proliferator-activated receptor-γ (PPARG) and CCAAT/enhancer binding protein-α (CEBPA). In this study, we tested whether ADL prevent obesity in mice fed a high-fat diet (HFD) and further investigated the mechanism underlying the effects of ADL. All mice were maintained on a normal-fat diet (NFD) for 1 week and then assigned to one of five treatment groups: (1) NFD; (2) HFD; (3) HFD and 100 mg·kg−1·day−1 ADL; (4) HFD and 3000 mg·kg−1·day−1ADL; or (5) HFD and 3000 mg·kg−1·day−1 yerba mate (Ilex paraguariensis, positive control). ADL and yerba mate were administered orally daily. Mice were fed experimental diets and body weight was monitored weekly for 6 weeks. Our results indicated that ADL reduced body weight gain, organ weight and adipose tissue volume in a dose-dependent manner. Body weight gain was approximately 22.4% lower compared to mice fed only HFD, but the difference did not reach the level of statistical significance. Real-time polymerase chain reaction (PCR) analysis revealed that gene expression levels of PPARG, CEBPA and lipoprotein lipase (LPL) in the epididymal fat tissue of HFD-fed mice receiving 3000 mg·kg−1·day−1 ADL were reduced by 12.4-, 25.7-, and 12.3-fold, respectively, compared to mice fed HFD only. Moreover, mice administered ADL had lower serum levels of triglycerides and leptin than HFD-fed mice that did not receive ADL. Taken together our results suggest that ADL and its constituent bioactive compounds hold potential for the treatment and prevention of obesity. PMID:25790040

  6. Insufficient glucose supply is linked to hypothermia upon cold exposure in high-fat diet-fed mice lacking PEMT[S

    PubMed Central

    Gao, Xia; van der Veen, Jelske N.; Fernandez-Patron, Carlos; Vance, Jean E.; Vance, Dennis E.; Jacobs, René L.

    2015-01-01

    Mice that lack phosphatidylethanolamine N-methyltransferase (Pemt−/− mice) are protected from high-fat (HF) diet-induced obesity. HF-fed Pemt−/− mice show higher oxygen consumption and heat production, indicating that more energy might be utilized for thermogenesis and might account for the resistance to diet-induced weight gain. To test this hypothesis, HF-fed Pemt−/− and Pemt+/+ mice were challenged with acute cold exposure at 4°C. Unexpectedly, HF-fed Pemt−/− mice developed hypothermia within 3 h of cold exposure. In contrast, chow-fed Pemt−/− mice, possessing similar body mass, maintained body temperature. Lack of PEMT did not impair the capacity for thermogenesis in skeletal muscle or brown adipose tissue. Plasma catecholamines were not altered by Pemt genotype, and stimulation of lipolysis was intact in brown and white adipose tissue of Pemt−/− mice. HF-fed Pemt−/− mice also developed higher systolic blood pressure, accompanied by reduced cardiac output. Choline supplementation reversed the cold-induced hypothermia in HF-fed Pemt−/− mice with no effect on blood pressure. Plasma glucose levels were ∼50% lower in HF-fed Pemt−/− mice compared with Pemt+/+ mice. Choline supplementation normalized plasma hypoglycemia and the expression of proteins involved in gluconeogenesis. We propose that cold-induced hypothermia in HF-fed Pemt−/− mice is linked to plasma hypoglycemia due to compromised hepatic glucose production. PMID:26113536

  7. Inhaled Anesthetic Potency in Aged Alzheimer Mice

    PubMed Central

    Bianchi, Shannon L.; Caltagarone, Breanna M.; LaFerla, Frank M.; Eckenhoff, Roderic G.; Kelz, Max B.

    2016-01-01

    BACKGROUND The number of elderly patients with frank or incipient Alzheimer’s disease (AD) requiring surgery is growing as the population ages. General anesthesia may exacerbate symptoms of and the pathology underlying AD, so minimizing anesthetic exposure may be important. This requires knowledge of whether the continuing AD pathogenesis alters anesthetic potency. METHODS We determined the induction potency and emergence time for isoflurane, halothane, and sevoflurane using the minimum alveolar anesthetic concentration for loss of righting reflex as an end point in 12- to 14-mo-old triple transgenic Alzheimer (3xTgAD) mice and wild type C57BL6 controls. 3xTgAD mice model AD by harboring three distinct mutations: the APPSwe, Tau, and PS1 human transgenes, each of which has been associated with familial forms of human AD. RESULTS The 3xTgAD mice exhibited mild resistance (from 8% to 30%) to volatile anesthetics but displayed indistinguishable emergence patterns from all three inhaled anesthetics. CONCLUSIONS These results show that the genetic vulnerabilities and neuropathology associated with AD produce a small but significant decrease in sensitivity to the hypnotic actions of three inhaled anesthetics. Emergence times were not altered. PMID:19820240

  8. Ethanolic extract of Taheebo attenuates increase in body weight and fatty liver in mice fed a high-fat diet.

    PubMed

    Choi, Won Hee; Um, Min Young; Ahn, Jiyun; Jung, Chang Hwa; Park, Myung Kyu; Ha, Tae Youl

    2014-01-01

    We evaluated whether intake of an ethanolic extract of Taheebo (TBE) from Tabebuia avellanedae protects against body weight increase and fat accumulation in mice with high-fat diet (HFD)-induced obesity. Four-week old male C57BL/6 mice were fed a HFD (25% fat, w/w) for 11 weeks. The diet of control (HFD) mice was supplemented with vehicle (0.5% sodium carboxymethyl cellulose by gavage); the diet of experimental (TBE) mice was supplemented with TBE (150 mg/kg body weight/day by gavage). Mice administered TBE had significantly reduced body weight gain, fat accumulation in the liver, and fat pad weight, compared to HFD mice. Reduced hypertrophy of fat cells was also observed in TBE mice. Mice administered TBE also showed significantly lower serum levels of triglycerides, insulin, and leptin. Lipid profiles and levels of mRNAs and proteins related to lipid metabolism were determined in liver and white adipose tissue of the mice. Expression of mRNA and proteins related to lipogenesis were decreased in TBE-administered mice compared to mice fed HFD alone. These results suggest that TBE inhibits obesity and fat accumulation by regulation of gene expression related to lipid metabolism in HFD-induced obesity in mice. PMID:25299819

  9. Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice

    PubMed Central

    Morton, Tiffany L.; Galior, Kornelia; McGrath, Cody; Wu, Xin; Uzer, Gunes; Uzer, Guniz Bas; Sen, Buer; Xie, Zhihui; Tyson, David; Rubin, Janet; Styner, Maya

    2016-01-01

    Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete’s paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a “brown” phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD. PMID:27445983

  10. Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice.

    PubMed

    Kang, Li; Dai, Chunhua; Lustig, Mary E; Bonner, Jeffrey S; Mayes, Wesley H; Mokshagundam, Shilpa; James, Freyja D; Thompson, Courtney S; Lin, Chien-Te; Perry, Christopher G R; Anderson, Ethan J; Neufer, P Darrell; Wasserman, David H; Powers, Alvin C

    2014-11-01

    Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2(+/+)) and heterozygous knockout mice (sod2(+/-)) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2(+/-) and sod2(+/+) but was markedly decreased in HF-fed sod2(+/-). Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2(+/-) was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2(+/-) and sod2(+/+) of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2(+/-) was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2(+/-) support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action. PMID:24947366

  11. Heterozygous SOD2 Deletion Impairs Glucose-Stimulated Insulin Secretion, but Not Insulin Action, in High-Fat–Fed Mice

    PubMed Central

    Dai, Chunhua; Lustig, Mary E.; Bonner, Jeffrey S.; Mayes, Wesley H.; Mokshagundam, Shilpa; James, Freyja D.; Thompson, Courtney S.; Lin, Chien-Te; Perry, Christopher G.R.; Anderson, Ethan J.; Neufer, P. Darrell; Wasserman, David H.; Powers, Alvin C.

    2014-01-01

    Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2+/+) and heterozygous knockout mice (sod2+/−) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2+/− and sod2+/+ but was markedly decreased in HF-fed sod2+/−. Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2+/− was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2+/− and sod2+/+ of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2+/− was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2+/− support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action. PMID:24947366

  12. Tempol intake improves inflammatory status in aged mice

    PubMed Central

    Yamato, Mayumi; Ishimatsu, Ayumi; Yamanaka, Yuuki; Mine, Takara; Yamada, Kenichi

    2014-01-01

    Oxidative stress is associated with both healthy aging and age-related disease states. In connection with oxidative stress, immunity is also a major component as a result of the chronic, low-grade inflammation associated with the development of tissue aging. Here we show that long-term treatment with the antioxidant tempol extends life-span in mice. Tempol-treated mice exhibited a reduction in mortality at 20 months. Tempol drinking did not have any effect on body weight, amount of visceral adipose tissue, or plasma biochemical parameters in aged mice. Body temperature of aged control mice (which drank only water) was significantly lower than young mice, but this reduction of body temperature was partially restored in aged mice which drank tempol. Plasma thiobarbituric acid-reactive substances and C-reactive protein were significantly increased in the control aged mice compared with young mice, but levels of both were normalized by tempol drinking. One of the endogenous antioxidants, ascorbic acid, was significantly increased in the plasma of mice which consumed tempol. The proportion of CD4 lymphocytes in the blood of aged tempol-treated mice was partially increased in comparison to aged control mice. These results suggest that the reduction of mortality by tempol is due to amelioration of chronic inflammation and improved function of the immune system through antioxidant effects. PMID:25120275

  13. Differential expression of cholesteryl ester transfer protein in the liver and plasma of fasted and fed transgenic mice.

    PubMed

    MacLean, P S; Vadlamudi, S; Hao, E; Barakat, H A

    2000-06-01

    Because cholesteryl ester transfer protein (CETP) is considered a potential target in the treatment of atherosclerosis, several reports have focused on the regulation of this enzyme, and there is evidence that insulin may be a regulatory factor. The present study examines the differential expression of the human CETP gene between physiologic conditions that are accompanied by low (fasted) and high (fed) insulin levels. CETP expression was examined in plasma and tissues of transgenic mice expressing the human CETP minigene after 12 hours of fasting (n = 20) or ad libitum feeding (n = 20) with normal mouse chow. Plasma cholesteryl ester transfer activity (CETA) was 20% higher in fed than in fasted mice, reflecting higher levels of CETP (P < 0.05). This observation was accompanied by higher liver mRNA in fed mice (100%, P < 0.05), as determined by ribonuclease protection assays, as well as by higher CETA (23%, P < 0.05) and CETP mass (29%, P < 0.05) in the particulate fraction of liver homogenates. These parameters of liver CETP expression correlated well with each other, as well as with plasma CETA. CETP in the liver particulate fraction was found as a doublet (approximately 70 and 65 kDa), which resolved to a single band (approximately 60 kDa) upon deglycosylation. No differences in CETP expression were observed in pooled adipose tissue samples from fed and fasted mice. Insulin and glucose were not related to any plasma or tissue parameter of CETP expression. In summary, the concerted, differential expression of CETP in the liver of fed and fasted transgenic mice appears to contribute to higher plasma CETP levels in fed mice, but the precise role of insulin and glucose in regulating CETP expression under fasted and fed conditions needs to be defined. PMID:11002127

  14. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice.

    PubMed

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. PMID:27107694

  15. A mitochondrial-targeted coenzyme q analog prevents weight gain and ameliorates hepatic dysfunction in high-fat-fed mice.

    PubMed

    Fink, Brian D; Herlein, Judith A; Guo, Deng Fu; Kulkarni, Chaitanya; Weidemann, Benjamin J; Yu, Liping; Grobe, Justin L; Rahmouni, Kamal; Kerns, Robert J; Sivitz, William I

    2014-12-01

    We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics. PMID:25301169

  16. A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice

    PubMed Central

    Fink, Brian D.; Herlein, Judith A.; Guo, Deng Fu; Kulkarni, Chaitanya; Weidemann, Benjamin J.; Yu, Liping; Grobe, Justin L.; Rahmouni, Kamal; Kerns, Robert J.

    2014-01-01

    We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics. PMID:25301169

  17. Defective adipose tissue development associated with hepatomegaly in cathepsin E-deficient mice fed a high-fat diet.

    PubMed

    Kadowaki, Tomoko; Kido, Mizuho A; Hatakeyama, Junko; Okamoto, Kuniaki; Tsukuba, Takayuki; Yamamoto, Kenji

    2014-03-28

    Cathepsin E is an intracellular aspartic proteinase, which is predominantly distributed in immune-related and epithelial cells. However, the role of the enzyme in adipose tissues remains unknown. In this study, we investigated the characteristics of cathepsin E-deficient (CatE(-/-)) mice fed a high-fat diet (HFD), as a mouse model of obesity. HFD-fed CatE(-/-) mice displayed reduced body weight gain and defective development of white adipose tissue (WAT) and brown adipose tissue (BAT), compared with HFD-fed wild-type mice. Moreover, fat-induced CatE(-/-) mice showed abnormal lipid accumulation in non-adipose tissues characterized by hepatomegaly, which is probably due to defective adipose tissue development. Detailed pathological and biochemical analyses showed that hepatomegaly was accompanied by hepatic steatosis and hypercholesterolemia in HFD-induced CatE(-/-) mice. In fat-induced CatE(-/-) mice, the number of macrophages infiltrating into WAT was significantly lower than in fat-induced wild-type mice. Thus, the impaired adipose tissue development in HFD-induced CatE(-/-) mice was probably due to reduced infiltration of macrophages and may lead to hepatomegaly accompanied by hepatic steatosis and hypercholesterolemia. PMID:24583126

  18. Absorption and distribution of cadmium in mice fed diets containing either inorganic or oyster-incorporated cadmium

    SciTech Connect

    Sullivan, M.F.; Hardy, J.T.; Miller, B.M.; Buschbom, R.L.; Siewicki, T.C.

    1984-02-01

    To determine the absorption, organ distribution, and retention of organically bound cadmium (Cd) and the effects of dietary zinc (Zn) on Cd metabolism, groups of mice were fed five different diets. The organic Cd used in the diets was in the form of lyophilized oyster (Crassostrea virginica) that had accumulated radiolabeled 109Cd through a plankton food chain. The mice were fed either a standard basal mouse diet (AIN-76) or diets containing five or eight times the Zn concentration of the basal diet. The source of Zn was either oyster tissue or ZnCO3. The concentration of organic and inorganic Cd provided a dose of approximately 0.4 mg/kg. Diets prepared from oyster tissue probably contained all of the Cd and 85% of the Zn in organic form. Diets prepared with inorganic metals contained about the same Cd and Zn concentrations as the diets prepared with oyster. There was very little difference between the retention of Cd by mice that ingested organic (oyster bound) Cd and those fed inorganic Cd (CdCl2). However, when the Cd retained in the intestine was excluded, retention of organic Cd was significantly greater than that of inorganic Cd. The organ distribution of Cd differed significantly according to the chemical form of Cd fed (organic or inorganic) and the Zn level in the diet. The kidneys of mice fed organically bound Cd retained a higher percentage of the metal than the kidneys of those fed inorganic Cd. On the other hand, the livers of animals fed a low-Zn diet retained a higher percentage of the Cd than the livers of those fed a high-Zn diet, regardless of the dietary source of Cd.

  19. Mangosteen Extract Attenuates the Metabolic Disorders of High-Fat-Fed Mice by Activating AMPK.

    PubMed

    Chae, Hee-Sung; Kim, Young-Mi; Bae, Jin-Kyung; Sorchhann, Sochivak; Yim, Sreymom; Han, Ling; Paik, Jin Hyub; Choi, Young Hee; Chin, Young-Won

    2016-02-01

    This study investigated the effects of mangosteen on metabolic syndromes in high-fat (HF) diet-fed mice and the underlying mechanisms related to adipogenesis. Mangosteen-supplemented mice gained significantly less body weight, compared with the HF group. The levels were markedly elevated in HF mice for serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, glucose, triglyceride, total cholesterol, low-density lipoprotein (LDL) cholesterol, and free fatty acid; whereas these levels were significantly lower in the 200 mg/kg of the mangosteen extract-treated group. The mangosteen extract did not modify high-density lipoprotein (HDL)-cholesterol, however, LDL-cholesterol was lower and HDL/LDL ratio was higher (9.4 vs. 3.7 in HF group). Furthermore, 200 mg/kg of mangosteen treatment activated the hepatic AMP-activated protein kinase and Sirtuin 1 in an in vivo system. Thus, the results of this study suggest that mangosteen extract exerts antiobesity effects by regulating energy metabolism and hepatic lipid homeostasis. PMID:26452017

  20. Novel mitochondrial complex I inhibitors restore glucose-handling abilities of high-fat fed mice.

    PubMed

    Martin, Darren S D; Leonard, Siobhán; Devine, Robert; Redondo, Clara; Kinsella, Gemma K; Breen, Conor J; McEneaney, Victoria; Rooney, Mary F; Munsey, Tim S; Porter, Richard K; Sivaprasadarao, Asipu; Stephens, John C; Findlay, John B C

    2016-04-01

    Metformin is the main drug of choice for treating type 2 diabetes, yet the therapeutic regimens and side effects of the compound are all undesirable and can lead to reduced compliance. The aim of this study was to elucidate the mechanism of action of two novel compounds which improved glucose handling and weight gain in mice on a high-fat diet. Wildtype C57Bl/6 male mice were fed on a high-fat diet and treated with novel, anti-diabetic compounds. Both compounds restored the glucose handling ability of these mice. At a cellular level, these compounds achieve this by inhibiting complex I activity in mitochondria, leading to AMP-activated protein kinase activation and subsequent increased glucose uptake by the cells, as measured in the mouse C2C12 muscle cell line. Based on the inhibition of NADH dehydrogenase (IC50 27µmolL(-1)), one of these compounds is close to a thousand fold more potent than metformin. There are no indications of off target effects. The compounds have the potential to have a greater anti-diabetic effect at a lower dose than metformin and may represent a new anti-diabetic compound class. The mechanism of action appears not to be as an insulin sensitizer but rather as an insulin substitute. PMID:26759391

  1. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet.

    PubMed

    Boini, Krishna M; Zhang, Chun; Xia, Min; Poklis, Justin L; Li, Pin-Lan

    2010-09-01

    The present study tested a hypothesis that excess accumulation of sphingolipid, ceramide, its metabolites, or a combination contributes to the development of obesity and associated kidney damage. Liquid chromatography/mass spectrometry analysis demonstrated that C57BL/6J mice on the high-fat diet (HFD) had significantly increased plasma total ceramide levels compared with animals fed a low-fat diet (LFD). Treatment of mice with the acid sphingomyelinase (ASMase) inhibitor amitriptyline significantly attenuated the HFD-induced plasma ceramide levels. Corresponding to increase in plasma ceramide, the HFD significantly increased the body weight gain, plasma leptin concentration, urinary total protein and albumin excretion, glomerular damage index, and adipose tissue ASMase activity compared with the LFD-fed mice. These HFD-induced changes were also significantly attenuated by treatment of mice with amitriptyline. In addition, the decline of plasma glucose concentration after an intraperitoneal injection of insulin (0.15 U/kg b.wt.) was more sustained in mice on the HFD with amitriptyline than on the HFD alone. Intraperitoneal injection of glucose (3 g/kg b.wt.) resulted in a slow increase followed by a rapid decrease in the plasma glucose concentration in LFD and HFD plus amitriptyline-treated mice, but such blood glucose response was not observed in HFD-fed mice. Immunofluorescence analysis demonstrated a decrease in the podocin and an increase in the desmin in the glomeruli of HFD-fed mice compared with the LFD and HFD plus amitriptyline-treated mice. In conclusion, our results reveal a pivotal role for ceramide biosynthesis in obesity, metabolic syndrome, and associated kidney damage. PMID:20543095

  2. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice

    PubMed Central

    Kim, Kyung Eun; Ko, Keon-Hee; Heo, Rok Won; Yi, Chin-ok; Shin, Hyun Joo; Kim, Jun Young; Park, Jae-Ho; Nam, Sanghae; Kim, Hwajin

    2016-01-01

    Abstract Artemisia annua L. (AA) is a well-known source of the antimalarial drug artemisinin. AA also has an antibacterial and antioxidant activity. However, the effect of AA extract on hepatic steatosis induced by obesity is unclear. We investigated whether AA extract prevents obesity-induced insulin resistance and hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were randomly divided into groups that received a normal chow diet or HFD with or without AA for 12 weeks. We found that AA extract reduced insulin resistance and hepatic steatosis in HFD-fed mice. Western blot analysis showed that HFD-induced expression of nuclear sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein in the livers was decreased by AA extract. In particular, dietary administration of AA extract decreased hepatic high-mobility group box 1 and cyclooxygenase-2 expression in HFD-fed mice. AA extract also attenuated HFD-induced collagen deposition and fibrosis-related transforming growth factor-β1 and connective tissue growth factor. These data indicate that dietary AA extract has beneficial effects on hepatic steatosis and inflammation in HFD-fed mice. PMID:26741655

  3. Reproductive system impairment of mice fed diets containing beluga whale blubber from the St Lawrence estuary and arctic populations.

    PubMed

    Ruby, Sylvia; Mendoza, Luz Tavera; Fournier, Michel; Brousseau, Pauline; Dégas, V

    2003-06-13

    The toxic potential of naturally relevant mixtures of PCBs and other organohalogens on the reproductive system of C57Bl/6 female mice was assessed. Mice were fed diets in which lipids were replaced by blubber of beluga whales from a highly contaminated population of the Saint Lawrence River, and a less contaminated population from the Arctic Ocean. Ratios of blubber from both sources were mixed in order to perform a dose-response study. Control mice were fed diets for 90 d in which fat was replaced by corn oil or beef tallow. There were no significant effects of diets on body, liver, spleen or thymus weights. Similarly ovulation occurred in all control and experimental groups. However, Graafian follicles from ovaries of mice fed contaminated diets showed abnormal development of oocytes. Cumulus granulosa cells bind normally to the oocyte prior to ovulation and are essential for sperm penetration and fertilization. These cells were absent in both Graafian follicles and ovulated oocytes in the oviduct of all groups fed contaminated diets. Oviducts of these mice revealed evidence of epithelial degeneration. These results suggest the female mouse reproductive system is sensitive to organohalogens and illustrate the toxic potential of contaminant mixtures as found in the less contaminated Arctic population. PMID:12775517

  4. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice.

    PubMed

    Baldwin, Jessie; Collins, Brian; Wolf, Patricia G; Martinez, Kristina; Shen, Wan; Chuang, Chia-Chi; Zhong, Wei; Cooney, Paula; Cockrell, Chase; Chang, Eugene; Gaskins, H Rex; McIntosh, Michael K

    2016-01-01

    Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high-fat (HF), butter-rich diet. C57BL/6J mice were fed a low-fat (LF) diet or HF diet with 3% or 5% grapes for 11weeks. Total body and inguinal fat were moderately but significantly reduced in mice fed both levels of grapes compared to their controls. Mice fed 5% grapes had lower liver weights and triglyceride levels and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls. Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4 and Gpat1 compared to the 3% controls. Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% of grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp. and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls. In addition, Bifidobacterium, Lactobacillus, Allobaculum and several other genera correlated negatively with adiposity. Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls. Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens. Collectively, these data indicate that some of the adverse health consequences of consuming an HF diet rich in saturated fat can be attenuated by table grape consumption. PMID:26423887

  5. Adiposity of calf- and yearling-fed Brangus steers raised to constant-age and constant-body weight endpoints.

    PubMed

    Smith, S B; Chapman, A A; Lunt, D K; Harris, J J; Savell, J W

    2007-05-01

    We tested the hypothesis that fatty acid biosynthesis and adipocyte diameter and volume would be greater in s.c. and i.m. adipose tissues of calf-fed steers than in yearling-fed steers at a constant BW, due to the greater time on feed for the calf-fed steers. Conversely, we predicted that the capacity for s.c. and i.m. preadipocytes to divide, as estimated by 3H-thymidine incorporation into DNA, would be greater in the less mature adipose tissues of calf-fed steers and in yearling-fed steers at 16 mo of age than in yearling-fed steers fed to 18 mo of age. Brangus steers were fed a corn-based finishing diet as calves (calf-fed; n = 9) or yearlings (n = 4) to 16 mo of age (CA yearling-fed); another group of yearlings (n = 5) was fed to a constant-BW end point of 530 kg (CW yearling-fed). Both groups of yearling-fed steers had free access to native pasture until 12 mo of age. At slaughter, the fifth to eighth thoracic rib section of the LM was removed, and fresh s.c. and i.m. adipose tissues were removed for in vitro incubations. There were no differences in the number of s.c. adipocytes/g or mean peak volumes of adipocytes across production groups (P > or = 0.14). However, s.c. adipose tissue of CA yearling-fed steers contained greater proportions of smaller adipocytes (<1,500 pL) than calffed or CW yearling-fed steers, and similar results were observed for i.m. adipose tissue. Acetate incorporation into total lipids was greater (P = 0.02) in s.c. adipose tissue of CA yearling-fed steers than in calf-fed or CW yearling-fed steers, and tended to be different (P = 0.10) across production groups in i.m. adipose tissue. The production system x cell fraction interaction was significant (P = 0.03) for s.c. adipose tissue DNA synthesis, which was greatest in adipocytes from CA yearling-fed steers, whereas there were no differences across production system in stromal vascular (SV) DNA synthesis. For i.m. adipose tissue, DNA synthesis was greatest in adipocytes and SV cells

  6. PTEN Inhibition Improves Muscle Regeneration in Mice Fed a High-Fat Diet

    PubMed Central

    Hu, Zhaoyong; Wang, Huiling; Lee, In Hee; Modi, Swati; Wang, Xiaonan; Du, Jie; Mitch, William E.

    2010-01-01

    OBJECTIVE Mechanisms impairing wound healing in diabetes are poorly understood. To identify mechanisms, we induced insulin resistance by chronically feeding mice a high-fat diet (HFD). We also examined the regulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) during muscle regeneration because augmented IGF-1 signaling can improve muscle regeneration. RESEARCH DESIGN AND METHODS Muscle regeneration was induced by cardiotoxin injury, and we evaluated satellite cell activation and muscle maturation in HFD-fed mice. We also measured PIP3 and the enzymes regulating its level, IRS-1–associated phosphatidylinositol 3-kinase (PI3K) and PTEN. Using primary cultures of muscle, we examined how fatty acids affect PTEN expression and how PTEN knockout influences muscle growth. Mice with muscle-specific PTEN knockout were used to examine how the HFD changes muscle regeneration. RESULTS The HFD raised circulating fatty acids and impaired the growth of regenerating myofibers while delaying myofiber maturation and increasing collagen deposition. These changes were independent of impaired proliferation of muscle progenitor or satellite cells but were principally related to increased expression of PTEN, which reduced PIP3 in muscle. In cultured muscle cells, palmitate directly stimulated PTEN expression and reduced cell growth. Knocking out PTEN restored cell growth. In mice, muscle-specific PTEN knockout improved the defects in muscle repair induced by HFD. CONCLUSIONS Insulin resistance impairs muscle regeneration by preventing myofiber maturation. The mechanism involves fatty acid–stimulated PTEN expression, which lowers muscle PIP3. If similar pathways occur in diabetic patients, therapeutic strategies directed at improving the repair of damaged muscle could include suppression of PTEN activity. PMID:20200318

  7. Monocyte chemotactic protein-1 deficiency reduces spontaneous metastasis of Lewis lung carcinoma in mice fed a high-fat diet.

    PubMed

    Yan, Lin; Sundaram, Sneha

    2016-04-26

    Adipose-produced pro-inflammatory cytokines contribute to obesity and cancer. This 2x2 experiment was designed to investigate effects of monocyte chemotactic protein-1 (MCP-1) deficiency on pulmonary metastasis of Lewis lung carcinoma (LLC) in MCP-1 deficient and wild-type mice fed a modified AIN93G diet containing 16% and 45% of energy from corn oil, respectively. The high-fat diet significantly increased the number and size (cross-sectional area and volume) of lung metastases compared to the AIN93G control diet. Deficiency in MCP-1 reduced lung metastases by 37% in high-fat diet-fed mice; it reduced metastatic cross-sectional area by 46% and volume by 69% compared to wild-type mice. Adipose and plasma concentrations of MCP-1 were significantly higher in high-fat diet-fed wild-type mice than in their AIN93G-fed counterparts; they were not detectable in MCP-1 deficient mice regardless of diet. Plasma concentrations of plasminogen activator inhibitor-1, tumor necrosis factor-α, vascular endothelial growth factor and tissue inhibitor of metalloproteinase-1 were significantly higher in MCP-1 deficient mice compared to wild-type mice. We conclude that adipose-produced MCP-1 contributes to high-fat diet-enhanced metastasis. While MCP-1 deficiency reduces metastasis, the elevation of pro-inflammatory cytokines and angiogenic factors in the absence of MCP-1 may support the metastatic development and growth of LLC in MCP-1 deficient mice. PMID:27028862

  8. Serotonin Deficiency Rescues Lactation on Day 1 in Mice Fed a High Fat Diet.

    PubMed

    Weaver, Samantha R; Bohrer, Justin C; Prichard, Allan S; Perez, Paola K; Streckenbach, Liana J; Olson, Jake M; Cook, Mark E; Hernandez, Laura L

    2016-01-01

    Obesity is an inflammatory state associated with delayed lactogenesis stage II and altered mammary gland morphology. Serotonin mediates inflammation and mammary gland involution. The objective of this study was to determine if a genetic deficiency of tryptophan hydroxylase 1, the rate-limiting enzyme in peripheral serotonin synthesis, would result in an improved ability to lactate in dams fed a high fat diet. Twenty-six female mice were fed a high (HFD) or low fat (LFD) diet throughout pregnancy and lactation. Fourteen mice were genetically deficient for Tph1 (Tph1-/-), and twelve were wild type. Milk yield, pup mortality, and dam weights were recorded and milk samples were collected. On day 10 of lactation, dams were sacrificed and mammary glands were harvested for RT-PCR and histological evaluation. HFD dams weighed more than LFD dams at the onset of lactation. WT HFD dams were unable to lactate on day 1 of lactation and exhibited increased pup mortality relative to all other treatments, including Tph1-/- HFD dams. mRNA expression of immune markers C-X-C motif chemokine 5 and tumor necrosis factor alpha were elevated in WT HFD mammary glands. Mammary gland histology showed a reduced number of alveoli in WT compared to Tph1-/- dams, regardless of diet, and the alveoli of HFD dams were smaller than those of LFD dams. Finally, fatty acid profile in milk was dynamic in both early and peak lactation, with reduced de novo synthesis of fatty acids on day 10 of lactation in the HFD groups. Administration of a HFD to C57BL/6 dams produced an obese phenotype in the mammary gland, which was alleviated by a genetic deficiency of Tph1. Serotonin may modulate the effects of obesity on the mammary gland, potentially contributing to the delayed onset of lactogenesis seen in obese women. PMID:27603698

  9. Chronic effects of fumonisin B1 in broilers and turkeys fed dietary treatments to market age.

    PubMed

    Broomhead, J N; Ledoux, D R; Bermudez, A J; Rottinghaus, G E

    2002-01-01

    Floor pen studies were conducted with 270 broiler chicks and 144 turkey poults, all 1 wk old, to evaluate the chronic effects of fumonisin B1 (FB1). A completely randomized design was used in both studies with six pen replicates of 15 chicks or eight pen replicates of six poults assigned to each of three dietary treatments from Weeks 1 to 7 (broilers) or to Week 14 (turkeys). Fusarium moniliforme (M-1325) culture material was added to a typical corn-soybean basal diet to supply 0, 25, or 50 mg FB1/kg diet. Feed intake, body weight gain, and feed conversion of chicks were not affected (P > 0.05) by FB1. Turkeys fed 50 mg FB1/kg had significantly (P < 0.05) lower feed intake than the controls. Compared with controls, chicks and turkeys fed FB1 diets had significantly higher liver sphinganine to sphingosine ratios (P < 0.05). Relative organ weights of chicks were not affected (P > 0.05) by FB1, other than those chicks fed 25 mg FB1/kg, which had lower (P < 0.05) relative proventriculus weights than the chicks fed 0 or 50 mg FB1/kg. Broilers fed 50 mg FB1/kg had decreased serum calcium and increased serum chloride when compared to broilers fed 0 or 25 mg FB1/kg. Hematology was not affected (P > 0.05) by dietary FB1. No lesions were present in any organ examined microscopically. Results indicate that 50 mg FB1/kg diet is detrimental to turkeys but is not toxic to broilers fed to market age. PMID:11885900

  10. Paigen Diet–Fed Apolipoprotein E Knockout Mice Develop Severe Pulmonary Hypertension in an Interleukin-1–Dependent Manner

    PubMed Central

    Lawrie, Allan; Hameed, Abdul G.; Chamberlain, Janet; Arnold, Nadine; Kennerley, Aneurin; Hopkinson, Kay; Pickworth, Josephine; Kiely, David G.; Crossman, David C.; Francis, Sheila E.

    2011-01-01

    Inflammatory mechanisms are proposed to play a significant role in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have described PAH in fat-fed apolipoprotein E knockout (ApoE−/−) mice. We have reported that signaling in interleukin-1–receptor–knockout (IL-1R1−/−) mice leads to a reduction in diet-induced systemic atherosclerosis. We subsequently hypothesized that double-null (ApoE−/−/IL-1R1−/−) mice would show a reduced PAH phenotype compared with that of ApoE−/− mice. Male IL-1R1−/−, ApoE−/−, and ApoE−/−/IL-1R1−/− mice were fed regular chow or a high-fat diet (Paigen diet) for 8 weeks before phenotyping for PAH. No abnormal phenotype was observed in the IL-1R1−/− mice. Fat-fed ApoE−/− mice developed significantly increased right ventricular systolic pressure and substantial pulmonary vascular remodeling. Surprisingly, ApoE−/−/IL-1R1−/− mice showed an even more severe PAH phenotype. Further molecular investigation revealed the expression of a putative, alternatively primed IL-1R1 transcript expressed within the lungs but not aorta of ApoE−/−/IL-1R1−/− mice. Treatment of ApoE−/− and ApoE−/−/IL-1R1−/− mice with IL-1–receptor antagonist prevented progression of the PAH phenotype in both strains. Blocking IL-1 signaling may have beneficial effects in treating PAH, and alternative IL-1–receptor signaling in the lung may be important in driving PAH pathogenesis. PMID:21835155

  11. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice.

    PubMed

    Feng, Bin; Meng, Ran; Huang, Bin; Shen, Shanmei; Bi, Yan; Zhu, Dalong

    2016-01-01

    Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30 mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling. PMID:26758315

  12. A metabolic signature predicts biological age in mice

    PubMed Central

    Tomás-Loba, Antonia; de Jesus, Bruno Bernardes; Mato, Jose M.; Blasco, Maria A.

    2012-01-01

    Our understanding of the mechanisms by which aging is produced is still very limited. Here, we have determined the sera metabolite profile of 117 wild-type mice of different genetic backgrounds ranging from 8-129 weeks of age. This has allowed us to define a robust metabolomic signature and a derived metabolomic score that reliably/accurately predicts the age of wild-type mice. In the case of telomerase-deficient mice, which have a shortened lifespan, their metabolomic score predicts older ages than expected. Conversely, in the case of mice that over-express telomerase, their metabolic score corresponded to younger ages than expected. Importantly, telomerase reactivation late in life by using a TERT based gene therapy recently described by us, significantly reverted the metabolic profile of old mice to that of younger mice, further confirming an anti-aging role for telomerase. Thus, the metabolomic signature associated to natural mouse aging accurately predicts aging produced by telomere shortening, suggesting that natural mouse aging is in part produced by presence of short telomeres. These results indicate that the metabolomic signature is associated to the biological age rather than to the chronological age. This constitutes one of the first aging-associated metabolomic signatures in a mammalian organism. PMID:23107558

  13. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice.

    PubMed

    Das, Nilanjan; Sikder, Kunal; Bhattacharjee, Surajit; Majumdar, Suchandra Bhattacharya; Ghosh, Santinath; Majumdar, Subrata; Dey, Sanjit

    2013-06-01

    Consumption of a high-fat diet (HFD) promotes reactive oxygen species (ROS) which ultimately trigger inflammation. The aim of this study was to investigate the role of Moringa oleifera leaf extract (MoLE) and its active component quercetin in preventing NF-κB-mediated inflammation raised by short-term HFD. Quercetin was found to be one of the major flavonoid components from HPLC of MoLE. Swiss mice were fed for 15 days on HFD, both with or without MoLE/quercetin. The antioxidant profile was estimated from liver homogenate. NF-κB and some relevant inflammatory markers were evaluated by immunoblotting, RT-PCR and ELISA. Significantly (P < 0.05) lower antioxidant profile and higher lipid peroxidation was found in HFD group compared to control (P < 0.05). Increased nuclear import of NF-κB and elevated expressions of pro-inflammatory markers were further manifestations in the HFD group. All these changes were reversed in the MoLE/quercetin-treated groups with significant improvement of antioxidant activity compared to the HFD group. MoLE was found to be rich in polyphenols and both MoLE and quercetin showed potent free radical and hydroxyl radical quenching activity. Thus, the present study concluded that short-term treatment with MoLE and its constituent quercetin prevent HFD-mediated inflammation in mice. PMID:23644882

  14. Metformin exerts glucose-lowering action in high-fat fed mice via attenuating endotoxemia and enhancing insulin signaling

    PubMed Central

    Zhou, Zi-yu; Ren, Li-wei; Zhan, Ping; Yang, Han-yan; Chai, Dan-dan; Yu, Zhi-wen

    2016-01-01

    Aim: Accumulating evidence shows that lipopolysaccharides (LPS) derived from gut gram-negative bacteria can be absorbed, leading to endotoxemia that triggers systemic inflammation and insulin resistance. In this study we examined whether metformin attenuated endotoxemia, thus improving insulin signaling in high-fat diet fed mice. Methods: Mice were fed a high-fat diet for 18 weeks to induce insulin resistance. One group of the mice was treated with oral metformin (100 mg·kg−1·d−1) for 4 weeks. Another group was treated with LPS (50 μg·kg−1·d−1, sc) for 5 days followed by the oral metformin for 10 d. Other two groups received a combination of antibiotics for 7 d or a combination of antibiotics for 7 d followed by the oral metformin for 4 weeks, respectively. Glucose metabolism and insulin signaling in liver and muscle were evaluated, the abundance of gut bacteria, gut permeability and serum LPS levels were measured. Results: In high-fat fed mice, metformin restored the tight junction protein occludin-1 levels in gut, reversed the elevated gut permeability and serum LPS levels, and increased the abundance of beneficial bacteria Lactobacillus and Akkermansia muciniphila. Metformin also increased PKB Ser473 and AMPK T172 phosphorylation, decreased MDA contents and redox-sensitive PTEN protein levels, activated the anti-oxidative Nrf2 system, and increased IκBα in liver and muscle of the mice. Treatment with exogenous LPS abolished the beneficial effects of metformin on glucose metabolism, insulin signaling and oxidative stress in liver and muscle of the mice. Treatment with antibiotics alone produced similar effects as metformin did. Furthermore, the beneficial effects of antibiotics were addictive to those of metformin. Conclusion: Metformin administration attenuates endotoxemia and enhances insulin signaling in high-fat fed mice, which contributes to its anti-diabetic effects. PMID:27180982

  15. Intake of Farmed Atlantic Salmon Fed Soybean Oil Increases Insulin Resistance and Hepatic Lipid Accumulation in Mice

    PubMed Central

    Myrmel, Lene Secher; Aune, Ulrike Liisberg; Alvheim, Anita Røyneberg; Liland, Nina S.; Torstensen, Bente E.; Rosenlund, Grethe; Liaset, Bjørn; Brattelid, Trond; Kristiansen, Karsten; Madsen, Lise

    2013-01-01

    Background To ensure sustainable aquaculture, fish derived raw materials are replaced by vegetable ingredients. Fatty acid composition and contaminant status of farmed Atlantic salmon (Salmo salar L.) are affected by the use of plant ingredients and a spillover effect on consumers is thus expected. Here we aimed to compare the effects of intake of Atlantic salmon fed fish oil (FO) with intake of Atlantic salmon fed a high proportion of vegetable oils (VOs) on development of insulin resistance and obesity in mice. Methodology/principal findings Atlantic salmon were fed diets where FO was partly (80%) replaced with three different VOs; rapeseed oil (RO), olive oil (OO) or soy bean oil (SO). Fillets from Atlantic salmon were subsequently used to prepare Western diets (WD) for a mouse feeding trial. Partial replacement of FO with VOs reduced the levels of polychlorinated biphenyls (PCB) and dichloro-diphenyl-tricloroethanes (DDT) with more than 50% in salmon fillets, in WDs containing the fillets, and in white adipose tissue from mice consuming the WDs. Replacement with VOs, SO in particular, lowered the n−3 polyunsaturated fatty acid (PUFA) content and increased n−6 PUFA levels in the salmon fillets, in the prepared WDs, and in red blood cells collected from mice consuming the WDs. Replacing FO with VO did not influence obesity development in the mice, but replacement of FO with RO improved glucose tolerance. Compared with WD-FO fed mice, feeding mice WD-SO containing lower PCB and DDT levels but high levels of linoleic acid (LA), exaggerated insulin resistance and increased accumulation of fat in the liver. Conclusion/Significance Replacement of FO with VOs in aqua feed for farmed salmon had markedly different spillover effects on metabolism in mice. Our results suggest that the content of LA in VOs may be a matter of concern that warrants further investigation. PMID:23301026

  16. Rhabdomyosarcomas in Aging A/J Mice

    PubMed Central

    Sher, Roger B.; Cox, Gregory A.; Mills, Kevin D.; Sundberg, John P.

    2011-01-01

    Rhabdomyosarcomas (RSCs) are skeletal muscle neoplasms found in humans and domestic mammals. The A/J inbred strain developed a high frequency (between 70–80%) of adult pleomorphic type (APT) RSC at >20 months of age while BALB/cByJ also develop RSC but less frequently. These neoplasms invaded skeletal muscle surrounding either the axial or proximal appendicular skeleton and were characterized by pleomorphic cells with abundant eosinophilic cytoplasm, multiple nuclei, and cross striations. The diagnosis was confirmed by detection of alpha-sarcomeric actin and myogenin in the neoplastic cells using immunocytochemistry. The A/J strain, but not the related BALB/c substrains, is also characterised by a progressive muscular dystrophy homologous to limb-girdle muscular dystrophy type 2B. The association between the development of RSC in similar muscle groups to those most severely affected by the progressive muscular dystrophy suggested that these neoplasms developed from abnormal regeneration of the skeletal muscle exacerbated by the dysferlin mutation. Transcriptome analyses of RSCs revealed marked downregulation of genes in muscular development and function signaling networks. Non-synonymous coding SNPs were found in Myl1, Abra, Sgca, Ttn, and Kcnj12 suggesting these may be important in the pathogenesis of RSC. These studies suggest that A strains of mice can be useful models for dissecting the molecular genetic basis for development, progression, and ultimately for testing novel anticancer therapeutic agents dealing with rhabdomyosarcoma. PMID:21853140

  17. Cfh Genotype Interacts With Dietary Glycemic Index to Modulate Age-Related Macular Degeneration-Like Features in Mice

    PubMed Central

    Rowan, Sheldon; Weikel, Karen; Chang, Min-Lee; Nagel, Barbara A.; Thinschmidt, Jeffrey S.; Carey, Amanda; Grant, Maria B.; Fliesler, Steven J.; Smith, Donald; Taylor, Allen

    2014-01-01

    Purpose. Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Genetics and diet contribute to the relative risk for developing AMD, but their interactions are poorly understood. Genetic variations in Complement Factor H (CFH), and dietary glycemic index (GI) are major risk factors for AMD. We explored the effects of GI on development of early AMD-like features and changes to central nervous system (CNS) inflammation in Cfh-null mice. Methods. Aged 11-week-old wild type (WT) C57Bl/6J or Cfh-null mice were group pair-fed high or low GI diets for 33 weeks. At 10 months of age, mice were evaluated for early AMD-like features in the neural retina and RPE by light and electron microscopy. Brains were analyzed for Iba1 macrophage/microglia immunostaining, an indicator of inflammation. Results. The 10-month-old WT mice showed no retinal abnormalities on either diet. The Cfh-null mice, however, showed distinct early AMD-like features in the RPE when fed a low GI diet, including vacuolation, disruption of basal infoldings, and increased basal laminar deposits. The Cfh-null mice also showed thinning of the RPE, hypopigmentation, and increased numbers of Iba1-expressing macrophages in the brain, irrespective of diet. Conclusions. The presence of early AMD-like features by 10 months of age in Cfh-null mice fed a low GI diet is surprising, given the apparent protection from the development of such features in aged WT mice or humans consuming lower GI diets. Our findings highlight the need to consider gene–diet interactions when developing animal models and therapeutic approaches to treat AMD. PMID:24370827

  18. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet

    PubMed Central

    Wang, Jun

    2015-01-01

    BACKGROUND/OBJECTIVES The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. MATERIALS/METHODS Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. RESULTS Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). CONCLUSIONS Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism. PMID:26425278

  19. Bardoxolone methyl prevents insulin resistance and the development of hepatic steatosis in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Dinh, Chi H L; Wang, Hongqin; Cheng, Licai; Huang, Xu-Feng

    2015-09-01

    High-fat (HF) diet-induced obesity is a major risk factor for the development of insulin resistance and hepatic steatosis. We examined the hypothesis that bardoxolone methyl (BM) would prevent the development of insulin resistance and hepatic steatosis in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC), HF (40% fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 weeks. Glucose metabolism was assessed using a glucose tolerance test (GTT) and insulin sensitivity test (IST). Signalling molecules involved in insulin resistance, inflammation, and lipid metabolism were examined in liver tissue via western blotting and RT-PCR. BM prevented HF diet-induced insulin resistance and alterations in the protein levels of protein tyrosine phosphatase 1B (PTP1B), forkhead box protein O1 (FOXO1) and BDNF, and expression of the insulin receptor (IR), IRS-1 and glucose-6-phosphatase (G6Pase) genes. Furthermore, BM prevented fat accumulation in the liver and decreases in the β-oxidation gene, peroxisomal acyl-coenzyme A oxidase 1 (ACOX) in mice fed a HF diet. In the livers of HF fed mice, BM administration prevented HF diet-induced macrophage infiltration, inflammation as indicated by reduced IL-6 and signal transducer and activator of transcription 3 (STAT3) protein levels and TNFα mRNA expression, and increased nuclear factor-like 2 (Nrf2) mRNA expression and nuclear protein levels. These findings suggest that BM prevents HF diet induced insulin resistance and the development of hepatic steatosis in mice fed a chronic HF diet through modulation of molecules involved in insulin signalling, lipid metabolism and inflammation in the liver. PMID:26001833

  20. Liver Fatty Acid Binding Protein Gene-ablation Exacerbates Weight Gain in High-Fat Fed Female Mice

    PubMed Central

    McIntosh, Avery L.; Atshaves, Barbara P.; Landrock, Danilo; Landrock, Kerstin K.; Martin, Gregory G.; Storey, Stephen M.; Kier, Ann B.; Schroeder, Friedhelm

    2013-01-01

    Loss of liver fatty acid binding protein (L-FABP) decreases long chain fatty acid uptake and oxidation in primary hepatocytes and in vivo. On this basis, L-FABP gene ablation would potentiate high-fat diet-induced weight gain and weight gain/energy intake. While this was indeed the case when L-FABP null (−/−) mice on the C57BL/6NCr background were pair-fed high fat diet, whether this would also be observed under high-fat diet fed ad libitum was not known. Therefore, this possibility was examined in female L-FABP (−/−) mice on the same background. L-FABP (−/−) mice consumed equal amounts of defined high-fat or isocaloric control diets fed ad libitum. However, on the ad libitum fed high-fat diet the L-FABP (−/−) mice exhibited: 1) Decreased hepatic long chain fatty acid (LCFA) β-oxidation as indicated by lower serum β–hydroxybutyrate level; 2) Decreased hepatic protein levels of key enzymes mitochondrial (rate limiting carnitine palmitoyl acyltransferase A1, CPT1A; HMG-CoA synthase) and peroxisomal (acyl CoA oxidase 1, ACOX1) LCFA β-oxidation; 3) Increased fat tissue mass (FTM) and FTM/energy intake to the greatest extent; and 4) Exacerbated body weight gain, weight gain/energy intake, liver weight, and liver weight/body weight to the greatest extent. Taken together, these findings showed that L-FABP gene-ablation exacerbated diet-induced weight gain and fat tissue mass gain in mice fed high-fat diet ad libitum—consistent with the known biochemistry and cell biology of L-FABP. PMID:23539345

  1. Neutrophil depletion delays wound repair in aged mice

    PubMed Central

    Nishio, Naomi; Okawa, Yayoi; Sakurai, Hidetoshi

    2008-01-01

    One of the most important clinical problems in caring for elderly patients is treatment of pressure ulcers. One component of normal wound healing is the generation of an inflammatory reaction, which is characterized by the sequential infiltration of neutrophils, macrophages and lymphocytes. Neutrophils migrate early in the wound healing process. In aged C57BL/6 mice, wound healing is relatively inefficient. We examined the effects of neutrophil numbers on wound healing in both young and aged mice. We found that the depletion of neutrophils by anti-Gr-1 antibody dramatically delayed wound healing in aged mice. The depletion of neutrophils in young mice had less effect on the kinetics of wound healing. Intravenous G-CSF injection increased the migration of neutrophils to the wound site. While the rate of wound repair did not change significantly in young mice following G-CSF injection, it increased significantly in old mice. PMID:19424869

  2. Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet.

    PubMed

    Liu, Xiaoying; Henkel, Anne S; LeCuyer, Brian E; Schipma, Matthew J; Anderson, Kristy A; Green, Richard M

    2015-12-15

    Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat diet with fructose/sucrose causes progressive, fibrosing steatohepatitis. This study examines the role of XBP1 in nonalcoholic fatty liver injury and fatty acid-induced cell injury. Hepatocyte-specific Xbp1-deficient (Xbp1(-/-)) mice were fed a high-fat/sugar (HFS) diet for up to 16 wk. HFS-fed Xbp1(-/-) mice exhibited higher serum alanine aminotransferase levels compared with Xbp1(fl/fl) controls. RNA sequencing and Gene Ontogeny pathway analysis of hepatic mRNA revealed that apoptotic process, inflammatory response, and extracellular matrix structural constituent pathways had enhanced activation in HFS-fed Xbp1(-/-) mice. Liver histology demonstrated enhanced injury and fibrosis but less steatosis in the HFS-fed Xbp1(-/-) mice. Hepatic Col1a1 and Tgfβ1 gene expression, as well as Chop and phosphorylated JNK (p-JNK), were increased in Xbp1(-/-) compared with Xbp1(fl/fl) mice after HFS feeding. In vitro, stable XBP1-knockdown Huh7 cells (Huh7-KD) and scramble control cells (Huh7-SCR) were generated and treated with palmitic acid (PA) for 24 h. PA-treated Huh7-KD cells had increased cytotoxicity measured by lactate dehydrogenase release, apoptotic nuclei, and caspase3/7 activity assays compared with Huh7-SCR cells. CHOP and p-JNK expression was also increased in Huh7-KD cells following PA treatment. In conclusion, loss of XBP1 enhances injury in both in vivo and in vitro models of fatty liver injury. We speculate that hepatic XBP1 plays an important protective role in pathogenesis of NASH. PMID:26472223

  3. Lactobacillus gasseri SBT2055 inhibits adipose tissue inflammation and intestinal permeability in mice fed a high-fat diet.

    PubMed

    Kawano, Michio; Miyoshi, Masaya; Ogawa, Akihiro; Sakai, Fumihiko; Kadooka, Yukio

    2016-01-01

    The probiotic Lactobacillus gasseri SBT2055 (LG2055) has anti-obesity effects. Obesity is closely correlated with inflammation in adipose tissue, and maintaining adipose tissue in a less-inflamed state requires intestinal integrity or a barrier function to protect the intestine from the disruption that can be caused by a high-fat diet (HFD). Here, we examined the anti-inflammatory and intestinal barrier-protecting effects of LG2055 in C57BL/6 mice fed a normal-fat diet (NFD), HFD, or the HFD containing LG2055 (HFD-LG) for 21 weeks. HFD-LG intake significantly prevented HFD-induced increases in body weight, visceral fat mass, and the ratio of inflammatory-type macrophages to anti-inflammatory ones in adipose tissue. Mice fed the HFD showed higher intestinal permeability to a fluorescent dextran administered by oral administration and an elevated concentration of antibodies specific to lipopolysaccharides (LPS) in the blood compared with those fed the NFD, suggesting an increased penetration of the gut contents into the systemic circulation. These elevations of intestinal permeability and anti-LPS antibody levels were significantly suppressed in mice fed the HFD-LG. Moreover, treatment with LG2055 cells suppressed an increase in the cytokine-induced permeability of Caco-2 cell monolayers. These results suggest that LG2055 improves the intestinal integrity, reducing the entry of inflammatory substances like LPS from the intestine, which may lead to decreased inflammation in adipose tissue. PMID:27293560

  4. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice.

    PubMed

    Buras, Eric Dale; Yang, Lina; Saha, Pradip; Kim, Jongoh; Mehta, Pooja; Yang, Yisheng; Hilsenbeck, Susan; Kojima, Hideto; Chen, Wenhao; Smith, C Wayne; Chan, Lawrence

    2015-08-01

    Adipose tissue macrophages (ATMs) play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet (HFD)-induced obesity has been shown to lead to ATM accumulation in rodents; however, the impact of hyperglycemia on ATM dynamics in HFD-fed type 2 diabetic models has not been studied. We previously showed that hyperglycemia induces the appearance of proinsulin (PI)-producing proinflammatory bone marrow (BM)-derived cells (PI-BMDCs) in rodents. We fed a 60% HFD to C57BL6/J mice to produce an obese type 2 diabetes model. Absent in chow-fed animals, PI-BMDCs account for 60% of the ATMs in the type 2 diabetic mice. The PI-ATM subset expresses TNF-α and other inflammatory markers, and is highly enriched within crownlike structures (CLSs). We found that amelioration of hyperglycemia by different hypoglycemic agents forestalled PI-producing ATM accumulation and adipose inflammation in these animals. We developed a diphtheria toxin receptor-based strategy to selectively ablate PI-BMDCs among ATMs. Application of the maneuver in HFD-fed type 2 diabetic mice was found to lead to near total disappearance of complex CLSs and reversal of insulin resistance and hepatosteatosis in these animals. In sum, we have identified a novel ATM subset in type 2 diabetic rodents that underlies systemic insulin resistance. PMID:25953849

  5. Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice.

    PubMed

    Gahete, Manuel D; Córdoba-Chacón, José; Lantvit, Daniel D; Ortega-Salas, Rosa; Sanchez-Sanchez, Rafael; Pérez-Jiménez, Francisco; López-Miranda, José; Swanson, Steven M; Castaño, Justo P; Luque, Raúl M; Kineman, Rhonda D

    2014-11-01

    Growth hormone (GH) and/or insulin-like growth factor I (IGF-I) are thought to promote breast cancer based on reports showing circulating IGF-I levels correlate, in epidemiological studies, with breast cancer risk. Also, mouse models with developmental GH/IGF-I deficiency/resistance are less susceptible to genetic- or chemical-induced mammary tumorigenesis. However, given the metabolic properties of GH, medical strategies have been considered to raise GH to improve body composition and metabolic function in elderly and obese patients. Since hyperlipidemia, inflammation, insulin resistance and obesity increase breast cancer risk, elevating GH may serve to exacerbate cancer progression. To better understand the role GH/IGF-I plays in tumor formation, this study used unique mouse models to determine if reducing GH/IGF-I in adults protects against 7,12-dimethylbenz[α]anthracene (DMBA)-induced mammary tumor development, and if moderate elevations in endogenous GH/IGF-I alter DMBA-induced tumorigenesis in mice fed a standard-chow diet or in mice with altered metabolic function due to high-fat feeding. We observed that adult-onset isolated GH-deficient mice, which also have reduced IGF-I levels, were less susceptible to DMBA-treatment. Specifically, fewer adult-onset isolated GH-deficient mice developed mammary tumors compared with GH-replete controls. In contrast, chow-fed mice with elevated endogenous GH/IGF-I (HiGH mice) were not more susceptible to DMBA-treatment. However, high-fat-fed, HiGH mice showed reduced tumor latency and increased tumor incidence compared with diet-matched controls. These results further support a role of GH/IGF-I in regulating mammary tumorigenesis but suggest the ultimate consequences of GH/IGF-I on breast tumor development are dependent on the diet and/or metabolic status. PMID:25085903

  6. Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice.

    PubMed

    Pogue, A I; Dua, P; Hill, J M; Lukiw, W J

    2015-11-01

    At least 57 murine transgenic models for Alzheimer's disease (Tg-AD) have been developed to overexpress the 42 amino acid amyloid-beta (Aβ42) peptide in the central nervous system (CNS). These 'humanized murine Tg-AD models' have greatly expanded our understanding of the contribution of Aβ42 peptide-mediated pro-inflammatory neuropathology to the AD process. A number of independent laboratories using different amyloid-overexpressing Tg-AD models have shown that supplementation of murine Tg-AD diets and/or drinking water with aluminum significantly enhances Aβ42 peptide-mediated inflammatory pathology and AD-type cognitive change compared to animals receiving control diets. In humans AD-type pathology appears to originate in the limbic system and progressively spreads into primary processing and sensory regions such as the retina. In these studies, for the first time, we assess the propagation of Aβ42 and inflammatory signals into the retina of 5xFAD Tg-AD amyloid-overexpressing mice whose diets were supplemented with aluminum. The two most interesting findings were (1) that similar to other Tg-AD models, there was a significantly accelerated development of Aβ42 and inflammatory pathology in 5xFAD Tg-AD mice fed aluminum; and (2) in aluminum-supplemented animals, markers for inflammatory pathology appeared in both the brain and the retina as evidenced by an evolving presence of Aβ42 peptides, and accompanied by inflammatory markers - cyclooxygenase-2 (COX-2) and C-reactive protein (CRP). The results indicate that in the 5xFAD Tg-AD model aluminum not only enhances an Aβ42-mediated inflammatory degeneration of the brain but also appears to induce AD-type pathology in an anatomically-linked primary sensory area that involves vision. PMID:26213226

  7. Bardoxolone methyl prevents the development and progression of cardiac and renal pathophysiologies in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Wang, Hongqin; Dinh, Chi H L; Huang, Xu-Feng

    2016-01-01

    Obesity caused by the consumption of a high-fat (HF) diet is a major risk factor for the development of associated complications, such as heart and kidney failure. A semi-synthetic triterpenoid, bardoxolone methyl (BM) was administrated to mice fed a HF diet for 21 weeks to determine if it would prevent the development of obesity-associated cardiac and renal pathophysiologies. Twelve week old male C57BL/6J mice were fed a lab chow (LC), HF (40% fat), or a HF diet supplemented with 10 mg/kg/day BM in drinking water. After 21 weeks, the left ventricles of hearts and cortex of kidneys of mice were collected for analysis. Histological analysis revealed that BM prevented HF diet-induced development of structural changes in the heart and kidneys. BM prevented HF diet-induced decreases in myocyte number in cardiac tissue, although this treatment also elevated cardiac endothelin signalling molecules. In the kidneys, BM administration prevented HF diet-induced renal corpuscle hypertrophy and attenuated endothelin signalling. Furthermore, in both the hearts and kidneys of mice fed a HF diet, BM administration prevented HF diet-induced increases in fat accumulation, macrophage infiltration and tumour necrosis factor alpha (TNFα) gene expression. These findings suggest that BM prevents HF diet-induced developments of cardiac and renal pathophysiologies in mice fed a chronic HF diet by preventing inflammation. Moreover, these results suggest that BM has the potential as a therapeutic for preventing obesity-induced cardiac and renal pathophysiologies. PMID:26612656

  8. Oral Resveratrol Prevents Osteoarthritis Progression in C57BL/6J Mice Fed a High-Fat Diet

    PubMed Central

    Gu, Hailun; Li, Keyu; Li, Xingyao; Yu, Xiaolu; Wang, Wei; Ding, Lifeng; Liu, Li

    2016-01-01

    The effects of resveratrol on osteoarthritis (OA) pathogenesis have been demonstrated in vitro and in animal models employing intra-articular injections. However, the potential for oral resveratrol supplements to mediate protective effects on OA have not been examined. Therefore, the aim of the present study was to investigate the potential anti-OA effects of oral resveratrol on mice fed a high-fat diet (HFD). C57BL/6J male mice were fed either a standard diet or a HFD, and a subset of the latter also received varying doses of resveratrol. Twelve weeks later, all of the animals were sacrificed and knee joints were evaluated with histological, immunohistochemical, and TUNEL analyses. Mice that received a HFD had significantly greater body weights than the control mice and also exhibited features consistent with knee OA. The mice that received a HFD in combination with low, intermediate, or high doses of resveratrol were only slightly heavier than the control mice at the end of 12 weeks. Quantitative histological assessments indicated that resveratrol treatment partly recovered joint structure in the mice that received a HFD, while high doses of resveratrol prevented the degradation of type II collagen into C-telopeptide of type II collagen (CTX-II) and retained type II collagen expression in cartilage. Furthermore, TUNEL analyses revealed a reduction in chondrocyte apoptosis in the resveratrol-treated mice compared with the HFD mice. Thus, oral resveratrol appears to exert anti-OA effects in a mouse model of HFD-induced OA, thereby highlighting the potential preventive and therapeutic value of administering resveratrol for obesity-associated OA. PMID:27104565

  9. Oral Resveratrol Prevents Osteoarthritis Progression in C57BL/6J Mice Fed a High-Fat Diet.

    PubMed

    Gu, Hailun; Li, Keyu; Li, Xingyao; Yu, Xiaolu; Wang, Wei; Ding, Lifeng; Liu, Li

    2016-01-01

    The effects of resveratrol on osteoarthritis (OA) pathogenesis have been demonstrated in vitro and in animal models employing intra-articular injections. However, the potential for oral resveratrol supplements to mediate protective effects on OA have not been examined. Therefore, the aim of the present study was to investigate the potential anti-OA effects of oral resveratrol on mice fed a high-fat diet (HFD). C57BL/6J male mice were fed either a standard diet or a HFD, and a subset of the latter also received varying doses of resveratrol. Twelve weeks later, all of the animals were sacrificed and knee joints were evaluated with histological, immunohistochemical, and TUNEL analyses. Mice that received a HFD had significantly greater body weights than the control mice and also exhibited features consistent with knee OA. The mice that received a HFD in combination with low, intermediate, or high doses of resveratrol were only slightly heavier than the control mice at the end of 12 weeks. Quantitative histological assessments indicated that resveratrol treatment partly recovered joint structure in the mice that received a HFD, while high doses of resveratrol prevented the degradation of type II collagen into C-telopeptide of type II collagen (CTX-II) and retained type II collagen expression in cartilage. Furthermore, TUNEL analyses revealed a reduction in chondrocyte apoptosis in the resveratrol-treated mice compared with the HFD mice. Thus, oral resveratrol appears to exert anti-OA effects in a mouse model of HFD-induced OA, thereby highlighting the potential preventive and therapeutic value of administering resveratrol for obesity-associated OA. PMID:27104565

  10. Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides.

    PubMed

    Xu, Xiaofei; Yang, Jiguo; Ning, Zhengxiang; Zhang, Xuewu

    2016-01-01

    Lentinula edodes-derived polysaccharides are well known for their immunomodulation and antitumor activities. However, the mechanisms of action have not been fully elucidated. This study presents proteomic analysis of the colon and small intestine from mice fed with an immunostimulating heteropolysaccharide L2 from the fruit body of L. edodes. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS were employed to characterize the protein profiles. Twenty nine gel spots representing 20 proteins in colon tissues and 38 gel spots in small intestine tissues representing 23 proteins were identified as showing significant changes in abundance. These differential proteins in abundance are mainly involved in metabolism, binding, structural components, and response to stimulus. Protein-protein interaction network analysis demonstrated mapping of the 20 colon proteins to a 7-protein and a 3-protein sub-network, and mapping of the 23 small intestine proteins to a 9-protein and a 5-protein sub-network. All the 40 altered proteins were integrated into a unified network containing 25 proteins, suggesting the existence of a concerted mechanism, although acting on the colon and small intestine separately. These findings facilitate the understanding of the regulatory mechanism in response to L2 treatment. PMID:26392301

  11. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice.

    PubMed

    Tucsek, Zsuzsanna; Toth, Peter; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Warrington, Junie P; Giles, Cory B; Wren, Jonathan D; Koller, Akos; Ballabh, Praveen; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2014-11-01

    Epidemiological studies show that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular impairment, we compared young (7 months) and aged (24 months) high-fat diet-fed obese C57BL/6 mice. We found that aging exacerbates the obesity-induced decline in microvascular density both in the hippocampus and in the cortex. The extent of hippocampal microvascular rarefaction and the extent of impairment of hippocampal-dependent cognitive function positively correlate. Aging exacerbates obesity-induced loss of pericyte coverage on cerebral microvessels and alters hippocampal angiogenic gene expression signature, which likely contributes to microvascular rarefaction. Aging also exacerbates obesity-induced oxidative stress and induction of NADPH oxidase and impairs cerebral blood flow responses to whisker stimulation. Collectively, obesity exerts deleterious cerebrovascular effects in aged mice, promoting cerebromicrovascular rarefaction and neurovascular uncoupling. The morphological and functional impairment of the cerebral microvasculature in association with increased blood-brain barrier disruption and neuroinflammation (Tucsek Z, Toth P, Sosnowsk D, et al. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. J Gerontol Biol Med Sci. 2013. In press, PMID: 24269929) likely contribute to obesity-induced cognitive decline in aging. PMID:24895269

  12. Hhip haploinsufficiency sensitizes mice to age-related emphysema.

    PubMed

    Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong; Qiu, Weiliang; Guo, Feng; Huang, Chunfang; Mancini, John Dominic; Gupta, Kushagra; Laucho-Contreras, Maria E; Naing, Zun Zar Chi; Zhang, Li; Perrella, Mark A; Owen, Caroline A; Silverman, Edwin K; Zhou, Xiaobo

    2016-08-01

    Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip. PMID:27444019

  13. Dietary wolfberry supplementation enhances the protective effect of flu vaccine against influenza challenge in aged mice.

    PubMed

    Du, Xiaogang; Wang, Junpeng; Niu, Xinli; Smith, Donald; Wu, Dayong; Meydani, Simin Nikbin

    2014-02-01

    Current vaccines for influenza do not fully protect the aged against influenza infection. Although wolfberry (goji berry) has been shown to improve immune response, including enhanced antibody production, after vaccination in the aged, it is not known if this effect would translate to better protection after influenza infection, nor is its underlying mechanism well understood. To address these issues, we conducted a study using a 2 × 2 design in which aged male mice (20-22 mo) were fed a control or a 5% wolfberry diet for 30 d, then immunized with an influenza vaccine or saline (control) on days 31 and 52 of the dietary intervention, and finally challenged with influenza A/Puerto Rico/8/34 virus. Mice fed wolfberry had higher influenza antibody titers and improved symptoms (less postinfection weight loss) compared with the mice treated by vaccine alone. Furthermore, an in vitro mechanistic study showed that wolfberry supplementation enhanced maturation and activity of antigen-presenting dendritic cells (DCs) in aged mice, as indicated by phenotypic change in expression of DC activation markers major histocompatibility complex class II, cluster of differentiation (CD) 40, CD80, and CD86, and functional change in DC production of cytokines interleukin-12 and tumor necrosis factor-α as well as DC endocytosis. Also, adoptive transfer of wolfberry-treated bone marrow DCs (loaded with ovalbumin(323-339)-peptide) promoted antigen-specific T cell proliferation as well as interleukin-4 and interferon-γ production in CD4(+) T cells. In summary, our data indicate that dietary wolfberry enhances the efficacy of influenza vaccination, resulting in better host protection to prevent subsequent influenza infection; this effect may be partly attributed to improved DC function. PMID:24336457

  14. Liver fatty acid binding protein gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice.

    PubMed

    Martin, Gregory G; Atshaves, Barbara P; McIntosh, Avery L; Mackie, John T; Kier, Ann B; Schroeder, Friedhelm

    2006-01-01

    Although liver fatty acid binding protein (L-FABP) is postulated to influence cholesterol homeostasis, the physiological significance of this hypothesis remains to be resolved. This issue was addressed by examining the response of young (7 wk) female mice to L-FABP gene ablation and a cholesterol-rich diet. In control-fed mice, L-FABP gene ablation alone induced hepatic cholesterol accumulation (2.6-fold), increased bile acid levels, and increased body weight gain (primarily as fat tissue mass). In cholesterol-fed mice, L-FABP gene ablation further enhanced the hepatic accumulation of cholesterol (especially cholesterol ester, 12-fold) and potentiated the effects of dietary cholesterol on increased body weight gain, again mainly as fat tissue mass. However, in contrast to the effects of L-FABP gene ablation in control-fed mice, biliary levels of bile acids (as well as cholesterol and phospholipids) were reduced. These phenotypic alterations were not associated with differences in food intake. In conclusion, it was shown for the first time that L-FABP altered cholesterol metabolism and the response of female mice to dietary cholesterol. While the biliary and lipid phenotype of female wild-type L-FABP+/+ mice was sensitive to dietary cholesterol, L-FABP gene ablation dramatically enhanced many of the effects of dietary cholesterol to greatly induce hepatic cholesterol (primarily cholesterol ester) and triacylglycerol accumulation as well as to potentiate body weight gain (primarily as fat tissue mass). Taken together, these data support the hypothesis that L-FABP is involved in the physiological regulation of cholesterol metabolism, body weight gain, and obesity. PMID:16123197

  15. Infection susceptibility and immune senescence with advancing age replicated in accelerated aging Lmna(Dhe) mice.

    PubMed

    Xin, Lijun; Jiang, Tony T; Kinder, Jeremy M; Ertelt, James M; Way, Sing Sing

    2015-12-01

    Aging confers increased susceptibility to common pathogens including influenza A virus. Despite shared vulnerability to infection with advancing age in humans and rodents, the relatively long time required for immune senescence to take hold practically restricts the use of naturally aged mice to investigate aging-induced immunological shifts. Here, we show accelerated aging Lmna(Dhe) mice with spontaneous mutation in the nuclear scaffolding protein, lamin A, replicate infection susceptibility, and substantial immune cell shifts that occur with advancing age. Naturally aged (≥ 20 month) and 2- to 3-month-old Lmna(Dhe) mice share near identically increased influenza A susceptibility compared with age-matched Lmna(WT) control mice. Increased mortality and higher viral burden after influenza infection in Lmna(Dhe) mice parallel reduced accumulation of lung alveolar macrophage cells, systemic expansion of immune suppressive Foxp3⁺ regulatory T cells, and skewed immune dominance among viral-specific CD8⁺T cells similar to the immunological phenotype of naturally aged mice. Thus, aging-induced infection susceptibility and immune senescence are replicated in accelerated aging Lmna(Dhe) mice. PMID:26248606

  16. Peripheral Surgical Wounding and Age-Dependent Neuroinflammation in Mice

    PubMed Central

    Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction is associated with morbidity and mortality. However, its neuropathogenesis remains largely to be determined. Neuroinflammation and accumulation of β-amyloid (Aβ) have been reported to contribute to cognitive dysfunction in humans and cognitive impairment in animals. Our recent studies have established a pre-clinical model in mice, and have found that the peripheral surgical wounding without the influence of general anesthesia induces an age-dependent Aβ accumulation and cognitive impairment in mice. We therefore set out to assess the effects of peripheral surgical wounding, in the absence of general anesthesia, on neuroinflammation in mice with different ages. Abdominal surgery under local anesthesia was established in 9 and 18 month-old mice. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), Iba1 positive cells (the marker of microglia activation), CD33, and cognitive function in mice were determined. The peripheral surgical wounding increased the levels of TNF-α, IL-6, and Iba1 positive cells in the hippocampus of both 9 and 18 month-old mice, and age potentiated these effects. The peripheral surgical wounding increased the levels of CD33 in the hippocampus of 18, but not 9, month-old mice. Finally, anti-inflammatory drug ibuprofen ameliorated the peripheral surgical wounding-induced cognitive impairment in 18 month-old mice. These data suggested that the peripheral surgical wounding could induce an age-dependent neuroinflammation and elevation of CD33 levels in the hippocampus of mice, which could lead to cognitive impairment in aged mice. Pending further studies, anti-inflammatory therapies may reduce the risk of postoperative cognitive dysfunction in elderly patients. PMID:24796537

  17. Hypoglycemic and hepatoprotective effects of D-chiro-inositol-enriched tartary buckwheat extract in high fructose-fed mice.

    PubMed

    Hu, Yuanyuan; Zhao, Yan; Ren, Daoyuan; Guo, Jianjun; Luo, Yiyang; Yang, Xingbin

    2015-12-01

    This study was designed to investigate the protective effects of d-Chiro-Inositol (DCI) enriched tartary buckwheat extract (DTBE) against high fructose (HF) diet-induced hyperglycemia and liver injury in mice. HPLC analysis revealed that the content of DCI present in purified DTBE was 34.06%. Mice fed 20% fructose in drinking water for 8 weeks significantly displayed hyperglycemia, hyperinsulinemia, dyslipidemia, hepatic steatosis and oxidative stress (p < 0.01). Continuous administration of DTBE in HF-fed mice dose-dependently reduced the HF-induced elevation of body weight, serum glucose, insulin, total cholesterol (TC), total triglycerides (TG) and low density lipoprotein cholesterol (LDL-C) levels, as well as serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), C-reactive protein (CRP) and lactate dehydrogenase (LDH) activities, while the HF-induced decline of serum high density lipoprotein-cholesterol (HDL-C) levels could be markedly elevated in the mice. Meanwhile, DTBE also dose-dependently increased the hepatic total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities, and decreased hepatic malonaldehyde (MDA) levels, relative to HF-treated mice. Histopathology of H&E and Oil Red O staining confirmed liver injury induced by a HF diet and the hepatoprotective effect of DTBE. These findings are the first to demonstrate that the intake of DTBE may be a feasible preventive or therapeutic strategy for HF diet-induced hyperglycemia, hepatic steatosis and oxidative injury. PMID:26412138

  18. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice

    PubMed Central

    Park, Eun-Young; Choi, Hojung; Yoon, Ji-Young; Lee, In-Young; Seo, Youngwan; Moon, Hong-Seop; Hwang, Jong-Hee; Jun, Hee-Sook

    2015-01-01

    Ecklonia cava (E. cava; CA) is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA) on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1), the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism. PMID:26569269

  19. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice.

    PubMed

    Park, Eun-Young; Choi, Hojung; Yoon, Ji-Young; Lee, In-Young; Seo, Youngwan; Moon, Hong-Seop; Hwang, Jong-Hee; Jun, Hee-Sook

    2015-11-01

    Ecklonia cava (E. cava; CA) is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA) on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1), the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism. PMID:26569269

  20. Coenzyme Q10 and α-tocopherol reversed age-associated functional impairments in mice

    PubMed Central

    Shetty, Ritu A.; Ikonne, Uzoma S.; Forster, Michael J.; Sumien, Nathalie

    2014-01-01

    The purpose of this study was to determine if intake of the antioxidants coenzyme Q10 (CoQ10) or α-tocopherol (Toc), either alone or in combination, could ameliorate cognitive and psychomotor impairments of aged mice, as well as reduce oxidative burden in tissues. For a period of 10 weeks, male C57BL/6J mice (3 or 18 months) were fed either a control diet, or one of three diets supplemented with Toc, CoQ10 or their combination, and were tested for cognitive and psychomotor function. Old mice on the Toc or Toc/CoQ10 diets showed improved coordinated running performance. Mice on the diet containing Toc/CoQ10 demonstrated improved performance in the discriminated avoidance task. CoQ10 and Toc alone also resulted in improved performance, albeit to a lesser degree. Protein damage was decreased especially when the mice received Toc + CoQ10 combination. Overall, these results suggest that, Toc and CoQ supplementation can ameliorate age-related impairment and reduce protein oxidation. Moreover, concurrent supplementation of CoQ10 and Toc may be more effective than either antioxidant alone. PMID:25149567

  1. Hematopoiesis and aging. IV. Mass and distribution of erythroid marrow in aged mice

    SciTech Connect

    Boggs, D.R.

    1985-11-01

    Aged mice are ''anemic,'' i.e., they have a lower hematocrit than young adult mice, but this appears to be a ''dilutional'' anemia; the red cell mass is normal. Other observations have supported the hypothesis that basal erythropoiesis does not change as mice grow old. In the present study, the percentage of injected VZFe found in the skeleton and spleen, VZFe distribution between various bones and bone groups, and the number of nucleated erythroid cells per humerus were studied and the total mass of erythroid precursors was calculated. There was no significant difference in any of these values between mice aged 3-27 months. The variability of VZFe distribution within various skeletal parts was no greater in aged than in young mice. Thus, these data further strengthen the case for normal basal rates of erythropoiesis in aged mice.

  2. Respiratory and sniffing behaviors throughout adulthood and aging in mice

    PubMed Central

    Wesson, Daniel W.; Varga-Wesson, Adrienn G.; Borkowski, Anne H.; Wilson, Donald A.

    2011-01-01

    Orienting responses are physiological and active behavioral reactions evoked by novel stimulus perception and are critical for survival. We explored whether odor orienting responses are impacted throughout both adulthood and normal and pathological aging in mice. Novel odor investigation (including duration and bout numbers) and its subsequent habituation as assayed in the odor habituation task were preserved in adult C57BL/6J mice up to 12mo of age with <6% variability between age groups in investigation time. Separately, using whole-body plethysmography we found that both spontaneous respiration and odor-evoked sniffing behaviors were strikingly preserved in wildtype (WT) mice up to 26mo of age. In contrast, mice accumulating amyloid-β protein in the brain by means of overexpressing mutations in the human amyloid precursor protein gene (APP) showed preserved spontaneous respiration up to 12mo, but starting at 14mo showed significant differences from WT. Similar to WTs, odor-evoked sniffing was not impacted in APP mice up to 26mo. These results show that odor-orienting responses are minimally impacted throughout aging in mice, and suggest that the olfactomotor network is mostly spared of insults due to aging. PMID:21524667

  3. Body composition and selected blood parameters in mice fed a combination of fibre and conjugated linoleic acid.

    PubMed

    Javadi, M; Geelen, M J H; Everts, H; Lemmens, A G; Beynen, A C

    2007-12-01

    Feeding mice conjugated linoleic acid (CLA) reduces body fat. Soluble fibre decreases apparent lipid digestibility. The objective of the present study was to examine whether a combination of dietary CLA and soluble fibre would further decrease the proportion of body fat than a diet with CLA alone. Therefore, we fed mice diets with CLA and different amounts of Nutrim, containing 10% soluble fibre. CLA was added to the control diet at the expense of high oleic acid sunflower oil (HOSF) component and Nutrim was added at the expense of an isoenergetic combination of starch, dextrose and cellulose. The diets were fed for 28 days. Weight gain after 28 days was less in CLA-fed animals than in HOSF-fed animals. Both CLA and Nutrim increased the body water content. CLA reduced total body fat and epidydymal fat but Nutrim did not. No interaction of CLA and fibre was detected. We, therefore, must conclude that under the present experimental conditions dietary CLA and fibre do not interact to reduce body fat deposition. PMID:17988353

  4. Splenic Stromal Cells from Aged Mice Produce Higher Levels of IL-6 Compared to Young Mice

    PubMed Central

    Park, Jihyun; Miyakawa, Takuya; Shiokawa, Aya; Nakajima-Adachi, Haruyo; Hachimura, Satoshi

    2014-01-01

    Inflamm-aging indicates the chronic inflammatory state resulting from increased secretion of proinflammatory cytokines and mediators such as IL-6 in the elderly. Our principle objective was to identify cell types that were affected with aging concerning IL-6 secretion in the murine model. We compared IL-6 production in spleen cells from both young and aged mice and isolated several types of cells from spleen and investigated IL-6 mRNA expression and protein production. IL-6 protein productions in cultured stromal cells from aged mice spleen were significantly high compared to young mice upon LPS stimulation. IL-6 mRNA expression level of freshly isolated stromal cells from aged mice was high compared to young mice. Furthermore, stromal cells of aged mice highly expressed IL-6 mRNA after LPS injection in vivo. These results suggest that stromal cells play a role in producing IL-6 in aged mice and imply that they contribute to the chronic inflammatory condition in the elderly. PMID:24729663

  5. Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure.

    PubMed

    Williams, Ian M; Otero, Yolanda F; Bracy, Deanna P; Wasserman, David H; Biaggioni, Italo; Arnold, Amy C

    2016-05-01

    Angiotensin-(1-7) improves glycemic control in animal models of cardiometabolic syndrome. The tissue-specific sites of action and blood pressure dependence of these metabolic effects, however, remain unclear. We hypothesized that Ang-(1-7) improves insulin sensitivity by enhancing peripheral glucose delivery. Adult male C57BL/6J mice were placed on standard chow or 60% high-fat diet for 11 weeks. Ang-(1-7) (400 ng/kg per minute) or saline was infused subcutaneously during the last 3 weeks of diet, and hyperinsulinemic-euglycemic clamps were performed at the end of treatment. High-fat fed mice exhibited modest hypertension (systolic blood pressure: 137 ± 3 high fat versus 123 ± 5 mm Hg chow;P=0.001), which was not altered by Ang-(1-7) (141 ± 4 mm Hg;P=0.574). Ang-(1-7) did not alter body weight or fasting glucose and insulin in chow or high-fat fed mice. Ang-(1-7) increased the steady-state glucose infusion rate needed to maintain euglycemia in high-fat fed mice (31 ± 5 Ang-(1-7) versus 16 ± 1 mg/kg per minute vehicle;P=0.017) reflecting increased whole-body insulin sensitivity, with no effect in chow-fed mice. The improved insulin sensitivity in high-fat fed mice was because of an enhanced rate of glucose disappearance (34 ± 5 Ang-(1-7) versus 20 ± 2 mg/kg per minute vehicle;P=0.049). Ang-(1-7) enhanced glucose uptake specifically into skeletal muscle by increasing translocation of glucose transporter 4 to the sarcolemma. Our data suggest that Ang-(1-7) has direct insulin-sensitizing effects on skeletal muscle, independent of changes in blood pressure. These findings provide new insight into mechanisms by which Ang-(1-7) improves insulin action, and provide further support for targeting this peptide in cardiometabolic disease. PMID:26975707

  6. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice.

    PubMed

    Zhou, Peng; Werner, John H; Lee, Donghoon; Sheppard, Aaron D; Liangpunsakul, Suthat; Duffield, Giles E

    2015-06-01

    Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ∼4-h and ∼6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ∼11 h and ∼6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian

  7. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice

    PubMed Central

    Zhou, Peng; Werner, John H.; Lee, Donghoon; Sheppard, Aaron D.; Liangpunsakul, Suthat; Duffield, Giles E.

    2015-01-01

    Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ~4-h and ~6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ~11 h and ~6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian timing

  8. Age dependent course of EAE in Aire-/- mice.

    PubMed

    Aharoni, Rina; Aricha, Revital; Eilam, Raya; From, Ido; Mizrahi, Keren; Arnon, Ruth; Souroujon, Miriam C; Fuchs, Sara

    2013-09-15

    This study explores the consequences of deficiency in the autoimmune regulator (Aire) on the susceptibility to experimental autoimmune encephalomyelitis (EAE). Increased susceptibility to EAE was found in Aire knockout (KO) compared to wild type (WT) in 6month old mice. In contrast, 2month old Aire KO mice were less susceptible to EAE than WT mice, and this age-related resistance correlated with elevated proportions of T regulatory (Treg) cells in their spleen and brain. Combined with our previous findings in experimental autoimmune myasthenia gravis, we suggest an age-related association between Aire and Treg cells in the susceptibility to autoimmunity. PMID:23849800

  9. [Effects of experimental Listeria monocytogenes infection on mice fed on lamprey or sardine oil prepared under high-temperature deodorization].

    PubMed

    Mineo, S; Konishi, Y; Satoh, K; Yanagisawa, A; Ishikawa, K; Kurata, M

    1992-01-01

    Fresh lamprey (F-La) or sardine (F-Sa) oil is known to contain a large amount of n-3 polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. When F-La or F-Sa was deodorized with steam at 280 degrees C under 1 mmHg for 1 h (H-La and H-Sa, respectively), the contents of EPA and DHA were reduced and unidentified peaks were newly detected by gas-liquid chromatography. To know the biological influences of these high-temperature deodorized oils, the sterilizing function of the macrophage against Listeria monocytogenes was investigated in male ddY mice fed H-La or H-Sa. One week feeding of H-La or H-Sa lowered the LD50 values of the bacteria injected intravenously. Numbers of the viable bacteria on the day 3 after intravenous injection were about 10 times higher in the liver and 5 times higher in the spleen of mice fed H-La or H-Sa as compared with those of the control group. These results suggest that the sterilizing function of fixed macrophages both in the liver and the spleen was suppressed in mice fed H-La or H-Sa. PMID:1578344

  10. Dietary Fat and Aging Modulate Apoptotic Signaling in Liver of Calorie-Restricted Mice

    PubMed Central

    López-Domínguez, José Alberto; Khraiwesh, Husam; González-Reyes, José Antonio; López-Lluch, Guillermo; Navas, Plácido; Ramsey, Jon Jay; de Cabo, Rafael; Burón, María Isabel

    2015-01-01

    Imbalance between proliferation and cell death accounts for several age-linked diseases. Aging, calorie restriction (CR), and fat source are all factors that may influence apoptotic signaling in liver, an organ that plays a central metabolic role in the organism. Here, we have studied the combined effect of these factors on a number of apoptosis regulators and effectors. For this purpose, animals were fed diets containing different fat sources (lard, soybean oil, or fish oil) under CR for 6 or 18 months. An age-linked increase in the mitochondrial apoptotic pathway was detected with CR, including a decrease in Bcl-2/Bax ratio, an enhanced release of cytochrome c to the cytosol and higher caspase-9 activity. However, these changes were not fully transmitted to the effectors apoptosis-inducing factor and caspase-3. CR (which abated aging-related inflammatory responses) and dietary fat altered the activities of caspases-8, -9, and -3. Apoptotic index (DNA fragmentation) and mean nuclear area were increased in aged animals with the exception of calorie-restricted mice fed a lard-based fat source. These results suggest possible protective changes in hepatic homeostasis with aging in the calorie-restricted lard group. PMID:24691092

  11. Myeloid SIRT1 regulates macrophage infiltration and insulin sensitivity in mice fed a high-fat diet.

    PubMed

    Ka, Sun-O; Song, Mi-Young; Bae, Eun Ju; Park, Byung-Hyun

    2015-02-01

    Inflammation is an important factor in the development of insulin resistance. SIRT1, a class 3 histone/protein deacetylase, has anti-inflammatory functions. Myeloid-specific deletion of Sirt1 promotes macrophage infiltration into insulin-sensitive organs and aggravates tissue inflammation. In this study, we investigated how SIRT1 in macrophages alters tissue inflammation in the pancreas as well as liver and adipose tissue, and further explored the role of SIRT1 in locomotion of macrophages. Myeloid-specific Sirt1-deleted mice (mS1KO) and WT littermates were fed a 60% calorie high-fat diet (HFD) for 16 weeks. Tissue inflammation and metabolic phenotypes were compared. Bone marrow macrophages (BMMs) from WT or mS1KO mice were used in in vitro chemotaxis assays and macrophage polarization studies. mS1KO mice fed a HFD exhibited glucose intolerance, reduced insulin secretion, and insulin sensitivity with a slight decrease in body weight. Consistent with these results, pancreatic islets of mS1KO mice fed a HFD displayed decreased mass with profound apoptotic cell damage and increased macrophage infiltration and inflammation. Liver and adipose tissues from mS1KO HFD mice also showed greater accumulation of macrophages and tissue inflammation. Results from in vitro experiments indicated that deletion of myeloid Sirt1 stimulated proinflammatory M1-like polarization of BMMs and augmented the adipocyte-mediated macrophage chemotaxis. The latter effect was accompanied by increased expression and acetylation of focal adhesion kinase, as well as nuclear factor kappa B. Our results indicate that myeloid SIRT1 plays a crucial role in macrophage polarization and chemotaxis, and thus regulates the development of HFD-induced pancreatic inflammation and insulin secretion, and metabolic derangements in liver and adipose tissue. PMID:25349250

  12. Caspase-2 Deficiency Enhances Aging-Related Traits in Mice

    PubMed Central

    Zhang, Yingpei; Padalecki, Susan S; Chaudhuri, Asish R; Waal, Eric De; Goins, Beth A; Grubbs, Barry; Ikeno, Yuji; Richardson, Arlan; Mundy, Gregory R; Herman, Brian

    2007-01-01

    Alteration of apoptotic activity has been observed in a number of tissues in aging mammals, but it remains unclear whether and/or how apoptosis may affect aging. Caspase-2 is a member of the cysteine protease family that plays a critical role in apoptosis. To understand the impact of compromised apoptosis function on mammalian aging, we conducted a comparative study on caspase-2 deficient mice and their wild-type littermates with a specific focus on the aging-related traits at advanced ages. We found that caspase-2 deficiency enhanced a number of traits commonly seen in premature aging animals. Loss of caspase-2 was associated with shortened maximum lifespan, impaired hair growth, increased bone loss, and reduced body fat content. In addition, we found that the livers of caspase-2 deficient mice had higher levels of oxidized proteins than those of age-matched wild-type mice, suggesting that caspase-2 deficiency compromised the animal's ability to clear oxidatively damaged cells. Collectively, these results suggest that caspase-2 deficiency affects aging in the mice. This study thus demonstrates for the first time that disruption of a key apoptotic gene has a significant impact on aging. PMID:17188333

  13. A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice.

    PubMed

    Collins, Brian; Hoffman, Jessie; Martinez, Kristina; Grace, Mary; Lila, Mary Ann; Cockrell, Chase; Nadimpalli, Anuradha; Chang, Eugene; Chuang, Chia-Chi; Zhong, Wei; Mackert, Jessica; Shen, Wan; Cooney, Paula; Hopkins, Robin; McIntosh, Michael

    2016-05-01

    The objective of this study was to determine if consuming an extractable or nonextractable fraction of table grapes reduced the metabolic consequences of consuming a high-fat, American-type diet. Male C57BL/6J mice were fed a low fat (LF) diet, a high fat (HF) diet, or an HF diet containing whole table grape powder (5% w/w), an extractable, polyphenol-rich (HF-EP) fraction, a nonextractable, polyphenol-poor (HF-NEP) fraction or equal combinations of both fractions (HF-EP+NEP) from grape powder for 16weeks. Mice fed the HF-EP and HF-EP+NEP diets had lower percentages of body fat and amounts of white adipose tissue (WAT) and improved glucose tolerance compared to the HF-fed controls. Mice fed the HF-EP+NEP diet had lower liver weights and triglyceride (TG) levels compared to the HF-fed controls. Mice fed the HF-EP+NEP diets had higher hepatic mRNA levels of hormone sensitive lipase and adipose TG lipase, and decreased expression of c-reactive protein compared to the HF-fed controls. In epididymal (visceral) WAT, the expression levels of several inflammatory genes were lower in mice fed the HF-EP and HF-EP+NEP diets compared to the HF-fed controls. Mice fed the HF diets had increased myeloperoxidase activity and impaired localization of the tight junction protein zonula occludens-1 in ileal mucosa compared to the HF-EP and HF-NEP diets. Several of these treatment effects were associated with alterations in gut bacterial community structure. Collectively, these data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming an HF diet. PMID:27133434

  14. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice

    PubMed Central

    Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921

  15. Rodents for comparative aging studies: from mice to beavers.

    PubMed

    Gorbunova, Vera; Bozzella, Michael J; Seluanov, Andrei

    2008-09-01

    After humans, mice are the best-studied mammalian species in terms of their biology and genetics. Gerontological research has used mice and rats extensively to generate short- and long-lived mutants, study caloric restriction and more. Mice and rats are valuable model organisms thanks to their small size, short lifespans and fast reproduction. However, when the goal is to further extend the already long human lifespan, studying fast aging species may not provide all the answers. Remarkably, in addition to the fast-aging species, the order Rodentia contains multiple long-lived species with lifespans exceeding 20 years (naked mole-rat, beavers, porcupines, and some squirrels). This diversity opens great opportunities for comparative aging studies. Here we discuss the evolution of lifespan in rodents, review the biology of slow-aging rodents, and show an example of how the use of a comparative approach revealed that telomerase activity coevolved with body mass in rodents. PMID:19424861

  16. Absence of cytoglobin promotes multiple organ abnormalities in aged mice

    PubMed Central

    Thuy, Le Thi Thanh; Van Thuy, Tuong Thi; Matsumoto, Yoshinari; Hai, Hoang; Ikura, Yoshihiro; Yoshizato, Katsutoshi; Kawada, Norifumi

    2016-01-01

    Cytoglobin (Cygb) was identified in hepatic stellate cells (HSCs) and pericytes of all organs; however, the effects of Cygb on cellular functions remain unclear. Here, we report spontaneous and age-dependent malformations in multiple organs of Cygb−/− mice. Twenty-six percent of young Cygb−/− mice (<1 year old) showed heart hypertrophy, cystic disease in the kidney or ovary, loss of balance, liver fibrosis and lymphoma. Furthermore, 71.3% (82/115) of aged Cygb−/− mice (1–2 years old) exhibited abnormalities, such as heart hypertrophy and cancer development in multiple organs; by contrast, 5.8% (4/68) of aged wild-type (WT) mice had abnormalities (p < 0.0001). Interestingly, serum and urine analysis demonstrated that the concentration of nitric oxide metabolites increased significantly in Cygb−/− mice, resulting in an imbalance in the oxidative stress and antioxidant defence system that was reversed by NG-monomethyl-L-arginine treatment. A senescent phenotype and evidence of DNA damage were found in primary HSCs and the liver of aged Cygb−/− mice. Moreover, compared with HSC+/+, HSC−/− showed high expression of Il-6 and chemokine mRNA when cocultured with mouse Hepa 1–6 cells. Thus, the absence of Cygb in pericytes provokes organ abnormalities, possibly via derangement of the nitric oxide and antioxidant defence system and through accelerated cellular senescence. PMID:27146058

  17. DNA aptamer raised against advanced glycation end products (AGEs) improves glycemic control and decreases adipocyte size in fructose-fed rats by suppressing AGE-RAGE axis.

    PubMed

    Ojima, A; Matsui, T; Nakamura, N; Higashimoto, Y; Ueda, S; Fukami, K; Okuda, S; Yamagishi, S

    2015-04-01

    Advanced glycation end products (AGEs) decrease adiponectin expression and suppress insulin signaling in cultured adipocytes through the interaction with a receptor for AGEs (RAGE) via oxidative stress generation. We have recently found that high-affinity DNA aptamer directed against AGE (AGE-aptamer) prevents the progression of experimental diabetic nephropathy by blocking the harmful actions of AGEs in the kidney. This study examined the effects of AGE-aptamer on adipocyte remodeling, AGE-RAGE-oxidative stress axis, and adiponectin expression in fructose-fed rats. Although AGE-aptamer treatment by an osmotic mini pump for 8 weeks did not affect serum insulin levels, it significantly decreased average fasting blood glucose and had a tendency to inhibit body weight gain in fructose-fed rats. Furthermore, AGE-aptamer significantly suppressed the increase in adipocyte size and prevented the elevation in AGEs, RAGE, and an oxidative stress marker, 8-hydroxydeoxyguanosine (8-OHdG), levels in adipose tissues of fructose-fed rats at 14-week-old, while it restored the decrease in adiponectin mRNA levels. Our present study suggests that AGE-aptamer could improve glycemic control and prevent adipocyte remodeling in fructose-fed rats partly by suppressing the AGE-RAGE-mediated oxidative stress generation. AGE-aptamer might be a novel therapeutic strategy for fructose-induced metabolic derangements. PMID:25105541

  18. p13 overexpression in pancreatic β-cells ameliorates type 2 diabetes in high-fat-fed mice.

    PubMed

    Higashi, Shintaro; Katagi, Kazuhiko; Shintani, Norihito; Ikeda, Kazuya; Sugimoto, Yukihiko; Tsuchiya, Soken; Inoue, Naoki; Tanaka, Shota; Koumoto, Mai; Kasai, Atsushi; Nakazawa, Takanobu; Hayata-Takano, Atsuko; Hamagami, Ken-Ichi; Tomimoto, Shuhei; Yoshida, Takuya; Ohkubo, Tadayasu; Nagayasu, Kazuki; Ago, Yukio; Onaka, Yusuke; Hashimoto, Ryota; Ichikawa, Atsushi; Baba, Akemichi; Hashimoto, Hitoshi

    2015-06-12

    We examined the pancreatic function of p13 encoded by 1110001J03Rik, whose expression is decreased in pancreatic islets in high-fat-fed diabetic mice, by generating transgenic mice overexpressing p13 (p13-Tg) in pancreatic β-cells. p13-Tg mice showed normal basal glucose metabolism; however, under high-fat feeding, these animals showed augmented glucose-induced first-phase and total insulin secretion, improved glucose disposal, greater islet area and increased mitotic insulin-positive cells. In addition, high-fat diet-induced 4-hydroxynonenal immunoreactivity, a reliable marker and causative agent of lipid peroxidative stress, was significantly decreased in p13-Tg mouse islets. These results indicate that p13 is a novel pancreatic factor exerting multiple beneficial effects against type 2 diabetes. PMID:25912136

  19. Reactive Oxygen Species Differentially Regulate Bone Turnover in an Age-Specific Manner in Catalase Transgenic Female Mice.

    PubMed

    Alund, Alexander W; Mercer, Kelly E; Suva, Larry J; Pulliam, Casey F; Chen, Jin-Ran; Badger, Thomas M; Van Remmen, Holly; Ronis, Martin J J

    2016-07-01

    Chronic ethyl alcohol (EtOH) consumption results in reactive oxygen species (ROS) generation in bone and osteopenia due to increased bone resorption and reduced bone formation. In this study, transgenic C57Bl/6J mice overexpressing human catalase (TgCAT) were used to test whether limiting excess hydrogen peroxide would protect against EtOH-mediated bone loss. Micro-computed tomography analysis of the skeletons of 6-week-old female chow-fed TgCAT mice revealed a high bone mass phenotype with increased cortical bone area and thickness as well as significantly increased trabecular bone volume (P < 0.05). Six-week-old wild-type (WT) and TgCAT female mice were chow fed or pair fed (PF) liquid diets with or without EtOH, approximately 30% of calories, for 8 weeks. Pair feeding of WT had no demonstrable effect on the skeleton; however, EtOH feeding of WT mice significantly reduced cortical and trabecular bone parameters along with bone strength compared with PF controls (P < 0.05). In contrast, EtOH feeding of TgCAT mice had no effect on trabecular bone compared with PF controls. At 14 weeks of age, there was significantly less trabecular bone and cortical cross-sectional area in TgCAT mice than WT mice (P < 0.05), suggesting impaired normal bone accrual with age. TgCAT mice expressed less collagen1α and higher sclerostin mRNA (P < 0.05), suggesting decreased bone formation in TgCAT mice. In conclusion, catalase overexpression resulted in greater bone mass than in WT mice at 6 weeks and lower bone mass at 14 weeks. EtOH feeding induced significant reductions in bone architecture and strength in WT mice, but TgCAT mice were partially protected. These data implicate ROS signaling in the regulation of bone turnover in an age-dependent manner, and indicate that excess hydrogen peroxide generation contributes to alcohol-induced osteopenia. PMID:27189961

  20. Polyphenol-rich blackcurrant extract exerts hypocholesterolaemic and hypoglycaemic effects in mice fed a diet containing high fat and cholesterol.

    PubMed

    Benn, Tyler; Kim, Bohkyung; Park, Young-Ki; Yang, Yue; Pham, Tho X; Ku, Chai Siah; Farruggia, Callie; Harness, Ellen; Smyth, Joan A; Lee, Ji-Young

    2015-06-14

    Obesity is associated with an increased risk of metabolic abnormalities, such as hyperlipidaemia and hyperglycaemia. We investigated whether polyphenol-rich blackcurrant extract (BCE) can prevent high fat/high cholesterol (HF/HC) diet-induced metabolic disturbances in mice. Male C57BL/6J mice were fed a modified AIN-93M diet containing HF/HC (16% fat, 0·25% cholesterol, w/w) or the same diet supplemented with 0·1% BCE (w/w) for 12 weeks. There were no differences in total body weight and liver weight between groups. Plasma total cholesterol (TC) and glucose levels were significantly lower in BCE group than in controls, while plasma TAG levels were not significantly different. There was a decreasing trend in hepatic TAG levels, and histological evaluation of steatosis grade was markedly lower in the livers of mice fed BCE. Although the mRNA levels of major regulators of hepatic cholesterol metabolism, i.e. 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) and LDL receptor (LDLR), were not significantly altered by BCE supplementation, protein expression of mature sterol-regulatory element-binding protein and LDLR was significantly increased with no change in HMGR protein. The expression of proprotein convertase subtilisin/kexin type 9 that facilitates LDLR protein degradation, as well as one of its transcriptional regulators, i.e. hepatocyte nuclear factor 4α, was significantly decreased in the livers of mice fed BCE. Taken together, BCE supplementation decreased plasma TC and glucose, and inhibited liver steatosis, suggesting that this berry may be consumed to prevent metabolic dysfunctions induced by diets high in fat and cholesterol. PMID:25899149

  1. Body composition and grip strength are improved in transgenic sickle mice fed a high-protein diet.

    PubMed

    Capers, Patrice L; Hyacinth, Hyacinth I; Cue, Shayla; Chappa, Prasanthi; Vikulina, Tatyana; Roser-Page, Susanne; Weitzmann, M Neale; Archer, David R; Newman, Gale W; Quarshie, Alexander; Stiles, Jonathan K; Hibbert, Jacqueline M

    2015-01-01

    Key pathophysiology of sickle cell anaemia includes compensatory erythropoiesis, vascular injury and chronic inflammation, which divert amino acids from tissue deposition for growth/weight gain and muscle formation. We hypothesised that sickle mice maintained on an isoenergetic diet with a high percentage of energy derived from protein (35 %), as opposed to a standard diet with 20 % of energy derived from protein, would improve body composition, bone mass and grip strength. Male Berkeley transgenic sickle mice (S; n 8-12) were fed either 20 % (S20) or 35 % (S35) diets for 3 months. Grip strength (BIOSEB meter) and body composition (dual-energy X-ray absorptiometry scan) were measured. After 3 months, control mice had the highest bone mineral density (BMD) and bone mineral content (BMC) (P < 0·005). S35 mice had the largest increase in grip strength. A two-way ANOVA of change in grip strength (P = 0·043) attributed this difference to genotype (P = 0·025) and a trend in type of diet (P = 0·067). l-Arginine (l-Arg) supplementation of the 20 % diet was explored, as a possible mechanism for improvement obtained with the 35 % diet. Townes transgenic sickle mice (TS; n 6-9) received 0·8, 1·6, 3·2 or 6·4 % l-Arg based on the same protocol and outcome measures used for the S mice. TS mice fed 1·6 % l-Arg for 3 months (TS1.6) had the highest weight gain, BMD, BMC and lean body mass compared with other groups. TS3.2 mice showed significantly more improvement in grip strength than TS0·8 and TS1.6 mice (P < 0·05). In conclusion, the high-protein diet improved body composition and grip strength. Outcomes observed with TS1.6 and TS3.2 mice, respectively, confirm the hypothesis and reveal l-Arg as part of the mechanism. PMID:26090102

  2. Hepatocyte-Specific Disruption of CD36 Attenuates Fatty Liver and Improves Insulin Sensitivity in HFD-Fed Mice.

    PubMed

    Wilson, Camella G; Tran, Jennifer L; Erion, Derek M; Vera, Nicholas B; Febbraio, Maria; Weiss, Ethan J

    2016-02-01

    CD36/FAT (fatty acid translocase) is associated with human and murine nonalcoholic fatty liver disease, but it has been unclear whether it is simply a marker or whether it directly contributes to disease pathogenesis. Mice with hepatocyte-specific deletion of Janus kinase 2 (JAK2L mice) have increased circulating free fatty acids (FAs), dramatically increased hepatic CD36 expression and profound fatty liver. To investigate the role of elevated CD36 in the development of fatty liver, we studied two models of hepatic steatosis, a genetic model (JAK2L mice) and a high-fat diet (HFD)-induced steatosis model. We deleted Cd36 specifically in hepatocytes of JAK2L mice to generate double knockouts and from wild-type mice to generate CD36L single-knockout mice. Hepatic Cd36 disruption in JAK2L livers significantly improved steatosis by lowering triglyceride, diacylglycerol, and cholesterol ester content. The largest differences in liver triglycerides were in species comprised of oleic acid (C18:1). Reduction in liver lipids correlated with an improvement in the inflammatory markers that were elevated in JAK2L mice, namely aspartate aminotransferase and alanine transaminase. Cd36 deletion in mice on HFD (CD36L-HFD) reduced liver lipid content and decreased hepatic 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-FA uptake as compared with CON-HFD. Additionally, CD36L-HFD mice had improved whole-body insulin sensitivity and reduced liver and serum inflammatory markers. Therefore, CD36 directly contributes to development of fatty liver under conditions of elevated free FAs by modulating the rate of FA uptake by hepatocytes. In HFD-fed animals, disruption of hepatic Cd36 protects against associated systemic inflammation and insulin resistance. PMID:26650570

  3. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    PubMed

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  4. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice

    PubMed Central

    van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-01-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  5. Assessment the levels of tartrate-resistant acid phosphatase (TRAP) on mice fed with eggshell calcium citrate malate.

    PubMed

    Yu, Yiding; Zhang, Mingdi; Lin, Songyi; Wang, Liyan; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-07-01

    Optimized conditions were obtained by one-factor-at-a-time test (OFAT) and ternary quadratic regression orthogonal composite design (TQROCD) respectively. By pulse electric fields (PEF) technology, the process of eggshell calcium citrate malate (ESCCM), eggshell calcium citrate (ESCC) and eggshells calcium malate (ESCM) were comprehensive compared. The levels of tartrate-resistant acid phosphatase (TRAP) and the bioavailability on mice fed with eggshell calcium citrate malate (ESCCM) treated by pulsed electric field (PEF) were evaluated. Results showed that the rates of calcium dissolution of the different acids studied can be arranged as ESCCM (7.90 mg/mL)>ESCC (7.12 mg/mL)>ESCM (7.08 mg/mL) from highest to lowest rate of dissolution. At the same dose 133.0 mg kg(-1) d(-1), the levels of TRAP in the ESCCM treatment groups were significantly lower than those in ESCM and ESCC (P<0.05). Bone calcium content in the mice fed with ESCCM was generally higher than fed with ESCM and ESCC. PMID:23603074

  6. Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice.

    PubMed

    Baboota, Ritesh K; Murtaza, Nida; Jagtap, Sneha; Singh, Dhirendra P; Karmase, Aniket; Kaur, Jaspreet; Bhutani, Kamlesh K; Boparai, Ravneet K; Premkumar, Louis S; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2014-09-01

    Obesity is a global health problem and recently it has been seen as a growing concern for developing countries. Several bioactive dietary molecules have been associated with amelioration of obesity and associated complications and capsaicin is one among them. The present work is an attempt to understand and provide evidence for the novel mechanisms of anti-obesity activity of capsaicin in high fat diet (HFD)-fed mice. Swiss albino mice divided in three groups (n=8-10) i.e. control, HFD fed and capsaicin (2mg/kg, po)+HFD fed were administered respective treatment for 3months. After measuring phenotypic and serum related biochemical changes, effect of capsaicin on HFD-induced transcriptional changes in hypothalamus, white adipose tissue (WAT) (visceral and subcutaneous), brown adipose tissue (BAT) and gut microbial alterations was studied and quantified. Our results suggest that, in addition to its well-known effects, oral administration of capsaicin (a) modulates hypothalamic satiety associated genotype, (b) alters gut microbial composition, (c) induces "browning" genotype (BAT associated genes) in subcutaneous WAT and (d) increases expression of thermogenesis and mitochondrial biogenesis genes in BAT. The present study provides evidence for novel and interesting mechanisms to explain the anti-obesity effect of capsaicin. PMID:24917046

  7. Effect of Erabu sea snake (Laticauda semifasciata) lipids on the swimming endurance of aged mice.

    PubMed

    Zhang, Guihua; Shirai, Nobuya; Higuchi, Tomoyuki; Suzuki, Hiramitsu; Shimizu, Eiji

    2007-12-01

    The effect of Erabu sea snake (Laticauda semifasciata) lipids on the swimming endurance was investigated in aged mice. Fifty three-week-old male Crlj:CD-1 (ICR) mice were fed one of three experimental diets containing either 6% lard, 6% fish oil, or 6% sea snake lipids for 16 wk. The swimming exercise was carried out in an acrylic plastic tank filled with 25 cm of water maintained at 23(o)C. Swimming times to exhaustion were measured with a load of 2% of their body weights attached to the tails of the mice. The swimming times to exhaustion of the group that were fed the sea snake lipid diet tended to be longer than those of the lard diet group, and were significantly improved compared with the fish oil diet group (p<0.05). The plasma and muscle lactate levels were significantly lower in the sea snake lipid diet group than in the lard and fish oil diet groups (p<0.05). The liver glycogen and plasma glucose levels of the sea snake lipid diet group did not differ markedly from those of the lard diet group (p>0.05), and were significantly higher than those of the fish oil diet group (p<0.05). These results suggest that an intake of sea snake lipids but not the fish oil, which is also rich in n-3 polyunsaturated fatty acids (n-3 PUFAs), is useful for improving the swimming endurance of aged mice by attenuating lactate production and/or enhancing lactate clearance during swimming exercise, and the n-3 PUFAs contained in the sea snake lipids did little or nothing for this improved endurance. PMID:18202534

  8. Aged Mice Repeatedly Injected with Plasma from Young Mice: A Survival Study

    PubMed Central

    Shytikov, Dmytro; Balva, Olexiy; Debonneuil, Edouard; Glukhovskiy, Pavel

    2014-01-01

    Abstract It was reported using various biological models that the administration of blood factors from young animals to old animals could rejuvenate certain functions. To assess the anti-aging effect of young blood we tested the influence of repeated injections of plasma from young mice on the lifespan of aged mice. One group of 36 CBA/Ca female mice aged 10–12 months was treated by repeated injections of plasma from 2- to 4-month-old females (averaging 75–150 μL per injection, once intravenously and once intraperitoneally per week for 16 months). Their lifespan was compared to a control group that received saline injections. The median lifespan of mice from the control group was 27 months versus 26.4 months in plasma-treated group; the repeated injections of young plasma did not significantly impact either median or maximal lifespan. PMID:25371859

  9. Effect of dietary Maitake (Grifola frondosa) mushrooms on plasma cholesterol and hepatic gene expression in cholesterol-fed mice.

    PubMed

    Sato, Mayumi; Tokuji, Yoshihiko; Yoneyama, Shozo; Fujii-Akiyama, Kyoko; Kinoshita, Mikio; Chiji, Hideyuki; Ohnishi, Masao

    2013-01-01

    To investigate the effects of dietary Grifola frondosa on cholesterol, normal mice were fed a diet containing 1% cholesterol (HC group) or 1% cholesterol and 10% freeze-dried G. frondosa powder (HC+G group) for 4 weeks and hepatic and plasma lipid levels were compared with those of a cholesterol-free diet-fed mice (N group). Hepatic total cholesterol (TC), triacylglycerol contents were considerably increased and plasma TC / phospholipid (PL) was also increased significantly in the HC group compared with the N group. However, plasma TC content decreased in the HC+G group compared with the HC group. To characterize the mechanisms responsible for lowered plasma cholesterol in G. frondosa-supplemented mice, hepatic gene expression was profiled using DNA microarray and gene ontology. Genome analyses revealed that de novo cholesterol synthesis genes were suppressed following cholesterol intake. However, expression of bile acid biosynthesis and low-density lipoprotein receptor genes showed little change. Scarb1, Abcg5, and Abcg8, involved in cholesterol transport and excretion, were slightly upregulated in the HC+G group compared with the HC group. These data indicate the plasma cholesterol-lowering effect of G. frondosa. Moreover, fatty acid (FA) β-oxidation was promoted via adipocytokine signaling pathways, and Saa, encodes serum amyloid A related to arteriosclerosis, was suppressed in the HC+G group. PMID:24292357

  10. Myeloid-specific SIRT1 Deletion Aggravates Hepatic Inflammation and Steatosis in High-fat Diet-fed Mice

    PubMed Central

    Kim, Kyung Eun; Kim, Hwajin; Heo, Rok Won; Shin, Hyun Joo; Yi, Chin-ok; Lee, Dong Hoon; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung

    2015-01-01

    Sirtuin 1 (SIRT1) is a mammalian NAD+-dependent protein deacetylase that regulates cellular metabolism and inflammatory response. The organ-specific deletion of SIRT1 induces local inflammation and insulin resistance in dietary and genetic obesity. Macrophage-mediated inflammation contributes to insulin resistance and metabolic syndrome, however, the macrophage-specific SIRT1 function in the context of obesity is largely unknown. C57/BL6 wild type (WT) or myeloid-specific SIRT1 knockout (KO) mice were fed a high-fat diet (HFD) or normal diet (ND) for 12 weeks. Metabolic parameters and markers of hepatic steatosis and inflammation in liver were compared in WT and KO mice. SIRT1 deletion enhanced HFD-induced changes on body and liver weight gain, and increased glucose and insulin resistance. In liver, SIRT1 deletion increased the acetylation, and enhanced HFD-induced nuclear translocation of nuclear factor kappa B (NF-κB), hepatic inflammation and macrophage infiltration. HFD-fed KO mice showed severe hepatic steatosis by activating lipogenic pathway through sterol regulatory element-binding protein 1 (SREBP-1), and hepatic fibrogenesis, as indicated by induction of connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA), and collagen secretion. Myeloid-specific deletion of SIRT1 stimulates obesity-induced inflammation and increases the risk of hepatic fibrosis. Targeted induction of macrophage SIRT1 may be a good therapy for alleviating inflammation-associated metabolic syndrome. PMID:26330758

  11. Intermittent access to liquid sucrose differentially modulates energy intake and related central pathways in control or high-fat fed mice.

    PubMed

    Soto, Marion; Chaumontet, Catherine; Even, Patrick C; Nadkarni, Nachiket; Piedcoq, Julien; Darcel, Nicolas; Tomé, Daniel; Fromentin, Gilles

    2015-03-01

    Intake of sodas has been shown to increase energy intake and to contribute to obesity in humans and in animal models, although the magnitude and importance of these effects are still debated. Moreover, intake of sugar sweetened beverages is often associated with high-fat food consumption in humans. We studied two different accesses to a sucrose-sweetened water (SSW, 12.3%, a concentration similar to that usually found in sugar sweetened beverages) in C57BL/6 mice fed a normal-fat (NF) or a high-fat (HF) diet in a scheduled access (7.5h). NF-fed and HF-fed mice received during 5weeks access to water, to SSW continuously for 7.5h (SSW), or to water plus SSW for 2h (randomly-chosen time slot for only 5 random days/week) (SSW-2h). Mouse preference for SSW was greater in HF-fed mice than NF-fed mice. Continuous SSW access induced weight gain whatever the diet and led to greater caloric intake than mice drinking water in NF-fed mice and in the first three weeks in HF-fed mice. In HF-fed mice, 2h-intermittent access to SSW induced a greater body weight gain than mice drinking water, and led to hyperphagia on the HF diet when SSW was accessible compared to days without SSW 2h-access (leading to greater overall caloric intake), possibly through inactivation of the anorexigenic neuropeptide POMC in the hypothalamus. This was not observed in NF-fed mice, but 2h-intermittent access to SSW stimulated the expression of dopamine, opioid and endocannabinoid receptors in the nucleus accumbens compared to water-access. In conclusion, in mice, a sucrose solution provided 2h-intermittently and a high-fat diet have combined effects on peripheral and central homeostatic systems involved in food intake regulation, a finding which has significant implications for human obesity. PMID:25484353

  12. Metabolomic and genomic profiling of n-3 polyunsaturated fatty acid effects on muscle metabolism in mice fed a high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported that feeding mice high-fat (HF) diets enriched with eicosapentaenoic acid (EPA) decreased inflammation, adiposity and insulin resistance. In the current study, we used skeletal muscle from mice fed HF or HF-EPA for 11 weeks to further dissect mechanisms mediating EPA effects o...

  13. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice.

    PubMed

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S; Baek, Jeong-Hwa

    2014-09-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss. PMID:24393528

  14. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice

    PubMed Central

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S.; Baek, Jeong-Hwa

    2014-01-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss. [BMB Reports 2014; 47(9): 506-511] PMID:24393528

  15. Morphoquantitative analysis of the Ileum of C57BL/6 mice (Mus musculus) fed with a high-fat diet

    PubMed Central

    Navarrete, Javiera; Vásquez, Bélgica; del Sol, Mariano

    2015-01-01

    Due to the increase in overweight and obesity in humans, various studies have been conducted in recent years that demonstrate the detrimental effects on tissues and organs. The aim of this study was to assess the morphoquantitative changes produced in the ileum of mice, associated with high-fat diets. Fourteen male C57BL/6 mice, 5 months old, were fed two types of diets for 14 weeks. The control group (C) was fed a standard diet (10% fat, AIN-93M) and the experimental group (E) was fed a high-fat diet (42% fat, AIN-93M-AG). The assessments included: body weight, calorie consumption, food efficiency, biochemical analysis of plasma lipids, diameter, total wall thickness, thickness of the tunica mucosa and tunica muscularis, length and width of the intestinal villi, depth of the intestinal crypts and number of goblet cells per mm-2 (NA). For the statistical analysis the Student’s t-test was used, considering a P value less than 0.05. The mice in the E group presented greater weight gain (P = 0.028), higher levels of total and LDL cholesterol (P = 0.03 and P = 0.01, respectively), and length of the intestinal villi (P = 0.000). The width of the intestinal villi and the NA of PAS-positive goblet cells presented significantly lower values (P = 0.037 and P = 0.039, respectively) than the C group. The observed changes could be related to the higher demand for fat absorption and to possible alterations in the intestinal microflora and inflammation by action of high-fat diets. PMID:26823788

  16. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet

    PubMed Central

    Srivastava, Shireesh; Kashiwaya, Yoshihiro; King, M. Todd; Baxa, Ulrich; Tam, Joseph; Niu, Gang; Chen, Xiaoyuan; Clarke, Kieran; Veech, Richard L.

    2012-01-01

    We measured the effects of a diet in which d-β-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-β-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [18F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.—Srivastava, S., Kashiwaya, Y., King, M. T. Baxa, U., Tam, J., Niu, G., Chen, X., Clarke, K., Veech, R. L. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. PMID:22362892

  17. Improved endothelial dysfunction by Cynanchum wilfordii in apolipoprotein E(-/-) mice fed a high fat/cholesterol diet.

    PubMed

    Choi, Deok Ho; Lee, Yun Jung; Oh, Hyun Cheol; Cui, Ying Lan; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-02-01

    Cynanchum wilfordii is used in traditional Chinese medicine with almost all parts of this plant considered beneficial for various vascular diseases. This study was performed to evaluate the effect of an ethanol extract of C. wilfordii (ECW) on vascular dysfunction in apolipoprotein E (apoE)(-/-) mice fed with high fat/cholesterol diets (HFCDs). The apoE(-/-) mice were fed HFCD consisting of 7.5% cocoa butter and 1.25% cholesterol, with or without 100 or 200 mg/day/kg ECW. Chronic ECW treatment significantly lessened the level of low-density lipoprotein (P<.05) and elevated that of high-density lipoprotein-cholesterol (P<.01). Chronic ECW treatment normalized the HFCD-induced increase in systolic blood pressure, maintained smooth and soft intimal endothelial layers, and decreased intima-media thickness in aortic sections of HFCD-fed apoE(-/-) mice. ECW significantly restored the diet-induced decrease in vasorelaxation response to acetylcholine; however, the response to sodium nitroprusside did not change. ECW clearly restored the HFCD-induced reduction in endothelial nitric oxide synthase expression levels in aortic tissue, leading to decreased vascular inflammation through an inhibition of cellular adhesion molecules such as E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1 as well as endothelin-1 (ET-1) expression. In conclusion, ECW ameliorates endothelial dysfunction via improvement of the nitric oxide/cyclic GMP signaling pathway in a diet/genetic model of hyperlipidemia. ECW also substantially inhibited the development of atherosclerosis, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation, suggesting a vascular protective role for this herb in the treatment and prevention of atherosclerotic vascular disease. PMID:22082065

  18. Improved Endothelial Dysfunction by Cynanchum wilfordii in Apolipoprotein E−/− Mice Fed a High Fat/Cholesterol Diet

    PubMed Central

    Choi, Deok Ho; Lee, Yun Jung; Oh, Hyun Cheol; Cui, Ying Lan; Kim, Jin Sook

    2012-01-01

    Abstract Cynanchum wilfordii is used in traditional Chinese medicine with almost all parts of this plant considered beneficial for various vascular diseases. This study was performed to evaluate the effect of an ethanol extract of C. wilfordii (ECW) on vascular dysfunction in apolipoprotein E (apoE)−/− mice fed with high fat/cholesterol diets (HFCDs). The apoE−/− mice were fed HFCD consisting of 7.5% cocoa butter and 1.25% cholesterol, with or without 100 or 200 mg/day/kg ECW. Chronic ECW treatment significantly lessened the level of low-density lipoprotein (P<.05) and elevated that of high-density lipoprotein-cholesterol (P<.01). Chronic ECW treatment normalized the HFCD-induced increase in systolic blood pressure, maintained smooth and soft intimal endothelial layers, and decreased intima-media thickness in aortic sections of HFCD-fed apoE−/− mice. ECW significantly restored the diet-induced decrease in vasorelaxation response to acetylcholine; however, the response to sodium nitroprusside did not change. ECW clearly restored the HFCD-induced reduction in endothelial nitric oxide synthase expression levels in aortic tissue, leading to decreased vascular inflammation through an inhibition of cellular adhesion molecules such as E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1 as well as endothelin-1 (ET-1) expression. In conclusion, ECW ameliorates endothelial dysfunction via improvement of the nitric oxide/cyclic GMP signaling pathway in a diet/genetic model of hyperlipidemia. ECW also substantially inhibited the development of atherosclerosis, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation, suggesting a vascular protective role for this herb in the treatment and prevention of atherosclerotic vascular disease. PMID:22082065

  19. Myeloid Cell-Specific ABCA1 Deletion Has Minimal Impact on Atherogenesis in Atherogenic Diet-Fed LDL Receptor Knockout Mice

    PubMed Central

    Bi, Xin; Zhu, Xuewei; Gao, Chuan; Shewale, Swapnil; Cao, Qiang; Liu, Mingxia; Boudyguina, Elena; Gebre, Abraham K.; Wilson, Martha D.; Brown, Amanda L.; Parks, John S.

    2014-01-01

    Objective Transplantation studies suggest that bone marrow (BM) cell ABCA1 protects against atherosclerosis development. However, the in vivo impact of macrophage ABCA1 expression on atherogenesis is not fully understood because BM contains other leukocytes and hematopoietic stem and progenitor cells. Myeloid-specific ABCA1 knockout (MSKO) mice in the LDL receptor knockout (LDLrKO) C57BL/6 background were developed to address this question. Approach and Results Chow-fed MSKO/LDLrKO (DKO) vs. LDLrKO (SKO) mice had similar plasma lipid concentrations, but atherogenic diet (AD)-fed DKO mice had reduced plasma VLDL/LDL concentrations resulting from decreased hepatic VLDL triglyceride secretion. Resident peritoneal macrophages from AD-fed DKO vs. SKO mice had significantly higher cholesterol content, but similar proinflammatory gene expression. Atherosclerosis extent was similar between genotypes after 10–16 wks of AD, but increased modestly in DKO mice by 24 wks of AD. Lesional macrophage content was similar, likely due to higher monocyte flux through aortic root lesions in DKO vs. SKO mice. After transplantation of DKO or SKO BM into SKO mice and 16 wk of AD feeding, atherosclerosis extent was similar and plasma apoB lipoproteins was reduced in mice receiving DKO BM. When differences in plasma VLDL/LDL concentrations were minimized by maintaining mice on chow for 24 wks, DKO mice had modest, but significantly more, atherosclerosis compared to SKO mice. Conclusions Myeloid cell ABCA1 increases hepatic VLDL triglyceride secretion and plasma VLDL/LDL concentrations in AD-fed LDLrKO mice, offsetting its atheroprotective role in decreasing macrophage cholesterol content, resulting in minimal increase in atherosclerosis. PMID:24833800

  20. Effects of escin mixture from the seeds of Aesculus hippocastanum on obesity in mice fed a high fat diet.

    PubMed

    Avci, Gülcan; Küçükkurt, Ismail; Küpeli Akkol, Esra; Yeşilada, Erdem

    2010-03-01

    Escins, a triterpene glycoside mixture obtained from the ethanol extract of Aesculus hippocastanum L. (Hippocastanaceae) seed, was evaluated for its in vivo effects on the plasma levels of some hormones (leptin, insulin, FT(3), FT(4)) and biochemical parameters (glucose, triglyceride, total cholesterol, HDL-C, LDL-C concentrations) in mice fed with a high fat diet for 5 weeks. A high fat diet induced a remarkable increment in the plasma leptin (p <0.01), total cholesterol (p <0.01) and LDL-C (p <0.001) concentrations compared to control group animals. Combined administration of a high-fat diet with escins decreased leptin (31.6%) (p<0.05) and FT(4) (36.0%) (p<0.05) levels, increased HDL-C concentration (17.0%), while remained ineffective on LDL-C concentration in mice. Results have shown that escins may have beneficial effects in the understanding of obesity. PMID:20645808

  1. Effects of Long-Term Rice Bran Extract Supplementation on Survival, Cognition and Brain Mitochondrial Function in Aged NMRI Mice.

    PubMed

    Hagl, Stephanie; Asseburg, Heike; Heinrich, Martina; Sus, Nadine; Blumrich, Eva-Maria; Dringen, Ralf; Frank, Jan; Eckert, Gunter P

    2016-09-01

    Aging represents a major risk factor for the development of neurodegenerative diseases like Alzheimer's disease (AD). As mitochondrial dysfunction plays an important role in brain aging and occurs early in the development of AD, the prevention of mitochondrial dysfunction might help to slow brain aging and the development of neurodegenerative diseases. Rice bran extract (RBE) contains high concentrations of vitamin E congeners and γ-oryzanol. We have previously shown that RBE increased mitochondrial function and protected from mitochondrial dysfunction in vitro and in short-term in vivo feeding studies. To mimic the use of RBE as food additive, we have now investigated the effects of a long-term (6 months) feeding of RBE on survival, behavior and brain mitochondrial function in aged NMRI mice. RBE administration significantly increased survival and performance of aged NMRI mice in the passive avoidance and Y-maze test. Brain mitochondrial dysfunction found in aged mice was ameliorated after RBE administration. Furthermore, data from mRNA and protein expression studies revealed an up-regulation of mitochondrial proteins in RBE-fed mice, suggesting an increase in mitochondrial content which is mediated by a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)-dependent mechanism. Our findings suggest that a long-term treatment with a nutraceutical containing RBE could be useful for slowing down brain aging and thereby delaying or even preventing AD. PMID:27350374

  2. Combination of conjugated linoleic acid with fish oil prevents age-associated bone marrow adiposity in C57Bl/6J mice

    PubMed Central

    Halade, Ganesh V; Rahman, Md M; Williams, Paul J; Fernandes, Gabriel

    2010-01-01

    The inverse relationship between fat in bone marrow and bone mass in the skeleton of aging subjects is well-known. However, there is no precise therapy for the treatment of bone marrow adiposity. We investigated the ability of conjugated linoleic acid (CLA) and fish oil (FO), alone or in combination, to modulate bone loss using 12 months old C57Bl/6J mice fed 10% corn oil (CO) diet as control or supplemented with 0.5% CLA or 5% FO or 0.5% CLA+5% FO for 6 months. We found, CLA fed mice exhibited reduced body weight, body fat mass (BFM), and enhanced hind leg lean mass (HLLM) and bone mineral density (BMD) in different regions measured by DXA; however, associated with fatty liver and increased insulin resistance; whereas, FO fed mice exhibited enhanced BMD, improved insulin sensitivity, with no changes in BFM and HLLM. Interestingly, CLA+FO fed mice exhibited reduced body weight, BFM, PPARγ and cathepsin K expression in bone marrow with enhanced BMD and HLLM. Moreover, CLA+FO supplementation reduced liver hypertrophy and improved insulin sensitivity with remarkable attenuation of bone marrow adiposity, inflammation and oxidative stress in aging mice. Therefore, CLA with FO combination might be a novel dietary supplement to reduce fat mass and improve BMD. PMID:20656466

  3. Reduction of intestinal polyp formation in min mice fed a high-fat diet with aloe vera gel extract.

    PubMed

    Chihara, Takeshi; Shimpo, Kan; Beppu, Hidehiko; Tomatsu, Akiko; Kaneko, Takaaki; Tanaka, Miyuki; Yamada, Muneo; Abe, Fumiaki; Sonoda, Shigeru

    2013-01-01

    Aloe vera gel supercritical CO2 extract (AVGE) has been shown to contain five phytosterols, reduce visceral fat accumulation, and influence the metabolism of glucose and lipids in animal model experiments. Recent epidemiologic studies have shown that obesity is an established risk factor for several cancers including colorectal cancer. Therefore, we examined the effects of AVGE on intestinal polyp formation in Apc-deficient Min mice fed a high-fat diet. Male Min mice were divided into normal diet (ND), high fat diet (HFD), low dose AVGE (HFD+LAVGE) and high dose AVGE (HFD+HAVGE) groups. The ND group received AIN-93G diet and the latter 3 groups were given modified high-fat AIN-93G diet (HFD) for 7 weeks. AVGE was suspended in 0.5% carboxymethyl cellulose (CMC) and administered orally to mice in HFD+LAVGE and HFD+HAVGE groups every day (except on Sunday) for 7 weeks at a dose of 3.75 and 12.5 mg/kg body weight, respectively. ND and HFD groups received 0.5% CMC alone. Between weeks 4 and 7, body weights in the HFD and HFD+LAVGE groups were reduced more than those in the ND group. However, body weights were not reduced in the HFD+HAVGE group. Mice were sacrificed at the end of the experiment and their intestines were scored for polyps. No significant differences were observed in either the incidence and multiplicity of intestinal polyps (≥0.5 mm in a diameter) among the three groups fed HFD. However, when intestinal polyps were categorized by their size into 0.5-1.4, 1.5-2.4, or ≥2.5 mm, the incidence and multiplicity of large polyps (≥2.5 mm) in the intestine in the HFD+HAVGE group were significantly lower than those in the HFD group. We measured plasma lipid (triglycerides and total cholesterol) and adipocytokine [interleukin-6 and high molecular weight (HMW) adiponectin] levels as possible indicators of mechanisms of inhibition. The results showed that HMW adiponectin levels in the HFD group were significantly lower than those in the ND group. However, the

  4. Pulmonary effects of inhaled diesel exhaust in aged mice

    SciTech Connect

    Sunil, Vasanthi R.; Patel, Kinal J.; Mainelis, Gediminas; Turpin, Barbara J.; Ridgely, Sherritta; Laumbach, Robert J.; Kipen, Howard M.; Nazarenko, Yevgen; Veleeparambil, Manoj; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2009-12-15

    Pulmonary morbidity and mortality resulting from exposure to fine particulate matter (PM) increases with age. The present studies analyzed potential mechanisms underlying increased susceptibility of the elderly to PM using diesel exhaust (DE) as a model. Mice (2 m and 18 m) were exposed to DE (0, 300, and 1000 mug/m{sup 3}) for 3 h once (single) or 3 h/day for 3 days (repeated). Bronchoalveolar lavage fluid (BAL), serum and lung tissue were collected 0 and 24 h later. Exposure to DE resulted in structural alterations in the lungs of older but not younger mice, including patchy thickening of the alveolar septa and inflammatory cell localization in alveolar spaces. These effects were most pronounced 24 h after a single exposure to the higher dose of DE. Significant increases in BAL nitrogen oxides were also noted in older mice, as well as expression of lipocalin 24p3, an oxidative stress marker in the lung with no effects in younger mice. Following DE inhalation, expression of Tumor Necrosis Factor alpha (TNFalpha) was upregulated in lungs of both younger and older mice; however, this was attenuated in older animals. Whereas exposure to DE resulted in increases in lung Interleukin-6 (IL-6) expression in both older and younger mice, IL-8 increased only in older animals. In younger mice, constitutive expression of manganese superoxide dismutase (MnSOD) decreased after DE exposure, while in older mice, constitutive MnSOD was not detectable and DE had no effect on expression of this antioxidant. Taken together, these results suggest that altered generation of inflammatory mediators and MnSOD may contribute to increased susceptibility of older mice to inhaled DE.

  5. Pulmonary effects of inhaled diesel exhaust in aged mice

    PubMed Central

    Sunil, Vasanthi R.; Patel, Kinal J.; Mainelis, Gediminas; Turpin, Barbara J.; Ridgely, Sherritta; Laumbach, Robert J.; Kipen, Howard M.; Nazarenko, Yevgen; Veleeparambil, Manoj; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-01-01

    Pulmonary morbidity and mortality resulting from exposure to fine particulate matter (PM) increases with age. The present studies analyzed potential mechanisms underlying increased susceptibility of the elderly to PM using diesel exhaust (DE) as a model. Mice (2 m and 18 m) were exposed to DE (0, 300, and 1000 μg/m3) for 3 h once (single) or 3 h/day for 3 days (repeated). Bronchoalveolar lavage fluid (BAL), serum and lung tissue were collected 0 and 24 h later. Exposure to DE resulted in structural alterations in the lungs of older but not younger mice, including patchy thickening of the alveolar septa and inflammatory cell localization in alveolar spaces. These effects were most pronounced 24 h after a single exposure to the higher dose of DE. Significant increases in BAL nitrogen oxides were also noted in older mice, as well as expression of lipocalin 24p3, an oxidative stress marker in the lung with no effects in younger mice. Following DE inhalation, expression of Tumor Necrosis Factor alpha (TNFα) was upregulated in lungs of both younger and older mice; however, this was attenuated in older animals. Whereas exposure to DE resulted in increases in lung Interleukin-6 (IL-6) expression in both older and younger mice, IL-8 increased only in older animals. In younger mice, constitutive expression of manganese superoxide dismutase (MnSOD) decreased after DE exposure, while in older mice, constitutive MnSOD was not detectable and DE had no effect on expression of this antioxidant. Taken together, these results suggest that altered generation of inflammatory mediators and MnSOD may contribute to increased susceptibility of older mice to inhaled DE. PMID:19729031

  6. Vascular dysfunction in young, mid-aged and aged mice with latent cytomegalovirus infections

    PubMed Central

    Gombos, R. B.; Brown, J. C.; Teefy, J.; Gibeault, R. L.; Conn, K. L.; Schang, L. M.

    2013-01-01

    Human cytomegalovirus (HCMV) is associated with vascular diseases in both immunosuppressed and immunocompetent individuals. CMV infections cycle between active and latent phases throughout life. We and others have shown vascular dysfunction during active mouse CMV (mCMV) infections. Few studies have examined changes in physiology during latent CMV infections, particularly vascular responses or whether the negative effects of aging on vascular function and fertility will be exacerbated under these conditions. We measured vascular responses in intact mesenteric and uterine arteries dissected from young, mid-aged, and aged latently mCMV-infected (mCMV genomes are present but infectious virus is undetectable) and age-matched uninfected mice using a pressure myograph. We tested responses to the α1-adrenergic agonist phenylephrine, the nitric oxide donor sodium nitroprusside, and the endothelium-dependent vasodilator methacholine. In young latently mCMV-infected mice, vasoconstriction was increased and vasodilation was decreased in mesenteric arteries, whereas both vasoconstriction and vasodilation were increased in uterine arteries compared with those in age-matched uninfected mice. In reproductively active mid-aged latently infected mice, mesenteric arteries showed little change, whereas uterine arteries showed greatly increased vasoconstriction. These vascular effects may have contributed to the decreased reproductive success observed in mid-aged latently mCMV-infected compared with age-matched uninfected mice (16.7 vs. 46.7%, respectively). In aged latently infected mice, vasodilation is increased in mesenteric and uterine arteries likely to compensate for increased vasoconstriction to mediators other than phenylephrine. The novel results of this study show that even when active mCMV infections become undetectable, vascular dysfunction continues and differs with age and artery origin. PMID:23125213

  7. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet

    PubMed Central

    Orellana, Juan A.; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  8. Hypolipidemic effect of n-butanol Extract from Asparagus officinalis L. in mice fed a high-fat diet.

    PubMed

    Zhu, Xinglei; Zhang, Wen; Pang, Xiufeng; Wang, Jiesi; Zhao, Jingjing; Qu, Weijing

    2011-08-01

    During industrial processing of Asparagus (Asparagus officinalis L.), around half of each spear is discarded. However, these discarded asparagus (by-products) might be used as food supplements for their potential therapeutic effects. This study evaluated the hypolipidemic effect of n-butanol extract (BEA) from asparagus by-products in mice fed a high-fat diet (HFD). Continuous HFD feeding caused hyperlipidemia, oxidative stress and liver damage in mice. Interestingly, while BEA significantly decreased the levels of body weight gain, serum total cholesterol and low density lipoprotein cholesterol, it dramatically increased the high density lipoprotein level when administered at three different doses (40, 80 or 160 mg/kg body weight) for 8 weeks in hyperlipidemic mice. In addition, BEA decreased the levels of alanine transaminase, aspartate transaminase and alkaline phosphatase in serum. Finally, superoxide dismutase activity and the total antioxidation capacity were evidently increased, while the malondialdehyde level and the distribution of lipid droplets were reduced in liver cells of BEA-treated mice. Taken together, the findings of this study suggested that BEA had a strong hypolipidemic function and could be used as a supplement in healthcare foods and drugs or in combination with other hypolipidemic drugs. PMID:21280112

  9. Fatty Acid Composition of Adipose Tissues in Obese Mice and SD Rats Fed with Isaria sinclairii Powder

    PubMed Central

    Ahn, Mi Young; Seo, Yun Jung; Ji, Sang Deok; Han, Jea Woong; Hwang, Jae Sam; Yun, Eun Young

    2010-01-01

    Isaria sinclairii (Cicada Dongchunghacho) was studied as a potential crude natural food in powdered form. The role of tissue fatty acids in relation to the anti-obesity effects of I. sinclairii (IS) was examined by feeding the powder to SD rats ad libitum at 0, 1.25, 2.5, 5 and 10% (calculated about 8 g/kg) of the feed for a period of 3 months and 6 months. The fatty acid composition profile as indicated GC-MS, showed significantly slight dose-dependent increases in the levels of unsaturated fatty acids, particularly, arachidonic acid (C20: 4n6) , oleic acid, linoleic acid, eicosadienoic acid, eicosapentaenoic acid (EPA) (C20: 5) concentration in the the ad libitum IS-fed groups compared to the control group in SD abdominal fat over 6 month period. Over viewing of the SD and Ob mice treated Isaria sinclairii powder; there were increases in the single (mono) unsaturated fatty acids ratio but decreases in polyunsaturated fatty acid. In IS-fed groups in proportion to the treatment period, this Dongchunghacho also induced an increase in the level of same result of unsaturated fatty acid in C57BL/6 obese (ob/ob) mice over a 6-month period treatment compared to those given 10% dry mulberry leaf powder (ML) or silkworm powder mixed with the standard diet. PMID:24278523

  10. Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet.

    PubMed

    Camargo, Rafael L; Batista, Thiago M; Ribeiro, Rosane A; Branco, Renato C S; Da Silva, Priscilla M R; Izumi, Clarice; Araujo, Thiago R; Greene, Lewis J; Boschero, Antonio C; Carneiro, Everardo M

    2015-11-01

    Malnutrition programs the neuroendocrine axis by disruption of food-intake control, leading to obesity. Taurine (Tau) is neuroprotective and improves anorexigenic actions in the hypothalamus. We evaluated the hypothalamic gene-expression profile and food-intake control in protein-restricted mice submitted to a high-fat diet (HFD) and Tau supplementation. Mice were fed on a control (14 % protein-C) or a protein-restricted diet (6 % protein-R) for 6 weeks. Thereafter, mice received, or not, HFD for 8 weeks (CH and RH) with or without 5 % Tau supplementation (CHT and RHT). Protein restriction led to higher food intake, but calories were matched to controls. Excessive calorie intake occurred in HFD mice and this was prevented by Tau supplementation only in the CH group. Additionally, RH and CH mice developed hypothalamic leptin resistance, which was prevented by Tau. Global alterations in the expressions of genes involved in hypothalamic metabolism, cellular defense, apoptosis and endoplasmic reticulum stress pathways were induced by dietary manipulations and Tau treatment. The orexigenic peptides NPY and AgRP were increased by protein restriction and lowered by the HFD. The anorexigenic peptide Pomc was increased by HFD, and this was prevented by Tau only in CH mice. Thus, food intake was disrupted by dietary protein restriction and obesity. HFD-induced alterations were not enhanced by previous protein deficiency, but the some beneficial effects of Tau supplementation upon food intake were blunted by protein restriction. Tau effects upon feeding behavior control are complex and involve interactions with a vast gene network, preventing hypothalamic leptin resistance. PMID:26133737

  11. Protective Effects of Flax Seed (Linum Usitatissimum) Hydroalcoholic Extract on Fetus Brain in Aged and Young Mice

    PubMed Central

    Kamali, Mahsa; Bahmanpour, Soghra

    2016-01-01

    Background: One of the major problems of the aged women or older than 35 is getting pregnant in the late fertility life. Fertility rates begin to decline gradually at the age of 30, more so at 35, and markedly at 40. Even with fertility treatments such as in vitro fertilization, women have more difficulty in getting pregnant or may deliver abnormal fetus. The purpose of this study was to assess the effects of flax seed hydroalcoholic extract on the fetal brain of aged mice and its comparison with young mice. Methods: In this experimental study, 32 aged and 32 young mice were divided into 4 groups. Controls received no special treatment. The experimental mice groups, 3 weeks before mating, were fed with flax seed hydroalcoholic extract by oral gavages. After giving birth, the brains of the fetus were removed. Data analysis was performed by statistical test ANOVA using SPSS version 18 (P<0.05). Results: The mean fetus brain weight of aged mother groups compared to the control group was increased significantly (P<0.05). Conclusion: This study showed that flax seed hydroalcoholic extract could improve fetal brain weights in the aged groups.

  12. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice

    PubMed Central

    Jurk, Diana; Wilson, Caroline; Passos, João F.; Oakley, Fiona; Correia-Melo, Clara; Greaves, Laura; Saretzki, Gabriele; Fox, Chris; Lawless, Conor; Anderson, Rhys; Hewitt, Graeme; Pender, Sylvia LF; Fullard, Nicola; Nelson, Glyn; Mann, Jelena; van de Sluis, Bart; Mann, Derek A.; von Zglinicki, Thomas

    2014-01-01

    Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-κB induces premature ageing in mice. We also show that these mice have reduced regeneration in liver and gut. nfkb1−/− fibroblasts exhibit aggravated cell senescence because of an enhanced autocrine and paracrine feedback through NF-κB, COX-2 and ROS, which stabilizes DNA damage. Preferential accumulation of telomere-dysfunctional senescent cells in nfkb1−/− tissues is blocked by anti-inflammatory or antioxidant treatment of mice, and this rescues tissue regenerative potential. Frequencies of senescent cells in liver and intestinal crypts quantitatively predict mean and maximum lifespan in both short- and long-lived mice cohorts. These data indicate that systemic chronic inflammation can accelerate ageing via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any other genetic or environmental factor. PMID:24960204

  13. Early activation defects in T lymphocytes from aged mice.

    PubMed

    Miller, R A; Garcia, G; Kirk, C J; Witkowski, J M

    1997-12-01

    Aging affects both calcium signals and protein kinase cascades in mouse T lymphocytes. The decline in calcium signal development largely represents differences between naive and memory T cells; the latter are resistant to increases in calcium concentration, and are more common in aged mice. Aging leads to declines in phosphorylation of a wide range of substrates in T cells stimulated by either anti-CD3 antibodies or by substances, such as phorbol myristate acetate (PMA) or ionomycin, that act at intracellular sites, but some phosphoproteins respond only in old T cells, and others respond regardless of age. Tyrosine phosphorylation of the CD3 zeta chain declines with age, both in resting T cells and after activation, but the proportion of Zap-70 that is bound to CD3 zeta increases in T cells from old mice. Zap-70 function and phosphorylation of CD3 zeta-associated Zap-70 change only slightly after stimulation of T cells by anti-CD3 and anti-CD4, and are at similar levels in activated old and young T cells. Nonetheless, induction of Raf-1, MEK, and ERK kinase activity declines with age in CD4 T cells. The effect of aging on T-cell activation is not simply an overall decline in signal intensity, but a set of qualitative changes that differ among subsets and depend at least partly on the nature of the stimulus. PMID:9476667

  14. EGFR Tyrosine Kinase Inhibitor (PD153035) Improves Glucose Tolerance and Insulin Action in High-Fat Diet–Fed Mice

    PubMed Central

    Prada, Patricia O.; Ropelle, Eduardo R.; Mourão, Rosa H.; de Souza, Claudio T.; Pauli, Jose R.; Cintra, Dennys E.; Schenka, André; Rocco, Silvana A.; Rittner, Roberto; Franchini, Kleber G.; Vassallo, José; Velloso, Lício A.; Carvalheira, José B.; Saad, Mario J.A.

    2009-01-01

    OBJECTIVE In obesity, an increased macrophage infiltration in adipose tissue occurs, contributing to low-grade inflammation and insulin resistance. Epidermal growth factor receptor (EGFR) mediates both chemotaxis and proliferation in monocytes and macrophages. However, the role of EGFR inhibitors in this subclinical inflammation has not yet been investigated. We investigated, herein, in vivo efficacy and associated molecular mechanisms by which PD153035, an EGFR tyrosine kinase inhibitor, improved diabetes control and insulin action. RESEARCH DESIGN AND METHODS The effect of PD153035 was investigated on insulin sensitivity, insulin signaling, and c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-κB activity in tissues of high-fat diet (HFD)-fed mice and also on infiltration and the activation state of adipose tissue macrophages (ATMs) in these mice. RESULTS PD153035 treatment for 1 day decreased the protein expression of inducible nitric oxide synthase, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in the stroma vascular fraction, suggesting that this drug reduces the M1 proinflammatory state in ATMs, as an initial effect, in turn reducing the circulating levels of TNF-α and IL-6, and initiating an improvement in insulin signaling and sensitivity. After 14 days of drug administration, there was a marked improvement in glucose tolerance; a reduction in insulin resistance; a reduction in macrophage infiltration in adipose tissue and in TNF-α, IL-6, and free fatty acids; accompanied by an improvement in insulin signaling in liver, muscle, and adipose tissue; and also a decrease in insulin receptor substrate-1 Ser307 phosphorylation in JNK and inhibitor of NF-κB kinase (IKKβ) activation in these tissues. CONCLUSIONS Treatment with PD153035 improves glucose tolerance, insulin sensitivity, and signaling and reduces subclinical inflammation in HFD-fed mice. PMID:19696185

  15. Erythropoietin inhibits gluconeogenesis and inflammation in the liver and improves glucose intolerance in high-fat diet-fed mice.

    PubMed

    Meng, Ran; Zhu, Dalong; Bi, Yan; Yang, Donghui; Wang, Yaping

    2013-01-01

    Erythropoietin (EPO) has multiple biological functions, including the modulation of glucose metabolism. However, the mechanisms underlying the action of EPO are still obscure. This study is aimed at investigating the potential mechanisms by which EPO improves glucose tolerance in an animal model of type 2 diabetes. Male C57BL/6 mice were fed with high-fat diet (HFD) for 12 weeks and then treated with EPO (HFD-EPO) or vehicle saline (HFD-Con) for two week. The levels of fasting blood glucose, serum insulin and glucose tolerance were measured and the relative levels of insulin-related phosphatidylinositol 3-kinase (PI3K)/Akt, insulin receptor (IR) and IR substrate 1 (IRS1) phosphorylation were determined. The levels of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6- phosphatase (G6Pase), toll like receptor 4 (TLR4), tumor necrosis factor (TNF)-α and IL-6 expression and nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase (ERK) and p38 MAPK activation in the liver were examined. EPO treatment significantly reduced the body weights and the levels of fasting blood glucose and serum insulin and improved the HFD-induced glucose intolerance in mice. EPO treatment significantly enhanced the levels of Akt, but not IR and IRS1, phosphorylation, accompanied by inhibiting the PEPCK and G6Pase expression in the liver. Furthermore, EPO treatment mitigated the HFD-induced inflammatory TNF-α and IL-6 production, TLR4 expression, NF-κB and JNK, but not ERK and p38 MAPK, phosphorylation in the liver. Therefore, our data indicated that EPO treatment improved glucose intolerance by inhibiting gluconeogenesis and inflammation in the livers of HFD-fed mice. PMID:23326455

  16. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet.

    PubMed

    Wada, Tsutomu; Miyashita, Yusuke; Sasaki, Motohiro; Aruga, Yusuke; Nakamura, Yuto; Ishii, Yoko; Sasahara, Masakiyo; Kanasaki, Keizo; Kitada, Munehiro; Koya, Daisuke; Shimano, Hitoshi; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2013-12-01

    Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages. PMID:24129399

  17. Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice

    ERIC Educational Resources Information Center

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…

  18. Chronic Ingestion of Advanced Glycation End Products Induces Degenerative Spinal Changes and Hypertrophy in Aging Pre-Diabetic Mice

    PubMed Central

    Illien-Jünger, Svenja; Lu, Young; Qureshi, Sheeraz A.; Hecht, Andrew C.; Cai, Weijing; Vlassara, Helen; Striker, Gary E.; Iatridis, James C.

    2015-01-01

    Intervertebral disc (IVD) degeneration and pathological spinal changes are major causes of back pain, which is the top cause of global disability. Obese and diabetic individuals are at increased risk for back pain and musculoskeletal complications. Modern diets contain high levels of advanced glycation end products (AGEs), cyto-toxic components which are known contributors to obesity, diabetes and accelerated aging pathologies. There is little information about potential effects of AGE rich diet on spinal pathology, which may be a contributing cause for back pain which is common in obese and diabetic individuals. This study investigated the role of specific AGE precursors (e.g. methylglyoxal-derivatives (MG)) on IVD and vertebral pathologies in aging C57BL6 mice that were fed isocaloric diets with standard (dMG+) or reduced amounts of MG derivatives (dMG-; containing 60-70% less dMG). dMG+ mice exhibited a pre-diabetic phenotype, as they were insulin resistant but not hyperglycemic. Vertebrae of dMG+ mice displayed increased cortical-thickness and cortical-area, greater MG-AGE accumulation and ectopic calcification in vertebral endplates. IVD morphology of dMG+ mice exhibited ectopic calcification, hypertrophic differentiation and glycosaminoglycan loss relative to dMG- mice. Overall, chronic exposure to dietary AGEs promoted age-accelerated IVD degeneration and vertebral alterations involving ectopic calcification which occurred in parallel with insulin resistance, and which were prevented with dMG- diet. This study described a new mouse model for diet-induced spinal degeneration, and results were in support of the hypothesis that chronic AGE ingestion could be a factor contributing to a pre-diabetic state, ectopic calcifications in spinal tissues, and musculoskeletal complications that are more generally known to occur with chronic diabetic conditions. PMID:25668621

  19. Ca2+ dynamics in oocytes from naturally-aged mice

    PubMed Central

    Haverfield, Jenna; Nakagawa, Shoma; Love, Daniel; Tsichlaki, Elina; Nomikos, Michail; Lai, F. Anthony; Swann, Karl; FitzHarris, Greg

    2016-01-01

    The ability of human metaphase-II arrested eggs to activate following fertilisation declines with advancing maternal age. Egg activation is triggered by repetitive increases in intracellular Ca2+ concentration ([Ca2+]i) in the ooplasm as a result of sperm-egg fusion. We therefore hypothesised that eggs from older females feature a reduced ability to mount appropriate Ca2+ responses at fertilisation. To test this hypothesis we performed the first examination of Ca2+ dynamics in eggs from young and naturally-aged mice. Strikingly, we find that Ca2+ stores and resting [Ca2+]i are unchanged with age. Although eggs from aged mice feature a reduced ability to replenish intracellular Ca2+ stores following depletion, this difference had no effect on the duration, number, or amplitude of Ca2+ oscillations following intracytoplasmic sperm injection or expression of phospholipase C zeta. In contrast, we describe a substantial reduction in the frequency and duration of oscillations in aged eggs upon parthenogenetic activation with SrCl2. We conclude that the ability to mount and respond to an appropriate Ca2+ signal at fertilisation is largely unchanged by advancing maternal age, but subtle changes in Ca2+ handling occur that may have more substantial impacts upon commonly used means of parthenogenetic activation. PMID:26785810

  20. [Dysfunction of serotonergic systems in thiamine-deficient diet fed mice: effects of SSRI on abnormality induced by thiamine deficiency].

    PubMed

    Murata, Atsunobu; Nakagawasai, Osamu; Yamadera, Fumihiro; Oba, Akira; Wakui, Kenji; Arai, Yuichiro; Tadano, Takeshi

    2004-04-01

    Mice fed a thiamine deficient (TD) diet, showed some abnormal behaviors such as amnesia and mood abnormality. It is known that several neurons, especially marked in serotonergic neuron, are damaged in humans and rodents in the earlier phase of TD. The symptoms derived from dysfunction of serotonergic neurons are observed in Wernicke-Korsakoff patients (WKS)-derived TD, and it is known that fluvoxamine is effective for WKS. However, the mechanism of this dysfunction is still unclear. For that reason, we studied the relative mechanism between abnormal behaviors and selective dysfunction of serotonergic neurons in TD animals. As a result, this dysfunction by TD is much affected by the brainstem region. But the effect of fluvoxamine on depressive symptoms in WKS patients is not reported; therefore we also studied the effects of fluvoxamine on the depressive behaviors in TD mice as a model of WKS. The increase of immobility time in a forced swimming test as depressive behavior in TD mice was significantly inhibited by fluvoxamine, suggesting an improvable effect on depressive symptoms. With those results of ours, the possible mechanisms between the abnormal behaviors derived from the dysfunction of serotonergic neurons and the role of serotonin in TD and WKS are reviewed here. PMID:15164618

  1. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet-fed mice.

    PubMed

    Song, Haizhao; Lai, Jia; Tang, Qiong; Zheng, Xiaodong

    2016-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. Mulberry is an important source of phytochemicals, such as anthocyanins, polyphenols and flavonoids, which are related to its antioxidant activity. In this study, we developed a hypothesis that mulberry exerted beneficial effects on metabolic disorders and evaluated the influence of the mulberry ethanol extract (MEE) on high-fat diet-induced hepatic steatosis and insulin resistance in mice. Thirty-six male C57BL/6J mice were assigned into 3 groups and fed either a low-fat diet or a high-fat diet with or without supplementation with MEE. Our results showed that administration of MEE reduced diet-induced body weight gain, improved high-fat diet-induced hepatic steatosis and adipose hypertrophy, alleviated insulin resistance, and improved glucose homeostasis. Analysis of hepatic gene expression indicated that MEE treatment changed the expression profile of genes involved in lipid and cholesterol metabolism. In conclusion, the present study demonstrated that MEE supplementation protected mice from high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Moreover, the protective effects of MEE were associated with the induction of fatty acid oxidation and decreased fatty acid and cholesterol biosynthesis. PMID:27262537

  2. Antilithiasic and hypolipidaemic effects of Raphanus sativus L. var. niger on mice fed with a lithogenic diet.

    PubMed

    Castro-Torres, Ibrahim Guillermo; Naranjo-Rodríguez, Elia Brosla; Domínguez-Ortíz, Miguel Ángel; Gallegos-Estudillo, Janeth; Saavedra-Vélez, Margarita Virginia

    2012-01-01

    In Mexico, Raphanus sativus L. var. niger (black radish) has uses for the treatment of gallstones and for decreasing lipids serum levels. We evaluate the effect of juice squeezed from black radish root in cholesterol gallstones and serum lipids of mice. The toxicity of juice was analyzed according to the OECD guidelines. We used female C57BL/6 mice fed with a lithogenic diet. We performed histopathological studies of gallbladder and liver, and measured concentrations of cholesterol, HDL cholesterol and triglycerides. The juice can be considered bioactive and non-toxic; the lithogenic diet significantly induced cholesterol gallstones; increased cholesterol and triglycerides levels, and decreased HDL levels; gallbladder wall thickness increased markedly, showing epithelial hyperplasia and increased liver weight. After treatment with juice for 6 days, cholesterol gallstones were eradicated significantly in the gallbladder of mice; cholesterol and triglycerides levels decreased too, and there was also an increase in levels of HDL (P < 0.05). Gallbladder tissue continued to show epithelial hyperplasia and granulocyte infiltration; liver tissue showed vacuolar degeneration. The juice of black radish root has properties for treatment of cholesterol gallstones and for decreasing serum lipids levels; therefore, we confirm in a preclinical study the utility that people give it in traditional medicine. PMID:23093836

  3. An Efficient Purification Method for Quantitative Determinations of Protodioscin, Dioscin and Diosgenin in Plasma of Fenugreek-Fed Mice.

    PubMed

    Taketani, Keiko; Hoshino, Shohei; Uemura, Taku; Goto, Tsuyoshi; Takahashi, Nobuyuki; Tsuge, Nobuaki; Kawada, Teruo

    2015-01-01

    An efficient purification method for simultaneous recovery of polar saponins, protodioscin (PD) and dioscin (DC), and non-polar aglycon, diosgenin (DG), from plasma of mice fed diets containing seed flours of fenugreek (Trigonella foenum-graecum) was established for subsequent quantitative analysis by LC-ESI-MS/MS. Mice plasma samples were first deproteinated by addition of acetonitrile, and the supernatant was applied to a carbon-based solid phase extraction tube. After successive washing with methanol and 35% chroloform/methanol (v/v), PD, DC and DG were eluted simultaneously with 80% chroloform/methanol (v/v). The eluate was evaporated to dryness, and re-dissolved in 80% methanol (v/v). The filtered sample was analyzed with an LC-ESI-MS/MS system. After the purification procedure, recovery rates between 89.3 to 117.4% were obtained without notable ion suppression or enhancement. The use of internal standards was therefore not necessary. The utility of the method was demonstrated by analyzing plasma of mice from a fenugreek feeding study. PMID:26875488

  4. Lipidomic Profiling of Liver Tissue from Obesity-Prone and Obesity-Resistant Mice Fed a High Fat Diet

    PubMed Central

    Nam, Miso; Choi, Myung-Sook; Jung, Sunhee; Jung, Youngae; Choi, Ji-Young; Ryu, Do Hyun; Hwang, Geum-Sook

    2015-01-01

    Obesity is a multifactorial health problem resulting from genetic, environmental, and behavioral factors. A particularly interesting aspect of obesity is the differences observed in response to the same high-fat diet (HFD). In this study, we performed lipidomic profiling on livers from HFD-fed C57BL/6J mice using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. Mice were divided into three groups: normal diet (ND), HFD-obesity prone (HFD-OP), and HFD-obesity resistant (HFD-OR). Principal components analyses showed a difference between the HFD-OP and HFD-OR groups. Individuals in the HFD-OR group were closer to those in the ND group compared with those in the HFD-OP group. In particular, phosphocholine (PC) and triglyceride (TG) levels differed significantly depending on the length of the acyl chain and degree of unsaturation, respectively. PC species were either positively or negatively correlated with concentrations of glucose, insulin, leptin, and hepatic cholesterol according to the length of the acyl chain. Decreased expression of the scavenger receptor B1 and ATP-binding cassette A1 in HFD-OP mice indicated that the acyl chain length of PC species may be related to high-density lipoprotein cholesterol metabolism. This study demonstrates that lipidomic profiling is an effective approach to analyzing global lipid alterations as they pertain to obesity. PMID:26592433

  5. Lipidomic Profiling of Liver Tissue from Obesity-Prone and Obesity-Resistant Mice Fed a High Fat Diet.

    PubMed

    Nam, Miso; Choi, Myung-Sook; Jung, Sunhee; Jung, Youngae; Choi, Ji-Young; Ryu, Do Hyun; Hwang, Geum-Sook

    2015-01-01

    Obesity is a multifactorial health problem resulting from genetic, environmental, and behavioral factors. A particularly interesting aspect of obesity is the differences observed in response to the same high-fat diet (HFD). In this study, we performed lipidomic profiling on livers from HFD-fed C57BL/6J mice using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Mice were divided into three groups: normal diet (ND), HFD-obesity prone (HFD-OP), and HFD-obesity resistant (HFD-OR). Principal components analyses showed a difference between the HFD-OP and HFD-OR groups. Individuals in the HFD-OR group were closer to those in the ND group compared with those in the HFD-OP group. In particular, phosphocholine (PC) and triglyceride (TG) levels differed significantly depending on the length of the acyl chain and degree of unsaturation, respectively. PC species were either positively or negatively correlated with concentrations of glucose, insulin, leptin, and hepatic cholesterol according to the length of the acyl chain. Decreased expression of the scavenger receptor B1 and ATP-binding cassette A1 in HFD-OP mice indicated that the acyl chain length of PC species may be related to high-density lipoprotein cholesterol metabolism. This study demonstrates that lipidomic profiling is an effective approach to analyzing global lipid alterations as they pertain to obesity. PMID:26592433

  6. Progranulin Knockout Accelerates Intervertebral Disc Degeneration in Aging Mice

    PubMed Central

    Zhao, Yun-peng; Tian, Qing-yun; Liu, Ben; Cuellar, Jason; Richbourgh, Brendon; Jia, Tang-hong; Liu, Chuan-ju

    2015-01-01

    Intervertebral disc (IVD) degeneration is a common degenerative disease, yet much is unknown about the mechanisms during its pathogenesis. Herein we investigated whether progranulin (PGRN), a chondroprotective growth factor, is associated with IVD degeneration. PGRN was detectable in both human and murine IVD. The levels of PGRN were upregulated in murine IVD tissue during aging process. Loss of PGRN resulted in an early onset of degenerative changes in the IVD tissue and altered expressions of the degeneration-associated molecules in the mouse IVD tissue. Moreover, PGRN knockout mice exhibited accelerated IVD matrix degeneration, abnormal bone formation and exaggerated bone resorption in vertebra with aging. The acceleration of IVD degeneration observed in PGRN null mice was probably due to the enhanced activation of NF-κB signaling and β-catenin signaling. Taken together, PGRN may play a critical role in homeostasis of IVD, and may serve as a potential molecular target for prevention and treatment of disc degenerative diseases. PMID:25777988

  7. Experimental study on the long-term effect of cadmium in mice fed cadmium-polluted rice with special reference to the effect of repeated reproductive cycles

    SciTech Connect

    Watanabe, M.; Shiroishi, K.; Nishino, H.; Shinmura, T.; Murase, H.; Shoji, T.; Naruse, Y.; Kagamimori, S.

    1986-06-01

    Long-term biological effects of cadmium-polluted rice and effect of repeated reproductive cycles on them were examined. Female SLC-B6D2F mice (female C57BL/6, male DBA/2) were fed a rice diet containing 65% unpolished rice for about 2 years from 7 weeks of age. The unpolished rice preparations used were commercially available rice (non-Cd-polluted) and Cd-polluted rice (over 1.0 ppm). Average Cd contents in each diet class were 0.12, 0.48, 1.78, 1.75, and 47.1 ppm (50 ppm Cd as CdCl/sub 2/ added). Some experimental mice were subjected to repeated reproductive cycles (parity group). Hematological, biochemical, and pathological examinations of urine, blood, and tissues, including Cd measurement, were carried out. Results after statistical analysis indicate Cd toxicities such as anemia and disturbances of Ca metabolism. These Cd effects were found to be enhanced by the reproductive cycles. Soft X-ray radiograms showed osteoporosis in the parity groups, especially in the groups with diets of higher Cd content. However, we could not find any sign of disturbance of renal function under our experimental conditions.

  8. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    PubMed

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. PMID:26569452

  9. Decaffeinated green tea extract rich in epigallocatechin-3-gallate improves insulin resistance and metabolic profiles in normolipidic diet--but not high-fat diet-fed mice.

    PubMed

    Santana, Aline; Santamarina, Aline; Souza, Gabriel; Mennitti, Laís; Okuda, Marcos; Venancio, Daniel; Seelaender, Marilia; do Nascimento, Claudia Oller; Ribeiro, Eliane; Lira, Fabio; Oyama, Lila

    2015-09-01

    Supplementation with epigallocatechin-3-gallate (EGCG), which restores metabolic profiles, has been proposed as an option for preventing and treating obesity. We investigated whether decaffeinated green tea extract rich in EGCG, attenuates high-fat diet (HFD)-induced metabolic alterations in Swiss mice. The mice were maintained on either a control diet (CD) or HFD for 8 weeks and supplemented with either a placebo or EGCG (50mg/kg/day). Body weight, serum lipid profiles, cytokine protein expression, and content in epididymal (EPI) and retroperitoneal (RET) adipose tissues, and adipocyte area were measured. The body weights of HFD + placebo-fed mice were increased compared with those of HFD + EGCG-fed mice (28 and 21%, respectively), whereas the body weights of CD + EGCG-fed mice were decreased 16% compared with those of the CD + placebo group. Serum triglyceride levels were decreased 32% in the CD + EGCG group compared with the CD + placebo group. Compared with the CD + placebo group, increased phosphorylation of AMPK and hormone-sensitive lipase in EPI and RET, respectively, was found in the CD + EGCG group. Increased acetyl-CoA carboxylase phosphorylation was observed in both adipose tissues. In addition, TNF-α and IL-10 levels in EPI and adiponectin levels were higher in the CD + EGCG group than in the CD + placebo group. TNF-α levels were lower in the HFD + EGCG group than in the HFD + placebo group. Furthermore, the CD + EGCG group exhibited a lower adipocyte area than the CD + placebo group. These indicate that the effects of decaffeinated green tea extract on body mass may be related to the crosstalk between lipolytic and inflammatory pathways in normolipidic diet-fed mice but not in HFD-fed mice. PMID:26048201

  10. Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer’s disease

    PubMed Central

    Graham, Leah C.; Harder, Jeffrey M.; Soto, Ileana; de Vries, Wilhelmine N.; John, Simon W. M.; Howell, Gareth R.

    2016-01-01

    Studies have assessed individual components of a western diet, but no study has assessed the long-term, cumulative effects of a western diet on aging and Alzheimer’s disease (AD). Therefore, we have formulated the first western-style diet that mimics the fat, carbohydrate, protein, vitamin and mineral levels of western diets. This diet was fed to aging C57BL/6J (B6) mice to identify phenotypes that may increase susceptibility to AD, and to APP/PS1 mice, a mouse model of AD, to determine the effects of the diet in AD. Astrocytosis and microglia/monocyte activation were dramatically increased in response to diet and was further increased in APP/PS1 mice fed the western diet. This increase in glial responses was associated with increased plaque burden in the hippocampus. Interestingly, given recent studies highlighting the importance of TREM2 in microglia/monocytes in AD susceptibility and progression, B6 and APP/PS1 mice fed the western diet showed significant increases TREM2+ microglia/monocytes. Therefore, an increase in TREM2+ microglia/monocytes may underlie the increased risk from a western diet to age-related neurodegenerative diseases such as Alzheimer’s disease. This study lays the foundation to fully investigate the impact of a western diet on glial responses in aging and Alzheimer’s disease. PMID:26888450

  11. Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer's disease.

    PubMed

    Graham, Leah C; Harder, Jeffrey M; Soto, Ileana; de Vries, Wilhelmine N; John, Simon W M; Howell, Gareth R

    2016-01-01

    Studies have assessed individual components of a western diet, but no study has assessed the long-term, cumulative effects of a western diet on aging and Alzheimer's disease (AD). Therefore, we have formulated the first western-style diet that mimics the fat, carbohydrate, protein, vitamin and mineral levels of western diets. This diet was fed to aging C57BL/6J (B6) mice to identify phenotypes that may increase susceptibility to AD, and to APP/PS1 mice, a mouse model of AD, to determine the effects of the diet in AD. Astrocytosis and microglia/monocyte activation were dramatically increased in response to diet and was further increased in APP/PS1 mice fed the western diet. This increase in glial responses was associated with increased plaque burden in the hippocampus. Interestingly, given recent studies highlighting the importance of TREM2 in microglia/monocytes in AD susceptibility and progression, B6 and APP/PS1 mice fed the western diet showed significant increases TREM2+ microglia/monocytes. Therefore, an increase in TREM2+ microglia/monocytes may underlie the increased risk from a western diet to age-related neurodegenerative diseases such as Alzheimer's disease. This study lays the foundation to fully investigate the impact of a western diet on glial responses in aging and Alzheimer's disease. PMID:26888450

  12. Lead-induced modifications of immune responses in aging male and female mice

    SciTech Connect

    Genova, T.F.

    1982-01-01

    This study was designed to analyze the effects of lead intoxication on the immunological responses of aging male and female Balb/c mice. Both males and females on the lead diet exhibited a loss of weight after one week of treatment. The animals began to gain weight again after eight or fifteen weeks for males and females respectively. Although both groups continued to gain weight at a rate consistent with control animals, they never reached the same weights as their same-sex control counterparts. Immunofluorescent staining indicated the presence of greater renal pathology in lead-fed animals as compared to controls. Lead-fed males demonstrated the greatest pathology of any group. Both T and B cell mitogenic responses declined during the early phases of the experiment. This was followed, at age 25-27 weeks, by an increase in activity to levels greater than those of control animals. The depression and subsequent increase in mitogenic responses was mirrored in the ability of T cells to regulate B cell plaque formation when stimulated with sheep red blood cells. T cell function returned to control levels in coincidence with the increase in T and B cell mitogenicity. The return of T cell functionality to control levels coincides with the increased mitogenesis noted in T and B cell populations and the onset of weight gains by lead-fed animals. This coincidence suggests the occurrence of a physiological or immunological change which is compensating for the continued lead intoxication. One such change may be a lead induced reduction in the number or function of a T cell subset, eg. T suppressors.

  13. Effect of Lactobacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice

    PubMed Central

    Wu, Chien-Chen; Weng, Wei-Lien; Lai, Wen-Lin; Tsai, Hui-Ping; Liu, Wei-Hsien; Lee, Meng-Hwan; Tsai, Ying-Chieh

    2015-01-01

    Recent studies have demonstrated beneficial effects of specific probiotics on alleviating obesity-related disorders. Here we aimed to identify probiotics with potential antiobesity activity among 88 lactic acid bacterial strains via in vitro screening assays, and a Lactobacillus plantarum strain K21 was found to harbor abilities required for hydrolyzing bile salt, reducing cholesterol, and inhibiting the accumulation of lipid in 3T3-L1 preadipocytes. Furthermore, effects of K21 on diet-induced obese (DIO) mice were examined. Male C57Bl/6J mice received a normal diet, high-fat diet (HFD), or HFD with K21 administration (109 CFU in 0.2 mL PBS/day) for eight weeks. Supplementation of K21, but not placebo, appeared to alleviate body weight gain and epididymal fat mass accumulation, reduce plasma leptin levels, decrease cholesterol and triglyceride levels, and mitigate liver damage in DIO mice. Moreover, the hepatic expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) related to adipogenesis was significantly downregulated in DIO mice by K21 intervention. We also found that K21 supplementation strengthens intestinal permeability and modulates the amount of Lactobacillus spp., Bifidobacterium spp., and Clostridium perfringens in the cecal contents of DIO mice. In conclusion, our results suggest that dietary intake of K21 protects against the onset of HFD-induced obesity through multiple mechanisms of action. PMID:25802537

  14. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  15. Brazilian green propolis improves immune function in aged mice

    PubMed Central

    Gao, Weina; Wu, Jianquan; Wei, Jingyu; Pu, Lingling; Guo, Changjiang; Yang, Jijun; Yang, Ming; Luo, Haiji

    2014-01-01

    Aging weakened innate and adaptive immunity both quantitatively and qualitatively. Some components in propolis could stimulate immune function in young animals or cultured immune cells in vitro. Few studies had been carried out in the aged. The present study was to evaluate the effects of Brazilian green propolis supplementation on the immunological parameters in aged mice. Eighty Kunming mice, aged 15–18 months, were randomly assigned to the control and three experimental groups supplemented with different doses (83.3, 157.4 and 352.9 mg/kg.bw respectively) of Brazilian green propolis. The experiment lasted for 4 weeks. Contents of total polyphenol, flavonoid, cinnamic acid and artepillin-C in Brazilian green propolis were analyzed. Splenic NK cytotoxic, T lymphocyte proliferation and antibody generation cells, as well as the phagocytosis of peritoneal macrophages, ear swelling, and serum contents of IgG, IgM, hemolysin and cytokines were measured. After 4 weeks of treatment, the phagocytosis of peritoneal macrophages was enhanced in 157.4 mg/kg and 352.9 mg/kg groups. Ear swelling increased in all propolis treatmented groups. Antibodies specific to sheep erythrocytes were higher in the groups receiving 157.4 and 352.9 mg/kg.bw than that of control group. IgG level dramatically increased in the groups receiving 83.3 and 157.4 mg/kg.bw in comparison to the control group. These results indicate that administration of Brazilian green propolis have a positive effect on innate and adaptive immunity in aged mice. PMID:25120274

  16. Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice.

    PubMed

    Higashimura, Yasuki; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Ushiroda, Chihiro; Ohnogi, Hiromu; Kudo, Yoko; Yasui, Madoka; Inui, Seina; Hisada, Takayoshi; Honda, Akira; Matsuzaki, Yasushi; Yoshikawa, Toshikazu

    2016-03-15

    High-fat diet (HFD)-induced alteration in the gut microbial composition, known as dysbiosis, is increasingly recognized as a major risk factor for various diseases, including colon cancer. This report describes a comprehensive investigation of the effect of agaro-oligosaccharides (AGO) on HFD-induced gut dysbiosis, including alterations in short-chain fatty acid contents and bile acid metabolism in mice. C57BL/6N mice were fed a control diet or HFD, with or without AGO. Terminal restriction fragment-length polymorphism (T-RFLP) analysis produced their fecal microbiota profiles. Profiles of cecal organic acids and serum bile acids were determined, respectively, using HPLC and liquid chromatography-tandem mass spectrometry systems. T-RFLP analyses showed that an HFD changed the gut microbiota significantly. Changes in the microbiota composition induced by an HFD were characterized by a decrease in the order Lactobacillales and by an increase in the Clostridium subcluster XIVa. These changes of the microbiota community generated by HFD treatment were suppressed by AGO supplementation. As supported by the data of the proportion of Lactobacillales order, the concentration of lactic acid increased in the HFD + AGO group. Data from the serum bile acid profile showed that the level of deoxycholic acid, a carcinogenic secondary bile acid produced by gut bacteria, was increased in HFD-receiving mice. The upregulation tended to be suppressed by AGO supplementation. Finally, results show that AGO supplementation suppressed the azoxymethane-induced generation of aberrant crypt foci in the colon derived from HFD-treated mice. Our results suggest that oral intake of AGO prevents HFD-induced gut dysbiosis, thereby inhibiting colon carcinogenesis. PMID:26767984

  17. NO synthesis from arginine is favored by α-linolenic acid in mice fed a high-fat diet.

    PubMed

    Hermier, Dominique; Guelzim, Najoua; Martin, Pascal G P; Huneau, Jean-François; Mathé, Véronique; Quignard-Boulangé, Annie; Lasserre, Frédéric; Mariotti, François

    2016-09-01

    Alterations in NO availability and signaling play a pivotal role at early stages of the metabolic syndrome (MetSynd). We hypothesized that dietary α-linolenic acid (ALA, 18:3 n-3) favors NO availability by modulating amino acid metabolism, with a specific impact on the arginine-NO pathway. Mice were fed a hyperlipidic diet (285 g lipid/kg, 51.1 % energy), rich in either saturated fatty acids (SFA, provided by palm oil, PALM group) or ALA (provided by linseed oil, LIN group). We measured whole-body NO synthesis and systemic arginine hydrolysis with a tracer-based method, plasma concentration of related metabolites, and hepatic mRNA level of related enzymes, and the study was completed by a transcriptomic analysis in the liver. As expected with this model, hyperlipidic diets resulted in increased adiposity and glycemia after 5 weeks. As compared to PALM mice, LIN mice had a higher plasma nitrite and nitrate concentration, a higher whole-body conversion of arginine into NO vs urea, and a similar plasma concentration of asymmetric dimethylarginine (ADMA), despite a higher expression of the liver dimethylargininase-1. In LIN mice, there was a higher expression of genes involved in PPARα signaling, but a little impact on gene expression related to amino acids and arginine metabolism. This effect cannot be directly ascribed to changes in arginase activity in the liver or ADMA metabolism, nor to direct regulation of the related target genes. In conclusion, dietary ALA favors NO synthesis, which could contribute to rescue NO availability when jeopardized by the nutritional conditions in relation with the initiation of the MetSynd. PMID:27178023

  18. Data on the phospholipid fatty acyl composition of retroperitoneal white adipose tissue in ad libitum fed and fasted mice.

    PubMed

    Marks, Kristin A; Marvyn, Phillip M; Henao, Juan J Aristizabal; Bradley, Ryan M; Stark, Ken D; Duncan, Robin E

    2016-06-01

    Data are presented on the fatty acyl composition of phospholipid from retroperitoneal white adipose tissue of female mice that were either given ad libitum access to food or fasted for 16 h overnight prior to sacrifice. Our data show that total adipose phospholipid concentrations were more than 2-fold higher in the fasted animals compared with the fed animals (33.48±7.40 versus 16.57±4.43 μg phospholipid fatty acids/100 mg tissue). Concentrations of several individual phospholipid fatty acyl species, including palmitic acid (16:0), vaccenic acid (18:1n-7), linoleic acid (18:2n-6), dihomo-gamma-linolenic acid (20:3n-6), arachidonic acid (20:4n-6), eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3), as well as total phospholipid saturated fatty acids, n-6 polyunsaturated fatty acids and n-3 polyunsaturated fatty acids, were significantly higher in adipose tissue from the fasted animals compared with the fed animals. However, when the relative abundance of phospholipid fatty acyl species was analyzed, only 20:4n-6 was specifically enriched (by ~2.5-fold) in adipose phospholipid with fasting. PMID:27014729

  19. Cholesterol exchange and lateral cholesterol pools in synaptosomal membranes of pair-fed control and chronic ethanol-treated mice.

    PubMed

    Wood, W G; Rao, A M; Igbavboa, U; Semotuk, M

    1993-04-01

    Most studies on effects of ethanol on membrane cholesterol have reported on changes in the total or bulk amount of cholesterol. Membrane cholesterol, however, can be described in terms of its kinetics and domains. The kinetics and size of lateral cholesterol exchangeable and nonexchangeable pools were examined in synaptosomes of pair-fed controls and chronic ethanol-treated mice. Effects of sphingomyelin, an exofacial leaflet phospholipid, that has been shown to affect cholesterol pools, were also examined. Radiolabeled small unilamellar vesicles were used to exchange cholesterol with synaptosomes. The total amounts of membrane cholesterol, phospholipid phosphorus, and the ratio of cholesterol to phospholipid did not differ between the pair-fed control and ethanol groups. In control mice, the rate constant (hr-1) and the t1/2 (hr) of cholesterol exchange were 0.065 +/- 0.001 and 10.7 +/- 0.25 (hr), respectively. The rate constant was significantly slower (0.053 +/- 0.001, p < 0.05) and the t1/2 significantly longer (13.33 +/- 0.58, p < 0.05) in synaptosomes of the ethanol group compared with the control group. The size of the exchangeable pool of cholesterol did not differ significantly between the two groups. Sphingomyelinase-induced hydrolysis of sphingomyelin significantly slowed cholesterol exchange with the largest effect in synaptosomes of the control group as compared with the ethanol group (p < 0.05). Hydrolysis of sphingomyelin had significantly (p < 0.05) less of an effect on cholesterol exchange in synaptosomes of the ethanol group. Membrane cholesterol can be described in terms of total content, transbilayer distribution, kinetics, and size of lateral pools.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8488977

  20. Effects of fenugreek seed extract in obese mice fed a high-fat diet.

    PubMed

    Handa, Toshiaki; Yamaguchi, Kohji; Sono, Yoshikatsu; Yazawa, Kazunaga

    2005-06-01

    It was found that fenugreek seed extract reduced the body weight gain induced by a high-fat diet in obese mice. The extract decreased plasma triglyceride gain induced by oil administration. The major component of the extract, 4-hydroxyisoleucine, also decreased plasma triglyceride gain. Consequently, fenugreek seed extract is expected to prevent the obesity induced by a high-fat diet. PMID:15973051

  1. COMPARISON OF GENE EXPRESSION PROFILES FROM MICE FED THREE TOXICOLOGICALLY DIFFERENT TRIAZOLE-BASED CONAZOLES

    EPA Science Inventory

    The present study was designed to identify the underlying molecular mechanism for the induction of mouse liver tumors by conazoles. CD-1 mice were treated with the tumor producing conazoles, triadimefon (1800, 500, or 100 ppm), or propiconazole (2500, 500, or 100 ppm), or the non...

  2. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  3. Dietary supplementation of milk fermented with probiotic Lactobacillus fermentum enhances systemic immune response and antioxidant capacity in aging mice.

    PubMed

    Sharma, Rohit; Kapila, Rajeev; Kapasiya, Meena; Saliganti, Vamshi; Dass, Gulshan; Kapila, Suman

    2014-11-01

    Although probiotics are known to enhance the host immune response, their roles in modulating immunosenescence, resisting infection, and improving redox homeostasis during aging remain unclear. Therefore, the present study was devised in aging mice to assess the antiimmunosenescence potential from the consumption of milk that is fermented with probiotic Lactobacillus fermentum MTCC 5898 (LF). We hypothesized that probiotic supplementation would boost immunity, improve antioxidant capacity, and resist severity of pathogenic infection in aging mice. To test this hypothesis, during a trial period of 2 months, 16-month-old male Swiss mice were kept on 3 experimental diets: basal diet (BD), BD supplemented with skim milk, and BD supplemented with probiotic LF-fermented milk. A concurrent analysis of several immunosenescence markers that include neutrophil functions, interleukins profile, inflammation and antibody responses in the intestine as well as analysis of antioxidant enzymes in the liver and red blood cells was performed. Neutrophil respiratory burst enzymes and phagocytosis increased significantly in probiotic LF-fed groups, whereas no exacerbation in plasma levels of monocyte chemotactic protein 1 and tumor necrosis factor α was observed. Splenocytes registered increased interferon-γ but decreased interleukin 4 and interleukin 10 production, whereas humoral antibodies registered decreases in immunoglobulin G1 (IgG1)/IgG2a ratio and IgE levels in the probiotic-fed groups. Antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) in LF-fed groups showed increased activities, which were more pronounced in the liver than in red blood cell. An Escherichia coli-based infection model in aging mice was also designed to validate the protective attributes of LF. Administration of probiotic LF significantly reduced E coli population in organs (intestine, liver, spleen, and peritoneal fluid), as compared with control groups, by enhancing E coli

  4. Effect of Diet and Age on Arterial Stiffening Due to Atherosclerosis in ApoE(-/-) Mice.

    PubMed

    Cilla, M; Pérez, M M; Peña, E; Martínez, M A

    2016-07-01

    This work analyzes the progressive stiffening of the aorta due to atherosclerosis development of both ApoE(-/-) and C57BL/6J mice fed on a Western (n = 5) and a normal (n = 5) chow diet for the ApoE(-/-) group and on a normal chow diet (n = 5) for the C57BL/6J group. Sets of 5 animals from the three groups were killed after 10, 20, 30 and 40 weeks on their respective diets (corresponding to 17, 27, 37 and 47 weeks of age). Mechanical properties (inflation test and axial residual stress measurements) and histological properties were compared for both strains, ApoE(-/-) on the hyper-lipidic diet and both ApoE(-/-) and C57BL/6J on the normal diet, after the same period and after different periods of diet. The results indicated that the aorta stiffness in the ApoE(-/-) and C57BL/6J mice under normal diet remained approximately constant irrespective of their age. However, the arterial stiffness in the ApoE(-/-) on the hyper-lipidic diet increased over time. Statistical differences were found between the group after 10 weeks and the groups after 30 and 40 weeks of a hyper-lipidic diet. Comparing the hyper-lipidic and normal diet mice, statistical differences were also found between both diets in all cases after 40 weeks of diet, frequently after 30 weeks, and in some cases after 20 weeks. The early stages of lesion corresponded to the first 2 weeks of diet. Advanced lesions were found at 30 weeks and, finally, the aorta was completely damaged after 40 weeks of diet. In conclusion, we found substantial changes in the mechanical properties of the aorta walls of the ApoE(-/-) mice fed with the hyper-lipidic diet compared to the normal chow diet groups for both the ApoE(-/-) and C57BL/6J groups. These findings could serve as a reference for the study of changes in the arterial wall properties in cases of atherosclerosis. PMID:26502169

  5. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of an obesigenic / high-fat (HF) diet is associated with an increase of inflammation-related colon cancer risk and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory processes and changes gut microbiome composition, C57BL/6 mice were fed a HF ...

  6. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of an obesigenic / high-fat (HF) diet is associated with a high colon cancer risk, and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed a HF (45% energy) or low-fat (LF) (...

  7. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  8. Effects of sleep deprivation and aging on long-term and remote memory in mice

    PubMed Central

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a month after training, sleep-deprived and control aged animals performed similarly, primarily due to remote memory decay in the control aged animals. Gene expression analysis supported the finding that SD has similar effects on the hippocampus in young and aged mice. PMID:25776037

  9. Differential Insulin Secretion of High-Fat Diet-Fed C57BL/6NN and C57BL/6NJ Mice: Implications of Mixed Genetic Background in Metabolic Studies

    PubMed Central

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Zhang, Dongwei; Joly, Erik; Madiraju, S. R. Murthy; Prentki, Marc

    2016-01-01

    Many metabolic studies employ tissue-specific gene knockout mice, which requires breeding of floxed gene mice, available mostly on C57BL/6N (NN) genetic background, with cre or Flp recombinase-expressing mice, available on C57BL/6J (JJ) background, resulting in the generation of mixed C57BL/6NJ (NJ) genetic background mice. Recent awareness of many genetic differences between NN and JJ strains including the deletion of nicotinamide nucleotide transhydrogenase (nnt), necessitates examination of the consequence of mixed NJ background on glucose tolerance, beta cell function and other metabolic parameters. Male mice with NN and NJ genetic background were fed with normal or high fat diets (HFD) for 12 weeks and glucose and insulin homeostasis were studied. Genotype had no effect on body weight and food intake in mice fed normal or high fat diets. Insulinemia in the fed and fasted states and after a glucose challenge was lower in HFD-fed NJ mice, even though their glycemia and insulin sensitivity were similar to NN mice. NJ mice showed mild glucose intolerance. Moreover, glucose- but not KCl-stimulated insulin secretion in isolated islets was decreased in HFD-fed NJ vs NN mice without changes in insulin content and beta cell mass. Under normal diet, besides reduced fed insulinemia, NN and NJ mice presented similar metabolic parameters. However, HFD-fed NJ mice displayed lower fed and fasted insulinemia and glucose-induced insulin secretion in vivo and ex vivo, as compared to NN mice. These results strongly caution against using unmatched mixed genetic background C57BL/6 mice for comparisons, particularly under HFD conditions. PMID:27403868

  10. Age Sensitivity of Behavioral Tests and Brain Substrates of Normal Aging in Mice

    PubMed Central

    Kennard, John A.; Woodruff-Pak, Diana S.

    2011-01-01

    Knowledge of age sensitivity, the capacity of a behavioral test to reliably detect age-related changes, has utility in the design of experiments to elucidate processes of normal aging. We review the application of these tests in studies of normal aging and compare and contrast the age sensitivity of the Barnes maze, eyeblink classical conditioning, fear conditioning, Morris water maze, and rotorod. These tests have all been implemented to assess normal age-related changes in learning and memory in rodents, which generalize in many cases to age-related changes in learning and memory in all mammals, including humans. Behavioral assessments are a valuable means to measure functional outcomes of neuroscientific studies of aging. Highlighted in this review are the attributes and limitations of these measures in mice in the context of age sensitivity and processes of brain aging. Attributes of these tests include reliability and validity as assessments of learning and memory, well-defined neural substrates, and sensitivity to neural and pharmacological manipulations and disruptions. These tests engage the hippocampus and/or the cerebellum, two structures centrally involved in learning and memory that undergo functional and anatomical changes in normal aging. A test that is less well represented in studies of normal aging, the context pre-exposure facilitation effect (CPFE) in fear conditioning, is described as a method to increase sensitivity of contextual fear conditioning to changes in the hippocampus. Recommendations for increasing the age sensitivity of all measures of normal aging in mice are included, as well as a discussion of the potential of the under-studied CPFE to advance understanding of subtle hippocampus-mediated phenomena. PMID:21647305

  11. Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet.

    PubMed

    Trak-Smayra, Viviane; Paradis, Valérie; Massart, Julie; Nasser, Selim; Jebara, Victor; Fromenty, Bernard

    2011-12-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the commonest liver diseases in Western countries. Although leptin deficient ob/ob and db/db mice are frequently used as murine models of NAFLD, an exhaustive characterization of their hepatic lesions has not been reported to date, particularly under calorie overconsumption. Thus, liver lesions were characterized in 78 ob/ob and db/db mice fed either a standard or high-calorie (HC) diet, for one or three months. Steatosis, necroinflammation, apoptosis and fibrosis were assessed and the NAFLD activity score (NAS) was calculated. Steatosis was milder in db/db mice compared to ob/ob mice and was more frequently microvesicular. Although necroinflammation was usually mild in both genotypes, it was aggravated in db/db mice after one month of calorie overconsumption. Apoptosis was observed in db/db mice whereas it was only detected in ob/ob mice after HC feeding. Increased apoptosis was frequently associated with microvesicular steatosis. In db/db mice fed the HC diet for three months, fibrosis was aggravated while steatosis, necroinflammation and apoptosis tended to alleviate. This was associated with increased plasma β-hydroxybutyrate suggesting an adaptive stimulation of hepatic mitochondrial fatty acid oxidation (FAO). Nevertheless, one-third of these db/db mice had steatohepatitis (NAS ≥ 5), whereas none of the ob/ob mice developed non-alcoholic steatohepatitis under the same conditions. Steatosis, necroinflammation, apoptosis and fibrosis are modulated by calorie overconsumption in the context of leptin deficiency. Association between apoptosis and microvesicular steatosis in obese mice suggests common mitochondrial abnormalities. Enhanced hepatic FAO in db/db mice is associated with fibrosis aggravation. PMID:22118645

  12. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice.

    PubMed

    Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra

    2016-01-01

    Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µm dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role. © 2016 BioFactors, 42(2):201-211, 2016. PMID:26893251

  13. Purified Betacyanins from Hylocereus undatus Peel Ameliorate Obesity and Insulin Resistance in High-Fat-Diet-Fed Mice.

    PubMed

    Song, Haizhao; Chu, Qiang; Xu, Dongdong; Xu, Yang; Zheng, Xiaodong

    2016-01-13

    Natural bioactive compounds in food have been shown to be beneficial in preventing the development of obesity, diabetes, and other metabolic diseases. Increasing evidence indicates that betacyanins possess free-radical-scavenging and antioxidant activities, suggesting their beneficial effects on metabolic disorders. The main objective of this study was to isolate and identify the betaycanins from Hylocereus undatus (white-fleshed pitaya) peel and evaluate their ability to ameliorate obesity, insulin resistance, and hepatic steatosis in high-fat-diet (HFD)-induced obese mice. The purified pitaya peel betacyanins (PPBNs) were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS), and the male C57BL/6 mice were fed a low-fat diet, HFD, or HFD supplemented with PPBNs for 14 weeks. Our results showed that the white-fleshed pitaya peel contains 14 kinds of betacyanins and dietary PPBNs reduced HFD-induced body weight gain and ameliorated adipose tissue hypertrophy, hepatosteatosis, glucose intolerance, and insulin resistance. Moreover, the hepatic gene expression analysis indicated that PPBN supplementation increased the expression levels of lipid-metabolism-related genes (AdipoR2, Cpt1a, Cpt1b, Acox1, PPARγ, Insig1, and Insig2) and FGF21-related genes (β-Klotho and FGFR1/2) but decreased the expression level of Fads2, Fas, and FGF21, suggesting that the protective effect of PPBNs might be associated with the induced fatty acid oxidation, decreased fatty acid biosynthesis, and alleviated FGF21 resistance. PMID:26653843

  14. Anti-obesity effects of Rapha diet® preparation in mice fed a high-fat diet.

    PubMed

    Kim, Jihyun; Kyung, Jangbeen; Kim, Dajeong; Choi, Ehn-Kyoung; Bang, Paul; Park, Dongsun; Kim, Yun-Bae

    2012-12-01

    The anti-obesity activities of Rapha diet® preparation containing silkworm pupa peptide, Garcinia cambogia, white bean extract, mango extract, raspberry extract, cocoa extract, and green tea extract were investigated in mice with dietary obesity. Male C57BL/6 mice were fed a high-fat diet (HFD) containing 3% Rapha diet® preparation for 8 weeks, and blood and tissue parameters of obesity were analyzed. The HFD markedly enhanced body weight gain by increasing the weights of epididymal, perirenal, and mesenteric adipose tissues. The increased body weight gain induced by HFD was significantly reduced by feeding Rapha diet® preparation, in which decreases in the weight of abdominal adipose tissue and the size of abdominal adipocytes were confirmed by microscopic examination. Long-term feeding of HFD increased blood triglycerides and cholesterol levels, leading to hepatic lipid accumulation. However, Rapha diet® preparation not only reversed the blood lipid levels, but also attenuated hepatic steatosis. The results indicate that Rapha diet® preparation could improve HFD-induced obesity by reducing both lipid accumulation and the size of adipocytes. PMID:23326287

  15. 1-deoxynojirimycin isolated from Bacillus subtilis improves hepatic lipid metabolism and mitochondrial function in high-fat-fed mice.

    PubMed

    Do, Hyun Ju; Chung, Ji Hyung; Hwang, Ji Won; Kim, Oh Yoen; Lee, Jae-Yeon; Shin, Min-Jeong

    2015-01-01

    The aim of this study was to determine whether 1-deoxynojirimycin (DNJ) isolated from Bacillus subtilis MORI beneficially influences lipid metabolism and mitochondrial function in the liver of mice fed a high-fat diet in addition to the anti-obesity properties of DNJ. Male C57BL/6 mice (n = 29; 5 weeks old) were randomly assigned to three groups: normal control diet (CTL, n = 10), high-fat diet (HF, n = 10), and high-fat diet supplemented with DNJ (DNJ, n = 9). After 12 weeks, the HF group exhibited higher overall weight gain, of the liver, and of various fat pads than the CTL and DNJ groups did. The HF group also showed greater expression of C/EBPα and CD36 mRNA in the liver than that in the CTL and/or DNJ groups. In addition, mRNA expressions of AAC and FAS were lower, while mRNA expression of PGC-1β was higher in the liver of the DNJ group than that of the HF group. The hepatic expression of p-AMPK/AMPK was higher in the DNJ group than in the HF group. This study provides novel insight into the protective effect of DNJ supplementation against obesity-induced hepatic lipid abnormalities and mitochondrial dysfunction. PMID:25445511

  16. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    PubMed Central

    Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  17. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice.

    PubMed

    Yeap, Swee Keong; Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Mohamad, Nurul Elyani; Hussin, Aminuddin Bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah; Long, Kamariah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  18. Effect of lard, palm and rapeseed oils life conservation in aged mice.

    PubMed

    Suzuki, H; Yamazaki, M; Arai, S; Nagao, A; Terao, J

    1991-11-01

    Effects of lard, palm and rapeseed oil diets on the survival and fatty acid composition of liver and brain lipids were studied in male and female mice for 15 months. Over 80% of mice fed on lard and rapeseed oil (n-3 PUFA sufficient) diets survived to the end of feeding trial, however, 60% of male mice fed on palm oil (n-3 PUFA deficient) diet died before the end. Although a survival curve in female mice fed on palm oil diet was similar to that in male, it was not as dramatic as that of the male. The fatty acid analyses revealed that severe n-3 PUFA deficiency occurred in the mice fed on a palm oil diet. Moreover, the fatty acid was more deficient in the male than in the female. These results suggest that short life in mice may be caused by n-3 PUFA deficiency and, therefore, the fatty acid may be essential in enjoying a long life. PMID:1753809

  19. Diets containing long-chain n-3 polyunsaturated fatty acids affect behaviour differently during development than ageing in mice.

    PubMed

    Carrié, I; Guesnet, P; Bourre, J M; Francès, H

    2000-04-01

    The effect of a standard diet providing essential fatty acids enriched in fish oil or palm oil was studied in young, mature and old mice. Two groups of pregnant and lactating OF1 mice were fed on diets with or without high levels of long-chain n-3 polyunsaturated fatty acids. Offspring were maintained on these diets after weaning. The litter size did not differ. The weight increased more quickly in fish-oil-fed mice than palm-oil-fed mice. The fish-oil diet induced a significant increase in exploratory activity in young mice which was not found in mature and old mice. The level of locomotor activity was significantly higher in young, no different in mature, and lower in old fish-oil-fed mice than in controls. Habituation, the simpler form of learning, occurred to the same extent in the two diet groups. For the place learning protocol of the Morris water maze there was no difference between the two diet groups; however, in the probe trial, the mature fish-oil-fed mice remembered the situation well compared with the control mice. In the active avoidance test, on the first day of acquisition the young fish-oil-fed mice made more avoidances than control mice, whereas in contrast, mature and old-fish-fed mice made less avoidances than control mice. These results suggest a positive effect on arousal and learning ability of a diet enriched in long chain n-3 polyunsaturated fatty acids in young mice and a detrimental effect in old mice. PMID:10858702

  20. Effects of Dietary Fibers on Weight Gain, Carbohydrate Metabolism and Gastric Ghrelin Gene Expression in High Fat Diet Fed Mice

    PubMed Central

    Wang, Zhong Q.; Zuberi, Aamir; Zhang, Xian H.; Macgowan, Jacalyn; Qin, Jianhua; Ye, Xin; Son, Leslie; Wu, Qinglin; Lian, Kun; Cefalu, William T.

    2009-01-01

    Diets that are high in dietary fiber are reported to have substantial health benefits. We sought to compare the metabolic effects for three types of dietary fibers, i.e. sugar cane fiber (SCF), psyllium (PSY) and cellulose (CEL) on body weight, carbohydrate metabolism and stomach ghrelin gene expression in a high-fat diet fed mouse model. Thirty-six male mice (C57BL/6) were randomly divided into four groups that consumed high fat-diets or high fat diet containing 10% SCF, PSY, and CEL respectively. After baseline measurements were assessed for body weight, plasma insulin, glucose, leptin and glucagon-like peptide-1 (GLP-1), animals were treated for 12 weeks. Parameters were re-evaluated at end of study. Whereas there was no difference at the baseline, body weight gains in the PSY and SCF groups were significantly lower than in CEL group at end of study, No difference in body weight was observed between the PSY and SCF animals. Body composition analysis demonstrated that fat mass in the SCF group was considerably lower than in the CEL and HFD groups. In addition, fasting plasma glucose and insulin and areas under curve of IPGTT were also significantly lower in the SCF and PSY groups than in the CEL and HFD groups. Moreover, fasting plasma concentrations of leptin were significantly lower and GLP-1 level was two-fold higher in the SCF and PSY mice than in the HFD and CEL mice. Ghrelin mRNA levels of stomach in SCF groups were significantly lower than in CEL and HFD groups as well. These results suggest differences in response to dietary fiber intake in this animal model as high fat diets incorporating dietary fibers such as SCF and PSY appeared to attenuate weight gain, enhance insulin sensitivity, and modulate leptin and GLP-1 secretion and gastric ghrelin gene expression. PMID:17998014

  1. Caloric restriction improves diabetes-induced cognitive deficits by attenuating neurogranin-associated calcium signaling in high-fat diet-fed mice.

    PubMed

    Kim, Hwajin; Kang, Heeyoung; Heo, Rok Won; Jeon, Byeong Tak; Yi, Chin-Ok; Shin, Hyun Joo; Kim, Jeonghyun; Jeong, Seon-Yong; Kwak, Woori; Kim, Won-Ho; Kang, Sang Soo; Roh, Gu Seob

    2016-06-01

    Diabetes-induced cognitive decline has been recognized in human patients of type 2 diabetes mellitus and mouse model of obesity, but the underlying mechanisms or therapeutic targets are not clearly identified. We investigated the effect of caloric restriction on diabetes-induced memory deficits and searched a molecular mechanism of caloric restriction-mediated neuroprotection. C57BL/6 mice were fed a high-fat diet for 40 weeks and RNA-seq analysis was performed in the hippocampus of high-fat diet-fed mice. To investigate caloric restriction effect on differential expression of genes, mice were fed high-fat diet for 20 weeks and continued on high-fat diet or subjected to caloric restriction (2 g/day) for 12 weeks. High-fat diet-fed mice exhibited insulin resistance, glial activation, blood-brain barrier leakage, and memory deficits, in that we identified neurogranin, a down-regulated gene in high-fat diet-fed mice using RNA-seq analysis; neurogranin regulates Ca(2+)/calmodulin-dependent synaptic function. Caloric restriction increased insulin sensitivity, reduced high-fat diet-induced blood-brain barrier leakage and glial activation, and improved memory deficit. Furthermore, caloric restriction reversed high-fat diet-induced expression of neurogranin and the activation of Ca(2+)/calmodulin-dependent protein kinase II and calpain as well as the downstream effectors. Our results suggest that neurogranin is an important factor of high-fat diet-induced memory deficits on which caloric restriction has a therapeutic effect by regulating neurogranin-associated calcium signaling. PMID:26661177

  2. SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat-Fed Mice.

    PubMed

    Lantier, Louise; Williams, Ashley S; Williams, Ian M; Yang, Karen K; Bracy, Deanna P; Goelzer, Mickael; James, Freyja D; Gius, David; Wasserman, David H

    2015-09-01

    Protein hyperacetylation is associated with glucose intolerance and insulin resistance, suggesting that the enzymes regulating the acetylome play a role in this pathological process. Sirtuin 3 (SIRT3), the primary mitochondrial deacetylase, has been linked to energy homeostasis. Thus, it is hypothesized that the dysregulation of the mitochondrial acetylation state, via genetic deletion of SIRT3, will amplify the deleterious effects of a high-fat diet (HFD). Hyperinsulinemic-euglycemic clamp experiments show, for the first time, that mice lacking SIRT3 exhibit increased insulin resistance due to defects in skeletal muscle glucose uptake. Permeabilized muscle fibers from HFD-fed SIRT3 knockout (KO) mice showed that tricarboxylic acid cycle substrate-based respiration is decreased while fatty acid-based respiration is increased, reflecting a fuel switch from glucose to fatty acids. Consistent with reduced muscle glucose uptake, hexokinase II (HKII) binding to the mitochondria is decreased in muscle from HFD-fed SIRT3 KO mice, suggesting decreased HKII activity. These results show that the absence of SIRT3 in HFD-fed mice causes profound impairments in insulin-stimulated muscle glucose uptake, creating an increased reliance on fatty acids. Insulin action was not impaired in the lean SIRT3 KO mice. This suggests that SIRT3 protects against dietary insulin resistance by facilitating glucose disposal and mitochondrial function. PMID:25948682

  3. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice.

    PubMed

    Midtbø, Lisa Kolden; Borkowska, Alison G; Bernhard, Annette; Rønnevik, Alexander Krokedal; Lock, Erik-Jan; Fitzgerald, Michael L; Torstensen, Bente E; Liaset, Bjørn; Brattelid, Trond; Pedersen, Theresa L; Newman, John W; Kristiansen, Karsten; Madsen, Lise

    2015-06-01

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of fish oil with rapeseed oil or soybean oil in fish feed had distinct spillover effects in mice fed western diets containing the salmon. A reduced ratio of n-3/n-6 polyunsaturated fatty acids in the fish feed, reflected in the salmon, and hence also in the mice diets, led to a selectively increased abundance of arachidonic acid in the phospholipid pool in the livers of the mice. This was accompanied by increased levels of hepatic ceramides and arachidonic acid-derived pro-inflammatory mediators and a reduced abundance of oxylipins derived from eicosapentaenoic acid and docosahexaenoic acid. These changes were associated with increased whole body insulin resistance and hepatic steatosis. Our data suggest that an increased ratio between n-6 and n-3-derived oxylipins may underlie the observed marked metabolic differences between mice fed the different types of farmed salmon. These findings underpin the need for carefully considering the type of oil used for feed production in relation to salmon farming. PMID:25776459

  4. Memory Deficits Are Associated with Impaired Ability to Modulate Neuronal Excitability in Middle-Aged Mice

    ERIC Educational Resources Information Center

    Kaczorowski, Catherine C.; Disterhoft, John F.

    2009-01-01

    Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…

  5. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    PubMed

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population. PMID:26184082

  6. D-4F reduces EO6 immunoreactivity, SREBP-1c mRNA levels, and renal inflammation in LDL receptor-null mice fed a Western diet.

    PubMed

    Buga, Georgette M; Frank, Joy S; Mottino, Giuliano A; Hakhamian, Ashkan; Narasimha, Ajay; Watson, Andrew D; Yekta, Babak; Navab, Mohamad; Reddy, Srinivasa T; Anantharamaiah, G M; Fogelman, Alan M

    2008-01-01

    LDL receptor-null (LDLR(-/-)) mice on a Western diet (WD) develop endothelial dysfunction and atherosclerosis, which are improved by the apolipoprotein A-I (apoA-I) mimetic peptide D-4F. Focusing on the kidney, LDLR(-/-)mice were fed a WD with D-4F or the inactive control peptide scrambled D-4F (ScD-4F) added to their drinking water. The control mice (ScD-4F) developed glomerular changes, increased immunostaining for MCP-1/CCL2 chemokine, increased macrophage CD68 and F4/80 antigens, and increased oxidized phospholipids recognized by the EO6 monoclonal antibody in both glomerular and tublo-interstitial areas. All of these parameters were significantly reduced by D-4F treatment, approaching levels found in wild-type C57BL/6J or LDLR(-/-) mice fed a chow diet. Sterol-regulatory element binding protein-1c (SREBP-1c) mRNA levels and triglyceride levels were elevated in the kidneys of the control mice (ScD-4F) fed the WD compared with C57BL/6J and LDLR(-/-) mice on chow (P < 0.001 and P < 0.001, respectively) and compared with D-4F-treated mice on the WD (P < 0.01). There was no significant difference in plasma lipids, lipoproteins, glucose, blood pressure, or renal apoB levels between D-4F- and ScD-4F-treated mice. We conclude that D-4F reduced renal oxidized phospholipids, resulting in lower expression of SREBP-1c, which, in turn, resulted in lower triglyceride content and reduced renal inflammation. PMID:17925450

  7. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet.

    PubMed

    Noll, Christophe; Labbé, Sébastien M; Pinard, Sandra; Shum, Michael; Bilodeau, Lyne; Chouinard, Lucie; Phoenix, Serge; Lecomte, Roger; Carpentier, André C; Gallo-Payet, Nicole

    2016-01-01

    The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[(1) (8)F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model. PMID:27144096

  8. Dynamics of chromosomal aberrations in male mice of various strains during aging.

    PubMed

    Rozenfel'd, S V; Togo, E F; Mikheev, V S; Popovich, I G; Zabezhinskii, M A; Anisimov, V N

    2001-05-01

    We studied the incidence of chromosome aberrations in bone marrow cells and primary spermatocytes in various mouse strains. Experiments were performed on SAMP mice (accelerated aging), control SAMR mice, and long-living CBA and SHR mice. Experiments revealed a positive correlation between the age and the incidence of mutations in their somatic cells and gametes. PMID:11550060

  9. Postnatal exposure to voluntary exercise but not the antioxidant catechin protects the vasculature after a switch to an atherogenic environment in middle-age mice

    PubMed Central

    Leblond, Francois; Nguyen, Albert; Bolduc, Virginie; Lambert, Jean; Yu, Carol; Duquette, Natacha

    2013-01-01

    We aimed to evaluate the lasting functional imprinting of exercise (EX) and catechin (CAT) on the vascular function of middle-age mice switched to a proatherogenic environment. C57BL/6J mice (n=10–15 in each group) fed a regular diet (RD) were exposed from the age of 1 to 9 months either to EX (voluntary running; 2.7± 0.2 km/day), to the polyphenol CAT (30 mg/kg/day in drinking water), or to physical inactivity (PI). At 9 months of age, EX and CAT were stopped and mice either remained on the RD or were fed a Western diet (WD) for an additional 3 months. At 12 months of age, mice from all groups fed a WD had similar body mass, systolic blood pressure, and plasma total cholesterol, glucose, insulin, and isoprostane. Compared to the RD, the WD induced an indomethacin-sensitive aortic endothelium-dependent and independent dysfunction in PI mice (p<0.05) that was prevented by both EX and CAT; this benefit was associated with a higher (p< 0.05) non-nitric oxide/non-prostacyclin endothelium-dependent relaxation. While EX, but not PI or CAT, prevented vascular dysfunction induced by the WD in cerebral arteries, it had no effect in femoral arteries. The profiles of activity of antioxidant enzymes and of proinflammatory gene expression in the aorta suggest a better adaptation of EX>CAT>PI mice to stress. In conclusion, our data suggest that a postnatal exposure to EX, but not to CAT, imprints an adaptive defense capacity in the vasculature against a deleterious change in lifestyle. PMID:23291710

  10. Mechanisms of aging in senescence-accelerated mice

    PubMed Central

    Carter, Todd A; Greenhall, Jennifer A; Yoshida, Shigeo; Fuchs, Sebastian; Helton, Robert; Swaroop, Anand; Lockhart, David J; Barlow, Carrolee

    2005-01-01

    Background Progressive neurological dysfunction is a key aspect of human aging. Because of underlying differences in the aging of mice and humans, useful mouse models have been difficult to obtain and study. We have used gene-expression analysis and polymorphism screening to study molecular senescence of the retina and hippocampus in two rare inbred mouse models of accelerated neurological senescence (SAMP8 and SAMP10) that closely mimic human neurological aging, and in a related normal strain (SAMR1) and an unrelated normal strain (C57BL/6J). Results The majority of age-related gene expression changes were strain-specific, with only a few common pathways found for normal and accelerated neurological aging. Polymorphism screening led to the identification of mutations that could have a direct impact on important disease processes, including a mutation in a fibroblast growth factor gene, Fgf1, and a mutation in and ectopic expression of the gene for the chemokine CCL19, which is involved in the inflammatory response. Conclusion We show that combining the study of inbred mouse strains with interesting traits and gene-expression profiling can lead to the discovery of genes important for complex phenotypes. Furthermore, full-genome polymorphism detection, sequencing and gene-expression profiling of inbred mouse strains with interesting phenotypic differences may provide unique insights into the molecular genetics of late-manifesting complex diseases. PMID:15960800

  11. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice

    PubMed Central

    Guo, Janet; Bakshi, Vikas; Lin, Ai-Ling

    2015-01-01

    Preservation of brain integrity with age is highly associated with lifespan determination. Caloric restriction (CR) has been shown to increase longevity and healthspan in various species; however, its effects on preserving living brain functions in aging remain largely unexplored. In the study, we used multimodal, non-invasive neuroimaging (PET/MRI/MRS) to determine in vivo brain glucose metabolism, energy metabolites, and white matter structural integrity in young and old mice fed with either control or 40% CR diet. In addition, we determined the animals’ memory and learning ability with behavioral assessments. Blood glucose, blood ketone bodies, and body weight were also measured. We found distinct patterns between normal aging and CR aging on brain functions – normal aging showed reductions in brain glucose metabolism, white matter integrity, and long-term memory, resembling human brain aging. CR aging, in contrast, displayed an early shift from glucose to ketone bodies metabolism, which was associated with preservations of brain energy production, white matter integrity, and long-term memory in aging mice. Among all the mice, we found a positive correlation between blood glucose level and body weight, but an inverse association between blood glucose level and lifespan. Our findings suggest that CR could slow down brain aging, in part due to the early shift of energy metabolism caused by lower caloric intake, and we were able to identify the age-dependent effects of CR non-invasively using neuroimaging. These results provide a rationale for CR-induced sustenance of brain health with extended longevity. PMID:26617514

  12. Intestine-Specific Deletion of Microsomal Triglyceride Transfer Protein Increases Mortality in Aged Mice

    PubMed Central

    Liang, Zhe; Xie, Yan; Dominguez, Jessica A.; Breed, Elise R.; Yoseph, Benyam P.; Burd, Eileen M.; Farris, Alton B.

    2014-01-01

    Background Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8–10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. Methods Aged (20–24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. Results In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. Conclusions Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice. PMID:25010671

  13. Qing'E formula alleviates the aging process in D-galactose-induced aging mice

    PubMed Central

    ZHONG, LIN; HUANG, FEI; SHI, HAILIAN; WU, HUI; ZHANG, BEIBEI; WU, XIAOJUN; WEI, XIAOHUI; WANG, ZHENGTAO

    2016-01-01

    Qing'E formula (QEF) is a clinically used prescription with four ingredients, Eucommiae Cortex, Psoraleae Fructus, Juglandis Semen and Garlic Rhizoma, from the Song dynasty (10th century CE). The present study aimed to investigate the anti-aging effect and mechanisms of QEF on D-galactose-induced aging mice. A mouse subacute aging model was established by subcutaneous injection of D-galactose at the neck consecutively for 8 weeks. Motor activity and memory impairment of the mice were evaluated by the rotarod test and passive avoidance test, respectively. Serum and liver parameters were analyzed with biochemical kits. Hippocampal mRNA and protein expression levels were examined by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. QEF administration significantly ameliorated the impaired motor and memory of aging mice. In the serum, QEF reduced blood urea nitrogen, creatinine, nitric oxide (NO) and malondialdehyde (MDA) levels, and inhibited alanine aminotransferase and aspartate aminotransferase activities. In the liver, QEF increased the glutathione level, enhanced total antioxidant capacity and catalase activity, deceased NO and MDA production, and reduced NO synthase activity. In the hippocampus, QEF elevated gene expression levels of Klotho, sirtuin 1 (SIRT1), forkhead box transcription factor O3, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), insulin-like growth factor-1 and peroxiredoxin-3. QEF increased protein expression levels of Klotho and SIRT1, and decreased that of PGC-1α in the hippocampus. In conclusion, QEF attenuated the aging process in D-galactose-treated mice, which may be mediated through enhancing the antioxidants in the body, protecting renal and hepatic health, and balancing hippocampal expression levels of the longevity-related genes. PMID:27347412

  14. High fat-fed diabetic mice present with profound alterations of the osteocyte network.

    PubMed

    Mabilleau, Guillaume; Perrot, Rodolphe; Flatt, Peter R; Irwin, Nigel; Chappard, Daniel

    2016-09-01

    Diabetes mellitus is considered to be an independent risk factor for bone fragility fractures. Reductions in bone mass, observed only with type 1 diabetes mellitus, as well as modifications of bone microarchitectures and tissue material properties are landmarks of diabetes-related bone alterations. An interesting feature observed in type 2 diabetes mellitus (T2DM) is the augmented concentration in circulating sclerostin. This observation prompts us to hypothesize that modifications of osteocyte network and perilacunar mineralization occur in T2DM. As such, the aims of the present study were to ascertain by quantitative backscattered electron imaging, confocal microscopy and image analysis, modifications of perilacunar tissue mineral density, osteocyte morphology and osteocyte network topology in a mouse model of high fat-induced type 2 diabetes. As compared with lean control animals, diabetic mice exhibited a significant 48% decrease in perilacunar mineralization heterogeneity although mean perilacunar mineralization was unchanged. Furthermore, in diabetic animals, osteocyte volume was significantly augmented by 34% with no change in the overall number of dendrite processes. Finally, the network topology was profoundly modified in diabetic mice with increases in the mean node degree, mean node volume and hub numbers whilst the mean link length was reduced. Overall, it appeared that in diabetic animals, the dendritic network exhibited features of a scale-free network as opposed to the single-scale characteristic observed in lean controls. However, it is important to ascertain whether diabetic patients exhibit such modifications of the osteocyte network and whether anti-diabetic drugs could restore normal osteocyte and network parameters, thereby improving bone quality and protecting against fragility fractures. PMID:27312542

  15. Tenderness of pasture versus grain fed beef aged 14 and 28 days

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumer interest in pasture versus grain fed beef has been on the rise in recent years. This interest could be sparked by the public’s concerns of beef management techniques and processing impacts on the nutrition and safety of their food, as well as the environmental impact of each management type...

  16. Sex-specific alterations in glucose homeostasis and metabolic parameters during ageing of caspase-2-deficient mice.

    PubMed

    Wilson, C H; Nikolic, A; Kentish, S J; Shalini, S; Hatzinikolas, G; Page, A J; Dorstyn, L; Kumar, S

    2016-01-01

    Gender-specific differences are commonly found in metabolic pathways and in response to nutritional manipulation. Previously, we identified a role for caspase-2 in age-related glucose homeostasis and lipid metabolism using male caspase-2-deficient (Casp2 (-/-) ) mice. Here we show that the resistance to age-induced glucose tolerance does not occur in female Casp2 (-/-) mice and it appears to be independent of insulin sensitivity in males. Using fasting (18 h) as a means to further investigate the role of caspase-2 in energy and lipid metabolism, we identified sex-specific differences in the fasting response and lipid mobilization. In aged (18-22 months) male Casp2 (-/-) mice, a significant decrease in fasting liver mass, but not total body weight, was observed while in females, total body weight, but not liver mass, was reduced when compared with wild-type (WT) animals. Fasting-induced lipolysis of adipose tissue was enhanced in male Casp2 (-/-) mice as indicated by a significant reduction in white adipocyte cell size, and increased serum-free fatty acids. In females, white adipocyte cell size was significantly smaller in both fed and fasted Casp2 (-/-) mice. No difference in fasting-induced hepatosteatosis was observed in the absence of caspase-2. Further analysis of white adipose tissue (WAT) indicated that female Casp2 (-/-) mice may have enhanced fatty acid recycling and metabolism with expression of genes involved in glyceroneogenesis and fatty acid oxidation increased. Loss of Casp2 also increased fasting-induced autophagy in both male and female liver and in female skeletal muscle. Our observations suggest that caspase-2 can regulate glucose homeostasis and lipid metabolism in a tissue and sex-specific manner. PMID:27551503

  17. Sex-specific alterations in glucose homeostasis and metabolic parameters during ageing of caspase-2-deficient mice

    PubMed Central

    Wilson, C H; Nikolic, A; Kentish, S J; Shalini, S; Hatzinikolas, G; Page, A J; Dorstyn, L; Kumar, S

    2016-01-01

    Gender-specific differences are commonly found in metabolic pathways and in response to nutritional manipulation. Previously, we identified a role for caspase-2 in age-related glucose homeostasis and lipid metabolism using male caspase-2-deficient (Casp2−/−) mice. Here we show that the resistance to age-induced glucose tolerance does not occur in female Casp2−/− mice and it appears to be independent of insulin sensitivity in males. Using fasting (18 h) as a means to further investigate the role of caspase-2 in energy and lipid metabolism, we identified sex-specific differences in the fasting response and lipid mobilization. In aged (18–22 months) male Casp2−/− mice, a significant decrease in fasting liver mass, but not total body weight, was observed while in females, total body weight, but not liver mass, was reduced when compared with wild-type (WT) animals. Fasting-induced lipolysis of adipose tissue was enhanced in male Casp2−/− mice as indicated by a significant reduction in white adipocyte cell size, and increased serum-free fatty acids. In females, white adipocyte cell size was significantly smaller in both fed and fasted Casp2−/− mice. No difference in fasting-induced hepatosteatosis was observed in the absence of caspase-2. Further analysis of white adipose tissue (WAT) indicated that female Casp2−/− mice may have enhanced fatty acid recycling and metabolism with expression of genes involved in glyceroneogenesis and fatty acid oxidation increased. Loss of Casp2 also increased fasting-induced autophagy in both male and female liver and in female skeletal muscle. Our observations suggest that caspase-2 can regulate glucose homeostasis and lipid metabolism in a tissue and sex-specific manner. PMID:27551503

  18. The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer's disease mice

    PubMed Central

    2013-01-01

    Introduction Despite years of research, there are no disease-modifying drugs for Alzheimer's disease (AD), a fatal, age-related neurodegenerative disorder. Screening for potential therapeutics in rodent models of AD has generally relied on testing compounds before pathology is present, thereby modeling disease prevention rather than disease modification. Furthermore, this approach to screening does not reflect the clinical presentation of AD patients which could explain the failure to translate compounds identified as beneficial in animal models to disease modifying compounds in clinical trials. Clearly a better approach to pre-clinical drug screening for AD is required. Methods To more accurately reflect the clinical setting, we used an alternative screening strategy involving the treatment of AD mice at a stage in the disease when pathology is already advanced. Aged (20-month-old) transgenic AD mice (APP/swePS1ΔE9) were fed an exceptionally potent, orally active, memory enhancing and neurotrophic molecule called J147. Cognitive behavioral assays, histology, ELISA and Western blotting were used to assay the effect of J147 on memory, amyloid metabolism and neuroprotective pathways. J147 was also investigated in a scopolamine-induced model of memory impairment in C57Bl/6J mice and compared to donepezil. Details on the pharmacology and safety of J147 are also included. Results Data presented here demonstrate that J147 has the ability to rescue cognitive deficits when administered at a late stage in the disease. The ability of J147 to improve memory in aged AD mice is correlated with its induction of the neurotrophic factors NGF (nerve growth factor) and BDNF (brain derived neurotrophic factor) as well as several BDNF-responsive proteins which are important for learning and memory. The comparison between J147 and donepezil in the scopolamine model showed that while both compounds were comparable at rescuing short term memory, J147 was superior at rescuing spatial

  19. Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet.

    PubMed

    Foucault, Anne-Sophie; Even, Patrick; Lafont, René; Dioh, Waly; Veillet, Stanislas; Tomé, Daniel; Huneau, Jean-François; Hermier, Dominique; Quignard-Boulangé, Annie

    2014-04-10

    In a previous study, we have demonstrated that a supplementation of a high-fat diet with a quinoa extract enriched in 20-hydroxyecdysone (QE) or pure 20-hydroxyecdysone (20E) could prevent the development of obesity. In line with the anti-obesity effect of QE, we used indirect calorimetry to examine the effect of dietary QE and 20E in high-fat fed mice on different components of energy metabolism. Mice were fed a high-fat (HF) diet with or without supplementation by QE or pure 20E for 3 weeks. As compared to mice maintained on a low-fat diet, HF feeding resulted in a marked physiological shift in energy homeostasis, associating a decrease in global energy expenditure (EE) and an increase in lipid utilization as assessed by the lower respiratory quotient (RQ). Supplementation with 20E increased energy expenditure while food intake and activity were not affected. Furthermore QE and 20E promoted a higher rate of glucose oxidation leading to an increased RQ value. In QE and 20E-treated HFD fed mice, there was an increase in fecal lipid excretion without any change in stool amount. Our study indicates that anti-obesity effect of QE can be explained by a global increase in energy expenditure, a shift in glucose metabolism towards oxidation to the detriment of lipogenesis and a decrease in dietary lipid absorption leading to reduced dietary lipid storage in adipose tissue. PMID:24534167

  20. Profiling of hepatic gene expression of mice fed with edible japanese mushrooms by DNA microarray analysis: comparison among Pleurotus ostreatus, Grifola frondosa, and Hypsizigus marmoreus.

    PubMed

    Sato, Mayumi; Tokuji, Yoshihiko; Yoneyama, Shozo; Fujii-Akiyama, Kyoko; Kinoshita, Mikio; Ohnishi, Masao

    2011-10-12

    To compare and estimate the effects of dietary intake of three kinds of mushrooms (Pleurotus ostreatus, Grifola frondosa, and Hypsizigus marmoreus), mice were fed a diet containing 10-14% of each mushroom for 4 weeks. Triacylglycerol in the liver and plasma decreased and plasma cholesterol increased in the P. ostreatus-fed group compared with those in the control group. Cholesterol in the liver was lower in the G. frondosa-fed group than in the control group, but no changes were found in the H. marmoreus-fed group. DNA microarray analysis of the liver revealed differences of gene expression patterns among mushrooms. Ctp1a and Fabp families were upregulated in the P. ostreatus-fed group, which were considered to promote lipid transport and β-oxidation. In the G. frondosa-fed group, not only the gene involved in signal transduction of innate immunity via TLR3 and interferon but also virus resistance genes, such as Mx1, Rsad2, and Oas1, were upregulated. PMID:21910414

  1. Anti-obesity activity of chloroform-methanol extract of Premna integrifolia in mice fed with cafeteria diet

    PubMed Central

    Mali, Prashant Y.; Bigoniya, Papiya; Panchal, Shital S.; Muchhandi, Irrappa S.

    2013-01-01

    Aim of the study: Aim of the present study was to evaluate the anti-obesity activity of chloroform:methanol extract of P. integrifolia (CMPI) in mice fed with cafeteria diet. Materials and Methods: Female Swiss Albino mice were divided into six groups, which received normal and cafeteria diet, standard drug simvastatin (10 mg/kg) and CMPI (50, 100 and 200 mg/kg) daily for 40 days. Parameters such as body weight, body mass index (BMI), Lee index of obesity (LIO), food consumption, locomotor behavior, serum glucose, triglyceride, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), atherogenic index, organ weight and organ fat pad weight were studied for evaluating the anti-obesity activity of P. integrifolia. High performance liquid chromatography (HPLC) fingerprint profile of chloroform-methanol extract was also studied using quercetin as the reference standard. Results: There was a significant increase in body weight, BMI, LIO, food consumption, organ weight (liver and small intestine), organ fat pad weight (mesenteric and peri-renal fat pad) and in the levels of serum glucose, triglyceride, total cholesterol, LDL and VLDL with a significant decrease in locomotor behavior (ambulation, rearing, grooming) and HDL level in cafeteria diet group. Animals treated with CMPI showed dose dependent activity. P. integrifolia (200 mg/kg) supplementation attenuated all the above alterations, which indicates the anti-obesity activity. HPLC fingerprint profile of CMPI showed two peaks in the solvent system of 50 mm potassium diphosphate (pH-3 with ortho phosphoric acid): Methanol (30:70 v/v) at 360 nm. Conclusion: Present findings suggest that, CMPI possessed anti-obesity activity that substantiated its ethno-medicinal use in the treatment of obesity. PMID:24082700

  2. Beneficial effect of dietary Ephedra sinica on obesity and glucose intolerance in high-fat diet-fed mice.

    PubMed

    Song, Moon-Koo; Um, Jae-Young; Jang, Hyeung-Jin; Lee, Byung-Cheol

    2012-04-01

    Obesity is a major contributor to both glucose intolerance and metabolic syndrome. In this study, we investigated the anti-obesity and anti-hyperglycemic effects of Ephedra sinica on high-fat diet-fed mice. Male ICR mice were divided into four groups; the normal group, the obese and diabetic control group treated with a high-fat diet, the positive control group treated with a high-fat diet containing acarbose, and the experimental group treated with a high-fat diet containing Ephedra sinica. The effects of Ephedra sinica on obesity and glucose intolerance were measured by an oral glucose tolerance test (OGTT), plasma biochemistry, body and epididymal fat weight; the expression of adiponectin, peroxisome-proliferator-activated receptor α (PPAR-α), tumor necrosis factor α (TNF-α) and leptin was also determined. Ephedra sinica reduced weight gain and epididymal fat accumulation, improved glucose intolerance on the OGTT, decreased triglycerides and increased high-density lipoprotein cholesterol compared to the controls. Moreover, it reduced weight gain and fasting glucose levels and improved HDL-cholesterol levels more than acarbose. Gene expression analysis revealed that Ephedra sinica upregulated the expression of adiponectin and PPAR-α, and downregulated the expression of TNF-α. From these results, we suggest that Ephedra sinica may reduce obesity and hyperglycemia by increasing PPAR-α and adiponectin and reducing TNF-α, and that it may have the potential to be used clinically as an ingredient in food or drugs effective in obesity-related glucose intolerance treatments. PMID:22969956

  3. Dietary walnut reduces hepatic triglyceride content in high-fat-fed mice via modulation of hepatic fatty acid metabolism and adipose tissue inflammation.

    PubMed

    Choi, Youngshim; Abdelmegeed, Mohamed A; Akbar, Mohammed; Song, Byoung-Joon

    2016-04-01

    In this study, we evaluated the protective effects of dietary walnuts on high-fat diet (HFD)-induced fatty liver and studied the underlying mechanisms. Male C57BL/6J mice were fed either a regular rodent chow or HFD (45% energy-derived) with or without walnuts (21.5% energy-derived) for 20weeks. Walnut supplementation did not change HFD-induced increase in body weight or visceral fat mass. However, dietary walnuts significantly decreased the amounts of hepatic triglyceride (TG) observed in HFD-fed mice. The addition of walnuts significantly altered the levels of proteins, involved in the hepatic lipid homeostasis, including AMP-activated protein kinase, fatty acid synthase and peroxisome proliferator-activated receptor-α. Since adipocyte inflammation and apoptosis are reportedly important in regulating hepatic fat accumulation, we also evaluated the protective effects of walnuts on adipose tissue injury. Real-time polymerase chain reaction results revealed that adipose tissues isolated from mice fed the HFD+walnut diets showed significantly decreased levels of macrophage infiltration with suppressed expression of proinflammatory genes compared to those significantly elevated in mice fed HFD alone. These improvements also coincided with reduction of HFD-induced apoptosis of adipocytes by dietary walnuts. However, the supplemented walnuts did not significantly alter HFD-induced peripheral glucose intolerance or insulin resistance despite a trend of improvement. Collectively, these results demonstrate that the protective effects of walnuts against HFD-induced hepatic TG accumulation in mice are mediated, at least partially, by modulating the key proteins in hepatic lipid homeostasis and suppression of the genes related to adipose tissue inflammation and macrophage infiltration as well as prevention of adipocyte apoptosis. PMID:27012628

  4. Plasma S-adenosylhomocysteine is a better biomarker of atherosclerosis than homocysteine in apolipoprotein E-deficient mice fed high dietary methionine.

    PubMed

    Liu, Chi; Wang, Qing; Guo, Honghui; Xia, Min; Yuan, Qin; Hu, Yan; Zhu, Huilian; Hou, Mengjun; Ma, Jing; Tang, Zhihong; Ling, Wenhua

    2008-02-01

    Homocysteine (Hcy) and S-adenosylhomocysteine (AdoHcy) are critical intermediates of methionine metabolism. To investigate which, if either, of these compounds is more closely related to atherosclerosis, we fed 5 groups of apolipoprotein E (apoE)-deficient mice different diets for 8 wk to induce changes in their plasma Hcy and AdoHcy concentrations. These included an AIN-93G control diet (C), this C diet supplemented with methionine (M), the M diet deficient in folates, vitamin B-6, and vitamin B-12 (M-V), this M diet supplemented with these B vitamins (M+V), and a C diet deficient in B vitamins (C-V). Compared with controls, mice fed the C-V diet had a moderate elevation in their plasma total Hcy (tHcy) levels; however, their plasma AdoHcy concentration and atherosclerotic lesion areas were not different. In contrast, the mice fed the M+V diet had larger atherosclerotic lesion areas and elevated plasma AdoHcy concentrations but their plasma tHcy concentration did not differ from that of the group C mice. The plasma AdoHcy concentration and aortic sinus lesion areas were positively correlated (r = 0.866; P < 0.001). We observed a negative correlation between the plasma AdoHcy concentration and both the DNA methyltransferase activity (r = -0.792; P < 0.001) and global DNA methylation status (r = -0.824; P < 0.001) in the aortic tissue. Hence, our study suggests that plasma AdoHcy is a better biomarker of atherosclerosis than Hcy and may accelerate the development of atherosclerotic lesions in apoE-deficient mice that have been fed a high methionine diet. The mechanisms underlying this effect may be related to the AdoHcy-mediated inhibition of DNA methylation in the aortic tissue. PMID:18203897

  5. Targeted overexpression of the human urotensin receptor transgene in smooth muscle cells: effect of UT antagonism in ApoE knockout mice fed with Western diet.

    PubMed

    Papadopoulos, Panayiota; Bousette, Nicolas; Al-Ramli, Wisam; You, Zhipeng; Behm, David J; Ohlstein, Eliot H; Harrison, Stephen M; Douglas, Stephen A; Giaid, Adel

    2009-06-01

    Urotensin II (UII) and its receptor UT are upregulated in the pathological setting of various cardiovascular diseases including atherosclerosis. However, their exact role in atherosclerosis remains to be determined. In the present study we used four strains of mice; wild-type (WT), UT(+) (a transgenic strain expressing human UT driven by the alpha-smooth muscle-specific, SM22, promoter), ApoE knockout (ko), and UT(+)/ApoE ko. All animals were fed high fat diet for 12 weeks. Western blot analysis revealed a significant increase in aortic UT expression in UT(+) relative to WT mice (P<0.05). Aortas of ApoE ko mice expressed comparable UT protein level to that of UT(+). Immunohistochemistry revealed the presence of strong expression of UT and UII proteins in the atheroma of UT(+), ApoE ko and UT(+)/ApoE ko mice, particularly in foam cells. Serum cholesterol and triglyceride levels were significantly increased in ApoE ko and in UT(+)/ApoE ko but not in UT(+) mice when compared to WT mice (P<0.0001). Analysis of aortas showed a significant increase in atherosclerotic lesion in the UT(+), ApoE ko and UT(+)/ApoE ko compared to WT mice (P<0.05). Oral administration of the UT receptor antagonist SB-657510A (30 microg/Kg/day gavage) for 10 weeks in a group of ApoE ko mice fed on high fat diet resulted in a significant reduction of lesion (P<0.001). SB-657510A also significantly reduced ACAT-1 protein expression in the atherosclerotic lesion of ApoE ko mice (P<0.05). The present findings demonstrate an important role for UT in the pathogenesis of atherosclerosis. The use of UT receptor antagonists may provide a beneficial tool in the management of this debilitating disease process. PMID:19111831

  6. Changes in the hepatic mitochondrial and membrane proteome in mice fed a non-alcoholic steatohepatitis inducing diet.

    PubMed

    Thomas, Anja; Klein, Matthias S; Stevens, Axel P; Reinders, Yvonne; Hellerbrand, Claus; Dettmer, Katja; Gronwald, Wolfram; Oefner, Peter J; Reinders, Jörg

    2013-03-27

    Non-alcoholic steatohepatitis (NASH) accounts for a large proportion of cryptic cirrhosis in the Western societies. Nevertheless, we lack a deeper understanding of the underlying pathomolecular processes, particularly those preceding hepatic inflammation and fibrosis. In order to gain novel insights into early NASH-development from the first appearance of proteomic alterations to the onset of hepatic inflammation and fibrosis, we conducted a time-course analysis of proteomic changes in liver mitochondria and membrane-enriched fractions of female C57Bl/6N mice fed either a mere steatosis or NASH inducing diet. This data was complemented by quantitative measurements of hepatic glycerol-containing lipids, cholesterol and intermediates of the methionine cycle. Aside from energy metabolism and stress response proteins, enzymes of the urea cycle and methionine metabolism were found regulated. Alterations in the methionine cycle occur early in disease progression preceding molecular signs of inflammation. Proteins that hold particular promise in the early distinction between benign steatosis and NASH are methyl-transferase Mettl7b, the glycoprotein basigin and the microsomal glutathione-transferase. PMID:23313215

  7. Subclinical-Dose Endotoxin Sustains Low-Grade Inflammation and Exacerbates Steatohepatitis in High-Fat Diet-Fed Mice.

    PubMed

    Guo, Honghui; Diao, Na; Yuan, Ruoxi; Chen, Keqiang; Geng, Shuo; Li, Mingsong; Li, Liwu

    2016-03-01

    Subclinical circulating bacterial endotoxin LPS has been implicated as an important cofactor in the development and progression of nonalcoholic steatohepatitis, but the underlying mechanisms remain unclear. In this study, we demonstrated that 4-wk injection with superlow-dose LPS significantly promoted neutrophil infiltration and accelerated nonalcoholic steatohepatitis progression, including exacerbated macrovesicular steatosis, inflammation, and hepatocyte ballooning in high-fat diet-fed apolipoprotein E knockout mice. This effect could sustain for a month after stoppage of LPS injection. LPS also significantly increased numbers of apoptotic nuclei in hepatocytes and expressions of proapoptotic regulators. Moreover, LPS sustained the low-grade activation of p38 MAPK and inhibited the expression of the upstream MAPK phosphatase 7. By applying selective inhibitors, we demonstrated that the activation of p38 MAPKs is required for neutrophil migration induced by superlow-dose LPS in vitro. Together, these data suggest that superlow-dose LPS may sustain the low-grade activation of p38 MAPKs and neutrophil infiltration, leading to the exacerbation of steatohepatitis. PMID:26810228

  8. Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet

    PubMed Central

    Zheng, Jie; Shen, Nanhui; Wang, Shuanghui; Zhao, Guohua

    2013-01-01

    Methods This study sought to evaluate the impact of oat beta-glucan on insulin resistance in mice fed on high-fat and high-fructose diet with fructose (10%, w/v) added in drinking water for 10 weeks. Results The results showed that supplementation with oat beta-glucan could significantly reduce the insulin resistance both in low-dose (200 mg/kg−1 body weight) and high-dose (500 mg/kg−1 body weight) groups, but the high-dose group showed a more significant improvement in insulin resistance (P<0.01) compared with model control (MC) group along with significant improvement in hepatic glycogen level, oral glucose, and insulin tolerance. Moreover, hepatic glucokinase activity was markedly enhanced both in low-dose and high-dose groups compared with that of MC group (P<0.05). Conclusion These results suggested that supplementation of oat beta-glucan alleviated insulin resistance and the effect was dose dependent. PMID:24371433

  9. Expression of Aquaporins in the Efferent Ductules, Sperm Counts, and Sperm Motility in Estrogen Receptor-α Deficient Mice Fed Lab Chow Versus Casein

    PubMed Central

    RUZ, RICARDO; GREGORY, MARY; SMITH, CHARLES E.; CYR, DANIEL G.; LUBAHN, DENNIS B.; HESS, REX A.; HERMO, LOUIS

    2006-01-01

    Estrogens play an important role in the male reproductive tract, and this is especially so for the efferent ductules, where α-estrogen receptors (ERα) have been localized. Mice deficient in ERα (αERKO mice) are infertile, and the effect appears to be due in part to retention of water at the level of the efferent ductules. In the present study, we examined the consequences of ERα deletion on the distribution of certain aquaporins (AQPs), water protein channels, in the efferent ductules and on sperm numbers and motility. In addition, the effects of feeding mice a regular lab chow diet, which contains phytoestrogens, known to affect male reproductive tract functions, and a casein diet, which lacks phytoestrogens, were also assessed. Light microscope immunolocalizations of AQP-1 and AQP-9 revealed dramatic reduction and patchier staining in αERKO mice with distal areas of the efferent ductules being more affected than proximal areas. No other changes in immunolocalizations were noted as a consequence of diet. Computer-assisted sperm analyses demonstrated a 62% reduction in cauda epididymal sperm/ml in αERKO mice fed lab chow, whereas 87% fewer sperm/ml were observed in αERKO mice fed casein, suggesting an enhanced role for sperm production and concentration in a diet containing phytoestrogens. All sperm motility parameters were altered to some degree in αERKO mice fed lab chow. Alterations in sperm motility parameters were also detected, but were less dramatic in αERKO mice fed casein. These data suggest that the decrease in AQP expression in the efferent ductules of αERKO mice contributes in part to water retention in this tissue, eventually leading to backflow of water into the testis, with subsequent decreases in sperm concentration and motility. The data also suggest that phytoestrogens, which are present in regular lab chow, can influence the male reproductive tract with and without the presence of ERα, promoting efferent ductule and epididymal

  10. Dietary fenugreek and onion attenuate cholesterol gallstone formation in lithogenic diet-fed mice.

    PubMed

    Reddy, Raghunatha R L; Srinivasan, Krishnapura

    2011-10-01

    An animal study was conducted to evaluate the antilithogenic effect of a combination of dietary fenugreek seeds and onion. Lithogenic conditions were induced in mice by feeding them a high (0.5%) cholesterol diet (HCD) for 10 weeks. Fenugreek (12%) and onion (2%) were included individually and in combination in this HCD. Fenugreek, onion and their combination reduced the incidence of cholesterol gallstones by 75%, 27% and 76%, respectively, with attendant reduction in total cholesterol content by 38-42%, 50-72% and 61-80% in serum, liver and bile respectively. Consequently, the cholesterol/phospholipid ratio was reduced significantly in serum, liver and bile. The cholesterol saturation index of bile was reduced from 4.14 to 1.38 by the combination of fenugreek and onion and to 2.33 by onion alone. The phospholipid and bile acid contents of the bile were also increased. Changes in the hepatic enzyme activities (3-hydroxy-3-methylglutaryl Coenzyme A reductase, cholesterol-7α-hydroxylase and cholesterol-27-hydroxylase) induced by HCD were countered by fenugreek, onion and their combination. Hepatic lipid peroxides were reduced by 19-22% and 39-45% with fenugreek, onion and their combination included in the diet along with the HCD. Increased accumulation of fat in the liver and inflammation of the gallbladder membrane produced by HCD were reduced by fenugreek, onion and their combination. The antilithogenic influence was highest with fenugreek alone, and the presence of onion along with it did not further increase this effect. There was also no additive effect of the two spices in the recovery of antioxidant molecules or in the antioxidant enzyme activities. PMID:21756271

  11. Complement C3-Deficient Mice Fail to Display Age-Related Hippocampal Decline.

    PubMed

    Shi, Qiaoqiao; Colodner, Kenneth J; Matousek, Sarah B; Merry, Katherine; Hong, Soyon; Kenison, Jessica E; Frost, Jeffrey L; Le, Kevin X; Li, Shaomin; Dodart, Jean-Cosme; Caldarone, Barbara J; Stevens, Beth; Lemere, Cynthia A

    2015-09-23

    The complement system is part of the innate immune response responsible for removing pathogens and cellular debris, in addition to helping to refine CNS neuronal connections via microglia-mediated pruning of inappropriate synapses during brain development. However, less is known about the role of complement during normal aging. Here, we studied the role of the central complement component, C3, in synaptic health and aging. We examined behavior as well as electrophysiological, synaptic, and neuronal changes in the brains of C3-deficient male mice (C3 KO) compared with age-, strain-, and gender-matched C57BL/6J (wild-type, WT) control mice at postnatal day 30, 4 months, and 16 months of age. We found the following: (1) region-specific and age-dependent synapse loss in aged WT mice that was not observed in C3 KO mice; (2) age-dependent neuron loss in hippocampal CA3 (but not in CA1) that followed synapse loss in aged WT mice, neither of which were observed in aged C3 KO mice; and (3) significantly enhanced LTP and cognition and less anxiety in aged C3 KO mice compared with aged WT mice. Importantly, CA3 synaptic puncta were similar between WT and C3 KO mice at P30. Together, our results suggest a novel and prominent role for complement protein C3 in mediating aged-related and region-specific changes in synaptic function and plasticity in the aging brain. Significance statement: The complement cascade, part of the innate immune response to remove pathogens, also plays a role in synaptic refinement during brain development by the removal of weak synapses. We investigated whether complement C3, a central component, affects synapse loss during aging. Wild-type (WT) and C3 knock-out (C3 KO) mice were examined at different ages. The mice were similar at 1 month of age. However, with aging, WT mice lost synapses in specific brain regions, especially in hippocampus, an area important for memory, whereas C3 KO mice were protected. Aged C3 KO mice also performed better on

  12. Arterial Stiffening in Western Diet-Fed Mice Is Associated with Increased Vascular Elastin, Transforming Growth Factor-β, and Plasma Neuraminidase

    PubMed Central

    Foote, Christopher A.; Castorena-Gonzalez, Jorge A.; Ramirez-Perez, Francisco I.; Jia, Guanghong; Hill, Michael A.; Reyes-Aldasoro, Constantino C.; Sowers, James R.; Martinez-Lemus, Luis A.

    2016-01-01

    Consumption of excess fat and carbohydrate (Western diet, WD) is associated with alterations in the structural characteristics of blood vessels. This vascular remodeling contributes to the development of cardiovascular disease, particularly as it affects conduit and resistance arteries. Vascular remodeling is often associated with changes in the elastin-rich internal elastic lamina (IEL) and the activation of transforming growth factor (TGF)-β. In addition, obesity and type II diabetes have been associated with increased serum neuraminidase, an enzyme known to increase TGF-β cellular output. Therefore, we hypothesized that WD-feeding would induce structural modifications to the IEL of mesenteric resistance arteries in mice, and that these changes would be associated with increased levels of circulating neuraminidase and the up-regulation of elastin and TGF-β in the arterial wall. To test this hypothesis, a WD, high in fat and sugar, was used to induce obesity in mice, and the effect of this diet on the structure of mesenteric resistance arteries was investigated. 4-week old, Post-weaning mice were fed either a normal diet (ND) or WD for 16 weeks. Mechanically, arteries from WD-fed mice were stiffer and less distensible, with marginally increased wall stress for a given strain, and a significantly increased Young's modulus of elasticity. Structurally, the wall cross-sectional area and the number of fenestrae found in the internal elastic lamina (IEL) of mesenteric arteries from mice fed a WD were significantly smaller than those of arteries from the ND-fed mice. There was also a significant increase in the volume of elastin, but not collagen in arteries from the WD cohort. Plasma levels of neuraminidase and the amount of TGF-β in mesenteric arteries were elevated in mice fed a WD, while ex vivo, cultured vascular smooth muscle cells exposed to neuraminidase secreted greater amounts of tropoelastin and TGF-β than those exposed to vehicle. These data suggest that

  13. Macronutrient balance, reproductive function, and lifespan in aging mice.

    PubMed

    Solon-Biet, Samantha M; Walters, Kirsty A; Simanainen, Ulla K; McMahon, Aisling C; Ruohonen, Kari; Ballard, John William O; Raubenheimer, David; Handelsman, David J; Le Couteur, David G; Simpson, Stephen J

    2015-03-17

    In invertebrates, reproductive output and lifespan are profoundly impacted by dietary macronutrient balance, with these traits achieving their maxima on different diet compositions, giving the appearance of a resource-based tradeoff between reproduction and longevity. For the first time in a mammal, to our knowledge, we evaluate the effects of dietary protein (P), carbohydrate (C), fat (F), and energy (E) on lifespan and reproductive function in aging male and female mice. We show that, as in invertebrates, the balance of macronutrients has marked and largely opposing effects on reproductive and longevity outcomes. Mice were provided ad libitum access to one of 25 diets differing in P, C, F, and E content, with reproductive outcomes assessed at 15 months. An optimal balance of macronutrients exists for reproductive function, which, for most measures, differs from the diets that optimize lifespan, and this response differs with sex. Maximal longevity was achieved on diets containing a P:C ratio of 1:13 in males and 1:11 for females. Diets that optimized testes mass and epididymal sperm counts (indicators of gamete production) contained a higher P:C ratio (1:1) than those that maximized lifespan. In females, uterine mass (an indicator of estrogenic activity) was also greatest on high P:C diets (1:1) whereas ovarian follicle number was greatest on P:C 3:1 associated with high-F intakes. By contrast, estrous cycling was more likely in mice on lower P:C (1:8), and the number of corpora lutea, indicative of recent ovulations, was greatest on P:C similar to those supporting greatest longevity (1:11). PMID:25733862

  14. Constitutive telomerase expression promotes mammary carcinomas in aging mice

    PubMed Central

    Artandi, Steven E.; Alson, Scott; Tietze, Maja K.; Sharpless, Norman E.; Ye, Siqin; Greenberg, Roger A.; Castrillon, Diego H.; Horner, James W.; Weiler, Sarah R.; Carrasco, Ruben D.; DePinho, Ronald A.

    2002-01-01

    Telomerase is up-regulated in the vast majority of human cancers and serves to halt the progressive telomere shortening that ultimately blocks would-be cancer cells from achieving a full malignant phenotype. In contrast to humans, the laboratory mouse possesses long telomeres and, even in early generation telomerase-deficient mice, the level of telomere reserve is sufficient to avert telomere-based checkpoint responses and to permit full malignant progression. These features in the mouse provide an opportunity to determine whether enforced high-level telomerase activity can serve functions that extend beyond its ability to sustain telomere length and function. Here, we report the generation and characterization of transgenic mice that express the catalytic subunit of telomerase (mTERT) at high levels in a broad variety of tissues. Expression of mTERT conferred increased telomerase enzymatic activity in several tissues, including mammary gland, splenocytes, and cultured mouse embryonic fibroblasts. In mouse embryonic fibroblasts, mTERT overexpression extended telomere lengths but did not prevent culture-induced replicative arrest, thus reinforcing the view that this phenomenon is not related to occult telomere shortening. Robust telomerase activity, however, was associated with the spontaneous development of mammary intraepithelial neoplasia and invasive mammary carcinomas in a significant proportion of aged females. These data indicate that enforced mTERT expression can promote the development of spontaneous cancers even in the setting of ample telomere reserve. PMID:12034875

  15. Dexmedetomidine improves early postoperative cognitive dysfunction in aged mice.

    PubMed

    Qian, Xiao-Lan; Zhang, Wei; Liu, Ming-Zheng; Zhou, Yu-Bing; Zhang, Jing-Min; Han, Li; Peng, You-Mei; Jiang, Jin-hua; Wang, Qing-Duan

    2015-01-01

    Postoperative cognitive dysfunction (POCD) is a frequent complication following major surgery in the elderly. However, the exact pathogenic mechanisms are still unknown. Dexmedetomidine, a selective alpha 2 adrenal receptor agonist, was revealed anesthesia and brain protective role. The present study aimed to examine whether dexmedetomdine protects against POCD induced by major surgical trauma under general anesthesia in aged mice. In the present study, cognitive function was assessed by Y-maze. Proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor (TNF-α), apoptosis-related factor caspase-3 and Bax were detected by real-time PCR, Western blot or immunohistochemistry. The results showed that anesthesia alone caused weak cognitive dysfunction on the first day after general anesthesia. Cognitive function in mice with splenectomy under general anesthesia was significantly exacerbated at the first and third days after surgery, and was significantly improved by dexmedetomidine administration. Splenectomy increased the expression of IL-1β, TNF-α, Bax and caspase-3 in hippocampus. These changes were significantly inversed by dexmedetomidine. These results suggest that hippocampal inflammatory response and neuronal apoptosis may contribute to POCD, and selective alpha 2 adrenal receptor excitation play a protective role. PMID:25460022

  16. Neuroprotective properties of vitamin C on equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in high fat diet fed neonatal mice

    PubMed Central

    Xu, Kai-Xiang; Tao, Jun; Zhang, Nan; Wang, Jian-Zhong

    2015-01-01

    Obesity has been reported to be one of the significant contributors to various chronic disease conditions. Childhood obesity has been on an alarming increase over recent years leading to various health complications. Millions of children undergo surgery each year as a part of medical care on various health grounds. In the present study, influence of vitamin C on the effect of obesity and over-weight under anaesthetic exposure was analysed. Separate groups of neonatal mice (C57BL/6) were fed on high-fat diet to induce obesity. The mice were administered with vitamin C at 30 and 60 mg/kg b.wt post natal day 1 (P1) to P21. P7 mice were exposed to equipotent doses of isoflurane or sevoflurane or desflurane. Neuroapoptosis was assessed by measuring activated caspase-3 and TUNEL assay. Plasma S100β levels were detected by ELISA. The mice were assessed for their general behaviour. Morris water maze test was performed to assess the spatial working memory. Anesthesia exposure caused severe neuroapoptosis and also raised the levels of plasma S100β. Neuroapotosis, working memory and learning impairments observed following anesthetics were comparatively more profound on high fat diet fed mice. Desflurane exposure resulted in higher apoptotic counts, learning and memory deficits than equipotent dose of isoflurane and sevoflurane. Vitamin C supplementation offered significant protection against anesthetic induced neurotoxicity and behavioural alterations. Vitamin C administration resulted in marked reduction in neurotoxicity induced by anesthesia and as well improved learning and memory of both normal and high fat diet fed mice. PMID:26379835

  17. Effects of chronic estrogen treatment on modulating age-related bone loss in female mice.

    PubMed

    Syed, Farhan A; Mödder, Ulrike Il; Roforth, Matthew; Hensen, Ira; Fraser, Daniel G; Peterson, James M; Oursler, Merry Jo; Khosla, Sundeep

    2010-11-01

    While female mice do not have the equivalent of a menopause, they do undergo reproductive senescence. Thus, to dissociate the effects of aging versus estrogen deficiency on age-related bone loss, we sham-operated, ovariectomized, or ovariectomized and estrogen-replaced female C57/BL6 mice at 6 months of age and followed them to age 18 to 22 months. Lumbar spines and femurs were excised for analysis, and bone marrow hematopoietic lineage negative (lin-) cells (enriched for osteoprogenitor cells) were isolated for gene expression studies. Six-month-old intact control mice were euthanized to define baseline parameters. Compared with young mice, aged/sham-operated mice had a 42% reduction in lumbar spine bone volume/total volume (BV/TV), and maintaining constant estrogen levels over life in ovariectomized/estrogen-treated mice did not prevent age-related trabecular bone loss at this site. By contrast, lifelong estrogen treatment of ovariectomized mice completely prevented the age-related reduction in cortical volumetric bone mineral density (vBMD) and thickness at the tibial diaphysis present in the aged/sham-operated mice. As compared with cells from young mice, lin- cells from aged/sham-operated mice expressed significantly higher mRNA levels for osteoblast differentiation and proliferation marker genes. These data thus demonstrate that, in mice, age-related loss of cortical bone in the appendicular skeleton, but not loss of trabecular bone in the spine, can be prevented by maintaining constant estrogen levels over life. The observed increase in osteoblastic differentiation and proliferation marker gene expression in progenitor bone marrow cells from aged versus young mice may represent a compensatory mechanism in response to ongoing bone loss. PMID:20499336

  18. Anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar in mice fed a high-fat diet

    PubMed Central

    Park, Ki-Moon

    2013-01-01

    The abnormal content of blood lipids often results in metabolic diseases, such as hyperlipidemia and obesity. Many agents, including natural sources from traditional food, have been developed to regulate the blood lipid contents. In this study, we examined the anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar (RNSpBRV), a Korean traditional pickled soybean food. Since RNSpBRV is made of R. nulubilis seeds (RNS) soaked in brown rice vinegar (BRV), we compared the anti-adipogenic activity between RNS, BRV and solid fraction of RNSpBRV (SF-RNSpBRV), liquid fraction of RNSpBRV (LF-RNSpBRV). For this, the inhibitory effect of lipid accumulation in 3T3-L1 adipocyte was checked by adding methanol extracts of mixed RNS and BRV, LF-RNSpBRV, and SF-RNSpBRV. The addition of each methanol extract up to 1 mg/ml showed no cytotoxicity on 3T3-L1 adipocyte, and approximately 20% of the lipid droplet formation was suppressed with the methanol extract of BRL or SF-RNSpBRV. The highest suppression (42.1%) was achieved with LF-RNSpBRV. In addition, mice fed a high fat diet (HFD) supplemented with 5% RNSpBRV powder led to increased high density lipoprotein (HDL) cholesterol and lower blood glucose, triglyceride, and total cholesterol compared to mice fed with a HFD diet only. Interestingly, the size of the epididymis cells gradually decreased in HFD + 1% RNSpBRV- and HFD + 5% RNSpBRV-fed mice if compared those of HFD-fed mice. Taken together, these results provide evidence that RNSpBRV has a regulatory role in lipid metabolism that is related to hyperlipidemia. PMID:24353830

  19. Increased Adipocyte Area in Injured Muscle With Aging and Impaired Remodeling in Female Mice.

    PubMed

    Fearing, Caitlin M; Melton, David W; Lei, Xiufen; Hancock, Heather; Wang, Hanzhou; Sarwar, Zaheer U; Porter, Laurel; McHale, Matthew; McManus, Linda M; Shireman, Paula K

    2016-08-01

    We demonstrated that young male and female mice similarly regenerated injured skeletal muscle; however, female mice transiently increased adipocyte area within regenerated muscle in a sex hormone-dependent manner. We extended these observations to investigate the effect of aging and sex on sarcopenia and muscle regeneration. Cardiotoxin injury to the tibialis anterior muscle of young, middle, and old-aged C57Bl/6J male and female mice was used to measure regenerated myofiber cross-sectional area (CSA), adipocyte area, residual necrosis, and inflammatory cell recruitment. Baseline (uninjured) myofiber CSA was decreased in old mice of both sexes compared to young and middle-aged mice. Regenerated CSA was similar in male mice in all age groups until baseline CSA was attained but decreased in middle and old age female mice compared to young females. Furthermore, adipocyte area within regenerated muscle was transiently increased in young females compared to young males and these sex-dependent increases persisted in middle and old age female mice and were associated with increased Pparg Young female mice had more pro-inflammatory monocytes/macrophages in regenerating muscle than young male mice and increased Sca-1(+)CD45(-)cells. In conclusion, sex and age influence pro-inflammatory cell recruitment, muscle regeneration, and adipocyte area following skeletal muscle injury. PMID:26273023

  20. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice.

    PubMed

    Baltgalvis, Kristen A; White, Kathy; Li, Wei; Claypool, Mark D; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K; Friera, Annabelle M; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J; Godinez, Guillermo; Shaw, Simon J; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G; Kinsella, Todd M

    2014-04-15

    Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD. PMID:24561866

  1. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice.

    PubMed

    Wang, Kaiping; Cao, Peng; Wang, Hanxiang; Tang, Zhuohong; Wang, Na; Wang, Jinglin; Zhang, Yu

    2016-01-01

    This study aimed to investigate the therapeutic effects of Angelica sinensis polysaccharide (ASP), an active component derived from a water extract of Angelica sinensis, in high-fat diet (HFD)-fed BALB/c mice. The potential mechanisms underlying the activity of this compound were also considered. Specifically, serum and hepatic biochemical parameters were evaluated, and key proteins involved in the lipid/glucose metabolism were analyzed. Long-term feeding with a HFD induced severe fatty liver and hyperglycemia. Histological examination clearly showed that ASP reduced lipid accumulation in the liver and attenuated hepatic steatosis in HFD-fed mice. In addition, ASP markedly alleviated serum and liver lipid disorders and fatty liver via the upregulation of PPARγ expression and the activation of adiponectin-SIRT1-AMPK signaling. Furthermore, ASP also significantly relieved severe oxidative stress, demonstrating that ASP might attenuate nonalcoholic fatty liver disease via a "two-hit" mechanism. In addition, ASP reduced blood glucose levels and ameliorated insulin resistance via the regulation of related metabolic enzymes and by activating the PI3K/Akt pathway in HFD-fed mice. Our findings revealed that ASP might be used as an alternative dietary supplement or health care product to ameliorate metabolic syndrome in populations that consistently consume HFDs. PMID:27189109

  2. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice

    PubMed Central

    Wang, Kaiping; Cao, Peng; Wang, Hanxiang; Tang, Zhuohong; Wang, Na; Wang, Jinglin; Zhang, Yu

    2016-01-01

    This study aimed to investigate the therapeutic effects of Angelica sinensis polysaccharide (ASP), an active component derived from a water extract of Angelica sinensis, in high-fat diet (HFD)-fed BALB/c mice. The potential mechanisms underlying the activity of this compound were also considered. Specifically, serum and hepatic biochemical parameters were evaluated, and key proteins involved in the lipid/glucose metabolism were analyzed. Long-term feeding with a HFD induced severe fatty liver and hyperglycemia. Histological examination clearly showed that ASP reduced lipid accumulation in the liver and attenuated hepatic steatosis in HFD-fed mice. In addition, ASP markedly alleviated serum and liver lipid disorders and fatty liver via the upregulation of PPARγ expression and the activation of adiponectin-SIRT1-AMPK signaling. Furthermore, ASP also significantly relieved severe oxidative stress, demonstrating that ASP might attenuate nonalcoholic fatty liver disease via a “two-hit” mechanism. In addition, ASP reduced blood glucose levels and ameliorated insulin resistance via the regulation of related metabolic enzymes and by activating the PI3K/Akt pathway in HFD-fed mice. Our findings revealed that ASP might be used as an alternative dietary supplement or health care product to ameliorate metabolic syndrome in populations that consistently consume HFDs. PMID:27189109

  3. Distinct Time Course of the Decrease in Hepatic AMP-Activated Protein Kinase and Akt Phosphorylation in Mice Fed a High Fat Diet

    PubMed Central

    Shiwa, Mami; Yoneda, Masayasu; Okubo, Hirofumi; Ohno, Haruya; Kobuke, Kazuhiro; Monzen, Yuko; Kishimoto, Rui; Nakatsu, Yusuke; Asano, Tomoichiro; Kohno, Nobuoki

    2015-01-01

    AMP-activated protein kinase (AMPK) plays an important role in insulin resistance, which is characterized by the impairment of the insulin-Akt signaling pathway. However, the time course of the decrease in AMPK and Akt phosphorylation in the liver during the development of obesity and insulin resistance caused by feeding a high fat diet (HFD) remains controversial. Moreover, it is unclear whether the impairment of AMPK and Akt signaling pathways is reversible when changing from a HFD to a standard diet (SD). Male ddY mice were fed the SD or HFD for 3 to 28 days, or fed the HFD for 14 days, followed by the SD for 14 days. We examined the time course of the expression and phosphorylation levels of AMPK and Akt in the liver by immunoblotting. After 3 days of feeding on the HFD, mice gained body weight, resulting in an increased oil red O staining, indicative of hepatic lipid accumulation, and significantly decreased AMPK phosphorylation, in comparison with mice fed the SD. After 14 days on the HFD, systemic insulin resistance occurred and Akt phosphorylation significantly decreased. Subsequently, a change from the HFD to SD for 3 days, after 14 days on the HFD, ameliorated the impairment of AMPK and Akt phosphorylation and systemic insulin resistance. Our findings indicate that AMPK phosphorylation decreases early upon feeding a HFD and emphasizes the importance of prompt lifestyle modification for decreasing the risk of developing diabetes. PMID:26266809

  4. Lipoprotein(A) with An Intact Lysine Binding Site Protects the Retina From an Age-Related Macular Degeneration Phenotype in Mice (An American Ophthalmological Society Thesis)

    PubMed Central

    Handa, James T.; Tagami, Mizuki; Ebrahimi, Katayoon; Leibundgut, Gregor; Janiak, Anna; Witztum, Joseph L.; Tsimikas, Sotirios

    2015-01-01

    Purpose: To test the hypothesis that the accumulation of oxidized phospholipids (OxPL) in the macula is toxic to the retina unless neutralized by a variety of mechanisms, including binding by lipoprotein(a) [Lp(a)], which is composed of apolipoprotein(a) [apo(a)] and apolipoprotein B-100 (apoB). Methods: Human maculas and eyes from two Lp(a) transgenic murine models were subjected to morphologic, ultrastructural, and immunohistochemical analysis. “Wild-type Lp(a)” mice, which express human apoB-100 and apo(a) that contains oxidized phospholipid, and “mutant LBS− Lp(a)” mice with a defective apo(a) lysine binding site (LBS) for oxidized phospholipid binding, were fed a chow or high-fat diet for 2 to 12 months. Oxidized phospholipid–containing lipoproteins were detected by immunoreactivity to E06, a murine monoclonal antibody binding to the phosphocholine headgroup of oxidized, but not native, phospholipids. Results: Oxidized phospholipids, apo(a), and apoB accumulate in maculas, including drusen, of age-related macular degeneration (AMD) samples and age-matched controls. Lp(a) mice fed a high-fat diet developed age-related changes. However, mutant LBS− Lp(a) mice fed a high-fat diet developed retinal pigment epithelial cell degeneration and drusen. These changes were associated with increased OxPL, decreased antioxidant defenses, increased complement, and decreased complement regulators. Conclusions: Human maculas accumulate Lp(a) and OxPL. Mutant LBS− Lp(a) mice, lacking the ability to bind E06-detectable oxidized phospholipid, develop AMD-like changes. The ability of Lp(a) to bind E06-detectable OxPL may play a protective role in AMD. PMID:26538774

  5. Pathology of aging female SENCAR mice used as controls in skin two-stage carcinogenesis studies.

    PubMed Central

    Ward, J M; Quander, R; Devor, D; Wenk, M L; Spangler, E F

    1986-01-01

    The pathology of 60 aged female SENCAR mice used as acetone controls in skin painting studies was studied. Fifty percent of the mice survived past 96 weeks of age. The major contributing causes of death identified in 42 mice were glomerulonephritis (8 mice), histiocytic sarcoma (7 mice), and other tumors (8 mice). Glomerulonephritis was found in the majority of mice and was associated with thymic hyperplasia, focal vasculitis, and lymphoid hyperplasia. Necropsy of 58 mice surviving past 50 weeks of age revealed that 41 had an average of 1.36 tumors per mouse. The most common tumors included histiocytic sarcoma (13 mice), pulmonary adenoma or adenocarcinoma (11 mice), mammary tumors (11 mice), follicular center cell lymphoma (4 mice), and hepatocellular adenoma (4 mice). The 13 histiocytic sarcomas appeared to arise in the uterus and metastasized to liver (9 mice), lung (4 mice), kidney (3 mice), and other tissues. Lung tumors were of the solid and papillary types, and tumor cells frequently contained surfactant apoprotein (SAP) but did not contain Clara cell antigens, suggesting their origin from alveolar Type II cells. A variety of nonneoplastic lesions, similar to those observed in other mouse strains, were seen in other tissues of these mice. Amyloid-like material was seen only in nasal turbinates and thyroid gland. In a group of 28 mice exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA) for up to 88 weeks, as a control for other treatment groups, 7 (25%) had papillomas and 5 (17.8%) had squamous cell carcinomas of the skin at necropsy, although many other induced papillomas regressed during the study. Images FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. FIGURE 11. FIGURE 13. FIGURE 14. PMID:3780636

  6. Beneficial metabolic actions of a stable GIP agonist following pre-treatment with a SGLT2 inhibitor in high fat fed diabetic mice.

    PubMed

    Millar, P J B; Pathak, V; Moffett, R C; Pathak, N M; Bjourson, A J; O'Kane, M J; Flatt, P R; Gault, V A

    2016-01-15

    The purpose of the present study was to examine if a stable glucose-dependent insulinotropic polypeptide (GIP) agonist could exert beneficial metabolic control in diabetic mice which had been pre-treated with sodium-glucose-cotransporter-2 (SGLT2) inhibitor dapagliflozin (DAPA). High fat fed mice administered low dose streptozotocin (STZ) received vehicle, DAPA once-daily over 28 days, or DAPA once-daily for 14 days followed by (DAla(2))GIP once-daily for 14 days. Energy intake, body weight, glucose and insulin concentrations were measured at regular intervals. Glucose tolerance, insulin tolerance test, dual-energy X-ray absorptiometry (DEXA) and pancreatic histology were examined. Once-daily administration of (DAla(2))GIP for 14 days in high fat fed diabetic mice pre-treated with DAPA demonstrated significant decrease in body weight, blood glucose and increased insulin concentrations which were independent of changes in energy intake. Similarly, glucose tolerance, glucose-stimulated insulin secretion, insulin sensitivity and HOMA-β were significantly enhanced in (DAla(2))GIP-treated mice. DEXA analysis revealed sustained percentage body fat loss with no changes in lean mass, bone mineral content and density. Pancreatic immunohistochemical analysis revealed decreased islet number and increases in islet area, beta cell area and pancreatic insulin content. The DAPA-induced increase in alpha cell area was also reversed. Additional acute in vitro and in vivo experiments confirmed that the impaired action of (DAla(2))GIP under hyperglycaemic-induced conditions was significantly reversed by DAPA treatment. These data demonstrate that (DAla(2))GIP can exert beneficial metabolic control in high fat fed diabetic mice pre-treated with DAPA. The results highlight possibility of a targeted and personalized approach using a GIP agonist and SGLT2 inhibitor for the treatment of type 2 diabetes. PMID:26607806

  7. Characterization of secretory sphingomyelinase activity, lipoprotein sphingolipid content and LDL aggregation in ldlr−/− mice fed on a high-fat diet

    PubMed Central

    Deevska, Gergana M.; Sunkara, Manjula; Morris, Andrew J.; Nikolova-Karakashian, Mariana N.

    2012-01-01

    The propensity of LDLs (low-density lipoproteins) for aggregation and/or oxidation has been linked to their sphingolipid content, specifically the levels of SM (sphingomyelin) and ceramide. To investigate this association in vivo, ldlr (LDL receptor)-null mice (ldlr−/−) were fed on a modified (atherogenic) diet containing saturated fats and cholesterol. The diet led to significantly elevated SM content in all serum lipoproteins. In contrast, ceramide increased only in the LDL particles. MS-based analyses of the lipid acyl chain composition revealed a marked elevation in C16:0 fatty acid in SM and ceramide, consistent with the prevalence of palmitic acid in the modified diet. The diet also led to increased activity of the S-SMase [secretory SMase (sphingomyelinase)], a protein that is generated by ASMase (acid SMase) and acts on serum LDL. An increased macrophage secretion seemed to be responsible for the elevated S-SMase activity. ASMase-deficient mice (asm−/−/ldlr−/−) lacked S-SMase activity and were protected from diet-induced elevation in LDL ceramide. LDL from asm−/−/ldlr−/− mice fed on the modified diet were less aggregated and oxidized than LDL from asm+/+/ldlr−/− mice. When tested in vitro, the propensity for aggregation was dependent on the SM level: only LDL from animals on modified diet that have high SM content aggregated when treated with recombinant S-SMase. In conclusion, LDL-SM content and S-SMase activity are up-regulated in mice fed on an atherogenic diet. S-SMase mediates diet-induced changes in LDL ceramide content and aggregation. S-SMase effectiveness in inducing aggregation is dependent on diet-induced enrichment of LDL with SM, possibly through increased hepatic synthesis. PMID:22712892

  8. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    PubMed Central

    Heyman-Lindén, Lovisa; Kotowska, Dorota; Sand, Elin; Bjursell, Mikael; Plaza, Merichel; Turner, Charlotta; Holm, Cecilia; Fåk, Frida; Berger, Karin

    2016-01-01

    Background The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF)-induced metabolic alterations. Methods Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2) during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP) as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain. PMID:27125264

  9. Isolation of a third species of Sarcocystis in immunodeficient mice fed feces from opossums (Didelphis virginiana) and its differentiation from Sarcocystis falcatula and Sarcocystis neurona.

    PubMed

    Dubey, J P; Speer, C A; Lindsay, D S

    1998-12-01

    Opossums (Didelphis virginiana) were found to be hosts for 3 species of Sarcocystis: Sarcocystis falcatula with an avian intermediate host, S. neurona with an undetermined intermediate host, and a third, unnamed, species. Sporocysts from the intestines of 2 opossums (nos. 26 and 47) were fed to budgerigars (Melopsittacus undulatus), nude mice, and gamma-interferon knockout (KO) mice. Sporocysts of S. falcatula were not infective to nude or KO mice. Sporocysts of S. neurona induced encephalitis in KO and nude mice; only schizonts and merozoites were found in tissues of mice, and they reacted with anti-S. neurona serum raised against the SN-2 isolate of S. neurona originally obtained from tissues of a paralyzed horse. All 3 species of Sarcocystis were present in opossum no. 47. Sarcocystis neurona was isolated in cell culture from this opossum. Sporocysts from opossum no. 47 were lethal to budgerigars, indicating S. falcatula infection. Only 1 species of Sarcocystis (the third species) was found in opossum no. 26; the sporocysts were infective to KO and nude mice. Schizonts and merozoites of this species were predominantly in the liver but were also found in other tissues; schizonts did not react with anti-S. neurona serum. Merozoites of the third species were ultrastructurally distinct from S. falcatula and S. neurona merozoites. Sarcocysts were found in leg muscles of 2 mice killed 50 and 54 days after they were fed sporocysts from opossum no. 26. These sarcocysts had steeple-shaped protrusions on the cyst wall and were distinct from sarcocysts of S. falcatula and any other species of Sarcocystis. PMID:9920306

  10. In vivo performance of Italian Heavy Draft Horse weanlings fed two protein levels and slaughtered at two ages.

    PubMed

    Mantovani, R; Guzzo, N; Sartori, C; Bailoni, L

    2014-11-01

    This study aimed at evaluating in vivo performance, growth parameters, intakes, dressing percentage, and blood parameters in Italian Heavy Draft Horse (IHDH) weanlings fed 2 CP levels up to the 2 typical ages of slaughter. Forty-one weanlings were grouped in 8 pens according to sex, age, and BW. After a transition period, animals were randomly assigned to 2 isoenergetic diets containing different CP levels: 10.6 and 11.2% CP in DM for low protein (LP) and 13.2 and 14.7% CP in DM for high protein (HP) diets in the first and second phase, respectively. About half of the animals (n = 22) were slaughtered when aged 13 mo (end of first phase); the remaining animals (n = 19) were slaughtered at 18 mo (end of second phase). Animals were weighed, measured for withers height, and scored in vivo for fleshiness and BCS at 3 wk intervals. Feed intake in each pen was measured weekly, and feed samples were collected every 2 mo. Blood samples from venous jugular were collected in both phases to analyze plasma protein, urea, glucose, bilirubin, hepatic enzymes, and mineral content. Growth parameters were estimated within phase by modeling BW as a function of age using fourth-degree Legendre polynomials. During the first phase, a different linear coefficient (P = 0.051) for the growth curve was observed between females fed a HP or a LP diet, while males showed differences only on quadratic and cubic Legendre coefficients. However, no significant differences were detected in ADG between the CP levels and sexes. In the second phase, Legendre coefficients were not different between treatments for the remaining weanlings, and once again no differences were found on ADG. The DM intake was influenced by diets in both periods, greater in the HP diet as compared with the LP diet (P < 0.001). No differences due to diet were observed for fleshiness or BCS scores at the end of each phase or in the dressing percentage at slaughter. As expected, plasma urea was greater (P < 0.001) in animals

  11. Influence on longevity of blueberry, cinnamon, green and black tea, pomegranate, sesame, curcumin, morin, pycnogenol, quercetin, and taxifolin fed iso-calorically to long-lived, F1 hybrid mice.

    PubMed

    Spindler, Stephen R; Mote, Patricia L; Flegal, James M; Teter, Bruce

    2013-04-01

    Phytonutrients reportedly extend the life span of Caenorhabditis elegans, Drosophila, and mice. We tested extracts of blueberry, pomegranate, green and black tea, cinnamon, sesame, and French maritime pine bark (Pycnogenol and taxifolin), as well as curcumin, morin, and quercetin for their effects on the life span of mice. While many of these phytonutrients reportedly extend the life span of model organisms, we found no significant effect on the life span of male F1 hybrid mice, even though the dosages used reportedly produce defined therapeutic end points in mice. The compounds were fed beginning at 12 months of age. The control and treatment groups were iso-caloric with respect to one another. A 40% calorically restricted and other groups not reported here did experience life span extension. Body weights were un-changed relative to controls for all but two supplemented groups, indicating most supplements did not change energy absorption or utilization. Tea extracts with morin decreased weight, whereas quercetin, taxifolin, and Pycnogenol together increased weight. These changes may be due to altered locomotion or fatty acid biosynthesis. Published reports of murine life span extension using curcumin or tea components may have resulted from induced caloric restriction. Together, our results do not support the idea that isolated phytonutrient anti-oxidants and anti-inflammatories are potential longevity therapeutics, even though consumption of whole fruits and vegetables is associated with enhanced health span and life span. PMID:23432089

  12. Genetic Analysis of Intracapillary Glomerular Lipoprotein Deposits in Aging Mice

    PubMed Central

    Noordmans, Gerda A.; Huang, Yuan; Savage, Holly; van Dijk, Marcory C. R. F.; Schaart, Gert; van den Bergh Weerman, Marius A.; Heeringa, Peter; Hillebrands, Jan-Luuk; Korstanje, Ron; van Goor, Harry

    2014-01-01

    Background Renal aging is characterized by functional and structural changes like decreased glomerular filtration rate, and glomerular, tubular and interstitial damage. To gain insight in pathways involved in renal aging, we studied aged mouse strains and used genetic analysis to identify genes associated with aging phenotypes. Methods Upon morphological screening in kidneys from 20-month-old mice from 26 inbred strains we noted intracapillary PAS-positive deposits. The severity of these deposits was quantified by scoring of a total of 50 glomeruli per section (grade 0–4). Electron microscopy and immunohistochemical staining for apoE, apoB, apoA-IV and perilipin-2 was performed to further characterize the lesions. To identify loci associated with these PAS-positive intracapillary glomerular deposits, we performed haplotype association mapping. Results Six out of 26 mouse strains showed glomerular PAS-positive deposits. The severity of these deposits varied: NOD(0.97), NZW(0.41), NON(0.30), B10(0.21), C3 H(0.9) and C57BR(0.7). The intracapillary deposits were strongly positive for apoE and weakly positive for apoB and apoA-IV. Haplotype association mapping showed a strong association with a 30-Kb haplotype block on Chr 1 within the Esrrg gene. We investigated 1 Mb on each site of this region, which includes the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3. Conclusions By analyzing 26 aged mouse strains we found that some strains developed an intracapillary PAS and apoE-positive lesion and identified a small haplotype block on Chr 1 within the Esrrg gene to be associated with these lipoprotein deposits. The region spanning this haplotype block contains the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3, which are all highly expressed in the kidney. Esrrg might be involved in the evolvement of these glomerular deposits by influencing lipid metabolism and possibly immune reponses. PMID:25353171

  13. Dietary Tocotrienol/γ-Cyclodextrin Complex Increases Mitochondrial Membrane Potential and ATP Concentrations in the Brains of Aged Mice

    PubMed Central

    Schloesser, Anke; Esatbeyoglu, Tuba; Piegholdt, Stefanie; Dose, Janina; Ikuta, Naoko; Okamoto, Hinako; Ishida, Yoshiyuki; Terao, Keiji; Matsugo, Seiichi; Rimbach, Gerald

    2015-01-01

    Brain aging is accompanied by a decrease in mitochondrial function. In vitro studies suggest that tocotrienols, including γ- and δ-tocotrienol (T3), may exhibit neuroprotective properties. However, little is known about the effect of dietary T3 on mitochondrial function in vivo. In this study, we monitored the effect of a dietary T3/γ-cyclodextrin complex (T3CD) on mitochondrial membrane potential and ATP levels in the brain of 21-month-old mice. Mice were fed either a control diet or a diet enriched with T3CD providing 100 mg T3 per kg diet for 6 months. Dietary T3CD significantly increased mitochondrial membrane potential and ATP levels compared to those of controls. The increase in MMP and ATP due to dietary T3CD was accompanied by an increase in the protein levels of the mitochondrial transcription factor A (TFAM). Furthermore, dietary T3CD slightly increased the mRNA levels of superoxide dismutase, γ-glutamyl cysteinyl synthetase, and heme oxygenase 1 in the brain. Overall, the present data suggest that T3CD increases TFAM, mitochondrial membrane potential, and ATP synthesis in the brains of aged mice. PMID:26301044

  14. Citrus junos Tanaka Peel Extract Exerts Antidiabetic Effects via AMPK and PPAR-γ both In Vitro and In Vivo in Mice Fed a High-Fat Diet

    PubMed Central

    Kim, Sung Hee; Hur, Haeng Jeon; Yang, Hye Jeong; Kim, Hyun Jin; Kim, Min Jung; Park, Jae Ho; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young; Hwang, Jin-Taek

    2013-01-01

    The antidiabetic effect of the Citrus junos Tanaka (also known as yuja or yuzu) was examined. Ethanol extract of yuja peel (YPEE) significantly stimulated 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) uptake in C2C12 myotubes. However, ethanol extract of yuja pulp (YpEE) and water extract of yuja peel (YPWE) or pulp (YpWE) did not stimulate glucose uptake. In addition, peroxisome proliferator-activated receptor gamma (PPAR-γ) and AMP-activated protein kinase (AMPK) activities were increased by YPEE in a dose-dependent manner. Pretreatment of AMPK inhibitor decreased the glucose uptake stimulated by YPEE in C2C12 myotubes. We confirmed the anti-diabetic effect of YPEE in mice fed a high fat-diet (HFD). Compared with control mice on a normal diet (ND), these mice showed increased body weight, liver fat, insulin resistance, triacylglycerol (TG), and total cholesterol content. Addition of 5% YPEE significantly reduced the weight gain and rise in liver fat content, serum triacylglycerol (TG), total cholesterol, and insulin resistance found in mice fed a high-fat diet (HFD). Moreover, YPEE reduced the secretion of HFD-induced adipocytokines such as leptin and resistin. YPEE also resulted in increased phosphorylation of AMPK in muscle tissues. These results suggest that ethanol extract of yuja peel exerts anti-diabetic effects via AMPK and PPAR-γ in both cell culture and mouse models. PMID:23762167

  15. Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice

    PubMed Central

    Kim, Juyoung; Kim, Juhae

    2016-01-01

    BACKGROUND/OBJECTIVES Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. MATERIALS/METHODS Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. RESULTS Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including LXRα, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. CONCLUSIONS Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring. PMID:27478544

  16. The effects of host age on follicular dendritic cell status dramatically impair scrapie agent neuroinvasion in aged mice.

    PubMed

    Brown, Karen L; Wathne, Gwennaelle J; Sales, Jill; Bruce, Moira E; Mabbott, Neil A

    2009-10-15

    Following peripheral exposure, many transmissible spongiform encephalopathy (TSE) agents accumulate first in lymphoid tissues before spreading to the CNS (termed neuroinvasion) where they cause neurodegeneration. Early TSE agent accumulation upon follicular dendritic cells (FDCs) in lymphoid follicles appears critical for efficient neuroinvasion. Most clinical cases of variant Creutzfeldt-Jakob disease have occurred in young adults, although the reasons behind this apparent age-related susceptibility are uncertain. Host age has a significant influence on immune function. As FDC status and immune complex trapping is reduced in aged mice (600 days old), we hypothesized that this aging-related decline in FDC function might impair TSE pathogenesis. We show that coincident with the effects of host age on FDC status, the early TSE agent accumulation in the spleens of aged mice was significantly impaired. Furthermore, following peripheral exposure, none of the aged mice developed clinical TSE disease during their lifespans, although most mice displayed histopathological signs of TSE disease in their brains. Our data imply that the reduced status of FDCs in aged mice significantly impairs the early TSE agent accumulation in lymphoid tissues and subsequent neuroinvasion. Furthermore, the inefficient neuroinvasion in aged individuals may lead to significant levels of subclinical TSE disease in the population. PMID:19786551

  17. Mice age - Does the age of the mother predict offspring behaviour?

    PubMed

    Lerch, Sandra; Brandwein, Christiane; Dormann, Christof; Gass, Peter; Chourbaji, Sabine

    2015-08-01

    Increasing paternal age is known to be associated with a great variety of psychiatric disorders such as schizophrenia or autism. Hence the factor "age" may be taken as strategic tool to analyse specific scientific hypotheses. Additionally, this finding also needs to be addressed in rather pragmatically performed breeding protocols of model organisms, since otherwise artefacts may challenge the validity of the results. Our study was performed to investigate influences of advanced age of mouse dams (30 vs. 16weeks) on maternal- and offspring behaviour. Adult offspring of both sexes was analysed in a test battery comprising paradigms for exploration, anxiety and depressive-like behaviours. Final blood sampling was conducted for stressphysiological analysis. Interestingly, advanced age of the mothers was associated with increased nest-building quality while maternal activity was unaffected. Moreover "maternal (mice) age" (MA) affected emotionality in the offspring, which became apparent in the dark-light box and the social recognition paradigm. These findings not only emphasize MA to model a potent risk factor with regard to emotional stability, but also underscore the vast necessity to include information about breeding protocols into the methods section of any animal study. PMID:25914174

  18. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice

    PubMed Central

    Baltgalvis, Kristen A.; White, Kathy; Li, Wei; Claypool, Mark D.; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K.; Friera, Annabelle M.; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J.; Godinez, Guillermo; Shaw, Simon J.; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G.

    2014-01-01

    Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5′-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD. PMID:24561866

  19. Pi-class glutathione-S-transferase-positive hepatocytes in aging B6C3F1 mice undergo apoptosis induced by dietary restriction.

    PubMed Central

    Muskhelishvili, L.; Turturro, A.; Hart, R. W.; James, S. J.

    1996-01-01

    Liver sections from aging ad libitum-fed and diet-restricted B6C3F1 male mice were evaluated immunohistochemically for pi-class glutathione S-transferase (GST-II). GST-II immunostaining of hepatocytes was diffuse and occurred in periportal regions of hepatic acinus, whereas perivenous areas were weakly stained or were stain-free. Expression of GST-II was significantly diminished in diet-restricted mice in all age groups and was associated with a marked decrease in liver tumor development. As most spontaneous liver tumors were GST-II positive, it can be speculated that they developed from GST-II positive initiated hepatocytes. To determine whether dietary restriction induces apoptosis in GST-II-positive hepatocytes, 24-month-old ad libitum-fed mice were introduced to 40% diet restriction. After 1 week of diet restriction, a decrease in GST-II expression was associated with a threefold increase in the frequency of apoptotic bodies as detected by terminal deoxynucleotidyl transferase-mediated d-UTP nick end labeling of DNA fragments. A two-step immunohistochemical procedure revealed that approximately 70% of apoptotic bodies were GST-II positive. These results suggest that spontaneous, potentially preneoplastic hepatocytes in tumor-prone B6C3F1 mice are eliminated by apoptosis with dietary restriction. Images Figure 1 PMID:8909248

  20. Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production

    PubMed Central

    Bavers, David L.; Beuschlein, Felix; Mortensen, Amanda H.; Keegan, Catherine E.; Hammer, Gary D.; Camper, Sally A.

    2011-01-01

    Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-) and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism. PMID:22145038

  1. Aged PROP1 deficient dwarf mice maintain ACTH production.

    PubMed

    Nasonkin, Igor O; Ward, Robert D; Bavers, David L; Beuschlein, Felix; Mortensen, Amanda H; Keegan, Catherine E; Hammer, Gary D; Camper, Sally A

    2011-01-01

    Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1(null) (Prop1(-/-)) and the Ames dwarf (Prop1(df/df)) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism. PMID:22145038

  2. Mucosal and systemic immunity to intestinal reovirus infection in aged mice.

    PubMed

    Fulton, Jonathan R; Cuff, Christopher F

    2004-09-01

    Systemic immunity is progressively impaired in aging, predisposing to morbidity and mortality from neoplasia and infectious disease. However, the effect of aging on mucosal immunity is controversial. To assess intestinal immunity in aging, young and aged mice were orally exposed to reovirus or cholera toxin (CT) and specific antibody and reovirus-specific cytotoxic T-cell (CTL) responses were assessed. As previously reported, aged mice immunized orally with CT mounted diminished intestinal IgA responses to CT compared to young mice. In contrast, aged mice yielded two to three-fold more reovirus-specific IgA-producing cells in the Peyers's patches (PP) compared to young mice, and higher titers of reovirus-specific IgA in fragment culture supernatants. Cytotoxicity and CTL frequencies from aged mice were not different from those of young mice. Together, these results suggest a diminished potential for systemic and intestinal immunity to orally applied protein antigens in aging, but an intact ability to respond to intestinal virus infection. Infection with a replicating virus may induce inflammatory mediators and innate immune factors that potentiate the priming of mucosal immunity; overcoming aging related deficits otherwise observed following oral immunization with non-replicating antigens, and suggests the importance of antigen replication to antigen-specific immunotherapy strategies in the elderly. PMID:15489051

  3. Dietary intake of heat-killed Lactococcus lactis H61 delays age-related hearing loss in C57BL/6J mice.

    PubMed

    Oike, Hideaki; Aoki-Yoshida, Ayako; Kimoto-Nira, Hiromi; Yamagishi, Naoko; Tomita, Satoru; Sekiyama, Yasuyo; Wakagi, Manabu; Sakurai, Mutsumi; Ippoushi, Katsunari; Suzuki, Chise; Kobori, Masuko

    2016-01-01

    Age-related hearing loss (AHL) is a common disorder associated with aging. In this study, we investigated the effect of the intake of heat-killed Lactococcus lactis subsp. cremoris H61 (strain H61) on AHL in C57BL/6J mice. Measurement of the auditory brainstem response (ABR) demonstrated that female mice at 9 months of age fed a diet containing 0.05% strain H61 for 6 months maintained a significantly lower ABR threshold than control mice. The age-related loss of neurons and hair cells in the cochlea was suppressed by the intake of strain H61. Faecal analysis of bacterial flora revealed that the intake of strain H61 increased the prevalence of Lactobacillales, which is positively correlated with hearing ability in mice. Furthermore, plasma fatty acid levels were negatively correlated with hearing ability. Overall, the results supported that the intake of heat-killed strain H61 for 6 months altered the intestinal flora, affected plasma metabolite levels, including fatty acid levels, and retarded AHL in mice. PMID:27000949

  4. Dietary intake of heat-killed Lactococcus lactis H61 delays age-related hearing loss in C57BL/6J mice

    PubMed Central

    Oike, Hideaki; Aoki-Yoshida, Ayako; Kimoto-Nira, Hiromi; Yamagishi, Naoko; Tomita, Satoru; Sekiyama, Yasuyo; Wakagi, Manabu; Sakurai, Mutsumi; Ippoushi, Katsunari; Suzuki, Chise; Kobori, Masuko

    2016-01-01

    Age-related hearing loss (AHL) is a common disorder associated with aging. In this study, we investigated the effect of the intake of heat-killed Lactococcus lactis subsp. cremoris H61 (strain H61) on AHL in C57BL/6J mice. Measurement of the auditory brainstem response (ABR) demonstrated that female mice at 9 months of age fed a diet containing 0.05% strain H61 for 6 months maintained a significantly lower ABR threshold than control mice. The age-related loss of neurons and hair cells in the cochlea was suppressed by the intake of strain H61. Faecal analysis of bacterial flora revealed that the intake of strain H61 increased the prevalence of Lactobacillales, which is positively correlated with hearing ability in mice. Furthermore, plasma fatty acid levels were negatively correlated with hearing ability. Overall, the results supported that the intake of heat-killed strain H61 for 6 months altered the intestinal flora, affected plasma metabolite levels, including fatty acid levels, and retarded AHL in mice. PMID:27000949

  5. Red beet (Beta vulgaris L.) leaf supplementation improves antioxidant status in C57BL/6J mice fed high fat high cholesterol diet.

    PubMed

    Lee, Jeung Hee; Son, Chan Wook; Kim, Mi Yeon; Kim, Min Hee; Kim, Hye Ran; Kwak, Eun Shil; Kim, Sena; Kim, Mee Ree

    2009-01-01

    The effect of diet supplemented with red beet (Beta vulgaris L.) leaf on antioxidant status of plasma and tissue was investigated in C57BL/6J mice. The mice were randomly divided into two groups after one-week acclimation, and fed a high fat (20%) and high cholesterol (1%) diet without (control group) or with 8% freeze-dried red beet leaf (RBL group) for 4 weeks. In RBL mice, lipid peroxidation determined as 2-thiobarbituric acid-reactive substances (TBARS value) was significantly reduced in the plasma and selected organs (liver, heart, and kidney). Levels of antioxidants (glutathione and beta-carotene) and the activities of antioxidant enzyme (glutathione peroxidase) in plasma and liver were considerably increased, suggesting that antioxidant defenses were improved by RBL diet. Comet parameters such as tail DNA (%), tail extent moment, olive tail moment and tail length were significantly reduced by 25.1%, 49.4%, 35.4%, and 23.7%, respectively, in plasma lymphocyte DNA of RBL mice compared with control mice, and indicated the increased resistance of lymphocyte DNA to oxidative damage. In addition, the RBL diet controlled body weight together with a significant reduction of fat pad (retroperitoneal, epididymal, inguinal fat, and total fat). Therefore, the present study suggested that the supplementation of 8% red beet leaf in high fat high cholesterol diet could prevent lipid peroxidation and improve antioxidant defense system in the plasma and tissue of C57BL/6J mice. PMID:20016711

  6. Ethanol Extract of Fructus Schisandrae Decreases Hepatic Triglyceride Level in Mice Fed with a High Fat/Cholesterol Diet, with Attention to Acute Toxicity

    PubMed Central

    Pan, Si-Yuan; Yu, Zhi-Ling; Dong, Hang; Xiang, Chun-Jing; Fong, Wang-Fun; Ko, Kam-Ming

    2011-01-01

    Effects of the ethanol extract of Fructus Schisandrae (EtFSC) on serum and liver lipid contents were investigated in mice fed with high fat/cholesterol (HFC) diet for 8 or 15 days. The induction of hypercholesterolemia by HFC diet caused significant increases in serum and hepatic total cholesterol (TC) levels (up to 62% and 165%, resp.) and hepatic triglyceride (TG) levels (up to 528%) in mice. EtFSC treatment (1 or 5 g/kg/day for 7 days; from Day 1 to 7 or from Day 8 to 14, i.g.) significantly decreased the hepatic TG level (down to 35%) and slightly increased the hepatic index (by 8%) in hypercholesterolemic mice. Whereas fenofibrate treatment (0.1 g/kg/day for 7 days, i.g.) significantly lowered the hepatic TG level (by 61%), it elevated the hepatic index (by 77%) in hypercholesterolemic mice. Acute toxicity test showed that EtFSC was relatively non-toxic, with an LD50 value of 35.63 ± 6.46 g/kg in mice. The results indicate that EtFSC treatment can invariably decrease hepatic TG in hypercholesterolemic mice, as assessed by both preventive and therapeutic protocols, suggesting its potential use for fatty liver treatment. PMID:19592476

  7. Exogenous Testosterone, Aging, and Changes in Behavioral Response of Gonadally Intact Male Mice

    PubMed Central

    Onaolapo, Olakunle J.; Onaolapo, Adejoke Y.; Omololu, Tope A.; Oludimu, Adedunke T.; Segun-Busari, Toluwalase; Omoleke, Taofeeq

    2016-01-01

    This study tested the hypothesis that aging significantly affects the influence of exogenous testosterone on neurobehavior in gonadally intact male mice. Groups of prepubertal and aged male mice received daily vehicle or testosterone propionate (TP; 2.5 or 5.0 mg/kg intraperitoneal [i.p.]) for 21 days. Behaviors were assessed on days 1 and 21. Weight gain was significant in prepubertal mice. Locomotion and rearing increased in prepubertal mice after first dose and decreased after last dose of TP. Rearing was suppressed in aged mice throughout. Suppression of grooming occurred in both age groups at day 21. Significant increase in working memory in both age groups was seen in the radial-arm maze (at specific doses) and in prepubertal mice in the Y-maze. Elevated plus maze test showed mixed anxiolytic/anxiogenic effects. Aged mice had higher serum testosterone. In conclusion, age is an important determinant for the influence of exogenous testosterone on behavior in gonadally intact male mice. PMID:27158222

  8. Evaluation of calcium supplementation with algae (Lithothamnion muelleri) on metabolic and inflammatory parameters in mice fed a high refined carbohydrate-containing diet.

    PubMed

    Menezes-Garcia, Zélia; Santiago, Andrezza Fernanda; Faria, Ana Maria Caetano; Oliveira, Marina Chaves; Botion, Leida Maria; Souza, Danielle Glória; Teixeira, Mauro Martins; Ferreira, Adaliene Versiani Matos

    2014-06-01

    The aim of the present study was to evaluate the potential of calcium supplementation from Lithothamnium muelleri algae on metabolic and inflammatory parameters in mice with increased adiposity. Male mice were fed and divided during 8 weeks in: control (C), a high refined carbohydrate-containing diet (HC), HC diet supplemented with 1% of Lithothamnion muelleri algae (HC + A) and HC diet supplemented with 0.9% calcium carbonate (HC + C). Animals fed HC diet had increased body weight gain and adiposity, serum glucose and cholesterol, glucose intolerance and decreased insulin sensitivity, compared to control diet. However, the HC + A and HC + C groups did not prevent these aspects and were not able to change the CD14 + cells population in adipose tissue of animals fed HC diet. Calcium supplementation with Lithothamnium muelleri algae and calcium carbonate had no protective effect against the development of adiposity, metabolic and inflammatory alterations induced by HC diet. PMID:24456206

  9. Age- and sex-associated plasma proteomic changes in growth hormone receptor gene-disrupted mice.

    PubMed

    Ding, Juan; Berryman, Darlene E; Jara, Adam; Kopchick, John J

    2012-08-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice are dwarf, insulin sensitive, and long lived despite being obese. In order to identify characteristics associated with their increased longevity, we studied age-related plasma proteomic changes in these mice. Male and female GHR-/- mice and their littermate controls were followed longitudinally at 8, 16, and 24 months of ages for plasma proteomic analysis. Relative to control littermates, GHR-/- mice had increased levels of apolipoprotein A-4 and retinol-binding protein-4 and decreased levels of apolipoprotein E, haptoglobin, and mannose-binding protein-C. Female GHR-/- mice showed decreased inflammatory cytokines including interleukin-1β and monocyte chemotactic protein-1. Additionally, sex differences were found in specific isoforms of apolipoprotein E, RBP-4, haptoglobin, albumin, and hemoglobin subunit beta. In conclusion, we find plasma proteomic changes in GHR-/- mice that favor a longer life span as well as sex differences indicative of an improved health span in female mice. PMID:22156438

  10. The effects of age and carbon black on airway resistance in mice

    PubMed Central

    Bennett, Blake; Mitzner, Wayne; Tankersley, Clarke G.

    2016-01-01

    Rationale Ambient particulate matter (PM) is associated with acute exacerbations of airflow obstruction. Additionally, elderly individuals are more susceptible to increased functional morbidity following acute PM exposure. Hypothesis/Objective The purpose of the current study is to determine the aging effects of PM exposure on the responsiveness of airway smooth muscle in mice. We hypothesized that airway reactivity induced by methacholine (Mch) will increase with age in PM exposed mice. Methods Male C57BL/6 (B6) mice at 11, 39, 67, and 96 wks of age were exposed to either carbon black (CB concentration ~550 µg/m3) or room air (RA) for 3 hours on 3 consecutive days. One day after the last exposure, mice were anesthetized and airways resistance (Raw) was measured using forced oscillation at baseline and 1 minute after increasing half-log doses (0.1 to 30 mg/ml) of aerosolized Mch. Results Baseline Raw was significantly lesser in mice at 39, 67, and 96 wks compared with 11-wk old mice (p < 0.05). In RA exposed mice, an age-dependent decline in Mch-induced airway reactivity occurred in association with the highest Mch doses at ages 67 and 96 wks (p < 0.05). CB exposure caused a significant (p < 0.05) increase in Mch-induced Raw response in 67-wk old CB exposed mice compared with age-matched RA mice. Conclusion Our results show a progressive decrease in the Mch-induced Raw response with age in B6 mice. Overall, the effect of CB exposure resulted in significant increases in airway reactivity in middle-aged mice. PMID:23150990

  11. Innate Immune Dysfunctions in Aged Mice Facilitate the Systemic Dissemination of Methicillin-Resistant S. aureus

    PubMed Central

    Tseng, Ching Wen; Kyme, Pierre A.; Arruda, Andrea; Ramanujan, V. Krishnan; Tawackoli, Wafa; Liu, George Y.

    2012-01-01

    Elderly humans show increased susceptibility to invasive staphylococcal disease after skin and soft tissue infection. However, it is not understood how host immunity changes with aging, and how that predisposes to invasive disease. In a model of severe skin infection, we showed that aged mice (16- to 20-month-old) exhibit dramatic bacterial dissemination compared with young adult mice (2-month-old). Bacterial dissemination was associated with significant reductions of CXCL1 (KC), polymorphonuclear cells (PMNs), and extracellular DNA traps (NETs) at the infection site. PMNs and primary skin fibroblasts isolated from aged mice showed decreased secretion of CXCL2 (MIP-2) and KC in response to MRSA, and in vitro analyses of mitochondrial functions revealed that the mitochondrial electron transport chain complex I plays a significant role in induction of chemokines in the cells isolated from young but not old mice. Additionally, PMNs isolated from aged mice have reduced ability to form NETs and to kill MRSA. Expression of nuclease by S. aureus led to increased bacterial systemic dissemination in young but not old mice, suggesting that defective NETs formation in elderly mice permitted nuclease and non-nuclease expressing S. aureus to disseminate equally well. Overall, these findings suggest that gross impairment of both skin barrier function and innate immunity contributes to the propensity for MRSA to disseminate in aged mice. Furthermore, the study indicates that contribution of bacterial factors to pathogenicity may vary with host age. PMID:22844481

  12. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  13. Cholera toxin-induced ADP-ribosylation of a 46 kDa protein is decreased in brains of ethanol-fed mice

    SciTech Connect

    Nhamburo, P.T.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    The acute in vitro effects of ethanol on cerebral cortical adenylate cyclase activity and beta-adrenergic receptor characteristics suggested a site of action of ethanol at Gs, the stimulatory guanine nucleotide binding protein. After chronic ethanol ingestion, the beta-adrenergic receptor appeared to be uncoupled (i.e., the form of the receptor with high affinity for agonist was undetectable), and stimulation of adenylate cyclase activity by isoproterenol or guanine nucleotides was reduced, suggesting an alteration in the properties of Gs. To further characterize this change, cholera and pertussis toxin-mediated /sup 32/P-ADP-ribosylation of mouse cortical membranes was assessed in mice that had chronically ingested ethanol in a liquid diet. /sup 32/P-labeled proteins were separated by SDS-PAGE and quantitated by autoradiography. There was a selective 30-50% decrease in cholera toxin-induced labeling of 46 kDa protein band in membranes of ethanol-fed mice, with no apparent change in pertussis toxin-induced labeling. The 46 kDa protein has a molecular weight similar to that of the alpha subunit of Gs, suggesting a reduced amount of this protein or a change in its characteristics as a substrate for cholera toxin-induced ADP-ribosylation in cortical membranes of ethanol-fed mice.

  14. Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice.

    PubMed

    Ann, Ji-Young; Eo, Hyeyoon; Lim, Yunsook

    2015-11-01

    Obesity is associated with chronic diseases such as fatty liver, type 2 diabetes, cardiovascular disease, and severe metabolic syndrome. Obesity causes metabolic impairment including excessive lipid accumulation and fibrosis in the hepatic tissue as well as the increase in oxidative stress. In order to investigate the effect of mulberry leaf (Morus alba L.) extract (MLE) on obesity-induced oxidative stress, lipogenesis, and fibrosis in liver, MLE has been gavaged for 12 weeks in high-fat diet (HFD)-induced obese mice. MLE treatment significantly ameliorated LXRα-mediated lipogenesis and hepatic fibrosis markers such as α-smooth muscle actin, while MLE up-regulated lipolysis-associated markers such as lipoprotein lipase in the HFD-fed mice. Moreover, MLE normalized the activities of antioxidant enzymes including heme oxygenase-1 and glutathione peroxidase in accordance with protein levels of 4-hydroxynonenal in the HFD-fed mice. MLE has beneficial effects on obesity-related fatty liver disease by regulation of hepatic lipid metabolism, fibrosis, and antioxidant defense system. MLE supplementation might be a potential therapeutic approach for obesity-related disease including non-alcoholic fatty liver disease. PMID:26463593

  15. Effect of epidermal growth factor (EGF) on (/sup 3/H)TdR incorporation into DNA in ad lib fed and fasted CD2F1 mice

    SciTech Connect

    Scheving, L.A.; Tsai, T.H.; Scheving, L.E.; Hoke, W.S.

    1987-03-01

    The effect of EGF on the incorporation of (/sup 3/H)TdR into DNA (DNA synthesis) was determined in the esophagus, liver, pancreas, and kidney in mice standardized to 12 hours (hr) of light alternating with 12 hr of darkness. A question asked was whether intraperitoneally administered EGF could alter the circadian patterns of DNA synthesis in these organs. The most marked effects of EGF were: an increase in DNA synthesis but only after a specific duration of time after treatment, ranging from 8 to 23 hr, which differed for each tissue, a similarity in the response of the esophagus in both ad lib fed and fasted mice, but not in the response of the liver, where the stimulatory effect of EGF observed in fed mice was dramatically reduced in fasted ones, and an advance in the phasing of the circadian rhythm in DNA synthesis of the esophagus by about 12 hr. In addition, no sex differences in fasted animals were found under the conditions of this study.

  16. Obesity Resistance and Enhanced Insulin Sensitivity in Ahnak-/- Mice Fed a High Fat Diet Are Related to Impaired Adipogenesis and Increased Energy Expenditure

    PubMed Central

    Kim, Yo Na; Shin, Sun Mee; Roh, Kyung Jin; Lee, Seo Hyun; Sohn, Mira; Cho, Soo Young; Lee, Sang Hyuk; Ko, Chang-Yong; Kim, Han-Sung; Choi, Cheol Soo; Bae, Yun Soo; Seong, Je Kyung

    2015-01-01

    Objective Recent evidence has suggested that AHNAK expression is altered in obesity, although its role in adipose tissue development remains unclear. The objective of this study was to determine the molecular mechanism by which Ahnak influences adipogenesis and glucose homeostasis. Design We investigated the in vitro role of AHNAK in adipogenesis using adipose-derived mesenchymal stem cells (ADSCs) and C3H10T1/2 cells. AHNAK-KO male mice were fed a high-fat diet (HFD; 60% calories from fat) and examined for glucose and insulin tolerances, for body fat compositions, and by hyperinsulinemic-euglycemic clamping. Energy expenditures were assessed using metabolic cages and by measuring the expression levels of genes involved in thermogenesis in white or brown adipose tissues. Results Adipogenesis in ADSCs was impaired in AHNAK-KO mice. The loss of AHNAK led to decreased BMP4/SMAD1 signaling, resulting in the downregulation of key regulators of adipocyte differentiation (P<0.05). AHNAK directly interacted with SMAD1 on the Pparγ2 promoter. Concomitantly, HFD-fed AHNAK-KO mice displayed reduced hepatosteatosis and improved metabolic profiles, including improved glucose tolerance (P<0.001), enhanced insulin sensitivity (P<0.001), and increased energy expenditure (P<0.05), without undergoing alterations in food intake and physical activity. Conclusion AHNAK plays a crucial role in body fat accumulation by regulating adipose tissue development via interaction with the SMAD1 protein and can be involved in metabolic homeostasis. PMID:26466345

  17. Leafy vegetable mix supplementation improves lipid profiles and antioxidant status in C57BL/6J mice fed a high fat and high cholesterol diet.

    PubMed

    Kim, Mi Yeon; Cheong, Sun Hee; Kim, Min Hee; Son, ChanWok; Yook, Hong-Sun; Sok, Dai-Eun; Kim, Jin Hee; Cho, YongSik; Chun, HyeKyung; Kim, Mee Ree

    2009-08-01

    Daily consumption of an antioxidant-rich leafy vegetable mix (LVM) was assessed for beneficial effects on plasma lipid profiles, tissue lipid peroxidation, and oxidative DNA damage in C57BL/6J mice fed a high fat and high cholesterol diet (20% fat and 1% cholesterol, wt/wt) for 4 weeks. The LVM contained beet leaf, angelica, red leaf lettuce, dandelion, green cos lettuce, lollo rosso, romaine lettuce (12.5%, respectively), scotch kale, and red kale (6.25%, respectively). The mice (n = 16) were randomly divided into either the control (high fat and cholesterol diet without LVM) or the LVM (high fat and cholesterol diet with 8% LVM supplement) groups after a 1-week acclimation. Lipid peroxidation as measured by thiobarbituric acid-reactive substances in the plasma, liver, heart, and kidney was significantly lower. Antioxidants (glutathione and beta-carotene) and antioxidant enzyme activities (glutathione peroxidase, glutathione reductase, and superoxide dismutase) were improved in mice fed LVM diet. In the comet assay, tail extent moment, olive tail moment, and tail length were significantly less in the hepatocyte and lymphocyte DNA of the LVM group, indicating the beneficial effect of LVM on the resistance of hepatocytes and lymphocytes DNA to oxidative damage. Findings from the present study suggest that dietary supplementation with LVM may be useful for protecting cells from lipid peroxidation and oxidative DNA damage. PMID:19735190

  18. Inflammatory stress exacerbates the progression of cardiac fibrosis in high-fat-fed apolipoprotein E knockout mice via endothelial-mesenchymal transition.

    PubMed

    Ma, Kun Ling; Liu, Jing; Ni, Jie; Zhang, Yang; Lv, Lin Li; Tang, Ri Ning; Ni, Hai Feng; Ruan, Xiong Zhong; Liu, Bi Cheng

    2013-01-01

    Background Chronic inflammation plays a crucial role in the progression of cardiac fibrosis. This study investigated whether inflammation exacerbated the progression of cardiac fibrosis in high-fat-fed apolipoprotein E knockout (ApoE KO) mice via endothelial-mesenchymal transition (EndMT). Methods Twenty-four male ApoE KO mice were divided into normal chow diet (Control), high-fat diet (HFD), or high-fat diet plus 10% casein injection (inflamed) groups for 8 weeks. The body weight of ApoE KO mice was measured at each week. The lipid profile and serum amyloid A (SAA) levels were examined using clinical biochemistry and enzyme-linked immunosorbent assays, respectively. Cardiac lipid and collagen accumulation was visualised with haematoxylin-eosin (HE) and Masson's trichrome staining. EndMT-related molecule expression was examined by immunohistochemistry and Western blotting. Results SAA levels were increased in the inflamed group compared with the HFD and control groups, suggesting that inflammation was successfully induced. There were no differences in body weight among three groups at each week. Interestingly, inflammation significantly reduced serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels compared with the HFD mice. However, both foam cell formation in cardiac blood vessels and cardiac collagen deposition were increased in the inflamed group, as demonstrated by HE and Masson trichrome staining. Furthermore, inflammation reduced protein expression of CD31 and increased protein expression of alpha-smooth muscle actin (α-SMA) and collagen I, which contribute to cardiac EndMT. Conclusions Inflammatory stress exacerbates the progression of cardiac fibrosis in high-fat-fed ApoE KO mice via EndMT, suggesting that hyperlipidaemia and inflammation act synergistically to redistribute plasma lipids to cardiac tissues and accelerate the progression of cardiac fibrosis. PMID:23471419

  19. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model. PMID:24634595

  20. Memory-Enhancing Effects of the Crude Extract of Polygala tenuifolia on Aged Mice.

    PubMed

    Li, Zongyang; Liu, Yamin; Wang, Liwei; Liu, Xinmin; Chang, Qi; Guo, Zhi; Liao, Yonghong; Pan, Ruile; Fan, Tai-Ping

    2014-01-01

    Learning and memory disorders arise from distinct age-associated processes, and aging animals are often used as a model of memory impairment. The root of Polygala tenuifolia has been commonly used in some Asian countries as memory enhancer and its memory improvement has been reported in various animal models. However, there is less research to verify its effect on memory functions in aged animals. Herein, the memory-enhancing effects of the crude extract of Polygala tenuifolia (EPT) on normal aged mice were assessed by Morris water maze (MWM) and step-down passive avoidance tests. In MWM tests, the impaired spatial memory of the aged mice was partly reversed by EPT (100 and 200 mg/kg; P < 0.05) as compared with the aged control mice. In step-down tests, the nonspatial memory of the aged mice was improved by EPT (100 and 200 mg/kg; P < 0.05). Additionally, EPT could increase superoxide dismutase (SOD) and catalase (CAT) activities, inhibit monoamine oxidase (MAO) and acetyl cholinesterase (AChE) activities, and decrease the levels of malondialdehyde (MDA) in the brain tissue of the aged mice. The results showed that EPT improved memory functions of the aged mice probably via its antioxidant properties and via decreasing the activities of MAO and AChE. PMID:24744810

  1. Memory-Enhancing Effects of the Crude Extract of Polygala tenuifolia on Aged Mice

    PubMed Central

    Li, Zongyang; Liu, Yamin; Wang, Liwei; Liu, Xinmin; Chang, Qi; Guo, Zhi; Liao, Yonghong; Pan, Ruile; Fan, Tai-Ping

    2014-01-01

    Learning and memory disorders arise from distinct age-associated processes, and aging animals are often used as a model of memory impairment. The root of Polygala tenuifolia has been commonly used in some Asian countries as memory enhancer and its memory improvement has been reported in various animal models. However, there is less research to verify its effect on memory functions in aged animals. Herein, the memory-enhancing effects of the crude extract of Polygala tenuifolia (EPT) on normal aged mice were assessed by Morris water maze (MWM) and step-down passive avoidance tests. In MWM tests, the impaired spatial memory of the aged mice was partly reversed by EPT (100 and 200 mg/kg; P < 0.05) as compared with the aged control mice. In step-down tests, the nonspatial memory of the aged mice was improved by EPT (100 and 200 mg/kg; P < 0.05). Additionally, EPT could increase superoxide dismutase (SOD) and catalase (CAT) activities, inhibit monoamine oxidase (MAO) and acetyl cholinesterase (AChE) activities, and decrease the levels of malondialdehyde (MDA) in the brain tissue of the aged mice. The results showed that EPT improved memory functions of the aged mice probably via its antioxidant properties and via decreasing the activities of MAO and AChE. PMID:24744810

  2. Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β-Cell Mass in Middle-Aged Obese Diabetic Mice

    PubMed Central

    Alkhalidy, Hana; Moore, William; Zhang, Yanling; Wang, Aihua; Ali, Mostafa; Suh, Kyung-Shin; Zhen, Wei; Cheng, Zhiyong; Jia, Zhenquan; Hulver, Matthew

    2015-01-01

    Insulin resistance and a progressive decline in functional β-cell mass are hallmarks of developing type 2 diabetes (T2D). Thus, searching for natural, low-cost compounds to target these two defects could be a promising strategy to prevent the pathogenesis of T2D. Here, we show that dietary intake of flavonol kaempferol (0.05% in the diet) significantly ameliorated hyperglycemia, hyperinsulinemia, and circulating lipid profile, which were associated with the improved peripheral insulin sensitivity in middle-aged obese mice fed a high-fat (HF) diet. Kaempferol treatment reversed HF diet impaired glucose transport-4 (Glut4) and AMP-dependent protein kinase (AMPK) expression in both muscle and adipose tissues from obese mice. In vitro, kaempferol increased lipolysis and prevented high fatty acid-impaired glucose uptake, glycogen synthesis, AMPK activity, and Glut4 expression in skeletal muscle cells. Using another mouse model of T2D generated by HF diet feeding and low doses of streptozotocin injection, we found that kaempferol treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in obese diabetic mice, which are associated with the improved islet β-cell mass. These results demonstrate that kaempferol may be a naturally occurring anti-diabetic agent by improving peripheral insulin sensitivity and protecting against pancreatic β-cell dysfunction. PMID:26064984

  3. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    PubMed

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. PMID:27354540

  4. Fatty liver accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet.

    PubMed

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F

    2013-05-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model. PMID:23486979

  5. Moderate doses of conjugated linoleic acid reduce fat gain, maintain insulin sensitivity without impairing inflammatory adipose tissue status in mice fed a high-fat diet

    PubMed Central

    2010-01-01

    Background The enrichment of diet with nutrients with potential benefits on body composition is a strategy to combat obesity. Conjugated linoleic acid (CLA) due its beneficial effects on body composition and inflammatory processes becomes an interesting candidate, since the promotion and impairment of obesity is closely linked to a low-grade inflammation state of adipose tissue. Previously we reported the favourable effects of moderate doses of CLA mixture on body composition and inflammatory status of adipose tissue in mice fed a standard-fat diet. In the present study we assessed the potential beneficial effects of CLA mixture (cis-9, trans-11 and trans-10, cis-12, 50:50) in mice fed a high-fat diet. Methods Two doses were assayed: 0.15 g (CLA1) and 0.5 g CLA/kg body weight (CLA2) for the first 30 days of the study and then animals received a double amount for another 35 days. Results The lowest dose (CLA1) had minor effects on body composition, plasma parameters and gene expression. However, a clear reduction in fat accumulation was achieved by CLA2, accompanied by a reduction in leptin, adiponectin and non-esterified fatty acids (NEFA) plasma concentrations. Insulin sensitivity was maintained despite a slight increase in fasting glucose and insulin plasma concentrations. The study of gene expression both in adipocytes and in the stromal vascular fraction (SVF) suggested that CLA may reduce either the infiltration of macrophages in adipose tissue or the induction of expression of pro-inflammatory cytokines. Conclusion In conclusion, the use of moderate doses of an equimolar mix of the two main CLA isomers reduces body fat content, improves plasma lipid profile, maintains insulin sensitivity (despite a moderate degree of hyperinsulinaemia) without the promotion of inflammatory markers in adipose tissue of mice fed a high-fat diet. PMID:20180981

  6. Caffeamide 36-13 Regulates the Antidiabetic and Hypolipidemic Signs of High-Fat-Fed Mice on Glucose Transporter 4, AMPK Phosphorylation, and Regulated Hepatic Glucose Production

    PubMed Central

    Kuo, Yueh-Hsiung; Lin, Cheng-Hsiu; Shih, Chun-Ching

    2014-01-01

    This study was to investigate the antidiabetic and antihyperlipidemic effects of (E)-3-[3, 4-dihydroxyphenyl-1-(piperidin-1-yl)prop-2-en-1-one] (36-13) (TS), one of caffeic acid amide derivatives, on high-fat (HF-) fed mice. The C57BL/6J mice were randomly divided into the control (CON) group and the experimental group, which was firstly fed a HF diet for 8 weeks. Then, the HF group was subdivided into four groups and was given TS orally (including two doses) or rosiglitazone (Rosi) or vehicle for 4 weeks. Blood, skeletal muscle, and tissues were examined by measuring glycaemia and dyslipidemia-associated events. TS effectively prevented HF diet-induced increases in the levels of blood glucose, triglyceride, insulin, leptin, and free fatty acid (FFA) and weights of visceral fa; moreover, adipocytes in the visceral depots showed a reduction in size. TS treatment significantly increased the protein contents of glucose transporter 4 (GLUT4) in skeletal muscle; TS also significantly enhanced Akt phosphorylation in liver, whereas it reduced the expressions of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Moreover, TS enhanced phosphorylation of AMP-activated protein kinase (phospho-AMPK) both in skeletal muscle and liver tissue. Therefore, it is possible that the activation of AMPK by TS resulted in enhanced glucose uptake in skeletal muscle, contrasting with diminished gluconeogenesis in liver. TS exhibits hypolipidemic effect by decreasing the expressions of fatty acid synthase (FAS). Thus, antidiabetic properties of TS occurred as a result of decreased hepatic glucose production by PEPCK and G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic state by TS in HF-fed mice occurred by regulation of GLUT4, G6Pase, and FAS and phosphorylation of AMPK. PMID:25140189

  7. Post-weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high-fat diets

    PubMed Central

    2013-01-01

    Background Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Methods Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Results Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Conclusions Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health. PMID:23497688

  8. The effects of aging and maternal protein restriction during lactation on thymic involution and peripheral immunosenescence in adult mice.

    PubMed

    Heppolette, Chantal A A; Chen, Jian-Hua; Carr, Sarah K; Palmer, Donald B; Ozanne, Susan E

    2016-02-01

    Environmental factors such as nutrition during early life can influence long-term health, a concept termed developmental programming. Initial research was focused towards the effects on metabolic health but more recent studies have demonstrated effects on parameters such as lifespan and immunity. In this study we report that maternal protein restriction during lactation in mice, that is known to prolong lifespan, slows aging of the central and peripheral immune systems. Offspring of dams fed a postnatal low-protein (PLP) diet during lactation had a significant increase in thymic cellularity and T cell numbers across their lifespan compared to controls, and a less marked age-associated decrease in thymocyte cluster of differentiation (CD) 3 expression. PLP animals also demonstrated increased relative splenic cellularity, increased naïve: memory CD4+ and CD8+ T cell ratios, increased staining and density of germinal centres, and decreased gene expression of p16 in the spleen, a robust biomarker of aging. A slower rate of splenic aging in PLP animals would be expected to result in decreased susceptibility to infection and neoplasia. In conclusion nutritionally-induced slow postnatal growth leads to delayed aging of the adaptive immune system, which may contribute towards the extended lifespan observed in these animals. PMID:26843625

  9. The effects of aging and maternal protein restriction during lactation on thymic involution and peripheral immunosenescence in adult mice

    PubMed Central

    Heppolette, Chantal A. A.; Chen, Jian-Hua; Carr, Sarah K.; Palmer, Donald B.; Ozanne, Susan E.

    2016-01-01

    Environmental factors such as nutrition during early life can influence long-term health, a concept termed developmental programming. Initial research was focused towards the effects on metabolic health but more recent studies have demonstrated effects on parameters such as lifespan and immunity. In this study we report that maternal protein restriction during lactation in mice, that is known to prolong lifespan, slows aging of the central and peripheral immune systems. Offspring of dams fed a postnatal low-protein (PLP) diet during lactation had a significant increase in thymic cellularity and T cell numbers across their lifespan compared to controls, and a less marked age-associated decrease in thymocyte cluster of differentiation (CD) 3 expression. PLP animals also demonstrated increased relative splenic cellularity, increased naïve: memory CD4+ and CD8+ T cell ratios, increased staining and density of germinal centres, and decreased gene expression of p16 in the spleen, a robust biomarker of aging. A slower rate of splenic aging in PLP animals would be expected to result in decreased susceptibility to infection and neoplasia. In conclusion nutritionally-induced slow postnatal growth leads to delayed aging of the adaptive immune system, which may contribute towards the extended lifespan observed in these animals. PMID:26843625

  10. S100A8 Production in CXCR2-Expressing CD11b+Gr-1high Cells Aggravates Hepatitis in Mice Fed a High-Fat and High-Cholesterol Diet.

    PubMed

    Mukai, Kaori; Miyagi, Takuya; Nishio, Kumiko; Yokoyama, Yoshinobu; Yoshioka, Teppei; Saito, Yoshinobu; Tanaka, Satoshi; Shigekawa, Minoru; Nawa, Takatoshi; Hikita, Hayato; Sakamori, Ryotaro; Yoshihara, Harumasa; Imai, Yasuharu; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with a spectrum of presentations. S100A8 has been suggested to play a pivotal role as an endogenous immune-activator in inflammatory diseases. In this study, we investigated the involvement of S100A8 in the development of NAFLD. We used a diet model of NAFLD, in which mice were fed either a high-fat and high-cholesterol diet (HFHCD) or a normal diet (ND) as a control. We also assessed liver tissues from patients with NAFLD, including patients with nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). HFHCD-fed mice, but not ND-fed mice, developed steatohepatitis. S100A8 expression was significantly elevated in the livers of HFHCD-fed mice compared with the controls. S100A8 was exclusively expressed in CXCR2-expressing CD11b(+)Gr-1(high) cells, which significantly increased in the livers of HFHCD-fed mice. These cells were F4/80 negative and did not possess a suppressor function. TNF-α expression was enhanced by S100A8 in primary liver leukocytes or a hepatocyte cell line and significantly elevated in the livers of HFHCD-fed mice. TNF-α was primarily produced from CD11b(+)F4/80(+) cells in liver leukocytes in response to S100A8. TNF-α deficiency attenuated hepatitis in HFHCD-fed mice. S100A8 was significantly more expressed in the liver tissues of patients with NASH than in those of patients with NAFL. In conclusion, these results suggest that S100A8 is primarily produced from CXCR2-expressing CD11b(+)Gr-1(high) cells, and it upregulates TNF-α production in CD11b(+)F4/80(+) cells through cellular cross-talk, which is an important mechanism in the development of NAFLD. PMID:26608915

  11. Arctiin inhibits adipogenesis in 3T3-L1 cells and decreases adiposity and body weight in mice fed a high-fat diet

    PubMed Central

    Min, Byulchorong; Lee, Heejin; Song, Ji Hye; Han, Myung Joo

    2014-01-01

    BACKGROUND/OBJECTIVES The purpose of this study was to examine the effects and associated mechanisms of arctiin, a lignan compound found in burdock, on adipogenesis in 3T3-L1 cells. Also, the effects of arctiin supplementation in obese mice fed a high-fat diet on adiposity were examined. MATERIALS/METHODS 3T3-L1 cells were treated with arctiin (12.5 to 100 µM) during differentiation for 8 days. The accumulation of lipid droplets was determined by Oil Red O staining and intracellular triglyceride contents. The expressions of genes related to adipogenesis were measured by real-time RT-PCR and Western blot analyses. For in vivo study, C57BL/6J mice were first fed either a control diet (CON) or high-fat diet (HF) to induce obesity, and then fed CON, HF, or HF with 500 mg/kg BW arctiin (HF + AC) for four weeks. RESULTS Arctiin treatment to 3T3-L1 pre-adipocytes markedly decreased adipogenesis in a dose-dependent manner. The arctiin treatment significantly decreased the protein levels of the key adipogenic regulators PPARγ and C/EBPα, and also significantly inhibited the expression of SREBP-1c, fatty acid synthase, fatty acid-binding protein and lipoprotein lipase. Also, arctiin greatly increased the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target phosphorylated-acetyl CoA carboxylase. Furthermore, administration of arctiin significantly decreased the body weight in obese mice fed with the high-fat diet. The epididymal, perirenal or total visceral adipose tissue weights of mice were all significantly lower in the HF + AC than in the HF. Arctiin administration also decreased the sizes of lipid droplets in the epididymal adipose tissue. CONCLUSIONS Arctiin inhibited adipogenesis in 3T3-L1 adipocytes through the inhibition of PPARγ and C/EBPα and the activation of AMPK signaling pathways. These findings suggest that arctiin has a potential benefit in preventing obesity. PMID:25489405

  12. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice

    PubMed Central

    Rahmini, Yasmeen; Ross, Ruth A.; Zhao, Zhenwen; Xu, Yan; Crabb, David W.

    2012-01-01

    Our previous data showed the inhibitory effect of ethanol on AMP-activated protein kinase phosphorylation, which appears to be mediated, in part, through increased levels of hepatic ceramide and activation of protein phosphatase 2A (Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW. Am J Physiol Gastrointest Liver Physiol 298: G1004–G1012, 2010). The effect of ethanol on AMP-activated protein kinase phosphorylation was reversed by imipramine, suggesting that the generation of ceramide via acid sphingomyelinase (ASMase) is stimulated by ethanol. In this study, we determined the effects of imipramine on the development of hepatic steatosis, the generation of ceramide, and downstream effects of ceramide on inflammatory, insulin, and apoptotic signaling pathways, in ethanol-fed mice. The effect of ethanol and imipramine (10 μg/g body wt ip) on ceramide levels, as well as inflammatory, insulin, and apoptotic signaling pathways, was studied in C57BL/6J mice fed the Lieber-DeCarli diet. Ethanol-fed mice developed the expected steatosis, and cotreatment with imipramine for the last 2 wk of ethanol feeding resulted in improvement in hepatic steatosis. Ethanol feeding for 4 wk induced impaired glucose tolerance compared with controls, and this was modestly improved with imipramine treatment. There was a significant decrease in total ceramide concentrations in response to imipramine in ethanol-fed mice treated with and without imipramine (287 ± 11 vs. 348 ± 12 pmol/mg tissue). The magnitude and specificity of inhibition on each ceramide species differed. A significant decrease was observed for C16 (28 ± 3 vs. 33 ± 2 pmol/mg tissue) and C24 (164 ± 9 vs. 201 ± 4 pmol/mg tissue) ceramide. Ethanol feeding increased the levels of the phosphorylated forms of ERK slightly and increased phospho-p38 and phospho-JNK substantially. The levels of phospho-p38 and phospho-JNK were reduced by treatment with imipramine. The activation of ASMase and

  13. Estrogen effects on cognition and hippocampal transcription in middle-aged mice

    PubMed Central

    Aenlle, Kristina K.; Kumar, Ashok; Cui, Li; Jackson, Travis C.; Foster, Thomas C.

    2009-01-01

    Young and middle-aged female mice were ovariectomized and given cyclic injections of either estradiol or vehicle treatments. During the fifth week after surgery the Morris water maze was used to assess cognitive function. Age and treatment effects emerged over the course of spatial training such that middle-aged vehicle treated mice exhibited deficits in acquiring a spatial search strategy compared to younger vehicle treated mice and middle-age estradiol treated mice. Following behavioral characterization, mice were maintained on their injection schedule until week seven and hippocampi were collected 24 hr after the last injection. Hippocampal RNA was extracted and genes responsive to age and estrogen were identified using cDNA microarrays. Estradiol treatment in middle-aged mice altered the expression of genes related to transcriptional regulation, biosynthesis, growth, neuroprotection, and elements of cell signaling pathways. Expression profiles for representative genes were confirmed in a separate set of animals using oligonucleotide arrays and RT-PCR. Our results indicate that estrogen treatment in middle-aged animals may promote hippocampal health during the aging process. PMID:17950954

  14. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer

    PubMed Central

    Bernardes de Jesus, Bruno; Vera, Elsa; Schneeberger, Kerstin; Tejera, Agueda M; Ayuso, Eduard; Bosch, Fatima; Blasco, Maria A

    2012-01-01

    A major goal in aging research is to improve health during aging. In the case of mice, genetic manipulations that shorten or lengthen telomeres result, respectively, in decreased or increased longevity. Based on this, we have tested the effects of a telomerase gene therapy in adult (1 year of age) and old (2 years of age) mice. Treatment of 1- and 2-year old mice with an adeno associated virus (AAV) of wide tropism expressing mouse TERT had remarkable beneficial effects on health and fitness, including insulin sensitivity, osteoporosis, neuromuscular coordination and several molecular biomarkers of aging. Importantly, telomerase-treated mice did not develop more cancer than their control littermates, suggesting that the known tumorigenic activity of telomerase is severely decreased when expressed in adult or old organisms using AAV vectors. Finally, telomerase-treated mice, both at 1-year and at 2-year of age, had an increase in median lifespan of 24 and 13%, respectively. These beneficial effects were not observed with a catalytically inactive TERT, demonstrating that they require telomerase activity. Together, these results constitute a proof-of-principle of a role of TERT in delaying physiological aging and extending longevity in normal mice through a telomerase-based treatment, and demonstrate the feasibility of anti-aging gene therapy. PMID:22585399

  15. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension

    PubMed Central

    Toth, Peter; Tucsek, Zsuzsanna; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Tarantini, Stefano; Deak, Ferenc; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2013-01-01

    Hypertension in the elderly substantially contributes to cerebromicrovascular damage and promotes the development of vascular cognitive impairment. Despite the importance of the myogenic mechanism in cerebromicrovascular protection, it is not well understood how aging affects the functional adaptation of cerebral arteries to high blood pressure. Hypertension was induced in young (3 months) and aged (24 months) C57/BL6 mice by chronic infusion of angiotensin II (AngII). In young hypertensive mice, the range of cerebral blood flow autoregulation was extended to higher pressure values, and the pressure-induced tone of middle cerebral artery (MCA) was increased. In aged hypertensive mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In young mice, the mechanism of adaptation to hypertension involved upregulation of the 20-HETE (20-hydroxy-5,8,11,14-eicosatetraenoic acid)/transient receptor potential cation channel, subfamily C (TRPC6) pathway and this mechanism was impaired in aged hypertensive mice. Downstream consequences of cerebrovascular autoregulatory dysfunction in aged AngII-induced hypertensive mice included exacerbated disruption of the blood–brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal dependent cognitive function. Collectively, aging impairs autoregulatory protection in the brain of mice with AngII-induced hypertension, potentially exacerbating cerebromicrovascular injury and neuroinflammation. PMID:23942363

  16. Age-Associated Changes in Hippocampal-Dependent Cognition in Diversity Outbred Mice

    PubMed Central

    Koh, Ming Teng; Spiegel, Amy M.; Gallagher, Michela

    2016-01-01

    Episodic memory impairment due to aging has been linked to hippocampal dysfunction. Evidence exists for alterations in specific circuits within the hippocampal system that are closely coupled to individual differences in the presence and severity of such memory loss. Here, we used the newly developed Diversity Outbred (DO) mouse that was designed to model the genetic diversity in human populations. Young and aged DO mice were tested in a hippocampal-dependent water maze task. Young mice showed higher proficiency and more robust memory compared to the overall performance of aged mice. A substantial number of the older mice, however, performed on par with the normative performance of the younger mice. Stereological quantification of somatostatin-immunoreactive neurons in the dentate hilus showed that high-performing young and unimpaired aged mice had similar numbers of somatostatin-positive interneurons, while aged mice that were impaired in the spatial task had significantly fewer such neurons. These data in the DO model tie loss of hilar inhibitory network integrity to age-related memory impairment, paralleling data in other rodent models. PMID:24909986

  17. Impaired burrowing is the most prominent behavioral deficit of aging htau mice.

    PubMed

    Geiszler, Philippine Camilla; Barron, Matthew Richard; Pardon, Marie-Christine

    2016-08-01

    htau mice are deficient of murine tau but express all six human tau isoforms, leading to gradual tau misprocessing and aggregation in brain areas relevant to Alzheimer's disease. While histopathological changes in htau mice have been researched in the past, we focused here on functional consequences of human tau accumulation. htau mice and their background controls - murine tau knock-out (mtau(-/-)) and C57Bl/6J mice - underwent a comprehensive trial battery to investigate species-specific behavior, locomotor activity, emotional responses, exploratory traits, spatial and recognition memory as well as acquisition, retention and extinction of contextual fear at two, four, six, nine and twelve months of age. In htau mice, tau pathology was already present at two months of age, whereas deficits in food burrowing and spatial working memory were first noted at four months of age. At later stages the presence of human tau on a mtau(-/-) background appeared to guard cognitive performance; as mtau(-/-) but not htau mice differed from C57Bl/6J mice in the food burrowing, spontaneous alternation and object discrimination tasks. Aging mtau(-/-) mice also exhibited increased body mass and locomotor activity. These data highlight that reduced food-burrowing performance was the most robust aspect of the htau phenotype with aging. htau and mtau(-/-) deficits in food burrowing pointed at the necessity of intact tau systems for daily life activities. While some htau and mtau(-/-) deficits overlap, age differences between the two genotypes may reflect distinct functional effects and compared to C57Bl/6J mice, the htau phenotype appeared stronger than the mtau(-/-) phenotype at young ages but milder with aging. PMID:27167086

  18. The anorexic effect of Ex4/Fc through GLP-1 receptor activation in high-fat diet fed mice.

    PubMed

    Liu, Rui; Ma, Duan; Li, Yiming; Hu, Renming; Peng, Yongde; Wang, Qinghua

    2014-08-01

    Exendin-4 (Ex4), a peptide initially found in the saliva of the Gila monster, can activate the signaling pathway of the incretin hormone glucagon-like peptide-1 (GLP-1) through the GLP-1 receptor (GLP-1R). We previously reported that a chimera protein consisting of Ex4 and mouse IgG heavy chain constant regions (Ex4/Fc) can exert biological effects of GLP-1, such as improving glycemic control and ameliorating manifestations in diabetic mice. The aim of this study was to determine whether Ex4/Fc is effective in modulating energy homeostasis in mice. Our results showed that in vivo expression of Ex4/Fc by intramuscular injection of the plasmid encoding Ex4/Fc followed by local electroporation effectively decreased food intake in the mice on high-fat diet (HFD) feeding. In addition, the reduced energy intake was associated with the decreased excrements from the Ex4/Fc-treated HFD mice but not the Fc control mice. Remarkably, the Ex4/Fctreated HFD mice displayed significantly lower triglyceride (TG) levels when compared with the control mice. Interestingly, while the leptin levels were not changed, the circulating ghrelin levels were higher in Ex4/Fc mice than those in the Fc control mice. These results suggested that Ex4/Fc can improve energy metabolism and lipid metabolism through GLP-1R in mice under excessive nutrition conditions. PMID:24951724

  19. Fatty acid composition in serum correlates with that in the liver and non-alcoholic fatty liver disease activity scores in mice fed a high-fat diet.

    PubMed

    Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying

    2016-06-01

    In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake. PMID:27179602

  20. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis

    PubMed Central

    van der Heijden, Roel A.; Bijzet, Johan; Meijers, Wouter C.; Yakala, Gopala K.; Kleemann, Robert; Nguyen, Tri Q.; de Boer, Rudolf A.; Schalkwijk, Casper G.; Hazenberg, Bouke P. C.; Tietge, Uwe J. F.; Heeringa, Peter

    2015-01-01

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process. PMID:26563579

  1. Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet.

    PubMed

    Xu, Jie; Cao, Ke; Li, Yuan; Zou, Xuan; Chen, Cong; Szeto, Ignatius Man-Yau; Dong, Zhizhong; Zhao, Youyou; Shi, Yujie; Wang, Junkuan; Liu, Jiankang; Feng, Zhihui

    2014-04-01

    Bitter gourd (BG) is a popular fruit in Asia with numerous well-known medicinal uses, including as an antidiabetic. In the current study, we aimed to explore the effects of BG on mitochondrial function during the development of obesity-associated fatty liver. C57BL/6 mice were divided into 4 experimental groups: mice fed a normal diet (control; included for reference only), mice fed a high-fat diet (HFD), and mice fed an HFD supplemented with freeze-dried BG powder through daily gavage at doses of 0.5 (HFD+0.5BG) and 5 (HFD+5BG) g/kg, respectively. After 16 wk, mice in the HFD+5BG group showed less body and tissue weight gain and less hyperglycemia and hyperlipidemia compared with those in the HFD group (P < 0.05). In both HFD+0.5BG and HFD+5BG groups, serum interleukin-6 concentration was lower than that in the HFD group (P < 0.02). The serum C-reactive protein concentration was lower in the HFD+5BG group compared with the HFD group (P < 0.04). An analysis of liver tissue revealed lower liver triglyceride and cholesterol concentrations in both HFD+0.5BG and HFD+5BG groups than in the HFD group (P < 0.01). The HFD+5BG group had less activation of the sterol regulatory element binding protein/fatty acid synthase (SREBP-1/FAS) pathway, greater superoxide dismutase activity, and less total protein and mitochondrial protein oxidation than did the HFD group (P < 0.05). Mitochondrial complex I, II, III, and V activity was greater in the HFD+0.5BG group than in the HFD group (P < 0.03). The HFD+5BG group only had greater complex V activity compared with the HFD group (P < 0.05). Mitochondrial dynamics regulators, including dynamin related protein 1 (DRP1) and mitofusin 1 (MFN1), as well as proapoptotic protein expression levels were restored by BG treatment (P < 0.02). Taken together, our results suggest that BG prevents inflammation and oxidative stress, modulates mitochondrial activity, suppresses apoptosis activation, and inhibits lipid accumulation during the

  2. Dietary aloe vera gel powder and extract inhibit azoxymethane- induced colorectal aberrant crypt foci in mice fed a high- fat diet.

    PubMed

    Chihara, Takeshi; Shimpo, Kan; Kaneko, Takaaki; Beppu, Hidehiko; Higashiguchi, Takashi; Sonoda, Shigeru; Tanaka, Miyuki; Yamada, Muneo; Abe, Fumiaki

    2015-01-01

    Aloe vera gel exhibits protective effects against insulin resistance as well as lipid-lowering and anti-diabetic effects. The anti-diabetic compounds in this gel were identified as Aloe-sterols. Aloe vera gel extract (AVGE) containing Aloe-sterols has recently been produced using a new procedure. We previously reported that AVGE reduced large-sized intestinal polyps in Apc-deficient Min mice fed a high fat diet (HFD), suggesting that Aloe vera gel may protect against colorectal cancer. In the present study, we examined the effects of Aloe vera gel powder (AVGP) and AVGE on azoxymethane-induced colorectal preneoplastic aberrant crypt foci (ACF) in mice fed a HFD. Male C57BL/6J mice were given a normal diet (ND), HFD, HFD containing 0.5% carboxymethyl cellulose solution, which was used as a solvent for AVGE (HFDC), HFD containing 3% or 1% AVGP, and HFDC containing 0.0125% (H-) or 0.00375% (L-) AVGE. The number of ACF was significantly lower in mice given 3% AVGP and H-AVGE than in those given HFD or HFDC alone. Moreover, 3% AVGP, H-AVGE and L-AVGE significantly decreased the mean Ki-67 labeling index, assessed as a measure of cell proliferation in the colonic mucosa. In addition, hepatic phase II enzyme glutathione S-transferase mRNA levels were higher in the H-AVGE group than in the HFDC group. These results suggest that both AVGP and AVGE may have chemopreventive effects on colorectal carcinogenesis under the HFD condition. Furthermore, the concentration of Aloe-sterols was similar between 3% AVGP and H-AVGE, suggesting that Aloe-sterols were the main active ingredients in this experiment. PMID:25684508

  3. Whey-reduced weight gain is associated with a temporary growth reduction in young mice fed a high-fat diet.

    PubMed

    Tranberg, Britt; Madsen, Andreas N; Hansen, Axel K; Hellgren, Lars I

    2015-01-01

    Whey protein consumption reportedly alleviates parameters of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in young mice fed a high-fat diet. We hypothesized that whey as the sole protein source reduced early weight gain associated with retarded growth and decreased concentration of insulin-like growth factor-1. Moreover, we hypothesized that these changes were explained by increased nitrogen loss via elevated urea production and/or increased energy expenditure. Male 5-week-old C57BL/6 mice were fed high-fat diets with the protein source being either whey, casein or a combination of both for 5 weeks. After 1, 3 or 5 weeks, respectively, the mice were subjected to a meal challenge with measurements of blood and urinary urea before and 1 and 3 h after eating a weighed meal of their respective diets. In a subset of mice, energy expenditure was measured by indirect calorimetry during the first week of dietary intervention. Observed exclusively during the first week of intervention, whey significantly reduced body length (P<.01) and weight gain (P<.001) correlating positively with plasma concentrations of insulin-like growth factor-1. The combination diet displayed intermediate results indicating an interactive effect. Urea production, urea cycle activity, food intake and energy expenditure were unaffected by protein source. In conclusion, whey decreased growth-related parameters exclusively during the first week of dietary intervention. The early effect of whey could not be explained by food intake, energy expenditure, urea production or urea cycle activity but was correlated with plasma levels of insulin-like growth factor-1. PMID:25315863

  4. Dietary Blueberry Attenuates Whole-Body Insulin Resistance in High Fat-Fed Mice by Reducing Adipocyte Death and Its Inflammatory Sequelae1–3

    PubMed Central

    DeFuria, Jason; Bennett, Grace; Strissel, Katherine J.; Perfield, James W.; Milbury, Paul E.; Greenberg, Andrew S.; Obin, Martin S.

    2009-01-01

    Adipose tissue (AT) inflammation promotes insulin resistance (IR) and other obesity complications. AT inflammation and IR are associated with oxidative stress, adipocyte death, and the scavenging of dead adipocytes by proinflammatory CD11c+ AT macrophages (ATMΦ). We tested the hypothesis that supplementation of an obesitogenic (high-fat) diet with whole blueberry (BB) powder protects against AT inflammation and IR. Male C57Bl/6j mice were maintained for 8 wk on 1 of 3 diets: low-fat (10% of energy) diet (LFD), high-fat (60% of energy) diet (HFD) or the HFD containing 4% (wt:wt) whole BB powder (1:1 Vaccinium ashei and V. corymbosum) (HFD+B). BB supplementation (2.7% of total energy) did not affect HFD-associated alterations in energy intake, metabolic rate, body weight, or adiposity. We observed an emerging pattern of gene expression in AT of HFD mice indicating a shift toward global upregulation of inflammatory genes (tumor necrosis factor-α, interleukin-6, monocyte chemoattractant protein 1, inducible nitric oxide synthase), increased M1-polarized ATMΦ (CD11c+), and increased oxidative stress (reduced glutathione peroxidase 3). This shift was attenuated or nonexistent in HFD+B-fed mice. Furthermore, mice fed the HFD+B were protected from IR and hyperglycemia coincident with reductions in adipocyte death. Salutary effects of BB on adipocyte physiology and ATMΦ gene expression may reflect the ability of BB anthocyanins to alter mitogen-activated protein kinase and nuclear factor-κB stress signaling pathways, which regulate cell fate and inflammatory genes. These results suggest that cytoprotective and antiinflammatory actions of dietary BB can provide metabolic benefits to combat obesity-associated pathology. PMID:19515743

  5. Induction of Olfaction and Cancer-Related Genes in Mice Fed a High-Fat Diet as Assessed through the Mode-of-Action by Network Identification Analysis

    PubMed Central

    Choi, Youngshim; Hur, Cheol-Goo; Park, Taesun

    2013-01-01

    The pathophysiological mechanisms underlying the development of obesity and metabolic diseases are not well understood. To gain more insight into the genetic mediators associated with the onset and progression of diet-induced obesity and metabolic diseases, we studied the molecular changes in response to a high-fat diet (HFD) by using a mode-of-action by network identification (MNI) analysis. Oligo DNA microarray analysis was performed on visceral and subcutaneous adipose tissues and muscles of male C57BL/6N mice fed a normal diet or HFD for 2, 4, 8, and 12 weeks. Each of these data was queried against the MNI algorithm, and the lists of top 5 highly ranked genes and gene ontology (GO)-annotated pathways that were significantly overrepresented among the 100 highest ranked genes at each time point in the 3 different tissues of mice fed the HFD were considered in the present study. The 40 highest ranked genes identified by MNI analysis at each time point in the different tissues of mice with diet-induced obesity were subjected to clustering based on their temporal patterns. On the basis of the above-mentioned results, we investigated the sequential induction of distinct olfactory receptors and the stimulation of cancer-related genes during the development of obesity in both adipose tissues and muscles. The top 5 genes recognized using the MNI analysis at each time point and gene cluster identified based on their temporal patterns in the peripheral tissues of mice provided novel and often surprising insights into the potential genetic mediators for obesity progression. PMID:23555558

  6. Disparate Metabolic Responses in Mice Fed a High-Fat Diet Supplemented with Maize-Derived Non-Digestible Feruloylated Oligo- and Polysaccharides Are Linked to Changes in the Gut Microbiota.

    PubMed

    Yang, Junyi; Bindels, Laure B; Segura Munoz, Rafael R; Martínez, Inés; Walter, Jens; Ramer-Tait, Amanda E; Rose, Devin J

    2016-01-01

    Studies have suggested links between colonic fermentation of dietary fibers and improved metabolic health. The objectives of this study were to determine if non-digestible feruloylated oligo- and polysaccharides (FOPS), a maize-derived dietary fiber, could counteract the deleterious effects of high-fat (HF) feeding in mice and explore if metabolic benefits were linked to the gut microbiota. C57BL/6J mice (n = 8/group) were fed a low-fat (LF; 10 kcal% fat), HF (62 kcal% fat), or HF diet supplemented with FOPS (5%, w/w). Pronounced differences in FOPS responsiveness were observed: four mice experienced cecal enlargement and enhanced short chain fatty acid production, indicating increased cecal fermentation (F-FOPS). Only these mice displayed improvements in glucose metabolism compared with HF-fed mice. Blooms in the gut microbial genera Blautia and Akkermansia were observed in three of the F-FOPS mice; these shifts were associated with reductions in body and adipose tissue weights compared with the HF-fed control mice. No improvements in metabolic markers or weights were detected in the four mice whose gut microbiota did not respond to FOPS. These findings demonstrate that FOPS-induced improvements in weight gain and metabolic health in mice depended on the ability of an individual's microbiota to ferment FOPS. PMID:26731528

  7. Disparate Metabolic Responses in Mice Fed a High-Fat Diet Supplemented with Maize-Derived Non-Digestible Feruloylated Oligo- and Polysaccharides Are Linked to Changes in the Gut Microbiota

    PubMed Central

    Yang, Junyi; Bindels, Laure B.; Segura Munoz, Rafael R.; Martínez, Inés; Walter, Jens; Ramer-Tait, Amanda E.; Rose, Devin J.

    2016-01-01

    Studies have suggested links between colonic fermentation of dietary fibers and improved metabolic health. The objectives of this study were to determine if non-digestible feruloylated oligo- and polysaccharides (FOPS), a maize-derived dietary fiber, could counteract the deleterious effects of high-fat (HF) feeding in mice and explore if metabolic benefits were linked to the gut microbiota. C57BL/6J mice (n = 8/group) were fed a low-fat (LF; 10 kcal% fat), HF (62 kcal% fat), or HF diet supplemented with FOPS (5%, w/w). Pronounced differences in FOPS responsiveness were observed: four mice experienced cecal enlargement and enhanced short chain fatty acid production, indicating increased cecal fermentation (F-FOPS). Only these mice displayed improvements in glucose metabolism compared with HF-fed mice. Blooms in the gut microbial genera Blautia and Akkermansia were observed in three of the F-FOPS mice; these shifts were associated with reductions in body and adipose tissue weights compared with the HF-fed control mice. No improvements in metabolic markers or weights were detected in the four mice whose gut microbiota did not respond to FOPS. These findings demonstrate that FOPS-induced improvements in weight gain and metabolic health in mice depended on the ability of an individual’s microbiota to ferment FOPS. PMID:26731528

  8. Age-Dependent Changes in the Inflammatory Nociceptive Behavior of Mice

    PubMed Central

    King-Himmelreich, Tanya S.; Möser, Christine V.; Wolters, Miriam C.; Olbrich, Katrin; Geisslinger, Gerd; Niederberger, Ellen

    2015-01-01

    The processing of pain undergoes several changes in aging that affect sensory nociceptive fibers and the endogenous neuronal inhibitory systems. So far, it is not completely clear whether age-induced modifications are associated with an increase or decrease in pain perception. In this study, we assessed the impact of age on inflammatory nociception in mice and the role of the hormonal inhibitory systems in this context. We investigated the nociceptive behavior of 12-month-old versus 6–8-week-old mice in two behavioral models of inflammatory nociception. Levels of TRP channels, and cortisol as well as cortisol targets, were measured by qPCR, ELISA, and Western blot in the differently aged mice. We observed an age-related reduction in nociceptive behavior during inflammation as well as a higher level of cortisol in the spinal cord of aged mice compared to young mice, while TRP channels were not reduced. Among potential cortisol targets, the NF-κB inhibitor protein alpha (IκBα) was increased, which might contribute to inhibition of NF-κB and a decreased expression and activity of the inducible nitric oxide synthase (iNOS). In conclusion, our results reveal a reduced nociceptive response in aged mice, which might be at least partially mediated by an augmented inflammation-induced increase in the hormonal inhibitory system involving cortisol. PMID:26593904

  9. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice

    PubMed Central

    Verma, Rajkumar; Venna, Venugopal R.; Liu, Fudong; Chauhan, Anjali; Koellhoffer, Edward; Patel, Anita; Ricker, Austin; Maas, Kendra; Graf, Joerg; McCullough, Louise D.

    2016-01-01

    Aging is an important risk factor for post-stroke infection, which accounts for a large proportion of stroke-associated mortality. Despite this, studies evaluating post-stroke infection rates in aged animal models are limited. In addition, few studies have assessed gut microbes as a potential source of infection following stroke. Therefore we investigated the effects of age and the role of bacterial translocation from the gut in post-stroke infection in young (8-12 weeks) and aged (18-20 months) C57Bl/6 male mice following transient middle cerebral artery occlusion (MCAO) or sham surgery. Gut permeability was examined and peripheral organs were assessed for the presence of gut-derived bacteria following stroke. Furthermore, sickness parameters and components of innate and adaptive immunity were examined. We found that while stroke induced gut permeability and bacterial translocation in both young and aged mice, only young mice were able to resolve infection. Bacterial species seeding peripheral organs also differed between young (Escherichia) and aged (Enterobacter) mice. Consequently, aged mice developed a septic response marked by persistent and exacerbated hypothermia, weight loss, and immune dysfunction compared to young mice following stroke. PMID:27115295

  10. Running rescues a fear-based contextual discrimination deficit in aged mice

    PubMed Central

    Wu, Melody V.; Luna, Victor M.; Hen, René

    2015-01-01

    Normal aging and exercise exert extensive, often opposing, effects on the dentate gyrus (DG) of the hippocampus altering volume, synaptic function, and behaviors. The DG is especially important for behaviors requiring pattern separation—a cognitive process that enables animals to differentiate between highly similar contextual experiences. To determine how age and exercise modulate pattern separation in an aversive setting, young, aged, and aged mice provided with a running wheel were assayed on a fear-based contextual discrimination task. Aged mice showed a profound impairment in contextual discrimination compared to young animals. Voluntary exercise rescued this deficit to such an extent that behavioral pattern separation of aged-run mice was now similar to young animals. Running also resulted in a significant increase in the number of immature neurons with tertiary dendrites in aged mice. Despite this, neurogenesis levels in aged-run mice were still considerably lower than in young animals. Thus, mechanisms other than DG neurogenesis likely play significant roles in improving behavioral pattern separation elicited by exercise in aged animals. PMID:26321926

  11. Bioactive Silica Nanoparticles Reverse Age-Associated Bone Loss in Mice

    PubMed Central

    Vikulina, Tatyana; Roser-Page, Susanne; Lee, Jin-Kyu; Beck, George R.

    2015-01-01

    We recently reported that in vitro, engineered 50 nm spherical silica nanoparticles promote the differentiation and activity of bone building osteoblasts but suppress that of bone-resorbing osteoclasts. Furthermore, these nanoparticles promote bone accretion in young mice in vivo. In the present study the capacity of these nanoparticles to reverse bone loss in aged mice, a model of human senile osteoporosis, was investigated. Aged mice received nanoparticles weekly and bone mineral density (BMD), bone structure, and bone turnover was quantified. Our data revealed a significant increase in BMD, bone volume, and biochemical markers of bone formation. Biochemical and histological examinations failed to identify any abnormalities caused by nanoparticle administration. Our studies demonstrate that silica nanoparticles effectively blunt and reverse age-associated bone loss in mice by a mechanism involving promotion of bone formation. The data suggest that osteogenic silica nanoparticles may be a safe and effective therapeutic for counteracting age-associated bone loss. PMID:25680544

  12. Influence of Aging and Gender Differences on Feeding Behavior and Ghrelin-Related Factors during Social Isolation in Mice

    PubMed Central

    Yamada, Chihiro; Saegusa, Yayoi; Nahata, Miwa; Sadakane, Chiharu; Hattori, Tomohisa; Takeda, Hiroshi

    2015-01-01

    Psychological stress due to social isolation is known to cause abnormal feeding behaviors, but the influences of gender and aging on subchronic stress-induced changes in feeding behaviors are unknown. Thus, we examined the changes in body weight, food intake, and orexigenic ghrelin-related factors during 2 weeks of isolation stress in young and aged mice. Food intake increased significantly in young mice in the isolation group compared with the group-housed control throughout the experimental period. This isolation-induced increase in food intake was not observed in aged mice. In young mice, there were no significant differences in body weight between the isolated group and group-housed control up to 2 weeks. However, aged male mice exhibited significant weight loss at 2 weeks and a similar tendency was observed in aged female mice. Young male mice, but not female mice, had significantly increased (2.2-fold) plasma acylated ghrelin levels after 1 week of isolation compared with the group-housed control. A significant but lower increase (1.3-fold) was also observed in aged male mice. Hypothalamic preproghrelin gene expression decreased significantly with isolation in young male mice, whereas it increased significantly in female mice. The expression levels of NPY and AGRP in the hypothalamus, which are transmitted by elevated peripheral ghrelin signals, increased significantly in isolated young male mice, whereas the AGRP expression levels decreased significantly in young female mice. Isolation caused no significant differences in the expression levels of these genes in aged mice. In isolation, young female mice exhibited markedly increased dark- and light-phase locomotor activities compared with male mice, whereas male and female aged mice exhibited no obvious increases in activity immediately after the dark phase started. We conclude that the gender-specific homeostatic regulatory mechanisms required to maintain body weight operated during subchronic psychological

  13. Antioxidant activity of penta-oligogalacturonide, isolated from haw pectin, suppresses triglyceride synthesis in mice fed with a high-fat diet.

    PubMed

    Li, Tuoping; Li, Suhong; Dong, Yinping; Zhu, Rugang; Liu, Yonghui

    2014-02-15

    To expand application of hawthorn (Crataegus pinnatifida Bge) fruit, the antioxidant and anti-lipidemic effects of haw pectin penta-oligogalacturonide (HPPS) prepared from hawthorn fruit were investigated in vitro and in mice. HPPS exhibited concentration-dependent scavenging activities against superoxide anion, hydroxyl and DPPH radicals. Additionally, HPPS supplementation significantly enhanced the antioxidant enzyme activities of superoxide dismutase, catalase, glutathione peroxidase, increased the total antioxidant capacity and the levels of glutathione, but lowered the malondialdehyde content in the liver of high-fat fed mice. Furthermore, HPPS significantly decreased the TG levels, the activity and the mRNA and protein levels of glycerol 3-phosphate acyltransferase (GPAT) and phosphatidate phosphohydrolase (PAP) in mice livers. Moreover, liver steatosis of mice associated with diffuse hepatocyte ballooning induced by a high-fat diet was markedly improved by a dose of 300 mg/kg HPPS-consumption. The results revealed that HPPS might be applicable as a dietary supplement for the prevention of fatty liver and oxidative damage. PMID:24128486

  14. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice

    PubMed Central

    García, Mayra; Misplon, Julia A.; Price, Graeme E.; Lo, Chia-Yun; Epstein, Suzanne L.

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234

  15. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice.

    PubMed

    García, Mayra; Misplon, Julia A; Price, Graeme E; Lo, Chia-Yun; Epstein, Suzanne L

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11-17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234

  16. Green coffee polyphenols do not attenuate features of the metabolic syndrome and improve endothelial function in mice fed a high fat diet.

    PubMed

    Li Kwok Cheong, J D; Croft, K D; Henry, P D; Matthews, V; Hodgson, J M; Ward, N C

    2014-10-01

    We have investigated the effects of the major polyphenol in coffee, chlorogenic acid (CGA), on obesity, glucose intolerance, insulin resistance, systemic oxidative stress and endothelial dysfunction in a mouse model of the metabolic syndrome. Thirty C57BL6 mice were randomly divided into (n=10/group) (i) normal diet (ND), (ii) high fat diet (HFD), or (iii) high fat diet supplemented with 0.5% w/w green coffee bean extract (GCE) rich in chlorogenic acid (HFD+GCE). The high fat diet consisted of 28% fat and all animals were maintained on their diets for 12 weeks. The mice fed a HFD and HFD+GCE displayed symptoms of the metabolic syndrome compared to their normal fed counterparts, although no endothelial dysfunction was detected in the abdominal aortas after 12 weeks. GCE did not attenuate HFD-induced obesity, glucose intolerance, insulin resistance or systemic oxidative stress. Furthermore, GCE did not protect against ex vivo oxidant (hypochlorous acid)-induced endothelial dysfunction. PMID:24583266

  17. Altered hepatic lipid metabolism in C57BL/6 mice fed alcohol: a targeted lipidomic and gene expression study[S

    PubMed Central

    Clugston, Robin D.; Jiang, Hongfeng; Lee, Man Xia; Piantedosi, Roseann; Yuen, Jason J.; Ramakrishnan, Rajasekhar; Lewis, Michael J.; Gottesman, Max E.; Huang, Li-Shin; Goldberg, Ira J.; Berk, Paul D.; Blaner, William S.

    2011-01-01

    Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphingolipids, ceramides, and endocannabinoids, in plasma and liver samples from control and alcohol-fed mice. The interpretation of lipidomic data was augmented by gene expression analyses for important metabolic enzymes in the lipid pathways studied. Alcohol feeding was associated with i) increased hepatic free fatty acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and decreased fatty acyl-CoA synthesis, respectively; ii) increased hepatic ceramide levels associated with higher levels of the precursor molecules sphingosine and sphinganine; and iii) increased hepatic levels of the endocannabinoid anandamide associated with decreased expression of its catabolic enzyme fatty acid amide hydrolase. The unique combination of lipidomic and gene expression analyses allows for a better mechanistic understanding of dysregulated lipid metabolism in the development of alcoholic fatty liver disease. PMID:21856784

  18. Effects of Supplemental Acerola Juice on the Mineral Concentrations in Liver and Kidney Tissue Samples of Mice Fed with Cafeteria Diet.

    PubMed

    Leffa, Daniela Dimer; dos Santos, Carla Eliete Iochims; Daumann, Francine; Longaretti, Luiza Martins; Amaral, Livio; Dias, Johnny Ferraz; da Silva, Juliana; Andrade, Vanessa Moraes

    2015-09-01

    We evaluated the impact of a supplemental acerola juice (unripe, ripe, and industrial) and its main pharmaceutically active components on the concentrations of minerals in the liver and kidney of mice fed with cafeteria diet. Swiss male mice were fed with a cafeteria (CAF) diet for 13 weeks. The CAF consisted of a variety of supermarket products with high energy content. Subsequently, animals received one of the following food supplements for 1 month: water, unripe acerola juice, ripe acerola juice, industrial acerola juice, vitamin C, or rutin. Mineral concentrations of the tissues were determined by particle-induced X-ray emission (PIXE). Our study suggests that the simultaneous intake of acerola juices, vitamin C, or rutin in association with a hypercaloric and hyperlipidic diet provides change in the mineral composition of organisms in the conditions of this study, which plays an important role in the antioxidant defenses of the body. This may help to reduce the metabolism of the fat tissue or even to reduce the oxidative stress. PMID:25724149

  19. Decaffeinated Green Tea and Voluntary Exercise Induce Gene Changes Related to Beige Adipocyte Formation in High Fat-Fed Obese Mice*

    PubMed Central

    Sae-tan, Sudathip; Rogers, Connie J.; Lambert, Joshua D.

    2015-01-01

    We have previously reported that decaffeinated green tea extract (GTE) in combination with voluntary exercise (Ex) reduces metabolic syndrome in high fat-fed C57BL/6J mice. Here, we examined for the first time the effect of treatment with 77 mg/g GTE, Ex, or both (GTE + Ex) on genes related to the conversion of white adipose tissue (WAT) to brown fat-like adipose tissue (BLAT) in this model. GTE+Ex induced genes related to lipolysis (hormone sensitive lipase [3.0-fold] and patatin-like phospholipase domain-containing protein 2 [2-fold]), mitochondrial β-oxidation (NADH dehydrogenase 5 [2.3-fold], cytochrome B [2.0-fold], and cytochrome C oxidase III [1.9-fold increase]), and adipose tissue browning (peroxisome proliferator-activated receptor-γ coactivator-1α [1.8-fold], bone morphogenetic protein 4 [2.6-fold], and phosphatase and tensin homolog [2.6-fold]) in visceral WAT compared to HF-fed mice. These results suggest that GTE+Ex function in part by inducing the conversion of WAT to BLAT and provides novel mechanistic insight into this combination. PMID:25844091

  20. Fenofibrate insulates diacylglycerol in lipid droplet/ER and preserves insulin signaling transduction in the liver of high fat fed mice.

    PubMed

    Chan, Stanley M H; Zeng, Xiao-Yi; Sun, Ruo-Qiong; Jo, Eunjung; Zhou, Xiu; Wang, Hao; Li, Songpei; Xu, Aimin; Watt, Matthew J; Ye, Ji-Ming

    2015-07-01

    Hepatic steatosis is often associated with insulin resistance as a hallmark of the metabolic syndrome in the liver. The present study investigated the effects of PPARα activation induced by fenofibrate (FB) on the relationship of insulin resistance and hepatic steatosis in mice fed a high-fat (HF) diet, which increases lipid influx into the liver. Mice were fed HF diet to induce insulin resistance and hepatic steatosis with or without FB. FB activated PPARα and ameliorated HF diet-induced glucose intolerance and hepatic insulin resistance without altering either hepatic steatosis or inflammation signaling (JNK or IKK). Interestingly, FB treatment simultaneously increased fatty acid (FA) synthesis (50%) and oxidation (66%, both p<0.01) into intermediate lipid metabolites, suggesting a FA oxidation-synthesis cycling in operation. Associated with these effects, diacylglycerols (DAGs) were sequestered within the lipid droplet/ER compartment, thus reducing their deposition in the cellular membrane, which is known to impair insulin signal transduction. These findings suggest that the reduction in membrane DAGs (rather than total hepatic steatosis) may be critical for the protection by fenofibrate-induced PPARα activation against hepatic insulin resistance induced by dietary fat. PMID:25906681

  1. Magnolia extract (BL153) protection of heart from lipid accumulation caused cardiac oxidative damage, inflammation, and cell death in high-fat diet fed mice.

    PubMed

    Sun, Weixia; Zhang, Zhiguo; Chen, Qiang; Yin, Xia; Fu, Yaowen; Zheng, Yang; Cai, Lu; Kim, Ki-Soo; Kim, Ki Ho; Tan, Yi; Kim, Young Heui

    2014-01-01

    Magnolia as an herbal material obtained from Magnolia officinalis has been found to play an important role in anti-inflammation, antioxidative stress, and antiapoptosis. This study was designed to investigate the effect of Magnolia extract (BL153) on obesity-associated lipid accumulation, inflammation, oxidative stress, and apoptosis in the heart. C57BL/6 mice were fed a low- (10 kcal% fat) or high-fat (60 kcal% fat) diet for 24 weeks to induce obesity. These mice fed with high-fat diet (HFD) were given a gavage of vehicle, 2.5, 5, or 10 mg/kg body weight BL153 daily. The three doses of BL153 treatment slightly ameliorated insulin resistance without decrease of body weight gain induced by HFD feeding. BL153 at 10 mg/kg slightly attenuated a mild cardiac hypertrophy and dysfunction induced by HFD feeding. Both 5 mg/kg and 10 mg/kg of BL153 treatment significantly inhibited cardiac lipid accumulation measured by Oil Red O staining and improved cardiac inflammation and oxidative stress by downregulating ICAM-1, TNF-α, PAI-1, 3-NT, and 4-HNE. TUNEL staining showed that BL153 treatment also ameliorated apoptosis induced by mitochondrial caspase-3 independent cell death pathway. This study demonstrates that BL153 attenuates HFD-associated cardiac damage through prevention of HFD-induced cardiac lipid accumulation, inflammation, oxidative stress, and apoptosis. PMID:24693333

  2. [PHARMACOLOGICAL CORRECTION OF APOPTOSIS LEVEL OF CORTICAL NEURONS IN AGED HER2/NEU TRANSGENIC MICE].

    PubMed

    Bazhanova, E D; Kozlova, Yu O; Anisimov, V N; Sukhanov, D S; Teply, D L

    2016-01-01

    Neurodegenerative changes and neuronal death are the basis for development of the nervous system aging. We investigated the mechanism of apoptosis of the sensorimotor cortex neurons of transgenic mice HER2/neu during aging, changes in the cortex function and the participation of exogenous neurometabolites (cytoflavin, piracetam) in regulation of neuronal death and locomotor and psycho-emotional status of mice. The level of apoptosis and expression of apoptosis markers (TUNEL, immunohistochemistry, Western blotting) in HER2/neu transgenic mice as compared to wild type mice (FBV line) were determined. In aging FBV mice the basal activity was shown to decrease and anxiety to increase correlating with the high level of neuronal apoptosis. We identified behavioral characteristics of transgenic HER2/neu mice and found that their low basal activity does not change with aging. Previously we have shown that in this strain of mice the apoptosis level is low, without any age-related changes, due to the suppression, first of all, of the p53-dependent pathway by HER2 (tyrosine kinase receptor) overexpression. Cytoflavin and piracetam were revealed to possess a marked neuroprotective effect, preserving and restoring functions of the nervous system (improving locomotion and psychological status) in both strains of mice. The effect of neurometabolites studied on neuronal apoptosis is ambiguous. In case of its low level it is a moderate stumulation of apoptosis via the external p53-dependent pathways with activation of caspase-3 in transgenic HER2/neu mice with high carcinogenesis level that can possibly prevent tumor development. On the contrary, in old wild-type animals we observed a significant decrease of age-dependent apoptosis level (by stimulating expression of the anti-apoptotic protein Mcl-1), which prevents neurodegeneration. PMID:27220241

  3. Black Mats, Spring-Fed Streams, and Late-Glacial-Age Recharge in the Southern Great Basin

    USGS Publications Warehouse

    Quade, Jay; Forester, R.M.; Pratt, W.L.; Carter, C.

    1998-01-01

    Black mats are prominent features of the late Pleistocene and Holocene stratigraphic record in the southern Great Basin. Faunal, geochemical, and sedimentological evidence shows that the black mats formed in several microenvironments related to spring discharge, ranging from wet meadows to shallow ponds. Small land snails such as Gastrocopta tappaniana and Vertigo berryi are the most common mollusk taxa present. Semiaquatic and aquatic taxa are less abundant and include Catinellids, Fossaria parva, Gyraulus parvus, and others living today in and around perennial seeps and ponds. The ostracodes Cypridopsis okeechobi and Scottia tumida, typical of seeps and low-discharge springs today, as well as other taxa typical of springs and wetlands, are common in the black mats. Several new species that lived in the saturated subsurface also are present, but lacustrine ostracodes are absent. The ??13C values of organic matter in the black mats range from -12 to -26???, reflecting contributions of tissue from both C3 (sedges, most shrubs and trees) and C4 (saltbush, saltgrass) plants. Carbon-14 dates on the humate fraction of 55 black mats fall between 11,800 to 6300 and 2300 14C yr B.P. to modern. The total absence of mats in our sample between 6300 and 2300 14C yr B.P. likely reflects increased aridity associated with the mid-Holocene Altithermal. The oldest black mats date to 11,800-11,600 14C yr B.P., and the peak in the 14C black mat distribution falls at ???10,000 14C yr B.P. As the formation of black mats is spring related, their abundance reflects refilling of valley aquifers starting no later than 11,800 and peaking after 11,000 14C yrB.P. Reactivation of spring-fed channels shortly before 11,200 14C yr B.P. is also apparent in the stratigraphic records from the Las Vegas and Pahrump Valleys. This age distribution suggests that black mats and related spring-fed channels in part may have formed in response to Younger Dryas (YD)-age recharge in the region. However, the

  4. Black Mats, Spring-Fed Streams, and Late-Glacial-Age Recharge in the Southern Great Basin

    NASA Astrophysics Data System (ADS)

    Quade, Jay; Forester, Richard M.; Pratt, William L.; Carter, Claire

    1998-03-01

    Black mats are prominent features of the late Pleistocene and Holocene stratigraphic record in the southern Great Basin. Faunal, geochemical, and sedimentological evidence shows that the black mats formed in several microenvironments related to spring discharge, ranging from wet meadows to shallow ponds. Small land snails such as Gastrocopta tappanianaand Vertigo berryiare the most common mollusk taxa present. Semiaquatic and aquatic taxa are less abundant and include Catinellids, Fossaria parva, Gyraulus parvus,and others living today in and around perennial seeps and ponds. The ostracodes Cypridopsis okeechobiand Scottia tumida,typical of seeps and low-discharge springs today, as well as other taxa typical of springs and wetlands, are common in the black mats. Several new species that lived in the saturated subsurface also are present, but lacustrine ostracodes are absent. The δ 13C values of organic matter in the black mats range from -12 to -26‰, reflecting contributions of tissue from both C 3(sedges, most shrubs and trees) and C 4(saltbush, saltgrass) plants. Carbon-14 dates on the humate fraction of 55 black mats fall between 11,800 to 6300 and 2300 14C yr B.P. to modern. The total absence of mats in our sample between 6300 and 2300 14C yr B.P. likely reflects increased aridity associated with the mid-Holocene Altithermal. The oldest black mats date to 11,800-11,600 14C yr B.P., and the peak in the 14C black mat distribution falls at ˜10,000 14C yr B.P. As the formation of black mats is spring related, their abundance reflects refilling of valley aquifers starting no later than 11,800 and peaking after 11,000 14C yr B.P. Reactivation of spring-fed channels shortly before 11,200 14C yr B.P. is also apparent in the stratigraphic records from the Las Vegas and Pahrump Valleys. This age distribution suggests that black mats and related spring-fed channels in part may have formed in response to Younger Dryas (YD)-age recharge in the region. However, the

  5. A novel soluble β-1,3-D-glucan salecan reduces adiposity and improves glucose tolerance in high-fat diet-fed mice.

    PubMed

    Zhang, Ying; Xia, Lin; Pang, Wenqiang; Wang, Tao; Chen, Peng; Zhu, Bin; Zhang, Jianfa

    2013-01-28

    Salecan is a recently identified water-soluble viscous extracellular β-1,3-D-glucan polysaccharide from an Agrobacterium species. It is a high-molecular-mass polymer (about 2 × 10⁶ Da) and composed of a linear chain of glucosyl residues linked through a repeat unit of seven β-(1,3) and two α-(1,3) glucosidic bonds. In the present study, we examined the effects of dietary Salecan fed at 2 and 5 % in a high-fat diet (64 % energy) in C57BL/6J mice. After 6 weeks, mice fed 2 and 5 % Salecan had significantly lower body weight, fat mass and percentage of body fat mass compared with those fed a high-fat cellulose (control) diet. Both the Salecan groups significantly and dose-dependently improved glucose tolerance, with a 9 and 26 % reduction of glucose AUC, respectively. Liver and adipose tissue weights were also significantly decreased by the Salecan treatment. Supplementation with 5 % Salecan led to lower serum TAG, total cholesterol (TC) and HDL-cholesterol (52, 18 and 19 %, respectively) and lower hepatic TAG by 56 % and TC by 22 % compared with the high-fat cellulose control group. Dietary Salecan intake caused an obvious elevation of fat in the faeces. Supplementation with Salecan disturbed bile acid-promoted emulsification and reduced the size of emulsion droplets in vitro. These results indicate that Salecan decreases fat absorption, improves glucose tolerance and has biologically important, dose-related effects on reducing high-fat diet-induced obesity. PMID:22716316

  6. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  7. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice

    PubMed Central

    Aso, Kazuyoshi; Tsuruhara, Akitoshi; Takagaki, Kentaro; Oki, Katsuyuki; Ota, Megumi; Nose, Yasuhiro; Tanemura, Hideki; Urushihata, Naoki; Sasanuma, Jinichi; Sano, Masayuki; Hirano, Atsuyuki; Aso, Rio; McGhee, Jerry R.; Fujihashi, Kohtaro

    2016-01-01

    It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer’s patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice. PMID:26840058

  8. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice.

    PubMed

    Aso, Kazuyoshi; Tsuruhara, Akitoshi; Takagaki, Kentaro; Oki, Katsuyuki; Ota, Megumi; Nose, Yasuhiro; Tanemura, Hideki; Urushihata, Naoki; Sasanuma, Jinichi; Sano, Masayuki; Hirano, Atsuyuki; Aso, Rio; McGhee, Jerry R; Fujihashi, Kohtaro

    2016-01-01

    It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer's patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice. PMID:26840058

  9. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition.

    PubMed

    Pavlisova, Jana; Bardova, Kristina; Stankova, Barbora; Tvrzicka, Eva; Kopecky, Jan; Rossmeisl, Martin

    2016-05-01

    Mixed results have been obtained regarding the level of insulin resistance induced by high-fat diets rich in saturated fatty acids (SFA) when compared to those enriched by polyunsaturated fatty acids (PUFA), and how metabolic effects of marine PUFA of n-3 series, i.e. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), depend on dietary lipid background. Here we compared two high-fat diets, in which the major lipid constituent was based either on SFA in the form of pork lard (LHF diet) or PUFA of n-6 series (Omega-6) as corn oil (cHF diet). Both cHF and LHF parental diets were also supplemented with EPA+DHA (∼30 g/kg diet) to produce cHF+F and LHF+F diet, respectively. Male C57BL/6N mice were fed the experimental diets for 8 weeks. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps in mice fed LHF and cHF diets, and then metabolic effects of cHF+F and LHF+F diets were assessed focusing on the liver and epididymal white adipose tissue (eWAT). Both LHF and cHF induced comparable weight gain and the level of insulin resistance, however LHF-fed mice showed increased hepatic steatosis associated with elevated activity of stearoyl-CoA desaturase-1 (SCD1), and lower plasma triacylglycerol levels when compared to cHF. Despite lowering hepatic SCD1 activity, which was concomitant with reduced hepatic steatosis reaching the level observed in cHF+F mice, LHF+F did not decrease adiposity and the weight of eWAT, and rather further impaired insulin sensitivity relative to cHF+F, that tended to improve it. In conclusion, high-fat diets containing as much as ∼35 weight% as lipids induce similar weight gain and impairment of insulin sensitivity irrespective whether they are based on SFA or Omega-6. Although the SFA-rich diet containing EPA+DHA efficiently reduced hepatic steatosis, it did so without a corresponding improvement in insulin sensitivity and in the absence of effect on adiposity. PMID:26151346

  10. Impact of age and sex on the development of atherosclerosis and expression of the related genes in apoE deficient mice.

    PubMed

    Liu, Mengyang; Zhang, Wenwen; Li, Xiaoju; Han, Jihong; Chen, Yuanli; Duan, Yajun

    2016-01-15

    Development of atherosclerosis is a chronic pathological process. ApoE deficient (apoE(-/-)) mice spontaneously develop atherosclerotic lesions. However, the impact of age and sex on lesions and expression of the related genes have not been fully elucidated. In this study, we collected blood and tissue samples from normal chow fed male and female apoE(-/-) mice at different ages, and determined serum lipids, PCSK9 levels, en face aortic lesions and expression of some pro- or anti-atherogenic genes. We determined that lesion development was clearly associated with age, and more lesions in males than females (12.6 ± 1.7% vs. 8.9 ± 1.1% at 8 months old, P < 0.05). Associated with age, serum total, LDL- and HDL-cholesterol and PCSK9 levels increased with more PCSK9 in females than males (313 ± 31 ng/mL vs. 239 ± 28 ng/mL at 8 months old, P < 0.05); expression of liver LDLR and ABCA1 decreased while of SR-BI increased; expression of macrophage ABCA1 and SR-BI decreased but of CD36 increased. Estrogen and tamoxifen induced ABCA1 and SR-BI expression, respectively, in macrophages isolated from female mice at the different age. Taken together, our study suggests that aging facilitates lesion development in apoE(-/-) mice with greater effect on male mice. The lesion development is also related to expression of pro- or anti-atherogenic genes in tissues, particularly in macrophages. PMID:26592663

  11. Elevated systolic blood pressure in male GH transgenic mice is age dependent.

    PubMed

    Jara, Adam; Benner, Chance M; Sim, Don; Liu, Xingbo; List, Edward O; Householder, Lara A; Berryman, Darlene E; Kopchick, John J

    2014-03-01

    Acromegaly is associated with an increased incidence of cardiovascular disease. Transgenic mice expressing bovine GH (bGH) gene have previously been used to examine the effects of chronic GH stimulation on cardiovascular function. Results concerning systolic blood pressure (SBP) in bGH mice are conflicting. We hypothesized that these discrepancies may be the result of the various ages of the mice used in previous studies. In the current study, SBP was assessed monthly in male bGH mice from 3-12 months of age. Factors known to alter blood pressure were assessed during this time and included: levels of brain natriuretic peptide (BNP) and glucose homeostasis markers, and renal levels of angiotensin-converting enzyme 2 and endothelial nitric oxide synthase. Beginning at 6 months of age bGH had increased SBP compared with wild-type controls, which remained elevated through 12 months of age. Despite having increased blood pressure and cardiac BNP mRNA, bGH mice had decreased circulating levels of BNP. Additionally, bGH mice had an age-dependent decline in insulin levels. For example, they were hyperinsulinemic at 3 months, but by 11 months of age were hypoinsulinemic relative to wild-type controls. This decrease in insulin was accompanied by improved glucose tolerance at 11 months. Finally, both angiotensin-converting enzyme 2 and endothelial nitric oxide synthase expression were severely depressed in kidneys of 11-month-old bGH mice. These results indicate that elevated SBP in bGH mice is dependent on age, independent of insulin resistance, and related to alterations in both the natriuretic peptide and renin-angiotensin systems. PMID:24424040

  12. Aging Exacerbates Obesity-Induced Oxidative Stress and Inflammation in Perivascular Adipose Tissue in Mice: A Paracrine Mechanism Contributing to Vascular Redox Dysregulation and Inflammation

    PubMed Central

    Bailey-Downs, Lora C.; Tucsek, Zsuzsanna; Toth, Peter

    2013-01-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet–fed obese C57BL/6 mice. High-fat diet–induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet–induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals

  13. Effect of age on susceptibility to Salmonella Typhimurium infection in C57BL/6 mice.

    PubMed

    Ren, Zhihong; Gay, Raina; Thomas, Adam; Pae, Munkyong; Wu, Dayong; Logsdon, Lauren; Mecsas, Joan; Meydani, Simin Nikbin

    2009-12-01

    Ageing is associated with a decline in immune function, which predisposes the elderly to a higher incidence of infections. Information on the mechanism of the age-related increase in susceptibility to Salmonella enterica serovar Typhimurium (S. Typhimurium) is limited. In particular, little is known regarding the involvement of the immune response in this age-related change. We employed streptomycin (Sm)-pretreated C57BL/6 mice to develop a mouse model that would demonstrate age-related differences in susceptibility and immune response to S. Typhimurium. In this model, old mice inoculated orally with doses of 3 x 10(8) or 1 x 10(6) c.f.u. S. Typhimurium had significantly greater S. Typhimurium colonization in the ileum, colon, Peyer's patches, spleen and liver than young mice. Old mice had significantly higher weight loss than young mice on days 1 and 2 post-infection. In response to S. Typhimurium infection, old mice failed to increase ex vivo production of IFN-gamma and TNF-alpha in the spleen and mesenteric lymph node cells to the same degree as observed in young mice; this was associated with their inability to maintain the presence of neutrophils and macrophages at a 'youthful' level. These results indicate that Sm-pretreated C57BL/6 old mice are more susceptible to S. Typhimurium infection than young mice, which might be due to impaired IFN-gamma and TNF-alpha production as well as a corresponding change in the number of neutrophils and macrophages in response to S. Typhimurium infection compared to young mice. PMID:19729455

  14. Bioactives from bitter melon enhance insulin signaling and modulate acyl carnitine content in skeletal muscle in high-fat diet fed mice

    PubMed Central

    Wang, Zhong Q.; Zhang, Xian H.; Yu, Yongmei; Poulev, Alexander.; Ribnicky, David; Cefalu, William T.

    2010-01-01

    Bioactive components from bitter melon (BM) have been reported to improve glucose metabolism in vivo, but definitive studies on efficacy and mechanism of action are lacking. We sought to investigate the effects of BM bioactives on body weight, muscle lipid content and insulin signaling in mice fed a high fat diet and on insulin signaling in L6 myotubes. Male C57BL/6J mice were randomly divided into low-fat diet control (LFD), high-fat diet (HFD) and HFD plus BM (BM) groups. Body weight, body composition, plasma glucose, leptin, insulin, and muscle lipid profile were determined over 12 weeks. Insulin signaling was determined in the mouse muscle taken at end of study and in L6 myotubes exposed to the extract. Body weight, plasma glucose, insulin, leptin levels, and HOMA-IR values were significantly lower in the BM fed HFD group when compared to the HFD group. BM supplementation significantly increased IRS-2, IR β, PI 3K and GLUT4 protein abundance in skeletal muscle as well as phosphorylation of IRS-1, Akt1 and Akt2 when compared with HFD (P<0.05 and P<0.01). BM also significantly reduced muscle lipid content in the HFD mice. BM extract greatly increased glucose uptake and enhanced insulin signaling in L6 myotubes. This study shows that bitter melon bioactives reduced body weight, improved glucose metabolism and enhanced skeletal muscle insulin signaling. A contributing mechanism to the enhanced insulin signaling may associate with the reduction in skeletal muscle lipid content. Nutritional supplementation with this extract, if validated for human studies, may offer an adjunctive therapy for diabetes. PMID:21277185

  15. Effects of Bofu-Tsusho-San on Diabetes and Hyperlipidemia Associated with AMP-Activated Protein Kinase and Glucose Transporter 4 in High-Fat-Fed Mice

    PubMed Central

    Lin, Cheng-Hsiu; Kuo, Yueh-Hsiung; Shih, Chun-Ching

    2014-01-01

    This study was undertaken to examine the effect and mechanism of Bofu-tsusho-san formula (BO) on hyperglycemia and hyperlipidemia and in mice fed with a high-fat (HF) diet. The C57BL/6J mice were received control/HF diet for 12 weeks, and oral administration of BO (at three doses) or rosiglitazone (Rosi) or vehicle for the last 4 weeks. Blood, skeletal muscle and tissues were examined by means of measuring glycaemia and dyslipidaemia-associated events. BO treatment effectively prevented HF diet-induced increases in the levels of triglyceride (TG), free fatty acid (FFA) and leptin (p < 0.01, p < 0.01, p < 0.01, respectively). BO treatment exhibited reduced both visceral fat mass and hepatic triacylglycerol content; moreover, BO treatment displayed significantly decreased both the average area of the cut of adipocytes and ballooning of hepatocytes. BO treatment exerted increased the protein contents of glucose transporter 4 (GLUT4) in skeletal muscle, and caused lowered blood glucose levels. BO treatment displayed increased levels of phosphorylated AMP-activated protein kinase (AMPK) in both skeletal muscle and liver tissue. Furthermore, BO reduced the hepatic expression of glucose-6-phosphatase (G6Pase) and phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Therefore, it is possible that the activation of AMPK by BO leads to diminished gluconeogenesis in liver tissue. BO increased hepatic expressions of peroxisome proliferator-activated receptor α (PPARα), whereas down-regulating decreasing expressions of fatty acid synthesis, including sterol regulatory element binding protein 1c (SREBP1c) and fatty acid synthase (FAS), resulting in a decrease in circulating triglycerides. This study originally provides the evidence that amelioration of dyslipidemic and diabetic state by BO in HF-fed mice occurred by regulation of GLUT4, SREBP1c, FAS, PPARα, adiponectin and AMPK phosphorylation. PMID:25375187

  16. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice.

    PubMed

    Zeng, Huawei; Ishaq, Suzanne L; Zhao, Feng-Qi; Wright, André-Denis G

    2016-09-01

    Consumption of an obesigenic/high-fat diet (HFD) is associated with a high colon cancer risk and may alter the gut microbiota. To test the hypothesis that long-term high-fat (HF) feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed HFD (45% energy) or a low-fat (LF) diet (10% energy) for 36 weeks. At the end of the study, body weights in the HF group were 35% greater than those in the LF group. These changes were associated with dramatic increases in body fat composition, inflammatory cell infiltration, inducible nitric oxide synthase protein concentration and cell proliferation marker (Ki67) in ileum and colon. Similarly, β-catenin expression was increased in colon (but not ileum). Consistent with gut inflammation phenotype, we also found that plasma leptin, interleukin 6 and tumor necrosis factor α concentrations were also elevated in mice fed the HFD, indicative of chronic inflammation. Fecal DNA was extracted and the V1-V3 hypervariable region of the microbial 16S rRNA gene was amplified using primers suitable for 454 pyrosequencing. Compared to the LF group, the HF group had high proportions of bacteria from the family Lachnospiraceae/Streptococcaceae, which is known to be involved in the development of metabolic disorders, diabetes and colon cancer. Taken together, our data demonstrate, for the first time, that long-term HF consumption not only increases inflammatory status but also accompanies an increase of colonic β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of C57BL/6 mice. PMID:27362974

  17. Effects of cereal fiber on leptin resistance and sensitivity in C57BL/6J mice fed a high-fat/cholesterol diet

    PubMed Central

    Zhang, Ru; Jiao, Jun; Zhang, Wei; Zhang, Zheng; Zhang, Weiguo; Qin, Li-Qiang; Han, Shu-Fen

    2016-01-01

    Background Cereal fiber is reported to be associated with obesity and metabolic diseases. However, whether cereal fiber improves leptin resistance and sensitivity remains unclear. Design For 24 weeks, 48 male C57BL/6J mice were randomly given a normal chow diet (Chow), high-fat/cholesterol diet (HFD), HFD with 0.8% oat fiber (H-oat) or HFD with 0.8% wheat bran fiber (H-wheat). At the end of feeding period, both the serum insulin and leptin levels were determined by ELISA kits. Western blotting was used to assess the protein expressions of the leptin receptor (LepR) and the leptin-signaling pathway in the adipose tissues. Results Our results suggested that mice fed oat or wheat bran fiber exhibited lower body weight, serum lipids, as well as insulin and leptin levels. The two cereal fibers potently increased the protein expressions of LepR in the adipose tissue. In addition, protein expressions of Janus kinase 2 (JAK2) and transcription 3 (STAT3) (induced by LepR), which enhances leptin signaling, were significantly higher and the expression of cytokine signaling-3 (SOCS3), which inhibits leptin signaling, was significantly lower in the two cereal fiber groups than in the HFD group. Conclusion Taken together, our findings suggest that cereal fiber can improve leptin resistance and sensitivity by the JAK2/STAT3 pathway in C57BL/6J mice fed a HFD; furthermore, oat fiber is more effective in the improvement of leptin sensitivity than wheat bran fiber, in this murine model. PMID:27534844

  18. Comparison of mice with accelerated aging caused by distinct mechanisms.

    PubMed

    Gurkar, Aditi U; Niedernhofer, Laura J

    2015-08-01

    Aging is the primary risk factor for numerous chronic, debilitating diseases. These diseases impact quality of life of the elderly and consume a large portion of health care costs. The cost of age-related diseases will only increase as the world's population continues to live longer. Thus it would be advantageous to consider aging itself as a therapeutic target, potentially stemming multiple age-related diseases simultaneously. While logical, this is extremely challenging as the molecular mechanisms that drive aging are still unknown. Furthermore, clinical trials to treat aging are impractical. Even in preclinical models, testing interventions to extend healthspan in old age are lengthy and therefore costly. One approach to expedite aging studies is to take advantage of mouse strains that are engineered to age rapidly. These strains are genetically and phenotypically quite diverse. This review aims to offer a comparison of several of these strains to highlight their relative strengths and weaknesses as models of mammalian and more specifically human aging. Additionally, careful identification of commonalities among the strains may lead to the identification of fundamental pathways of aging. PMID:25617508

  19. Altered left ventricular performance in aging physically active mice with an ankle sprain injury.

    PubMed

    Turner, Michael J; Guderian, Sophie; Wikstrom, Erik A; Huot, Joshua R; Peck, Bailey D; Arthur, Susan T; Marino, Joseph S; Hubbard-Turner, Tricia

    2016-02-01

    We assessed the impact of differing physical activity levels throughout the lifespan, using a musculoskeletal injury model, on the age-related changes in left ventricular (LV) parameters in active mice. Forty male mice (CBA/J) were randomly placed into one of three running wheel groups (transected CFL group, transected ATFL/CFL group, SHAM group) or a SHAM Sedentary group (SHAMSED). Before surgery and every 6 weeks after surgery, LV parameters were measured under 2.5 % isoflurane inhalation. Group effects for daily distance run was significantly greater for the SHAM and lesser for the ATLF/CFL mice (p = 0.013) with distance run decreasing with age for all mice (p < 0.0001). Beginning at 6 months of age, interaction (group × age) was noted with LV posterior wall thickness-to-radius ratios (h/r) where h/r increased with age in the ATFL/CFL and SHAMSED mice while the SHAM and CFL mice exhibited decreased h/r with age (p = 0.0002). Passive filling velocity (E wave) was significantly greater in the SHAM mice and lowest for the ATFL/CFL and SHAMSED mice (p < 0.0001) beginning at 9 months of age. Active filling velocity (A wave) was not different between groups (p = 0.10). Passive-to-active filling velocity ratio (E/A ratio) was different between groups (p < 0.0001), with higher ratios for the SHAM mice and lower ratios for the ATFL/CFL and SHAMSED mice in response to physical activity beginning at 9 months of age. Passive-to-active filling velocity ratio decreased with age (p < 0.0001). Regular physical activity throughout the lifespan improved LV structure, passive filling velocity, and E/A ratio by 6 to 9 months of age and attenuated any negative alterations throughout the second half of life. The diastolic filling differences were found to be significantly related to the amount of activity performed by 9 months and at the end of the lifespan. PMID:26803818

  20. Korean Red Ginseng Water Extract Restores Impaired Endothelial Function by Inhibiting Arginase Activity in Aged Mice

    PubMed Central

    Choi, Kwanhoon; Yoon, Jeongyeon

    2014-01-01

    Cardiovascular disease is the prime cause of morbidity and mortality and the population ages that may contribute to increase in the occurrence of cardiovascular disease. Arginase upregulation is associated with impaired endothelial function in aged vascular system and thus may contribute to cardiovascular disease. According to recent research, Korean Red Ginseng water extract (KRGE) may reduce cardiovascular disease risk by improving vascular system health. The purpose of this study was to examine mechanisms contributing to age-related vascular endothelial dysfunction and to determine whether KRGE improves these functions in aged mice. Young (10±3 weeks) and aged (55±5 weeks) male mice (C57BL/6J) were orally administered 0, 10, or 20 mg/mouse/day of KRGE for 4 weeks. Animals were sacrificed and the aortas were removed. Endothelial arginase activity, nitric oxide (NO) generation and reactive oxygen species (ROS) production, endothelial nitric oxide synthase (eNOS) coupling, vascular tension, and plasma peroxynitrite production were measured. KRGE attenuated arginase activity, restored nitric oxide (NO) generation, reduced ROS production, and enhanced eNOS coupling in aged mice. KRGE also improved vascular tension in aged vessels, as indicated by increased acetylcholine-induced vasorelaxation and improved phenylephrine-stimulated vasoconstriction. Furthermore, KRGE prevented plasma peroxynitrite formation in aged mice, indicating reduced lipid peroxidation. These results suggest KRGE exerts vasoprotective effects by inhibiting arginase activity and augmenting NO signaling and may be a useful treatment for age-dependent vascular diseases. PMID:24757370

  1. Sirt1 is involved in decreased bone formation in aged apolipoprotein E-deficient mice

    PubMed Central

    Hong, Wei; Xu, Xiao-ya; Qiu, Zhao-hui; Gao, Jian-jun; Wei, Zhan-ying; Zhen, Li; Zhang, Xiao-li; Ye, Zhi-bing

    2015-01-01

    Aim: Apolipoprotein E (ApoE) plays an important role in the transport and metabolism of lipids. Recent studies show that bone mass is increased in young apoE−/− mice. In this study we investigated the bone phenotype and metabolism in aged apoE−/− mice. Methods: Femurs and tibias were collected from 18- and 72-week-old apoE−/− mice and their age-matched wild-type (WT) littermates, and examined using micro-CT and histological analysis. Serum levels of total cholesterol, oxidized low-density lipoprotein (ox-LDL) and bone turnover markers were measured. Cultured bone mesenchymal stem cells (BMSCs) from tibias and femurs of 18-week-old apoE−/− mice were used in experiments in vitro. The expression levels of Sirt1 and Runx2 in bone tissue and BMSCs were measured using RT-PCR and Western blot analysis. Results: Compared with age-matched WT littermates, young apoE−/− mice exhibited high bone mass with increased bone formation, accompanied by higher serum levels of bone turnover markers OCN and TRAP5b, and higher expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. In contrast, aged apoE−/− mice showed reduced bone formation and lower bone mass relative to age-matched WT mice, accompanied by lower serum OCN levels, and markedly reduced expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. After BMSCs were exposed to ox-LDL (20 μg/mL), the expression of Sirt1 and Runx2 proteins was significantly increased at 12 h, and then decreased at 72 h. Treatment with the Sirt1 inhibitor EX527 (10 μmol/L) suppressed the expression of Runx2, ALP and OCN in BMSCs. Conclusion: In contrast to young apoE−/− mice, aged apoE−/− mice showe lower bone mass than age-matched WT mice. Long-lasting exposure to ox-LDL decreases the expression of Sirt1 and Runx2 in BMSCs, which may explain the decreased bone formation in aged apoE−/− mice. PMID:26592520

  2. Male 11β-HSD1 Knockout Mice Fed Trans-Fats and Fructose Are Not Protected From Metabolic Syndrome or Nonalcoholic Fatty Liver Disease.

    PubMed

    Larner, Dean P; Morgan, Stuart A; Gathercole, Laura L; Doig, Craig L; Guest, Phil; Weston, Christopher; Hazeldine, Jon; Tomlinson, Jeremy W; Stewart, Paul M; Lavery, Gareth G

    2016-09-01

    Nonalcoholic fatty liver disease (NAFLD) defines a spectrum of conditions from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis and is regarded as the hepatic manifestation of the metabolic syndrome. Glucocorticoids can promote steatosis by stimulating lipolysis within adipose tissue, free fatty acid delivery to liver and hepatic de novo lipogenesis. Glucocorticoids can be reactivated in liver through 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme activity. Inhibition of 11β-HSD1 has been suggested as a potential treatment for NAFLD. To test this, male mice with global (11β-HSD1 knockout [KO]) and liver-specific (LKO) 11β-HSD1 loss of function were fed the American Lifestyle Induced Obesity Syndrome (ALIOS) diet, known to recapitulate the spectrum of NAFLD, and metabolic and liver phenotypes assessed. Body weight, muscle and adipose tissue masses, and parameters of glucose homeostasis showed that 11β-HSD1KO and LKO mice were not protected from systemic metabolic disease. Evaluation of hepatic histology, triglyceride content, and blinded NAFLD activity score assessment indicated that levels of steatosis were similar between 11β-HSD1KO, LKO, and control mice. Unexpectedly, histological analysis revealed significantly increased levels of immune foci present in livers of 11β-HSD1KO but not LKO or control mice, suggestive of a transition to NASH. This was endorsed by elevated hepatic expression of key immune cell and inflammatory markers. These data indicate that 11β-HSD1-deficient mice are not protected from metabolic disease or hepatosteatosis in the face of a NAFLD-inducing diet. However, global deficiency of 11β-HSD1 did increase markers of hepatic inflammation and suggests a critical role for 11β-HSD1 in restraining the transition to NASH. PMID:27384305

  3. Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity

    PubMed Central

    Kleschenko, Yuliya; Pow-Sang, Luis; Brumeanu, Teodor D.; Villasante, Eileen Franke; Vasta, Gerardo R.; Fernández-Robledo, José-Antonio; Casares, Sofia

    2014-01-01

    Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for “Dermo” disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1–2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA0) in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA0 mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA0 mice had antibodies (IgM and IgG) reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ) immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA0 mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents. PMID:24498105

  4. Reduced intestinal lipid absorption and body weight-independent improvements in insulin sensitivity in high-fat diet-fed Park2 knockout mice.

    PubMed

    Costa, Diana K; Huckestein, Brydie R; Edmunds, Lia R; Petersen, Max C; Nasiri, Ali; Butrico, Gina M; Abulizi, Abudukadier; Harmon, Daniel B; Lu, Canying; Mantell, Benjamin S; Hartman, Douglas J; Camporez, João-Paulo G; O'Doherty, Robert M; Cline, Gary W; Shulman, Gerald I; Jurczak, Michael J

    2016-07-01

    Mitochondrial dysfunction is associated with many human diseases and results from mismatch of damage and repair over the life of the organelle. PARK2 is a ubiquitin E3 ligase that regulates mitophagy, a repair mechanism that selectively degrades damaged mitochondria. Deletion of PARK2 in multiple in vivo models results in susceptibility to stress-induced mitochondrial and cellular dysfunction. Surprisingly, Park2 knockout (KO) mice are protected from nutritional stress and do not develop obesity, hepatic steatosis or insulin resistance when fed a high-fat diet (HFD). However, these phenomena are casually related and the physiological basis for this phenotype is unknown. We therefore undertook a series of acute HFD studies to more completely understand the physiology of Park2 KO during nutritional stress. We find that intestinal lipid absorption is impaired in Park2 KO mice as evidenced by increased fecal lipids and reduced plasma triglycerides after intragastric fat challenge. Park2 KO mice developed hepatic steatosis in response to intravenous lipid infusion as well as during incubation of primary hepatocytes with fatty acids, suggesting that hepatic protection from nutritional stress was secondary to changes in energy balance due to altered intestinal triglyceride absorption. Park2 KO mice showed reduced adiposity after 1-wk HFD, as well as improved hepatic and peripheral insulin sensitivity. These studies suggest that changes in intestinal lipid absorption may play a primary role in protection from nutritional stress in Park2 KO mice by preventing HFD-induced weight gain and highlight the need for tissue-specific models to address the role of PARK2 during metabolic stress. PMID:27166280

  5. Humanized HLA-DR4 mice fed with the protozoan pathogen of oysters Perkinsus marinus (Dermo) do not develop noticeable pathology but elicit systemic immunity.

    PubMed

    Wijayalath, Wathsala; Majji, Sai; Kleschenko, Yuliya; Pow-Sang, Luis; Brumeanu, Teodor D; Villasante, Eileen Franke; Vasta, Gerardo R; Fernández-Robledo, José-Antonio; Casares, Sofia

    2014-01-01

    Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for "Dermo" disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1-2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA(0)) in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA(0) mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA(0) mice had antibodies (IgM and IgG) reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ) immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA(0) mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents. PMID:24498105

  6. Male 11β-HSD1 Knockout Mice Fed Trans-Fats and Fructose Are Not Protected From Metabolic Syndrome or Nonalcoholic Fatty Liver Disease

    PubMed Central

    Larner, Dean P.; Morgan, Stuart A.; Gathercole, Laura L.; Doig, Craig L.; Guest, Phil; Weston, Christopher; Hazeldine, Jon; Tomlinson, Jeremy W.; Stewart, Paul M.

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) defines a spectrum of conditions from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis and is regarded as the hepatic manifestation of the metabolic syndrome. Glucocorticoids can promote steatosis by stimulating lipolysis within adipose tissue, free fatty acid delivery to liver and hepatic de novo lipogenesis. Glucocorticoids can be reactivated in liver through 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme activity. Inhibition of 11β-HSD1 has been suggested as a potential treatment for NAFLD. To test this, male mice with global (11β-HSD1 knockout [KO]) and liver-specific (LKO) 11β-HSD1 loss of function were fed the American Lifestyle Induced Obesity Syndrome (ALIOS) diet, known to recapitulate the spectrum of NAFLD, and metabolic and liver phenotypes assessed. Body weight, muscle and adipose tissue masses, and parameters of glucose homeostasis showed that 11β-HSD1KO and LKO mice were not protected from systemic metabolic disease. Evaluation of hepatic histology, triglyceride content, and blinded NAFLD activity score assessment indicated that levels of steatosis were similar between 11β-HSD1KO, LKO, and control mice. Unexpectedly, histological analysis revealed significantly increased levels of immune foci present in livers of 11β-HSD1KO but not LKO or control mice, suggestive of a transition to NASH. This was endorsed by elevated hepatic expression of key immune cell and inflammatory markers. These data indicate that 11β-HSD1-deficient mice are not protected from metabolic disease or hepatosteatosis in the face of a NAFLD-inducing diet. However, global deficiency of 11β-HSD1 did increase markers of hepatic inflammation and suggests a critical role for 11β-HSD1 in restraining the transition to NASH. PMID:27384305

  7. The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice

    PubMed Central

    Kanouchi, Hiroaki; Kakimoto, Toshiaki; Nakano, Hideya; Suzuki, Masahiro; Nakai, Yuji; Shiozaki, Kazuhiro; Akikoka, Kohei; Otomaru, Konosuke; Nagano, Masanobu; Matsumoto, Mitsuharu

    2016-01-01

    Kurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, a solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence-accelerated P8 mouse. Senescence-accelerated P8 mice were fed 0.25% (w/w) concentrated Kurozu or 0.5% (w/w) Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect; however, the level of lipid peroxidation in the brain did not differ in senescence-accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. The suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons. PMID:26943920

  8. The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice.

    PubMed

    Kanouchi, Hiroaki; Kakimoto, Toshiaki; Nakano, Hideya; Suzuki, Masahiro; Nakai, Yuji; Shiozaki, Kazuhiro; Akikoka, Kohei; Otomaru, Konosuke; Nagano, Masanobu; Matsumoto, Mitsuharu

    2016-01-01

    Kurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, a solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence-accelerated P8 mouse. Senescence-accelerated P8 mice were fed 0.25% (w/w) concentrated Kurozu or 0.5% (w/w) Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect; however, the level of lipid peroxidation in the brain did not differ in senescence-accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. The suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons. PMID:26943920

  9. Restoration of Retarded Influenza Virus-specific Immunoglobulin Class Switch in Aged Mice

    PubMed Central

    Zhang, Yongxin; Wang, Ying; Zhang, Monica; Liu, Lin; Mbawuike, Innocent N

    2016-01-01

    Objective The declined immune response to infection causes significant higher morbidity and mortality in aging in spite of the coexisted hyperimmunoglobulinemia (HIG). This study is to reveal the cellular basis of HIG and mechanism of weakened HA-specific IgG response in aged mice and to test cell therapy in the treatment of age-related IgG antibody production deficiency with immunocyte adoptive transfer. Methods BALB/c mice was immunized with Influenza A/Taiwan vaccine and challenged with the same strain of virus. ELISA was used to assess the levels of total immunoglobulins and antigen specific antibody response. The flow cytometry and ELISPOT were used to evaluate the frequencies of total immunoglobulin- and specific antibody-producing and secreting B lymphocytes. In vitro expanded mononuclear cells, CD4+ T lymphocytes and CD20+ B lymphocytes from old and young mice were adoptively transferred into influenza virus-challenged aged mice, and HA-specific IgG responses were observed. Results It is found that old mice exhibited higher levels of total serum IgG, IgM and IgA, higher frequencies of IgG+, IgM+ and IgA+ cells, and greater antigen-specific IgM and IgA responses to influenza infection, in comparison to young mice. However, influenza antigen- specific IgG and its subclass responses in old mice were significantly lower. Conclusion The retarded specific IgG response could be attributed to an insufficiency of immunoglobulin class switch in aging. Correlation analysis indicated that HIG and deficient specific IgG production in aged mice could be independent to each other in their pathogenesis. Correction of deficient specific IgG production by adoptive transfer of in vitro expanded and unexpanded CD4+ cells from immunized young mice suggests the CD4+ cell dysfunction contributes to the insufficiency of immunoglobulin class switch in aged mice. The transfusion of in vitro expanded lymphocytes could be a potential effective therapy for the age

  10. Markers for Heightened Monitoring, Imminent Death, and Euthanasia in Aged Inbred Mice

    PubMed Central

    Trammell, Rita A; Cox, Lisa; Toth, Linda A

    2012-01-01

    The goal of this study was to identify objective criteria that would reliably predict spontaneous death in aged inbred mice. We evaluated male and female AKR/J mice, which die at a relatively young age due to the development of lymphoma, as well as male C57BL/6J and BALB/cByJ mice. Mice were implanted subcutaneously with an identification chip that also allowed remote measurement of body temperature. Temperatures and body weights were measured weekly until spontaneous death occurred or until euthanasia was performed for humane reasons. In AKR/J mice, hypothermia and weight loss began about 4 wk prior to death and increased gradually during that antemortem interval. In C57BL/6J and BALB/cByJ mice, these declines began earlier and were more prolonged prior to death. However, C57BL/6J and BALB/cByJ mice developed a relatively precipitous hypothermia during the 2 wk prior to death. For all 3 strains, the derived composite score of temperature × weight, expressed as a percentage of stable values for each mouse, was similarly informative. These changes in individual and composite measures can signal the need for closer observation or euthanasia of individual mice. Validated markers of clinical decline or imminent death can allow the use of endpoints that reduce terminal distress, do not significantly affect longevity or survival data, and permit timely collection of biologic samples. PMID:22776049

  11. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice.

    PubMed

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana; Klein, Dennis; Martini, Rudolf; Krarup, Christian

    2016-03-01

    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice. With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na(+) channel isoform expression contributes to changes in motor axon function during aging. PMID:26923409

  12. HSP27 Alleviates Cardiac Aging in Mice via a Mechanism Involving Antioxidation and Mitophagy Activation

    PubMed Central

    Lin, Shenglan; Wang, Yana; Zhang, Xiaojin; Kong, Qiuyue; Li, Chuanfu; Li, Yuehua; Ding, Zhengnian

    2016-01-01

    Aging-induced cardiac dysfunction is a prominent feature of cardiac aging. Heat shock protein 27 (HSP27) protects cardiac function against ischemia or chemical challenge. We hypothesized that HSP27 attenuates cardiac aging. Transgenic (Tg) mice with cardiac-specific expression of the HSP27 gene and wild-type (WT) littermates were employed in the experiments. Echocardiography revealed a significant decline in the cardiac function of old WT mice compared with young WT mice. In striking contrast, the aging-induced impairment of cardiac function was attenuated in old Tg mice compared with old WT mice. Levels of cardiac aging markers were lower in old Tg mouse hearts than in old WT mouse hearts. Less interstitial fibrosis and lower contents of reactive oxygen species and ubiquitin-conjugated proteins were detected in old Tg hearts than in old WT hearts. Furthermore, old Tg hearts demonstrated lower accumulation of LC3-II and p62 than old WT hearts. Levels of Atg13, Vps34, and Rab7 were also higher in old Tg hearts than in old WT hearts. Additionally, old Tg hearts had higher levels of PINK1 and Parkin than old WT hearts, suggesting that mitophagy was activated in old Tg hearts. Taken together, HSP27 alleviated cardiac aging and this action involved antioxidation and mitophagy activation. PMID:27110324

  13. Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice.

    PubMed

    Brandon, Amanda E; Stuart, Ella; Leslie, Simon J; Hoehn, Kyle L; James, David E; Kraegen, Edward W; Turner, Nigel; Cooney, Gregory J

    2016-03-01

    An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12-16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42-54 weeks of age, male WT and Acc2(-/-) mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2(-/-) mice, aged Acc2(-/-) mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2(-/-) mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic-euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2(-/-) mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action. PMID:26668208

  14. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.

    PubMed

    Villeda, Saul A; Plambeck, Kristopher E; Middeldorp, Jinte; Castellano, Joseph M; Mosher, Kira I; Luo, Jian; Smith, Lucas K; Bieri, Gregor; Lin, Karin; Berdnik, Daniela; Wabl, Rafael; Udeochu, Joe; Wheatley, Elizabeth G; Zou, Bende; Simmons, Danielle A; Xie, Xinmin S; Longo, Frank M; Wyss-Coray, Tony

    2014-06-01

    As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts--in which circulatory systems of young and aged animals are connected--identified synaptic plasticity-related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function. PMID:24793238

  15. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice

    PubMed Central

    Villeda, Saul A; Plambeck, Kristopher E; Middeldorp, Jinte; Castellano, Joseph M; Mosher, Kira I; Luo, Jian; Smith, Lucas K; Bieri, Gregor; Lin, Karin; Berdnik, Daniela; Wabl, Rafael; Udeochu, Joe; Wheatley, Elizabeth G; Zou, Bende; Simmons, Danielle A; Xie, Xinmin S; Longo, Frank M; Wyss-Coray, Tony

    2014-01-01

    As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging1,2. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts—in which circulatory systems of young and aged animals are connected—identified synaptic plasticity–related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function. PMID:24793238

  16. NF-κB inhibition delays DNA damage-induced senescence and aging in mice.

    PubMed

    Tilstra, Jeremy S; Robinson, Andria R; Wang, Jin; Gregg, Siobhán Q; Clauson, Cheryl L; Reay, Daniel P; Nasto, Luigi A; St Croix, Claudette M; Usas, Arvydas; Vo, Nam; Huard, Johnny; Clemens, Paula R; Stolz, Donna B; Guttridge, Denis C; Watkins, Simon C; Garinis, George A; Wang, Yinsheng; Niedernhofer, Laura J; Robbins, Paul D

    2012-07-01

    The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB-activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging. PMID:22706308

  17. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  18. Increase of Calcium Sensing Receptor Expression Is Related to Compensatory Insulin Secretion during Aging in Mice

    PubMed Central

    Oh, Yoon Sin; Seo, Eun-Hui; Lee, Young-Sun; Cho, Sung Chun; Jung, Hye Seung; Park, Sang Chul; Jun, Hee-Sook

    2016-01-01

    Type 2 diabetes is caused by both insulin resistance and relative insulin deficiency. To investigate age-related changes in glucose metabolism and development of type 2 diabetes, we compared glucose homeostasis in different groups of C57BL/6J mice ranging in age from 4 months to 20 months (4, 8, 12, 16 and 20 months). Interestingly, we observed that non-fasting glucose levels were not significantly changed, but glucose tolerance gradually increased by 20 months of age, whereas insulin sensitivity declined with age. We found that the size of islets and glucose-stimulated insulin secretion increased with aging. However, mRNA expression of pancreatic and duodenal homeobox 1 and granuphilin was decreased in islets of older mice compared with that of 4-month-old mice. Serum calcium (Ca2+) levels were significantly decreased at 12, 20 and 28 months of age compared with 4 months and calcium sensing receptor (CaSR) mRNA expression in the islets significantly increased with age. An extracellular calcium depletion agent upregulated CaSR mRNA expression and consequently enhanced insulin secretion in INS-1 cells and mouse islets. In conclusion, we suggest that decreased Ca2+ levels and increased CaSR expression might be involved in increased insulin secretion to compensate for insulin resistance in aged mice. PMID:27441644

  19. EFFECT OF AGE ON THE #IN VITRO# PERCUTANEOUS ABSORPTION OF PHENOLS IN MICE

    EPA Science Inventory

    The effect of age on the in vitro dermal absorption of phenol, cyanophenol, acetamidophenol and heptyloxyphenol was examined. kin from pre-clipped male C57BL/6N mice of ages 3. 15 and 27 months was mounted in flow-through diffusion cells. [14C]-phenol and analogs (4 ug/cm2) were ...

  20. Longitudinal Attentional Engagement Rescues Mice from Age-Related Cognitive Declines and Cognitive Inflexibility

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm…

  1. Unmasking Differential Effects of Rosiglitazone and Pioglitazone in the Combination Treatment with n-3 Fatty Acids in Mice Fed a High-Fat Diet

    PubMed Central

    Kus, Vladimir; Flachs, Pavel; Kuda, Ondrej; Bardova, Kristina; Janovska, Petra; Svobodova, Michaela; Jilkova, Zuzana Macek; Rossmeisl, Martin; Wang-Sattler, Rui; Yu, Zhonghao; Illig, Thomas; Kopecky, Jan

    2011-01-01

    Combining pharmacological treatments and life style interventions is necessary for effective therapy of major diseases associated with obesity, which are clustered in the metabolic syndrome. Acting via multiple mechanisms, combination treatments may reduce dose requirements and, therefore, lower the risk of adverse side effects, which are usually associated with long-term pharmacological interventions. Our previous study in mice fed high-fat diet indicated additivity in preservation of insulin sensitivity and in amelioration of major metabolic syndrome phenotypes by the combination treatment using n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and rosiglitazone, i.e. an anti-diabetic drug of the thiazolidinedione (TZD) family. We investigated here whether pioglitazone, a TZD-drug in clinical use, could elicit the additive beneficial effects when combined with n-3 LC-PUFA. Adult male mice (C57BL/6N) were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various dietary treatments (i) cHF+F, cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids; (ii) cHF+ROSI, cHF with 10 mg rosiglitazone/kg diet; (iii) cHF+F+ROSI; (iv) cHF+PIO, cHF with 50 mg pioglitazone/kg diet; and (v) cHF+F+PIO, or chow-fed. Plasma concentrations of 163 metabolites were evaluated using a targeted metabolomics approach. Both TZDs preserved glucose homeostasis and normal plasma lipid levels while inducing adiponectin, with pioglitazone showing better effectiveness. The beneficial effects of TZDs were further augmented by the combination treatments. cHF+F+ROSI but not cHF+F+PIO counteracted development of obesity, in correlation with inducibility of fatty acid β-oxidation, as revealed by the metabolomic analysis. By contrast, only cHF+F+PIO eliminated hepatic steatosis and this treatment also reversed insulin resistance in dietary obese mice. Our results reveal differential effects of rosiglitazone and pioglitazone, unmasked in the

  2. Unmasking differential effects of rosiglitazone and pioglitazone in the combination treatment with n-3 fatty acids in mice fed a high-fat diet.

    PubMed

    Kus, Vladimir; Flachs, Pavel; Kuda, Ondrej; Bardova, Kristina; Janovska, Petra; Svobodova, Michaela; Jilkova, Zuzana Macek; Rossmeisl, Martin; Wang-Sattler, Rui; Yu, Zhonghao; Illig, Thomas; Kopecky, Jan

    2011-01-01

    Combining pharmacological treatments and life style interventions is necessary for effective therapy of major diseases associated with obesity, which are clustered in the metabolic syndrome. Acting via multiple mechanisms, combination treatments may reduce dose requirements and, therefore, lower the risk of adverse side effects, which are usually associated with long-term pharmacological interventions. Our previous study in mice fed high-fat diet indicated additivity in preservation of insulin sensitivity and in amelioration of major metabolic syndrome phenotypes by the combination treatment using n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and rosiglitazone, i.e. an anti-diabetic drug of the thiazolidinedione (TZD) family. We investigated here whether pioglitazone, a TZD-drug in clinical use, could elicit the additive beneficial effects when combined with n-3 LC-PUFA. Adult male mice (C57BL/6N) were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various dietary treatments (i) cHF+F, cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids; (ii) cHF+ROSI, cHF with 10 mg rosiglitazone/kg diet; (iii) cHF+F+ROSI; (iv) cHF+PIO, cHF with 50 mg pioglitazone/kg diet; and (v) cHF+F+PIO, or chow-fed. Plasma concentrations of 163 metabolites were evaluated using a targeted metabolomics approach. Both TZDs preserved glucose homeostasis and normal plasma lipid levels while inducing adiponectin, with pioglitazone showing better effectiveness. The beneficial effects of TZDs were further augmented by the combination treatments. cHF+F+ROSI but not cHF+F+PIO counteracted development of obesity, in correlation with inducibility of fatty acid β-oxidation, as revealed by the metabolomic analysis. By contrast, only cHF+F+PIO eliminated hepatic steatosis and this treatment also reversed insulin resistance in dietary obese mice. Our results reveal differential effects of rosiglitazone and pioglitazone, unmasked in the

  3. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats

    SciTech Connect

    Canada, A.T.; Calabrese, E.J.; Leonard, D.

    1986-09-01

    The effect of age on the metabolism of pentobarbital in mice and rats was investigated following exposure to 0.3 ppm of ozone for 3.75 hr. Young animals were 2.5 months of age and the mature were 18 months. The pentobarbital sleeping time was significantly prolonged following the ozone exposure in both the mice and rats when compared with an air control. No ozone effect on sleeping time was found in the young animals. The results indicate that there may be an age-related sensitivity to the occurrence of ozone-related inhibition of pentobarbital metabolism.

  4. Altered behavioral aspects of aged mice lacking the cellular prion protein.

    PubMed

    Massimino, Maria Lina; Redaelli, Marco; Bertoli, Alessandro; Sorgato, Maria Catia; Mucignat-Caretta, Carla

    2013-07-01

    The biological function of the prion protein, which is intimately involved in the onset of prion diseases, remains unclear. To understand whether the prion protein could play a role in animal behavior, a battery of tests was applied to young and aged mice that express, or not, the prion protein. In contrast to the similar results obtained in all young animals, we found that aged mice lacking the prion protein reacted to new and stressful environments differently than their wild-type counterparts. This may suggest that, upon aging, the absence of the prion protein results in altered neural processing at the basis of adaptation to new situations. PMID:23770331

  5. Inclusion of tallow and soybean oil to calf starters fed to dairy calves from birth to four months of age on calf performance and digestion.

    PubMed

    Hill, T M; Bateman, H G; Aldrich, J M; Quigley, J D; Schlotterbeck, R L

    2015-07-01

    Energy demands for calves can increase during periods of heat and cold stress. One way to potentially increase energy intake is to increase the energy density of the feed with fat. Trial 1a compared a control starter with no added fat or oil (CON) to starters with 2% tallow (TAL) and 2% soybean oil (SBO). Starters were 20% crude protein (CP) and 45 to 47% starch. Male Holstein calves that were initially 3 to 5d of age were fed a 27% CP, 17% fat milk replacer at 0.66kg of dry matter daily and fully weaned by 42d of a 56-d trial. Trial 1b estimated the digestion of the diets (employed chromic oxide as an indigestible digesta flow marker) using a subset of 5 weaned calves per treatment between d 52 and 56. Trial 2 used Holstein calves initially 59 to 61d of age fed starters CON and SBO blended with 5% chopped grass hay over a 56-d trial. Trial 3 used Holstein calves initially 59 to 61d of age fed starters CON and TAL blended with 5% chopped grass hay over a 56-d trial. Treatments were compared using repeated measures (where appropriate) in a completely randomized design. In trials 1a and 1b, preplanned contrasts compared CON versus TAL and CON versus SBO. Compared with CON, calves fed SBO had reduced starter intake, average daily gain, and digestion of dry matter, organic matter, and CP before 8wk of age. Compared with CON, calves fed SBO had reduced average daily gain and change in hip width from 2 to 4 mo of age. Compared with CON, calves fed TAL had reduced average daily gain and tended to have reduced change in hip width from 2 to 4 mo of age. Calculated metabolizable energy intake was not increased in any trial by added fat or oil. Tallow and soybean oil inclusion at 2% of the starter feed was not advantageous for calf growth before 4 mo of age. PMID:25912868

  6. Impact of N-acetylcysteine and sesame oil on lipid metabolism and hypothalamic-pituitary-adrenal axis homeostasis in middle-aged hypercholesterolemic mice

    PubMed Central

    Korou, Laskarina-Maria; Agrogiannis, George; Koros, Christos; Kitraki, Efthimia; Vlachos, Ioannis S.; Tzanetakou, Irene; Karatzas, Theodore; Pergialiotis, Vasilios; Dimitroulis, Dimitrios; Perrea, Despina N.

    2014-01-01

    Hyperlipidemia and stress are important factors affecting cardiovascular health in middle-aged individuals. We investigated the effects of N-acetylcysteine (NAC) and sesame oil on the lipidemic status, liver architecture and the hypothalamic-pituitary-adrenal (HPA) axis of middle-aged mice fed a cholesterol-enriched diet. We randomized 36 middle-aged C57bl/6 mice into 6 groups: a control group, a cholesterol/cholic acid diet group, a cholesterol/cholic acid diet group with NAC supplementation, a cholesterol/cholic acid diet enriched with 10% sesame oil and two groups receiving a control diet enriched with NAC or sesame oil. NAC administration prevented the onset of the disturbed lipid profile, exhibiting decreased lipid peroxidation and alkaline phosphatase (ALP) levels, restored nitric oxide bioavailability and reduced hepatic damage, compared to non-supplemented groups. High-cholesterol feeding resulted in increased hypothalamic glucocorticoid receptors (GR) levels, while NAC supplementation prevented this effect. NAC supplementation presented significant antioxidant capacity by means of preventing serum lipid status alterations, hepatic damage, and HPA axis disturbance due to high-cholesterol feeding in middle-aged mice. These findings suggest a beneficial preventive action of plant-derived antioxidants, such as NAC, on lipid metabolism and on the HPA axis. PMID:25348324

  7. CD36 expression contributes to age induced cardiomyopathy in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cardiac remodeling and impaired cardiac performance in the elderly significantly increase the risk of developing heart disease. Although vascular abnormalities associated with aging contribute to the age-related decline in cardiac function, myocardium-specific events may also be involved. We show th...

  8. Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice.

    PubMed

    Portal-Núñez, Sergio; Ardura, Juan Antonio; Lozano, Daniel; Bolívar, Oskarina Hernández; López-Herradón, Ana; Gutiérrez-Rojas, Irene; Proctor, Alexander; van der Eerden, Bram; Schreuders-Koedam, Marijke; van Leeuwen, Johannes; Alcaraz, María José; Mulero, Francisca; de la Fuente, Mónica; Esbrit, Pedro

    2016-03-01

    In the present study, the possibility that a diabetic (DM) status might worsen age-related bone deterioration was explored in mice. Male CD-1 mice aged 2 (young control group) or 16 months, nondiabetic or made diabetic by streptozotocin injections, were used. DM induced a decrease in bone volume, trabecular number, and eroded surface, and in mineral apposition and bone formation rates, but an increased trabecular separation, in L1-L3 vertebrae of aged mice. Three-point bending and reference point indentation tests showed slight changes pointing to increased frailty and brittleness in the mouse tibia of diabetic old mice. DM was related to a decreased expression of both vascular endothelial growth factor and its receptor 2, which paralleled that of femoral vasculature, and increased expression of the pro-adipogenic gene peroxisome proliferator-activated receptor γ and adipocyte number, without affecting β-catenin pathway in old mouse bone. Concomitant DM in old mice failed to affect total glutathione levels or activity of main anti-oxidative stress enzymes, although xanthine oxidase was slightly increased, in the bone marrow, but increased the senescence marker caveolin-1 gene. In conclusion, DM worsens bone alterations of aged mice, related to decreased bone turnover and bone vasculature and increased senescence, independently of the anti-oxidative stress machinery. PMID:26386012

  9. CpG Improves Influenza Vaccine Efficacy in Young Adult but Not Aged Mice

    PubMed Central

    Ramirez, Alejandro; Co, Mary; Mathew, Anuja

    2016-01-01

    Several studies have shown a reduced efficacy of influenza vaccines in the elderly compared to young adults. In this study, we evaluated the immunogenicity and protective efficacy of a commercially available inactivated influenza vaccine (Fluzone®) in young adult and aged mice. C57/BL6 mice were administered a single or double immunization of Fluzone® with or without CpG and challenged intranasally with H1N1 A/California/09 virus. A double immunization of Fluzone® adjuvanted with CpG elicited the highest level of protection in young adult mice which was associated with increases in influenza specific IgG, elevated HAI titres, reduced viral titres and lung inflammation. In contrast, the vaccine schedule which provided fully protective immunity in young adult mice conferred limited protection in aged mice. Antigen presenting cells from aged mice were found to be less responsive to in vitro stimulation by Fluzone and CpG which may partially explain this result. Our data are supportive of studies that have shown limited effectiveness of influenza vaccines in the elderly and provide important information relevant to the design of more immunogenic vaccines in this age group. PMID:26934728

  10. Effects of age on the synergistic interactions between lipopolysaccharide and mechanical ventilation in mice.

    PubMed

    Smith, Lincoln S; Gharib, Sina A; Frevert, Charles W; Martin, Thomas R

    2010-10-01

    Children have a lower incidence and mortality from acute lung injury (ALI) than adults, and infections are the most common event associated with ALI. To study the effects of age on susceptibility to ALI, we investigated the responses to microbial products combined with mechanical ventilation (MV) in juvenile (21-d-old) and adult (16-wk-old) mice. Juvenile and adult C57BL/6 mice were treated with inhaled Escherichia coli 0111:B4 lipopolysaccharide (LPS) and MV using tidal volume = 15 ml/kg. Comparison groups included mice treated with LPS or MV alone and untreated age-matched control mice. In adult animals treated for 3 hours, LPS plus MV caused synergistic increases in neutrophils (P < 0.01) and IgM in bronchoalveolar lavage fluid (P = 0.03) and IL-1β in whole lung homogenates (P < 0.01) as compared with either modality alone. Although juvenile and adult mice had similar responses to LPS or MV alone, the synergistic interactions between LPS and MV did not occur in juvenile mice. Computational analysis of gene expression array data suggest that the acquisition of synergy with increasing age results, in part, from the loss of antiapoptotic responses and the acquisition of proinflammatory responses to the combination of LPS and MV. These data suggest that the synergistic inflammatory and injury responses to inhaled LPS combined with MV are acquired with age as a result of coordinated changes in gene expression of inflammatory, apoptotic, and TGF-β pathways. PMID:19901347

  11. CpG Improves Influenza Vaccine Efficacy in Young Adult but Not Aged Mice.

    PubMed

    Ramirez, Alejandro; Co, Mary; Mathew, Anuja

    2016-01-01

    Several studies have shown a reduced efficacy of influenza vaccines in the elderly compared to young adults. In this study, we evaluated the immunogenicity and protective efficacy of a commercially available inactivated influenza vaccine (Fluzone®) in young adult and aged mice. C57/BL6 mice were administered a single or double immunization of Fluzone® with or without CpG and challenged intranasally with H1N1 A/California/09 virus. A double immunization of Fluzone® adjuvanted with CpG elicited the highest level of protection in young adult mice which was associated with increases in influenza specific IgG, elevated HAI titres, reduced viral titres and lung inflammation. In contrast, the vaccine schedule which provided fully protective immunity in young adult mice conferred limited protection in aged mice. Antigen presenting cells from aged mice were found to be less responsive to in vitro stimulation by Fluzone and CpG which may partially explain this result. Our data are supportive of studies that have shown limited effectiveness of influenza vaccines in the elderly and provide important information relevant to the design of more immunogenic vaccines in this age group. PMID:26934728

  12. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  13. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  14. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling

    PubMed Central

    Koopman, Jacob J.E.; van Heemst, Diana; van Bodegom, David; Bonkowski, Michael S.; Sun, Liou Y.; Bartke, Andrzej

    2016-01-01

    Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species. PMID:26959761

  15. Age and isolation influence steroids release and chemical signaling in male mice.

    PubMed

    Mucignat-Caretta, Carla; Cavaggioni, Andrea; Redaelli, Marco; Da Dalt, Laura; Zagotto, Giuseppe; Gabai, Gianfranco

    2014-05-01

    Social interactions in mice involve olfactory signals, which convey information about the emitter. In turn, the mouse social and physiological status may modify the release of chemical cues. In this study, the influences of age and social isolation on the endocrine response and the release of chemical signals were investigated in male CD1 mice, allocated into four groups: Young Isolated (from weaning till 60days; N=6), Adult Isolated (till 180days; N=6), Young Grouped (6 mice/cage; till 60days; N=18), Adult Grouped (6 mice/cage; till 180days; N=18). Mice were transferred in a clean cage to observe the micturition pattern and then sacrificed. Body and organs weights, serum testosterone, dehydroepiandrosterone, corticosterone and the ratio Major Urinary Protein/creatinine were measured. Urinary volatile molecules potentially involved in pheromonal communication were identified. Androgen secretion was greater in isolated mice (P<0.05), suggesting a greater reactivity of the Hypothalamic-Pituitary-Gonadal axis. Grouped mice presented a higher degree of adrenal activity, and young mice showed a higher serum corticosterone (P<0.05) suggesting a greater stimulation of the Hypothalamic-Pituitary-Adrenal axis. The micturition pattern typical of dominant male, consisting in voiding numerous droplets, was observed in Young Isolated mice only, which showed a higher protein/creatinine ratio (P<0.05). Urinary 2-s-butyl-thiazoline was higher in both Young and Adult Isolated mice (P<0.005). Young Isolated mice showed the most prominent difference in both micturition pattern and potentially active substance emission, while long term isolation resulted in a less extreme phenotype; therefore social isolation had a higher impact on young mice hormone and pheromone release. PMID:24525008

  16. A Clinical Frailty Index in Aging Mice: Comparisons With Frailty Index Data in Humans

    PubMed Central

    Whitehead, Jocelyne C.; Hildebrand, Barbara A.; Sun, Michael; Rockwood, Michael R.; Rose, Robert A.; Rockwood, Kenneth

    2014-01-01

    We previously quantified frailty in aged mice with frailty index (FI) that used specialized equipment to measure health parameters. Here we developed a simplified, noninvasive method to quantify frailty through clinical assessment of C57BL/6J mice (5–28 months) and compared the relationship between FI scores and age in mice and humans. FIs calculated with the original performance-based eight-item FI increased from 0.06±0.01 at 5 months to 0.36±0.06 at 19 months and 0.38±0.04 at 28 months (n = 14). By contrast, the increase was graded with a 31-item clinical FI (0.02±0.005 at 5 months; 0.12±0.008 at 19 months; 0.33±0.02 at 28 months; n = 14). FI scores calculated from 70 self-report items from the first wave of the Survey of Health, Ageing and Retirement in Europe were plotted as function of age (n = 30,025 people). The exponential relationship between FI scores and age (normalized to 90% mortality) was similar in mice and humans for the clinical FI but not the eight-item FI. This noninvasive FI based on clinical measures can be used in longitudinal studies to quantify frailty in mice. Unlike the performance-based eight-item mouse FI, the clinical FI exhibits key features of the FI established for use in humans. PMID:24051346

  17. Premature skin aging features rescued by inhibition of NADPH oxidase activity in XPC-deficient mice.

    PubMed

    Hosseini, Mohsen; Mahfouf, Walid; Serrano-Sanchez, Martin; Raad, Houssam; Harfouche, Ghida; Bonneu, Marc; Claverol, Stephane; Mazurier, Frederic; Rossignol, Rodrigue; Taieb, Alain; Rezvani, Hamid Reza

    2015-04-01

    Xeroderma pigmentosum type C (XP-C) is characterized mostly by a predisposition to skin cancers and accelerated photoaging, but little is known about premature skin aging in this disease. By comparing young and old mice, we found that the level of progerin and p16(INK4a) expression, β-galactosidase activity, and reactive oxygen species, which increase with age, were higher in young Xpc(-/-) mice than in young Xpc(+/+) ones. The expression level of mitochondrial complexes and mitochondrial functions in the skin of young Xpc(-/-) was as low as in control aged Xpc(+/+)animals. Furthermore, the metabolic profile in young Xpc(-/-) mice resembled that found in aged Xpc(+/+) mice. Furthermore, premature skin aging features in young Xpc(-/-) mice were mostly rescued by inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) activity by using a NOX1 peptide inhibitor, suggesting that the continuous oxidative stress due to overactivation of NOX1 has a causative role in the underlying pathophysiology. PMID:25437426

  18. The synthetic thyroid hormone, levothyroxine, protects cholinergic neurons in the hippocampus of naturally aged mice.

    PubMed

    Fu, Ailing; Zhou, Rumei; Xu, Xingran

    2014-04-15

    The thyroid hormones, triiodothyronine and thyroxine, play important roles in cognitive function during the mammalian lifespan. However, thyroid hormones have not yet been used as a therapeutic agent for normal age-related cognitive deficits. In this study, CD-1 mice (aged 24 months) were intraperitoneally injected with levothyroxine (L-T4; 1.6 μg/kg per day) for 3 consecutive months. Our findings revealed a significant improvement in hippocampal cytoskeletal rearrangement of actin and an increase in serum hormone levels of L-T4-treated aged mice. Furthermore, the survival rate of these mice was dramatically increased from 60% to 93.3%. The Morris water maze task indicated that L-T4 restored impaired spatial memory in aged mice. Furthermore, level of choline acetyltransferase, acetylcholine, and superoxide dismutase were increased in these mice, thus suggesting that a possible mechanism by which L-T4 reversed cognitive impairment was caused by increased activity of these markers. Overall, supplement of low-dosage L-T4 may be a potential therapeutic strategy for normal age-related cognitive deficits. PMID:25206902

  19. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose

    PubMed Central

    Zhou, Yue-Yue; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance. PMID:26176541

  20. Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice.

    PubMed

    Jackaman, Connie; Radley-Crabb, Hannah G; Soffe, Zoe; Shavlakadze, Tea; Grounds, Miranda D; Nelson, Delia J

    2013-06-01

    Changes to innate cells, such as macrophages and myeloid-derived suppressor cells (MDSCs), during aging in healthy or tumor-bearing hosts are not well understood. We compared macrophage subpopulations and MDSCs from healthy young (6-8 weeks) C57BL/6J mice to those from healthy geriatric (24-28 months) mice. Spleens, lymph nodes, and bone marrow of geriatric hosts contained significantly more M2 macrophages and MDSCs than their younger counterparts. Peritoneal macrophages from geriatric, but not young, mice co-expressed CD40 and CX3CR1 that are usually mutually exclusively expressed by M1 or M2 macrophages. Nonetheless, macrophages from geriatric mice responded to M1 or M2 stimuli similarly to macrophages from young mice, although they secreted higher levels of TGF-β in response to IL-4. We mimicked conditions that may occur within tumors by exposing macrophages from young vs. geriatric mice to mesothelioma or lung carcinoma tumor cell-derived supernatants. While both supernatants skewed macrophages toward the M2-phenotype regardless of age, only geriatric-derived macrophages produced IL-4, suggesting a more immunosuppressive tumor microenvironment will be established in the elderly. Both geriatric- and young-derived macrophages induced allogeneic T-cell proliferation, regardless of the stimuli used, including tumor supernatant. However, only macrophages from young mice induced T-cell IFN-γ production. We examined the potential of an IL-2/agonist anti-CD40 antibody immunotherapy that eradicates large tumors in young hosts to activate macrophages from geriatric mice. IL-2-/CD40-activated macrophages rescued T-cell production of IFN-γ in geriatric mice. Therefore, targeting macrophages with IL-2/anti-CD40 antibody may improve innate and T-cell immunity in aging hosts. PMID:23442123

  1. Deletion of Nrf2 leads to hepatic insulin resistance via the activation of NF-κB in mice fed a high-fat diet.

    PubMed

    Liu, Zhenxiong; Dou, Weijia; Ni, Zhen; Wen, Qinsheng; Zhang, Rong; Qin, Ming; Wang, Xuxia; Tang, Hua; Cao, Ying; Wang, Jingjie; Zhao, Shuguang

    2016-08-01

    Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Insulin resistance (IR) is important in the development and progression of NAFLD. Nuclear erythroid 2‑related factor 2 (Nrf2) has previously been reported to be a novel regulator in NAFLD. The present study determined that Nrf2 knockdown accelerated the onset of obesity and non‑alcoholic steatohepatitis (NASH), via the induction of hepatic IR in mice fed a high‑fat diet (HFD), which was confirmed by an increase in total and hepatic weight in Nrf2‑null‑HFD mice, in addition to marked structural disorder in liver tissues from the Nrf2‑null‑HFD group analyzed by histopathological examination. Subsequently, it was demonstrated that hepatic IR in Nrf2‑null‑HFD mice was influenced by oxidative stress; this was confirmed by an increase in malondialdehyde levels and a decrease in glutathione levels. In addition, it was determined that the induction of hepatic IR by Nrf2 knockdown in HFD-treated mice was regulated by activation of the nuclear factor‑κB (NF‑κB) signaling pathway, as detected by an increase in the expression levels of nuclear NF‑κB, and its downstream effectors interleukin‑6 and tumor necrosis factor‑α. The present study provides insight into the function of Nrf2 in NAFLD, indicating that Nrf2 deletion may lead to hepatic IR by activation of NF‑κB, which is often associated with oxidative stress. Therefore, activation of Nrf2 may limit disease progression and act as a therapeutic approach for the treatment of NASH. PMID:27315552

  2. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1−/− mice fed low levels of cholic acid

    PubMed Central

    Jones, Ryan D.; Repa, Joyce J.; Russell, David W.; Dietschy, John M.

    2012-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that coverts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1−/−) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1−/− mice and matching Cyp7a1+/+ controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15–18 days. A level of just 0.03% provided a CA intake of ∼12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1−/− mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1+/+ mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models. PMID:22628034

  3. Comparison of endpoints relevant to toxicity assessments in 3 generations of CD-1 mice fed irradiated natural and purified ingredient diets with varying soy protein and isoflavone contents.

    PubMed

    Camacho, Luísa; Lewis, Sherry M; Vanlandingham, Michelle M; Juliar, Beth E; Olson, Greg R; Patton, Ralph E; Gamboa da Costa, Gonçalo; Woodling, Kellie; Sepehr, Estatira; Bryant, Matthew S; Doerge, Daniel R; Basavarajappa, Mallikarjuna S; Felton, Robert P; Delclos, K Barry

    2016-08-01

    Diet is an important variable in toxicology. There are mixed reports on the impact of soy components on energy utilization, fat deposition, and reproductive parameters. Three generations of CD-1 mice were fed irradiated natural ingredient diets with varying levels of soy (NIH-41, 5K96, or 5008/5001), purified irradiated AIN-93 diet, or the AIN-93 formulation modified with ethanol-washed soy protein concentrate (SPC) or SPC with isoflavones (SPC-IF). NIH-41 was the control for pairwise comparisons. Minimal differences were observed among natural ingredient diet groups. F0 males fed AIN-93, SPC, and SPC-IF diets had elevated glucose levels and lower insulin levels compared with the NIH-41 group. In both sexes of the F1 and F2 generations, the SPC and SPC-IF groups had lower body weight gains than the NIH-41 controls and the AIN-93 group had an increased percent body fat at postnatal day 21. AIN-93 F1 pups had higher baseline glucose than NIH-41 controls, but diet did not significantly affect breeding performance or responses to glucose or uterotrophic challenges. Reduced testes weight and sperm in the AIN-93 group may be related to low thiamine levels. Our observations underline the importance of careful selection, manufacturing procedures, and nutritional characterization of diets used in toxicological studies. PMID:27234134

  4. The effects of the aqueous extract and residue of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet.

    PubMed

    Xu, Ping; Ying, Le; Hong, Gaojie; Wang, Yuefei

    2016-01-01

    Matcha is a kind of powdered green tea produced by grinding with a stone mill. In the present study, the preventive effects of the aqueous extract (water-soluble) and residue (water-insoluble) of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet were investigated. Mice were fed seven different experimental diets for 4 weeks: a normal diet control (NC), a high-fat diet (HF), a high-fat diet with 0.025% Matcha (MLD), a high-fat diet with 0.05% Matcha (MMD), a high-fat diet with 0.075% Matcha (MHD), a high-fat diet with 0.05% Matcha aqueous extracts (ME), and a high-fat diet with 0.05% Matcha residues (MR). It was found that serum total cholesterol (TC) and triglyceride (TG) levels of the MHD group were significantly decreased compared to those of the HF group. Furthermore, in the MHD group, the level of high-density lipoprotein-cholesterol (HDL-C) was elevated, on the contrary the level of low-density lipoprotein-cholesterol (LDL-C) was suppressed. Moreover, Matcha could significantly lower the blood glucose levels, and improve the superoxide dismutase (SOD) activity and malondialdehyde (MAD) contents both in serum and liver; besides, the serum GSH-Px activity indicated that the oxidative stress caused by HF could be reversed by administration of Matcha. These findings suggest that Matcha has beneficial effects through the suppression of the blood glucose (BG) accumulation and promotion of the lipid metabolism and antioxidant activities. Moreover, the water-insoluble part of Matcha is suggested to play an important role in the suppression of diet-induced high levels of lipid and glucose. PMID:26448271

  5. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420

  6. Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet

    PubMed Central

    2014-01-01

    Background Obesity has been studied as a metabolic and an inflammatory disease and is characterized by increases in the production of pro-inflammatory adipokines in the adipose tissue. To elucidate the effects of natural dietary components on the inflammatory and metabolic consequences of obesity, we examined the effects of unripe, ripe and industrial acerola juice (Malpighia emarginata DC.) on the relevant inflammatory and lipolysis proteins in the adipose tissue of mice with cafeteria diet-induced obesity. Materials/methods Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into five subgroups, each of which received a different supplement for one further month (water, unripe acerola juice, ripe acerola juice, industrial acerola juice, or vitamin C) by gavage. Enzyme-linked immunosorbent assays, Western blotting, a colorimetric method and histology were utilized to assess the observed data. Results The CAF water (control obese) group showed a significant increase in their adiposity indices and triacylglycerol levels, in addition to a reduced IL-10/TNF-α ratio in the adipose tissue, compared with the control lean group. In contrast, acerola juice and Vitamin C intake ameliorated the weight gain, reducing the TAG levels and increasing the IL-10/TNF-α ratio in adipose tissue. In addition, acerola juice intake led to reductions both in the level of phosphorylated JNK and to increases in the phosphorylation of IκBα and HSLser660 in adipose tissue. Conclusions Taken together, these results suggest that acerola juice reduces low-grade inflammation and ameliorates obesity-associated defects in the lipolytic processes. PMID:24495336

  7. Abnormalities in myo-inositol metabolism associated with type 2 diabetes in mice fed a high-fat diet: benefits of a dietary myo-inositol supplementation.

    PubMed

    Croze, Marine L; Géloën, Alain; Soulage, Christophe O

    2015-06-28

    We previously reported that a chronic supplementation with myo-inositol (MI) improved insulin sensitivity and reduced fat accretion in mice. We then tested the potency of such dietary intervention in the prevention of insulin resistance in C57BL/6 male mouse fed a high-fat diet (HFD). In addition, some abnormalities in inositol metabolism were reported to be associated with insulin resistance in several animal and human studies. We then investigated the presence of such anomalies (i.e. inosituria and an inositol intra-tissue depletion) in this diet-induced obesity (DIO) mouse model, as well as the potential benefit of a MI supplementation for inositol intra-tissue deficiency correction. HFD (60 % energy from fat) feeding was associated with inosituria and inositol intra-tissue depletion in the liver and kidneys. MI supplementation (0·58 mg/g per d) restored inositol pools in kidneys (partially) and liver (fully). HFD feeding for 4 months induced ectopic lipid redistribution to liver and muscles, fasting hyperglycaemia and hyperinsulinaemia, insulin resistance and obesity that were not prevented by MI supplementation, despite a significant improvement in insulin sensitivity parameter K insulin tolerance test and a reduction in white adipose tissue (WAT) mass ( - 17 %, P< 0·05). MI supplementation significantly reduced fatty acid synthase activity in epididymal WAT, which might explain its beneficial, but modest, effect on WAT accretion in HFD-fed mice. Finally, we found some abnormalities in inositol metabolism in association with a diabetic phenotype (i.e. insulin resistance and fasting hyperglycaemia) in a DIO mouse model. Dietary MI supplementation was efficient in the prevention of inositol intra-tissue depletion, but did not prevent insulin resistance or obesity efficiently in this mouse model. PMID:25990651

  8. Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress.

    PubMed

    Xia, Shu-Fang; Xie, Zhen-Xing; Qiao, Yi; Li, Li-Rong; Cheng, Xiang-Rong; Tang, Xue; Shi, Yong-Hui; Le, Guo-Wei

    2015-01-01

    High fat diets induce oxidative stress which may be involved in neurodegenerative diseases. Quercetin is a kind of antioxidant that has neuroprotective effects and potent7ial pro-oxidant effects as well. In this study, we evaluated cognitive function in mice fed with high fat diets and basic diets with or without quercetin. Male Chinese Kunming (KM) mice were randomly assigned to five groups fed with basic diet (Control), basic diet with 0.005% (w/w) quercetin (CQ1), high fat diet (HFD), HFD with 0.005% (w/w) quercetin (HFDQ1) and 0.01% (w/w) quercetin (HFDQ2) for 13weeks. At the end of the study period, fasting blood glucose (FBG), plasma and hippocampal markers of oxidative stress, plasma lipid status, Morris water maze as well as hippocampal relative mRNA expression of akt, bdnf, camkII, creb, gsk-3β, nrf2 and pi3k were examined. The results suggested that in comparison to the control group, the escape latency was increased and percent time spent in the target quadrant was decreased, with increased reactive carbonyls, malondialdehyde (MDA) and declined expression of pi3k, akt, nrf2, creb and bdnf in the hippocampus of HFD and CQ1 groups. Conversely, higher quercetin supplemented to HFD improved antioxidant capacity and reversed cognitive decline completely. Significant correlations between the redox status and cognition-related gene expression were observed as well (P<0.05). Thus, in the case of oxidative stress, an appropriate dose of quercetin can attenuate oxidative stress to improve hippocampus dependent cognition. But under a balanced situation, quercetin exerts pro-oxidant effects to impair cognition. PMID:25447470

  9. Aged complement factor H knockout mice kept in a clean barriered environment have reduced retinal pathology.

    PubMed

    Hoh Kam, Jaimie; Morgan, James E; Jeffery, Glen

    2016-08-01

    Age-related macular degeneration (AMD) is the largest cause of visual loss in those over 60 years in the West and is a condition increasing in prevalence. Many diseases result from genetic/environmental interactions and 50% of AMD cases have an association with polymorphisms of the complement system including complement factor H. Here we explore interactions between genetic predisposition and environmental conditions in triggering retinal pathology in two groups of aged complement factor H knock out (Cfh(-/-)) mice. Mice were maintained over 9 months in either a conventional open environment or a barriered pathogen free environment. Open environment Cfh(-/-) mice had significant increases in subretinal macrophage numbers, inflammatory and stress responses and reduced photoreceptor numbers over mice kept in a pathogen free environment. Hence, environmental factors can drive retinal disease in these mice when linked to complement deficits impairing immune function. Both groups of mice had similar levels of retinal amyloid beta accumulation. Consequently there is no direct link between this and inflammation in Cfh(-/-) mice. PMID:27397653

  10. A histomorphometric study of alveolar bone modeling and remodeling in mice fed a boron-deficient diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Objective: Emerging evidence indicates that boron (B) plays a role in bone formation and maintenance. Thus, a study was performed to determine whether dietary B-deficiency affects periodontal alveolar bone modeling and remodeling. Material and Methods: Weanling Swiss mice (n=30) were ...

  11. POTENTIATING AND PROTECTIVE EFFECTS OF ASCORBATE ON OXIDATIVE STRESS DEPENDS UPON DIETARY IRON CONCENTRATION FED TO C3H MICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascorbic acid (AA) is an antioxidant that in the presence of iron and hydrogen peroxide increases the production of hydroxyl radicals in vitro. Whether AA has similar pro-oxidant properties in vivo may depend upon the relative balance of iron and ascorbic acid concentrations. In this study, C3H mice...

  12. Aging-related changes in respiratory system mechanics and morphometry in mice.

    PubMed

    Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C

    2016-07-01

    Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice. PMID:27288490

  13. L-DOPA reverses motor deficits associated with normal aging in mice.

    PubMed

    Allen, Erika; Carlson, Kirsten M; Zigmond, Michael J; Cavanaugh, Jane E

    2011-02-01

    We wished to determine whether L-DOPA, a common treatment for the motor deficits in Parkinson's disease, could also reverse the motor deficits that occur during aging. We assessed motor performance in young (2-3 months) and old (20-21 months) male C57BL/6 mice using the challenge beam and cylinder tests. Prior to testing, mice were treated with L-DOPA or vehicle. Following testing, striatal tissue was analyzed for phenotypic markers of dopamine neurons: dopamine, dopamine transporter, and tyrosine hydroxylase. Although the dopaminergic markers were unchanged with age or L-DOPA treatment, L-DOPA reversed the motor deficits in the old animals such that their motor coordination was that of a young mice. These findings suggest that some of the locomotor deficits that accompany normal aging are responsive to L-DOPA treatment and may be due to subtle alterations in dopaminergic signaling. PMID:21111775

  14. Transferrin treatment corrects aging-related immunologic and hormonal decay in old mice.

    PubMed

    Pierpaoli, W; Bulian, D; Arrighi, S

    2000-05-01

    Experiments were conducted to study the effect of heterologous plasma transferrins separated and purified from human plasma pools on endocrine and immune functions of old, aging mice. Two similar experiments have shown that parenteral treatment with iron and zinc-free human transferrins produces a significant improvement of immunological and endocrine functions in the aging mice toward more juvenile values. Those changes occur in the thymus and its cell subsets, in peripheral blood lymphocytes, in the restoration of juvenile levels of thyroxine, in the increase of testis weight, and in the normalization of plasma zinc levels. These totally unsuspected effects of transferrin in aging mice suggest a most important role of endogenous transferrins in the maintenance of neuroendocrine and immune functions. The mechanism remains unexplained although the basic immunoenhancing and anti-apoptotic effect of transferrin-vehiculated zinc may be relevant. PMID:10832059

  15. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice.

    PubMed

    Li, Li; Xu, Meng; Shen, Bo; Li, Man; Gao, Qian; Wei, Shou-Gang

    2016-05-01

    D-galactose has been widely used in aging research because of its efficacy in inducing senescence and accelerating aging in animal models. The present study investigated the benefits of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-galactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected to exercise training by running on a treadmill for 6 days a week. Shortened escape latency in a Morris water maze test indicated that exercise improved learning and memory in aging mice. The ameliorative changes were likely induced by an upregulation of Bcl-2 and brain-derived neurotrophic factor, the repression of apoptosis factors such as Fas and Bax, and an increase in the activity of glucose transporters-1 and 4. The data suggest moderate exercise may retard or inhibit neurodegeneration in D-galactose-induced aging mice. PMID:27335566

  16. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice.

    PubMed

    Krishnan, Vidya S; White, Zoe; McMahon, Chris D; Hodgetts, Stuart I; Fitzgerald, Melinda; Shavlakadze, Tea; Harvey, Alan R; Grounds, Miranda D

    2016-05-01

    To elucidate the neural basis for age-related sarcopenia, we quantified morphologic and molecular changes within sciatic nerves of aging male and female C57BL/6J mice aged between 3 and 27 months using immunoblotting, immunohistochemistry, and electron microscopy. Protein analyses by immunoblotting of nerves of male mice aged 4, 15, 18, 22, and 24 months showed increased levels of heavy chain SMI-32-positive neurofilaments, vimentin, tau5, choline acetyltransferase (ChAT), and p62 by 18-22 months. Similar protein increases were seen in 26-month-old compared with 3-month-old female mice. Immunostaining of longitudinal sections of old (27-month-old) male sciatic nerves revealed intense staining for tau5 and p62 that was increased compared with that at 3 months, but there were decreased numbers of axon profiles stained for ChAT or isolectin B4 (motor and sensory axons, respectively). Ultrastructural analysis revealed electron-dense aggregates within axons in peripheral nerves of old male mice; the proportion of axons that contained aggregates more than doubled between 15 and 27 months. Overall, the observed age-related accumulation of many proteins from about 18 months of age onward suggests impaired mechanisms for axonal transport and protein turnover. These peripheral nerve changes may contribute to the morphological and functional muscle deficits associated with sarcopenia. PMID:27030741

  17. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice

    PubMed Central

    Li, Li; Xu, Meng; Shen, Bo; Li, Man; Gao, Qian; Wei, Shou-gang

    2016-01-01

    D-galactose has been widely used in aging research because of its efficacy in inducing senescence and accelerating aging in animal models. The present study investigated the benefits of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-galactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected to exercise training by running on a treadmill for 6 days a week. Shortened escape latency in a Morris water maze test indicated that exercise improved learning and memory in aging mice. The ameliorative changes were likely induced by an upregulation of Bcl-2 and brain-derived neurotrophic factor, the repression of apoptosis factors such as Fas and Bax, and an increase in the activity of glucose transporters-1 and 4. The data suggest moderate exercise may retard or inhibit neurodegeneration in D-galactose-induced aging mice. PMID:27335566

  18. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice

    PubMed Central

    Hu, Longyuan; Tan, Jia; Yang, Xiaomei; Tan, Haitao; Xu, Xiaozhen; You, Manhang; Qin, Wu; Huang, Liangzhao; Li, Siqi; Mo, Manqiu; Wei, Huifen; Li, Jing; Tan, Jiyong

    2016-01-01

    This study aimed to determine the effect of topically applied Laminaria polysaccharide (LP) on skin aging. We applied ointment containing LP (10, 25, and 50 μg/g) or vitamin E (10 μg/g) to the dorsal skin of aging mice for 12 months and young control mice for 4 weeks. Electron microscopy analysis of skin samples revealed that LP increased dermal thickness and skin collagen content. Tissue inhibitor of metalloprotease- (TIMP-) 1 expression was upregulated while that of matrix metalloproteinase- (MMP-) 1 was downregulated in skin tissue of LP-treated as compared to untreated aging mice. Additionally, phosphorylation of c-Jun N-terminal kinase (JNK) and p38 was higher in aging skin than in young skin, while LP treatment suppressed phospho-JNK expression. LP application also enhanced the expression of antioxidative enzymes in skin tissue, causing a decrease in malondialdehyde levels and increases in superoxide dismutase, catalase, and glutathione peroxidase levels relative to those in untreated aging mice. These results indicate that LP inhibits MMP-1 expression by preventing oxidative stress and JNK phosphorylation, thereby delaying skin collagen breakdown during aging. PMID:27143987

  19. Expression of SIRT1 and SIRT3 varies according to age in mice.

    PubMed

    Kwon, Youngho; Kim, Jongsik; Lee, Chae-Yeong; Kim, Hyun

    2015-03-01

    Sirtuins (SIRTs) are involved in multiple cellular processes including those related to aging, cancer, and a variety of cellular functions including cell cycle progression, DNA repair, and cellular proliferation. SIRTs have been shown to extend the yeast life span, although there is presently little known about SIRT expression in the organs of mice. In the present study, we were especially interested in identifying differences in SIRT expression between young mice and aged mice. Specifically, we investigated the expression of SIRT1 and SIRT3 in the kidney, lung, skin, adipose tissue, and spleens of 6-month-old and 24-month-old mice using immunohistochemical staining. Compared with that in younger mice, the expression of SIRT1 in 24-month-old rats was increased in kidney, lung, and spleen tissue, while that of SIRT3 was decreased in adipose, kidney, and lung tissue. The results of our study suggest that aging is associated with altered patterns of expression of SIRT1 and SIRT3. In addition, we noted that the expression patterns of SIRT1 and SIRT3 varied by organ. Taken together, the results of this study suggest the possibility that SIRTs may be involved in diseases associated with aging. PMID:25806122

  20. Expression of SIRT1 and SIRT3 varies according to age in mice

    PubMed Central

    Kwon, Youngho; Kim, Jongsik; Lee, Chae-Yeong

    2015-01-01

    Sirtuins (SIRTs) are involved in multiple cellular processes including those related to aging, cancer, and a variety of cellular functions including cell cycle progression, DNA repair, and cellular proliferation. SIRTs have been shown to extend the yeast life span, although there is presently little known about SIRT expression in the organs of mice. In the present study, we were especially interested in identifying differences in SIRT expression between young mice and aged mice. Specifically, we investigated the expression of SIRT1 and SIRT3 in the kidney, lung, skin, adipose tissue, and spleens of 6-month-old and 24-month-old mice using immunohistochemical staining. Compared with that in younger mice, the expression of SIRT1 in 24-month-old rats was increased in kidney, lung, and spleen tissue, while that of SIRT3 was decreased in adipose, kidney, and lung tissue. The results of our study suggest that aging is associated with altered patterns of expression of SIRT1 and SIRT3. In addition, we noted that the expression patterns of SIRT1 and SIRT3 varied by organ. Taken together, the results of this study suggest the possibility that SIRTs may be involved in diseases associated with aging. PMID:25806122

  1. Restriction on an Energy-Dense Diet Improves Markers of Metabolic Health and Cellular Aging in Mice Through Decreasing Hepatic mTOR Activity

    PubMed Central

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald

    2015-01-01

    Abstract Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum–fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5′-adenosine monophosphate–activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation. PMID:25405871

  2. Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice

    PubMed Central

    Bedrosian, Tracy A.; Herring, Kamillya L.; Weil, Zachary M.; Nelson, Randy J.

    2011-01-01

    Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is “sundowning syndrome,” which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomo