Science.gov

Sample records for aged rats showed

  1. Aged rats show dominant modulation of lower frequency hippocampal theta rhythm during running.

    PubMed

    Li, Jia-Yi; Kuo, Terry B J; Yang, Cheryl C H

    2016-10-01

    Aging causes considerable decline in both physiological and mental functions, particularly cognitive function. The hippocampal theta rhythm (4-12Hz) is related to both cognition and locomotion. Aging-related findings of the frequency and amplitude of hippocampal theta oscillations are inconsistent and occasionally contradictory. This inconsistency may be due to the effects of the sleep/wake state and different frequency subbands being overlooked. We assumed that aged rats have lower responses of the hippocampal theta rhythm during running, which is mainly due to the dominant modulation of theta frequency subbands related to cognition. By simultaneously recording electroencephalography, physical activity (PA), and the heart rate (HR), this experiment explored the theta oscillations before, during, and after treadmill running at a constant speed in 8-week-old (adult) and 60-week-old (middle-aged) rats. Compared with adult rats, the middle-aged rats exhibited lower theta activity in all frequency ranges before running. Running increased the theta frequency (Frq, 4-12Hz), total activity of the whole theta band (total power, TP), activity of the middle theta frequency (MT, 6.5-9.5Hz), and PA in both age groups. However, the middle-aged rats still showed fewer changes in these parameters during the whole running process. After the waking baseline values were substracted, middle-aged rats showed significantly fewer differences in ΔFrq, ΔTP, and ΔMT but significantly more differences in low-frequency theta activity (4.0-6.5Hz) and HR than the adult rats did. Therefore, the decreasing activity and response of the whole theta band in the middle-aged rats resulted in dominant modulation of the middle to lower frequency (4.0-9.5Hz) theta rhythm. The different alterations in the theta rhythm during treadmill running in the two groups may reflect that learning decline with age. PMID:27496645

  2. Prematurely Delivered Rats Show Improved Motor Coordination During Sensory-evoked Motor Responses Compared to Age-matched Controls

    PubMed Central

    Roberto, Megan E.; Brumley, Michele R.

    2014-01-01

    The amount of postnatal experience for perinatal rats was manipulated by delivering pups one day early (postconception day 21; PC21) by cesarean delivery and comparing their motor behavior to age-matched controls on PC22 (the typical day of birth). On PC22, pups were tested on multiple measures of motor coordination: leg extension response (LER), facial wiping, contact righting, and fore- and hindlimb stepping. The LER and facial wiping provided measures of synchronous hind- and forelimb coordination, respectively, and were sensory-evoked. Contact righting also was sensory-evoked and provided a measure of axial coordination. Stepping provided a measure of alternated forelimb and hindlimb coordination and was induced with the serotonin receptor agonist quipazine. Pups that were delivered prematurely and spent an additional day in the postnatal environment showed more bilateral limb coordination during expression of the LER and facial wiping, as well as a more mature righting strategy, compared to controls. These findings suggest that experience around the time of birth shapes motor coordination and the expression of species-typical behavior in the developing rat. PMID:24680729

  3. Rats with a glucocorticoid-induced catabolic state show symptoms of oxidative stress and spleen atrophy: the effects of age and recovery.

    PubMed

    Orzechowski, A; Ostaszewski, P; Wilczak, J; Jank, M; Bałasińska, B; Wareski, P; Fuller, J

    2002-06-01

    In this study we wanted to determine whether changes in antioxidant profile could follow the catabolic effects of glucocorticoids. We also wanted to compare resistance to glucocorticoid overload in young and old rats. To address these questions, whole body catabolism was induced by the administration of dexamethasone (Dex) at either 2 mg/kg bodyweight/day to young (6 weeks old) or 0.5 mg/kg body-weight/day to old (94 weeks old) rats. Bodyweight loss of pair-fed rats not given Dex was only 2% in the young rats and 8% in the old rats, whereas in Dex-treated rats the decrease in bodyweight was 22% in the young rats and 13% in the old rats after 5 days of treatment. Spleen weight decreased by 65% in the young rats and by 52% in the old rats. Additionally, in the young rats there was a 46% reduction in glutathione (GSH) in erythrocytes as well as a 36% reduction in GSH/tissue wet weight in the soleus muscle. The corresponding figures for the old rats were 35 and 26%, respectively. Taken together, these results suggest that Dex directly and/or indirectly impaired the antioxidant reactions. This was further confirmed by a significant (50%) decline in Cu-Zn superoxide dismutase (SOD-1) activity in erythrocytes isolated from the young rats treated with Dex but not the old rats as they showed a significant elevation in SOD-1 activity (by 101%). Thiobarbituric acid reactant substances were significantly higher in both young and old rats. Activity of blood plasma creatine kinase increased by 73% in the young rats and by 307% in the old rats treated with Dex. Although both the young and the old rats could recover from oxidative stress, the old rats in contrast to the young rats remained catabolic until the end of the experiment. In conclusion, we suggest that old rats are more vulnerable to the catabolic action of Dex, whereas young rats are more susceptible to the oxidative stress induced by Dex. PMID:12126140

  4. Enhanced Post-Ischemic Neurogenesis in Aging Rats

    PubMed Central

    Tan, Yao-Fang; Preston, Edward; Wojtowicz, J. Martin

    2010-01-01

    Hippocampal neurogenesis persists in adult mammals, but its rate declines dramatically with age. Evidence indicates that experimentally-reduced levels of neurogenesis (e.g., by irradiation) in young rats has profound influence on cognition as determined by learning and memory tests. In the present study we asked whether in middle-aged, 10- to 13-months-old rats, cell production can be restored toward the level present in young rats. To manipulate neurogenesis we induced bilateral carotid occlusion with hypotension. This procedure is known to increase neurogenesis in young rats, presumably in a compensatory manner, but until now, has never been tested in aging rats. Cell production was measured at 10, 35, and 90 days after ischemia. The results indicate that neuronal proliferation and differentiation can be transiently restored in middle-aged rats. Furthermore, the effects are more pronounced in the dorsal as opposed to ventral hippocampus thus restoring the dorso-ventral gradient seen in younger rats. Our results support previous findings showing that some of the essential features of the age-dependent decline in neurogenesis are reversible. Thus, it may be possible to manipulate neurogenesis and improve learning and memory in old age. PMID:20877422

  5. Cardiac remodeling in rats with renal failure shows interventricular differences.

    PubMed

    Svíglerová, Jitka; Kuncová, Jitka; Nalos, Lukás; Holas, Jaromír; Tonar, Zbynek; Rajdl, Daniel; Stengl, Milan

    2012-09-01

    Chronic renal failure (CRF) is associated with an increased incidence of cardiovascular diseases. Intensive research revealed a number of alterations in the heart during CRF; however, possible interventricular differences in CRF-induced cardiac remodeling have so far not been addressed. CRF was induced by two-stage surgical 5/6 nephrectomy (NX) in male Wistar rats. Cellular hypertrophy was quantified using immunohistological morphometric analysis. Contraction force and membrane potential were recorded in left and right ventricle papillary muscles with an isometric force transducer and high-resistance glass microelectrodes. Hypertrophy was present in the left ventricle (LV) of NX animals, but not in the right ventricle (RV) of NX animals, as documented by both ventricle/body weight ratios and cellular morphometric analysis of the cross-sectional area of myocytes. The contraction force was reduced in the LV of NX animals but increased in the RV of NX animals compared with sham-operated rats. Rest potentiation of contraction force was relatively more pronounced in the LV of NX rats. Fifty percent substitution of extracellular sodium with lithium significantly increased the contraction force only in the LV of NX animals. Action potential durations were shortened in both ventricles of CRF animals. Cardiac structural and contractile remodeling in CRF shows significant interventricular differences. CRF induces hypertrophy of the LV but not of the RV. LV hypertrophy was associated with a reduction of contraction force, whereas in the RV, the contraction force was enhanced. Partial recovery of contractile function of the LV by rest potentiation or lithium substitution indicates a role of the Na(+)/Ca(2+) exchanger in this phenomenon. PMID:22929800

  6. Acai fruit improves motor and cognitive function in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show impaired performance on motor and cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and ne...

  7. Tart cherries improve working memory in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show impaired performance on cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various dark-colored berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and...

  8. Tocotrienol improves learning and memory deficit of aged rats

    PubMed Central

    Kaneai, Nozomi; Sumitani, Kazumi; Fukui, Koji; Koike, Taisuke; Takatsu, Hirokatsu; Urano, Shiro

    2016-01-01

    To define whether tocotrienol (T-3) improves cognitive deficit during aging, effect of T-3 on learning and memory functions of aged rats was assessed. It was found that T-3 markedly counteracts the decline in learning and memory function in aged rats. Quantitative analysis of T-3 content in the rat brain showed that the aged rats fed T-3 mixture-supplemented diet revealed the transport of α- and γ-T-3 to the brain. In contrast, normal young rats fed the same diet did not exhibit brain localization. Furthermore, the T-3 inhibited age-related decreases in the expression of certain blood brain barrier (BBB) proteins, including caludin-5, occludin and junctional adhesion molecule (JAM). It was found that the activation of the cellular proto-oncogene c-Src and extracellular signal-regulated protein kinase (ERK), in the mitogen-activated protein kinase (MAPK) cell signaling pathway for neuronal cell death, was markedly inhibited by T-3. These results may reveal that aging induces partial BBB disruption caused by oxidative stress, thereby enabling the transport of T-3 through the BBB to the central nervous system, whereupon neuronal protection may be mediated by inhibition of c-Src and/or ERK activation, resulting in an improvement in age-related cognitive deficits. PMID:27013777

  9. Tocotrienol improves learning and memory deficit of aged rats.

    PubMed

    Kaneai, Nozomi; Sumitani, Kazumi; Fukui, Koji; Koike, Taisuke; Takatsu, Hirokatsu; Urano, Shiro

    2016-03-01

    To define whether tocotrienol (T-3) improves cognitive deficit during aging, effect of T-3 on learning and memory functions of aged rats was assessed. It was found that T-3 markedly counteracts the decline in learning and memory function in aged rats. Quantitative analysis of T-3 content in the rat brain showed that the aged rats fed T-3 mixture-supplemented diet revealed the transport of α- and γ-T-3 to the brain. In contrast, normal young rats fed the same diet did not exhibit brain localization. Furthermore, the T-3 inhibited age-related decreases in the expression of certain blood brain barrier (BBB) proteins, including caludin-5, occludin and junctional adhesion molecule (JAM). It was found that the activation of the cellular proto-oncogene c-Src and extracellular signal-regulated protein kinase (ERK), in the mitogen-activated protein kinase (MAPK) cell signaling pathway for neuronal cell death, was markedly inhibited by T-3. These results may reveal that aging induces partial BBB disruption caused by oxidative stress, thereby enabling the transport of T-3 through the BBB to the central nervous system, whereupon neuronal protection may be mediated by inhibition of c-Src and/or ERK activation, resulting in an improvement in age-related cognitive deficits. PMID:27013777

  10. Progesterone Treatment Shows Benefit in Female Rats in a Pediatric Model of Controlled Cortical Impact Injury

    PubMed Central

    Geddes, Rastafa I.; Peterson, Bethany L.; Stein, Donald G.; Sayeed, Iqbal

    2016-01-01

    Purpose We recently showed that progesterone treatment can reduce lesion size and behavioral deficits after moderate-to-severe bilateral injury to the medial prefrontal cortex in immature male rats. Whether there are important sex differences in response to injury and progesterone treatment in very young subjects has not been given sufficient attention. Here we investigated progesterone’s effects in the same model of brain injury but with pre-pubescent females. Methods Twenty-eight-day-old female Sprague-Dawley rats received sham (n = 14) or controlled cortical impact (CCI) (n = 21) injury, were given progesterone (8 mg/kg body weight) or vehicle injections on post-injury days (PID) 1–7, and underwent behavioral testing from PID 9–27. Brains were evaluated for lesion size at PID 28. Results Lesion size in vehicle-treated female rats with CCI injury was smaller than that previously reported for similarly treated age-matched male rats. Treatment with progesterone reduced the effect of CCI on extent of damage and behavioral deficits. Conclusion Pre-pubescent female rats with midline CCI injury to the frontal cortex have reduced morphological and functional deficits following progesterone treatment. While gender differences in susceptibility to this injury were observed, progesterone treatment produced beneficial effects in young rats of both sexes following CCI. PMID:26799561

  11. Grape Powder Improves Age-Related Decline in Mitochondrial and Kidney Functions in Fischer 344 Rats.

    PubMed

    Pokkunuri, Indira; Ali, Quaisar; Asghar, Mohammad

    2016-01-01

    We examined the effects and mechanism of grape powder- (GP-) mediated improvement, if any, on aging kidney function. Adult (3-month) and aged (21-month) Fischer 344 rats were treated without (controls) and with GP (1.5% in drinking water) and kidney parameters were measured. Control aged rats showed higher levels of proteinuria and urinary kidney injury molecule-1 (KIM-1), which decreased with GP treatment in these rats. Renal protein carbonyls (protein oxidation) and gp (91phox) -NADPH oxidase levels were high in control aged rats, suggesting oxidative stress burden in these rats. GP treatment in aged rats restored these parameters to the levels of adult rats. Moreover, glomerular filtration rate and sodium excretion were low in control aged rats suggesting compromised kidney function, which improved with GP treatment in aged rats. Interestingly, low renal mitochondrial respiration and ATP levels in control aged rats were associated with reduced levels of mitochondrial biogenesis marker MtTFA. Also, Nrf2 proteins levels were reduced in control aged rats. GP treatment increased levels of MtTFA and Nrf2 in aged rats. These results suggest that GP by potentially regulating Nrf2 improves aging mitochondrial and kidney functions. PMID:27528887

  12. Grape Powder Improves Age-Related Decline in Mitochondrial and Kidney Functions in Fischer 344 Rats

    PubMed Central

    Ali, Quaisar

    2016-01-01

    We examined the effects and mechanism of grape powder- (GP-) mediated improvement, if any, on aging kidney function. Adult (3-month) and aged (21-month) Fischer 344 rats were treated without (controls) and with GP (1.5% in drinking water) and kidney parameters were measured. Control aged rats showed higher levels of proteinuria and urinary kidney injury molecule-1 (KIM-1), which decreased with GP treatment in these rats. Renal protein carbonyls (protein oxidation) and gp91phox-NADPH oxidase levels were high in control aged rats, suggesting oxidative stress burden in these rats. GP treatment in aged rats restored these parameters to the levels of adult rats. Moreover, glomerular filtration rate and sodium excretion were low in control aged rats suggesting compromised kidney function, which improved with GP treatment in aged rats. Interestingly, low renal mitochondrial respiration and ATP levels in control aged rats were associated with reduced levels of mitochondrial biogenesis marker MtTFA. Also, Nrf2 proteins levels were reduced in control aged rats. GP treatment increased levels of MtTFA and Nrf2 in aged rats. These results suggest that GP by potentially regulating Nrf2 improves aging mitochondrial and kidney functions. PMID:27528887

  13. Increased sensitivity to transient global ischemia in aging rat brain.

    PubMed

    Xu, Kui; Sun, Xiaoyan; Puchowicz, Michelle A; LaManna, Joseph C

    2007-01-01

    Transient global brain ischemia induced by cardiac arrest and resuscitation (CAR) results in reperfusion injury associated with oxidative stress. Oxidative stress is known to produce delayed selective neuronal cell loss and impairment of brainstem function, leading to post-resuscitation mortality. Levels of 4-hydroxy-2-nonenal (HNE) modified protein adducts, a marker of oxidative stress, was found to be elevated after CAR in rat brain. In this study we investigated the effects of an antioxidant, alpha-phenyl-tert-butyl-nitrone (PBN) on the recovery following CAR in the aged rat brain. Male Fischer 344 rats (6, 12 and 24-month old) underwent 7-minute cardiac arrest before resuscitation. Brainstem function was assessed by hypoxic ventilatory response (HVR) and HNE-adducts were measured by western blot analysis. Our data showed that in the 24-month old rats, overall survival rate, hippocampal CAl neuronal counts and HVR were significantly reduced compared to the younger rats. With PBN treatment, the recovery was improved in the aged rat brain, which was consistent with reduced HNE adducts in brain following CAR. Our data suggest that aged rats are more vulnerable to oxidative stress insult and treatment with PBN improves the outcome following reperfusion injury. The mechanism of action is most likely through the scavenging of reactive oxygen species resulting in reduced lipid peroxidation. PMID:17727265

  14. Neural stem cell protects aged rat brain from ischemia–reperfusion injury through neurogenesis and angiogenesis

    PubMed Central

    Tang, Yaohui; Wang, Jixian; Lin, Xiaojie; Wang, Liuqing; Shao, Bei; Jin, Kunlin; Wang, Yongting; Yang, Guo-Yuan

    2014-01-01

    Neural stem cells (NSCs) show therapeutic potential for ischemia in young-adult animals. However, the effect of aging on NSC therapy is largely unknown. In this work, NSCs were transplanted into aged (24-month-old) and young-adult (3-month-old) rats at 1 day after stroke. Infarct volume and neurobehavioral outcomes were examined. The number of differentiated NSCs was compared in aged and young-adult ischemic rats and angiogenesis and neurogenesis were also determined. We found that aged rats developed larger infarcts than young-adult rats after ischemia (P<0.05). The neurobehavioral outcome was also worse for aged rats comparing with young-adult rats. Brain infarction and neurologic deficits were attenuated after NSC transplantation in both aged and young-adult rats. The number of survived NSCs in aged rats was similar to that of the young-adult rats (P>0.05) and most of them were differentiated into glial fibrillary acidic protein+ (GFAP+) cells. More importantly, angiogenesis and neurogenesis were greatly enhanced in both aged and young-adult rats after transplantation compared with phosphate-buffered saline (PBS) control (P<0.05), accompanied by increased expression of vascular endothelial growth factor (VEGF). Our results showed that NSC therapy reduced ischemic brain injury, along with increased angiogenesis and neurogenesis in aged rats, suggesting that aging-related microenvironment does not preclude a beneficial response to NSCs transplantation during cerebral ischemia. PMID:24714034

  15. METABOLIC RATE AS A FUNCTION OF AGE IN BROWN NORWAY AND LONG-EVANS RATS.

    EPA Science Inventory

    Brown Norway (BN) rats are commonly used in aging studies but relatively little is known on their metabolism as it varies with age. In fact, there is considerable disagreement on the wholebody metabolism of aging rats with some studies indicating a decrease and others showing an...

  16. Activity/inactivity circadian rhythm shows high similarities between young obesity-induced rats and old rats.

    PubMed

    Bravo Santos, R; Delgado, J; Cubero, J; Franco, L; Ruiz-Moyano, S; Mesa, M; Rodríguez, A B; Uguz, C; Barriga, C

    2016-03-01

    The objective of the present study was to compare differences between elderly rats and young obesity-induced rats in their activity/inactivity circadian rhythm. The investigation was motivated by the differences reported previously for the circadian rhythms of both obese and elderly humans (and other animals), and those of healthy, young or mature individuals. Three groups of rats were formed: a young control group which was fed a standard chow for rodents; a young obesity-induced group which was fed a high-fat diet for four months; and an elderly control group with rats aged 2.5 years that was fed a standard chow for rodents. Activity/inactivity data were registered through actimetry using infrared actimeter systems in each cage to detect activity. Data were logged on a computer and chronobiological analysis were performed. The results showed diurnal activity (sleep time), nocturnal activity (awake time), amplitude, acrophase, and interdaily stability to be similar between the young obesity-induced group and the elderly control group, but different in the young control group. We have concluded that obesity leads to a chronodisruption status in the body similar to the circadian rhythm degradation observed in the elderly. PMID:27030628

  17. Effect of magnesium deficiency on erythrocyte aging in rats.

    PubMed Central

    Elin, R. J.; Utter, A.; Tan, H. K.; Corash, L.

    1980-01-01

    Rats placed on a magnesium-deficient diet show decreased erythrocyte magnesium concentration, shortened erythrocyte survival, and erythrocyte membrane ultrastructure defects and become progressively anemic. Whether these pathologic processes are due to abnormal erythropoiesis or occur in the peripheral circulation is unknown. In the present study, magnesium and hemoglobin concentrations, reticulocyte count, erythrocyte pyrophosphatase, and pyruvate kinase activities were determined at weekly intervals for 6 weeks in whole blood and age-dependent erythrocyte fractions isolated from inbred Fisher rats fed a diet deficient in magnesium or the same diet with added magnesium. Freeze-fracture electron microscopic examinations were performed on age-dependent erythrocyte fractions to evaluate the membrane defect. The youngest red cells from magnesium-deficient rats were similar to those of control animals with respect to erythrocyte magnesium concentrations, pyrophosphatase activities, and membrane morphology. The older erythrocyte fractions from magnesium-deficient rats showed significant decreases in magnesium concentrations, pyrophosphatase activity, and the presence of membrane abnormalities. Thus, new erythrocytes produced in magnesium-deficient rats appear to be normal but rapidly develop biochemical and morphologic abnormalities with aging in a magnesium-deficient plasma environment. Images Figure 1 PMID:6106388

  18. Incentive relativity in middle aged rats.

    PubMed

    Justel, N; Mustaca, A; Boccia, M; Ruetti, E

    2014-01-24

    Response to a reinforcer is affected by prior experience with different reward values of that reward, a phenomenon known as incentive relativity. Two different procedures to study this phenomenon are the incentive downshift (ID) and the consummatory anticipatory negative contrast (cANC), the former is an emotional-cognitive protocol and the latter cognitive one. Aged rodents, as also well described in aged humans, exhibit alterations in cognitive functions. The main goal of this work was to evaluate the effect of age in the incentive' assessment using these two procedures. The results indicated that aged rats had an adequate assessment of the rewards but their performance is not completely comparable to that of young subjects. They recover faster from the ID and they had a cognitive impairment in the cANC. The results are discussed in relation to age-related changes in memory and emotion. PMID:24315974

  19. Grape powder treatment prevents anxiety-like behavior in a rat model of aging.

    PubMed

    Patki, Gaurav; Ali, Quaisar; Pokkunuri, Indira; Asghar, Mohammad; Salim, Samina

    2015-06-01

    Earlier, we have reported that grape powder (GP) treatment prevented pharmacologic and psychological stress-induced anxiety-like behavior and memory impairment in rats. Protective effects of GP were attributed to its antioxidant effects. In this study, we tested the hypothesis that age-associated behavioral and cognitive deficits such as anxiety and memory impairment will be ameliorated with GP treatment. Using a National Institute of Aging recommended rodent model of aging, we examined a potentially protective role of antioxidant-rich GP in age-associated anxiety-like behavior and memory impairment. Male Fischer 344 rats were randomly assigned into 4 groups: young rats (3 months old) provided with tap water or with 15 g/L GP dissolved in tap water for 3 weeks, aged rats (21 months old) provided with tap water or with GP-treated tap water for 3 weeks (AG-GP). Anxiety-like behavior was significantly greater in aged rats compared with young rats, GP-treated young rats, or aged control rats (P < .05). Also, GP treatment prevented age-induced anxiety-like behavior in AG-GP rats (P < .05). Neither short-term nor long-term age-associated memory deficits improved with GP treatment in AG-GP rats. Furthermore, aged rats showed increased level of physiological stress (corticosterone) and increased oxidative stress in the plasma (8-isoprostane) as well as in selected brain areas (protein carbonylation). Grape powder treatment prevented age-induced increase in corticosterone levels and plasma 8-isoprostane levels in aged rats (P < .05), whereas protein carbonylation was recovered in the amygdala region only (P < .05). Grape powder by regulating oxidative stress ameliorates age-induced anxiety-like behavior in rats, whereas age-associated memory deficits seem unaffected with GP treatment. PMID:26022140

  20. Distinct manifestations of executive dysfunction in aged rats

    PubMed Central

    Beas, B. Sofia; Setlow, Barry; Bizon, Jennifer L.

    2013-01-01

    Different components of executive function such as working memory, attention, and cognitive flexibility can be dissociated both behaviorally and mechanistically; however, the within-subject influences of normal aging on different aspects of executive function remain ill-defined. To better define these relationships, young adult and aged male F344 rats were cross-characterized on an attentional set-shifting task that assesses cognitive flexibility and a delayed response task that assesses working memory. Across tasks, aged rats were impaired relative to young; however, there was significant variability in individual performance within the aged cohort. Notably, performance on the set-shifting task and performance at long delays on the delayed response task were inversely related among aged rats. Additional experiments showed no relationship between aged rats’ performance on the set-shifting task and performance on a hippocampal-dependent spatial reference memory task. These data indicate that normal aging can produce distinct manifestations of executive dysfunction, and support the need to better understand the unique mechanisms contributing to different forms of prefrontal cortical-supported executive decline across the lifespan. PMID:23601673

  1. The pituitary - Aging and spaceflown rats

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.

    1991-01-01

    Decrements in growth hormone (GH) release we observed in two spaceflight experiments and four tail-suspended rat studies mimic age-associated changes in the mammalian pituitary GH system seen by Meites and others. The spaceflight data suggest that formation of high molecular weight bioactive disulfide-linked aggregates of the 20 and 22K monomeric GH forms may be reduced in microgravity, thereby, reducing target tissue activity. Correlative studies to confirm spaceflight as a model for pituitary GH system aging should include: (1) investigation of mechanisms of intracellular hormone packaging, (2) consequences to biological activity of the hormone molecule, and (3) study of intracellular microtubule dynamics.

  2. Green tea polyphenols supplementation improves bone microstructure in orchidectomized middle-Aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent study shows that green tea polyphenols (GTP) attenuate trabecular bone loss in ovariectomized middle-aged female rats. To investigate whether GTP prevents bone loss in male rats, 40 rats with and without oriectomy (ORX) were assigned to 4 groups in a 2 (sham vs. ORX)× 2 (no GTP and 0.5% G...

  3. Exercise Training suppresses vascular fibrosis in aging obesity induced rats

    PubMed Central

    Kim, Shin Young; Lee, Jin

    2014-01-01

    [Purpose] The aim of this study was to investigate the effects of exercise training (ET) on vascular fibrosis in aging model rats with diet-induced obesity. [Methods] Twenty-four male Sprague-Dawley rats were divided into 3 groups: Aging control (A-C), A-C with high fat diet (AHF), AHF with ET (AHF + ET). Aging was induced by D-galactose (D-gal) and obesity was induced by HFD (60% fat) for 9 weeks. The experimental rats performed swimming (60 min/day, 5 days/week) for 8 weeks. All rat aorta samples were harvested for RT-PCR and morphologic analyses. [Results] The exercise training significantly decreased levels of AT-1, TGF-ß and Coll-1 gene expression compared to AHF group. The AHF + ET group showed a reduced collagen accumulation in the aorta media compared to AHF group. [Conclusion] These results suggest that ET could protect the aging obesity aorta against down-regulation of fibrotic factors (AT-1, TGF-ß and Coll-1 gene) and fibrosis by inhibition of collagen accumulation in the aorta media. PMID:25566453

  4. Potential urinary aging markers of 20-month-old rats.

    PubMed

    Li, Xundou; Gao, Youhe

    2016-01-01

    Urine is a very good source for biomarker discovery because it accumulates changes in the body. However, a major challenge in urinary biomarker discovery is the fact that the urinary proteome is influenced by various elements. To circumvent these problems, simpler systems, such as animal models, can be used to establish associations between physiological or pathological conditions and alterations in the urinary proteome. In this study, the urinary proteomes of young (two months old) and old rats (20 months old; nine in each group) were analyzed using LC-MS/MS and quantified using the Progenesis LC-MS software. A total of 371 proteins were identified, 194 of which were shared between the young and old rats. Based on criteria of a fold change ≥2, P < 0.05 and identification in each rat of the high-abundance group, 33 proteins were found to be changed (15 increased and 18 decreased in old rats). By adding a more stringent standard (protein spectral counts from every rat in the higher group greater than those in the lower group), eight proteins showed consistent changes in all rats of the groups; two of these proteins are also altered in the urinary proteome of aging humans. However, no shared proteins between our results and the previous aging plasma proteome were identified. Twenty of the 33 (60%) altered proteins have been reported to be disease biomarkers, suggesting that aging may share similar urinary changes with some diseases. The 33 proteins corresponded to 28 human orthologs which, according to the Human Protein Atlas, are strongly expressed in the kidney, intestine, cerebellum and lung. Therefore, the urinary proteome may reflect aging conditions in these organs. PMID:27330854

  5. Potential urinary aging markers of 20-month-old rats

    PubMed Central

    Li, Xundou

    2016-01-01

    Urine is a very good source for biomarker discovery because it accumulates changes in the body. However, a major challenge in urinary biomarker discovery is the fact that the urinary proteome is influenced by various elements. To circumvent these problems, simpler systems, such as animal models, can be used to establish associations between physiological or pathological conditions and alterations in the urinary proteome. In this study, the urinary proteomes of young (two months old) and old rats (20 months old; nine in each group) were analyzed using LC-MS/MS and quantified using the Progenesis LC-MS software. A total of 371 proteins were identified, 194 of which were shared between the young and old rats. Based on criteria of a fold change ≥2, P < 0.05 and identification in each rat of the high-abundance group, 33 proteins were found to be changed (15 increased and 18 decreased in old rats). By adding a more stringent standard (protein spectral counts from every rat in the higher group greater than those in the lower group), eight proteins showed consistent changes in all rats of the groups; two of these proteins are also altered in the urinary proteome of aging humans. However, no shared proteins between our results and the previous aging plasma proteome were identified. Twenty of the 33 (60%) altered proteins have been reported to be disease biomarkers, suggesting that aging may share similar urinary changes with some diseases. The 33 proteins corresponded to 28 human orthologs which, according to the Human Protein Atlas, are strongly expressed in the kidney, intestine, cerebellum and lung. Therefore, the urinary proteome may reflect aging conditions in these organs. PMID:27330854

  6. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    PubMed Central

    Buechel, Heather M.; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L.; Thibault, Olivier; Blalock, Eric M.

    2013-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9–12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors. PMID:24575039

  7. Supplementation with green tea polyphenols improves bone microstructure and quality in aged, orchidectomized rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies show that green tea polyphenols (GTP) attenuate bone loss and microstructure deterioration in ovariectomized aged female rats, a model of postmenopausal osteoporosis. However, it is not known if such an osteo-protective role of GTP is demonstrable in androgen-deficient aged rats, a mo...

  8. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    EPA Science Inventory

    The Brown Norway (BN) rat is a popular strain for aging studies. There is little information on effects of age on baseline cardiac and thermoregulatory parameters in undisturbed BN rats even though cardiac and thermal homeostasis is linked to many pathological deficits in the age...

  9. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats.

    PubMed Central

    Geinisman, Y; de Toledo-Morrell, L; Morrell, F

    1986-01-01

    Most, but not all, aged rats exhibit a profound deficit in spatial memory when tested in a radial maze--a task known to depend on the integrity of the hippocampal formation. In this study, animals were divided into three groups based on their spatial memory capacity: young adult rats with good memory, aged rats with impaired memory, and aged rats with good memory. Memory-impaired aged animals showed a loss of perforated axospinous synapses in the dentate gyrus of the hippocampal formation in comparison with either young adults or aged rats with good memory. This finding suggests that the loss of perforated axospinous synapses in the hippocampal formation underlies the age-related deficit in spatial memory. Images PMID:3458260

  10. Obesity-resistant S5B rats showed great cocaine conditioned place preference than the obesity-prone OM rats

    SciTech Connect

    Thanos, P.K.; Wang, G.; Thanos, P.K..; Kim, R.; Cho, J.; Michaelides, M.; Anderson, B.J.; Primeaux, S.D.; Bray, G.A.; Wang, G.-J.; Robinson, J.K.; Volkow, N.D.

    2010-12-01

    Dopamine (DA) and the DA D2 receptor (D2R) are involved in the rewarding and conditioned responses to food and drug rewards. Osborne-Mendel (OM) rats are genetically prone and S5B/P rats are genetically resistant to obesity when fed a high-fat diet. We hypothesized that the differential sensitivity of these two rat strains to natural rewards may also be reflected in sensitivity to drugs of abuse. Therefore, we tested whether OM and S5B/P rats showed a differential preference to cocaine using conditioned place preference (CPP). To also evaluate whether there is specific involvement of the D2R in this differential conditioning sensitivity, we then tested whether the D2R agonist bromocriptine (BC) would differentially affect the effects of cocaine in the two strains. OM and S5B/P rats were conditioned with cocaine (5 or 10 mg/kg) in one chamber and saline in another for 8 days. Rats were then tested for cocaine preference. The effects of BC (0.5, 1, 5, 10, 20 mg/kg) on cocaine preference were then assessed in subsequent test sessions. OM rats did not show a significant preference for the cocaine-paired chamber on test day. Only the S5B/P rats showed cocaine CPP. Later treatment with only the highest dose of BC resulted in reduced cocaine CPP in S5B/P rats when treated with 5 mg/kg cocaine and in OM rats treated with 10 mg/kg cocaine. Our results indicated that obesity-resistant S5B rats showed greater cocaine CPP than the obesity-prone OM rats. These findings do not support a theory of common vulnerability for reinforcer preferences (food and cocaine). However, they show that BC reduced cocaine conditioning effects supporting at least a partial regulatory role of D2R in conditioned responses to drugs.

  11. Tyrosine kinase receptor alteration of renal vasoconstriction in rats is sex- and age-related.

    PubMed

    Passmore, John C; Fleming, John T; Tyagi, Suresh C; Falcone, Jeff C

    2012-10-01

    Male rat renal blood vessels undergo reduced contraction to norepinephrine with aging. There is a greater renal vascular impairment in male compared with female rats. We investigated specific tyrosine kinase receptor inhibition of renal interlobar artery responsiveness to phenylephrine in male and female rats at specifically designated ages. Vessels from young male rats contracted much less to phenylephrine when the vessels were pretreated with the tyrosine kinase inhibitors Lavendustin A, HNMPA-(AM)₃, or AG1478. Vessels from adult female rats pretreated with Lavendustin A showed no difference in contraction from control, but did demonstrate a slightly reduced contraction when pretreated with AG1478. Middle-aged male rat vessels treated with Lavendustin A demonstrated no inhibition, but the insulin and epidermal growth factor receptor (EGFR) antagonists both induced a decline in contraction. Vessels from aged male rats demonstrated no effect related to the 3 pretreatments. Middle-aged and aged female rats pretreated with any inhibitor demonstrated no inhibitor-dependent alterations. We conclude that maximum contraction of interlobar arteries from adult male rats is reduced when tyrosine kinase receptor activity is reduced. Female rats demonstrated much less inhibitor-related change of contraction. PMID:22724583

  12. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart.

    PubMed

    Barton, Gregory P; Sepe, Joseph J; McKiernan, Susan H; Aiken, Judd M; Diffee, Gary M

    2016-01-01

    Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart. PMID:27601998

  13. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart

    PubMed Central

    Barton, Gregory P.; Sepe, Joseph J.; McKiernan, Susan H.; Aiken, Judd M.; Diffee, Gary M.

    2016-01-01

    Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart. PMID:27601998

  14. Ageing and gonadectomy have similar effects on hypoglossal long-term facilitation in male Fischer rats

    PubMed Central

    Zabka, AG; Mitchell, GS; Behan, M

    2005-01-01

    Long-term facilitation (LTF), a form of serotonin-dependent respiratory plasticity induced by intermittent hypoxia, decreases with increasing age or following gonadectomy in male Sprague-Dawley (SD) rats. Ageing is accompanied by decreasing levels of testosterone, which in turn influences serotonergic function. In addition, LTF in young male rats differs among strains. Thus, we tested the hypothesis that LTF is similar in middle-aged and gonadectomized young male rats of an inbred rat strain commonly used in studies on ageing (F344) by comparison with SD rats. We further tested whether the magnitude of LTF correlates with circulating serum levels of testosterone and/or progesterone. Young and middle-aged intact and young gonadectomized (GDX) male Fischer 344 rats were anaesthetized, neuromuscularly blocked and ventilated. Integrated phrenic and hypoglossal (XII) nerve activities were measured before, during and 60 min following three 5-min episodes of isocapnic hypoxia. LTF was observed in phrenic motor output in young and middle-aged intact and young GDX rats. In contrast, XII LTF was observed only in young intact rats. In middle-aged and young GDX rats, XII LTF was significantly lower than in young intact rats (P < 0.05). Furthermore, XII LTF was positively correlated with the testosterone/progesterone ratio. These data show that serotonin-dependent plasticity in upper airway respiratory output is similar in F344 and SD rat strains. Furthermore, LTF is similarly impaired in middle-aged and gonadectomized male rats, suggesting that gonadal hormones play an important role in modulating the capacity for neuroplasticity in upper airway motor control. PMID:15613371

  15. Oxidative Damage in the Aging Heart: an Experimental Rat Model

    PubMed Central

    Marques, Gustavo Lenci; Neto, Francisco Filipak; Ribeiro, Ciro Alberto de Oliveira; Liebel, Samuel; de Fraga, Rogério; Bueno, Ronaldo da Rocha Loures

    2015-01-01

    Introduction: Several theories have been proposed to explain the cause of ‘aging’; however, the factors that affect this complex process are still poorly understood. Of these theories, the accumulation of oxidative damage over time is among the most accepted. Particularly, the heart is one of the most affected organs by oxidative stress. The current study, therefore, aimed to investigate oxidative stress markers in myocardial tissue of rats at different ages. Methods: Seventy-two rats were distributed into 6 groups of 12 animals each and maintained for 3, 6, 9, 12, 18 and 24 months. After euthanasia, the heart was removed and the levels of non-protein thiols, lipid peroxidation, and protein carbonylation, as well as superoxide dismutase and catalase activities were determined. Results: Superoxide dismutase, catalase activity and lipid peroxidation were reduced in the older groups of animals, when compared with the younger group. However, protein carbonylation showed an increase in the 12-month group followed by a decrease in the older groups. In addition, the levels of non-protein thiols were increased in the 12-month group and not detected in the older groups. Conclusion: Our data showed that oxidative stress is not associated with aging in the heart. However, an increase in non-protein thiols may be an important factor that compensates for the decrease of superoxide dismutase and catalase activity in the oldest rats, to maintain appropriate antioxidant defenses against oxidative insults. PMID:27006709

  16. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    PubMed Central

    Wang, Qiong; Shao, Feng; Wang, Weiwen

    2015-01-01

    Early life adversity, such as postnatal maternal separation (MS), play a central role in the development of psychopathologies during individual ontogeny. In this study, we investigated the effects of repeated MS (4 h per day from postnatal day (PND) 1–21) on the brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc) and the hippocampus of male and female juvenile (PND 21), adolescent (PND 35) and young adult (PND 56) Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG) of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and non separated rats. However, in the mPFC, the BDNF expression was increased with age in the non separated rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male non-maternal separation (NMS) rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The present study shows unique age-differently changes on a molecular level induced by MS and advances the use of MS as a valid animal model to detect the underlying neurobiological mechanisms of mental disorders. PMID:26388728

  17. Influence of age on the biochemical response of rat lung to ozone exposure

    SciTech Connect

    Mustafa, M.G.; Elsayed, N.M.; Ospital, J.J.; Hacker, A.D.

    1985-11-01

    We have previously examined the influence of animal age on the pulmonary response to ozone (O3) in rats between 7 and 90 days of age. In the present study, we expanded the age groups of rats, and examined in greater detail the relationship between animal age and pulmonary response to inhaled O3. We exposed 7 groups of specific pathogen free, male Sprague-Dawley rats, aged 24, 30, 45, 60, 90, 180, and 365 days, to 0.8 ppm (1568 micrograms/m3) O3 continuously for 3 days. After O3 exposure, we sacrificed the exposed rats and a matched number of controls from each age group, and analyzed their lungs for a series of physical and biochemical parameters, including glutathione metabolizing and NADPH producing enzyme activities. We observed that in control rats all the parameters increased as a function of age. However, the rate of increase was generally slower after age 60 days. After O3 exposure there was an increase in all the parameters for all age groups relative to their corresponding controls, but the extent of increase was significantly larger in rats 60 days and older than in younger rats. A regression of the difference in mean values between control and exposed animals for each parameter against age showed a linear correlation, indicating that the response was age-dependent. Since the magnitude of such increases is thought to reflect the degree of lung injury, the results suggest that O3 exposure causes greater lung injury in older rats than in younger rats. We tested this assumption by exposing rats from four different age groups (24, 45, 60 and 90 days) to a lethal dose of O3 (4 ppm or 7840 micrograms/m3 for 8 hours). The mortality rates were 50% and 83% for 24 and 45 day old rats, respectively, and 100% for 60 and 90 day old rats. The results of these studies further demonstrate that older rats are more susceptible to lung injury from O3 than younger rats.

  18. Improving Bone Microarchitecture in Aging with Diosgenin Treatment: A Study in Senescence-Accelerated OXYS Rats.

    PubMed

    Tikhonova, Maria A; Ting, Che-Hao; Kolosova, Nataliya G; Hsu, Chao-Yu; Chen, Jian-Horng; Huang, Chi-Wen; Tseng, Ging-Ting; Hung, Ching-Sui; Kao, Pan-Fu; Amstislavskaya, Tamara G; Ho, Ying-Jui

    2015-10-31

    Osteoporosis is a major disease associated with aging. We have previously demonstrated that diosgenin prevents osteoporosis in both menopause and D-galactose-induced aging rats. OXYS rats reveal an accelerated senescence and are used as a suitable model of osteoporosis. The aim of the present study was to analyze microarchitecture and morphological changes in femur of OXYS rats using morphological tests and microcomputed tomography scanning, and to evaluate the effects of oral administration of diosgenin at 10 and 50 mg/kg/day on femur in OXYS rats. The result showed that, compared with age-matched Wistar rats, the femur of OXYS rats revealed lower bone length, bone weight, bone volume, frame volume, frame density, void volume, porosity, external and internal diameters, cortical bone area, BV/TV, Tb.N, and Tb.Th, but higher Tb.Sp. Eight weeks of diosgenin treatment decreased porosity and Tb.Sp, but increased BV/TV, cortical bone area, Tb.N and bone mineral density, compared with OXYS rats treated with vehicle. These data reveal that microarchitecture and morphological changes in femur of OXYS rats showed osteoporotic aging features and suggest that diosgenin may have beneficial effects on aging-induced osteoporosis. PMID:26387656

  19. The Expression Changes of Inflammasomes in the Aging Rat Kidneys.

    PubMed

    Song, Fei; Ma, Yuxiang; Bai, Xue-Yuan; Chen, Xiangmei

    2016-06-01

    The mechanisms of kidney aging are not yet clear. Studies have shown that immunological inflammation is related to kidney aging. Inflammasomes are important components of innate immune system in the body. However, the function of inflammasomes and their underlying mechanisms in renal aging remain unclear. In this study, for the first time, we systematically investigated the role of the inflammasomes and the inflammatory responses activated by inflammasomes during kidney aging. We found that during kidney aging, the expression levels of the molecules associated with the activation of inflammasomes, including toll-like receptor-4 and interleukin-1 receptor (IL-1R), were significantly increased; their downstream signaling pathway molecule interleukin-1 receptor-associated kinase-4 (IRAK4) was markedly activated (Phospho-IRAK4 was obviously increased); the nuclear factor-κB (NF-κB) signaling pathway was activated (the activated NF-κB pathway molecules Phospho-IKKβ, Phospho-IκBα, and Phospho-NF-κBp65 were significantly elevated); the levels of the inflammasome components NOD-like receptor P3 (NLRP3), NLRC4, and pro-caspase-1 were prominently upregulated; and the proinflammatory cytokines IL-1β and IL-18 were notably increased in the kidneys of 24-month-old (elderly group) rats. These results showed that inflammasomes are markedly activated during the renal aging process and might induce inflamm-aging by promoting the maturation and secretion of the proinflammatory cytokines IL-1β and IL-18. PMID:26219846

  20. Male Roman high and low avoidance rats show different patterns of copulatory behaviour: comparison with Sprague Dawley rats.

    PubMed

    Sanna, Fabrizio; Corda, Maria Giuseppa; Melis, Maria Rosaria; Piludu, Maria Antonietta; Giorgi, Osvaldo; Argiolas, Antonio

    2014-03-29

    Roman high- (RHA) and low-avoidance (RLA) rats, selectively bred for, respectively, rapid vs. extremely poor acquisition of avoidant behaviour in the shuttle-box, display different coping strategies when exposed to aversive environmental conditions: RLA rats are reactive copers and show hyperemotional behaviour characterized by hypomotility and freezing, while RHA rats show a proactive coping behaviour aimed at gaining control over the stressor. RHA rats also display a robust sensation/novelty seeking profile, high baseline levels of impulsivity, and marked preference for, and intake of, natural and drug rewards. This study shows that the Roman lines also differ in sexual behaviour, a main source of natural reward. Thus, male RHA rats engaged in copulatory activity with a receptive female showing more mounts, intromissions and ejaculations in the first copulation test as compared with their RLA counterparts and Sprague Dawley rats used as an external reference strain. Such differences decreased only partially in subsequent copulation tests, with RHA rats always showing higher levels of sexual motivation and performance than RLA rats. Accordingly, analysis of copulatory parameters of five copulation tests performed at 3-day intervals confirmed that the Roman lines display different patterns of copulatory activity that persist after stabilization of copulatory behaviour by sexual experience. Finally, the weight of the testes, epididymides and seminal vesicles increased to a similar extent in both Roman lines after sexual activity. These results are discussed in terms of the relative contribution of differences in brain neurotransmission (mainly dopamine) and neuroendocrine function to the different patterns of copulatory behaviour of the Roman lines. PMID:24472324

  1. Ischemia-induced Angiogenesis is Attenuated in Aged Rats

    PubMed Central

    Tang, Yaohui; Wang, Liuqing; Wang, Jixian; Lin, Xiaojie; Wang, Yongting; Jin, Kunlin; Yang, Guo-Yuan

    2016-01-01

    To study whether focal angiogenesis is induced in aged rodents after permanent distal middle cerebral artery occlusion (MCAO), young adult (3-month-old) and aged (24-month-old) Fisher 344 rats underwent MCAO and sacrificed up to two months after MCAO. Immunohistochemistry and synchrotron radiation microangiography were performed to examine the number of newly formed blood vessels in both young adult and aged rats post-ischemia. We found that the number of capillaries and small arteries in aged brain was the same as young adult brain. In addition, we found that after MCAO, the number of blood vessels in the peri-infarct region of ipsilateral hemisphere in aged ischemic rats was significantly increased compared to the aged sham rats (p<0.05). We also confirmed that ischemia-induced focal angiogenesis occurred in young adult rat brain while the blood vessel density in young adult ischemic brain was significantly higher than that in the aged ischemic brain (p<0.05). Our data suggests that focal angiogenesis in aged rat brain can be induced in response to ischemic brain injury, and that aging impedes brain repairing and remodeling after ischemic stroke, possible due to the limited response of angiogenesis. PMID:27493831

  2. Age and sex-related changes in rat brain mitochondrial function.

    PubMed

    Guevara, Rocío; Gianotti, Magdalena; Roca, Pilar; Oliver, Jordi

    2011-01-01

    Aging is responsible for the decline in the function of mitochondria and their increase in size and number--adaptive mechanism to restore mitochondrial function. Estrogens increase mitochondrial function, especially in female rats. The aim of this study was to determine the age-related changes in rat brain mitochondrial function focusing on sex differences. Cellular and mitochondrial protein and DNA content, mitochondrial oxidative and phosphorylative function in male and female rat brain from four different age groups (6, 12, 18 and 24 months old) were analyzed. Mitochondria protein/DNA content decreased with aging shifting toward lesser mitochondrial functional capacity and the mitochondria number increased. A sex dimorphism was determined, with female rat brain showing mitochondria with greater functional capacity than males. These sex differences gradually increased during aging. PMID:21471708

  3. Raloxifene prevents endothelial dysfunction in aging ovariectomized female rats.

    PubMed

    Wong, Chi Ming; Yao, Xiaoqiang; Au, Chak Leung; Tsang, Suk Ying; Fung, Kwok Pui; Laher, Ismail; Vanhoutte, Paul M; Huang, Yu

    2006-05-01

    Lack of an appropriate animal model has delayed the better understanding of mechanisms related to higher cardiovascular risk in women after menopause. The aging female rat may share some menopausal changes observed in women. However, most studies have attempted to mimic menopause by ovariectomizing young (6-12 weeks old) animals without taking into accounts the influence of aging and of declining ovarian function. Therefore, the present study examined changes in vascular reactivity in the aging (15 months old) female rat after ovariectomy and the effects of chronic raloxifene therapy on vascular reactivity and eNOS protein expression. Aortic rings were prepared from the three experimental groups of rats: sham-operated control, ovariectomized and ovariectomized aging rats receiving daily oral administration of raloxifene for 3 months. Aortic rings were suspended in organ baths for the measurement of isometric tension. Rings with endothelium contracted significantly more to phenylephrine after inhibition of nitric oxide/cyclic GMP-signaling pathway by L-NAME or ODQ (as an index of basal nitric oxide release) in control and raloxifene-treated ovariectomized rats than in ovariectomized rats. This effect was abolished upon mechanical removal of the endothelium. Phenylephrine induced greater contractions only in rings with endothelium from ovariectomized rats as compared with control rats and raloxifene treatment normalized this response. In the presence of L-NAME or ODQ, phenylephrine-induced contraction was similar in rings from the three groups. Rings relaxed more to thapsigargin and acetylcholine in raloxifene-treated ovariectomized rats than in ovariectomized rats. There was no significant difference in aortic eNOS protein contents among the different groups. These results suggest that chronic oral administration of raloxifene to aging ovariectomized female rats augmented the bioavailability of endothelial nitric oxide in isolated aortic rings without altering e

  4. Aging changes agonist induced contractile responses in permeabilized rat bladder.

    PubMed

    Durlu-Kandilci, N Tugba; Denizalti, Merve; Sahin-Erdemli, Inci

    2015-08-01

    Aging alters bladder functions where a decrease in filling, storage and emptying is observed. These changes cause urinary incontinence, especially in women. The aim of this study is to examine how aging affects the intracellular calcium movements due to agonist-induced contractions in permeabilized female rat bladder. Urinary bladder isolated from young and old female Sprague-Dawley rats were used. Small detrusor strips were permeabilized with β-escin. The contractile responses induced with agonists were compared between young and old groups. Carbachol-induced contractions were decreased in permeabilized detrusor from old rats compared to young group. Heparin and ryanodine decreased carbachol-induced contractions in young rats where only heparin inhibited these contractions in olds. Caffeine-induced contractions but not inositol triphosphate (IP3)-induced contractions were decreased in old group compared to youngs. The cumulative calcium response curves (pCa 8-4) were also decreased in old rats. Carbachol-induced calcium sensitization responses did not alter by age where GTP-β-S and GF-109203X but not Y-27632 inhibited these responses. Carbachol-induced contractions decrease with aging in rat bladder detrusor. It can be postulated as IP3-induced calcium release (IICR) is primarily responsible for the contractions in older rats where the decrease in carbachol contractions in aging may be as a result of a decrease in calcium-induced calcium release (CICR), rather than carbachol-induced calcium sensitization. PMID:26153091

  5. Efficacy of Female Rat Models in Translational Cardiovascular Aging Research

    PubMed Central

    Rice, K. M.; Fannin, J. C.; Gillette, C.; Blough, E. R.

    2014-01-01

    Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging. PMID:25610649

  6. An Observational Assessment Method for Aging Laboratory Rats

    PubMed Central

    Phillips, Pamela M; Jarema, Kimberly A; Kurtz, David M; MacPhail, Robert C

    2010-01-01

    The rapid growth of the aging human population highlights the need for laboratory animal models to study the basic biologic processes of aging and susceptibility to disease, drugs, and environmental pollutants. Methods are needed to evaluate the health of aging animals over time, particularly methods for efficiently monitoring large research colonies. Here we describe an observational assessment method that scores appearance, posture, mobility, and muscle tone on a 5-point scale that can be completed in about 1 min. A score of 1 indicates no deterioration, whereas a score of 5 indicates severe deterioration. Tests were applied to male Brown Norway rats between 12 and 36 mo of age (n = 32). The rats were participating concurrently in experiments on the behavioral effects of intermittent exposure (approximately every 4 mo) to short-acting environmental chemicals. Results demonstrated that aging-related signs of deterioration did not appear before 18 mo of age. Assessment scores and variability then increased with age. Body weights increased until approximately 24 mo, then remained stable, but decreased after 31 mo for the few remaining rats. The incidence of death increased slightly from 20 to 28 mo of age and then rose sharply; median survival age was approximately 30 mo, with a maximum of 36 mo. The results indicate that our observational assessment method supports efficient monitoring of the health of aging rats and may be useful in studies on susceptibility to diseases, drugs, and toxicants during old age. PMID:21205442

  7. Histopathological lesions in the pancreas of the BB Wistar rat as a function of age and duration of diabetes.

    PubMed

    Wright, J; Yates, A; Sharma, H; Thibert, P

    1985-01-01

    Pancreatic histopathology was studied in 121 BBWd, 43 BBWnd, and 33 Wistar rats. Insulitis was the most common inflammatory lesion in both BBW and BBWnd rats. The incidence was inversely associated with age and with duration of diabetes in BBWd rats, but there was no age-related pattern in BBWnd rats. Small end-stage islets were typical of BBWd rats but were not seen in BBWnd rats. Several BBWd rats showed hyperplastic islets months after the onset of diabetes, a pattern that is also seen in a small percentage of human JOD patients. Several non-specific exocrine inflammatory lesions occurred in both BBWd and BBWnd rats: acute and/or chronic pancreatitis, eosinophilic infiltrates, granulomatous lesions and acute and/or chronic interstitial inflammation. Only chronic interstitial inflammation was seen in outbred Wistar rats. PMID:3882779

  8. The Laboratory Rat: Relating Its Age With Human's

    PubMed Central

    Sengupta, Pallav

    2013-01-01

    By late 18th or early 19th century, albino rats became the most commonly used experimental animals in numerous biomedical researches, as they have been recognized as the preeminent model mammalian system. But, the precise correlation between age of laboratory rats and human is still a subject of debate. A number of studies have tried to detect these correlations in various ways, But, have not successfully provided any proper association. Thus, the current review attempts to compare rat and human age at different phases of their life. The overall findings indicate that rats grow rapidly during their childhood and become sexually mature at about the sixth week, but attain social maturity 5-6 months later. In adulthood, every day of the animal is approximately equivalent to 34.8 human days (i.e., one rat month is comparable to three human years). Numerous researchers performed experimental investigations in albino rats and estimated, in general, while considering their entire life span, that a human month resembles every-day life of a laboratory rat. These differences signify the variations in their anatomy, physiology and developmental processes, which must be taken into consideration while analyzing the results or selecting the dose of any research in rats when age is a crucial factor. PMID:23930179

  9. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    PubMed

    Gordon, Christopher J

    2008-12-01

    The cardiovascular and thermoregulatory systems are considered to be susceptible in the aged population, but little is known about baseline cardiac and thermoregulatory homeostasis in rodent models of aging. Radiotransmitters were implanted in male, Brown Norway rats obtained at 4, 12, and 24 months to monitor the electrocardiogram (ECG), interbeat interval (IBI), heart rate (HR), core temperature (Tc), and motor activity (MA). There was no significant effect of age on resting HR and MA. Daytime Tc of the 24-month-old rats was significantly elevated above those of the 4- and 12-month-old groups. Variability of the IBI was highest in the 24-month-old rats. The elevation in daytime Tc beginning around 8 months of age may be a physiological biomarker of aging and may be an important factor to consider in studies using caloric restriction-induced hypothermia to increase longevity. PMID:19126843

  10. Aging and the disposition and toxicity of mercury in rats.

    PubMed

    Bridges, Christy C; Joshee, Lucy; Zalups, Rudolfs K

    2014-05-01

    Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg(2+)), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg(2+) in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5μmol·kg(-1) non-nephrotoxic or a 2.5μmol·kg(-1) nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. PMID:24548775

  11. Red raspberries can improve motor function in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Many foods rich in antioxidant and anti-inflammatory compounds have been shown to increase health and reduce markers of aging. A number of berry fruits high in polyphenols are known to ameliorate age-related declines in cellular, cognitive and behavioral function in rats. OBJECTIVES: Thi...

  12. Neuropathic pain in aged rats: behavioral responses and astrocytic activation.

    PubMed

    Stuesse, S L; Crisp, T; McBurney, D L; Schechter, J B; Lovell, J A; Cruce, W L

    2001-03-01

    We used the Bennett and Xie (1988) model of chronic neuropathic pain to study the effect of age on thermal and tactile sensitivity and on astrocytic activation in the dorsal horn of the spinal cord after nerve injury. Fischer 344 FBNF1 hybrid rats in three age groups, 4-6, 14-16, and 24-26 months, were studied. Rats were either unligated (day 0, control) or the left sciatic nerve was loosely ligated to cause a chronic constriction injury (CCI). CCI causes a neuropathic pain condition characterized by tactile allodynia and thermal hyperalgesia. Rats were behaviorally assessed for tactile and thermal sensitivity of their ligated and unligated hind paws up to 35 days postligation. Rats were sacrificed before or at various days postligation, and activated astrocytes were identified at the L4-L5 levels of their spinal cords by use of an antibody to glial fibrillary acid protein (GFAP). The number of GFAP-ir astrocytes in the dorsal horn of the spinal cord in the control, uninjured condition decreased with age (P < or = 0.001) but increased after CCI in all three age groups. After CCI, astrocytic activation in the cord was less robust in aged rats than in younger ones (P < or = 0.01). Not all the CCI rats displayed hyperalgesia to touch and to heat. Rats with an increased sensitivity to heat had increased levels of GFAP-ir in their cords; however, rats with decreased thermal sensitivity also displayed increased GFAP-ir. Thus the presence of activated astrocytes was not correlated with a single behavioral manifestation of neuropathic pain. PMID:11315551

  13. Ocular Inflammation in Uveal Tract in Aged Obese Type 2 Diabetic Rats (Spontaneously Diabetic Torii Fatty Rats)

    PubMed Central

    Kemmochi, Yusuke; Miyajima, Katsuhiro; Ohta, Takeshi; Yasui, Yuzo; Toyoda, Kaoru; Kakimoto, Kochi; Shoda, Toshiyuki

    2014-01-01

    We report uveitis observed in an obese type 2 diabetes rat model, Spontaneously Diabetic Torii Leprfa (SDT fatty) rats aged over 50 weeks. The eyes of SDT fatty rats (16 animals: 7 males and 9 females with 50 or 60 weeks of age) were examined histopathologically. Infiltration of inflammatory cells in the uveal tract was observed in 13 of 16 animals. One female showed severe inflammation affecting the entire uveal tract including the iris, ciliary body, and choroid with a variety of inflammatory cells (neutrophils, lymphocytes, and macrophages). Those changes clinically mimic the findings of diabetic iridocyclitis in diabetic patients. Uveitis associated with diabetes can occur in diabetic patients but the pathogenesis still remains unknown. Since increased extramedullary hematopoiesis in the spleen and abscess in the genital and lower urinary tracts were observed in some SDT fatty rats, increased susceptibility to infection, prolongation of inflammatory states, and disorders of the immune system were considered to be possible factors of the uveitis in aged SDT fatty rats. There have been few reports on how diabetes has influence on the development of uveitis associated with bacterial infection. The SDT fatty rat can be an animal model to investigate diabetes-associated uveitis. PMID:25295283

  14. Centrophenoxine activates acetylcholinesterase activity in hippocampus of aged rats.

    PubMed

    Sharma, D; Singh, R

    1995-05-01

    Age-related changes in the acetylcholinesterase activity were measured in the hippocampus, brain stem and cerebellum of rats (aged 4, 8, 16 and 24 months). The age-dependent decrease in the enzyme activity first appeared in the hippocampus; the brain stem was affected later while the cerebellum remained unaffected. Centrophenoxine, usually considered as an ageing reversal drug and also regarded as a neuroenergeticum in human therapy, increased the acetylcholinesterase activity in the hippocampus of aged rats, the activity was also elevated in the brain stem but no in the cerebellum. The acetylcholinesterase-stimulating influence of the drug is likely to be implicated in the pharmacological reversal of the age related decline of the cholinergic system. This effect of the drug may also mediate its effects on cognitive and neuronal synaptic functions. PMID:7558197

  15. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats.

    PubMed Central

    Stitt, A. W.; Li, Y. M.; Gardiner, T. A.; Bucala, R.; Archer, D. B.; Vlassara, H.

    1997-01-01

    Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance. Images Figure 1 Figure 2 Figure 3 PMID

  16. Silymarin improves vascular function of aged ovariectomized rats.

    PubMed

    Demirci, Buket; Dost, Turhan; Gokalp, Filiz; Birincioglu, Mustafa

    2014-06-01

    Both aging and estrogen depletion lead to endothelial dysfunction, which is the main reason of many cardiovascular diseases. Previous reports have shown that cell protective effect of silymarin (SM) depends on its antioxidant and phytoestrogenic properties. We investigated the effect of SM on vascular stiffness of aged menopausal rats and the involvement of estrogenic activity in this effect. Isolated rat aortas were obtained from 22-month-old rats, after 18 months of ovariectomy (OVX) follow-up. Each ring was incubated in tissue bath either with SM (50 mg/L) and 17β-estradiol (10 μM, E2) or in the presence of SM/fulvestrant (50 mg/L, 10 μM). Endothelium-intact rings were precontracted with phenylephrine (0.001-30 μM) or high potassium (40 mM); endothelium-dependent/independent relaxant responses were obtained using acetylcholine (0.001-30 μM) and sodium nitroprusside (0.0001-3 μM), respectively. While phenylephrine sensitivity was significantly increased in OVX rats, relaxations were significantly less in aged OVX rats compared with young rats. In spite of the presence of estrogen antagonist, immediate SM treatment restored the endothelial function and vascular tone better than estrogen replacement. Additionally, as a complementary and alternative medicine, it does not cause estrogenic side effects when taken acutely. PMID:24123505

  17. Rats with altered behaviour following nerve injury show evidence of centrally altered thyroid regulation.

    PubMed

    Kilburn-Watt, E; Banati, R B; Keay, K A

    2014-08-01

    The co-morbidity of mood disturbance, in a proportion of patients, is now described across a wide range of chronic disease states. Similarly, a 'Low Thyroid Syndrome' is also reported in a proportion of individuals with chronic diseases. Here, we report on central changes in an animal model of inflammatory stress in which altered social behaviour, representing social disability, persists in a sub-group of rats following injury. We showed in an earlier study that rats with social disability following injury have significantly decreased peripheral thyroid hormones, with no increase in Thyroid Stimulating Hormone (TSH). Only rats identified by behavioural change showed changes in hypothalamic gene expression. In whole hypothalamus extracted RNA, relative expression of mRNA for Thyrotrophin-releasing hormone (TRH) was significantly down-regulated in disabled rats (p=0.039) and deiodinase 3 up-regulated (p=0.006) compared to controls. Specifically in the paraventricular nucleus (PVN), numbers of immunoreactive cells for deiodinase 3-like and thyroid hormone receptor beta-like proteins were decreased in the sub-group with disability compared to the control group (p=0.031 and p=0.011 respectively). In rats with behavioural change post-injury, down-regulation of TRH provides an explanation for the failure of the hypothalamo-pituitary-thyroid (HPT) axis to respond to the post-injury decrease in thyroxine. Decreased local expression of deiodinase 3 protein, resulting in a local increase in T3, offers an explanation for down regulation of TRH in the hypophysiotrophic TRH neurons. It is possible that, in a sub-group of animals identified behaviourally, a mechanism resulting in hypothalamic down-regulation of the HPT axis persists following inflammatory injury. PMID:25069097

  18. Ageing, rejuvenation and memory phenomena in a Bi-2212 superconductor showing the paramagnetic Meissner effect

    NASA Astrophysics Data System (ADS)

    Papadopoulou, E. L.; Nordblad, P.

    2001-07-01

    A melt-cast Bi 2 Sr 2 CaCu 2 O 8 sample showing the paramagnetic Meissner effect (PME) and an ageing phenomenon has been studied by magnetic relaxation and ac-susceptibility experiments. A memory behaviour is observed in the low frequency ac-suscpetibility and in the magnetisation vs. temperature curves measured on heating after certain cooling protocols. It is also found that large enough temperature shifts and positive temperature perturbations cause rejuvenation of the ageing system. All these observations show striking similarities with the ageing behaviour of spin glasses and indicate the existence of a low temperature glassy phase in this PME material.

  19. The effect of aging on distraction osteogenesis in the rat.

    PubMed

    Aronson, J; Gao, G G; Shen, X C; McLaren, S G; Skinner, R A; Badger, T M; Lumpkin, C K

    2001-05-01

    The effect of age on bone formation in the limb lengthening model of distraction osteogenesis (DO) was investigated in two studies using Sprague-Dawley (SD) rats from two colonies at various ages (CAMM: 9 vs 24 months, Harlan: 4 vs 24 months). External fixators were placed on the right tibiae of 30 male SD rats (20 CAMM, 10 Harlan) and mid-diaphyseal osteotomies were performed. Distraction was performed at 0.2 mm bid for 20 days (CAMM) or 14 days (Harlan). The experimental (DO) and control (contra-lateral) tibiae were removed for high-resolution radiography and decalcified histology. Videomicroscopy was used to quantitate radiodensity, histology (matrix type) and relative areas of cell proliferation, which was identified by proliferating cell nuclear antigen (PCNA) immunochemistry. Both studies demonstrated an age-related decrease in the percent mineralized bone (radiodensity) in the distraction gap (CAMM 9 vs 24 months: 68% vs 51%, P < 0.003; Harlan 4 vs 24 months: 95% vs 36%, P < 0.001) and no significant colony or distraction time-specific difference was seen between the two colonies of 24-month-old rats. Histology was performed on the Harlan rats. The DO gaps in the 24-month-old rats demonstrated less endosteal new bone compared to the 4-month-old rats (P < 0.01), but equivalent periosteal new bone. In 4-month-old rats, PCNA-immunostained cells were organized along the primary matrix front (where the first deposition of osteoid occurs) extending across both periosteal and endosteal surfaces. In 24-month-old rats, PCNA+ cells were organized in zones along the periosteal new bone fronts only and irregularly scattered throughout the endosteal gap within a fibrovascular non-ossifying matrix. These results indicate that 24-month-old rats have a relative deficit in endosteal bone formation which may not be related to cell proliferation but rather to cell organization. This model reflects the clinical situation where radiographic findings in older patients demonstrate

  20. Survey of spontaneous dystrophic mineralisation of pineal gland in ageing rats.

    PubMed

    Majeed, S K

    1997-11-01

    The survey included 151 rats from several carcinogenicity studies up to 104 weeks and 260 rats from short-term studies up to 52 weeks. All studies were performed during the period 1990-1996. Young rats up to 52 weeks of age showed normal structural appearance, in 134 male rats the incidence of mineralisation was 6.3% and in 126 females the incidence was only slightly less at 5.6%. In ageing rats, 70-104 weeks, 88 males and 63 females showed far higher incidence of mineralisation, 83% and 57% respectively, showing that the incidence of mineralisation in ageing rats was higher in males than females. The focal mineralisation occurred mainly at the margin of the gland in the subcapsular region mostly adjacent to small blood vessels. On occasions these involved the parenchymal cells in the middle part of the gland. The focal mineralisation stained positive with von Kossa indicating presence of calcium and also with PAS (Pariodic Acid-Schiff method), indicating presence of neutral mucopolysaccharide. There was no evidence of positivity with Perl's stain (for ferric salts), Toluidine blue (for protein) or Alcian blue (for acid mucopolysaccharides). With Oil Red O there was evidence of presence of fat or lipid in pinealocytes. PMID:9428987

  1. Age-related pathophysiological changes in rats with unilateral renal agenesis.

    PubMed

    Amakasu, Kohei; Suzuki, Katsushi; Katayama, Kentaro; Suzuki, Hiroetsu

    2011-06-01

    Affected rats of the unilateral urogenital anomalies (UUA) strain show renal agenesis restricted to the left side. To determine whether unilateral renal agenesis is a risk factor for the progression of renal insufficiency, we studied age-related pathophysiological alterations in affected rats. Although body growth and food intake were normal, polydipsia and polyuria with low specific gravity were present at 10 weeks and deteriorated further with age. Blood hemoglobin concentrations were normal, though there was slight erythropenia with increased MCV and MCH. Although hypoalbuminemia, hypercholesterolemia, azotemia, and hypermagnesemia were manifested after age 20 weeks, neither hyperphosphatemia nor hypocalcemia was observed. Plasma Cre and UN concentrations gradually increased with age. Cre clearance was almost normal, whereas fractional UN excretion was consistently lower than normal. Proteinuria increased with age, and albumin was the major leakage protein. In addition to cortical lesions, dilated tubules, cast formation, and interstitial fibrosis were observed in the renal medulla of 50 week-old affected rats. Renal weight was increased 1.7-fold and glomerular number 1.2-fold compared with normal rats. These findings show that the remaining kidney in UUA rats is involved not only in compensatory reactions but experiences pathophysiological alterations associated with progressive renal insufficiency. PMID:21307619

  2. Depression Shows Divergent Effects on Evoked and Spontaneous Pain Behaviors in Rats

    PubMed Central

    Shi, Miao; Wang, Jin-Yan; Luo, Fei

    2009-01-01

    Although it has been accepted that depression and pain are common comorbidities, their interaction is not fully understood. The present study was aimed to investigate the effects of depression on both evoked pain behavior (thermal induced nociception and hyperalgesia) and spontaneous pain behavior (formalin pain) in rats. An unpredictable chronic mild stress (UCMS) paradigm was employed to develop a classical depression. The emotional behaviors were assessed by sucrose preference test, open field test, and elevated plus-maze test. The results showed that the depressed rats always exhibited stronger tolerance to noxious thermal stimulation under both normal and complete Freund’s adjuvant (CFA)-induced chronic pain conditions, when compared to non-depressed animals. Interestingly, the spontaneous nociceptive behaviors induced by formalin injection were significantly enhanced in rats exposed to UCMS in comparison to those without UCMS. Systemic administration of antidepressant fluoxetine significantly restored the nociceptive behaviors to normal level in depressed animals. An additional finding was that the inflammatory rats tended to display depressive-like behaviors without being exposed to UCMS. These results demonstrated that depression can have different effects on stimulus-evoked pain and spontaneous pain, with alleviation in the former while aggravation in the latter. Perspective: The present study provides evidence that depression can have divergent effects on stimulus-evoked and spontaneous pain by confirming that rats exposed to chronic mild stress tend to exhibit decreased pain sensitivity to experimental stimuli but increased intensity of ongoing pain. This may contribute to further understanding of the perplexing relationship between clinical depression and chronic pain. PMID:20096641

  3. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.

    PubMed

    Das, Melanie M; Avalos, Pablo; Suezaki, Patrick; Godoy, Marlesa; Garcia, Leslie; Chang, Christine D; Vit, Jean-Philippe; Shelley, Brandon; Gowing, Genevieve; Svendsen, Clive N

    2016-06-01

    Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population. PMID:27032721

  4. Dialysable and non-dialysable hydroxyproline in the rat's urine: age related and diurnal variations

    PubMed Central

    Gaggi, Renato; Gianni, Anna Maria; Montanaro, Nicola

    1982-01-01

    1. Urinary dialysable and non-dialysable hydroxyproline, which are considered good indices of bone resorption and neoformation respectively, were determined in rats under conditions that modify skeleton metabolism, such as body growth and parathyroid or calcitonin administration. It was also investigated whether dialysable and non-dialysable hydroxyproline excretions showed significant circadian fluctuations in rats of different ages. 2. Dialysable hydroxyproline excretion sharply decreased from the first to the fifth months of age and underwent further gradual reduction up to the fourteenth month of life. Non-dialysable hydroxyproline excretion followed a smoother decrease up to the fifth month, then remained constant. Urinary excretion of non-dialysable hydroxyproline expressed as a percentage of the total hydroxyprolinuria (n.d.%) slowly increased with advancing rat age. 3. In 2-, 4- and 6-month old rats, dialysable hydroxyproline excretion showed significant circadian fluctuations with minima and maxima at the end of the dark and light fraction of the cycle respectively. Daily fluctuations were greater in young and adult rats (50-65% of the respective average levels) than in 4-month old rats (25%). Non-dialysable hydroxyproline excretion followed similar but less pronounced patterns. Significant circadian fluctuations of n.d.% were detectable only in 2- and 4-month old rats, with peaks at 04.00-05.00 hr, thus indicating that the bone formation/resorption ratio increased in the nocturnal fraction of the cycle. 4. Young rats administered with calcitonin exhibited reduced levels of urinary dialysable but not of non-dialysable hydroxyproline when the hormone was given at 13.30 hr. No changes were observed when calcitonin was injected at 19.30 hr. On the contrary, both diurnal and nocturnal parathyroid hormone administration to young rats caused increased levels of dialysable and non-dialysable hydroxyproline of the same magnitude. PMID:7202048

  5. Peripheral leukocyte populations and oxidative stress biomarkers in aged dogs showing impaired cognitive abilities.

    PubMed

    Mongillo, Paolo; Bertotto, Daniela; Pitteri, Elisa; Stefani, Annalisa; Marinelli, Lieta; Gabai, Gianfranco

    2015-06-01

    In the present study, the peripheral blood leukocyte phenotypes, lymphocyte subset populations, and oxidative stress parameters were studied in cognitively characterized adult and aged dogs, in order to assess possible relationships between age, cognitive decline, and the immune status. Adult (N = 16, 2-7 years old) and aged (N = 29, older than 8 years) dogs underwent two testing procedures, for the assessment of spatial reversal learning and selective social attention abilities, which were shown to be sensitive to aging in pet dogs. Based on age and performance in cognitive testing, dogs were classified as adult not cognitively impaired (ADNI, N = 12), aged not cognitively impaired (AGNI, N = 19) and aged cognitively impaired (AGCI, N = 10). Immunological and oxidative stress parameters were compared across groups with the Kruskal-Wallis test. AGCI dogs displayed lower absolute CD4 cell count (p < 0.05) than ADNI and higher monocyte absolute count and percentage (p < 0.05) than AGNI whereas these parameters were not different between AGNI and ADNI. AGNI dogs had higher CD8 cell percentage than ADNI (p < 0.05). Both AGNI and AGCI dogs showed lower CD4/CD8 and CD21 count and percentage and higher neutrophil/lymphocyte and CD3/CD21 ratios (p < 0.05). None of the oxidative parameters showed any statistically significant difference among groups. These observations suggest that alterations in peripheral leukocyte populations may reflect age-related changes occurring within the central nervous system and disclose interesting perspectives for the dog as a model for studying the functional relationship between the nervous and immune systems during aging. PMID:25905581

  6. Changes in Angiotensin Receptor Distribution and in Aortic Morphology Are Associated with Blood Pressure Control in Aged Metabolic Syndrome Rats

    PubMed Central

    Guarner-Lans, Verónica; Soria-Castro, Elizabeth; Torrico-Lavayen, Rocío; Patrón-Soberano, Araceli; Carvajal-Aguilera, Karla G.; Castrejón-Tellez, Vicente; Rubio-Ruiz, María Esther

    2016-01-01

    The role of the renin-angiotensin system (RAS) in blood pressure regulation in MS during aging is unknown. It participates in metabolic syndrome (MS) and aging regulating vascular tone and remodeling. RAS might participate in a compensatory mechanism decreasing blood pressure and allowing MS rats to reach 18 months of age and it might form part of therapeutical procedures to ameliorate MS. We studied histological changes and distribution of RAS receptors in aortas of MS aged rats. Electron microscopy images showed premature aging in MS since the increased fibrosis, enlarged endothelium, and invasion of this layer by muscle cells that was present in control 18-month-old aortas were also found in 6-month-old aortas from MS rats. AT1, AT2, and Mas receptors mediate the effects of Ang II and Ang 1-7, respectively. Fluorescence from AT2 decreased with age in control and MS aortas, while fluorescence of AT1 increased in aortas from MS rats at 6 months and diminished during aging. Mas expression increased in MS rats and remained unchanged in control rats. In conclusion, there is premature aging in the aortas from MS rats and the elevated expression of Mas receptor might contribute to decrease blood pressure during aging in MS. PMID:27293881

  7. Spontaneous running activity in male rats - Effect of age

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Sims, C.; Reaven, G. M.

    1985-01-01

    Variations in the intensity and the patterns of spontaneous running activity in wheel cages were studied in male rats aged 7 weeks to one year. Daily running records were obtained for periods of 12 mo, and 24-hour recordings were made for selected runners in order to study variations in running activity during the day. The data indicate that for rats running over two miles/day, the maximum running intensity can be divided into two groups: a group of high achievers running 8 miles/day; and a group of moderate achievers running 4.8 miles/day. For both groups spontaneous activity reached a maximum after 4-5 weeks. An hourly pattern of running activity during the day was identified in rats of increasing age who averaged 9.0, 4.5, 2.6, and 1.2 miles/day, respectively. Progressive losses were observed in both the speed and the duration of spontaneous running as the rats increased in age, with the intensity of exercise falling below 2 miles/day after 7-8 months of age.

  8. Spontaneous Object Recognition Memory in Aged Rats: Complexity versus Similarity

    ERIC Educational Resources Information Center

    Gamiz, Fernando; Gallo, Milagros

    2012-01-01

    Previous work on the effect of aging on spontaneous object recognition (SOR) memory tasks in rats has yielded controversial results. Although the results at long-retention intervals are consistent, conflicting results have been reported at shorter delays. We have assessed the potential relevance of the type of object used in the performance of…

  9. Brain nitric oxides synthase in major pelvic ganglia of aged (LETO) and diabetic (OLETF) rats.

    PubMed

    Salama, N; Tamura, M; Tsuruo, Y; Ishimura, K; Kagawa, S

    2002-01-01

    This study was conducted to evaluate the effects of aging and diabetes mellitus (DM) on brain nitric oxide synthase (bNOS) expression in major pelvic ganglia (MPG) of rats. Otsuka Long Evans Tokushima Fatty rats (12, 30, and 70 weeks old), which are genetic models with non-insulin-dependent DM (NIDDM), and age-matched nondiabetic Long Evans Tokushima Otsuka controls were used. The MPG of all rats in this study were subjected to cryo-sectioning and staining with bNOS polyclonal AB and rhodamine-conjugated rabbit IgG. Fluorescence intensities of the stained neurons were assessed in randomly selected fields per each specimen. Animals of both groups revealed significant decline in the staining intensity of their neurons with aging and the progress of DM, but diabetic rats showed more decline than controls. In conclusion, both aging and NIDDM could decrease bNOS expression in rat MPG. However, NIDDM has a more evident effect than aging on that expression. The decrease in bNOS may cause a disturbance in functions of the target pelvic structures of these ganglia under both conditions. PMID:12230824

  10. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    SciTech Connect

    Schindler, Matthew K. Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-03-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals.

  11. Mindspan: Lessons from Rat Models of Neurocognitive Aging

    PubMed Central

    Gallagher, Michela; Stocker, Amy; Koh, Ming Teng

    2011-01-01

    Research on the biology of aging seeks to enhance understanding of basic mechanisms and thus support improvements in outcomes throughout the lifespan, including longevity itself, susceptibility to disease, and life-long adaptive capacities. The focus of this review is the use of rats as an animal model of cognitive change during aging, and specifically lessons learned from aging rats in behavioral studies of cognitive processes mediated by specialized neural circuitry. An advantage of this approach is the ability to compare brain aging across species where functional homology exists for specific neural systems; in this article we focus on behavioral assessments that target the functions of the medial temporal lobe and prefrontal cortex. We also take a critical look at studies using calorie restriction (CR) as a well-defined experimental approach to manipulating biological aging. We conclude that the effects of CR on cognitive aging in rats are less well established than commonly assumed, with much less supportive evidence relative to its benefits on longevity and susceptibility to disease, and that more research in this area is necessary. PMID:21411856

  12. Catalpol increases hippocampal neuroplasticity and up-regulates PKC and BDNF in the aged rats.

    PubMed

    Liu, Jing; He, Qiao-Jie; Zou, Wei; Wang, Hong-Xia; Bao, Yong-Ming; Liu, Yu-Xin; An, Li-Jia

    2006-12-01

    Rehmannia, a traditional Chinese medical herb, has a long history in age-related disease therapy. Previous work has indicated that catalpol is a main active ingredient performing neuroprotective effect in rehmannia, while the mechanism underlying the effect remains poorly understood. In this study, we attempt to investigate the effect of catalpol on presynaptic proteins and explore a potential mechanism. The hippocampal levels of GAP-43 and synaptophysin in 3 groups of 4 months (young group), 22-24 months (aged group) and catalpol-treated 22-24 months (catalpol-treated group) rats were evaluated by western blotting. Results clearly showed a significant decrease in synaptophysin (46.6%) and GAP-43 (61.4%) levels in the aged group against the young animals and an increase (45.0% and 31.8% respectively) in the catalpol-treated aged rats in comparison with the untreated aged group. In particular, synaptophysin immunoreactivity (OD) in the dentate granule layer of the hippocampus was increased 0.0251 in the catalpol-treated group as compared with the aged group. The study also revealed a catalpol-associated increase of PKC and BDNF in the hippocampus of the catalpol-treated group in comparison with the aged rats and highly correlated with synaptophysin and GAP-43. Such positive correlations between presynaptic proteins and signaling molecules also existed in the young group. These results suggested that catalpol could increase presynaptic proteins and up-regulate relative signaling molecules in the hippocampus of the aged rats. Consequently, it seemed to indicate that catalpol might ameliorate age-related neuroplasticity loss by "normalizing" presynaptic proteins and their relative signaling pathways in the aged rats. PMID:17078935

  13. Differences in cooperative behavior among Damaraland mole rats are consequences of an age-related polyethism.

    PubMed

    Zöttl, Markus; Vullioud, Philippe; Mendonça, Rute; Torrents Ticó, Miquel; Gaynor, David; Mitchell, Adam; Clutton-Brock, Tim

    2016-09-13

    In many cooperative breeders, the contributions of helpers to cooperative activities change with age, resulting in age-related polyethisms. In contrast, some studies of social mole rats (including naked mole rats, Heterocephalus glaber, and Damaraland mole rats, Fukomys damarensis) suggest that individual differences in cooperative behavior are the result of divergent developmental pathways, leading to discrete and permanent functional categories of helpers that resemble the caste systems found in eusocial insects. Here we show that, in Damaraland mole rats, individual contributions to cooperative behavior increase with age and are higher in fast-growing individuals. Individual contributions to different cooperative tasks are intercorrelated and repeatability of cooperative behavior is similar to that found in other cooperatively breeding vertebrates. Our data provide no evidence that nonreproductive individuals show divergent developmental pathways or specialize in particular tasks. Instead of representing a caste system, variation in the behavior of nonreproductive individuals in Damaraland mole rats closely resembles that found in other cooperatively breeding mammals and appears to be a consequence of age-related polyethism. PMID:27588902

  14. 'When an old rat smells a cat': A decline in defense-related, but not accessory olfactory, Fos expression in aged rats.

    PubMed

    Hunt, Glenn E; Van Nieuwenhuijzen, Petra S; Chan-Ling, Tailoi; McGregor, Iain S

    2011-04-01

    Comparisons were made between young (3-6 months) and aged (20-30 months) Wistar rats on locomotor activity, emergence, social interaction and cat odor avoidance. Aged rats were less active and spent less time in the open field during the emergence test than younger rats. Older rats also showed fewer contacts with a novel conspecific in the social interaction test, although total duration of interaction did not differ. There were very few behavioral differences between male and female rats. Older rats were less reactive than younger rats in a test of cat odor avoidance. However, they expressed similar amounts of cat odor-induced Fos in the posterior accessory olfactory bulb, a critical region for processing the predator odor stimulus. Older rats had reduced Fos expression in several defense-related brain regions that are normally activated by predator odors such as the medial amygdala and dorsal premammillary nucleus. These results indicate that aged rats are less reactive than younger rats to predator odors due to decreased responsiveness in defense-related but not necessarily olfactory circuits. PMID:19394115

  15. Regrowth after skeletal muscle atrophy is impaired in aged rats, despite similar responses in signaling pathways

    PubMed Central

    White, Jena R.; Confides, Amy L.; Moore-Reed, Stephanie; Hoch, Johanna M.; Dupont-Versteegden, Esther E.

    2015-01-01

    Skeletal muscle regrowth after atrophy is impaired in the aged and in this study we hypothesized that this can be explained by a blunted response of signaling pathways and cellular processes during reloading after hind limb suspension in muscles from old rats. Male Brown Norway Fisher 344 rats at 6 (young) and 32 (old) months of age were subjected to normal ambulatory conditions (amb), hind limb suspension for 14 days (HS), and HS followed by reloading through normal ambulation for 14 days (RE); soleus muscles were used for analysis of intracellular signaling pathways and cellular processes. Soleus muscle regrowth was blunted in old compared to young rats which coincided with a recovery of serum IGF-1 and IGFBP-3 levels in young but not old. However, the response to reloading for p-Akt, p-p70s6k and p-GSK3β protein abundance was similar between muscles from young and old rats, even though main effects for age indicate an increase in activation of this protein synthesis pathway in the aged. Similarly, MAFbx mRNA levels in soleus muscle from old rats recovered to the same extent as in the young, while Murf-1 was unchanged. mRNA abundance of autophagy markers Atg5 and Atg7 showed an identical response in muscle from old compared to young rats, but beclin did not. Autophagic flux was not changed at either age at the measured time point. Apoptosis was elevated in soleus muscle from old rats particularly with HS, but recovered in HSRE and these changes were not associated with differences in caspase-3, -8 or-9 activity in any group. Protein abundance of apoptosis repressor with caspase-recruitment domain (ARC), cytosolic EndoG, as well as cytosolic and nuclear apoptosis inducing factor (AIF) were lower in muscle from old rats, and there was no age-related difference in the response to atrophy or regrowth. Soleus muscles from old rats had a higher number of ED2 positive macrophages in all groups and these decreased with HS, but recovered in HSRE in the old, while no

  16. Optical spectroscopy of radiotherapy and photodynamic therapy responses in normal rat skin shows vascular breakdown products

    NASA Astrophysics Data System (ADS)

    Teles de Andrade, Cintia; Nogueira, Marcelo S.; Kanick, Stephen C.; Marra, Kayla; Gunn, Jason; Andreozzi, Jacqueline; Samkoe, Kimberley S.; Kurachi, Cristina; Pogue, Brian W.

    2016-03-01

    Photodynamic therapy (PDT) and radiotherapy are non-systemic cancer treatment options with different mechanisms of damage. So combining these techniques has been shown to have some synergy, and can mitigate their limitations such as low PDT light penetration or radiotherapy side effects. The present study monitored the induced tissue changes after PDT, radiotherapy, and a combination protocol in normal rat skin, using an optical spectroscopy system to track the observed biophysical changes. The Wistar rats were treated with one of the protocols: PDT followed by radiotherapy, PDT, radiotherapy and radiotherapy followed by PDT. Reflectance spectra were collected in order to observe the effects of these combined therapies, especially targeting vascular response. From the reflectance, information about oxygen saturation, met-hemoglobin and bilirubin concentration, blood volume fraction (BVF) and vessel radius were extracted from model fitting of the spectra. The rats were monitored for 24 hours after treatment. Results showed that there was no significant variation in the vessel size or BVF after the treatments. However, the PDT caused a significant increase in the met-hemoglobin and bilirubin concentrations, indicating an important blood breakdown. These results may provide an important clue on how the damage establishment takes place, helping to understand the effect of the combination of those techniques in order to verify the existence of a known synergistic effect.

  17. Daily supplementation with mushroom (Agaricus bisporus) improves balance and working memory in aged rats.

    PubMed

    Thangthaeng, Nopporn; Miller, Marshall G; Gomes, Stacey M; Shukitt-Hale, Barbara

    2015-12-01

    Decline in brain function during normal aging is partly due to the long-term effects of oxidative stress and inflammation. Several fruits and vegetables have been shown to possess antioxidant and anti-inflammatory properties. The present study investigated the effects of dietary mushroom intervention on mobility and memory in aged Fischer 344 rats. We hypothesized that daily supplementation of mushroom would have beneficial effects on behavioral outcomes in a dose-dependent manner. Rats were randomly assigned to receive a diet containing either 0%, 0.5%, 1%, 2%, or 5% lyophilized white button mushroom (Agaricus bisporus); after 8 weeks on the diet, a battery of behavioral tasks was given to assess balance, coordination, and cognition. Rats on the 2% or 5% mushroom-supplemented diet consumed more food, without gaining weight, than rats in the other diet groups. Rats in the 0.5% and 1% group stayed on a narrow beam longer, indicating an improvement in balance. Only rats on the 0.5% mushroom diet showed improved performance in a working memory version of the Morris water maze. When taken together, the most effective mushroom dose that produced improvements in both balance and working memory was 0.5%, equivalent to about 1.5 ounces of fresh mushrooms for humans. Therefore, the results suggest that the inclusion of mushroom in the daily diet may have beneficial effects on age-related deficits in cognitive and motor function. PMID:26475179

  18. Mesenteric lymph flow in adult and aged rats.

    PubMed

    Akl, Tony J; Nagai, Takashi; Coté, Gerard L; Gashev, Anatoliy A

    2011-11-01

    The objective of study was to evaluate the aging-associated changes, contractile characteristics of mesenteric lymphatic vessels (MLV), and lymph flow in vivo in male 9- and 24-mo-old Fischer-344 rats. Lymphatic diameter, contraction amplitude, contraction frequency, and fractional pump flow, lymph flow velocity, wall shear stress, and minute active wall shear stress load were determined in MLV in vivo before and after N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) application at 100 μM. The active pumping of the aged rat MLV in vivo was found to be severely depleted, predominantly through the aging-associated decrease in lymphatic contractile frequency. Such changes correlate with enlargement of aged MLV, which experienced much lower minute active shear stress load than adult vessels. At the same time, pumping in aged MLV in vivo may be rapidly increased back to levels of adult vessels predominantly through the increase in contraction frequency induced by nitric oxide (NO) elimination. Findings support the idea that in aged tissues surrounding the aged MLV, the additional source of some yet unlinked lymphatic contraction-stimulatory metabolites is counterbalanced or blocked by NO release. The comparative analysis of the control data obtained from experiments with both adult and aged MLV in vivo and from isolated vessel-based studies clearly demonstrated that ex vivo isolated lymphatic vessels exhibit identical contractile characteristics to lymphatic vessels in vivo. PMID:21873496

  19. Coccomyxa Gloeobotrydiformis Improves Learning and Memory in Intrinsic Aging Rats.

    PubMed

    Sun, Luning; Jin, Ying; Dong, Liming; Sui, Hai-Juan; Sumi, Ryo; Jahan, Rabita; Hu, Dahai; Li, Zhi

    2015-01-01

    Declining in learning and memory is one of the most common and prominent problems during the aging process. Neurotransmitter changes, oxidative stress, mitochondrial dysfunction and abnormal signal transduction were considered to participate in this process. In the present study, we examined the effects of Coccomyxa gloeobotrydiformis (CGD) on learning and memory ability of intrinsic aging rats. As a result, CGD treated (50 mg/kg·d or 100 mg/kg ·d for a duration of 8 weeks) 22-month-old male rats, which have shown significant improvement on learning and spatial memory ability compared with control, which was evidently revealed in both the hidden platform tasks and probe trials. The following immunohistochemistry and Western blot experiments suggested that CGD could increase the content of Ach and thereby improve the function of the cholinergic neurons in the hippocampus, and therefore also improving learning and memory ability of the aged rats by acting as an anti-inflammatory agent. The effects of CGD on learning and memory might also have an association with the ERK/CREB signalling. The results above suggest that the naturally made drug CGD may have several great benefit as a multi-target drug in the process of prevention and/or treatment of age-dependent cognitive decline and aging process. PMID:26078724

  20. Dose-Dependent Effects of Walnuts on Motor and Cognitive Function in Aged Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show decrements in performance on motor and cognitive tasks that require the use of spatial learning and memory. Previously we have shown that these deficits can be reversed by the polyphenolics in fruits and vegetables. Walnuts, which contain the omega-3 fatty acids alpha-linolenic acid (...

  1. Aging affects the responsiveness of rat peritoneal macrophages to GM-CSF and IL-4.

    PubMed

    Dimitrijević, Mirjana; Stanojević, Stanislava; Blagojević, Veljko; Ćuruvija, Ivana; Vujnović, Ivana; Petrović, Raisa; Arsenović-Ranin, Nevena; Vujić, Vesna; Leposavić, Gordana

    2016-04-01

    Macrophages undergo significant functional alterations during aging. The aim of the present study was to investigate changes of rat macrophage functions and response to M1/M2 polarization signals with age. Therefore, resident and thioglycollate-elicited peritoneal macrophages from young (3-month-old) and aged (18-19-month-old) rats were tested for phagocytic capacity and ability to secrete inflammatory mediators following in vitro stimulation with LPS and GM-CSF, and IL-4, prototypic stimulators for classically (M1) and alternatively activated (M2) macrophages, respectively. Aging increased the frequency of monocyte-derived (CCR7+ CD68+) and the most mature (CD163+ CD68+) macrophages within resident and thioglycollate-elicited peritoneal macrophages, respectively. The ability to phagocyte zymosan of none of these two cell subsets was affected by either LPS and GM-CSF or IL-4. The upregulated production of IL-1β, IL-6 and IL-10 and downregulated that of TGF-β was observed in response to LPS in resident and thioglycollate-elicited macrophages from rats of both ages. GM-CSF elevated production of IL-1β and IL-6 in resident macrophages from aged rats and in thioglycollate-elicited macrophages from young rats. Unexpectedly, IL-4 augmented production of proinflammatory mediators, IL-1β and IL-6, in resident macrophages from aged rats. In both resident and thioglycollate-elicited macrophages aging decreased NO/urea ratio, whereas LPS but not GM-SCF, shifted this ratio toward NO in the macrophages from animals of both ages. Conversely, IL-4 reduced NO/urea ratio in resident and thioglycollate-elicited macrophages from young rats only. In conclusion, our study showed that aging diminished GM-CSF-triggered polarization of elicited macrophages and caused paradoxical IL-4-driven polarization of resident macrophages toward proinflammatory M1 phenotype. This age-related deregulation of macrophage inflammatory mediator secretion and phagocytosis in response to M1/M2

  2. Alcohol-Preferring Rats Show Goal Oriented Behaviour to Food Incentives but Are Neither Sign-Trackers Nor Impulsive

    PubMed Central

    Peña-Oliver, Yolanda; Giuliano, Chiara; Goodlett, Charles R.; Robbins, Trevor W.; Dalley, Jeffrey W.; Everitt, Barry J.

    2015-01-01

    Drug addiction is often associated with impulsivity and altered behavioural responses to both primary and conditioned rewards. Here we investigated whether selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) rats show differential levels of impulsivity and conditioned behavioural responses to food incentives. P and NP rats were assessed for impulsivity in the 5-choice serial reaction time task (5-CSRTT), a widely used translational task in humans and other animals, as well as Pavlovian conditioned approach to measure sign- and goal-tracking behaviour. Drug-naïve P and NP rats showed similar levels of impulsivity on the 5-CSRTT, assessed by the number of premature, anticipatory responses, even when the waiting interval to respond was increased. However, unlike NP rats, P rats were faster to enter the food magazine and spent more time in this area. In addition, P rats showed higher levels of goal-tracking responses than NP rats, as measured by the number of magazine nose-pokes during the presentation of a food conditioned stimulus. By contrast, NP showed higher levels of sign-tracking behaviour than P rats. Following a 4-week exposure to intermittent alcohol we confirmed that P rats had a marked preference for, and consumed more alcohol than, NP rats, but were not more impulsive when re-tested in the 5-CSRTT. These findings indicate that high alcohol preferring and drinking P rats are neither intrinsically impulsive nor do they exhibit impulsivity after exposure to alcohol. However, P rats do show increased goal-directed behaviour to food incentives and this may be associated with their strong preference for alcohol. PMID:26098361

  3. Alcohol-Preferring Rats Show Goal Oriented Behaviour to Food Incentives but Are Neither Sign-Trackers Nor Impulsive.

    PubMed

    Peña-Oliver, Yolanda; Giuliano, Chiara; Economidou, Daina; Goodlett, Charles R; Robbins, Trevor W; Dalley, Jeffrey W; Everitt, Barry J

    2015-01-01

    Drug addiction is often associated with impulsivity and altered behavioural responses to both primary and conditioned rewards. Here we investigated whether selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) rats show differential levels of impulsivity and conditioned behavioural responses to food incentives. P and NP rats were assessed for impulsivity in the 5-choice serial reaction time task (5-CSRTT), a widely used translational task in humans and other animals, as well as Pavlovian conditioned approach to measure sign- and goal-tracking behaviour. Drug-naïve P and NP rats showed similar levels of impulsivity on the 5-CSRTT, assessed by the number of premature, anticipatory responses, even when the waiting interval to respond was increased. However, unlike NP rats, P rats were faster to enter the food magazine and spent more time in this area. In addition, P rats showed higher levels of goal-tracking responses than NP rats, as measured by the number of magazine nose-pokes during the presentation of a food conditioned stimulus. By contrast, NP showed higher levels of sign-tracking behaviour than P rats. Following a 4-week exposure to intermittent alcohol we confirmed that P rats had a marked preference for, and consumed more alcohol than, NP rats, but were not more impulsive when re-tested in the 5-CSRTT. These findings indicate that high alcohol preferring and drinking P rats are neither intrinsically impulsive nor do they exhibit impulsivity after exposure to alcohol. However, P rats do show increased goal-directed behaviour to food incentives and this may be associated with their strong preference for alcohol. PMID:26098361

  4. Aging induced cortical drive alterations during sleep in rats.

    PubMed

    Ciric, Jelena; Lazic, Katarina; Petrovic, Jelena; Kalauzi, Aleksandar; Saponjic, Jasna

    2015-03-01

    We followed the impact of healthy aging on cortical drive during sleep in rats by using the corticomuscular coherence (CMC). We employed the chronic electrodes implantation for sleep recording in adult, male Wistar rats, and followed the aging impact during sleep from 3 to 5.5 months age. We have analyzed the sleep/wake states architecture, and the sleep/wake state related EEG microstructure and CMCs. We evidenced the topographically distinct impact of aging on sleep/wake states architecture within the sensorimotor (SMCx) vs. motor cortex (MCx) from 4.5 to 5.5 months age. Healthy aging consistently altered only the SMCx sleep/wake states architecture, and increased the delta and beta CMCs through both cortical drives during Wake, but only through the MCx drive during REM. According to the delta and beta CMCs values, aging impact through the SMCx drive was opposite, but it was convergent through the MCx drive during Wake vs. REM, and there was a dual and inverse mode for the motor control during REM. PMID:25773067

  5. Like cognitive function, decision making across the life span shows profound age-related changes

    PubMed Central

    Tymula, Agnieszka; Rosenberg Belmaker, Lior A.; Ruderman, Lital; Glimcher, Paul W.; Levy, Ifat

    2013-01-01

    It has long been known that human cognitive function improves through young adulthood and then declines across the later life span. Here we examined how decision-making function changes across the life span by measuring risk and ambiguity attitudes in the gain and loss domains, as well as choice consistency, in an urban cohort ranging in age from 12 to 90 y. We identified several important age-related patterns in decision making under uncertainty: First, we found that healthy elders between the ages of 65 and 90 were strikingly inconsistent in their choices compared with younger subjects. Just as elders show profound declines in cognitive function, they also show profound declines in choice rationality compared with their younger peers. Second, we found that the widely documented phenomenon of ambiguity aversion is specific to the gain domain and does not occur in the loss domain, except for a slight effect in older adults. Finally, extending an earlier report by our group, we found that risk attitudes across the life span show an inverted U-shaped function; both elders and adolescents are more risk-averse than their midlife counterparts. Taken together, these characterizations of decision-making function across the life span in this urban cohort strengthen the conclusions of previous reports suggesting a profound impact of aging on cognitive function in this domain. PMID:24082105

  6. Effects of exposure to heavy particles and aging on object recognition memory in rats

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard; Joseph, James; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty; Shannahan, Ryan; Hering, Kathleen

    Exposure to HZE particles produces changes in neurocognitive performance. These changes, including deficits in spatial learning and memory, object recognition memory and operant responding, are also observed in the aged organism. As such, it has been proposed that exposure to heavy particles produces "accelerated aging". Because aging is an ongoing process, it is possible that there would be an interaction between the effects of exposure and the effects of aging, such that doses of HZE particles that do not affect the performance of younger organisms will affect the performance of organisms as they age. The present experiments were designed to test the hypothesis that young rats that had been exposed to HZE particles would show a progressive deterioration in object recognition memory as a function of the age of testing. Rats were exposed to 12 C, 28 S or 48 Ti particles at the N.A.S.A. Space Radiation Laboratory at Brookhaven National Laboratory. Following irradiation the rats were shipped to UMBC for behavioral testing. HZE particle-induced changes in object recognition memory were tested using a standard procedure: rats were placed in an open field and allowed to interact with two identical objects for up to 30 sec; twenty-four hrs later the rats were again placed in the open field, this time containing one familiar and one novel object. Non-irradiated control animals spent significantly more time with the novel object than with the familiar object. In contrast, the rats that been exposed to heavy particles spent equal amounts of time with both the novel and familiar object. The lowest dose of HZE particles which produced a disruption of object recognition memory was determined three months and eleven months following exposure. The threshold dose needed to disrupt object recognition memory three months following irradiation varied as a function of the specific particle and energy. When tested eleven months following irradiation, doses of HZE particles that did

  7. Female rats exposed to stress and alcohol show impaired memory and increased depressive-like behaviors.

    PubMed

    Gomez, J L; Luine, V N

    2014-01-17

    Exposure to daily life stressors is associated with increases in anxiety, depression, and overall negative affect. Alcohol or other psychoactive drugs are often used to alleviate stress effects. While females are more than twice as likely to develop mood disorders and are more susceptible to dependency than males, they are infrequently examined. In this study, female rats received no stress/no alcohol control (CON), alcohol alone (ALC), stress alone (STR), or stress plus alcohol (STR+ALC). Stress consisted of restraint for 6h/day/7days, and alcohol was administered immediately following restraint via gastric gavage at a dose of 2.0g/kg. Dependent measures included tests utilizing object recognition (OR), Y-maze, elevated plus maze (EPM), forced swim (FST), blood alcohol content, corticosterone levels, and body weights. ALC, STR+ALC, but not stress alone, impaired memory on OR. All treatments impaired spatial memory on the Y-maze. Anxiety was not affected on the EPM, but rats treated with alcohol or in combination with stress showed increased immobility on the FST, suggestive of alcohol-induced depression. Previously, we found alcohol reversed deleterious effects of stress on memory and mood in males, but current results show that females reacted negatively when the two treatments were combined. Thus, responses to alcohol, stress and their combination suggest that sex specific treatments are needed for stress-induced behavioral changes and that self-medicating with alcohol to cope with stress maybe deleterious in females. PMID:24096191

  8. Female Rats Exposed to Stress and Alcohol Show Impaired Memory and Increased Depressive-like Behaviors

    PubMed Central

    Gomez, J.L.; Luine, V.N.

    2013-01-01

    Exposure to daily life stressors is associated with increases in anxiety, depression, and overall negative affect. Alcohol or other psychoactive drugs are often used to alleviate stress effects. While females are more than twice as likely to develop mood disorders and are more susceptible to dependency than males, they are infrequently examined. In this study, female rats received no stress/no alcohol control (CON), alcohol alone (ALC), stress alone (STR), or stress plus alcohol (STR+ALC). Stress consisted of restraint for 6hr/day/7days, and alcohol was administered immediately following restraint via gastric gavage at a dose of 2.0 g/kg. Dependent measures included tests utilizing object recognition (OR), Y-maze, elevated plus maze (EPM), forced swim (FST), blood alcohol content, corticosterone levels, and body weights. ALC, STR+ALC, but not stress alone, impaired memory on OR. All treatments impaired spatial memory on the Y-maze. Anxiety was not affected on the EPM, but rats treated with alcohol or in combination with stress showed increased immobility on the FST, suggestive of alcohol-induced depression. Previously, we found alcohol reversed deleterious effects of stress on memory and mood in males, but current results show females reacted negatively when the two treatments were combined. Thus, responses to alcohol, stress and their combination suggest that sex specific treatments are needed for stress-induced behavioral changes and that self-medicating with alcohol to cope with stress maybe deleterious in females. PMID:24096191

  9. Oxidative stress induces the decline of brain EPO expression in aging rats.

    PubMed

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (p<0.05). Also, the amount of β-galactosidase and the MDA level in the hippocampus were significantly increased but the SOD activity was significantly decreased (p<0.05, 0.01 and 0.01, respectively). Similar to aging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (p<0.05) at 150mg·kg(-1) and 250mg·kg(-1). Interestingly, negative correlations were found between EPOR (r=-0

  10. Sterols from Mytilidae Show Anti-Aging and Neuroprotective Effects via Anti-Oxidative Activity

    PubMed Central

    Sun, Yujuan; Lin, Yanfei; Cao, Xueli; Xiang, Lan; Qi, Jianhua

    2014-01-01

    For screening anti-aging samples from marine natural products, K6001 yeast strain was employed as a bioassay system. The active mussel extract was separated to give an active sterol fraction (SF). SF was further purified, and four sterol compounds were obtained. Their structures were determined to be cholesterol (CHOL), brassicasterol, crinosterol, and 24-methylenecholesterol. All compounds showed similar anti-aging activity. To understand the action mechanism involved, anti-oxidative experiments, reactive oxygen species (ROS) assays, and malondialdehyde (MDA) tests were performed on the most abundant compound, CHOL. Results indicated that treatment with CHOL increases the survival rate of yeast under oxidative stress and decreases ROS and MDA levels. In addition, mutations of uth1, skn7, sod1, and sod2, which feature a K6001 background, were employed and the lifespans of the mutations were not affected by CHOL. These results demonstrate that CHOL exerts anti-aging effects via anti-oxidative stress. Based on the connection between neuroprotection and anti-aging, neuroprotective experiments were performed in PC12 cells. Paraquat was used to induce oxidative stress and the results showed that the CHOL and SF protect the PC12 cells from the injury induced by paraquat. In addition, these substance exhibited nerve growth factor (NGF) mimic activities again confirmed their neuroprotective function. PMID:25429428

  11. Endogenous leptin contributes to baroreflex suppression within the solitary tract nucleus of aged rats.

    PubMed

    Arnold, Amy C; Diz, Debra I

    2014-12-01

    The decline in cardiovagal baroreflex function that occurs with aging is accompanied by an increase in circulating leptin levels. Our previous studies showed that exogenous leptin impairs the baroreflex sensitivity for control of heart rate in younger rats, but the contribution of this hormone to baroreflex dysfunction during aging is unknown. Thus we assessed the effect of bilateral leptin microinjection (500 fmol/60 nl) within the solitary tract nucleus (NTS) on the baroreflex sensitivity in older (66 ± 2 wk of age) urethane/chloralose anesthetized Sprague-Dawley rats with elevated circulating leptin levels. In contrast to the 63% reduction observed in younger rats, leptin did not alter the baroreflex sensitivity for bradycardia evoked by phenylephrine in older rats (0.76 ± 0.19 baseline vs. 0.71 ± 0.15 ms/mmHg after leptin; P = 0.806). We hypothesized that this loss of sensitivity reflected endogenous suppression of the baroreflex by elevated leptin, rather than cardiovascular resistance to the peptide. Indeed, NTS administration of a leptin receptor antagonist (75 pmol/120 nl) improved the baroreflex sensitivity for bradycardia in older rats (0.73 ± 0.13 baseline vs. 1.19 ± 0.26 at 10 min vs. 1.87 ± 0.32 at 60 min vs. 1.22 ± 0.54 ms/mmHg at 120 min; P = 0.002), with no effect in younger rats. There was no effect of the leptin antagonist on the baroreflex sensitivity for tachycardia, responses to cardiac vagal chemosensitive fiber activation, or resting hemodynamics in older rats. These findings suggest that the actions of endogenous leptin within the NTS, either produced locally or derived from the circulation, contribute to baroreflex suppression during aging. PMID:25260611

  12. Endogenous leptin contributes to baroreflex suppression within the solitary tract nucleus of aged rats

    PubMed Central

    Arnold, Amy C.

    2014-01-01

    The decline in cardiovagal baroreflex function that occurs with aging is accompanied by an increase in circulating leptin levels. Our previous studies showed that exogenous leptin impairs the baroreflex sensitivity for control of heart rate in younger rats, but the contribution of this hormone to baroreflex dysfunction during aging is unknown. Thus we assessed the effect of bilateral leptin microinjection (500 fmol/60 nl) within the solitary tract nucleus (NTS) on the baroreflex sensitivity in older (66 ± 2 wk of age) urethane/chloralose anesthetized Sprague-Dawley rats with elevated circulating leptin levels. In contrast to the 63% reduction observed in younger rats, leptin did not alter the baroreflex sensitivity for bradycardia evoked by phenylephrine in older rats (0.76 ± 0.19 baseline vs. 0.71 ± 0.15 ms/mmHg after leptin; P = 0.806). We hypothesized that this loss of sensitivity reflected endogenous suppression of the baroreflex by elevated leptin, rather than cardiovascular resistance to the peptide. Indeed, NTS administration of a leptin receptor antagonist (75 pmol/120 nl) improved the baroreflex sensitivity for bradycardia in older rats (0.73 ± 0.13 baseline vs. 1.19 ± 0.26 at 10 min vs. 1.87 ± 0.32 at 60 min vs. 1.22 ± 0.54 ms/mmHg at 120 min; P = 0.002), with no effect in younger rats. There was no effect of the leptin antagonist on the baroreflex sensitivity for tachycardia, responses to cardiac vagal chemosensitive fiber activation, or resting hemodynamics in older rats. These findings suggest that the actions of endogenous leptin within the NTS, either produced locally or derived from the circulation, contribute to baroreflex suppression during aging. PMID:25260611

  13. The influence of persistent crowding on the age changes of behavioral parameters and survival characteristics of rats.

    PubMed

    Skalicky, M; Bubna-Littitz, H; Hofecker, G

    1984-12-01

    One hundred fifty-six male Sprague-Dawley rats were submitted to crowding (12 rats/Makrolon-IV cage) from an age of 5 months onwards. An equal number from the same age cohort served as a control (6 rats/Makrolon-IV cage). As part of an age-test program, behavioral parameters (spontaneous motor activity, reactive motor activity and maze-learning ability) were measured at various ages between 8 and 30 months. The rats were sacrificed for additional measurements after the behavioral tests. Survival curves and age-specific mortality rates were calculated for those rats which died spontaneously in the course of the study. Control rats showed a significant decrease in spontaneous motor activity after an age of 18 months. Reactive motor activity of the controls revealed a fall in the number of large movements between 9 and 15 months, whereas the number of small movements increased up to an age of 30 months. Crowding conditions increased significantly both spontaneous and reactive activity. Maze-learning ability declined significantly with age in the controls whereas crowded rats revealed a tendency to better performance which seemed to be submitted to a seasonal rhythm. Crowded rats showed an improved survival characteristic, beginning at an age of 700 days. Mortality curves turned out to be distinct and parallel by straight line regression. It has been concluded that the positive effects of crowding on behavioral parameters and survival could be attributed to a decrease in vulnerability rather than to a lowered rate of aging. PMID:6521513

  14. Benzonidazole levels in blood vary with age in rats.

    PubMed

    Bulffer, Romina Fernanda; Castro, José Alberto; Fanelli, Silvia Laura

    2011-05-01

    Benznidazole (Bz) exhibits toxic side effects in animal studies and clinical use. Reductive metabolism of Bz in liver microsomes modulates the duration of its chemotherapeutic effect and its toxicity. The rate of this metabolism depends on age and is less intense in newborns and youngsters than in adults. In the present study, we determined Bz blood levels in rats of different ages that received Bz intragastrically (100 mg/kg). We developed and validated a high-pressure liquid chromatography with UV detector method for determination of Bz levels in whole blood. Bz levels were significantly higher and persisted for longer periods of time in the blood of young rats when compared to that of adult animals. PMID:21655830

  15. Behavioral reinforcement of long-term potentiation is impaired in aged rats with cognitive deficiencies.

    PubMed

    Bergado, J A; Almaguer, W; Ravelo, J; Rosillo, J C; Frey, J U

    2001-01-01

    Behavioral stimuli with emotional/motivational content can reinforce long-term potentiation in the dentate gyrus, if presented within a distinct time window. A similar effect can be obtained by stimulating the basolateral amygdala, a limbic structure related to emotions. We have previously shown that aging impairs amygdala-hippocampus interactions during long-term potentiation. In this report we show that behavioral reinforcement of long-term potentiation is also impaired in aged rats with cognitive deficits. While among young water-deprived animals drinking 15 min after induction of long-term potentiation leads to a significant prolongation of potentiation, cognitively impaired aged rats are devoid of such reinforcing effects. In contrast, a slight but statistically significant depression develops after drinking in this group of animals. We suggest that an impaired mechanism of emotional/motivational reinforcement of synaptic plasticity might be functionally related to the cognitive deficits shown by aged animals. PMID:11738126

  16. Effect of dehydroepiandrosterone treatment on hormone levels and antioxidant parameters in aged rats.

    PubMed

    Yin, F J; Kang, J; Han, N N; Ma, H T

    2015-01-01

    The aim of the current study was to evaluate the effect of chronic dehydroepiandrosterone (DHEA) administration on steroid hormones and antioxidant parameters in aged rats. To this end, three groups of Sprague-Dawley rats were compared: young (3 months of age) untreated; aged (19 months old) untreated; and aged rats treated with 20 mg/kg DHEA for 8 weeks. Major organs of aged rats in the untreated group demonstrated physiological atrophy, compared to those of young rats; this effect appeared to have been partially reversed by DHEA treatment. Testosterone and estradiol contents were significantly decreased and aldosterone significantly increased in aged untreated, compared to young untreated rats. Steroid hormone levels were obviously reversed, however, in aged rats treated with DHEA. Additionally, superoxide dismutase activity in serum, brain, heart, and liver was decreased, and maleic dialdehyde content in heart was markedly increased in untreated aged, compared to young, rats. Importantly, these changes in brain and heart of aged rats were reversed by DHEA treatment. Heme oxygenase mRNA levels were increased and inducible nitric oxide synthase mRNA levels decreased in aged, compared to young, rats; DHEA treatment appeared to reverse these changes. These results indicate that chronic DHEA administration may have effects on steroid hormone levels and antioxidant parameters in aged rats and result in postponement of the aging process. PMID:26400361

  17. Novel alternative splice variants of rat phosphodiesterase 7B showing unique tissue-specific expression and phosphorylation.

    PubMed Central

    Sasaki, Takashi; Kotera, Jun; Omori, Kenji

    2002-01-01

    cDNA species coding for novel variants of cyclic-AMP-specific phosphodiesterases (PDEs), namely the PDE7B family, were isolated from rats and characterized. Rat PDE7B1 (RNPDE7B1) was composed of 446 amino acid residues. Rat PDE7B2 (RNPDE7B2) and PDE7B3 (RNPDE7B3), which possessed unique N-terminal sequences, consisted of 359 and 459 residues respectively. Northern hybridization analysis showed that rat PDE7B transcripts were particularly abundant in the striatum and testis. PCR analyses revealed that rat PDE7B2 transcripts were restricted to the testis and that low levels of PDE7B3 transcripts were expressed in the heart, lung and skeletal muscle. In situ hybridization analysis demonstrated that rat PDE7B transcripts were expressed in striatal neurons and spermatocytes. In spermatocytes, rat PDE7B transcripts were expressed in a stage-specific manner during spermatogenesis. The K(m) values of recombinant rat PDE7B1, PDE7B2 and PDE7B3 for cAMP were 0.05, 0.07 and 0.05 microM respectively. Each rat PDE7B variant was the most sensitive to 3-isobutyl-1-methylxanthine (IC(50) 1.5-2.1 microM). Two phosphorylation sites for cAMP-dependent protein kinase (PKA) were found in rat PDE7B1 and PDE7B3, whereas rat PDE7B2 possessed one site. PKA-dependent phosphorylation was observed in C-terminal phosphorylation sites of three rat PDE7B variants, in addition to unique N-terminal regions of rat PDE7B1 and PDE7B3. Unique tissue distribution and PKA-dependent phosphorylation of PDE7B variants suggested that each variant has a specific role for cellular functions via cAMP signalling in various tissues. PMID:11772393

  18. Effect of a water-maze procedure on the redox mechanisms in brain parts of aged rats

    PubMed Central

    Krivova, Natalia A.; Zaeva, Olga B.; Grigorieva, Valery A.

    2015-01-01

    The Morris water maze (MWM) is a tool for assessment of age-related modulations spatial learning and memory in laboratory rats. In our work was investigated the age-related decline of MWM performance in 11-month-old rats and the effect exerted by training in the MWM on the redox mechanisms in rat brain parts. Young adult (3-month-old) and aged (11-month-old) male rats were trained in the MWM. Intact animals of the corresponding age were used as the reference groups. The level of pro- and antioxidant capacity in brain tissue homogenates was assessed using the chemiluminescence method. A reduced performance in the MWM test was found in 11-month-old rats: at the first day of training they showed only 30% of successful MWM trials. However, at the last training day the percentage of successful trials was equal for young adult and aged animals. This indicates that the aged 11-month-old rats can successfully learn in MWM. Therewith, the MWM spatial learning procedure itself produces changes in different processes of redox homeostasis in 11-month-old and 3-month-old rats as compared to intact animals. Young adult rats showed a decrease in prooxidant capacity in all brain parts, while 11-month-old rats demonstrated an increase in antioxidant capacity in the olfactory bulb, pons + medulla oblongata and frontal lobe cortex. Hence, the MWM procedure activates the mechanisms that restrict the oxidative stress in brain parts. The obtained results may be an argument for further development of the animal training procedures aimed to activate the mechanisms that can prevent the age-related deterioration of performance in the learning test. This may be useful not only for the development of training procedures applicable to human patients with age-related cognitive impairments, but also for their rehabilitation. PMID:25814952

  19. Mitochondrial dysfunction in aging rat brain following transient global ischemia.

    PubMed

    Xu, Kui; Puchowicz, Michelle A; Sun, Xiaoyan; LaManna, Joseph C

    2008-01-01

    Aged rat brain is more sensitive to reperfusion injury induced by cardiac arrest and resuscitation. The mitochondrial respiratory chain, the major source of free radicals during reperfusion, is likely to be the target of lipid peroxidation. Previous work has shown a higher mortality and lower hippocampal neuronal survival in older rats. 4-hydroxy-2-nonenal (HNE), a major product of lipid peroxidation, was found to be elevated in cortex and brainstem after resuscitation. In this study we investigated the acute changes of mitochondrial function in aging rat brain following cardiac arrest and resuscitation; the effect of an antioxidant, alpha-phenyl-tert-butyl-nitrone (PBN) was also tested. Fischer 344 rats, 6 and 24-month old, were subjected to cardiac arrest (7-10 minutes) and allowed to recover 1 hour after resuscitation. Mitochondria of cortex and brainstem were isolated and assayed for respiratory function. Compared to their respective non-arrested control group, 1h untreated groups (both 6 month and 24 month) had similar state 3 (ADP-stimulated) but higher state 4 (resting state) respiratory rates. The respiratory control ratio (state 3/state 4) of cortex in the 1h untreated group was 26% lower than the non-arrested control group; similar results were found in brainstem. The decreased mitochondrial respiratory function was improved by PBN treatment. HNE-modified mitochondrial proteins were elevated 1h after resuscitation, with an evident change in the aged. Treatment with PBN reduced the elevated HNE production in mitochondria of cortex. The data suggest (i) there is increased sensitivity to lipid peroxidation with aging, (ii) mitochondrial respiratory function related to coupled oxidation decreases following cardiac arrest and resuscitation, and (iii) treatment with antioxidant, such as PBN, reduces the oxidative damage following cardiac arrest and resuscitation. PMID:18290349

  20. Sexual Dimorphism in the Expression of Mitochondria-Related Genes in Rat Heart at Different Ages

    PubMed Central

    Vijay, Vikrant; Han, Tao; Moland, Carrie L.; Kwekel, Joshua C.; Fuscoe, James C.; Desai, Varsha G.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week), adult (21-week), and old (78-week) male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05) sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males. PMID:25615628

  1. Aging rat vestibular ganglion: I. Quantitative light microscopic evaluation.

    PubMed

    Alidina, A; Lyon, M J

    1990-01-01

    This study was undertaken to quantify age-related changes in the rat vestibular ganglion. Cell number, diameter, and proximal-distal distribution based on size were evaluated. Serial 5-microns plastic sections of the vestibular ganglion from 15 female Wistar rats were examined. Rats were divided into three age groups: young (Y, 3 to 5 months, n = 5), old (0, 24 to 26 months, n = 3), and very old (VO, 28 to 31 months, n = 7). Quantitative analysis indicated no significant differences (P less than .05) in the estimated number of ganglion cells (mean: Y = 1,690, 0 = 2,257, VO = 1,678), ganglion cell profile diameters (mean: Y = 22.5 microns, n = 2,886; O = 23.7 microns, n = 2,313; VO = 22.8 microns, n = 4,061), or proximal-distal localization (proximal: 22.3 microns, 24.4 microns, 22.7 microns; middle: 22.6 microns, 23.1 microns, 22.4 microns; distal: 23.3 microns, 23.4 microns, 23.7 microns; Y, O, and VO, respectively). When pooled, the old animals tended to have slightly larger cell profiles than the other groups. We noted a dramatic age-related increase of aging pigment within the ganglion cell profiles, making the old and very old animals easily distinguishable from the young. In most of the cell profiles, the aging pigment was more or less uniformly distributed throughout the cytoplasm. However, in some, aging pigment was accumulated at one pole of the cell profile. While no typical degenerating cellular profiles were found in any of the sections, several of the ganglion cell profiles from the old animals revealed dense cytoplasm, possibly indicating an early stage of degeneration. PMID:2382785

  2. Eleutheroside B or E enhances learning and memory in experimentally aged rats.

    PubMed

    Huang, Debin; Hu, Zehua; Yu, Zhaofen

    2013-04-25

    Eleutheroside B or E, the main component of Acanthopanax, can relieve fatigue, enhance memory, and improve human cognition. Numerous studies have confirmed that high doses of acetylcholine significantly attenuate clinical symptoms and delay the progression of Alzheimer's disease. The present study replicated a rat model of aging induced by injecting quinolinic acid into the hippocampal CA1 region. These rats were intraperitoneally injected with low, medium and high doses of eleutheroside B or E (50, 100, 200 mg/kg), and rats injected with Huperzine A or PBS were used as controls. At 4 weeks after administration, behavioral tests showed that the escape latencies and errors in searching for the platform in a Morris water maze were dose-dependently reduced in rats treated with medium and high-dose eleutheroside B or E. Hematoxylin-eosin staining showed that the number of surviving hippocampal neurons was greater and pathological injury was milder in three eleutheroside B or E groups compared with model group. Hippocampal homogenates showed enhanced cholinesterase activity, and dose-dependent increases in acetylcholine content and decreases in choline content following eleutheroside B or E treatment, similar to those seen in the Huperzine A group. These findings indicate that eleutheroside B or E improves learning and memory in aged rats. These effects of eleutheroside B or E may be mediated by activation of cholinesterase or enhanced reuse of choline to accelerate the synthesis of acetylcholine in hippocampal neurons. PMID:25206404

  3. Hypoxia Inducible Factor-1 (HIF-1) Independent Microvascular Angiogenesis in the Aged Rat Brain

    PubMed Central

    Ndubuizu, Obinna I.; Tsipis, Constantinos P.; Li, Ang; LaManna, Joseph C.

    2010-01-01

    Angiogenesis is a critical component of mammalian brain adaptation to prolonged hypoxia. Hypoxia-induced angiogenesis is mediated by hypoxia inducible factor-1 (HIF-1) dependent transcriptional activation of growth factors, such as vascular endothelial growth factor (VEGF). Microvascular angiogenesis occurs over a three week period in the rodent brain. We have recently reported that HIF-1α accumulation and transcriptional activation of HIF target genes in the aged cortex of 24 month F344 rats is significantly attenuated during acute hypoxic exposure. In the present study, we show that cortical HIF-1α accumulation and HIF-1 activation remains absent during chronic hypoxic exposure in the aged rat brain (24 month F344). Despite this lack of HIF-1 activation, there is no significant difference in baseline or post-hypoxic brain capillary density counts between the young (3 month F344) and old age groups. VEGF mRNA and protein levels are significantly elevated in the aged cortex despite the lack of HIF-1 activation. Other HIF-independent mediators of hypoxia inducible genes could be involved during chronic hypoxia in the aged brain. PPAR-γ coactivator (PGC)-1α, a known regulator of VEGF gene transcription, is elevated in the young and aged cortex during the chronic hypoxic exposure. Overall, our results suggest a compensatory HIF-1 independent preservation of hypoxic-induced microvascular angiogenesis in the aged rat brain. PMID:20875806

  4. Insulin-like growth factor 2 rescues aging-related memory loss in rats.

    PubMed

    Steinmetz, Adam B; Johnson, Sarah A; Iannitelli, Dylan E; Pollonini, Gabriella; Alberini, Cristina M

    2016-08-01

    Aging is accompanied by declines in memory performance, and particularly affects memories that rely on hippocampal-cortical systems, such as episodic and explicit. With aged populations significantly increasing, the need for preventing or rescuing memory deficits is pressing. However, effective treatments are lacking. Here, we show that the level of the mature form of insulin-like growth factor 2 (IGF-2), a peptide regulated in the hippocampus by learning, required for memory consolidation and a promoter of memory enhancement in young adult rodents, is significantly reduced in hippocampal synapses of aged rats. By contrast, the hippocampal level of the immature form proIGF-2 is increased, suggesting an aging-related deficit in IGF-2 processing. In agreement, aged compared to young adult rats are deficient in the activity of proprotein convertase 2, an enzyme that likely mediates IGF-2 posttranslational processing. Hippocampal administration of the recombinant, mature form of IGF-2 rescues hippocampal-dependent memory deficits and working memory impairment in aged rats. Thus, IGF-2 may represent a novel therapeutic avenue for preventing or reversing aging-related cognitive impairments. PMID:27318130

  5. Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading

    PubMed Central

    Thorpe, Chavaunne T.; Riley, Graham P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R. C.

    2014-01-01

    Some tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), act as energy stores, stretching and recoiling to increase efficiency during locomotion. Our previous observations of rotation in response to applied strain in SDFT fascicles suggest a helical structure, which may provide energy-storing tendons with a greater ability to extend and recoil efficiently. Despite this specialization, energy-storing tendons are prone to age-related tendinopathy. The aim of this study was to assess the effect of cyclic fatigue loading (FL) on the microstructural strain response of SDFT fascicles from young and old horses. The data demonstrate two independent age-related mechanisms of fatigue failure; in young horses, FL caused low levels of matrix damage and decreased rotation. This suggests that loading causes alterations to the helix substructure, which may reduce their ability to recoil and recover. By contrast, fascicles from old horses, in which the helix is already compromised, showed greater evidence of matrix damage and suffer increased fibre sliding after FL, which may partially explain the age-related increase in tendinopathy. Elucidation of helix structure and the precise alterations occurring owing to both ageing and FL will help to develop appropriate preventative and repair strategies for tendinopathy. PMID:24402919

  6. Age and gender differences in excitation-contraction coupling of the rat ventricle

    PubMed Central

    Leblanc, Normand; Chartier, Denis; Gosselin, Hugues; Rouleau, Jean-Lucien

    1998-01-01

    The objective of this study was to determine potential post-pubertal gender-specific differences in the contractility of papillary muscles, the electrophysiological properties and Ca2+ transients of freshly dissociated ventricular myocytes from the rat heart. The contractions of rat papillary muscles from 2- to 14-month-old male and female rats were studied under isometric and isotonic conditions (29 °C). While the hearts of young (2–4 months) male and female rats displayed a similar contractile profile, papillary muscles of female rats aged 6 months and older exhibited smaller isometric and isotonic contractions, smaller maximal rates of tension and shortening development and decline (±DT/dt and ±DL/dt) velocities during both the onset and relaxation phases, and shorter contractions than age-matched males. To explore the possible cellular basis accounting for these differences, action potentials and macroscopic currents were recorded from freshly dissociated myocytes using the whole-cell patch clamp technique (35 °C). Action potentials from male and female myocytes of 3- and 9-month-old rats did not vary as a function of age or gender. Consistent with these results, the magnitude (expressed in pA pF−1), voltage-dependence and kinetics of the inward rectifier (IK1), transient outward (Ito) and sustained (IK) K+ currents displayed little, if any dependence on age or gender. L-type Ca2+ current (ICa(L)) measured in caesium-loaded myocytes (35 °C) from male and female rats of 3, 6 and 9 months of age exhibited similar characteristics. In contrast, while Ca2+ transients measured with indo-1 were similar between 3-month-old male and female rat myocytes, Ca2+ transients of 10-month-old female myocytes were significantly reduced and showed a diminished rate of relaxation in comparison with those recorded in male rats of similar age. These results suggest that important gender-related changes in excitation-contraction coupling occur following puberty, probably due

  7. Kisspeptin is involved in ovarian follicular development during aging in rats.

    PubMed

    Fernandois, D; Na, E; Cuevas, F; Cruz, G; Lara, H E; Paredes, A H

    2016-03-01

    We have previously reported that kisspeptin (KP) may be under the control of the sympathetic innervation of the ovary. Considering that the sympathetic activity of the ovary increases with aging, it is possible that ovarian KP also increases during this period and participates in follicular development. To evaluate this possibility, we determined ovarian KP expression and its action on follicular development during reproductive aging in rats. We measured ovarian KP mRNA and protein levels in 6-, 8-, 10- and 12-month-old rats. To evaluate follicular developmental changes, intraovarian administration of KP or its antagonist, peptide 234 (P234), was performed using a mini-osmotic pump, and to evaluate FSH receptor (FSHR) changes in the senescent ovary, we stimulated cultured ovaries with KP, P234 and isoproterenol (ISO). Our results shows that KP expression in the ovary was increased in 10- and 12-month-old rats compared with 6-month-old rats, and this increase in KP was strongly correlated with the increase in ovarian norepinephrine observed with aging. The administration of KP produced an increase in corpora lutea and type III follicles in 6- and 10-month-old rats, which was reversed by P234 administration at 10 months. In addition, KP decreased the number and size of antral follicles in 6- and 10-month-old rats, while P234 administration produced an increase in these structures at the same ages. In ovarian cultures KP prevented the induction of FSHR by ISO. These results suggest that intraovarian KP negatively participates in the acquisition of FSHR, indicating a local role in the regulation of follicular development and ovulation during reproductive aging. PMID:26698566

  8. TNF-α receptor antagonist attenuates isoflurane-induced cognitive impairment in aged rats

    PubMed Central

    YANG, NENGLI; LIANG, YAFENG; YANG, PEI; WANG, WEIJIAN; ZHANG, XUEZHENG; WANG, JUNLU

    2016-01-01

    Postoperative cognitive dysfunction (POCD), a common clinical in aged patients, is characterized by deficits in cognitive functions in patients following anesthesia and surgery. It has been demonstrated that isoflurane may lead to cognitive impairment in aged rats; however, effective clinical interventions for preventing this disorder are limited. Tumor necrosis factor (TNF)-α has been suggested to be involved in neuroinflammation as well as the development of POCD. Accordingly, the present study aimed to investigate whether TNF-α signaling is involved in the isoflurane-induced cognitive impairment in aged rats, and whether TNF-α receptor antagonist are able to attenuate isoflurane-induced cognitive impairment in aged rats. A population of 20-month-old rats were administered TNF-α receptor antagonist R-7050 or an equal volume of saline by intraperitoneal injection 12 h prior to exposure to isoflurane to model cognitive impairment following anesthesia in old patients. Then the rats were exposed to 1.3% isoflurane for 4 h. In the control group, rats showed impaired cognitive functions evaluated by Morris water maze assay after isoflurane exposure. Furthermore, isoflurane exposure induced marked upregulation of proinflammatory cytokines, including interleukin (IL)-1β, TNF-α, IL-6 and IL-8 in the hippocampus tissue. In the experimental group, intracisternal administration of TNF-α receptor antagonist R-7050 significantly attenuated isoflurane-induced cognitive impairment and upregulation of proinflammatory cytokines. Further investigation revealed that intracisternal administration of TNF-α receptor antagonist R-7050 notably suppressed isoflurane-induced activation of NF-κB and MAPK signaling. Collectively, the present results suggest that TNF-α receptor antagonist may serve as a potential agent for the prevention of anesthesia-induced cognitive decline in aged patients. PMID:27347079

  9. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats

    SciTech Connect

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko; Murat, Dogru; Nakamura, Shigeru; Nakashima, Hideo; Shimmura, Shigeto; Shinmura, Ken; Tsubota, Kazuo

    2010-07-09

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6 months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome.

  10. Potential targets for protecting against hippocampal cell apoptosis after transient cerebral ischemia-reperfusion injury in aged rats

    PubMed Central

    Ji, Xiangyu; Zhang, Li’na; Liu, Ran; Liu, Yingzhi; Song, Jianfang; Dong, He; Jia, Yanfang; Zhou, Zangong

    2014-01-01

    Mitochondria play an important role in neuronal apoptosis caused by cerebral ischemia, and the role is mediated by the expression of mitochondrial proteins. This study investigated the involvement of mitochondrial proteins in hippocampal cell apoptosis after transient cerebral ischemia-reperfusion injury in aged rats using a comparative proteomics strategy. Our experimental results show that the aged rat brain is sensitive to ischemia-reperfusion injury and that transient ischemia led to cell apoptosis in the hippocampus and changes in memory and cognition of aged rats. Differential proteomics analysis suggested that this phenomenon may be mediated by mitochondrial proteins associated with energy metabolism and apoptosis in aged rats. This study provides potential drug targets for the treatment of transient cerebral ischemia-reperfusion injury. PMID:25206771

  11. Galanthamine Plus Estradiol Treatment Enhances Cognitive Performance in Aged Ovariectomized Rats

    PubMed Central

    Gibbs, R.B.; Chipman, A.M.; Hammond, R.; Nelson, D.

    2011-01-01

    We hypothesize that beneficial effects of estradiol on cognitive performance diminish with age and time following menopause due to a progressive decline in basal forebrain cholinergic function. This study tested whether galanthamine, a cholinesterase inhibitor used to treat memory impairment associated with Alzheimer’s disease, could enhance or restore estradiol effects on cognitive performance in aged rats that had been ovariectomized in middle-age. Rats were ovariectomized at 16–17 months of age. At 21–22 months of age rats began receiving daily injections of galanthamine (5 mg/day) or vehicle. After one week, half of each group also received 17ß-estradiol administered subcutaneously. Rats were then trained on a delayed matching to position (DMP) T-maze task, followed by an operant stimulus discrimination/reversal learning task. Treatment with galanthamine + estradiol significantly enhanced the rate of DMP acquisition and improved short-term delay-dependent spatial memory performance. Treatment with galanthamine or estradiol alone were without significant effect. Effects were task-specific in that galanthamine + estradiol treatment did not significantly improve performance on the stimulus discrimination/reversal learning task. In fact, estradiol was associated with a significant increase in incorrect responses on this task after reversal of the stimulus contingency. In addition, treatments did not significantly affect hippocampal choline acetyltransferase activity or acetylcholine release. This may be an effect of age, or possibly is related to compensatory changes associated with long-term cholinesterase inhibitor treatment. The data suggest that treating with a cholinesterase inhibitor can enhance the effects of estradiol on acquisition of a DMP task by old rats following a long period of hormone deprivation. This could be of particular benefit to older women who have not used hormone therapy for many years and are beginning to show signs of mild

  12. Leptin is involved in age-dependent changes in response to systemic inflammation in the rat.

    PubMed

    Koenig, Sandy; Luheshi, Giamal N; Wenz, Tina; Gerstberger, Rüdiger; Roth, Joachim; Rummel, Christoph

    2014-02-01

    Obesity contributes to a state of subclinical peripheral and central inflammation and is often associated with aging. Here we investigated the source and contribution of adipose tissue derived cytokines and the cytokine-like hormone leptin to age-related changes in lipopolysaccharide (LPS)-induced brain-controlled sickness-responses. Old (24 months) and young (2 months) rats were challenged with LPS or saline alone or in combination with a neutralizing leptin antiserum (LAS) or control serum. Changes in the sickness-response were monitored by biotelemetry. Additionally, ex vivo fat-explants from young and old rats were stimulated with LPS or saline and culture medium collected and analyzed by cytokine-specific bioassays/ELISAs. We found enhanced duration/degree of the sickness-symptoms, including delayed but prolonged fever in old rats. This response was accompanied by increased plasma-levels of interleukin (IL)-6 and IL-1ra and exaggerated expression of inflammatory markers in brain and liver analyzed by RT-PCR including inhibitor κBα, microsomal prostaglandin synthase and cyclooxygenase 2 (brain). Moreover, for the first time, we were able to show prolonged elevated plasma leptin-levels in LPS-treated old animals. Treatment with LAS in young rats tended to attenuate the early- and in old rats the prolonged febrile response. Fat-explants exhibited unchanged IL-6 but reduced IL-1ra and tumor necrosis factor (TNF)-α release from adipose tissue of aged compared to young animals. In addition, we found increased expression of the endogenous immune regulator microRNA146a in aged animals suggesting a role for these mediators in counteracting brain inflammation. Overall, our results indicate a role of adipose tissue and leptin in “aging-related-inflammation” and age-dependent modifications of febrile-responses. PMID:24513873

  13. Effect of Cardiac Arrest on Cognitive Impairment and Hippocampal Plasticity in Middle-Aged Rats

    PubMed Central

    Dave, Kunjan R.; Alekseyenko, Aleksey; Binkert, Marc; Stransky, Kenneth; Lin, Hung Wen; Barnes, Carol A.; Wright, Clinton B.; Perez-Pinzon, Miguel A.

    2015-01-01

    Cardiopulmonary arrest is a leading cause of death and disability in the United States that usually occurs in the aged population. Cardiac arrest (CA) induces global ischemia, disrupting global cerebral circulation that results in ischemic brain injury and leads to cognitive impairments in survivors. Ischemia-induced neuronal damage in the hippocampus following CA can result in the impairment of cognitive function including spatial memory. In the present study, we used a model of asphyxial CA (ACA) in nine month old male Fischer 344 rats to investigate cognitive and synaptic deficits following mild global cerebral ischemia. These experiments were performed with the goals of 1) establishing a model of CA in nine month old middle-aged rats; and 2) to test the hypothesis that learning and memory deficits develop following mild global cerebral ischemia in middle-aged rats. To test this hypothesis, spatial memory assays (Barnes circular platform maze and contextual fear conditioning) and field recordings (long-term potentiation and paired-pulse facilitation) were performed. We show that following ACA in nine month old middle-aged rats, there is significant impairment in spatial memory formation, paired-pulse facilitation n dysfunction, and a reduction in the number of non-compromised hippocampal Cornu Ammonis 1 and subiculum neurons. In conclusion, nine month old animals undergoing cardiac arrest have impaired survival, deficits in spatial memory formation, and synaptic dysfunction. PMID:25933411

  14. Food restriction prevents an age-associated increase in rat liver beta-adrenergic receptors

    SciTech Connect

    Dax, E.M.; Ingram, D.K.; Partilla, J.S.; Gregerman, R.I.

    1989-05-01

    In male Wistar rats fed ad libitum (24% protein, 4.5 Kcal/gm), the (/sup 125/I)iodopindolol binding capacity of the beta-adrenergic receptors in liver of 24-month-old animals is 3-4 times greater than that of 6-month-old counterparts. In rats fed the same diet, on alternate days from weaning, the receptor capacity did not increase significantly between 6 and 24 months (10.20 +/- 0.55 vs 9.20 +/- 0.72 fmol/mg) or between 24 and 30 months. This was not due to acute dietary deprivation, as rats food-restricted for only 2 weeks, at 23.5 months of age, also showed elevated receptor capacities compared to 6-month-old ad libitum fed animals. Moreover, intermittent feeding produced no significant effects among 6-month-old animals, whether restricted since weaning or for two weeks prior to sacrifice. Many biochemical parameters that decrease with aging in rats fed ad libitum are prevented by dietary restriction. Our results demonstrate that a reproducible biochemical process that increases with aging is also prevented with dietary restriction. The age-related, liver beta-receptor increase may be a potentially reliable marker for studying biochemical perturbations that modify life span.

  15. Dendritic regression dissociated from neuronal death but associated with partial deafferentation in aging rat supraoptic nucleus.

    PubMed

    Flood, D G; Coleman, P D

    1993-01-01

    As neurons are lost in normal aging, the dendrites of surviving neighbor neurons may proliferate, regress, or remain unchanged. In the case of age-related dendritic regression, it has been difficult to distinguish whether the regression precedes neuronal death or whether it is a consequence of loss of afferent supply. The rat supraoptic nucleus (SON) represents a model system in which there is no age-related loss of neurons, but in which there is an age-related loss of afferents. The magnocellular neurosecretory neurons of the SON, that produce vasopressin and oxytocin for release in the posterior pituitary, were studied in male Fischer 344 rats at 3, 12, 20, 27, 30, and 32 months of age. Counts in Nissl-stained sections showed no neuronal loss with age, and confirmed similar findings in other strains of rat and in mouse and human. Nucleolar size increased between 3 and 12 months of age, due, in part, to nucleolar fusion, and was unchanged between 12 and 32 months of age, indicating maintenance of general cellular function in old age. Dendritic extent quantified in Golgi-stained tissue increased between 3 and 12 months of age, was stable between 12 and 20 months, and decreased between 20 and 27 months. We interpret the increase between 3 and 12 months as a late maturational change. Dendritic regression between 20 and 27 months was probably the result of deafferentation due to the preceding age-related loss of the noradrenergic input to the SON from the ventral medulla. PMID:7507575

  16. [Aspects of stress and aging in the rat (author's transl)].

    PubMed

    Niedermüller, H; Kment, A; Hofecker, G; Skalicky, M

    1981-01-01

    Sprague-Dawley rats aged 6 to 22 months were stressed for 2, 16 and 9m resp. by the influence of noise (106 dB, 2h/d) and overcrowding (12 rats/Makrolon-IV-cage). Parameters of the plasma, brain, testicles and the liver (enzymes, metabolites and hormones) and well-known age parameters were evaluated to obtain objective criteria for stress influences. The weights of the whole body and some organs were also measured. The most distinct changes were seen in the plasma enzyme activities CPK, ALD, CHE and AP, in the concentrations of CHO and TRG and in the levels of testosterone, corticosterone and aldosterone. The contraction-relaxation of the tail tendon and the soluble collagen of the corium changed in the direction of higher age, just as lipofuscine content in the brain, cerebellum and the adrenals did. Some activities of enzymes and concentrations of metabolites changed in the brain, liver the testicles. Adrenal weights rose sharply in both stress groups; the body weight was lower. There were some differences in the effects of the two stress factors. These investigations gave some information about the relation between stress and aging and provide a simple means of determining the influence of stress. PMID:6112891

  17. Involvement of cellular metabolism in age-related LTP modifications in rat hippocampal slices

    PubMed Central

    Drulis-Fajdasz, Dominika; Wójtowicz, Tomasz; Wawrzyniak, Marcin; Wlodarczyk, Jakub; Mozrzymas, Jerzy W.; Rakus, Dariusz

    2015-01-01

    Recent studies emphasized crucial role of astrocytic glycogen metabolism in regulation of synaptic transmission and plasticity in young animals. However, the interplay between age-related synaptic plasticity impairments and changes in energetic metabolism remains obscure. To address this issue, we investigated, in hippocampal slices of young (one month) and aged rats (20-22-months), the impact of glycogen degradation inhibition on LTP, mRNA expression for glycogen metabolism enzymes and morphology of dendritic spines. We show that, whereas in young hippocampi, inhibition of glycogen phosphorolysis disrupts the late phase of LTP in the Schaffer collateral-CA1 pathway, in aged rats, blockade of glycogen phosphorylase tends to enhance it. Gene expression for key energy metabolism enzymes, such as glycogen synthase and phosphorylase and glutamine synthetase showed marked differences between young and aged groups and changes in expression of these enzymes preceded plasticity phenomena. Interestingly, in the aged group, a prominent expression of these enzymes was found also in neurons. Concluding, we show that LTP in the considered pathway is differentially modulated by metabolic processes in young and aging animals, indicating a novel venue of studies aiming at preventing cognitive decline during aging. PMID:26101857

  18. Plasma and Serum Lipidomics of Healthy White Adults Shows Characteristic Profiles by Subjects’ Gender and Age

    PubMed Central

    Ishikawa, Masaki; Maekawa, Keiko; Saito, Kosuke; Senoo, Yuya; Urata, Masayo; Murayama, Mayumi; Tajima, Yoko; Kumagai, Yuji; Saito, Yoshiro

    2014-01-01

    Blood is a commonly used biofluid for biomarker discovery. Although blood lipid metabolites are considered to be potential biomarker candidates, their fundamental properties are not well characterized. We aimed to (1) investigate the matrix type (serum vs. plasma) that may be preferable for lipid biomarker exploration, (2) elucidate age- and gender-associated differences in lipid metabolite levels, and (3) examine the stability of lipid metabolites in matrix samples subjected to repeated freeze-thaw cycles. Using liquid chromatography-mass spectrometry, we performed lipidomic analyses for fasting plasma and serum samples for four groups (15 subjects/group) of young and elderly (25–34 and 55–64 years old, respectively) males and females and for an additional aliquot of samples from young males, which were subjected to repeated freeze-thaw cycles. Lysophosphatidylcholine and diacylglycerol levels were higher in serum than in plasma samples, suggesting that the clotting process influences serum lipid metabolite levels. Gender-associated differences highlighted that the levels of many sphingomyelin species were significantly higher in females than in males, irrespective of age and matrix (plasma and serum). Age-associated differences were more prominent in females than in males, and in both matrices, levels of many triacylglycerols were significantly higher in elderly females than in young females. Plasma and serum levels of most lipid metabolites were reduced by freeze-thawing. Our results indicate that plasma is an optimal matrix for exploring lipid biomarkers because it represents the original properties of an individual’s blood sample. In addition, the levels of some blood lipid species of healthy adults showed gender- and age-associated differences; thus, this should be considered during biomarker exploration and its application in diagnostics. Our fundamental findings on sample selection and handling procedures for measuring blood lipid metabolites is

  19. Age- and brain region-specific differences in mitochondrial bioenergetics in Brown Norway rats.

    PubMed

    Pandya, Jignesh D; Royland, Joyce E; MacPhail, Robert C; Sullivan, Patrick G; Kodavanti, Prasada Rao S

    2016-06-01

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bioenergetic parameters in 5 brain regions (brain stem [BS], frontal cortex, cerebellum, striatum, hippocampus [HIP]) of 4 diverse age groups (1 month [young], 4 months [adult], 12 months [middle-aged], 24 months [old age]) to understand age-related differences in selected brain regions and their possible contribution to age-related chemical sensitivity. Mitochondrial bioenergetic parameters and enzyme activities were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5/group). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State III respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12, and 24-months age groups. Activities of mitochondrial pyruvate dehydrogenase complex and electron transport chain complexes I, II, and IV enzymes were also age and brain region specific. In general, changes associated with age were more pronounced with enzyme activities declining as the animals aged (young > adult > middle-aged > old age). These age- and brain region-specific observations may aid in evaluating brain bioenergetic impact on the age-related susceptibility to environmental chemical stressors. PMID:27143418

  20. The ultrastructure of hypertrophied paraganglia in aged rats.

    PubMed Central

    Partanen, M; Hervonen, A; Rapoport, S I

    1984-01-01

    The catecholamine-storing cells in the paraganglia of old rats showed structural characteristics common to adrenomedullary and paraganglionic cells of young animals. No sign of degeneration was found. Lipofuscin pigment was observed in most cells. The paraganglia were innervated and well supplied by fenestrated sinusoidal capillaries. Their fine structure suggests active endocrine function. An increase in the total bulk of the paraganglia in old rats suggests that they have a physiological role in senescence. Images Fig. 2 Fig. 3 Fig. 1 Figs. 4-6 Fig. 7 PMID:6526715

  1. Streamwater ages derived from tritium show power law variation with discharge like silica concentrations

    NASA Astrophysics Data System (ADS)

    Stewart, Michael; Morgenstern, Uwe

    2013-04-01

    Understanding runoff generation is important for management of freshwater systems. Determining transit time distributions of streamwaters and how they change with discharge gives information on the flowpaths and recharge sources of streams - vital information for determining the responses of streams to stressors such as pollution, landuse change, or climate change. This work takes a first look at unique information on how transit time distributions change with discharge in some New Zealand catchments. Transit time distributions of streamwaters have been determined from tritium measurements on single samples in this work. This allows changes with stream discharge to be observed, in contrast to previous isotope studies which have given averaged transit time distributions based on series of samples. In addition, tritium reveals the wide spectrum of ages present in streams whereas oxygen-18 or chloride variations only show the younger ages (Stewart et al., 2010). It was found that the mean transit time (MTT) data could be reasonably represented by straight lines in log-log plots, indicating power law relationships between MTT and discharge. Similar power law behaviour has been observed for the rock forming elements such as silica in streamwaters (Godsey et al., 2009). Case studies are presented for two New Zealand catchments, both with volcanic ash substrates. Toenepi is a dairy catchment near Hamilton, which shows well-constrained power law relationships between MTT and discharge, and between silica concentration and discharge (Morgenstern et al., 2010). Baseflow MTTs vary from 2.5 to 157 years. Tutaeuaua is a pastoral farming catchment near Taupo. Results for nested catchments along the stream also show power law relationships for both MTT and silica with discharge. Streamwater MTTs vary from 1 to 11 years. The results indicate that (1) relatively old waters dominate many streams, (2) streamwater ages vary with discharge, and (3) age, like silica, varies according to

  2. Resurgence of Response Sequences during Extinction in Rats Shows a Primacy Effect

    ERIC Educational Resources Information Center

    Reed, Phil; Morgan, Theresa A.

    2006-01-01

    Rats were trained to emit a series of three-response sequences to a criterion (i.e., more than 80% of all emitted sequences correct over five successive sessions). Each rat was trained on a series of different, three-response sequences. After the final three-response sequence was acquired, two extinction tests were administered, and the…

  3. Fine structural changes in the lateral vestibular nucleus of aging rats

    NASA Technical Reports Server (NTRS)

    Johnson, J. E., Jr.; Miquel, J.

    1974-01-01

    The fine structure of the lateral vestibular nucleus was investigated in Sprague-Dawley rats, that were sacrified at 4 weeks, 6-8 weeks, 6-8 months, and 18-20 months of age. In the neuronal perikaria, the following age-associated changes were seen with increasing frequency with advancing age: rodlike nuclear inclusions and nuclear membrane invaginations; cytoplasmic dense bodies with the characteristics of lipofuscin; and moderate disorganization of the granular endoplasmic reticulum. Dense bodies were also seen in glial cells. Rats 18 to 20 months old showed dendritic swellings, axonal degeneration, and an apparent increase in the number of axosomatic synaptic terminals containing flattened vesicles (presumed to be inhibitory in function).

  4. [CHARACTERISTICS OF THE RETINA IN CHRONIC STRESS IN LABORATORY RATS OF DIFFERENT AGE GROUPS].

    PubMed

    Nesterova, A A; Yermilov, V V; Tiurenkov, I N; Smirnov, A V; Grigoriyeva, N V; Zagrebin, V L; Rogova, L N; Antoshkin, O N; Dovgalyov, A O

    2016-01-01

    The retina was studied in albino laboratory male rats of two age groups (12 and 24 months), 10 animals in each subjected to chronic combined stress. The stress was caused in animals by simultaneous exposure to pulsed light, loud sound, swinging and restriction of mobility for 7 days, 30 mm daily. The retina of intact rats of the corresponding age groups (n = 20) served as control. Enucleated eyes of stressed and control animals were processed with standard histological technique and stained with Nissl's method and hematoxylin-eosin. The retina of the stressed animals of both age groups showed the decrease in the number of cells and the disarrangement of its layers, most pronounced in the layers of photoreceptor neurons and ganglion cells. The comparative morphometric analysis demonstrated a reduction of the layer thickness and cell numerical density in the retina of stressed animals, both young (12 months) and old (24 months), as compared to that of control animals. PMID:27487662

  5. Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Peyman, A.; Rezazadeh, A. A.; Gabriel, C.

    2001-06-01

    The dielectric properties of ten rat tissues at six different ages were measured at 37 °C in the frequency range of 130 MHz to 10 GHz using an open-ended coaxial probe and a computer controlled network analyser. The results show a general decrease of the dielectric properties with age. The trend is more apparent for brain, skull and skin tissues and less noticeable for abdominal tissues. The variation in the dielectric properties with age is due to the changes in the water content and the organic composition of tissues. The percentage decrease in the dielectric properties of certain tissues in the 30 to 70 day old rats at cellular phone frequencies have been tabulated. These data provide an important input in the provision of rigorous dosimetry in lifetime-exposure animal experiments. The results provide some insight into possible differences in the assessment of exposure for children and adults.

  6. Effects of Bak Foong Pills and Menoease Pills on white blood cell distribution in old age female rats.

    PubMed

    Ho, Alice Lok Sze; Gou, Yu Lin; Rowlands, Dewi Kenneth; Chung, Yiu Wa; Chan, Hsiao Chang

    2003-12-01

    This study examined the effects of Bak Foong Pills (BFP) and the new BFP-derived post-menopause formula, Menoease Pills (MBFP), on the distribution of peripheral white blood cells (WBC) between BFP/MBFP-treated and non-treated rats. Eighteen months old female SD rats were used to mimic post-menopausal and old age animal models. The percentage distribution of lymphocytes, monocytes and granulocytes were measured using flow cytometry with and without treatments of BFP or MBFP. Results showed that WBC distribution in old age rats were significantly different from that of adult rats, suggesting that as the animal aged, their WBC distributions were altered. Old age rats were observed to have much lower percentages of lymphocytes, but higher percentages of granulocytes when compared to the adult rats, indicating possible attenuated immunity. Following treatment with BFP or MBFP, WBC populations were found to be redistributed back into the ranges observed in adult animals. Furthermore, MBFP, was found to alter WBC distribution in a dose-dependent manner. When compared to estrogen (E(2)), a well documented regulator of immune function, results showed that MBFP was able to show significantly greater effects on WBC redistribution compared to E(2). However, in ovariectomised (ovx) old age rats, neither MBFP nor E(2) treated groups showed any changes in WBC redistribution. These results indicate that MBFP may share similarities to E(2). Indeed, the effect of MBFP and E(2) seems to require intact ovaries, which are believed to be necessary for the modulation of WBC distributions and immune functions. Overall, our findings suggest that BFP and MBFP may be able to regulate WBC population in old age female rats, and thus, indicate their potential role on improving the attenuated immunity evident in post-menopausal and elderly women. PMID:14646184

  7. Protective effects of resveratrol on aging-induced cognitive impairment in rats.

    PubMed

    Gocmez, Semil Selcen; Gacar, Nejat; Utkan, Tijen; Gacar, Gulcin; Scarpace, Philip J; Tumer, Nihal

    2016-05-01

    Resveratrol, a polyphenol phytoalexine, has been shown to play a neuroprotective role in the neurodegenerative process in Alzheimer's disease (AD) and improve memory function in dementia. However, the in vivo effect of resveratrol in normal aging models of learning and memory has not yet been evaluated. Therefore, the present neurobehavioral study was undertaken to evaluate the effect of resveratrol on cognitive impairment induced by aging in passive avoidance and Morris water maze (MWM) tests. Male Wistar albino rats were divided into four groups: young control (4month), young resveratrol (4month+RESV), old control (24month) and old resveratrol (24month+RESV). Resveratrol (50mg/kg/day) was given to the 4month+RESV and 24month+RESV groups orally for 12weeks. There was no significant difference between the groups for the first day of latency, while in aged rats, the second day of latency was significantly shortened compared to the young group in the passive avoidance test (p<0.05). Additionally, in the MWM test, the results showed a decrease in the time spent in the escape platform's quadrant in the probe test in aged rats (p<0.05). The administration of resveratrol at 50mg/kg/day increased the retention scores in the passive avoidance test and the time spent in the escape platform's quadrant in the MWM task (p<0.05). Furthermore resveratrol attenuated the protein levels of TNFα and IL1β in the 24-month group. These findings indicate that aging impairs emotional and spatial learning-memory and resveratrol reverses the effect of age-related learning and memory impairment. The results of this study suggest that resveratrol is effective in preventing cognitive deficit in aged rats by inhibiting the production of inflammatory cytokines. PMID:27040098

  8. Anti-aging Effect and Gene Expression Profiling of Aged Rats Treated with G. bimaculatus Extract

    PubMed Central

    Hwang, Jae Sam; Yun, Eun Young; Kim, Min-Ji; Park, Kun-Koo

    2015-01-01

    Extract from Gryllus bimaculatus crickets inhibits oxidation at the DNA level, with reduced production of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Microarray analyses were performed with a rat 28K cDNA clone set array to identify the gene expression profiles of aged (10 months old) Wistar Kyoto rats treated for one month with 100 mg/kg G. bimaculatus ethanol extract to assess the effects. The extract produced a meaningful anti-edema effect, evident by the inhibition of creatinine phosphokinase activity. The weights of abdominal and ovarian adipose tissues were reduced and the proportion of unsaturated fatty acids in adipose tissues was increased in an extract dose-dependent manner. Compared with untreated control rats, rats treated with the extract displayed the upregulation of 1053 genes including Fas (tumor necrosis factor receptor superfamily, member 6), Amigo3 (adhesion molecule with an immunoglobulin-like domain), Reticulon 4, 3-hydroxy-3-methylglutaryl-coenzyme (Hmgcr; a reductase), related anti-fatigue (enzyme metabolism), and Rtn antioxidant, and the downregulation of 73 genes including Ugt2b (UDP glycosyltransferase 2 family), Early growth response 1, and Glycoprotein m6a. Data suggest that G. bimaculatus extract may have value in lessening the effects of aging, resulting in a differential gene expression pattern indicative of a marked stress response and lower expression of metabolic and biosynthetic genes. PMID:26191384

  9. Glutamate presynaptic vesicular transporter and postsynaptic receptor levels correlate with spatial memory status in aging rat models.

    PubMed

    Ménard, Caroline; Quirion, Rémi; Vigneault, Erika; Bouchard, Sylvain; Ferland, Guylaine; El Mestikawy, Salah; Gaudreau, Pierrette

    2015-03-01

    In humans, memory capacities are generally affected with aging, even without any reported neurologic disorders. The mechanisms behind cognitive decline are not well understood. We studied here whether postsynaptic glutamate receptor and presynaptic vesicular glutamate transporters (VGLUTs) levels may change in the course of aging and be related to cognitive abilities using various age-impaired (AI) or age-unimpaired rat strains. Twenty-four-month-old Long-Evans (LE) rats with intact spatial memory maintained postsynaptic ionotropic glutamate receptor levels in the hippocampal-adjacent cortex similar to those of young animals. In contrast, AI rats showed significantly reduced expression of ionotropic glutamate receptor GluR2, NR2A and NR2B subunits. In AI LE rats, VGLUT1 and VGLUT2 levels were increased and negatively correlated with receptor levels as shown by principal component analysis and correlation matrices. We also investigated whether glutamatergic receptors and VGLUT levels were altered in the obesity-resistant LOU/C/Jall (LOU) rat strain which is characterized by intact memory despite aging. No difference was observed between 24-month-old LOU rats and their young counterparts. Taken together, the unaltered spatial memory performance of 24-month-old age-unimpaired LE and LOU rats suggests that intact coordination of the presynaptic and postsynaptic hippocampal-adjacent cortex glutamatergic networks may be important for successful cognitive aging. Accordingly, altered expression of presynaptic and postsynaptic glutamatergic components, such as in AI LE rats, could be considered a marker of age-related cognitive deficits. PMID:25556161

  10. [The motor activity as an age parameter of the rat (authors transl)].

    PubMed

    Hofecker, G; Kment, A; Niedermüller, H

    1978-05-01

    The motor activity as an behavioural parameter provides information about the functional state of the organism as a whole. Therefore it is an important age parameter. The results of activity measurements, however, depend strongly on the method of registration. Using 3 groups of male Sprague-Dawley rats aged 9, 15 and 29 months two methods have been tested: 1) An electronic recording: the rats were registrated in their normal cages on the Animex-Activity-Meter during the dark-phase in complete darkness. The activity measured by this method has been regarded as spontaneous activity. 2) A kinematographic method: the rats were registrated in a changed environment at constant light during the dark-phase. The activity assessed by this method has been regarded as reactive activity. Spontaneous and reactive activity show a different age dependence. For the use of the motor activity as an age parameter, both, spontaneous and reactive activity, should be assessed to get a better information about the ageing of the different functional levels of the systems governing the animal's behaviour. PMID:26274

  11. Cognitive decline is associated with reduced surface GluR1 expression in the hippocampus of aged rats.

    PubMed

    Yang, Yuan-Jian; Chen, Hai-Bo; Wei, Bo; Wang, Wei; Zhou, Ping-Liang; Zhan, Jin-Qiong; Hu, Mao-Rong; Yan, Kun; Hu, Bin; Yu, Bin

    2015-03-30

    Individual differences in cognitive aging exist in humans and in rodent populations, yet the underlying mechanisms remain largely unclear. Activity-dependent delivery of GluR1-containing AMPA receptor (AMPARs) plays an essential role in hippocampal synaptic plasticity, learning and memory. We hypothesize that alterations of surface GluR1 expression in the hippocampus might correlate with age-related cognitive decline. To test this hypothesis, the present study evaluated the cognitive function of young adult and aged rats using Morris water maze. After the behavioral test, the surface expression of GluR1 protein in hippocampal CA1 region of rats was determined using Western blotting. The results showed that the surface expression of GluR1 in the hippocampus of aged rats that are cognitively impaired was much lower than that of young adults and aged rats with preserved cognitive abilities. The phosphorylation levels of GluR1 at Ser845 and Ser831 sites, which promote the synaptic delivery of GluR1, were also selectively decreased in the hippocampus of aged-impaired rats. Correlation analysis reveals that greater decrease in surface GluR1 expression was associated with worse behavioral performance. These results suggest that reduced surface GluR1 expression may contribute to cognitive decline that occurs in normal aging, and different pattern of surface GluR1 expression might be responsible for the individual differences in cognitive aging. PMID:25697598

  12. Dexmedetomidine attenuates isoflurane-induced cognitive impairment through antioxidant, anti-inflammatory and anti-apoptosis in aging rat

    PubMed Central

    Wang, Xiaoning; Zhao, Binjiang; Li, Xue

    2015-01-01

    As a kind of α2 adrenergic receptor agonists, dexmedetomidine generates sedation, anti-anxiety and anesthesia effects by hyperpolarizing noradrenergic nerve cells in locus coeruleus. This study was designed to investigate the neuroprotective of dexmedetomidine attenuates isoflurane-induced cognitive impairment, and the possible underlying mechanism in aging rat. Firstly, we used isoflurane-induced aging rat model to analyze the therapeutical effect of dexmedetomidine on cognitive impairment. Next, commercial ELISA kits were used to analyze tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), methane dicarboxylic aldehyde (MDA) and superoxide dismutase (SOD) and caspase-3 levels. In addition, Western blotting was used to detect the protein expression of P38 MAPK, PTEN and phosphorylation-Akt (p-Akt) expression. Our results showed that the neuroprotective of dexmedetomidine significantly attenuates isoflurane-induced cognitive impairment in aging rat. Moreover, dexmedetomidine significantly inhibited these TNF-α, IL-1β, MDA, SOD and caspase-3 activities in isoflurane-induced aging rat. Meanwhile, the neuroprotective effects of dexmedetomidine on isoflurane-induced cognitive impairment significantly suppressed Bcl-xL/Bad rate, P38 MAPK and PTEN protein expression and activated p-Akt protein expression in aging rat. Collectively, neuroprotective effect of dexmedetomidine attenuates isoflurane-induced cognitive impairment through antioxidant, anti-inflammatory and anti-apoptosis in aging rat. PMID:26770320

  13. Normal rat kidney cells secrete both phosphorylated and nonphosphorylated forms of osteopontin showing different physiological properties

    SciTech Connect

    Nemir, M.; DeVouge, M.W.; Mukherjee, B.B. )

    1989-10-25

    We have reported previously that the 69-kDa major phosphoprotein, secreted by normal rat kidney (NRK) cells, is osteopontin, a glycosylated bone matrix protein. Here we show that this 69-kDa osteopontin is secreted by NRK cells in both phosphorylated (pp69) and nonphosphorylated (np69) forms, with estimated isoelectric points of 3.8 and 4.5, respectively. Electrophoretic analysis of radioiodinated cell surface proteins immunoprecipitated with an anti-69-kDa osteopontin serum, demonstrates that the 69-kDa osteopontin is also present on the cell surface, but only its phosphorylated form (pp69) shows such cell surface association. Because osteopontin mediates cell adhesion and spreading, and contains an Arg-Gly-Asp-Ser cell-binding sequence, our observations strongly suggest that the cell surface localization of pp69 osteopontin is receptor-mediated, and the modification by phosphorylation may be crucial for its receptor binding activity. We also report that antisera directed against either fibronectin or 69-kDa osteopontin co-immunoprecipitate both np69 osteopontin and fibronectin as a heat-dissociable complex. In contrast, pp69 osteopontin does not co-precipitate with fibronectin. Furthermore, compared to NRK cells, vanadyl sulfate-treated NRK cells which acquire a reversible transformed phenotype, including anchorage-independent growth, show increased levels of pp69 on the cell surface, concomitant with significantly decreased levels of pp69 and elevated levels of np69 in the conditioned media. The data presented here establish transformation sensitivity of NRK cell-secreted osteopontin with respect to its secretion and cell surface localization, and demonstrate that phosphorylated and nonphosphorylated forms of osteopontin have different physiological properties, which may regulate the functional roles of this extracellular matrix protein.

  14. Cerebrolysin improves memory and ameliorates neuronal atrophy in spontaneously hypertensive, aged rats.

    PubMed

    Solis-Gaspar, Carlos; Vazquez-Roque, Ruben A; De Jesús Gómez-Villalobos, Ma; Flores, Gonzalo

    2016-09-01

    The spontaneously hypertensive (SH) rat has been used as an animal model of vascular dementia (VD). Our previous report showed that, SH rats exhibited dendritic atrophy of pyramidal neurons of the CA1 dorsal hippocampus and layers 3 and 5 of the prefrontal cortex (PFC) at 8 months of age. In addition, we showed that cerebrolysin (Cbl), a neurotrophic peptide mixture, reduces the dendritic atrophy in aged animal models. This study aimed to determine whether Cbl was capable of reducing behavioral and neuronal alterations, in old female SH rats. The level of diastolic and systolic pressure was measured every month for the 6 first months and only animals with more than 160 mm Hg of systolic pressure were used. Female SH rats (6 months old) received 6 months of Cbl treatment. Immediately after the Cbl treatment, two behavioral tests were applied, the Morris water maze test for memory and learning and locomotor activity in novel environments. Immediately after the last behavioral test, dendritic morphology was studied with the Golgi-Cox stain procedure followed by a Sholl analysis. Clearly, SH rats with Cbl showed an increase in the dendritic length and dendritic spine density of pyramidal neurons in the CA1 in the dorsal hippocampus and layers 3 and 5 of the PFC. Interestingly, Cbl improved memory of the old SH rats. Our results support the possibility that Cbl may have beneficial effects on the management of brain alterations in an animal model with VD. Synapse 70:378-389, 2016. © 2016 Wiley Periodicals, Inc. PMID:27164468

  15. Ginger and alpha lipoic acid ameliorate age-related ultrastructural changes in rat liver.

    PubMed

    Mahmoud, Y I; Hegazy, H G

    2016-01-01

    Because of the important role that oxidative stress is thought to play in the aging process, antioxidants could be candidates for preventing its related pathologies. We investigated the ameliorative effects of two antioxidant supplements, ginger and alpha lipoic acid (ALA), on hepatic ultrastructural alterations in old rats. Livers of young (4 months) and old (24 months) Wistar rats were studied using transmission electron microscopy. Livers of old rats showed sinusoidal collapse and congestion, endothelial thickening and defenestration, and inconsistent perisinusoidal extracellular matrix deposition. Aged hepatocytes were characterized by hypertrophy, cytoplasmic vacuolization and a significant increase in the volume densities of the nuclei, mitochondria and dense bodies. Lipofuscin accumulation and decreased microvilli in bile canaliculi and space of Disse also were observed. The adverse alterations were ameliorated significantly by both ginger and ALA supplementation; ALA was more effective than ginger. Ginger and ALA appear to be promising anti-aging agents based on their amelioration of ultrastructural alterations in livers of old rats. PMID:26528730

  16. Expression of UCP2 in Wistar rats varies according to age and the severity of obesity.

    PubMed

    Pheiffer, Carmen; Jacobs, Carvern; Patel, Oelfah; Ghoor, Samira; Muller, Christo; Louw, Johan

    2016-03-01

    Obesity, a complex metabolic disorder, is characterized by mitochondrial dysfunction and oxidative stress. Increased expression of uncoupling protein 2 (UCP2) during obesity is an adaptive response to suppress the production of reactive oxygen species. The aims of this study were to compare the expression of UCP2 in diet-induced obese Wistar rats that differed according to age and their severity of obesity, and to compare UCP2 expression in the liver and muscle of these rats. UCP2 messenger RNA and protein expression was increased 4.6-fold (p < 0.0001) and 3.0-fold (p < 0.05), respectively, in the liver of the older and heavier rats. In contrast, UCP2 expression was decreased twofold (p < 0.005) in the muscle of these rats, while UCP3 messenger RNA (mRNA) was increased twofold (p < 0.01). Peroxisome proliferator-activated receptor alpha (PPARα) was similarly increased (3.0-fold, p < 0.05) in the liver of the older and more severe obese rats. Total protein content was increased (2.3-fold, p < 0.0001), while 5' adenosine monophosphate-activated protein kinase (AMPK) activity was decreased (1.3-fold, p = 0.05) in the liver of the older, heavier rats. No difference in total protein content and AMPK expression was observed in the muscle of these rats. This study showed that the expression of UCP2 varies according to age and the severity of obesity and supports the widely held notion that increased UCP2 expression is an adaptive response to increased fatty acid β-oxidation and reactive oxygen species production that occurs during obesity. An understanding of metabolic adaptation is imperative to gain insight into the underlying causes of disease, thus facilitating intervention strategies to combat disease progression. PMID:26621256

  17. Chronic Ampakine Treatments Stimulate Dendritic Growth and Promote Learning in Middle-Aged Rats

    PubMed Central

    Lauterborn, Julie C.; Palmer, Linda C.; Jia, Yousheng; Pham, Danielle T.; Hou, Bowen; Wang, Weisheng; Trieu, Brian H.; Cox, Conor D.; Kantorovich, Svetlana

    2016-01-01

    Positive allosteric modulators of AMPA-type glutamate receptors (ampakines) have been shown to rescue synaptic plasticity and reduce neuropathology in rodent models of cognitive disorders. Here we tested whether chronic ampakine treatment offsets age-related dendritic retraction in middle-aged (MA) rats. Starting at 10 months of age, rats were housed in an enriched environment and given daily treatment with a short half-life ampakine or vehicle for 3 months. Dendritic branching and spine measures were collected from 3D reconstructions of Lucifer yellow-filled CA1 pyramidal cells. There was a substantial loss of secondary branches, relative to enriched 2.5-month-old rats, in apical and basal dendritic fields of vehicle-treated, but not ampakine-treated, 13-month-old rats. Baseline synaptic responses in CA1 were only subtly different between the two MA groups, but long-term potentiation was greater in ampakine-treated rats. Unsupervised learning of a complex environment was used to assess treatment effects on behavior. Vehicle- and drug-treated rats behaved similarly during a first 30 min session in the novel environment but differed markedly on subsequent measures of long-term memory. Markov sequence analysis uncovered a clear increase in the predictability of serial movements between behavioral sessions 2 and 3 in the ampakine, but not vehicle, group. These results show that a surprising degree of dendritic retraction occurs by middle age and that this can be mostly offset by pharmacological treatments without evidence for unwanted side effects. The functional consequences of rescue were prominent with regard to memory but also extended to self-organization of behavior. SIGNIFICANCE STATEMENT Brain aging is characterized by a progressive loss of dendritic arbors and the emergence of impairments to learning-related synaptic plasticity. The present studies show that dendritic losses are evident by middle age despite housing in an enriched environment and can be

  18. Increased novelty seeking and decreased harm avoidance in rats showing Type 2-like behaviour following basal forebrain neuronal loss.

    PubMed

    Johansson, A K; Hansen, S

    2001-01-01

    Previous research has shown that excitotoxic lesions of the septum, ventral striatum and adjacent areas increase alcohol intake and defensive aggression in the rat. This behavioural constellation resembles that observed in early-onset Type 2 alcoholism. Due to the fact that the prototypical Type 2 alcoholic scores high on novelty seeking and low on harm avoidance, we studied these temperamental traits in rats with basal forebrain lesions. In comparison with controls, such rats showed more exploration (nose-poking) of a hole-board (indicating increased novelty seeking) and less risk assessment behaviour (stretched attend posturing) in an unfamiliar arena (indicating reduced harm avoidance). In both tests the experimental rats showed signs of motor restlessness. The results obtained indicate that basal forebrain neuronal loss may be associated with an enhanced exploratory responsiveness to novel stimuli together with a relative freedom of anticipatory anxiety. PMID:11704616

  19. Calcium antagonist flunarizine hydrochloride affects striatal D2 dopamine receptors in the young adult and aged rat brain.

    PubMed

    Asanuma, M; Ogawa, N; Haba, K; Hirata, H; Mori, A

    1991-01-01

    The calcium (Ca) antagonist flunarizine hydrochloride (FNZ) has been reported to induce parkinsonism, especially in the elderly. The effects of FNZ on dopamine receptors in rat striatal membranes, especially in aged rats, were studied using radiolabeled receptor assay. Similar displacing potencies in [(3)H]spiperone bindings were exhibited for FNZ and the Ca antagonists verapamil and nicardipine. FNZ was found to directly and competitively effect D2 receptors (D2-Rs) as an antagonist, without effecting D1 receptors. Furthermore, the washing of preoccupied membranes revealed that FNZ has a long-acting potent effect on D2-Rs. The comparative study of FNZ and sulpiride in young-adult and aged rats showed that the effect of FNZ on D2-Rs was more marked in aged rats. These results might be related to FNZ-induced parkinsonism and its high incidence in the elderly. PMID:15374420

  20. Reproductive senescence, fertility and reproductive tumour profile in ageing female Han Wistar rats.

    PubMed

    Mitchard, Terri L; Klein, Stephanie

    2016-01-01

    A study using vehicle administration in 104 female rats investigated reproductive aging in Han Wistar rats as a useful tool to interprete carcinogenicity studies where hormonal patterns are perturbated. From 16 weeks of age oestrous cycles were monitored every 6 weeks to investigate reproductive ageing. A subset of 20 females was used to assess fertility at 21 months of age. The animals were necropsied after 106-107 weeks on study and female reproductive organs, mammary glands and pituitary glands were examined for hyperplasias and/or tumours. The majority of rats had regular oestrous cycles up to 6 months of age. After this age, there was a rapid decline in the number of rats with regular oestrous cycles and an increase in irregular cycles and cycles in persistent di-oestrus with an occasional pro-oestrus. By the end of the study, the majority of animals were acyclic and the few remaining cyclic animals had irregular cycles. In the fertility assessment, 19/20 animals mated but only four animals became pregnant. These pregnant animals had normal numbers of corpora lutea of pregnancy but had high pre-implantation losses and could not sustain a viable pregnancy. 65 animals (62.5%) showed adenomas and/or pituitary hyperplasia in the pituitary gland at necropsy. The pituitary tumours were likely to be prolactin secreting that give rise to pseudopregnancy and mammary tumours, demonstrated by the fact that 43/65 (66%) of the affected animals had histopathological signs of these conditions. Multiple corpora lutea were found in 61% of all animals at time of termination. Only one uterine tumour was seen in this study probably due to lack of persistent oestrus seen in these animals. PMID:26655996

  1. Sinusoidal electromagnetic field of 50 hz helps in retaining calcium in tibias of aged rats.

    PubMed

    Khanduja, K L; Syal, N

    2003-03-01

    Effect of 50Hz sinusoidal electromagnetic field (SEMF) on normal bone physiology was evaluated in young and old female and male Wistar rats. Exposure to SEMF resulted in increased 45Ca retention in tibias of aged animals only. Levels of serum calcium in young female and male rats were significantly less than in respective aged rats. These were further decreased after 4 weeks of SEMF exposure. SEMF exposure did not change the serum calcium levels in aged rats, and inorganic phosphates in young and aged animals. Similarly, the levels of tartrate resistant acid and alkaline phosphatase were significantly decreased in young rats, whereas the levels remained unchanged in aged rats of either sex. The results revealed that SEMF of 1mT can prevent bone calcium loss due to aging in animals. PMID:15267147

  2. A stereologic study of the plantar fat pad in young and aged rats

    PubMed Central

    Molligan, Jeremy; Schon, Lew; Zhang, Zijun

    2013-01-01

    Plantar fat pad (PFP) is a tissue structure that absorbs the initial impact of walking and running and ultimately bears body weight at standing. This study was designed to quantify the histomorphological changes of the PFP in aged rats. The most medial PFP was dissected from the hind feet of young rats (4 months old, n = 6) and aged rats (24 months old, n = 6). Histological structure and cellular senescence of PFP were analyzed stereologically and histomorphometrically. Immunohistochemistry of matrix metalloproteinase 9 (MMP9) was also performed on PFP tissue sections. Compared with young rats, the thickness of epidermis, dermis and septa of the PFP were significantly reduced in the aged rats. The total volume of adipose tissue in the PFP of aged rats was only about 65% of that in the young rats. The microvascular density and the number of fat pad units (FPU), a cluster of adipocytes enclosed by elastin septa, in the PFP were unchanged in the aged rats. In the aged rats, the number of adipocytes per FPU was reduced but the number of simple adipocyte clusters, without surrounding septa, was increased. The shift of the types of adipocyte clusters in the aged PFP was accompanied by degradation of elastin fibers and increased expression of MMP9. In conclusion, the PFP, particularly the elastic septa, degenerates significantly in aged rats and this may contribute to the pathology of PFP-related diseases. PMID:24033117

  3. Age-related changes in the rate of esterification of plasma cholesterol in Fischer-344 rats.

    PubMed

    Carlile, S I; Kudchodkar, B J; Wang, C S; Lacko, A G

    1986-01-01

    Plasma cholesterol and triglyceride levels and selected molecular species of plasma cholesteryl esters and triglycerides were determined in 6-, 12-, 15-, 18-, 21-, and 24-month-old Fischer-344 rats. Lecithin:cholesterol acyltransferase (LCAT) activity was also determined using two independent methods utilizing endogenous and exogenous substrates. Plasma cholesterol levels increased up to 18 months of age and then plateaued. Of the plasma triglyceride molecular species investigated (C50, C52, C54 and C56), only the levels of C52 increased linearly with age. The concentration of other triglyceride molecular species did not change with age. The fractional rate of plasma cholesterol esterification showed a decreasing trend with age, whereas, the net cholesterol esterification rate showed a gradual age related increase. However, this latter parameter remained unchanged with age when the data were normalized for body weight. The cholesterol esterification rates measured using an exogenous substrate (estimating LCAT enzyme levels) showed essentially no change with age. These data indicate that changes in the levels and/or composition of lipoprotein substrate(s) for LCAT are likely causes of the observed age-related changes in the fractional rate of plasma cholesterol esterification. The net esterification rate of plasma cholesterol was significantly correlated with the plasma triglyceride levels when the animals for all age groups were treated as one experimental group. PMID:3959602

  4. Differences in Retinal Structure and Function between Aging Male and Female Sprague-Dawley Rats are Strongly Influenced by the Estrus Cycle

    PubMed Central

    Chaychi, Samaneh; Polosa, Anna; Lachapelle, Pierre

    2015-01-01

    Purpose Biological sex and age are considered as two important factors that may influence the function and structure of the retina, an effect that might be governed by sexual hormones such as estrogen. The purpose of this study was to delineate the influence that biological sex and age exert on the retinal function and structure of rodents and also clarify the effect that the estrus cycle might exert on the retinal function of female rats. Method The retinal function of 50 normal male and female albino Sprague-Dawley (SD) rats was investigated with the electroretinogram (ERG) at postnatal day (P) 30, 60, 100, 200, and 300 (n = 5–6 male and female rats/age). Following the ERG recording sessions, retinal histology was performed in both sexes. In parallel, the retinal function of premenopausal and menopausal female rats aged P540 were also compared. Results Sex and age-related changes in retinal structure and function were observed in our animal model. However, irrespective of age, no significant difference was observed in ERG and retinal histology obtained from male and female rats. Notwithstanding the above we did however notice that between P60 and P200 there was a gradual increase in ERG amplitudes of female rats compared to males. Furthermore, the ERG of premenopausal female rats aged 18 months old (P540) was larger compared to age-matched menopausal female rats as well as that of male rats. Conclusion Our results showed that biological sex and age can influence the retinal function and structure of albino SD rats. Furthermore, we showed that cycled female rats have better retinal function compared to the menopausal female rats suggesting a beneficial effect of the estrus cycle on the retinal function. PMID:26317201

  5. Female Flinders Sensitive Line rats show estrous cycle-independent depression-like behavior and altered tryptophan metabolism.

    PubMed

    Eskelund, Amanda; Budac, David P; Sanchez, Connie; Elfving, Betina; Wegener, Gregers

    2016-08-01

    Clinical studies suggest a link between depression and dysfunctional tryptophan (TRP) metabolism. Even though depression is twice as prevalent in women as men, the impact of the estrous cycle on TRP metabolism is not well-understood. Here we investigated 13 kynurenine and serotonin metabolites in female Flinders Sensitive Line (FSL) rats, a genetic rat model of depression. FSL rats and controls (Flinders Resistant Line rats), 12-20weeks old, were subject to the forced swim test (FST), a commonly used measure of depression-like behavior. Open field was used to evaluate locomotor ability and agoraphobia. Subsequently, plasma and hemispheres were collected and analyzed for their content of TRP metabolites using liquid chromatography-tandem mass spectrometry. Vaginal saline lavages were obtained daily for ⩾2 cycles. To estimate the effects of sex and FST we included plasma from unhandled, naïve male FSL and FRL rats. Female FSL rats showed a depression-like phenotype with increased immobility in the FST, not confounded by anxiety. In the brain, 3-hydroxykynurenine was increased whereas anthranilate and 5-hydroxytryptophan were decreased. In plasma, anthranilate and quinolinate levels were lower in FSL rats compared to the control line, independent of sex and FST. The estrous cycle neither impacted behavior nor TRP metabolite levels in the FSL rat. In conclusion, the female FSL rat is an interesting preclinical model of depression with altered TRP metabolism, independent of the estrous cycle. The status of the pathway in brain was not reflected in the plasma, which may indicate that an inherent local, cerebral regulation of TRP metabolism occurs. PMID:27210075

  6. Effect of age and caloric restriction on cutaneous wound closure in rats and monkeys.

    PubMed

    Roth, G S; Kowatch, M A; Hengemihle, J; Ingram, D K; Spangler, E L; Johnson, L K; Lane, M A

    1997-03-01

    Cutaneous wounds close more slowly in rats and monkeys as age increases. Caloric restriction of 40% in rats and 30% in monkeys did not significantly affect healing rates, although it did exert a trend toward faster closure. Similarly, voluntary exercise did not significantly alter healing rates in rats. Thus, impaired wound healing appears to be a generalized physiological manifestation of aging, but its possible amelioration by "anti-aging" interventions remains to be established. PMID:9060966

  7. Radioautographic measurement of electron-induced epidermal kinetic effects in different aged rats

    SciTech Connect

    Sargent, E.V.; Burns, F.J.

    1987-03-01

    We have previously shown that the ability of rat epidermal cells to repair electron-induced DNA damage decreases as a function of age. The present investigation was performed to examine the relationship between this finding and sensitivity of epidermal cells to the cytotoxic effects of the radiation. Male CD rats at ages 2, 28, 100, 200, 420, and 728 days were injected with (/sup 3/H)-thymidine (( /sup 3/H)Thd) at a dose of 2 mu Ci/g body weight. One hour later, the rats were anesthetized and the dorsal skin irradiated with various doses of 0.8 meV electrons at a dose rate of 660 rads/min. At 24 h after irradiation, radioautographs were made of a sheet of epidermis that was separated by trypsinization from the underlying dermis. Labeled cells were scored either as singlets or doublets (adjacent labeled cells). The percent labeled cells and percent labeled cells as doublets were determined. The estimated labeling index (the proportion of cells labeled by a single exposure to (/sup 3/H)Thd) of the epidermal basal layer decreased as a function of age. The slope of the semilog plot of the percent labeled cells as doublets as a function of electron dose indicates that the Do value decreases with increasing age. The results show, however, that the greatest difference in sensitivity occurs between 2-day (neonatal) and 28-day (pubescent) animals and again between 420-day (adult) and 728-day (senescent) animals.

  8. Nutraceutical intervention reverses the negative effects of blood from aged rats on stem cells.

    PubMed

    Bickford, Paula C; Kaneko, Yuji; Grimmig, Bethany; Pappas, Colleen; Small, Brent; Sanberg, Cyndy D; Sanberg, Paul R; Tan, Jun; Douglas Shytle, R

    2015-10-01

    Aging is associated with a decline in function in many of the stem cell niches of the body. An emerging body of literature suggests that one of the reasons for this decline in function is due to cell non-autonomous influences on the niche from the body. For example, studies using the technique of parabiosis have demonstrated a negative influence of blood from aged mice on muscle satellite cells and neurogenesis in young mice. We examined if we could reverse this effect of aged serum on stem cell proliferation by treating aged rats with NT-020, a dietary supplement containing blueberry, green tea, vitamin D3, and carnosine that has been shown to increase neurogenesis in aged rats. Young and aged rats were administered either control NIH-31 diet or one supplemented with NT-020 for 28 days, and serum was collected upon euthanasia. The serum was used in cultures of both rat hippocampal neural progenitor cells (NPCs) and rat bone marrow-derived mesenchymal stem cells (MSCs). Serum from aged rats significantly reduced cell proliferation as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU) assays in both NPCs and MSCs. Serum from aged rats treated with NT-020 was not different from serum from young rats. Therefore, NT-020 rescued the effect of serum from aged rats to reduce stem cell proliferation. PMID:26410618

  9. Diethylene glycol-induced toxicities show marked threshold dose response in rats

    SciTech Connect

    Landry, Greg M.; Dunning, Cody L.; Abreo, Fleurette; Latimer, Brian; Orchard, Elysse; McMartin, Kenneth E.

    2015-02-01

    Diethylene glycol (DEG) exposure poses risks to human health because of widespread industrial use and accidental exposures from contaminated products. To enhance the understanding of the mechanistic role of metabolites in DEG toxicity, this study used a dose response paradigm to determine a rat model that would best mimic DEG exposure in humans. Wistar and Fischer-344 (F-344) rats were treated by oral gavage with 0, 2, 5, or 10 g/kg DEG and blood, kidney and liver tissues were collected at 48 h. Both rat strains treated with 10 g/kg DEG had equivalent degrees of metabolic acidosis, renal toxicity (increased BUN and creatinine and cortical necrosis) and liver toxicity (increased serum enzyme levels, centrilobular necrosis and severe glycogen depletion). There was no liver or kidney toxicity at the lower DEG doses (2 and 5 g/kg) regardless of strain, demonstrating a steep threshold dose response. Kidney diglycolic acid (DGA), the presumed nephrotoxic metabolite of DEG, was markedly elevated in both rat strains administered 10 g/kg DEG, but no DGA was present at 2 or 5 g/kg, asserting its necessary role in DEG-induced toxicity. These results indicate that mechanistically in order to produce toxicity, metabolism to and significant target organ accumulation of DGA are required and that both strains would be useful for DEG risk assessments. - Highlights: • DEG produces a steep threshold dose response for kidney injury in rats. • Wistar and F-344 rats do not differ in response to DEG-induced renal injury. • The dose response for renal injury closely mirrors that for renal DGA accumulation. • Results demonstrate the importance of DGA accumulation in producing kidney injury.

  10. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players

    PubMed Central

    Gärtner, H.; Minnerop, M.; Pieperhoff, P.; Schleicher, A.; Zilles, K.; Altenmüller, E.; Amunts, K.

    2013-01-01

    To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life. PMID

  11. Effect of Eurycoma longifolia Jack on orientation activities in middle-aged male rats.

    PubMed

    Ang, H H; Lee, K L

    2002-12-01

    The effects of various fractions of Eurycoma longifolia Jack were studied on the orientation activities of the inbred, adult middle-aged Sprague-Dawley rats, 9 months old and retired breeders towards the receptive females (anogenital sniffing, licking, mounting), the environment (climbing, raring, exploration), themselves (nongenital grooming, genital grooming) and mobility (restricted, unrestricted) after treating these subjects twice daily for 10 days. Results showed that subjects treated with 800 mg/kg of E. longifolia Jack increased orientation activities towards the receptive females (anogenital sniffing, licking and mounting), increased genital grooming towards themselves and restricted movements to a particular area of the cage but decreased interest in the external environment (climbing, raring, exploration) as compared with the controls during the investigation period. In conclusion, this study gives further evidences that different fractions of E. longifolia Jack modified the orientation activities of the middle-aged male rats. PMID:12685506

  12. Place Cell Networks in Pre-weanling Rats Show Associative Memory Properties from the Onset of Exploratory Behavior.

    PubMed

    Muessig, L; Hauser, J; Wills, T J; Cacucci, F

    2016-08-01

    Place cells are hippocampal pyramidal cells that are active when an animal visits a restricted area of the environment, and collectively their activity constitutes a neural representation of space. Place cell populations in the adult rat hippocampus display fundamental properties consistent with an associative memory network: the ability to 1) generate new and distinct spatial firing patterns when encountering novel spatial contexts or changes in sensory input ("remapping") and 2) reinstate previously stored firing patterns when encountering a familiar context, including on the basis of an incomplete/degraded set of sensory cues ("pattern completion"). To date, it is unknown when these spatial memory responses emerge during brain development. Here, we show that, from the age of first exploration (postnatal day 16) onwards, place cell populations already exhibit these key features: they generate new representations upon exposure to a novel context and can reactivate familiar representations on the basis of an incomplete set of sensory cues. These results demonstrate that, as early as exploratory behaviors emerge, and despite the absence of an adult-like grid cell network, the developing hippocampus processes incoming sensory information as an associative memory network. PMID:27282394

  13. Place Cell Networks in Pre-weanling Rats Show Associative Memory Properties from the Onset of Exploratory Behavior

    PubMed Central

    Muessig, L.; Hauser, J.; Wills, T. J.; Cacucci, F.

    2016-01-01

    Place cells are hippocampal pyramidal cells that are active when an animal visits a restricted area of the environment, and collectively their activity constitutes a neural representation of space. Place cell populations in the adult rat hippocampus display fundamental properties consistent with an associative memory network: the ability to 1) generate new and distinct spatial firing patterns when encountering novel spatial contexts or changes in sensory input (“remapping”) and 2) reinstate previously stored firing patterns when encountering a familiar context, including on the basis of an incomplete/degraded set of sensory cues (“pattern completion”). To date, it is unknown when these spatial memory responses emerge during brain development. Here, we show that, from the age of first exploration (postnatal day 16) onwards, place cell populations already exhibit these key features: they generate new representations upon exposure to a novel context and can reactivate familiar representations on the basis of an incomplete set of sensory cues. These results demonstrate that, as early as exploratory behaviors emerge, and despite the absence of an adult-like grid cell network, the developing hippocampus processes incoming sensory information as an associative memory network. PMID:27282394

  14. 14 Days of supplementation with blueberry extract shows anti-atherogenic properties and improves oxidative parameters in hypercholesterolemic rats model.

    PubMed

    Ströher, Deise Jaqueline; Escobar Piccoli, Jacqueline da Costa; Güllich, Angélica Aparecida da Costa; Pilar, Bruna Cocco; Coelho, Ritiéle Pinto; Bruno, Jamila Benvegnú; Faoro, Debora; Manfredini, Vanusa

    2015-01-01

    The effects of supplementation with blueberry (BE) extract (Vaccinium ashei Reade) for 14 consecutive days on biochemical, hematological, histopathological and oxidative parameters in hypercholesterolemic rats were investigated. After supplementation with lyophilized extract of BE, the levels of total cholesterol, low-density lipoprotein cholesterol and triglycerides were decreased. Histopathological analysis showed significant decrease (p < 0.05) of aortic lesions in hypercholesterolemic rats. Oxidative parameters showed significant reductions (p < 0.05) in oxidative damage to lipids and proteins and an increase in activities of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. The BE extract showed an important cardioprotective effect by the improvements in the serum lipid profile, antioxidant system, particularly in reducing oxidative stress associated with hypercholesterolemia and anti-atherogenic effect in rats. PMID:26171628

  15. Dietary Iron Concentration May Influence Aging Process by Altering Oxidative Stress in Tissues of Adult Rats

    PubMed Central

    Arruda, Lorena Fernandes; Arruda, Sandra Fernandes; Campos, Natália Aboudib; de Valencia, Fernando Fortes; Siqueira, Egle Machado de Almeida

    2013-01-01

    Iron is an essential element. However, in its free form, iron participates in redox-reactions, leading to the production of free radicals that increase oxidative stress and the risk of damaging processes. Living organisms have an efficient mechanism that regulates iron absorption according to their iron content to protect against oxidative damage. The effects of restricted and enriched-iron diets on oxidative stress and aging biomarkers were investigated. Adult Wistar rats were fed diets containing 10, 35 or 350 mg/kg iron (adult restricted-iron, adult control-iron and adult enriched-iron groups, respectively) for 78 days. Rats aged two months were included as a young control group. Young control group showed higher hemoglobin and hematocrit values, lower levels of iron and lower levels of MDA or carbonyl in the major studied tissues than the adult control group. Restricted-iron diet reduced iron concentrations in skeletal muscle and oxidative damage in the majority of tissues and also increased weight loss. Enriched-iron diet increased hematocrit values, serum iron, gamma-glutamyl transferase, iron concentrations and oxidative stress in the majority of tissues. As expected, young rats showed higher mRNA levels of heart and hepatic L-Ferritin (Ftl) and kidneys SMP30 as well as lower mRNA levels of hepatic Hamp and interleukin-1 beta (Il1b) and also lower levels of liver protein ferritin. Restricted-iron adult rats showed an increase in heart Ftl mRNA and the enriched-iron adult rats showed an increase in liver nuclear factor erythroid derived 2 like 2 (Nfe2l2) and Il1b mRNAs and in gut divalent metal transporter-1 mRNA (Slc11a2) relative to the control adult group. These results suggest that iron supplementation in adult rats may accelerate aging process by increasing oxidative stress while iron restriction may retards it. However, iron restriction may also impair other physiological processes that are not associated with aging. PMID:23593390

  16. A Rat Treated with Mesenchymal Stem Cells Lives to 44 Months of Age.

    PubMed

    Mansilla, Eduardo; Roque, Gustavo; Sosa, Yolanda E; Tarditti, Adrian; Goya, Rodolfo G

    2016-08-01

    There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing regenerative medicine. We assessed the effect of intravenous administration of human bone marrow-derived MSC on the life span of a single Sprague-Dawley female rat. The treatment was started when the rat was 6 months old and the cells were administered every 2 weeks afterward. The treatment did not induce any obvious changes in body growth or behavior and the rat showed the typical age changes for this strain, except that, unlike intact counterparts, the animal did not develop mammary tumors or pituitary gland hyperplasia. The more remarkable effect of the treatment was on life span, which was 44 months compared with an average of 36 months for intact laboratory rats. We conclude that despite the low N value, it is likely that the MSC treatment was responsible for the exceptionally long survival of the rat. The potential rewards of confirming the present findings warrant further studies involving higher N values. PMID:26650400

  17. Neuroprotective effect of Shenqi Fuzheng injection pretreatment in aged rats with cerebral ischemia/reperfusion injury

    PubMed Central

    Cai, Ying-min; Zhang, Yong; Zhang, Peng-bo; Zhen, Lu-ming; Sun, Xiao-ju; Wang, Zhi-ling; Xu, Ren-yan; Xue, Rong-liang

    2016-01-01

    Shenqi Fuzheng injection is extracted from the Chinese herbs Radix Astragali and Radix Codonopsis. The aim of the present study was to investigate the neuroprotective effects of Shenqi Fuzheng injection in cerebral ischemia and reperfusion. Aged rats (20–22 months) were divided into three groups: sham, model, and treatment. Shenqi Fuzheng injection or saline (40 mL/kg) was injected into the tail vein daily for 1 week, after which a cerebral ischemia/reperfusion injury model was established. Compared with model rats that received saline, rats in the treatment group had smaller infarct volumes, lower brain water and malondialdehyde content, lower brain Ca2+ levels, lower activities of serum lactate dehydrogenase and creatine kinase, and higher superoxide dismutase activity. In addition, the treatment group showed less damage to the brain tissue ultrastructure and better neurological function. Our findings indicate that Shenqi Fuzheng injection exerts neuroprotective effects in aged rats with cerebral ischemia/reperfusion injury, and that the underlying mechanism relies on oxygen free radical scavenging and inhibition of brain Ca2+ accumulation. PMID:26981095

  18. Resveratrol shows neuronal and vascular-protective effects in older, obese, streptozotocin-induced diabetic rats.

    PubMed

    Phyu, Hnin Ei; Irwin, Jordon Candice; Vella, Rebecca Kate; Fenning, Andrew Stuart

    2016-06-01

    Diabetes-induced CVD is the most significant complication of prolonged hyperglycaemia. The aim of this study was to determine whether resveratrol, a polyphenol antioxidant compound, when administered at a dose that can be reasonably obtained through supplementation could prevent the development of cardiovascular complications in older, obese, diabetic rats. Diabetes was induced in 6-month old, obese, male Wistar rats via a single intravenous dose of streptozotocin (65 mg/kg). Randomly selected animals were administered resveratrol (2 mg/kg) via oral gavage daily for 8 weeks. Body weights, blood glucose levels, food intake and water consumption were monitored, and assessments of vascular reactivity, tactile allodynia and left ventricular function were performed. Resveratrol therapy significantly improved tactile allodynia and vascular contractile functionality in diabetic rats (P<0·05). There were no significant changes in standardised vasorelaxation responses, plasma glucose concentrations, water consumption, body weight, left ventricular hypertrophy, kidney hypertrophy, heart rate or left ventricular compliance with resveratrol administration. Resveratrol-mediated improvements in vascular and nerve function in old, obese, diabetic rats were associated with its reported antioxidant effects. Resveratrol did not improve cardiac function nor mitigate the classic clinical symptoms of diabetes mellitus (i.e. hyperglycaemia, polydypsia and a failure to thrive). This suggests that supplementation with resveratrol at a dose achievable with commercially available supplements would not produce significant cardioprotective effects in people with diabetes mellitus. PMID:27153202

  19. The influence of aging on poststroke depression using a rat model via middle cerebral artery occlusion.

    PubMed

    Boyko, Matthew; Kutz, Ruslan; Gruenbaum, Benjamin F; Cohen, Hagit; Kozlovsky, Nitsan; Gruenbaum, Shaun E; Shapira, Yoram; Zlotnik, Alexander

    2013-12-01

    Poststroke depression (PSD) is the most frequent psychological sequela following stroke. While previous studies describe the impact of age on brain infarct volume, brain edema, and blood-brain barrier (BBB) breakdown following ischemia, the role of age on PSD has yet to be described. Here, we examine the influence of age on PSD progression in a rat model of PSD by middle cerebral artery occlusion (MCAO). One hundred forty-three rats were divided into three groups. 48 rats 20 weeks of age underwent a sham procedure, 51 rats 20 weeks of age had MCAO, and 44 rats 22-26 months of age had MCAO. Groups were further divided into two subgroups. The first subgroup was used to measure infarct lesion volume, brain edema, and BBB breakdown at 24 h. In the second subgroup at 3 weeks after MCAO, rats were subjected to a sucrose preference test, two-way shuttle avoidance task, forced swimming test, and a brain-derived neurotrophic factor (BDNF) protein level measurement. Total and striatal infarct volume, brain edema, and BBB breakdown in the striatum were increased in older rats, as compared with younger rats. While both old and young rats exhibited depressive-like behaviors on each of the behavioral tests and lower BDNF levels post-MCAO, as compared with control rats, there were no differences between old and young rats. Although older rats suffered from larger infarct volumes, increased brain edema and more BBB disruption following MCAO, the lack of behavioral differences between young and old rats suggests that there was no effect of rat age on the incidence of PSD. PMID:23761136

  20. Investigation of infectivity of neonates and adults from different rat strains to Toxoplasma gondii Prugniaud shows both variation which correlates with iNOS and Arginase-1 activity and increased susceptibility of neonates to infection.

    PubMed

    Gao, Jiang-Mei; Yi, Si-Qi; Wu, Ming-Shui; Geng, Guo-Qing; Shen, Ji-Long; Lu, Fang-Li; Hide, Geoff; Lai, De-Hua; Lun, Zhao-Rong

    2015-02-01

    Mouse models differ considerably from humans with regard to clinical symptoms of toxoplasmosis caused by Toxoplasma gondii and, by comparison, the rat model is more representative of this disease in humans. In the present study, we found that different strains of adult and newborn rats (Lewis, Wistar, Sprague Dawley, Brown Norway and Fischer 344) exhibited remarkable variation in the number of brain cysts following inoculation with the T.gondii Prugniaud strain. In adult rats, large numbers of cysts (1231 ± 165.6) were observed in Fischer 344, but none in the other four. This situation was different in newborn rats aged from 5 to 20 days old. All Fischer 344 and Brown Norway newborns were cyst-positive while cyst-positive infection in Sprague Dawley neonates ranged from 54.5% to 60% depending on their age at infection. In Wistar and Lewis rat neonates, however, cyst-positivity rates of 0-42.9% and 0-25% were found respectively. To investigate whether rat strain differences in infectivity could be related to inherent strain and genetic differences in the host immune response, we correlated our data with previously reported strain differences in iNOS/Arginase ratio in adult rats and found them to be linked. These results show that interactions between host genetic background and age of rat influence T.gondii infection. PMID:25541383

  1. Rapamycin increases grip strength and attenuates age-related decline in maximal running distance in old low capacity runner rats

    PubMed Central

    Xue, Qian-Li; Yang, Huanle; Li, Hui-Fen; Abadir, Peter M.; Burks, Tyesha N.; Koch, Lauren G.; Britton, Steven L.; Carlson, Joshua; Chen, Laura; Walston, Jeremy D.; Leng, Sean X.

    2016-01-01

    Rapamycin is known to extend lifespan. We conducted a randomized placebo-controlled study of enteric rapamycin-treatment to evaluate its effect on physical function in old low capacity runner (LCR) rats, a rat model selected from diverse genetic background for low intrinsic aerobic exercise capacity without genomic manipulation and characterized by increased complex disease risks and aging phenotypes. The study was performed in 12 male and 16 female LCR rats aged 16-22 months at baseline. The treatment group was fed with rapamycin-containing diet pellets at approximately 2.24mg/kg body weight per day and the placebo group with the same diet without rapamycin for six months. Observation was extended for additional 2 months. Physical function measurements include grip strength measured as maximum tensile force using a rat grip strength meter and maximum running distance (MRD) using rat physical treadmill test. The results showed that rapamycin improved grip strength by 13% (p=.036) and 60% (p<.001) from its baseline in female and male rats, respectively. Rapamycin attenuated MRD decline by 66% (p<.001) and 46% (p=.319) in females and males, respectively. These findings provide initial evidence for beneficial effect of rapamycin on physical functioning in an aging rat model of high disease risks with significant implication in humans. PMID:26997106

  2. Dexmedetomidine alleviates postoperative cognitive dysfunction by inhibiting neuron excitation in aged rats

    PubMed Central

    Xiong, Bo; Shi, Qiqing; Fang, Hao

    2016-01-01

    The perioperative stress response is one of the factors leading to postoperative cognitive dysfunction (POCD). Dexmedetomidine (Dex) can reduce the stress response and hippocampus neuroapoptosis, but its mechanism of action on POCD remains unknown. This study investigated the protective effect and possible mechanism of Dex on POCD in aged rats. Ninety-six aged male rats were randomly divided into four groups (n = 24 rats per group): a non-surgical control group, a surgical (model) group, a surgical group receiving a high dose of Dex (12 μg/kg), and a surgical group receiving a low dose of Dex (3 μg/kg). Cognitive function and neuronal apoptosis were evaluated after splenectomy. Compared with the control group, the model group had significantly longer escape latencies and fewer platform crossings in the Morris water-maze test. Immunohistochemistry showed that relaxin-3 and c-fos positive neurons in the hippocampus increased on postoperative days 1 and 3. Greater downregulation of the Bcl-2 protein and upregulation of Fas, caspase-8, and caspase-9 significantly increased neuroapoptosis in the model group. Compared with the model group, rats given Dex had (1) shorter escape latencies, (2) more platform crossings, (3) fewer relaxin-3 and c-fos positive neurons in the hippocampal CA1 area, (4) upregulation of Bcl-2, (5) downregulation of Fas, caspase-8, and caspase-9 proteins, and (6) decreased neuroapoptosis in the hippocampus. Thus, our data suggest that Dex may improve cognitive functioning in aged rats by inhibiting neural over-excitability. The mechanism may operate by restraining relaxin-3 and c-fos expression. PMID:27069541

  3. Factor analysis shows that female rat behaviour is characterized primarily by activity, male rats are driven by sex and anxiety.

    PubMed

    Fernandes, C; González, M I; Wilson, C A; File, S E

    1999-12-01

    This experiment explored sex differences in behaviour using factor analysis to describe the relationship between different behavioral variables. A principal component solution with an orthogonal rotation of the factor matrix was used, ensuring that the extracted factors are independent of one another, and thus reflect separate processes. In the elevated plus-maze test of anxiety, in male rats factor 1 accounted for 75% of the variance and reflected anxiety, factor 2 represented activity, and accounted for 24% of the variance. This contrasted with the finding in female rats in which factor 1 was activity, accounting for 57% of the variance, with the anxiety factor accounting for only 34% of the variance. When behaviour in both the plus-maze and holeboard were analysed, a similar sex difference was found with anxiety emerging as factor 1 in males and holeboard activity as factor 1 in females. Locomotor activity in the inner portion of the holeboard loaded on the anxiety factor for males, but on activity for females. When behaviours in the plus-maze and sexual orientation tests were analysed, anxiety emerged as factor 1 in males, sexual preferences factor 2, and activity factor 3. In females, activity was factor 1, sexual preference factor 2, anxiety factor 3, and social interest factor 4. These results suggest caution should be exercised in interpreting the results from female rats in tests validated on males because the primary controlling factor may be different. PMID:10593196

  4. Central leptin gene delivery evokes persistent leptin signal transduction in young and aged-obese rats but physiological responses become attenuated over time in aged-obese rats.

    PubMed

    Scarpace, P J; Matheny, M; Zhang, Y; Tümer, N; Frase, C D; Shek, E W; Hong, B; Prima, V; Zolotukhin, S

    2002-03-01

    The purpose of this study was to determine if long-term leptin treatment desensitizes leptin signal transduction and the subsequent downstream anorexic and thermogenic responses in normal and leptin-resistant age-related obese rats. To this end, we administered, i.c.v., recombinant adeno-associated virus encoding rat leptin cDNA (rAAV-leptin) or control virus into young and aged-obese rats and after 9 or 46 days, examined food intake, oxygen consumption, body weight, serum leptin, STAT3 phosphorylation, hypothalamic NPY and POMC mRNAs, and UCP1 expression and protein level in brown adipose tissue (BAT). In young rats, rAAV-leptin depleted body fat and both anorexic and thermogenic mechanisms contributed to this effect. Moreover, leptin signal transduction was not desensitized, and there were persistent physiological responses. Similarly, in the aged-obese rats, there was unabated leptin signal transduction, however, both the anorexic and thermogenic responses completely attenuated sometime after day 9. This attenuation, downstream of the leptin receptor, may be contributing to the leptin-resistance and age-related weight gain in these aged-obese rats. Finally, in young rats, although the initial responses to rAAV-leptin were dominated by anorexic responses, by 46 days, the predominant response was thermogenic rather than anorexic, suggesting that energy expenditure may be an important component of long-term weight maintenance. PMID:11955525

  5. Effects of aging on mineralocorticoid-induced salt appetite in rats.

    PubMed

    Thunhorst, Robert L; Beltz, Terry G; Johnson, Alan Kim

    2013-12-15

    This work examined the effects of age on salt appetite measured in the form of daily saline (i.e., 0.3 M NaCl) drinking in response to administration of deoxycorticosterone acetate (DOCA; 5 mg/kg body wt) using young (4 mo), "middle-aged" adult (12 mo), and old (30 mo) male Brown Norway rats. Water and sodium intakes, excretions, and balances were determined daily. The salt appetite response was age dependent with "middle-aged" rats ingesting the most saline solution followed in order by young and then old rats. While old rats drank the least saline solution, the amounts of saline ingested still were copious and comprise an unambiguous demonstration of salt appetite in old rats. Middle-aged rats had the highest saline preference ratios of the groups under baseline conditions and throughout testing consistent with an increased avidity for sodium taste. There were age differences in renal handling of water and sodium that were consistent with a renal contribution to the greater saline intakes by middle-aged rats. There was evidence of impaired renal function in old rats, but this did not account for the reduced saline intakes of the oldest rats. PMID:24133100

  6. Enriched environment increases the myelinated nerve fibers of aged rat corpus callosum.

    PubMed

    Zhao, Yuan-Yu; Shi, Xiao-Yan; Qiu, Xuan; Lu, Wei; Yang, Shu; Li, Chen; Chen, Lin; Zhang, Lei; Cheng, Guo-Hua; Tang, Yong

    2012-06-01

    In this study, the effect of enriched environment (EE) on the spatial learning of aged rats was examined, and then the effects of EE on the aged corpus callosum (CC) were investigated by means of the modern stereological methods. We found that EE significantly improved the spatial learning of aged rats. The CC volume, the total volume of the myelinated fibers and total volume of the myelin sheaths in the CC, the total length of the myelinated fibers in the CC of enriched rats were significantly increased when compared to standard rats. The increase of the myelinated fibers in enriched rat CC might provide one of the structural bases for the enrichment-related improvement of the spatial learning. This study provided, to the best of our knowledge, the first evidence of environmental enrichment-induced increases of the CC and the myelinated fibers in the CC of aged rats. PMID:22431229

  7. Adolescent rats are more prone to binge eating behavior: a study of age and obesity as risk factors.

    PubMed

    Bekker, Liza; Barnea, Royi; Brauner, Akiva; Weller, Aron

    2014-08-15

    Binge eating (BE) is characterized by repeated, intermittent over-consumption of food in a brief period of time. This study aims to advance the understanding of potential risk factors for BE such as obesity, overeating and adolescence as an age group. We used the Otsuka Long Evans Tokushima Fatty (OLETF) rat, a genetic overeating-induced obesity model with increased preferences for sweet and fat. Adolescent and adult rats from both strains (OLETF and the lean control strain, Long Evans Tokushima Otsuka [LETO]) received limited access to a palatable liquid diet (Ensure vanilla) for three weeks. Water and chow were available throughout the study, but access to Ensure was limited to two hours, three times a week (3TW group) or every work day (5TW group). As expected, OLETF rats consumed more Ensure and were more BE-prone (BEP) than LETO rats at both ages. Adolescent rats showed a significantly larger binge size as demonstrated by a greater increase in Ensure intake, compared to adults. Furthermore, while the adults reduced their chow intake, compensating for increased Ensure intake, the adolescents increased their chow intake too. Finally, the adolescent rats showed binge like behavior earlier in the study and they tended to be BEP more than the adults. Our findings in rats suggest that adolescents and in particular obese adolescents are at risk for BE, and BE can lead to overweight, thus providing the basis for examination of biological mechanisms of this process in animal models. PMID:24815316

  8. Rats Housed on Corncob Bedding Show Less Slow-Wave Sleep

    PubMed Central

    Leys, Laura J; McGaraughty, Steve; Radek, Richard J

    2012-01-01

    Despite the reported advantages of corncob bedding, questions have emerged about how comfortable animals find this type of bedding as a resting surface. In this study, encephalography (EEG) was used to compare the effects of corncob and aspen-chip bedding on rat slow-wave sleep (SWS). According to a facility-wide initiative, rats that were weaned on aspen-chip bedding were switched to corncob bedding in home cages and EEG recording chambers. Spontaneous EEG recordings obtained for 5 wk after the switch to corncob bedding demonstrated that rats spent significantly less time in SWS as compared with levels measured on aspen chips just prior to the bedding switch. SWS remained low even after a 5-wk acclimation period to the corncob bedding. We then acutely switched back to aspen-chip bedding in EEG recording chambers. Acute reinstatement of aspen-chip bedding during EEG recording was associated with an average 22% increase in time spent in SWS, with overall levels of SWS comparable to the levels measured on aspen chips prior to the change to corncob bedding. Aspen-chip bedding subsequently was reinstated in both home cages and EEG recording chambers, and SWS baseline levels were restored. These data raise important concerns about the effects of corncob bedding on rodents used in research. PMID:23294881

  9. Rats housed on corncob bedding show less slow-wave sleep.

    PubMed

    Leys, Laura J; McGaraughty, Steve; Radek, Richard J

    2012-11-01

    Despite the reported advantages of corncob bedding, questions have emerged about how comfortable animals find this type of bedding as a resting surface. In this study, encephalography (EEG) was used to compare the effects of corncob and aspen-chip bedding on rat slow-wave sleep (SWS). According to a facility-wide initiative, rats that were weaned on aspen-chip bedding were switched to corncob bedding in home cages and EEG recording chambers. Spontaneous EEG recordings obtained for 5 wk after the switch to corncob bedding demonstrated that rats spent significantly less time in SWS as compared with levels measured on aspen chips just prior to the bedding switch. SWS remained low even after a 5-wk acclimation period to the corncob bedding. We then acutely switched back to aspen-chip bedding in EEG recording chambers. Acute reinstatement of aspen-chip bedding during EEG recording was associated with an average 22% increase in time spent in SWS, with overall levels of SWS comparable to the levels measured on aspen chips prior to the change to corncob bedding. Aspen-chip bedding subsequently was reinstated in both home cages and EEG recording chambers, and SWS baseline levels were restored. These data raise important concerns about the effects of corncob bedding on rodents used in research. PMID:23294881

  10. Pyridostigmine enhances atrial tachyarrhythmias in aging spontaneously hypertensive rats.

    PubMed

    Sayin, Halil; Scridon, Alina; Oréa, Valérie; Chapuis, Bruno; Chevalier, Philippe; Barrès, Christian; Julien, Claude

    2015-10-01

    This study examined whether chronic administration of pyridostigmine, a reversible cholinesterase inhibitor, would exacerbate episodes of spontaneous atrial tachyarrhythmia (AT) in conscious, aging, spontaneously hypertensive rats (SHRs). Telemetric recordings of electrocardiogram (ECG, n = 5) and ECG/arterial pressure (n = 3) were performed in male 49-week old SHRs. After a 1-week period of continuous recording under baseline conditions, rats were implanted with osmotic minipumps that delivered pyridostigmine (15 mg/kg/day subcutaneously) for either 1 (n = 8) or 3 (n = 5) weeks. In the latter case, sympathovagal balance was assessed during the last infusion week by measuring heart rate (HR) changes in response to administration of cardiac autonomic blockers. An additional 1-week recording was performed after explantation of minipumps. Significant (P = 0.02) reductions in HR with no consistent changes in arterial pressure were observed. Frequency and duration of AT episodes were increased by pyridostigmine (0.01 ≤ P ≤ 0.07). This increase was sustained across the 3-week treatment period and reversible after cessation of treatment. Autonomic blockade revealed that intrinsic HR was above (P = 0.04) resting HR, pointing to a shift of sympathovagal balance towards vagal predominance. However, the respiratory-related component of HR variability (high-frequency power of RR interval) was lowered (P = 0.01) by pyridostigmine treatment, indicating reduced vagal modulation of HR. The results are consistent with a pathogenic role of the parasympathetic nervous system in the aging SHR model, and raise the possibility that sustained vagal activation may facilitate atrial arrhythmias. PMID:26174159

  11. Age-dependent seizures of absence epilepsy and sleep spindles dynamics in WAG/Rij rats

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Y.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In the given paper, a relation between time-frequency characteristics of sleep spindles and the age-dependent epileptic activity in WAG/Rij rats is discussed. Analysis of sleep spindles based on the continuous wavelet transform is performed for rats of different ages. It is shown that the epileptic activity affects the time-frequency intrinsic dynamics of sleep spindles.

  12. AGE-RELATED CHANGES IN RECEPTOR-MEDIATED PHOSPHOINOSITIDE HYDROLYSIS IN VARIOUS REGIONS OF RAT BRAIN

    EPA Science Inventory

    The effects of age on cholinergic markers and receptor-stimulated phosphoinositide hydrolysis was dined in the frontal cortex and striatum of male Fischer-344 rats. holine acetyltransferase activity was decreased 27% in the striatum of aged (24 month) rats cared to young (3 month...

  13. Age-related increase in prostacyclin production in the rat aorta.

    PubMed

    Panganamala, R V; Hanumaiah, B; Merola, A J

    1981-02-01

    Normal Sprague-Dawley rats convert a substantial percentage of exogenous arachidonic acid to prostacyclin. This conversion can be quantitated by an aqueous sampling technique utilizing thin layer chromatography and liquid scintillation counting. There is a clear age-related increase in this conversion that can be demonstrated in aortas from rats of 3 weeks to 20 weeks of age. PMID:7017783

  14. Combined age- and trauma-related proteomic changes in rat neocortex: a basis for brain vulnerability

    PubMed Central

    Mehan, Neal D.; Strauss, Kenneth I.

    2012-01-01

    This proteomic study investigates the widely observed clinical phenomenon, that after comparable brain injuries, geriatric patients fare worse and recover less cognitive and neurologic function than younger victims. Utilizing a rat traumatic brain injury model, sham surgery or a neocortical contusion was induced in 3 age groups. Geriatric (21 months) rats performed worse on behavioral measures than young adults (12–16 weeks) and juveniles (5– 6 weeks). Motor coordination and certain cognitive deficits showed age-dependence both before and after injury. Brain proteins were analyzed using silver-stained two-dimensional electrophoresis gels. Spot volume changes (>2-fold change, p<0.01) were identified between age and injury groups using computer-assisted densitometry. Sequences were determined by mass spectrometry of tryptic peptides. The 19 spots identified represented 13 different genes that fell into 4 general age- and injury-dependent expression patterns. Fifteen isoforms changed differentially with respect to both age and injury (p<0.05). Further investigations into the nature and function of these isoforms may yield insights into the vulnerability of older patients and resilience of younger patients in recovery after brain injuries. PMID:22088680

  15. Combined age- and trauma-related proteomic changes in rat neocortex: a basis for brain vulnerability.

    PubMed

    Mehan, Neal D; Strauss, Kenneth I

    2012-09-01

    This proteomic study investigates the widely observed clinical phenomenon, that after comparable brain injuries, geriatric patients fare worse and recover less cognitive and neurologic function than younger victims. Utilizing a rat traumatic brain injury model, sham surgery or a neocortical contusion was induced in 3 age groups. Geriatric (21 months) rats performed worse on behavioral measures than young adults (12-16 weeks) and juveniles (5-6 weeks). Motor coordination and certain cognitive deficits showed age-dependence both before and after injury. Brain proteins were analyzed using silver-stained two-dimensional electrophoresis gels. Spot volume changes (>2-fold change, p<0.01) were identified between age and injury groups using computer-assisted densitometry. Sequences were determined by mass spectrometry of tryptic peptides. The 19 spots identified represented 13 different genes that fell into 4 general age- and injury-dependent expression patterns. Fifteen isoforms changed differentially with respect to both age and injury (p<0.05). Further investigations into the nature and function of these isoforms may yield insights into the vulnerability of older patients and resilience of younger patients in recovery after brain injuries. PMID:22088680

  16. Age-related changes in spleen of Dark Agouti rats immunized for experimental autoimmune encephalomyelitis.

    PubMed

    Djikić, Jasmina; Nacka-Aleksić, Mirjana; Pilipović, Ivan; Kosec, Duško; Arsenović-Ranin, Nevena; Stojić-Vukanić, Zorica; Dimitrijević, Mirjana; Leposavić, Gordana

    2015-01-15

    The study was undertaken considering age-related changes in susceptibility to experimental autoimmune encephalomyelitis (EAE) and a putative role of spleen in pathogenesis of this disease. The phenotypic and functional characteristics of T splenocytes were examined in young (3-month-old), middle-aged (8-month-old) and aged (26-month-old) Dark Agouti rats immunized for EAE with rat spinal cord in complete Freund's adjuvant. The rat susceptibility to EAE induction, as well as the number of activated CD4+CD134+ lymphocytes retrieved from their spinal cords progressively decreased with aging. To the contrary, in rats immunized for EAE the number of activated CD4+ splenocytes, i.e., CD4+CD134+, CD4+CD25+FoxP3- and CD4+CD40L+ cells, progressively increased with aging. This was associated with age-related increase in (i) CD4+ splenocyte surface expression of CD44, the molecule suggested to be involved in limiting emigration of encephalitogenic CD4+ cells from spleen into blood and (ii) frequency of regulatory T cells, including CD4+CD25+FoxP3+ cells, which are also shown to control encephalitogenic cell migration from spleen into the central nervous system. In favor of expansion of T-regulatory cell pool in aged rats was the greater concentration of IL-10 in unstimulated, Concanavalin A (ConA)- and myelin basic protein (MBP)-stimulated splenocyte cultures from aged rats compared with the corresponding cultures from young ones. Consistent with the age-related increase in the expression of CD44, which is shown to favor Th1 effector cell survival by interfering with CD95-mediated signaling, the frequency of apoptotic cells among CD4+ splenocytes, despite the greater frequency of CD95+ cells, was diminished in splenocyte cultures from aged compared with young rats. In addition, in control, as well as in ConA- and MBP-stimulated splenocyte cultures from aged rats, despite of impaired CD4+ cell proliferation, IFN-γ concentrations were greater than in corresponding cultures

  17. Differential Effects of Aging on Fore– and Hindpaw Maps of Rat Somatosensory Cortex

    PubMed Central

    David-Jürgens, Marianne; Churs, Lydia; Berkefeld, Thomas; Zepka, Roberto F.; Dinse, Hubert R.

    2008-01-01

    Getting older is associated with a decline of cognitive and sensorimotor abilities, but it remains elusive whether age-related changes are due to accumulating degenerational processes, rendering them largely irreversible, or whether they reflect plastic, adaptational and presumably compensatory changes. Using aged rats as a model we studied how aging affects neural processing in somatosensory cortex. By multi-unit recordings in the fore- and hindpaw cortical maps we compared the effects of aging on receptive field size and response latencies. While in aged animals response latencies of neurons of both cortical representations were lengthened by approximately the same amount, only RFs of hindpaw neurons showed severe expansion with only little changes of forepaw RFs. To obtain insight into parallel changes of walking behavior, we recorded footprints in young and old animals which revealed a general age-related impairment of walking. In addition we found evidence for a limb-specific deterioration of the hindlimbs that was not observed in the forelimbs. Our results show that age-related changes of somatosensory cortical neurons display a complex pattern of regional specificity and parameter-dependence indicating that aging acts rather selectively on cortical processing of sensory information. The fact that RFs of the fore- and hindpaws do not co-vary in aged animals argues against degenerational processes on a global scale. We therefore conclude that age-related alterations are composed of plastic-adaptive alterations in response to modified use and degenerational changes developing with age. As a consequence, age-related changes need not be irreversible but can be subject to amelioration through training and stimulation. PMID:18852896

  18. Acetyl-L-carnitine increases mitochondrial protein acetylation in the aged rat heart.

    PubMed

    Kerner, Janos; Yohannes, Elizabeth; Lee, Kwangwon; Virmani, Ashraf; Koverech, Aleardo; Cavazza, Claudio; Chance, Mark R; Hoppel, Charles

    2015-01-01

    Previously we showed that in vivo treatment of elderly Fisher 344 rats with acetylcarnitine abolished the age-associated defect in respiratory chain complex III in interfibrillar mitochondria and improved the functional recovery of the ischemic/reperfused heart. Herein, we explored mitochondrial protein acetylation as a possible mechanism for acetylcarnitine's effect. In vivo treatment of elderly rats with acetylcarnitine restored cardiac acetylcarnitine content and increased mitochondrial protein lysine acetylation and increased the number of lysine-acetylated proteins in cardiac subsarcolemmal and interfibrillar mitochondria. Enzymes of the tricarboxylic acid cycle, mitochondrial β-oxidation, and ATP synthase of the respiratory chain showed the greatest acetylation. Acetylation of isocitrate dehydrogenase, long-chain acyl-CoA dehydrogenase, complex V, and aspartate aminotransferase was accompanied by decreased catalytic activity. Several proteins were found to be acetylated only after treatment with acetylcarnitine, suggesting that exogenous acetylcarnitine served as the acetyl-donor. Two-dimensional fluorescence difference gel electrophoresis analysis revealed that acetylcarnitine treatment also induced changes in mitochondrial protein amount; a two-fold or greater increase/decrease in abundance was observed for thirty one proteins. Collectively, our data provide evidence for the first time that in the aged rat heart in vivo administration of acetylcarnitine provides acetyl groups for protein acetylation and affects the amount of mitochondrial proteins. PMID:25660059

  19. Deficits in coordinated motor behavior and in nigrostriatal dopaminergic system ameliorated and VMAT2 expression up-regulated in aged male rats by administration of testosterone propionate.

    PubMed

    Wang, Li; Kang, Yunxiao; Zhang, Guoliang; Zhang, Yingbo; Cui, Rui; Yan, Wensheng; Tan, Huibing; Li, Shuangcheng; Wu, Baiyila; Cui, Huixian; Shi, Geming

    2016-06-01

    The effects of testosterone propionate (TP) supplements on the coordinated motor behavior and nigrostriatal dopaminergic (NSDA) system were analyzed in aged male rats. The present study showed the coordinated motor behavioral deficits, the reduced activity of NSDA system and the decreased expression of vesicular monoamine transporter 2 (VMAT2) in 24month-old male rats. Long term TP treatment improved the motor coordination dysfunction with aging. Increased tyrosine hydroxylase and dopamine transporter, as well as dopamine and its metabolites were found in the NSDA system of TP-treated 24month-old male rats, indicative of the amelioratory effects of TP supplements on NSDA system of aged male rats. The enhancement of dopaminergic (DAergic) activity of NSDA system by TP supplements might underlie the amelioration of the coordinated motor dysfunction in aged male rats. TP supplements up-regulated VMAT2 expression in NSDA system of aged male rats. Up-regulation of VMAT2 expression in aged male rats following chronic TP treatment might be involved in the maintenance of DAergic function of NSDA system in aged male rats. PMID:26956479

  20. The probiotic mixture IRT5 ameliorates age-dependent colitis in rats.

    PubMed

    Jeong, Jin-Ju; Woo, Jae-Yeon; Ahn, Young-Tae; Shim, Jae-Hun; Huh, Chul-Sung; Im, Sin-Heog; Han, Myung Joo; Kim, Dong-Hyun

    2015-06-01

    To investigate the anti-inflammatory effect of probiotics, we orally administered IRT5 (1×10(9)CFU/rat) for 8 weeks to aged (16 months-old) Fischer 344 rats, and measured parameters of colitis. The expression levels of the inflammatory markers' inducible NO synthase (iNOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were higher in the colons of normal aged rats (18 months-old) than in the colons of normal young rats (6 months-old). Treatment with IRT5 suppressed the age-associated increased expression of iNOS, COX2, TNF-α, and IL-1β, and activation of NF-κB and mitogen-activated protein kinases. In a similar manner, the expression of tight junction proteins in the colon of normal aged rats was suppressed more potently than in normal young rats, and treatment of aged rats with IRT5 decreased the age-dependent suppression of tight junction proteins ZO-1, occludin, and claudin-1. Treatment with IRT5 suppressed age-associated increases in expressions of senescence markers p16 and p53 in the colon of aged rats, but increased age-suppressed expression of SIRT1. However, treatment with IRT5 inhibited age-associated increased myeloperoxidase activity in the colon. In addition, treatment with IRT5 lowered the levels of LPS in intestinal fluid and blood of aged rats, as well as the reduced concentrations of reactive oxygen species, malondialdehyde, and C-reactive protein in the blood. These findings suggest that IRT5 treatment may suppress age-dependent colitis by inhibiting gut microbiota LPS production. PMID:25907245

  1. Age-related changes in mRNA levels of hepatic transporters, cytochrome P450 and UDP-glucuronosyltransferase in female rats.

    PubMed

    Kawase, Atsushi; Ito, Ayami; Yamada, Ayano; Iwaki, Masahiro

    2015-06-01

    Hepatic transporters and metabolic enzymes affect drug pharmacokinetics. Limited information exists on the alteration in mRNA levels of hepatic transporters and metabolic enzymes with aging. We examined the effects of aging on the mRNA levels of representative hepatic drug transporters and metabolic enzymes by analyzing their levels in 10-, 30- and 50-week-old male and female rats. Levels of mRNA of drug transporters including multidrug resistance protein (Mdr)1a, multidrug resistance-associated protein (Mrp)2, breast cancer resistance protein (Bcrp) and organic anion-transporting polypeptide (Oatp)1a1, and the metabolic enzymes cytochrome P450 (CYP)3A1, CYP3A2 and UDP-glucuronosyltransferase (UGT)1A1 were analyzed using real-time reverse transcriptase polymerase chain reaction. The mRNA levels of transporters in male rats did not decrease with age, while the mRNA levels of Bcrp and Oatp1a1 in female rats decreased with age. The mRNA levels of CYP3A1 and CYP3A2 in male rats were higher than those in female rats. The mRNA levels of metabolic enzymes decreased with age in female but not male rats. In particular, the mRNA levels of UGT1A1 in 10-week-old female rats were higher than those in male rats. mRNA expression of hepatic transporters and metabolic enzymes are more susceptible to aging in female than male rats. The age-related decreases in the mRNA levels of Bcrp, Oatp1a1, CYP3A1 and CYP3A2 in female rats may affect the metabolism and transport of substrates. This study showed that aging affected the mRNA expression of hepatic transporters and metabolic enzymes in rats. PMID:24899460

  2. Acute effects of 17 β-estradiol and genistein on insulin sensitivity and spatial memory in aged ovariectomized female rats.

    PubMed

    Alonso, Ana; González-Pardo, Héctor; Garrido, Pablo; Conejo, Nélida M; Llaneza, Plácido; Díaz, Fernando; Del Rey, Carmen González; González, Celestino

    2010-12-01

    Aging is characterized by decline in metabolic function and insulin resistance, and both seem to be in the basis of neurodegenerative diseases and cognitive dysfunction. Estrogens prevent age-related changes, and phytoestrogens influence learning and memory. Our hypothesis was that estradiol and genistein, using rapid-action mechanisms, are able to modify insulin sensitivity, process of learning, and spatial memory. Young and aged ovariectomized rats received acute treatment with estradiol or genistein. Aged animals were more insulin-resistant than young. In each age, estradiol and genistein-treated animals were less insulin-resistant than the others, except in the case of young animals treated with high doses of genistein. In aged rats, no differences between groups were found in spatial memory test, showing a poor performance in the water maze task. However, young females treated with estradiol or high doses of genistein performed well in spatial memory task like the control group. Only rats treated with high doses of genistein showed an optimal spatial memory similar to the control group. Conversely, acute treatment with high doses of phytoestrogens improved spatial memory consolidation only in young rats, supporting the critical period hypothesis for the beneficial effects of estrogens on memory. Therefore, genistein treatment seems to be suitable treatment in aged rats in order to prevent insulin resistance but not memory decline associated with aging. Acute genistein treatment is not effective to restore insulin resistance associated to the early loss of ovarian function, although it can be useful to improve memory deficits in this condition. PMID:20467821

  3. Rats with hippocampal lesion show impaired learning and memory in the ziggurat task: a new task to evaluate spatial behavior.

    PubMed

    Faraji, Jamshid; Lehmann, Hugo; Metz, Gerlinde A; Sutherland, Robert J

    2008-05-16

    Spatial tasks are widely used to determine the function of limbic system structures in rats. The present study used a new task designed to evaluate spatial behavior, the ziggurat task (ZT), to examine the performance of rats with widespread hippocampal damage induced by N-methyl-d-aspartic acid (NMDA). The task consisted of an open field containing 16 identical ziggurats (pyramid shaped towers) arranged at equal distances. One of the ziggurats was baited with a food reward. The task required rats to navigate through the open field by using a combination of distal and/or proximal cues in order to locate the food reward. The ability to acquire and recall the location of the goal (baited) ziggurat was tested in consecutive training sessions of eight trials per day for 10 days. The location of the goal ziggurat was changed every second day, requiring the rats to learn a total of five different locations. Several parameters, including latency to find the target, distance traveled, the number of visits to non-baited ziggurats (errors), and the number of returns were used as indices of learning and memory. Control rats showed a significant decrease in distance traveled and reduced latency in locating the goal ziggurat across trials and days, suggesting that they learned and remembered the location of the goal ziggurat. Interestingly, the hippocampal-damaged group moved significantly faster, and traveled longer distances compared to the control group. Significant differences were observed between these groups with respect to the number of errors and returns on test days. Day 11 served as probe day, in which no food reward was given. The controls spent more time searching for the food in the previous training quadrant compared to the hippocampal group. The findings demonstrate that the ZT is a sensitive and efficient dry task for measuring hippocampus-dependent spatial performance in rats requiring little training and not associated with some of the disadvantages of water

  4. Skeletal muscle ischemia-reperfusion injury and cyclosporine A in the aging rat.

    PubMed

    Pottecher, Julien; Kindo, Michel; Chamaraux-Tran, Thiên-Nga; Charles, Anne-Laure; Lejay, Anne; Kemmel, Véronique; Vogel, Thomas; Chakfe, Nabil; Zoll, Joffrey; Diemunsch, Pierre; Geny, Bernard

    2016-06-01

    Old patients exhibit muscle impairments and increased perioperative risk during vascular surgery procedures. Although aging generally impairs protective mechanisms, data are lacking concerning skeletal muscle in elderly. We tested whether cyclosporine A (CsA), which protects skeletal muscle from ischemia-reperfusion (IR) in young rats, might reduce skeletal muscle mitochondrial dysfunction and oxidative stress in aging rats submitted to hindlimb IR. Wistar rats aged 71-73 weeks were randomized to IR (3 h unilateral tourniquet application and 2 h reperfusion) or IR + CsA (10 mg/kg cyclosporine IV before reperfusion). Maximal oxidative capacity (VM ax ), acceptor control ratio (ACR), and relative contribution of the mitochondrial respiratory chain complexes II, III, IV (VS ucc ), and IV (VTMPD /Asc ), together with calcium retention capacity (CRC) a marker of apoptosis, and tissue reactive oxygen species (ROS) production were determined in gastrocnemius muscles from both hindlimbs. Compared to the nonischemic hindlimb, IR significantly reduced mitochondrial coupling, VMax (from 7.34 ± 1.50 to 2.87 ± 1.22 μMO2 /min/g; P < 0.05; -70%), and VS ucc (from 6.14 ± 1.07 to 3.82 ± 0.83 μMO2 /min/g; P < 0.05; -42%) but not VTMPD /Asc . IR also decreased the CRC from 15.58 ± 3.85 to 6.19 ± 0.86 μMCa(2+) /min/g; P < 0.05; -42%). These alterations were not corrected by CsA (-77%, -49%, and -32% after IR for VM ax, VS ucc , and CRC, respectively). Further, CsA significantly increased ROS production in both hindlimbs (P < 0.05; +73%). In old rats, hindlimb IR impairs skeletal muscle mitochondrial function and increases oxidative stress. Cyclosporine A did not show protective effects. PMID:26787364

  5. Effects of aging on mineralocorticoid-induced salt appetite in rats

    PubMed Central

    Beltz, Terry G.; Johnson, Alan Kim

    2013-01-01

    This work examined the effects of age on salt appetite measured in the form of daily saline (i.e., 0.3 M NaCl) drinking in response to administration of deoxycorticosterone acetate (DOCA; 5 mg/kg body wt) using young (4 mo), “middle-aged” adult (12 mo), and old (30 mo) male Brown Norway rats. Water and sodium intakes, excretions, and balances were determined daily. The salt appetite response was age dependent with “middle-aged” rats ingesting the most saline solution followed in order by young and then old rats. While old rats drank the least saline solution, the amounts of saline ingested still were copious and comprise an unambiguous demonstration of salt appetite in old rats. Middle-aged rats had the highest saline preference ratios of the groups under baseline conditions and throughout testing consistent with an increased avidity for sodium taste. There were age differences in renal handling of water and sodium that were consistent with a renal contribution to the greater saline intakes by middle-aged rats. There was evidence of impaired renal function in old rats, but this did not account for the reduced saline intakes of the oldest rats. PMID:24133100

  6. A fine balance: regulation of hippocampal Arc/Arg3.1 transcription, translation and degradation in a rat model of normal cognitive aging

    PubMed Central

    Fletcher, Bonnie R.; Hill, Gordon S.; Long, Jeffrey M.; Gallagher, Michela; Shapiro, Matthew L.; Rapp, Peter R.

    2014-01-01

    Memory decline is a common feature of aging. Expression of the immediate-early gene Arc is necessary for normal long-term memory, and although experience dependent Arc transcription is reportedly reduced in the aged rat hippocampus, it has not been clear whether this effect is an invariant consequence of growing older, or a finding linked specifically to age-related memory impairment. Here we show that experience dependent Arc mRNA expression in the hippocampus fails selectively among aged rats with spatial memory deficits. While these findings are consistent with the possibility that blunted Arc transcription contributes to cognitive aging, we also found increased basal ARC protein levels in the CA1 field of the hippocampus in aged rats with memory impairment, together with a loss of the experience dependent increase observed in young and unimpaired aged rats. Follow-up analysis revealed that increased basal translation and blunted ubiquitin mediated degradation may contribute to increased basal ARC protein levels noted in memory impaired aged rats. These findings indicate that Arc expression is regulated at multiple levels, and that several of these mechanisms are altered in cognitively impaired aged rats. Defining the influence of these alterations on the spatial and temporal fidelity of synapse specific, memory-related plasticity in the aged hippocampus is an important challenge. PMID:25151943

  7. The Filtering of the Posturographic Signals Shows the Age Related Features

    PubMed Central

    Michalak, Krzysztof Piotr; Nawrot, Paweł; Woźniak, Piotr; Vieregge, Peter

    2014-01-01

    Objective. Lower frequencies of slow oscillations of the posturographic signals can be removed using high-pass filtering. This procedure releases postural reflexes possessing higher frequencies and lower amplitude range. Mutual dependence between the x and y components of posturographic signals was analyzed using principal component analysis (PCA). The posturographic signals of old patients with idiopathic gait disturbance were compared with the control group of similar age and with younger patients. There was also the analysis of the influence of the eyes state (open versus closed) and the head position (normal or bent back). The statistically significant differences in the mutual dependence between x and y components between the groups of patients were analyzed using MANOVA. The significant differences were observed mainly in the range of filter frequencies f = 0.1–1.5 Hz and f = 2.2–5.5 Hz with a maximum effect at approximately 4-5 Hz. A detailed post-hoc analysis is also presented. The differences in the higher frequency range suggest the main disturbance to be connected with the spinal reflexes. Visual and vestibular support appear insufficient for postural stability control in the idiopathic gait disturbance group. The results suggest that idiopathic gait disturbance is the final stage of the aging process of postural system. PMID:25587563

  8. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats

    PubMed Central

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E.; Hernandez, Jessica Soto; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-01-01

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle. PMID:26415224

  9. Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats

    PubMed Central

    Aliev, Gjumrakch; Liu, Jiankang; Shenk, Justin C; Fischbach, Kathryn; Pacheco, Gerardo J; Chen, Shu G; Obrenovich, Mark E; Ward, Walter F; Richardson, Arlan G; Smith, Mark A; Gasimov, Eldar; Perry, George; Ames, Bruce N

    2009-01-01

    Abstract Brain function declines with age and is associated with diminishing mitochondrial integrity. The neuronal mitochondrial ultrastructural changes of young (4 months) and old (21 months) F344 rats supplemented with two mitochondrial metabolites, acetyl-L-carnitine (ALCAR, 0.2%[wt/vol] in the drinking water) and R-α-lipoic acid (LA, 0.1%[wt/wt] in the chow), were analysed using qualitative and quantitative electron microscopy techniques. Two independent morphologists blinded to sample identity examined and scored all electron micrographs. Mitochondria were examined in each micrograph, and each structure was scored according to the degree of injury. Controls displayed an age-associated significant decrease in the number of intact mitochondria (P = 0.026) as well as an increase in mitochondria with broken cristae (P < 0.001) in the hippocampus as demonstrated by electron microscopic observations. Neuronal mitochondrial damage was associated with damage in vessel wall cells, especially vascular endothelial cells. Dietary supplementation of young and aged animals increased the proliferation of intact mitochondria and reduced the density of mitochondria associated with vacuoles and lipofuscin. Feeding old rats ALCAR and LA significantly reduced the number of severely damaged mitochondria (P = 0.02) and increased the number of intact mitochondria (P < 0.001) in the hippocampus. These results suggest that feeding ALCAR with LA may ameliorate age-associated mitochondrial ultrastructural decay and are consistent with previous studies showing improved brain function. PMID:18373733

  10. Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats.

    PubMed

    Aliev, Gjumrakch; Liu, Jiankang; Shenk, Justin C; Fischbach, Kathryn; Pacheco, Gerardo J; Chen, Shu G; Obrenovich, Mark E; Ward, Walter F; Richardson, Arlan G; Smith, Mark A; Gasimov, Eldar; Perry, George; Ames, Bruce N

    2009-02-01

    Brain function declines with age and is associated with diminishing mitochondrial integrity. The neuronal mitochondrial ultrastructural changes of young (4 months) and old (21 months) F344 rats supplemented with two mitochondrial metabolites, acetyl-L-carnitine (ALCAR, 0.2%[wt/vol] in the drinking water) and R-alpha-lipoic acid (LA, 0.1%[wt/wt] in the chow), were analysed using qualitative and quantitative electron microscopy techniques. Two independent morphologists blinded to sample identity examined and scored all electron micrographs. Mitochondria were examined in each micrograph, and each structure was scored according to the degree of injury. Controls displayed an age-associated significant decrease in the number of intact mitochondria (P = 0.026) as well as an increase in mitochondria with broken cristae (P < 0.001) in the hippocampus as demonstrated by electron microscopic observations. Neuronal mitochondrial damage was associated with damage in vessel wall cells, especially vascular endothelial cells. Dietary supplementation of young and aged animals increased the proliferation of intact mitochondria and reduced the density of mitochondria associated with vacuoles and lipofuscin. Feeding old rats ALCAR and LA significantly reduced the number of severely damaged mitochondria (P = 0.02) and increased the number of intact mitochondria (P < 0.001) in the hippocampus. These results suggest that feeding ALCAR with LA may ameliorate age-associated mitochondrial ultrastructural decay and are consistent with previous studies showing improved brain function. PMID:18373733

  11. Antiatherogenic and Cardioprotective Effects of Black Chokeberry (Aronia melanocarpa) Juice in Aging Rats.

    PubMed

    Daskalova, Elena; Delchev, Slavi; Peeva, Yulia; Vladimirova-Kitova, Lyudmila; Kratchanova, Maria; Kratchanov, Christo; Denev, Petko

    2015-01-01

    Age-related diseases are a social problem of global significance and their prevention by natural products is a research area of particular interest. The present study is an approach to counteract the risk factors for atherosclerosis arising in the aging process by supplementation of chokeberry juice. It employed a model of healthy adult rats monitored for a number of somatometric, serum lipidogram, and histopathological parameters, related to risk factors and their response to supplementation with antioxidant-rich chokeberry juice. The results were used to calculate different atherogenic and cardioprotective indices, and all results were compared to those of young healthy rats. Chokeberry juice proved an extremely rich source of polyphenols resulting in very high antioxidant activity. Treatment with Aronia juice significantly lowered the proatherogenic low-density lipoprotein fraction of the animals studied and led to a 16.5% decrease in their total cholesterol. Atherogenic indices in Aronia-supplemented animals clearly showed lower atherogenic risk and cardioprotective indices indicated protection of the cardiovascular system. Besides that, chokeberry juice retarded the age-related changes in the aortic wall and can be recommended as a prophylactic tool for healthy aging. PMID:26351516

  12. Antiatherogenic and Cardioprotective Effects of Black Chokeberry (Aronia melanocarpa) Juice in Aging Rats

    PubMed Central

    Daskalova, Elena; Delchev, Slavi; Peeva, Yulia; Vladimirova-Kitova, Lyudmila; Kratchanova, Maria; Kratchanov, Christo; Denev, Petko

    2015-01-01

    Age-related diseases are a social problem of global significance and their prevention by natural products is a research area of particular interest. The present study is an approach to counteract the risk factors for atherosclerosis arising in the aging process by supplementation of chokeberry juice. It employed a model of healthy adult rats monitored for a number of somatometric, serum lipidogram, and histopathological parameters, related to risk factors and their response to supplementation with antioxidant-rich chokeberry juice. The results were used to calculate different atherogenic and cardioprotective indices, and all results were compared to those of young healthy rats. Chokeberry juice proved an extremely rich source of polyphenols resulting in very high antioxidant activity. Treatment with Aronia juice significantly lowered the proatherogenic low-density lipoprotein fraction of the animals studied and led to a 16.5% decrease in their total cholesterol. Atherogenic indices in Aronia-supplemented animals clearly showed lower atherogenic risk and cardioprotective indices indicated protection of the cardiovascular system. Besides that, chokeberry juice retarded the age-related changes in the aortic wall and can be recommended as a prophylactic tool for healthy aging. PMID:26351516

  13. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.

    PubMed

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E; Soto Hernandez, Jessica; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-11-24

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle. PMID:26415224

  14. Vimentin metaplasia in renal cortical tubules of preneoplastic, neoplastic, aging, and regenerative lesions of rats and humans.

    PubMed Central

    Ward, J. M.; Stevens, J. L.; Konishi, N.; Kurata, Y.; Uno, H.; Diwan, B. A.; Ohmori, T.

    1992-01-01

    Vimentin expression was studied immunohistochemically in renal cortical tubules of untreated male rats of various ages, rats exposed to toxins (barbital sodium, folic acid) and carcinogens (streptozotocin, N-bis(2-hydroxypropyl)nitrosamine, barbital sodium, and in humans of various ages with or without renal epithelial tumors. Fetal, neonatal, and young adult rats did not express vimentin in renal cortical tubules. Regenerative renal tubular lesions from rats with aging nephropathy and from rats with toxic nephropathy both expressed vimentin. Mitogenic lesions induced by folic acid at 24 hours, however, were not immunoreactive for vimentin. Carcinogen-induced preneoplastic renal cortical tubular lesions in rats were most often focally immunoreactive whereas strong vimentin expression was found in almost all induced renal tumors. In kidneys of three children (younger than 2 years of age), vimentin was not found in renal cortical tubular cells except in rare individual cells in one case. Vimentin was abundant in basophilic regenerative tubules in kidneys of aged individuals, however. Most (7/10) human renal carcinomas and latent preneoplastic or neoplastic renal tubular lesions found incidentally at autopsy (2/4) showed vimentin expression. The authors suggest that the switching to vimentin expression in phenotypically normal renal cortical tubular cells in rats and humans, which do not usually express the intermediate filament protein vimentin, should be considered vimentin metaplasia. Vimentin expression is dissociated from increased cell proliferation in hyperplastic and neoplastic lesions, however. Instead the degree of dedifferentiation of the tubule cells and changes in phenotype were associated with vimentin expression. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 PMID:1415487

  15. Investigations of the dual contractile/relaxant properties showed by antioquine in rat aorta.

    PubMed Central

    Ivorra, M. D.; Lugnier, C.; Catret, M.; Anselmi, E.; Cortes, D.; D'Ocon, P.

    1993-01-01

    1. In the present study we assessed the activity of antioquine, a bisbenzyltetrahydroisoquinoline alkaloid isolated from Pseudoxandra sclerocarpa, by examining its effects on the contractile activity of rat isolated aorta, specific binding of [3H]-(+)-cis-diltiazem, [3H]-nitrendipine and [3H]-prazosin to cerebral cortical membranes and the different molecular forms of cyclic nucleotide phosphodiesterases (PDE) isolated from bovine aorta. 2. Contractions in rat aorta induced by high concentrations of KCl (80 mM) and noradrenaline (1 microM) were inhibited by antioquine in a concentration-dependent manner (0.1 microM- 300 microM). The alkaloid appeared more potent against KCl-induced contractions. This inhibitory effect was observed at both 37 degrees C and 25 degrees C. 3. Paradoxically, at the highest concentration tested (300 microM) antioquine induced a contractile response of similar magnitude in the presence and absence of extracellular calcium, at 37 degrees C. This activity was greatly attenuated at 25 degrees C. Antioquine-induced contractions were not inhibited by prazosin (0.1 microM), nifedipine (1 microM) or diltiazem (100 microM). On the contrary, prazosin and nifedipine slightly increased the contractions in the presence of extracellular calcium. Papaverine (100 microM) partially inhibited the contractile response to antioquine both in the presence and absence of extracellular calcium. 4. At 25 degrees C, in Ca(2+)-free solution, antioquine (300 microM) did not modify the contractile response (phasic and tonic) evoked by noradrenaline, but increased the phasic contraction induced by caffeine. At 37 degrees C, the contraction elicited by antioquine made it impossible to observe the noradrenaline-induced one.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8358549

  16. Does the morphology of the ear of the Chinese bamboo rat (Rhizomys sinensis) show "Subterranean" characteristics?

    PubMed

    Pleštilová, Lucie; Hrouzková, Ema; Burda, Hynek; Šumbera, Radim

    2016-05-01

    In spite of the growing interest in rodents with subterranean activity in general and the spalacids (Spalacidae) in particular, little is known about the biology of most members of this clade, such as the Chinese bamboo rat (Rhizomys sinensis). Here, we analyzed the ear morphology of R. sinensis with respect to hearing specialization for subterranean or aboveground modes of communication. It is well-known that ecology and style of life of a particular species can be reflected in morphology of its ear, its hearing and vocalization, so we expect that such information could provide us insight into its style of life and its sensory environment. The ratio between the eardrum and stapedial footplate areas, which influences the efficiency of middle ear sound transmission, suggests low hearing sensitivity, as is typical for subterranean species. The cochlea had 3.25 coils and resembled species with good low frequency hearing typical for subterranean mammals. The length of the basilar membrane was 18.9 ± 0.8 mm and its width slowly increased towards the cochlear apex from 60 to 85 μm. The mean density of outer hair cells was 344 ± 22 and of inner hair cells 114 ± 7.3 per 1 mm length of the organ of Corti, and increased apically. These values (except for relatively low hair cell density) usually characterize ears specialized for low frequency hearing. There was no evidence for an acoustic fovea. Apart of low hair cell density which is common in aboveground animals, this species has also relatively large auricles, suggesting the importance of sound localization during surface activity. The ear of the Chinese bamboo rat thus contains features typical for both aboveground and subterranean mammals and suggests that this spalacid has fossorial habits combined with regular aboveground activity. PMID:26880690

  17. Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats.

    PubMed

    Ledreux, Aurélie; Wang, Xiuzhe; Schultzberg, Marianne; Granholm, Ann-Charlotte; Freeman, Linnea R

    2016-10-01

    High fat diets have detrimental effects on cognitive performance, and can increase oxidative stress and inflammation in the brain. The aging brain provides a vulnerable environment to which a high fat diet could cause more damage. We investigated the effects of a high fat/high cholesterol (HFHC) diet on cognitive performance, neuroinflammation markers, and phosphorylated Tau (p-Tau) pathological markers in the hippocampus of Young (4-month old) versus Aged (14-month old) male rats. Young and Aged male Fisher 344 rats were fed a HFHC diet or a normal control diet for 6 months. All animals underwent cognitive testing for 12days in a water radial arm maze to assess spatial and working reference memory. Hippocampal tissue was analyzed by immunohistochemistry for structural changes and inflammation, and Western blot analysis. Young and Aged rats fed the HFHC diet exhibited worse performance on a spatial working memory task. They also exhibited significant reduction of NeuN and calbindin-D28k immunoreactivity as well as an increased activation of microglial cells in the hippocampal formation. Western blot analysis of the hippocampus showed higher levels of p-Tau S202/T205 and T231 in Aged HFHC rats, suggesting abnormal phosphorylation of Tau protein following the HFHC diet exposure. This work demonstrates HFHC diet-induced cognitive impairment with aging and a link between high fat diet consumption and pathological markers of Alzheimer's disease. PMID:27343935

  18. Neonatal stress affects the aging trajectory of female rats on the endocrine, temperature, and ventilatory responses to hypoxia.

    PubMed

    Fournier, Sébastien; Gulemetova, Roumiana; Baldy, Cécile; Joseph, Vincent; Kinkead, Richard

    2015-04-01

    Human and animal studies on sleep-disordered breathing and respiratory regulation show that the effects of sex hormones are heterogeneous. Because neonatal stress results in sex-specific disruption of the respiratory control in adult rats, we postulate that it might affect respiratory control modulation induced by ovarian steroids in female rats. The hypoxic ventilatory response (HVR) of adult female rats exposed to neonatal maternal separation (NMS) is ∼30% smaller than controls (24), but consequences of NMS on respiratory control in aging female rats are unknown. To address this issue, whole body plethysmography was used to evaluate the impact of NMS on the HVR (12% O2, 20 min) of middle-aged (MA; ∼57 wk old) female rats. Pups subjected to NMS were placed in an incubator 3 h/day for 10 consecutive days (P3 to P12). Controls were undisturbed. To determine whether the effects were related to sexual hormone decline or aging per se, experiments were repeated on bilaterally ovariectomized (OVX) young (∼12 wk old) adult female rats. OVX and MA both reduced the HVR significantly in control rats but had little effect on the HVR of NMS females. OVX (but not aging) reduced the anapyrexic response in both control and NMS animals. These results show that hormonal decline decreases the HVR of control animals, while leaving that of NMS female animals unaffected. This suggests that neonatal stress alters the interaction between sex hormone regulation and the development of body temperature, hormonal, and ventilatory responses to hypoxia. PMID:25652536

  19. Map showing high-purity silica sand of Middle Ordovician age in the Midwestern states

    USGS Publications Warehouse

    Ketner, Keith B.

    1979-01-01

    Certain quartz sands of Middle Ordovician age in the Midwestern States are well known for their purity and are exploited for a wide variety of industrial uses. The principal Middle Ordovician formations containing high-purity sands are the St. Peter Sandstone which crops out extensively from Minnesota to Arkansas; the Everton Formation principally of Arkansas; and the Oil Creek, McLish, and Tulip Creek Formations (all of the Simpson Group) of Oklahoma. The St. Peter and sandy beds in the other formations are commonly called "sandstones," but a more appropriate term is "sands" for in most fresh exposures they are completely uncemented or very weakly cemented. On exposure to air, uncemented sands usually become "case hardened" where evaporating ground water precipitates mineral matter at the surface; but this is a surficial effect. This report summarizes the available information on the extent of exposures, range of grain size, and chemical composition of the Middle Ordovician sands.

  20. Preschool-Aged Children with Iron Deficiency Anemia Show Altered Affect and Behavior1,2

    PubMed Central

    Lozoff, Betsy; Corapci, Feyza; Burden, Matthew J.; Kaciroti, Niko; Angulo-Barroso, Rosa; Sazawal, Sunil; Black, Maureen

    2012-01-01

    This study compared social looking and response to novelty in preschool-aged children (47–68 mo) with or without iron deficiency anemia (IDA). Iron status of the participants from a low-income community in New Delhi, India, was based on venous hemoglobin, mean corpuscular volume, and red cell distribution width. Children’s social looking toward adults, affect, and wary or hesitant behavior in response to novelty were assessed in a semistructured paradigm during an in-home play observation. Affect and behavior were compared as a function of iron status: IDA (n = 74) vs. nonanemic (n = 164). Compared with nonanemic preschoolers, preschoolers with IDA displayed less social looking toward their mothers, moved close to their mothers more quickly, and were slower to display positive affect and touch novel toys for the first time. These results indicate that IDA in the preschool period has affective and behavioral effects similar to those reported for IDA in infancy. PMID:17311960

  1. Radiation response of the rat cervical spinal cord after irradiation at different ages: Tolerance, latency and pathology

    SciTech Connect

    Ruifrok, A.C.C.; Van Der Kogel, A.J. ); Stephens, L.C. )

    1994-04-30

    Investigation of the age dependent single-dose radiation tolerance, latency to radiation myelopathy, and the histopathological changes after irradiation of the rat cervical spinal cord is presented. Rats were irradiated with graded single doses of 4 MV photons to the cervical spinal cord. When the rats showed definite signs of paresis of the forelegs, they were killed and processed for histological examination. The radiation dose resulting in paresis due to white matter damage in 50% of the animals (ED[sub 50]) after single dose irradiation was about 21.5 Gy at all ages [ge] 2 weeks. Only the Ed[sub 50] at 1 week was significantly lower. The latency to the development of paresis clearly changed with the age at irradiation, from about 2 weeks after irradiation at 1 week to 6-8 months after irradiation at age [ge] 8 weeks. The white matter damage was similar in all symptomatic animals studied. The most prominent were areas with diffuse demyelination and swollen axons, often with focal necrosis, accompanied by glial reaction. This was observed in all symptomatic animals, irrespective of the age at irradiation. Expression of vascular damage appeared to depend on the age at irradiation. Although the latency to myelopathy is clearly age dependent, single dose tolerance is not age dependent at age [ge] 2 weeks in the rat cervical spinal cord. The white matter damage is similar in all symptomatic animals studied, but the vasculopathies appear to be influenced by the age at irradiation. It is concluded that white matter damage and vascular damage are separate phenomena contributing to the development of radiation myelopathy, expression of which may depend on the radiation dose applied and the age at irradiation. 28 refs., 5 figs., 3 tabs.

  2. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia

    PubMed Central

    Guadiana, Sarah M.; Parker, Alexander K.; Filho, Gileno F.; Sequeira, Ashton; Semple-Rowland, Susan; Shaw, Gerry; Mandel, Ronald J.; Foster, Thomas C.; Kumar, Ashok; Sarkisian, Matthew R.

    2016-01-01

    The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII), somatostatin receptor 3 (SSTR3), and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344) and F344 × Brown Norway (F344 × BN) rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 × BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in dentate gyrus (DG). Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young brain

  3. The genomic response of the ipsilateral and contralateral cortex to stroke in aged rats

    PubMed Central

    Buga, A-M; Sascau, M; Pisoschi, C; Herndon, J G; Kessler, C; Popa-Wagner, A

    2008-01-01

    Aged rats recover poorly after unilateral stroke, whereas young rats recover readily possibly with the help from the contralateral, healthy hemisphere. In this study we asked whether anomalous, age-related changes in the transcriptional activity in the brains of aged rats could be one underlying factor contributing to reduced functional recovery. We analysed gene expression in the periinfarct and contralateral areas of 3-month- and 18-month-old Sprague Dawley rats. Our experimental end-points were cDNA arrays containing genes related to hypoxia signalling, DNA damage and apoptosis, cellular response to injury, axonal damage and re-growth, cell lineage differentiation, dendritogenesis and neurogenesis. The major transcriptional events observed were: (i) Early up-regulation of DNA damage and down-regulation of anti-apoptosis-related genes in the periinfarct region of aged rats after stroke; (ii) Impaired neurogenesis in the periinfarct area, especially in aged rats; (iii) Impaired neurogenesis in the contralateral (unlesioned) hemisphere of both young and aged rats at all times after stroke and (iv) Marked up-regulation, in aged rats, of genes associated with inflammation and scar formation. These results were confirmed with quantitative real-time PCR. We conclude that reduced transcriptional activity in the healthy, contralateral hemisphere of aged rats in conjunction with an early up-regulation of DNA damage-related genes and pro-apoptotic genes and down-regulation of axono- and neurogenesis in the periinfarct area are likely to account for poor neurorehabilitation after stroke in old rats. PMID:18266980

  4. Age-Related Alterations in Blood Biochemical Characterization of Hepatorenal Function in the PCK Rat: A Model of Polycystic Kidney Disease.

    PubMed

    Shimomura, Yuichi; Brock, William J; Ito, Yuko; Morishita, Katsumi

    2015-01-01

    PCK rats develop age-related polycystic kidney disease (PKD) and liver disease and have been used to investigate pharmacotherapies to ameliorate hepatorenal lesions for patients with PKD. The PCK rat may be useful to understand the possible susceptibility to hepatotoxicity observed in the patient with PKD having hepatic polycystic lesions. Therefore, the purpose of this study was to investigate the background blood biochemical changes that reflect the hepatorenal function of PCK rats as well as the terminal histopathology in order to determine whether this model would be suitable for extrapolating the susceptibility of hepatotoxicity in patients. The blood biochemical parameters of hepatorenal function and histopathology were investigated in PCK rats at ages 5 to 19 weeks and compared to those outcomes in the Sprague Dawley (SD) rat. There were notable blood biochemical changes possibly due to biliary dysgenesis in the PCK rat as early as 5 weeks of age. High levels of γ-glutamyl transpeptidase, alkaline phosphatase, alanine aminotransferase, and total bile acids persisted throughout the study compared to the SD rat. Increased aspartate aminotransferase, total bilirubin, and hyperlipidemia and a decrease in albumin were also evident at 10 to 19 weeks of age possibly due to progression of cholestatic liver dysfunction secondary to age-related liver cystic progression. Increased liver weights generally correlated with the severity of biliary and hepatic histopathological changes. In male PCK rats, age-related increases in blood urea nitrogen and creatinine at 10 to 19 weeks of age were observed, and the cystic progression was more severe than that in females. These data indicate that the PCK rat showed notable blood biochemical changes reflecting alteration of the liver function compared to the SD rat. Also, there was a large individual variation in these parameters possibly due to variable progression rate of biliary dysgenesis and subsequent liver damages in PCK

  5. Transgenic rats overexpressing the human MrgX3 gene show cataracts and an abnormal skin phenotype

    SciTech Connect

    Kaisho, Yoshihiko . E-mail: Kaisho_Yoshihiko@takeda.co.jp; Watanabe, Takuya; Nakata, Mitsugu; Yano, Takashi; Yasuhara, Yoshitaka; Shimakawa, Kozo; Mori, Ikuo; Sakura, Yasufumi; Terao, Yasuko; Matsui, Hideki; Taketomi, Shigehisa

    2005-05-13

    The human MrgX3 gene, belonging to the mrgs/SNSRs (mass related genes/sensory neuron specific receptors) family, was overexpressed in transgenic rats using the actin promoter. Two animal lines showed cataracts with liquification/degeneration and swelling of the lens fiber cells. The transient epidermal desquamation was observed in line with higher gene expression. Histopathology of the transgenic rats showed acanthosis and focal parakeratosis. In the epidermis, there was an increase in cellular keratin 14, keratin 10, and loricrin, as well as PGP 9.5 in innervating nerve fibers. These phenotypes accompanied an increase in the number of proliferating cells. These results suggest that overexpression of the human MrgX3 gene causes a disturbance of the normal cell-differentiation process.

  6. Effect of ethinyl estradiol treatment on lipoproteins and LCAT activity in aged rats.

    PubMed

    Lee, S M; Kudchodkar, B J; Lacko, A G

    1992-06-01

    The induction of hepatic lipoprotein (apo B/E) have been investigated in Fischer-344 rats. These studies were aimed to determine the mechanism underlying the previously observed (Lee et al., Mech. Ageing Dev., 61 (1991) 85-98) hypercholesterolemia and the age-related decrease in the fractional rate of endogenous cholesterol esterification. Young (5 months) and aged (22 months) male Fischer-344 rats were treated with pharmacological doses (5 mg/kg per day) of ethinyl estradiol (EE) for 7 days. Reduction of plasma cholesterol (57% in young vs 47% in aged rats) and high density lipoprotein cholesterol (64% in young vs 63% in aged rats) occurred in both groups upon EE treatment. Initial low density lipoprotein levels were very low in the plasma of young rats and consequently were not affected by EE treatment. However, in aged rats, the low density lipoprotein levels were much higher initially and were markedly reduced by EE treatment. (18.0 vs 10.0 mg/dl). Very low density lipoproteins were about the same initially but increased in aged rats and decreased in young rats upon EE treatment. Both the lecithin:cholesterol acyltransferase (LCAT) activity (as determined with a proteoliposome substrate) and the fractional rate (FR) of the endogenous cholesterol esterification decreased in treated animals compared to controls. However, the differences in the FR of the endogenous cholesterol esterification between young and aged rats (observed before treatment) were nearly abolished upon treatment. These data suggest that the previously observed age related decrease in the FR of endogenous cholesterol esterification is due to the accumulation of apolipoprotein E-rich (apo E) lipoproteins.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1630152

  7. Effects of metabolic syndrome on the ultrastructure of the femoral nerve in aging rats.

    PubMed

    Rodrigues de Souza, Romeu; Gama, Eliane F; El-Razi Neto, Semaan; Maldonado, Diogo

    2015-10-01

    The aim of the present study was to characterize the morphometry of the femoral nerve in aging rats with metabolic syndrome compared to controls. Systolic blood pressure and fasting plasma glucose were measured, and myelinated and unmyelinated fibers in the femoral nerves were quantitatively assessed under electron microscopy. Aging rats exposed to a regimen of metabolic syndrome developed elevation of plasma glucose concentration, mild hypertension and polyneuropathy characterized by a decrease in myelin fiber area, axon diameter, myelin sheath thickness and myelin fiber loss in the femoral nerve. The histogram of size distribution for myelinated fibers and axons from the aging rats of the control group was bimodal. For aging MS animals, the histogram turned out to be unimodal. The ultrastructure of unmyelinated fibers and of Schwann cells in 18-month-old rats was well preserved. Granules of lipofuscin were seen in unmyelinated fiber axons of 18-month-old rats with MS. The damage percentage of the large myelinated fibers has increased significantly in 18-month-old and 18-month-old (MS) rats in relation to the controls. No significant difference was observed among the groups for the g-ratio. Comparing the three groups, the number of neurotubules and neurofilaments in myelinated fibers of 18-month-old rats with MS was significantly smaller than for the groups of 18-month-old and 14-month-old rats. The overall changes seen in the femoral nerve from aging rats seem minor compared to the changes in the aging rats with MS, suggesting that long-term MS accelerates the progressive modifications in peripheral nerves that develop in old age. PMID:25866014

  8. Age-dependence of sensorimotor and cerebral electroencephalographic asymmetry in rats subjected to unilateral cerebrovascular stroke

    PubMed Central

    2013-01-01

    Background The human population mostly affected by stroke is more than 65 years old. This study was designed to meet the recommendation that models of cerebral ischemia in aged animals are more relevant to the clinical setting than young animal models. Until now the majority of the pre-clinical studies examining age effects on stroke outcomes have used rats of old age. Considering the increasing incidence of stroke among younger than old human population, new translational approaches in animal models are needed to match the rejuvenation of stroke. A better knowledge of alterations in stroke outcomes in middle-aged rats has important preventive and management implications providing clues for future investigations on effects of various neuroprotective and neurorestorative drugs against cerebrovascular accidents that may occur before late senescence. Methods We evaluated the impact of transient focal ischemia, induced by intracerebral unilateral infusion of endothelin-1 (Et-1) near the middle cerebral artery of conscious rats, on volume of brain damage and asymmetry in behavioral and electroencephalographic (EEG) output measures in middle-aged (11–12 month-old) rats. Results We did not find any age-dependent difference in the volume of ischemic brain damage three days after Et-1 infusion. However, age was an important determinant of neurological and EEG outcomes after stroke. Middle-aged ischemic rats had more impaired somatosensory functions of the contralateral part of the body than young ischemic rats and thus, had greater left-right reflex/sensorimotor asymmetry. Interhemispheric EEG asymmetry was more evident in middle-aged than in young ischemic rats, and this could tentatively explain the behavioral asymmetry. Conclusions With a multiparametric approach, we have validated the endothelin model of ischemia in middle-aged rats. The results provide clues for future studies on mechanisms underlying plasticity after brain damage and motivate investigations of

  9. Alterations in lenticular proteins during ageing and selenite-induced cataractogenesis in Wistar rats

    PubMed Central

    Sakthivel, Muniyan; Elanchezhian, Rajan; Thomas, Philip A.

    2010-01-01

    Purpose To determine putative alterations in the major lenticular proteins in Wistar rats of different ages and to compare these alterations with those occurring in rats with selenite-induced cataract. Methods Lenticular transparency was determined by morphological examination using slit-lamp biomicroscopy. Alterations in lenticular protein were determined by sodium dodecyl sulfate-PAGE (SDS–PAGE) and confirmed immunologically by western blot. Results Morphological examination did not reveal observable opacities in the lenses of the rats of different age groups; however, dense nuclear opacities were noted in lenses of rats in the selenite-cataract group. Western blot assays revealed age-related changes in soluble and urea-soluble lenticular proteins. Decreased αA- and βB1-crystallins in the soluble fraction and aggregation of αA-crystallin, in addition to the degraded fragment of βB1-crystallin, in the urea-soluble fraction appeared to occur in relation to increasing age of the rats from which the lenses were taken; similarly, cytoskeletal proteins appeared to decline with increasing age. The lenses from rats in the selenite-cataract group exhibited similar changes, except that there was also high molecular weight aggregation of αA-crystallin. Conclusions The results of this study suggest that there is loss, as well as aggregation, of αA-crystallin in the aging rat lens, although there is no accompanying loss of lenticular transparency. PMID:20300567

  10. Decreased myeloperoxidase expressing cells in the aged rat brain after excitotoxic damage.

    PubMed

    Campuzano, Oscar; Castillo-Ruiz, Maria del Mar; Acarin, Laia; Gonzalez, Berta; Castellano, Bernardo

    2011-09-01

    Brain aging is associated to several morphological and functional alterations that influence the evolution and outcome of CNS damage. Acute brain injury such as an excitotoxic insult induces initial tissue damage followed by associated inflammation and oxidative stress, partly attributed to neutrophil recruitment and the expression of oxidative enzymes such as myeloperoxidase (MPO), among others. However, to date, very few studies have focused on how age can influence neutrophil infiltration after acute brain damage. Therefore, to evaluate the age-dependent pattern of neutrophil cell infiltration following an excitotoxic injury, intrastriatal injection of N-methyl-d-aspartate was performed in young and aged male Wistar rats. Animals were sacrificed at different times between 12h post-lesion (hpl) to 14 days post-lesion (dpl). Cryostat sections were processed for myeloperoxidase (MPO) immunohistochemistry, and double labeling for either neuronal cells (NeuN), astrocytes (GFAP), perivascular macrophages (ED-2), or microglia/macrophages (tomato lectin histochemistry). Our observations showed that MPO + cells were observed in the injured striatum from 12 hpl (when maximum values were found) until 7 dpl, when cell density was strongly diminished. However, at all survival times analyzed, the overall density of MPO + cells was lower in the aged versus the adult injured striatum. MPO + cells were mainly identified as neutrophils (especially at 12 hpl and 1 dpl), but it should be noted that MPO + neurons and microglia/macrophages were also found. MPO + neurons were most commonly observed at 12 hpl and reduced in the aged. MPO + microglia/macrophages were the main population expressing MPO from 3 dpl, when density was also reduced in aged subjects. These results point to neutrophil infiltration as another important factor contributing to the different responses of the adult and aged brain to damage, highlighting the need of using aged animals for the study of acute age

  11. Age-related changes in neural gap detection thresholds in the rat auditory cortex.

    PubMed

    Zhao, Yin; Xu, Xiaoxiao; He, Juan; Xu, Jinghong; Zhang, Jiping

    2015-02-01

    The ability of the auditory system to resolve sound temporal information is crucial for the understanding of human speech and other species-specific communications. Gap detection threshold, i.e. the ability to detect the shortest duration of a silent interval in a sound, is commonly used to study the auditory temporal resolution. Behavioral studies in humans and rats have shown that normal developing infants have higher gap detection thresholds than adults; however, the underlying neural mechanism is not fully understood. In the present study, we determined and compared the neural gap detection thresholds in the primary auditory cortex of three age groups of rats: the juvenile group (postnatal day 20-30), adult group I (8-10 weeks), and adult group II (28-30 weeks). We found age-related changes in auditory temporal acuity in the auditory cortex, i.e. the proportion of cortical units with short neural gap detection thresholds (< 5 ms) was much lower in juvenile groups compared with that in both adult groups at a constant sound level, and no significant differences in neural gap detection thresholds were found between the two adult groups. In addition, units in the auditory cortex of each group generally showed better gap detection thresholds at higher sound levels than at lower sound levels, exhibiting a level-dependent temporal acuity. These results provided evidence for neural correlates of age-related changes in behavioral gap detection ability during postnatal hearing development. PMID:25388865

  12. Ethanol-Induced Alterations in Purkinje Neuron Dendrites in Adult and Aging Rats: a Review.

    PubMed

    Dlugos, Cynthia A

    2015-08-01

    Uncomplicated alcoholics suffer from discrete motor dysfunctions that become more pronounced with age. These deficits involve the structure and function of Purkinje neurons (PN), the sole output neurons from the cerebellar cortex. This review focuses on alterations to the PN dendritic arbor in the adult and aging Fischer 344 rat following lengthy alcohol consumption. It describes seminal studies using the Golgi-Cox method which proposed a model for ethanol-induced dendritic regression. Subsequent ultrastructural studies of PN dendrites showed dilation of the extensive smooth endoplasmic reticulum (SER) which preceded and accompanied dendritic regression. The component of the SER that was most affected by ethanol was the sarco/endoplasmic reticulum Ca(2+) ATPase pump (SERCA) responsible for resequestration of calcium into the SER. Ethanol-induced decreases in SERCA pump levels, similar to the finding of SER dilation, preceded and occurred concomitantly with dendritic regression. Discrete ethanol-induced deficits in balance also accompanied these decreases. Ethanol-induced ER stress within the SER of PN dendrites was proposed as an underlying cause of dendritic regression. It was recently shown that increased activation of caspase 12, inherent to the ER, occurred in PN of acute slices in ethanol-fed rats and was most pronounced following 40 weeks of ethanol treatment. These findings shed new light into alcohol-induced disruption in PN dendrites providing a new model for the discrete but critical changes in motor function in aging, adult alcoholics. PMID:25648753

  13. Effect of Zhuang Jing Decoction on Learning and Memory Ability in Aging Rats.

    PubMed

    Cai, Hao-Bin; Wu, Guang-Liang; Huang, Cen-Han; Huang, Zhong-Shi; Chen, Yun-Bo; Wang, Qi

    2016-08-01

    With the average life span of humans on the rise, aging in the world has drawn considerable attentions. The monoamine neurotransmitters and neurotrophic factors in brain areas are involved in learning and memory processes and are an essential part of normal synaptic neurotransmission and plasticity. In the present study, the effect of Zhuang Jing Decoction (ZJD) on the learning and memory ability in aging rats was examined in vivo using Morris water maze. Furthermore, the levels of monoamine neurotransmitters and neurotrophic factors in brain were detected by high-performance liquid chromatography with a fluorescence detector and enzyme-linked immunosorbent assay, respectively. These data showed that oral administration with ZJD at the dose of 30 g·kg(-1) exerted an improved effect on learning and memory ability in aging rats. The results revealed that ZJD could effectively adjust the monoamine neurotransmitters and neurotrophic factors, restore the balance of the level of monoamine neurotransmitters and neurotrophic factors in brain, and finally attenuate the degeneration of learning and memory ability. These findings suggested that ZJD might be a potential agent as cognitive-enhancing drug in improving learning and memory ability. It may exert through regulating the levels of monoamine neurotransmitters and neurotrophic factors in brain, which demonstrated that ZJD had certain antiaging effects. PMID:26649780

  14. Age-related changes of dental pulp tissue after experimental tooth movement in rats.

    PubMed

    Von Böhl, Martina; Ren, Yijin; Kuijpers-Jagtman, Anne M; Fudalej, Piotr S; Maltha, Jaap C

    2016-01-01

    It is generally accepted that the effect of orthodontic tooth movement on the dental pulp in adolescents is reversible and that it has no long-lasting effect on pulpal physiology. However, it is not clear yet if the same conclusion is also valid for adult subjects. Thus, in two groups of rats, aged 6 and 40 weeks respectively, 3 molars at one side of the maxilla were moved together in a mesial direction with a standardized orthodontic appliance delivering a force of 10 cN. The contralateral side served as a control. Parasagittal histological sections were prepared after tooth movement for 1, 2, 4, 8, and 12 weeks. The pulp tissue was characterized for the different groups, with special emphasis on cell density, inflammatory cells, vascularity, and odontoblasts. Dimensions of dentin and the pulpal horns was determined and related with the duration of orthodontic force application and age ware evaluated. We found that neither in young nor in adult rats, force application led to long-lasting or irreversible changes in pulpal tissues. Dimensional variables showed significant age-related changes. In conclusion, orthodontic tooth movement per se has no long-lasting or irreversible effect on pulpal tissues, neither in the young nor in the adult animals. PMID:26855867

  15. Age-related changes of dental pulp tissue after experimental tooth movement in rats

    PubMed Central

    Von Böhl, Martina; Ren, Yijin; Kuijpers-Jagtman, Anne M.; Maltha, Jaap C.

    2016-01-01

    It is generally accepted that the effect of orthodontic tooth movement on the dental pulp in adolescents is reversible and that it has no long-lasting effect on pulpal physiology. However, it is not clear yet if the same conclusion is also valid for adult subjects. Thus, in two groups of rats, aged 6 and 40 weeks respectively, 3 molars at one side of the maxilla were moved together in a mesial direction with a standardized orthodontic appliance delivering a force of 10 cN. The contralateral side served as a control. Parasagittal histological sections were prepared after tooth movement for 1, 2, 4, 8, and 12 weeks. The pulp tissue was characterized for the different groups, with special emphasis on cell density, inflammatory cells, vascularity, and odontoblasts. Dimensions of dentin and the pulpal horns was determined and related with the duration of orthodontic force application and age ware evaluated. We found that neither in young nor in adult rats, force application led to long-lasting or irreversible changes in pulpal tissues. Dimensional variables showed significant age-related changes. In conclusion, orthodontic tooth movement per se has no long-lasting or irreversible effect on pulpal tissues, neither in the young nor in the adult animals. PMID:26855867

  16. Nerve growth factor signaling following unilateral pelvic ganglionectomy in the rat ventral prostate is age dependent.

    PubMed

    Podlasek, Carol A; Ghosh, Rudrani; Onur Cakir, Omer; Bond, Christopher; McKenna, Kevin E; McVary, Kevin T

    2013-11-01

    Benign prostatic hyperplasia (BPH) is a serious health concern and is an underlying cause of lower urinary tract symptoms (LUTS) in many men. In affected men, LUTS/BPH is believed to result from benign proliferation of the prostate resulting in bladder outlet obstruction. Postnatal growth of the prostate is controlled via growth factor and endocrine mechanisms. However, little attention had been given to the function of the autonomic nervous system in prostate growth and differentiation. Nerve growth factor (NGF) is a prostatic mitogen that has a trophic role in autonomic sensory end organ interaction. In this study, we examine how the autonomic nervous system influences prostate growth as a function of age by quantifying NGF in the rat ventral prostate (VP) after pelvic ganglionectomy. Unilateral pelvic ganglionectomy was performed on postnatal days 30 (P30), 60 and 120 Sprague-Dawley rats in comparison to sham controls (n=39). Semiquantitative RT-PCR, Western blotting and immunohistochemical analysis for NGF were performed on denervated, intact (contralateral side) and sham control VP 7 days after surgery. Ngf RNA expression was significantly increased in the denervated and intact hyperplastic VP. Western blotting showed age-dependent increases in NGF protein at P60 in the contralateral intact VP. NGF was localized in the nerves, basal cells and columnar epithelium of the prostatic ducts. Denervation causes age-dependent increases in NGF in the VP, which is a potential mechanism by which the autonomic nervous system may regulate prostate growth and lead to BPH/LUTS. PMID:23872662

  17. AGE-DEPENDENT CHANGES IN RECEPTOR-STIMULATED PHOSPHOINOSITIDE TURNOVER IN THE RAT HIPPOCAMPUS

    EPA Science Inventory

    To study the changes in the hippocampal cholinergic system of chronologically old and behaviorally impaired animals, old (21 months of age) and young (3 months of age) male, Fischer-344 rats were used. The aged animals were tested on a reference memory task (Morris water maze) an...

  18. Aging Effect on Post-recovery Hypofusion and Mortality Following Cardiac Arrest and Resuscitation in Rats.

    PubMed

    Xu, Kui; Puchowicz, Michelle A; LaManna, Joseph C

    2016-01-01

    In this study we investigated the effect of aging on brain blood flow following transient global ischemia. Male Fisher rats (6 and 24 months old) underwent cardiac arrest (15 min) and resuscitation. Regional brain (cortex, hippocampus, brainstem and cerebellum) blood flow was measured in non-arrested rats and 1-h recovery rats using [14C] iodoantipyrene (IAP) autoradiography; the 4-day survival rate was determined in the two age groups. The pre-arrest baseline blood flows were similar in cortex, brainstem and cerebellum between the 6-month and the 24-month old rats; however, the baseline blood flow in hippocampus was significantly lower in the 24-month old group. At 1 h following cardiac arrest and resuscitation, both 6-month and 24-month groups had significantly lower blood flows in all regions than the pre-arrest baseline values; compared to the 6-month old group, the blood flow was significantly lower (about 40% lower) in all regions in the 24-month old group. The 4-day survival rate for the 6-month old rats was 50% (3/6) whereas none of the 24-month old rats (0/10) survived for 4 days. The data suggest that there is an increased vulnerability to brain ischemic-reperfusion injury in the aged rats; the degree of post-recovery hypoperfusion may contribute to the high mortality in the aged rats following cardiac arrest and resuscitation. PMID:26782221

  19. Age, Dose, and Time-Dependency of Plasma and Tissue Distribution of Deltamethrine in Immature Rats

    EPA Science Inventory

    The major objective of this project was to characterize the systemic disposition of the pyrethroid, deltamethrin (DLT), in immature rats, with emphasis on the age-dependence of target organ (brain) dosimetry. Postnatal day (PND) 10, 21, and 40 male Sprague-Dawley rats received 0...

  20. Differences in Age-Related Alterations in Muscle Contraction Properties in Rat Tongue and Hindlimb

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Ota, Fumikazu; Nagai, Hiromi; Russell, John A.; Leverson, Glen

    2008-01-01

    Purpose: Because of differences in muscle architecture and biomechanics, the purpose of this study was to determine whether muscle contractile properties of rat hindlimb and tongue were differentially affected by aging. Method: Deep peroneal and hypoglossal nerves were stimulated in 6 young and 7 old Fischer 344-Brown Norway rats to allow…

  1. An attenuated immune response by Schwann cells and macrophages inhibits nerve regeneration in aged rats.

    PubMed

    Scheib, Jami L; Höke, Ahmet

    2016-09-01

    Although peripheral nerves are capable of regeneration, advanced age decreases the potential for functional recovery after injury. The cellular mechanisms for this are not currently understood. Here, we performed sciatic nerve grafting with young (2 months old) and aged (18 months old) Brown-Norway male rats, in which 1 cm nerve grafts from young or aged rats were sutured into nerves of young or aged rats. Axons were allowed to regenerate until the nerve grafts and distal nerves were harvested at 1, 3, and 7 days and 2 and 6 weeks. At 6 weeks, our data suggested that young nerve grafts supported regeneration better than aged nerve grafts. In addition, myelin debris clearance was inhibited in young nerves when grafted into aged rats, but clearance was faster when aged nerves were grafted into young rats. Further analysis revealed that aged macrophages have delayed migration into injured nerve, and macrophages and Schwann cells from aged rats were less phagocytic for myelin debris in vitro. To understand these impairments, expression levels of pro- and anti-inflammatory cytokines were analyzed at 1 day after injury. Based on these levels, there was not a clear polarization to either an M1 or M2 phenotype; however, expression levels of IL-6, IL-10, CCL2 (MCP1), and Arg-1 were decreased in aged nerves. Taken together, both macrophages and Schwann cells had attenuated responses to nerve injury in aged rats, leading to inefficient clearance of debris and impaired axonal regeneration. PMID:27459920

  2. Impact of Dietary Genistein and Aging on Executive Function in Rats

    PubMed Central

    Neese, Steven L.; Wang, Victor C.; Doerge, Daniel R.; Woodling, Kellie A.; Andrade, Juan E.; Helferich, William G.; Korol, Donna L.; Schantz, Susan L.

    2010-01-01

    Genistein is an estrogenic soy isoflavone widely promoted for healthy aging, but its effects on cognitive function are not well-understood. We examined the cognitive effects of once daily oral genistein treatment at two doses (approximately 162 µg/kg/day low dose and a 323 µg/kg/day high dose) in ovariectomized young (7 month), middle-aged (16 month), and old (22 month) Long-Evans rats. Operant tasks including delayed spatial alternation (DSA), differential reinforcement of low rates of responding (DRL), and reversal learning that tap prefrontal cortical function were used to assess working memory, inhibitory control/timing, and strategy shifting, respectively. At the conclusion of cognitive testing, brains were collected and relative densities of D1 and D2 dopamine receptor and dopamine transporter (DAT) were measured in the prefrontal cortex. On the DSA task, the high dose old group performed worse than both the high dose young and middle-aged groups. On the DRL task, the high dose of genistein resulted in a marginally significant impairment in the ratio of reinforced to non-reinforced lever presses. This effect was present across age groups. Age effects were also found as old rats performed more poorly than the young and middle aged rats on the DSA overall. In contrast, middle-aged and old rats made fewer lever presses on the DRL than did the young rats, a pattern of behavior associated with better performance on this task. Moreover, while DAT levels overall decreased with age, genistein treatment produced an increase in DAT expression in old rats relative to similarly aged control rats. D1 and D2 densities did not differ between genistein dose groups or by age. These results highlight the fact that aspects of executive function are differentially sensitive to both genistein exposure and aging and suggest that altered prefrontal dopamine function could potentially play a role in mediating these effects. PMID:19945528

  3. Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats.

    PubMed

    Soleman, Sara; Yip, Ping K; Duricki, Denise A; Moon, Lawrence D F

    2012-04-01

    Stroke is the dominant cause of sensorimotor disability that primarily affects the elderly. We now show that neuroplasticity and functional recovery after stroke is constrained by inhibitory chondroitin sulphates. In two blinded, randomized preclinical trials, degradation of chondroitin sulphate using chondroitinase ABC reactivated neuroplasticity and promoted sensorimotor recovery after stroke in elderly rats. Three days after stroke, chondroitinase ABC was microinjected into the cervical spinal cord to induce localized plasticity of forelimb sensorimotor spinal circuitry. Chondroitinase ABC effectively removed chondroitin sulphate from the extracellular matrix and perineuronal nets. Three different tests of sensorimotor function showed that chondroitinase ABC promoted recovery of forelimb function. Anterograde and retrograde tracing showed that chondroitinase ABC also induced sprouting of the contralesional corticospinal tract in the aged treated hemicord. Chondroitinase ABC did not neuroprotect the peri-infarct region. We show for the first time delayed chondroitinase ABC treatment promotes neuroanatomical and functional recovery after focal ischaemic stroke in an elderly nervous system. PMID:22396394

  4. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats

    PubMed Central

    AHN, JI HYEON; CHEN, BAI HUI; SHIN, BICH-NA; LEE, TAE-KYEONG; CHO, JEONG HWI; KIM, IN HYE; PARK, JOON HA; LEE, JAE-CHUL; TAE, HYUN-JIN; LEE, CHOONG-HYUN; WON, MOO-HO; LEE, YUN LYUL; CHOI, SOO YOUNG; HONG, SEONGKWEON

    2016-01-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  5. Long term facilitation of respiratory motor output decreases with age in male rats

    PubMed Central

    Zabka, A G; Behan, M; Mitchell, G S

    2001-01-01

    Long term facilitation (LTF) is a serotonin-dependent augmentation of respiratory motor output (phrenic and hypoglossal) following episodic hypoxia. Since ageing influences respiratory control mechanisms and serotonergic function, we tested the hypothesis that LTF decreases with age in male rats. Young (3-4 month) and aged (13 month) male Sprague-Dawley rats were anaesthetized with urethane, vagotomized, paralysed and pump ventilated. Integrated phrenic and hypoglossal (XII) nerve activities were measured before (baseline), during and for 60 min after three 5 min episodes of isocapnic hypoxia (Pa,O2 35-45 mmHg) separated by 5 min of hyperoxia (Pa,O2 > 150 mmHg). In young rats, LTF was observed as an augmentation in peak integrated phrenic (n = 8) and XII (n = 7) amplitudes following episodic hypoxia (56 ± 14 and 73 ± 16 % (means ±s.e.m.) at 60 min post-hypoxia, respectively; both P < 0.05). In aged rats, LTF was significantly increased compared to baseline in phrenic (25 ± 8 % at 60 min, P < 0.05), but not in XII (4 ± 7 %, P > 0.05) motor output. LTF was significantly greater in young than in aged rats in both motor outputs (P < 0.05). Decreased phrenic and XII LTF suggests that serotonergic modulation of respiratory motor output decreases in ageing male rats. We speculate that decreased serotonergic modulation may contribute to age-related breathing disorders. PMID:11230522

  6. rhEPO affects apoptosis in hippocampus of aging rats by upregulating SIRT1

    PubMed Central

    Wu, Haiqin; Wang, Huqing; Zhang, Wenting; Wei, Xuanhui; Zhao, Jiaxin; Yan, Pu; Liu, Chao

    2015-01-01

    The aim of this study was to elucidate the signaling pathway involved in the anti-aging effect of erythropoietin (EPO) and to clarify whether recombinant human EPO (rhEPO) affects apoptosis in the aging rat hippocampus by upregulating Sirtuin 1 (SIRT1). In this study, a rat model of aging was established using D-galactose. Behavioral changes were monitored by the Morris water maze test. Using immunohistochemistry, we studied the expression of SIRT1, B-cell lymphoma/leukemia-2 gene (Bcl-2), and Bcl-2 associated X protein (Bax) expression, and apoptotic cells in the hippocampus of a rat model of aging in which rhEPO was intraperitoneally injected. The escape latency in rats from the EPO group shortened significantly; however, the number of platform passes increased significantly from that in the D-gal group (P < 0.05). Compared to the D-gal group, in the EPO group, the number of SIRT1 and Bcl-2-positive cells increased (P < 0.05), but the number of Bax-positive cells and apoptotic cells decreased in the hippocampus of aging rats (P < 0.05). These results suggest that rhEPO regulates apoptosis-related genes and affects apoptosis in the hippocampus of aging rats by upregulating SIRT. This may be one of the important pathways underlying the anti-aging property of EPO. PMID:26261574

  7. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats.

    PubMed

    Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Lee, Tae-Kyeong; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Lee, Choong-Hyun; Won, Moo-Ho; Lee, Yun Lyul; Choi, Soo Young; Hong, Seongkweon

    2016-07-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN‑immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  8. A validated age-related normative model for male total testosterone shows increasing variance but no decline after age 40 years.

    PubMed

    Kelsey, Thomas W; Li, Lucy Q; Mitchell, Rod T; Whelan, Ashley; Anderson, Richard A; Wallace, W Hamish B

    2014-01-01

    The diagnosis of hypogonadism in human males includes identification of low serum testosterone levels, and hence there is an underlying assumption that normal ranges of testosterone for the healthy population are known for all ages. However, to our knowledge, no such reference model exists in the literature, and hence the availability of an applicable biochemical reference range would be helpful for the clinical assessment of hypogonadal men. In this study, using model selection and validation analysis of data identified and extracted from thirteen studies, we derive and validate a normative model of total testosterone across the lifespan in healthy men. We show that total testosterone peaks [mean (2.5-97.5 percentile)] at 15.4 (7.2-31.1) nmol/L at an average age of 19 years, and falls in the average case [mean (2.5-97.5 percentile)] to 13.0 (6.6-25.3) nmol/L by age 40 years, but we find no evidence for a further fall in mean total testosterone with increasing age through to old age. However we do show that there is an increased variation in total testosterone levels with advancing age after age 40 years. This model provides the age related reference ranges needed to support research and clinical decision making in males who have symptoms that may be due to hypogonadism. PMID:25295520

  9. Aged Garlic Extract Attenuates Neuronal Injury in a Rat Model of Spinal Cord Ischemia/Reperfusion Injury.

    PubMed

    Cemil, Berker; Gokce, Emre Cemal; Kahveci, Ramazan; Gokce, Aysun; Aksoy, Nurkan; Sargon, Mustafa Fevzi; Erdogan, Bulent; Kosem, Bahadir

    2016-06-01

    Garlic has been used as a food as well as a component of traditional medicine. Aged garlic extract (AGE) is claimed to promote human health through antioxidant/anti-inflammatory activities with neuroprotective effects. We evaluated the possible beneficial effect of AGE neurologically, pathologically, ultrastructurally, and biochemically in a spinal cord ischemia-reperfusion (I/R) model of rats. Twenty-four Sprague-Dawley rats were divided into three groups: sham (no I/R), I/R, and AGE (I/R+AGE); each group consisted of eight animals. Animals were evaluated neurologically with the Basso, Beattie, and Bresnahan (BBB) scoring system. The spinal cord tissue samples were harvested for pathological and ultrastructural examinations. Oxidative products (Malondialdehyde, nitric oxide), antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase), inflammatory cytokines (tissue tumor necrosis factor alpha, interleukin-1), and caspase-3 activity were analyzed. The AGE group had significantly higher BBB scores than the I/R group. Pathologically, AGE group revealed reduced degree of ischemia and spinal cord edema. Ultrastructural results also showed preservation of tissue structure in the AGE group. Oxidative product levels of the I/R group were significantly higher than both the other groups, and antioxidant enzyme levels of AGE group were significantly higher than the I/R group. There was also significant difference between the sham and AGE groups in terms of total antioxidant enzyme levels. Furthermore, AGE treatment significantly reduced the inflammatory cytokines and caspase-3 activity than the I/R group. This study demonstrates the considerable neuroprotective effect of AGE on the neurological, pathological, ultrastructural, and biochemical status of rats with I/R-induced spinal cord injury. PMID:27183321

  10. [Age and the course of nephrotoxic nephritis in rats].

    PubMed

    Samoĭlova, Z T; Kliukina, S S

    1978-12-01

    In experiments on two groups of mongrel rats (4 weeks old and 4 months old) with induced nephrotoxic nephritis it was revealed that in comparison with adult rats the course of nephritis in ratlings was characterized by lesser proteinuria, selective in nature, by lesser reducticn of endogenous creatinine clearance and diuresis. The acido- and ammo-niogenesis decreased in ratlings and adult rats to the same extent. Morphological changes in the kidneys of ratlings were less pronounced than in adult animals, and were mostly localized in the convoluted tubules. The level of DNA-synthetic activity of the epithelial nuclei of the glomeruli prevailed over this index of the convoluted tubules epithelium. The weight index of the kidneys increased less in ratlings with nephritis than in adult rats. beta-lipoproteinemia in ratlings increased 8 times. Normalization of the urine and blood indices occurred more rapidly in ratlings than in adult rats. PMID:31956

  11. Effects of metrifonate on radial arm maze acquisition in middle-aged rats.

    PubMed

    Dachir, S; Schmidt, B; Levy, A

    1997-11-28

    The efficacy of metrifonate, a well-tolerated cholinesterase (ChE) inhibitor, in attenuating the normal aging- and corticosterone-induced impairments of radial maze performance of rats was compared. Middle-aged Fischer 344 rats were screened for their spatial orientation performance in the Morris water escape task. Good and bad performers were selected: good performers (N= 22) were treated with subcutaneous sustained-release corticosterone pellets, resulting in hippocampal cell damage and impaired spatial orientation in the radial maze; age-induced bad performers (N = 20) were tested without additional pharmacological intervention. Metrifonate (MFT), administered daily during radial maze testing, 30 min before training, at a dose of 15 mg/kg p.o., facilitated the acquisition of the task in age-impaired rats, but not in corticosterone-impaired rats. PMID:9449438

  12. Age-independent and dose-response effects of ethanol on spatial memory in rats.

    PubMed

    Acheson, S K; Ross, E L; Swartzwelder, H S

    2001-04-01

    Results of previous studies have shown that ethanol impairs the acquisition of spatial memory in adolescent rats at doses below those required to impair the acquisition in adults. However, the previous work did not identify doses of ethanol that failed to impair acquisition in adolescents or that impaired acquisition in both adolescent and adult animals. This was our aim in the present study. Male, Long-Evans hooded rats (adolescent and adult) were treated intraperitoneally with 0.0, 0.5, or 2.5 g/kg of ethanol 30 min before daily training on a spatial or nonspatial version of the Morris water maze task. Twenty-four hours after training on the spatial task the animals were given a 1-min probe trial. The low dose of ethanol (0.5 g/kg) failed to impair the performance of animals from either age group on any tasks. It did, however, enhance the initial rate of acquisition on the spatial task. The 2.5-g/kg dose eliminated acquisition of spatial learning in animals of both ages and significantly attenuated performance on a nonspatial task in both age groups. However, the treatment effect in the nonspatial task was eliminated with controlling for baseline performance. These results establish a low dose of ethanol (0.5 g/kg) that does not impair acquisition of spatial memory in adolescent or adult rats. Moreover, the study findings show that 2.5 g/kg of ethanol markedly impairs acquisition of spatial memory in both adolescent and adult animals. PMID:11435027

  13. Effects of acute ethanol administration of female rat liver as a function of aging

    SciTech Connect

    Rikans, L.E.; Snowden, C.D. )

    1989-01-01

    Female Fischer 344 rats, aged 4, 14, and 25 months, received 4.0 g/kg of ethanol by intraperitoneal (i.p.) injection. Blood alcohol concentrations 2.5, 6 and 16 hr after ethanol injection were similar in the three age groups. Hepatic glutathione (GSH) levels were diminished 6 hr after ethanol injection, and there were no age-dependent differences in the depleted levels (3.2 {plus minus} 0.1, 3.5 {plus minus} 0.2, and 3.0 {plus minus} 0.5 {mu}g GSH/g liver). However, GSH contents in livers of young-adult rats approached control levels after 16 hr, whereas they remained depressed in older rats. Serum levels of hepatic enzymes were significantly elevated 6 hr after ethanol administration. The increases were greater in middle-aged and old rats than in young-adult rats. The results suggest that middle-aged and old rats are more susceptible than young rats to the acute toxicity of ethanol.

  14. Preferential release of triiodothyronine: an intrathyroidal adaptation to reduced serum thyroxine in aging rats.

    PubMed

    Pekary, A E; Hershman, J M; Sugawara, M; Gieschen, K I; Sogol, P B; Reed, A W; Pardridge, W M; Walfish, P G

    1983-11-01

    In order to identify the changes in thyroid regulation and function that are responsible for the age-related decline in T4 secretion, we measured the secretory response of the rat pituitary and thyroid glands to thyrotropin-releasing hormone (TRH), plasma T1/2 for 125I-rat thyrotropin (TSH), the molecular weight of pituitary TSH, T4 uptake and conversion to T3 by the liver, amount of T4 and T3 in serum and in thyroglobulin, and the thyroid peroxidase concentration. The molecular weight of TSH and the biexponential plasma clearance of TSH were not affected by aging. TSH response to TRH administered intravenously did not differ between old and young rats. T3 response to TRH was greater and T4 response lower in old compared with young rats despite levels of T4 and T3 in thyroglobulin which were not affected by aging. Aging effects on hepatic conversion of T4 to T3 varied between rat strains. T4 uptake by liver in vivo by old rats was the same as that reported for young animals. The data are consistent with a marked decrease in the ratio of T4 to T3 secreted by the aging rat thyroid in both the basal and stimulated state possibly due to increased intrathyroidal conversion of T4 to T3. PMID:6415151

  15. The age related markers lipofuscin and apoptosis show different genetic architecture by QTL mapping in short-lived Nothobranchius fish

    PubMed Central

    Ng'oma, Enoch; Reichwald, Kathrin; Dorn, Alexander; Wittig, Michael; Balschun, Tobias; Franke, Andre; Platzer, Matthias; Cellerino, Allesandro

    2014-01-01

    Annual fish of the genus Nothobranchius show large variations in lifespan and expression of age-related phenotypes between closely related populations. We studied N. kadleci and its sister species N. furzeri GRZ strain, and found that N.kadleci is longer-lived than the N. furzeri. Lipofuscin and apoptosis measured in the liver increased with age in N. kadleci with different profiles: lipofuscin increased linearly, while apoptosis declined in the oldest animals. More lipofuscin (P < 0.001) and apoptosis (P < 0.001) was observed in N. furzeri than in N. kadleci at 16w age. Lipofuscin and apoptotic cells were then quantified in hybrids from the mating of N. furzeri to N. kadleci. F1 individuals showed heterosis for lipofuscin but additive effects for apoptosis. These two age-related phenotypes were not correlated in F2 hybrids. Quantitative trait loci analysis of 287 F2 fish using 237 markers identified two QTL accounting for 10% of lipofuscin variance (P < 0.001) with overdominance effect. Apoptotic cells revealed three significant- and two suggestive QTL explaining 19% of variance (P < 0.001), showing additive and dominance effects, and two interacting loci. Our results show that lipofuscin and apoptosis are markers of different age-dependent biological processes controlled by different genetic mechanisms. PMID:25093339

  16. Bamboo Leaf Flavones and Tea Polyphenols Show a Lipid-lowering Effect in a Rat Model of Hyperlipidemia.

    PubMed

    Yang, C; Yifan, L; Dan, L; Qian, Y; Ming-yan, J

    2015-12-01

    At present, most of the lipid-lowering drugs are western medicines, which have a lot of adverse reactions. Zhucha, an age-old Uyghur medicine, is made up of bamboo leaves and tea (green tea), which has good efficacy and lipid-lowering effect. The purpose of this study was to undertake a pharmacodynamic examination of the optimal proportions of bamboo leaf flavones and tea polyphenols required to achieve lipid lowering in rats. A hyperlipidemia rat model was used to examine the lipid lowering effects of bamboo leaf flavones and tea polyphenols. Wistar rats were divided into 13 groups including one hyperlipidemia model group and 2 positive drug groups as well as experimental groups (9 groups dosed with different proportions of bamboo leaf flavones and tea polyphenols, the 3 dosages of bamboo leaf flavones were 75 mg/kg/d, 50 mg/kg/d and 25 mg/kg/d respectively, the 3 dosages of tea polyphenol were 750 mg/kg/d, 500 mg/kg/d and 250 mg/kg/d). The weight, the levels of triglyceride (TG) and high-density lipoprotein cholesterol (HDL) were determined. A high dose of bamboo leaf flavones (75 mg/kg/d) combined with a medium dose of tea polyphenols (500 mg/kg/d) was deemed to be optimal for achieving a lipid-lowering effect, the weight had the smallest increase and the level of TG and HDL was similar to positive control. The bamboo leaf flavones and tea polyphenols were mixed according to a certain proportion (1:6.7), and the mixture achieved a lipid-lowering effect and might prove to be useful as a natural lipid-lowering agent. PMID:25970469

  17. CS-3150, a Novel Nonsteroidal Mineralocorticoid Receptor Antagonist, Shows Preventive and Therapeutic Effects On Renal Injury in Deoxycorticosterone Acetate/Salt-Induced Hypertensive Rats.

    PubMed

    Arai, Kiyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiroyuki; Homma, Tsuyoshi

    2016-09-01

    The present study was designed to assess both preventive and therapeutic effects of (S)-1-(2-Hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl) phenyl]-5-[2-(trifluoromethyl) phenyl]-1H-pyrrole-3-carboxamide (CS-3150), a novel nonsteroidal mineralocorticoid receptor antagonist, on renal injury in deoxycorticosterone acetate (DOCA)/salt-induced hypertensive rats (DOCA rats). From 7 weeks of age, DOCA was subcutaneously administered once a week for 4 weeks to uninephrectomized rats fed a high-salt diet. In experiment 1, CS-3150 (0.3-3 mg/kg) was orally administered once a day for 4 weeks coincident with DOCA administration. In experiment 2, after establishment of renal injury by 4 weeks of DOCA/salt loading, CS-3150 (3 mg/kg) was orally administered once a day for 4 weeks with or without continuous DOCA administration. In experiment 1, DOCA/salt loading significantly increased systolic blood pressure (SBP), which was prevented by CS-3150 in a dose-dependent manner. Development of renal injury (proteinuria, renal hypertrophy, and histopathological changes in glomeruli and tubule) was also suppressed by CS-3150 with inhibition of mRNA expression of fibrosis, inflammation, and oxidative stress markers. In experiment 2, under continuous DOCA treatment, CS-3150 clearly ameliorated existing renal injury without lowering SBP, indicating that CS-3150 regressed renal injury independent of its antihypertensive action. Moreover, CS-3150 treatment in combination with withdrawal of DOCA showed further therapeutic effect on renal injury accompanied by reduction in SBP. These results demonstrate that CS-3150 not only prevents but also ameliorates hypertension and renal injury in DOCA rats. Therefore, CS-3150 could be a promising agent for the treatment of hypertension and renal disorders, and may have potential to promote regression of renal injury. PMID:27384074

  18. Mannosylated liposomal cytidine 5' diphosphocholine prevent age related global moderate cerebral ischemia reperfusion induced mitochondrial cytochrome c release in aged rat brain.

    PubMed

    Ghosh, S; Das, N; Mandal, A K; Dungdung, S R; Sarkar, S

    2010-12-29

    Mitochondrial dysfunctions generating from cerebral ischemia-reperfusion exert a potential threat on neuronal cell survival and hence, accelerate the aging process and age dependent neuropathology. Thirty min moderate cerebral ischemia induced by bilateral common carotid artery occlusion (BCCAO) followed by 30 min reperfusion caused an increased diene production, depleted glutathione (GSH) content, reduced superoxide dismutase (SOD) and catalase activities and pyramidal neuronal loss in young (2 months old) and aged (20 months old) rat brain compared to sham operated controls. Cytidine 5' diphosphocholine (CDP-Choline) is a known neuroprotective drug. CDP-Choline after metabolism in the liver suffers hydrolysis and splits into cytidine and choline before entering systemic circulation and hardly circumvents blood brain barrier (BBB) as such. Previous reports show CDP-Choline liposomes significantly increased in vivo uptake compared to "free drug" administration in cerebral ischemia. To enhance the therapeutic concentration build up in brain we sought to formulate mannosylated liposomal CDP-Choline (MLCDP) utilizing the mannose receptors. We tested the therapeutic supremacy of MLCDP over liposomal CDP-Choline (LCDP) in global moderate cerebral ischemia reperfusion induced neuronal damage. CDP-Choline in MLCDP delivery system was found potent to exert substantial protection against global moderate cerebral ischemia reperfusion induced mitochondrial damage in aged rat brain. Membrane lipid peroxidation, GSSG/GSH ratio and reactive oxygen species (ROS) generation in cerebral tissue were found to be higher in aged, compared to young rat. Further decline of those parameters was observed in aged rat brain by the induction of global moderate cerebral ischemia and reperfusion. MLCDP treatment when compared to free or LCDP treatment prevented global moderate cerebral ischemia-reperfusion induced mitochondrial damage as evident ultra structurally and release of cytochrome c

  19. Chronic ethanol consumption depresses hypothalamic-pituitary-adrenal function in aged rats

    SciTech Connect

    Nolan, C.J.; Bestervelt, L.L.; Mousigian, C.A.; Maimansomsuk, P.; Yong Cai; Piper, W.N. )

    1991-01-01

    In separate experiments, nine (n=20) and fifteen (n=12) month old rats were treated with either 6% ethanol or 12% sucrose in the drinking water to examine the effect of chronic ethanol consumption on the hypothalamic-pituitary-adrenal axis of aged rats. Blood was collected and plasma concentrations of adrenocorticotropin (ACTH) and corticosterone were determined by radioimmunoassay. Adrenal glands were cleaned, quartered and used to test in vitro responsiveness to ACTH. Anterior pituitary glands from all 15 month old rats and one half of the nine month old rats were collected, frozen and extracted for measurement of tissue ACTH concentration. The remaining anterior pituitary glands from the nine month old rats were challenged with corticotropin releasing hormone (CRH) to test in vitro responsiveness. In nine month old rats, chronic ethanol consumption decreased plasma ACTH and corticosterone. Pituitary ACTH concentrations were unchanged in treated nine month old rats, but the amount of pituitary ACTH released in response to CRH was decreased in rats consuming ethanol. In vitro responsiveness of the adrenal gland to ACTH in nine month old rats consuming ethanol was unchanged. Plasma ACTH and corticosterone concentrations were also decreased in 15 month old rats chronically consuming ethanol. No differences were noted in responsiveness of the adrenal gland or in the amount of pituitary ACTH due to ethanol consumptions in 15 month old rats.

  20. Normal aging in rats and pathological aging in human Alzheimer's disease decrease FAAH activity: modulation by cannabinoid agonists.

    PubMed

    Pascual, A C; Martín-Moreno, A M; Giusto, N M; de Ceballos, M L; Pasquaré, S J

    2014-12-01

    Anandamide is an endocannabinoid involved in several physiological functions including neuroprotection. Anandamide is synthesized on demand and its endogenous level is regulated through its degradation, where fatty acid amide hydrolase plays a major role. The aim of this study was to characterize anandamide breakdown in physiological and pathological aging and its regulation by CB1 and CB2 receptor agonists. Fatty acid amide hydrolase activity was analyzed in an independent cohort of human cortical membrane samples from control and Alzheimer's disease patients, and in membrane and synaptosomes from adult and aged rat cerebral cortex. Our results demonstrate that fatty acid amide hydrolase activity decreases in the frontal cortex from human patients with Alzheimer's disease and this effect is mimicked by Aβ(1-40) peptide. This activity increases and decreases in aged rat cerebrocortical membranes and synaptosomes, respectively. Also, while the presence of JWH-133, a CB2 selective agonist, slightly increases anandamide hydrolysis in human controls, it decreases this activity in adults and aged rat cerebrocortical membranes and synaptosomes. In the presence of WIN55,212-2, a mixed CB1/CB2 agonist, anandamide hydrolysis increases in Alzheimer's disease patients but decreases in human controls as well as in adult and aged rat cerebrocortical membranes and synaptosomes. Although a similar profile is observed in fatty acid amide hydrolase activity between aged rat synaptic endings and human Alzheimer's disease brains, it is differently modulated by CB1/CB2 agonists. This modulation leads to a reduced availability of anandamide in Alzheimer's disease and to an increased availability of this endocannabinoid in aging. PMID:25456842

  1. Serotonin Transporter Knockout Rats Show Improved Strategy Set-Shifting and Reduced Latent Inhibition

    ERIC Educational Resources Information Center

    Nonkes, Lourens J. P.; van de Vondervoort, Ilse I. G. M.; de Leeuw, Mark J. C.; Wijlaars, Linda P.; Maes, Joseph H. R.; Homberg, Judith R.

    2012-01-01

    Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT[superscript -/-]) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting…

  2. Age- and Sex-Related Characteristics of Tonic Gaba Currents in the Rat Substantia Nigra Pars Reticulata

    PubMed Central

    Hasson, H.; Bojar, M.; Moshé, S. L.; Galanopoulou, A. S.

    2015-01-01

    Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age-and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved. PMID:25645446

  3. Age- and sex-related characteristics of tonic GABA currents in the rat substantia nigra pars reticulata.

    PubMed

    Chudomel, O; Hasson, H; Bojar, M; Moshé, S L; Galanopoulou, A S

    2015-04-01

    Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age- and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved. PMID:25645446

  4. Non-steroidal anti-inflammatory drugs attenuate the vascular responses in aging metabolic syndrome rats

    PubMed Central

    Rubio-Ruiz, María Esther; Pérez-Torres, Israel; Diaz-Diaz, Eulises; Pavón, Natalia; Guarner-Lans, Verónica

    2014-01-01

    Aim: Metabolic syndrome (MS) and aging are low-grade systemic inflammatory conditions, and inflammation is a key component of endothelial dysfunction. The aim of this study was to investigate the effects of non-steroidal anti-inflammatory drugs (NSAIDs) upon the vascular reactivity in aging MS rats. Methods: MS was induced in young male rats by adding 30% sucrose in drinking water over 6, 12, and 18 months. When the treatment was finished, the blood samples were collected, and aortas were dissected out. The expression of COX isoenzymes and PLA2 in the aortas was analyzed using Western blot analysis. The contractile responses of aortic rings to norepinephrine (1 μmol/L) were measured in the presence or absence of different NSAIDs (10 μmol/L for each). Results: Serum levels of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) in control rats were remained stable during the aging process, whereas serum IL-6 in MS rats were significantly increased at 12 and 18 months. The levels of COX isoenzyme and PLA2 in aortas from control rats increased with the aging, whereas those in aortas from MS rats were irregularly increased with the highest levels at 6 months. Pretreatment with acetylsalicylic acid (a COX-1 preferential inhibitor), indomethacin (a non-selective COX inhibitor) or meloxicam (a COX-2 preferential inhibitor) decreased NE-induced contractions of aortic rings from MS rats at all the ages, with meloxicam being the most potent. Acetylsalicylic acid also significantly reduced the maximum responses of ACh-induced vasorelaxation of aortic rings from MS rats, but indomethacin and meloxicam had no effect. Conclusion: NSAIDs can directly affect vascular responses in aging MS rats. Understanding the effects of NSAIDs on blood vessels may improve the treatment of cardiovascular diseases and MS in the elders. PMID:25263337

  5. Electronics show their age

    NASA Astrophysics Data System (ADS)

    Brown, Alan S.

    1992-10-01

    The paper examines the prevention and prediction of failures in avionics systems caused by persistent corrosion and vibration. Preventive maintenance of redundant avionics elements and subsystems is discussed in terms of corrosion initiated by water intrusion. Measures developed to mitigate electromagnetic interference can lead to corrosion such as the introduction of Al flakes into rubber gaskets. Hermetic seals are shown to be good for corrosion prevention under certain conditions, and the limitations of glues and rubbery organics are listed. Solder joints in avionics are shown to be vulnerable to accumulated vibration and shock, and techniques for force and temperature isolation can be used to extend the life of avionics. Simulations are described of flight vibration and shock demonstrating that resonance is a more serious problem than direct coupling, and vibration can also hasten the onset of overloads.

  6. Decreases in bone blood flow and bone material properties in aging Fischer-344 rats

    NASA Technical Reports Server (NTRS)

    Bloomfield, Susan A.; Hogan, Harry A.; Delp, Michael D.

    2002-01-01

    The purpose of this study was to quantify precisely aging-induced changes in skeletal perfusion and bone mechanical properties in a small rodent model. Blood flow was measured in conscious juvenile (2 months old), adult (6 months old), and aged (24 months old) male Fischer-344 rats using radiolabeled microspheres. There were no significant differences in bone perfusion rate or vascular resistance between juvenile and adult rats. However, blood flow was lower in aged versus adult rats in the forelimb bones, scapulas, and femurs. To test for functional effects of this decline in blood flow, bone mineral density and mechanical properties were measured in rats from these two age groups. Bone mineral density and cross-sectional moment of inertia in femoral and tibial shafts and the femoral neck were significantly larger in the aged versus adult rats, resulting in increased (+14%-53%) breaking strength and stiffness. However, intrinsic material properties at midshaft of the long bones were 12% to 25% lower in the aged rats. Although these data are consistent with a potential link between decreased perfusion and focal alterations in bone remodeling activity related to clinically relevant bone loss, additional studies are required to establish the mechanisms for this putative relationship.

  7. Age-related responses of right ventricle in swim-trained rats: changes in lactate and pyruvate contents and lactate dehydrogenase activity.

    PubMed

    Anitha, V; Asha Devi, S

    1996-09-18

    Age related changes in carbohydrate substrates such as, glucose, glycogen, pyruvic acid and lactic acid and the activity of lactate dehydrogenase (LDH) and LDH isoenzyme profile were evaluated in the right ventricle (RV) of swim-trained rats of 6- (adult), 12- (middle-aged) and 18- (old) months-of-age. Moderate hypertrophy was seen in the heart and RV in response to training in all age groups with the 12 months exhibiting a significant increase. While resting levels of pyruvate and glucose in the RV showed small elevations in adult and middle-aged rats, lactic acid showed reductions in all ages. Glycogen supercompensation was seen in the RV of trained animals. These age-related alterations in RV were associated with decreases in blood lactic acid and glucose in the trained rats belonging to all ages. Total protein of the RV decreased with age and exercise increased the content. Total LDH and M4-LDH activities decreased with age. However, training increased their activities in all ages. These changes in the RV suggests that swimming activity produces adaptations (e.g. increased LDH and M4) in all age groups. Considering the degree of adaptations, it can be suggested that adult and middle-aged are suitable for initiating swim-training programs, but not in old age. PMID:8869911

  8. Altered ventricular torsion and transmural patterns of myocyte relaxation precede heart failure in aging F344 rats

    PubMed Central

    Campbell, Stuart G.; Haynes, Premi; Kelsey Snapp, W.; Nava, Kristofer E.

    2013-01-01

    The purpose of this study was to identify and explain changes in ventricular and cellular function that contribute to aging-associated cardiovascular disease in aging F344 rats. Three groups of female F344 rats, aged 6, 18, and 22 mo, were studied. Echocardiographic measurements in isoflurane-anesthetized animals showed an increase in peak left ventricular torsion between the 6- and the 18-mo-old groups that was partially reversed in the 22-mo-old animals (P < 0.05). Epicardial, midmyocardial, and endocardial myocytes were subsequently isolated from the left ventricles of each group of rats. Unloaded sarcomere shortening and Ca2+ transients were then measured in these cells (n = >75 cells for each of the nine age-region groups). The decay time of the Ca2+ transient and the time required for 50% length relaxation both increased with age but not uniformly across the three regions (P < 0.02). Further analysis revealed a significant shift in the transmural distribution of these properties between 18 and 22 mo of age, with the largest changes occurring in epicardial myocytes. Computational modeling suggested that these changes were due in part to slower Ca2+ dissociation from troponin in aging epicardial myocytes. Subsequent biochemical assays revealed a >50% reduction in troponin I phosphoprotein content in 22-mo-old epicardium relative to the other regions. These data suggest that between 18 and 22 mo of age (before the onset of heart failure), F344 rats display epicardial-specific myofilament-level modifications that 1) break from the progression observed between 6 and 18 mo and 2) coincide with aberrant patterns of cardiac torsion. PMID:23792678

  9. Sexual Experience Changes Sex Hormones But Not Hypothalamic Steroid Hormone Receptor Expression in Young and Middle-aged Male Rats

    PubMed Central

    Wu, Di; Gore, Andrea C.

    2009-01-01

    Testosterone is well known to regulate sexual behavior in males, but this is dependent upon prior sexual experience. Aging is associated with decreased libido and changes in testosterone, but the role of experience in these age-related processes has not been systematically studied. We examined effects of age and sexual experience on serum hormones (total testosterone, free testosterone, estradiol, LH) and on numbers of androgen receptor (AR) and estrogen receptor α (ERα) immunoreactive cells in the hypothalamus. Extensive sexual experience was given to male rats at 4 months of age. Rats were euthanized at either 4 months (young) or 12 months (middle-aged (MA)). Comparable sexually naïve male rats were handled and placed into the testing arena but did not receive any sexual experience. Thus, we had four groups: young-naïve, young-experienced, MA-naïve and MA-experienced. Serum hormone levels were assayed, and numbers of AR and ERα cells were quantified stereologically in the medial preoptic nucleus (MPN) and the anteroventral periventricular nucleus (AVPV). Sexually experienced males had significantly elevated serum testosterone and free testosterone in both age groups. Both total and free testosterone were higher, and estradiol lower, in middle-aged than young rats. Experience did not alter either AR or ERα expression in the preoptic brain regions studied. Aging was associated with increased expression of AR, but no change in ERα. These results show that sexual experience can induce short-term and long-term alterations in serum hormones but these effects are not manifested upon their receptors in the hypothalamus. PMID:19559704

  10. Aged neuronal nitric oxide knockout mice show preserved olfactory learning in both social recognition and odor-conditioning tasks

    PubMed Central

    James, Bronwen M.; Li, Qin; Luo, Lizhu; Kendrick, Keith M.

    2015-01-01

    There is evidence for both neurotoxic and neuroprotective roles of nitric oxide (NO) in the brain and changes in the expression of the neuronal isoform of NO synthase (nNOS) gene occur during aging. The current studies have investigated potential support for either a neurotoxic or neuroprotective role of NO derived from nNOS in the context of aging by comparing olfactory learning and locomotor function in young compared to old nNOS knockout (nNOS−/−) and wildtype control mice. Tasks involving social recognition and olfactory conditioning paradigms showed that old nNOS−/− animals had improved retention of learning compared to similar aged wildtype controls. Young nNOS−/− animals showed superior reversal learning to wildtypes in a conditioned learning task, although their performance was weakened with age. Interestingly, whereas young nNOS−/− animals were impaired in long term memory for social odors compared to wildtype controls, in old animals this pattern was reversed, possibly indicating beneficial compensatory changes influencing olfactory memory may occur during aging in nNOS−/− animals. Possibly such compensatory changes may have involved increased NO from other NOS isoforms since the memory deficit in young nNOS−/− animals could be rescued by the NO-donor, molsidomine. Both nNOS−/− and wildtype animals showed an age-associated decline in locomotor activity although young nNOS−/− animals were significantly more active than wildtypes, possibly due to an increased interest in novelty. Overall our findings suggest that lack of NO release via nNOS may protect animals to some extent against age-associated cognitive decline in memory tasks typically involving olfactory and hippocampal regions, but not against declines in reversal learning or locomotor activity. PMID:25870540

  11. Body protein and lipid deficit in tumour-bearing rats in relation to age.

    PubMed Central

    Oudart, H.; Heitz, A.; Bnouham, M.; Malan, A.; Le Maho, Y.

    1993-01-01

    Cancer cachexia is among the most dramatic situations of depletion in body energy reserves. To ascertain whether the pattern of body composition alteration during tumour development is influenced by aging as in uncomplicated starvation, we compared the difference of body composition between Yoshida sarcoma bearing rats and young (200 g, 7 weeks) and adult (400 g, 13 weeks) control rats. After the same duration of tumour bearing, mass and composition of tumours were similar in adult and young rats, indicating that they are independent of host age. Food intake decreased to a remarkably similar value in both young and adults. Body water content was elevated in hosts of both ages. The relative deficit of body lipid vs controls was similar for both, the absolute lipid deficit being therefore larger in adult than in young tumour-bearing rats (14.3 +/- 4.4 g vs 6.8 +/- 0.9 g; P < 0.01). In contrast, there was a relatively larger deficit of body protein in young rats. Paradoxically, these rats still maintained a positive nitrogen balance whereas this balance was negative in adult tumour-bearing rats. In conclusion, as previously shown in uncomplicated undernutrition, the anorexia induced by Yoshida sarcoma development is still associated with some protein accretion in young rats whereas cachexia develops in adults. PMID:8217604

  12. Blood-brain barrier transport of choline is reduced in the aged rat.

    PubMed

    Mooradian, A D

    1988-02-01

    An age-related impairment in choline transport across the blood-brain barrier (BBB) may contribute to the cholinergic mechanisms of geriatric memory dysfunction. To test this hypothesis, the brain choline uptake in male Fisher 344 rats at 2, 18 and 24 months of age was studied using the Oldendorf technique. The Vmax of choline transport in the 24-month-old rats (0.05 +/- 0.04 nmol/min/g) was significantly lower than that in the 2-month-old rat (2.5 +/- 1.0 nmol/min/g) (P less than 0.05). The Km of transport in old rats (13 +/- 35 microM) was also significantly smaller than the value in 24-month-old rats (450 +/- 195 microM), while the constant of the non-saturable component of the transport, Kd, was not significantly different in older rats (1.2 +/- 0.3 vs 0.6 +/- 0.1 microliter/min/g). These results indicate that the carrier in old rats has reduced capacity and increased affinity to choline. The reduced choline carrier capacity explains the significant decrease in BBB choline transport in aged rats. PMID:3359216

  13. Decreased stress responsivity of central and peripheral catecholaminergic systems in aged 344/N Fischer rats.

    PubMed Central

    Cizza, G; Pacak, K; Kvetnansky, R; Palkovits, M; Goldstein, D S; Brady, L S; Fukuhara, K; Bergamini, E; Kopin, I J; Blackman, M R

    1995-01-01

    We investigated the effects of stress on central and peripheral sympatho-adrenal and sympatho-neural functions in healthy, intact young (3-4 mo) and aged (24 mo) male Fischer 344/N rats. Extracellular fluid (ECF) levels of the catecholamines norepinephrine (NE), dihydroxyphenylglycol (DHPG), methoxyhydroxyphenylglycol (MHPG), and dihydroxyphenylacetic acid (DOPAC) were obtained by microdialysis in the paraventricular nucleus (PVN) of the hypothalamus at baseline and during immobilization (IMMO). The baseline levels of these substances were similar in both age groups, and their concentrations increased significantly in response to IMMO. The IMMO-induced increases of NE and MHPG, however, were significantly smaller in old than in young rats. Plasma levels of the catecholamines NE, DHPG, MHPG, DOPAC, dihydroxyphenylalanine (DOPA), epinephrine (EPI), dopamine (DA), and HVA were also determined in young and old rats during IMMO. Basal levels of these substances were significantly higher in old than in young rats. The magnitude of the IMMO-induced increases in the majority of these compounds however, was significantly smaller in old than in young rats. We conclude that, at the basal state, aging in the Fischer rat is associated with normal PVN ECF, but high plasma catecholamine levels; at stress state, however, old rats have substantially lesser activation of their central and peripheral catecholaminergic systems than young rats. Images PMID:7883970

  14. Glutamatergic signaling and low prodynorphin expression are associated with intact memory and reduced anxiety in rat models of healthy aging.

    PubMed

    Ménard, Caroline; Quirion, Rémi; Bouchard, Sylvain; Ferland, Guylaine; Gaudreau, Pierrette

    2014-01-01

    The LOU/C/Jall (LOU) rat strain is considered a model of healthy aging due to its increased longevity, maintenance of stable body weight (BW) throughout life and low incidence of age-related diseases. However, aging LOU rat cognitive and anxiety status has yet to be investigated. In the present study, male and female LOU rat cognitive performances (6-42 months) were assessed using novel object recognition and Morris Water Maze tasks. Recognition memory remained intact in all LOU rats up to 42 months of age. As for spatial memory, old LOU rat performed similarly as young animals for learning acquisition, reversal learning, and retention. While LOU rat BW remained stable despite aging, 20-month-old ad-libitum-fed (OAL) male Sprague Dawley rats become obese. We determined if long-term caloric restriction (LTCR) prevents age-related BW increase and cognitive deficits in this rat strain, as observed in the obesity-resistant LOU rats. Compared to young animals, recognition memory was impaired in OAL but intact in 20-month-old calorie-restricted (OCR) rats. Similarly, OAL spatial learning acquisition was impaired but LTCR prevented the deficits. Exacerbated stress responses may favor age-related cognitive decline. In the elevated plus maze and open field tasks, LOU and OCR rats exhibited high levels of exploratory activity whereas OAL rats displayed anxious behaviors. Expression of prodynorphin (Pdyn), an endogenous peptide involved in stress-related memory impairments, was increased in the hippocampus of OAL rats. Group 1 metabotropic glutamate receptor 5 and immediate early genes Homer 1a and Arc expression, both associated with successful cognitive aging, were unaltered in aging LOU rats but lower in OAL than OCR rats. Altogether, our results, supported by principal component analysis and correlation matrix, suggest that intact memory and low anxiety are associated with glutamatergic signaling and low Pdyn expression in the hippocampus of non-obese aging rats. PMID

  15. Glutamatergic signaling and low prodynorphin expression are associated with intact memory and reduced anxiety in rat models of healthy aging

    PubMed Central

    Ménard, Caroline; Quirion, Rémi; Bouchard, Sylvain; Ferland, Guylaine; Gaudreau, Pierrette

    2014-01-01

    The LOU/C/Jall (LOU) rat strain is considered a model of healthy aging due to its increased longevity, maintenance of stable body weight (BW) throughout life and low incidence of age-related diseases. However, aging LOU rat cognitive and anxiety status has yet to be investigated. In the present study, male and female LOU rat cognitive performances (6–42 months) were assessed using novel object recognition and Morris Water Maze tasks. Recognition memory remained intact in all LOU rats up to 42 months of age. As for spatial memory, old LOU rat performed similarly as young animals for learning acquisition, reversal learning, and retention. While LOU rat BW remained stable despite aging, 20-month-old ad-libitum-fed (OAL) male Sprague Dawley rats become obese. We determined if long-term caloric restriction (LTCR) prevents age-related BW increase and cognitive deficits in this rat strain, as observed in the obesity-resistant LOU rats. Compared to young animals, recognition memory was impaired in OAL but intact in 20-month-old calorie-restricted (OCR) rats. Similarly, OAL spatial learning acquisition was impaired but LTCR prevented the deficits. Exacerbated stress responses may favor age-related cognitive decline. In the elevated plus maze and open field tasks, LOU and OCR rats exhibited high levels of exploratory activity whereas OAL rats displayed anxious behaviors. Expression of prodynorphin (Pdyn), an endogenous peptide involved in stress-related memory impairments, was increased in the hippocampus of OAL rats. Group 1 metabotropic glutamate receptor 5 and immediate early genes Homer 1a and Arc expression, both associated with successful cognitive aging, were unaltered in aging LOU rats but lower in OAL than OCR rats. Altogether, our results, supported by principal component analysis and correlation matrix, suggest that intact memory and low anxiety are associated with glutamatergic signaling and low Pdyn expression in the hippocampus of non-obese aging rats. PMID

  16. Effects of age on behavioral and physiological responses to carbaryl in rats.

    PubMed

    Takahashi, R N; Poli, A; Morato, G S; Lima, T C; Zanin, M

    1991-01-01

    Motor, sensory and thermoregulatory functions were examined in young (3 months) and mature (12 months) rats following PO administration of single low doses (10 and 50 mg/kg) of carbaryl, a carbamate insecticide, and these effects were related to blood cholinesterase activity. Carbaryl 50 mg/kg decreased the frequency of ambulation in the open-field arena within 30 min while it enhanced the duration of haloperidol-induced catalepsy in both young and mature rats. Administration of carbaryl also resulted in an increased nociceptive threshold to thermic stimuli mainly in mature rats. An age-related reduction in body temperature was observed at 30, 60 and 90 min after injection. Activity of blood cholinesterase was reduced in young and mature rats at 30 and 60 min following carbaryl exposure. These results indicate that carbaryl can induce an age-related impairment on some behavioral and autonomic functions in rats correlated to the inhibition of cholinesterase activity. PMID:1904531

  17. Age-associated changes in rat immune system: lessons learned from experimental autoimmune encephalomyelitis.

    PubMed

    Djikić, Jasmina; Nacka-Aleksić, Mirjana; Pilipović, Ivan; Stojić-Vukanić, Zorica; Bufan, Biljana; Kosec, Duško; Dimitrijević, Mirjana; Leposavić, Gordana

    2014-10-01

    Aging is associated with the decline in immune response to infectious agents and tumors and increasing risk of autoimmunity, but the incidence of autoimmune diseases does not increase in the elderly. To elucidate the cellular and molecular mechanisms influencing clinical expression of autoimmunity in aged animals, the phenotypic and functional characteristics of mononuclear cells isolated from the spinal cords of 3-month-old (young) and 26-month-old (aged) Dark Agouti rats immunized to induce experimental autoimmune encephalomyelitis (EAE) - the model of multiple sclerosis, the most common autoimmune disease of the central nervous system, were examined. Aged rats were less susceptible to EAE induction, and the neurological and histological picture was milder in those rats which developed the clinically manifested disease. At the peak of the disease, several times fewer mononuclear cells and T lymphocytes were isolated from the spinal cords of aged rats compared with the young ones. The frequency of CD4+ cells among TCRαβ+ lymphocytes, as well as that of reactivated CD134(OX40)+ cells within its CD4+ T-lymphocyte subpopulation, was less in spinal cords of aged compared with young rats. Additionally, CD134 surface density on CD4+ lymphocytes was decreased in the spinal cord of aged rats. The changes in CD134 expression most likely reflected in part age-related intrinsic changes in CD4+ lymphocytes as the expression of this molecule was also impaired on in vitro stimulated naïve CD4+ splenocytes from aged rats compared with young animals. In addition, greater frequency of CD8+ lymphocytes with regulatory phenotypes could also contribute to impaired CD4+ cell reactivation in aged rats. The increased apoptosis of CD4+ cells from aged rats was consistent with their impaired reactivation and it was accompanied by the greater frequency of CD4+CD11b+CD45(int/high) cells, which are supposed to be actively engaged in apoptotic cell phagocytosis and to have immunoregulatory

  18. Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts

    PubMed Central

    Liao, Po-Hsiang; Hsieh, Dennis Jine-Yuan; Kuo, Chia-Hua; Day, Cecilia-Hsuan; Shen, Chia-Yao; Lai, Chao-Hung; Chen, Ray-Jade; Padma, V. Vijaya

    2015-01-01

    Aging is the most important risk factor in cardiovascular disease (CVD), which is the leading causes of death worldwide and the second major cause of death in Taiwan. The major factor in heart failure during aging is heart remodeling, including long-term stress-induced cardiac hypertrophy and fibrosis. Exercise is good for aging heart health, but the impact of exercise training on aging is not defined. This study used 3-, 12- and 18-month-old rats and randomly divided each age group into no exercise training control groups (C3, A12 and A18) and moderate gentle swimming exercise training groups (E3, AE12 and AE18). The protocol of exercise training was swimming five times weekly with gradual increases from the first week from 20 to 60 min for 12 weeks. Analyses of protein from rat heart tissues and sections revealed cardiac inflammation, hypertrophy and fibrosis pathway increases in aged rat groups (A12 and A18), which were improved in exercise training groups (AE12 and AE18). There were no heart injuries in young rat hearts in exercise group E3. These data suggest that moderate swimming exercise training attenuated aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts. PMID:26496028

  19. Quantification of Age-Related Tissue-Level Failure Strains of Rat Femoral Cortical Bones Using an Approach Combining Macrocompressive Test and Microfinite Element Analysis.

    PubMed

    Fan, Ruoxun; Gong, He; Zhang, Rui; Gao, Jiazi; Jia, Zhengbin; Hu, Yanjuan

    2016-04-01

    Bone mechanical properties vary with age; meanwhile, a close relationship exists among bone mechanical properties at different levels. Therefore, conducting multilevel analyses for bone structures with different ages are necessary to elucidate the effects of aging on bone mechanical properties at different levels. In this study, an approach that combined microfinite element (micro-FE) analysis and macrocompressive test was established to simulate the failure of male rat femoral cortical bone. Micro-FE analyses were primarily performed for rat cortical bones with different ages to simulate their failure processes under compressive load. Tissue-level failure strains in tension and compression of these cortical bones were then back-calculated by fitting the experimental stress-strain curves. Thus, tissue-level failure strains of rat femoral cortical bones with different ages were quantified. The tissue-level failure strain exhibited a biphasic behavior with age: in the period of skeletal maturity (1-7 months of age), the failure strain gradually increased; when the rat exceeded 7 months of age, the failure strain sharply decreased. In the period of skeletal maturity, both the macro- and tissue-levels mechanical properties showed a large promotion. In the period of skeletal aging (9-15 months of age), the tissue-level mechanical properties sharply deteriorated; however, the macromechanical properties only slightly deteriorated. The age-related changes in tissue-level failure strain were revealed through the analysis of male rat femoral cortical bones with different ages, which provided a theoretical basis to understand the relationship between rat cortical bone mechanical properties at macro- and tissue-levels and decrease of bone strength with age. PMID:26902102

  20. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats

    SciTech Connect

    Hou, Wei-Yu; Xu, Shang-Fu; Zhu, Qiong-Ni; Lu, Yuan-Fu; Cheng, Xing-Guo; Liu, Jie

    2014-10-15

    Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (− 2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted for western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60–180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women. - Highlights: • Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 expression in livers of rats. • Ontogenic changes of Oatps at − 2, 1, 7, 14, 21, 28, 35, and 60 days. • Age-related changes of Oatps at 60, 180, 540, and 800 days. • Sex-difference of Oatps at the both mRNA and protein levels.

  1. The effect of age on digoxin pharmacokinetics in Fischer-344 rats

    SciTech Connect

    Evans, R.L.; Owens, S.M.; Ruch, S.; Kennedy, R.H.; Seifen, E. )

    1990-01-01

    Digoxin protein binding and pharmacokinetics were studied in 4-, 14-, and 25-month-old male Fischer-344 rats to determine if there were age-dependent changes in digoxin disposition. Serum protein binding did not differ among age groups. The average percentage unbound digoxin for all animals was 61.3 {plus minus} 5.3% (means {plus minus} SD, n = 15). For pharmacokinetic studies, ({sup 3}H)digoxin and 1 mg/kg unlabeled digoxin were administered as an intravenous bolus dose to animals from each age group. The ({sup 3}H)digoxin terminal elimination half-life was 2.0, 2.3, and 2.5 hr, respectively. The steady-state volume of distribution in the three age groups was 1.51, 1.49, and 1.27 liters/kg, respectively. Total body clearance for the three age groups was 14.2, 12.1, and 7.5 ml/min/kg, respectively. Analysis of variance of these data followed by Duncan's multiple range test indicated a significant decrease in clearance in the aged rats (25-month-old, p less than 0.05). This age-dependent decrease in clearance suggested that digoxin pharmacokinetics could be a significant factor in age-related alterations in digoxin cardiotoxicity in the rat, as it is in humans, and that the Fischer-344 rat could be a useful model for studies of digoxin pharmacokinetic changes with age.

  2. Combination of Spirulina with glycyrrhizin prevents cognitive dysfunction in aged obese rats

    PubMed Central

    Madhavadas, Sowmya; Subramanian, Sarada

    2015-01-01

    Objectives: To evaluate the cognition enhancing effect of the combination of Spirulina and glycyrrhizin in monosodium glutamate (MSG)-induced obese aged rats. Materials and Methods: Obesity was induced in rats by administration of MSG (intraperitoneally, 4 mg/g body weight) for 14 consecutive days from day 1 after birth. Subsequently, the animals were allowed to grow for 18 months with food and water ad libitum. Hypercholesterolemia, hyperglycemia, leptin resistance, were monitored in these animals. Cognitive status was assessed by Barne's maze task and hippocampal acetylcholinesterase (AChE) levels. Further, the animals were treated with Spirulina (Sp) (oral route, 1 g/Kg body weight, for 30 days) alone or glycyrrhizin (Gly) alone (intraperitoneal route, 0.1 mg/Kg, on day 15 and day 21), or their combination (SpGly). Counting of the treatment days was done by considering first day of Sp administration as day 1. After the completion of 30 days of Spirulina treatment or 2 doses of Gly administration or the combination (SpGly) treatment, the animals were left for 3 weeks. They were then were assessed for their biochemical and cognitive changes. Results: The combination of Sp with Gly showed a significant reduction (P < 0.0001) in glucose, cholesterol, leptin levels in the serum with improvement in cognitive functions with concomitant reduction in AChE activity in the hippocampal tissue homogenates (P < 0.0001) of the obese rats. Conclusion: SpGly combination has a potential role in reversing cognitive dysfunctions associated with aging and obesity. PMID:25821309

  3. [Aging-related increase of sensitivity of the mitochondrial permeability transition pore to inductors in the rat heart].

    PubMed

    Sahach, V F; Vavilova, H L; Strutyns'ka, N A; Rudyk, O V

    2004-01-01

    An age-related increase in the sensitivity of the mitochondrial permeability transition pore (MPTP) to inductors of it's opening, Ca2+ ions and phenylarsineoxide (PAO) was studied in experiments in vitro on isolated heart mitochondria of adult and old rats. Two indices were measured spectrophotometrically (lambda = 520 nm) by a decrease in an optical density (OD), resulting from mitochondrial swelling and a release of mitochondrial unidentified substances (mitochondrial factor, MF) registered also spectrophotometrically in a range of waves lambda = 230-260 nm. Dose-dependent effect of Ca2+ (10(-7)-10(-4) mol/l) and PAO (10(-8)-10(-4) mol/l) on swelling of the mitochondria were observed in samples from both adult and old rats. Swelling of the mitochondria from the heart of old rats induced by application of the above inductors was more intensive than the respective effect in samples from adult rats. In samples from the heart of both adult and old rats Ca2+ ions within the tested concentration range (10(-7)-10(-4) mol/l) evoked the release of MF in a dose-dependent manner. Mitochondria from the heart of old rats were found to be capable of releasing some amounts of MF in the absence of the MPTP inductors PAO. When this inductor was applied in a 10(-9) to 10(-4) mol/l concentration range, isolated mitochondria from the heart of old rats released unidentified substances with the absorption peaks at two wavelength, lambda = 230 nm and lambda = 240-245 nm. The former peak was found to be Cyclosporin A-insensitive, while the latter peak could be practically completely inhibited by this antibiotic. The concentrations of tested solutions (10(-7) mol/l CaCl2 and 10(-9) mol/l PAO), at which the release of the factor from the mitochondria of the old rat heart was observed, were significantly lower than those in adult rats. Our experimental data show that mitochondria isolated from the heart tissue of old rats demonstrate significantly higher sensitivity to inductors of MPTP

  4. UV-induced retinal proteome changes in the rat model of age-related macular degeneration.

    PubMed

    Kraljević Pavelić, Sandra; Klobučar, Marko; Sedić, Mirela; Micek, Vedran; Gehrig, Peter; Grossman, Jonas; Pavelić, Krešimir; Vojniković, Božidar

    2015-09-01

    Age-related macular degeneration (AMD) is characterized by irreversible damage of photoreceptors in the central posterior part of the retina, called the macula and is the most common cause of vision loss in those aged over 50. A growing body of evidence shows that cumulative long-term exposure to UV radiation may be harmful to the retina and possibly leads to AMD irrespective of age. In spite of many research efforts, cellular and molecular mechanisms leading to UV-induced retinal damage and possibly retinal diseases such as AMD are not completely understood. In the present study we explored damage mechanisms accounting for UV-induced retinal phototoxicity in the rats exposed to UVA and UVB irradiation using a proteomics approach. Our study showed that UV irradiation induces profound changes in the retinal proteomes of the rats associated with the disruption of energy homeostasis, oxidative stress, DNA damage response and structural and functional impairments of the interphotoreceptor matrix components and their cell surface receptors such as galectins. Two small leucine-rich proteoglycans, biglycan and lumican, were identified as phototoxicity biomarkers associated with UV-induced disruption of interphotoreceptor matrix (IPM). In addition, UVB induced activation of Src kinase, which could account for cytoskeletal rearrangements in the retina was observed at the proteomics level. Pharmacological intervention either to target Src kinase with the aim of preventing cytoskeletal rearrangements in the retinal pigment epithelium (RPE) and neuronal retina or to help rebuild damaged IPM may provide fresh avenues of treatment for patients suffering from AMD. PMID:26071645

  5. Age-Related Differences in Neuropathic Pain Behavior and Spinal Microglial Activity after L5 Spinal Nerve Ligation in Male Rats

    PubMed Central

    Zeinali, Hossein; Manaheji, Homa; Zaringhalam, Jalal; Bahari, Zahra; Nazemi, Samad; Sadeghi, Mehdi

    2016-01-01

    Introduction: Several studies have reported the involvement of age-related changes in the development of neuropathic pain behaviors. However, limited data are available on the role of age in establishing and maintaining chronic neuropathic pain after peripheral nerve injury. Methods: In the present study, we examined age-related neuropathic behavior among rats in 4 age groups: pups (4 weeks old; weight, 60–80 g), juvenile rats (6 weeks old; weight, 120–140 g), and mature rats (10–12 weeks old; weight, 200–250 g). Because the exact contribution of spinal microglia and its association with the development of neuropathic pain remains unknown, we also evaluated the expression of spinal Iba1, a microglial marker, by using western blotting before and 5 days after spinal nerve ligation (SNL) as well as after the daily IP administration of minocycline (30 mg/kg). Results: Our results showed that SNL-induced mechanical allodynia but not thermal hyperalgesia in mature rats but not in pups (P<0.05 and P<0.01, respectively). The expression of spinal Iba1 in the juvenile rats was significantly lower than that in pups and mature rats (P<0.01). Moreover, administration of minocycline decreased the expression of spinal Iba1 in the pup rats more than in juvenile rats (P<0.001) and in the juvenile rats more than in the mature rats (P<0.05). Conclusion: These data suggest that the development of neuropathic behaviors and microglial activation after SNL could be age dependent. PMID:27563413

  6. Pulmonary arterial hypertension in rats due to age-related arginase activation in intermittent hypoxia.

    PubMed

    Nara, Akina; Nagai, Hisashi; Shintani-Ishida, Kaori; Ogura, Sayoko; Shimosawa, Tatsuo; Kuwahira, Ichiro; Shirai, Mikiyasu; Yoshida, Ken-ichi

    2015-08-01

    Pulmonary arterial hypertension (PAH) is prevalent in patients with obstructive sleep apnea syndrome (OSAS). Aging induces arginase activation and reduces nitric oxide (NO) production in the arteries. Intermittent hypoxia (IH), conferred by cycles of brief hypoxia and normoxia, contributes to OSAS pathogenesis. Here, we studied the role of arginase and aging in the pathogenesis of PAH in adult (9-mo-old) and young (2-mo-old) male Sprague-Dawley rats subjected to IH or normoxia for 4 weeks and analyzed them with a pressure-volume catheter inserted into the right ventricle (RV) and by pulsed Doppler echocardiography. Western blot analysis was conducted on arginase, NO synthase isoforms, and nitrotyrosine. IH induced PAH, as shown by increased RV systolic pressure and RV hypertrophy, in adult rats but not in young rats. IH increased expression levels of arginase I and II proteins in the adult rats. IH also increased arginase I expression in the pulmonary artery endothelium and arginase II in the pulmonary artery adventitia. Furthermore, IH reduced pulmonary levels of nitrate and nitrite but increased nitrotyrosine levels in adult rats. An arginase inhibitor (N(ω)-hydroxy-nor-1-arginine) prevented IH-induced PAH and normalized nitrite and nitrate levels in adult rats. IH induced arginase up-regulation and PAH in adult rats, but not in young rats, through reduced NO production. Our findings suggest that arginase inhibition prevents or reverses PAH. PMID:25490411

  7. Effects of aging on peripheral and central auditory processing in rats.

    PubMed

    Costa, Margarida; Lepore, Franco; Prévost, François; Guillemot, Jean-Paul

    2016-08-01

    Hearing loss is a hallmark sign in the elderly population. Decline in auditory perception provokes deficits in the ability to localize sound sources and reduces speech perception, particularly in noise. In addition to a loss of peripheral hearing sensitivity, changes in more complex central structures have also been demonstrated. Related to these, this study examines the auditory directional maps in the deep layers of the superior colliculus of the rat. Hence, anesthetized Sprague-Dawley adult (10 months) and aged (22 months) rats underwent distortion product of otoacoustic emissions (DPOAEs) to assess cochlear function. Then, auditory brainstem responses (ABRs) were assessed, followed by extracellular single-unit recordings to determine age-related effects on central auditory functions. DPOAE amplitude levels were decreased in aged rats although they were still present between 3.0 and 24.0 kHz. ABR level thresholds in aged rats were significantly elevated at an early (cochlear nucleus - wave II) stage in the auditory brainstem. In the superior colliculus, thresholds were increased and the tuning widths of the directional receptive fields were significantly wider. Moreover, no systematic directional spatial arrangement was present among the neurons of the aged rats, implying that the topographical organization of the auditory directional map was abolished. These results suggest that the deterioration of the auditory directional spatial map can, to some extent, be attributable to age-related dysfunction at more central, perceptual stages of auditory processing. PMID:27306460

  8. Exercise training affects age-induced changes in SOD and heat shock protein expression in rat heart.

    PubMed

    Rinaldi, Barbara; Corbi, Graziamaria; Boccuti, Silvia; Filippelli, Walter; Rengo, Giuseppe; Leosco, Dario; Rossi, Francesco; Filippelli, Amelia; Ferrara, Nicola

    2006-08-01

    The aim of this study was to test the effects of age and chronic exercise training on antioxidant and heat shock protein (Hsp) expression by comparing the hearts of young (Y), sedentary old (SO) and trained old (TO) rats. In SO rats, there were: (a) changes in myocardial structure and function; (b) increased malondialdehyde levels; (c) no changes in superoxide-dismutase (SOD) enzymes; (d) reduced Hsp70 expression; and (e) increased Hsp27 expression. In TO rats, SOD enzymes and Hsp70 expression were increased and Hsp27 was further increased. Malondialdehyde level did not differ between TO and SO rats, which shows that chronic exercise did not affect the peroxidation index. In summary, by increasing Hsp27 and Hs70 levels, prolonged exercise partially counterbalanced the heart age-related effects in the antioxidant system without altering peroxidation levels. These findings suggest that the beneficial effects on aged-related cardiovascular changes could be connected to the "anti-oxidant" effects of prolonged exercise training. PMID:16822632

  9. Age and dietary form of vitamin K affect menaquinone-4 concentrations in male Fischer 344 rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phylloquinone, the primary dietary form of vitamin K, is converted to menaquinone-4 (MK-4) in certain tissues. MK-4 may have tissue-specific roles independent to those traditionally identified with vitamin K. Fischer 344 male rats of different ages (2, 12 and 24mo, n=20 per age group) were used to...

  10. AGE RELATED PERCUTANEOUS PENETRATION OF 2-SEC-BUTYL 4,6-DINITROPHENOL (DINOSEB) IN RATS

    EPA Science Inventory

    The effect of age, dose, and method of dermal penetration assessment on the percutaneous penetration of C14-dinoseb have been determined in the Fischer' rat. ermal absorption was shown to be dependent on age and independent of dose. n vitro measurement of dermal absorption was fo...

  11. CONCENTRATION OF GLIAL FIBRILLARY ACIDIC PROTEIN INCREASES WITH AGE IN THE MOUSE AND RAT BRAIN

    EPA Science Inventory

    The role of aging in the expression of the astrocyte protein, glial fibrillary acidic protein (GFAP), was examined. n both mice and rats the concentration of GFAP increased throughout the brain as a function of aging. he largest increase (2-fold) was observed in striatum for both...

  12. UNDERNUTRITION IN EARLY LIFE DOES NOT IMPAIR LEARNING IN YOUNG OR AGING RATS.

    EPA Science Inventory

    Prenatal undernutrition is associated with increased incidence of obesity, heart disease, diabetes. Effects of pre- and post-natal undernutrition on nervous system function in middle-aged and aging male SD rats were examined. Intrauterine growth retardation (IUGR) was induced by ...

  13. SOME EFFECTS OF CHRONIC TRITIUM EXPOSURE DURING SELECTED AGES IN THE RAT

    EPA Science Inventory

    To assess the implication of age at the time of exposure to chronic irradiation, rats were exposed to constant tritium (HTO) activities of 10 microcuries/ml of body water for 42 days beginning either on the first day of pregnancy or at birth, or at 42 days or 74 days of age. This...

  14. Effects of Blackberries on Motor and Cognitive Function in Aged Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The polyphenolics in fruits and vegetables, when fed to rats from 19-21 months of age, have been shown to retard and even reverse age-related decrements in motor and cognitive performance. These effects may be the result of the polyphenols increasing antioxidant and/or anti-inflammatory levels, or ...

  15. Altered perirhinal cortex activity patterns during taste neophobia and their habituation in aged rats.

    PubMed

    Gómez-Chacón, B; Morillas, E; Gallo, M

    2015-03-15

    Perirhinal cortex (PRh) pathology and chemosensory identification dysfunction are early signs of Alzheimer's disease. We have assessed the impact of normal aging on PRh activity during flavor recognition memory using c-Fos immunoreactivity as a marker for neuronal activity. Adult (5-month-old) and aged (24-month-old) Wistar male rats were exposed to a vinegar solution on a daily basis for a period of six days. Behavioral assessment indicated similar performance in both age groups but suggested slower attenuation of neophobia in aged rats. Regarding c-Fos immunoreactivity, an opposite pattern of PRh activity was found in adult and aged groups drinking the flavor solution during the first (Novel), second (Familiar I) or sixth (Familiar II) exposure as the flavor became familiar. While adult rats exhibited a higher number of PRh c-Fos-positive neurons during the presentation of the novel flavor than during the second and sixth presentation, in aged rats the number of PRh c-Fos-positive neurons was higher during the presentation of the familiar flavor in the last session than in the first and second. The results suggest that the role of the PRh changes during aging and can help to dissociate PRh dysfuntions induced by neurodegenerative diseases and normal aging. PMID:25532913

  16. Effect of Tongue Exercise on Protrusive Force and Muscle Fiber Area in Aging Rats

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Russell, John A.; Wang, Hao; Jackson, Michelle A.; Mann, Laura; Kluender, Keith

    2009-01-01

    Purpose: Age-related changes in tongue function may contribute to dysphagia in elderly people. The authors' purpose was to investigate whether aged rats that have undergone tongue exercise would manifest increased protrusive tongue forces and increased genioglossus (GG) muscle fiber cross-sectional areas. Method: Forty-eight young adult,…

  17. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    PubMed Central

    Herrera-Pérez, José Jaime; Fernández-Guasti, Alonso; Martínez-Mota, Lucía

    2013-01-01

    In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT) expression associated with low testosterone (T) levels. The objectives of this study were to establish (1) if brain SERT expression is reduced by aging and (2) if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months) and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population. PMID:26317087

  18. Ageing delays emergence from general anaesthesia in rats by increasing anaesthetic sensitivity in the brain†

    PubMed Central

    Chemali, J. J.; Kenny, J. D.; Olutola, O.; Taylor, N. E.; Kimchi, E. Y.; Purdon, P. L.; Brown, E. N.; Solt, K.

    2015-01-01

    Background Little is known about ageing-related changes in the brain that affect emergence from general anaesthesia. We used young adult and aged Fischer 344 rats to test the hypothesis that ageing delays emergence from general anaesthesia by increasing anaesthetic sensitivity in the brain. Methods Time to emergence was determined for isoflurane (1.5 vol% for 45 min) and propofol (8 mg kg−1 i.v.). The dose of isoflurane required to maintain loss of righting (LOR) was established in young adult and aged rats. The efficacy of methylphenidate to reverse LOR from general anaesthesia was tested. Separate young adult and aged rats with implanted electroencephalogram (EEG) electrodes were used to test whether ageing increases sensitivity to anaesthetic-induced burst suppression. Results Mean time to emergence from isoflurane anaesthesia was 47 s [95% CI 33, 60; young adult) compared with 243 s (95% CI 185, 308; aged). For propofol, mean time to emergence was 13.1 min (95% CI 11.9, 14.0; young adult) compared with 23.1 min (95% CI 18.8, 27.9; aged). These differences were statistically significant. When methylphenidate was administered after propofol, the mean time to emergence decreased to 6.6 min (95% CI 5.9, 7.1; young adult) and 10.2 min (95% CI 7.9, 12.3; aged). These reductions were statistically significant. Methylphenidate restored righting in all rats during continuous isoflurane anaesthesia. Aged rats had lower EEG power and were more sensitive to anaesthetic-induced burst suppression. Conclusions Ageing delays emergence from general anaesthesia. This is due, at least in part, to increased anaesthetic sensitivity in the brain. Further studies are warranted to establish the underlying causes. PMID:26174302

  19. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats

    SciTech Connect

    Canada, A.T.; Calabrese, E.J.; Leonard, D.

    1986-09-01

    The effect of age on the metabolism of pentobarbital in mice and rats was investigated following exposure to 0.3 ppm of ozone for 3.75 hr. Young animals were 2.5 months of age and the mature were 18 months. The pentobarbital sleeping time was significantly prolonged following the ozone exposure in both the mice and rats when compared with an air control. No ozone effect on sleeping time was found in the young animals. The results indicate that there may be an age-related sensitivity to the occurrence of ozone-related inhibition of pentobarbital metabolism.

  20. Age-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling

    PubMed Central

    Yang, Wei; Burkhardt, Britta; Fischer, Luise; Beirow, Maja; Bork, Nadja; Wönne, Eva C.; Wagner, Cornelia; Husen, Bettina; Zeilinger, Katrin; Liu, Liegang; Nussler, Andreas K.

    2015-01-01

    Aging is characterized by a progressive decrease of cellular functions, because cells gradually lose their capacity to respond to injury. Increased oxidative stress is considered to be one of the major contributors to age-related changes in all organs including the liver. Our study has focused on elucidating whether important antioxidative enzymes, the mTOR pathway, and MAPKs exhibit age-dependent changes in the liver of rats during aging. We found an age-dependent increase of GSH in the cytosol and mitochondria. The aged liver showed an increased SOD enzyme activity, while the CAT enzyme activity decreased. HO-1 and NOS-2 gene expression was lower in adult rats, but up-regulated in aged rats. Western blot analysis revealed that SOD1, SOD2, GPx, GR, γ-GCL, and GSS were age-dependent up-regulated, while CAT remained constant. We also demonstrated that the phosphorylation of Akt, JNK, p38, and TSC2Ser1254 decreased while ERK1/2 and TSC2Thr1462 increased age-dependently. Furthermore, our data show that the mTOR pathway seems to be activated in livers of aged rats, and hence stimulating cell proliferation/regeneration, as confirmed by an age-dependent increase of PCNA and p-eIF4ESer209 protein expression. Our data may help to explain the fact that liver cells only proliferate in cases of necessity, like injury and damage. In summary, we have demonstrated that, age-dependent changes of the antioxidant system and stress-related signaling pathways occur in the livers of rats, which may help to better understand organ aging. PMID:27004051

  1. Differential expression of the regulator of G protein signaling RGS9 protein in nociceptive pathways of different age rats.

    PubMed

    Kim, Ki Jun; Moriyama, Kumi; Han, Kyung Ream; Sharma, Manohar; Han, Xiaokang; Xie, Guo-xi; Palmer, Pamela Pierce

    2005-11-01

    Regulators of G protein signaling (RGS) proteins are GTPase-activating proteins which act as modulators of G-protein-coupled receptors. RGS9 has two alternative splicing variants. RGS9-1 is expressed in the retina. RGS9-2 is expressed in the brain, especially abundant in the striatum. It is believed to be an essential regulatory component of dopamine and opioid signaling. In this study, we compared the expression of RGS9 proteins in the nervous system of different age groups of rats employing immunocytochemistry. In both 3-week- and 1-year-old rats, RGS9 is expressed abundantly in caudate-putamen, nucleus accumbens, and olfactory tubercle. It is also expressed abundantly in the ventral horn of the spinal cord and the dorsal root ganglion (DRG) cells. Quantitative analysis showed that the intensities of RGS9 expression in 1-year-old rats are higher than those in the 3-week-old rats in caudate-putamen, nucleus accumbens, olfactory tubercle, periaqueductal gray, and gray matter of the spinal cord. In contrast, in thalamic nuclei and locus coeruleus, the intensities of RGS9 immunostaining in 3-week-old rats are higher than in 1-year-old rats. In DRG cells, there is no significant difference between the two age groups. These data suggest that RGS9 is differentially expressed with age. Such differential expression may play an important role in neuronal differentiation and development as well as in neuronal function, such as dopamine and opioid signaling. PMID:16153714

  2. Effects of Resveratrol Supplementation on Bone Growth in Young Rats and Microarchitecture and Remodeling in Ageing Rats

    PubMed Central

    Lee, Alice M. C.; Shandala, Tetyana; Nguyen, Long; Muhlhausler, Beverly S.; Chen, Ke-Ming; Howe, Peter R.; Xian, Cory J.

    2014-01-01

    Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing. Using rat models, the current study investigated the potential effects of resveratrol supplementation during the rapid postnatal growth period and in late adulthood (early ageing) on bone microarchitecture and metabolism. In the growth trial, 4-week-old male hooded Wistar rats on a normal chow diet were given resveratrol (2.5 mg/kg/day) or vehicle control for 5 weeks. In the ageing trial, 6-month-old male hooded Wistar rats were treated with resveratrol (20 mg/kg/day) or vehicle for 3 months. Treatment effects in the tibia were examined by μ-computer tomography (μ-CT) analysis, bone histomorphometric measurements and reverse transcription-polymerase chain reaction (RT-PCR) gene expression analysis. Resveratrol treatment did not affect trabecular bone volume and bone remodeling indices in the youth animal model. Resveratrol supplementation in the early ageing rats tended to decrease trabecular bone volume, Sirt1 gene expression and increased expression of adipogenesis-related genes in bone, all of which were statistically insignificant. However, it decreased osteocalcin expression (p = 0.03). Furthermore, serum levels of bone resorption marker C-terminal telopeptides type I collagen (CTX-1) were significantly elevated in the resveratrol supplementation group (p = 0.02) with no changes observed in serum levels of bone formation marker alkaline phosphatase (ALP). These results in rat models suggest that resveratrol supplementation does not significantly affect bone volume

  3. Age-dependent differences in the thermoregulatory response of the immature rat to ethanol.

    PubMed

    Spiers, D E; Fusco, L E

    1991-02-01

    Major improvement in the homeothermic ability of the rat occurs during the first 2 weeks of postnatal development. Changes in thermoregulatory responsiveness to a single injection of ethanol (EtOH) may occur during this period. Immature rats (2-3, 8-9, and 14-15 days of age) were administered either saline or EtOH (2 or 4 g/kg BW; ip) at thermoneutral ambient temperatures (Ta). In one experiment, metabolic rate (MR) and body temperatures (colonic and skin) were recorded for 1-3 hr postinjection. A second experiment determined blood EtOH concentration in rats from the 3 age groups over an 8-hr period following injection of EtOH. 4 g EtOH/kg produced few significant reductions in thermoregulatory function of 2-3 day-old rats, but decreased MR by 16% and colonic temperature by 0.5-0.7 degrees C in 8-15 day-old animals. 2 g EtOH/kg had no effect on 8-9 day-old rats, but reduced MR and colonic temperature in rats aged 14-15 days. In every case, the hypothermic response to EtOH was correlated with a reduction in MR. Back and abdominal skin temperatures decreased with colonic temperature, and tail skin temperature indicated EtOH-induced vasoconstriction in older rats. Blood EtOH concentrations were similar in the three age groups during the first 2 hr postinjection and did not explain differences in metabolic response. The magnitude and duration of thermoregulatory responsiveness to EtOH increases with age in the immature rat. PMID:2024730

  4. Effects of age on recovery of body weight following REM sleep deprivation of rats.

    PubMed

    Koban, Michael; Stewart, Craig V

    2006-01-30

    Chronically enforced rapid eye (paradoxical) movement sleep deprivation (REM-SD) of rats leads to a host of pathologies, of which hyperphagia and loss of body weight are among the most readily observed. In recent years, the etiology of many REM-SD-associated pathologies have been elucidated, but one unexplored area is whether age affects outcomes. In this study, male Sprague-Dawley rats at 2, 6, and 12 months of age were REM sleep-deprived with the platform (flowerpot) method for 10-12 days. Two-month-old rats resided on 7-cm platforms, while 10-cm platforms were used for 6- and 12-month-old rats; rats on 15-cm platforms served as tank controls (TCs). Daily changes in food consumption (g/kg(0.67)) and body weight (g) during baseline, REM-SD or TCs, and post-experiment recovery in home cages were determined. Compared to TCs, REM-SD resulted in higher food intake and decreases in body weight. When returned to home cages, food intake rapidly declined to baseline levels. Of primary interest was that rates of body weight gain during recovery differed between the age groups. Two-month-old rats rapidly restored body weight to pre-REM-SD mass within 5 days; 6-month-old rats were extrapolated by linear regression to have taken about 10 days, and for 12-month-old rats, the estimate was about 35 days. The observation that restoration of body weight following its loss during REM-SD may be age-dependent is in general agreement with the literature on aging effects on how mammals respond to stress. PMID:16243367

  5. RNA–Stable-Isotope Probing Shows Utilization of Carbon from Inulin by Specific Bacterial Populations in the Rat Large Bowel

    PubMed Central

    Lawley, Blair; Munro, Karen; Sims, Ian M.; Lee, Julian; Butts, Christine A.; Roy, Nicole

    2014-01-01

    Knowledge of the trophisms that underpin bowel microbiota composition is required in order to understand its complex phylogeny and function. Stable-isotope (13C)-labeled inulin was added to the diet of rats on a single occasion in order to detect utilization of inulin-derived substrates by particular members of the cecal microbiota. Cecal digesta from Fibruline-inulin-fed rats was collected prior to (0 h) and at 6, 12, 18 and 24 h following provision of the [13C]inulin diet. RNA was extracted from these cecal specimens and fractionated in isopycnic buoyant density gradients in order to detect 13C-labeled nucleic acid originating in bacterial cells that had metabolized the labeled dietary constituent. RNA extracted from specimens collected after provision of the labeled diet was more dense than 0-h RNA. Sequencing of 16S rRNA genes amplified from cDNA obtained from these fractions showed that Bacteroides uniformis, Blautia glucerasea, Clostridium indolis, and Bifidobacterium animalis were the main users of the 13C-labeled substrate. Culture-based studies of strains of these bacterial species enabled trophisms associated with inulin and its hydrolysis products to be identified. B. uniformis utilized Fibruline-inulin for growth, whereas the other species used fructo-oligosaccharide and monosaccharides. Thus, RNA–stable-isotope probing (RNA-SIP) provided new information about the use of carbon from inulin in microbiota metabolism. PMID:24487527

  6. Age- and gender-related differences in the time course of behavioral and biochemical effects produced by oral chlorpyrifos in rats.

    PubMed

    Moser, V C; Padilla, S

    1998-03-01

    It is well known that young animals are generally more sensitive to lethal effects of cholinesterase-inhibiting pesticides, but there are sparse data comparing less-than-lethal effects. We compared the behavioral and biochemical toxicity of chlorpyrifos in young (postnatal Day 17; PND17) and adult (about 70 days old) rats. First, we established that the magnitude of the age-related differences decreased as the rat matures. Next, we evaluated the time course of a single oral dose of chlorpyrifos in adult and PND17 male and female rats. Behavioral changes were assessed using a functional observational battery (with age-appropriate modifications for pre-weanling rats) and an evaluation of motor activity. Cholinesterase (ChE) activity was measured in brain and peripheral tissues and muscarinic receptor binding assays were conducted on selected tissues. Rats received either vehicle (corn oil) or chlorpyrifos (adult dose: 80 mg/kg; PND17 dose: 15 mg/kg); these doses were equally effective in inhibiting ChE. The rats were tested, and tissues were then taken at 1, 2, 3.5, 6.5, 24, 72, 168, or 336 h after dosing. In adult rats, peak behavioral changes and ChE inhibition occurred in males at 3.5 h after dosing, while in females the onset of functional changes was sooner, the time course was more protracted and recovery was slower. In PND17 rats, maximal behavioral effects and ChE inhibition occurred at 6.5 h after dosing, and there were no gender-related differences. Behavioral changes showed partial to full recovery at 24 to 72 h, whereas ChE inhibition recovered markedly slower. Blood and brain ChE activity in young rats had nearly recovered by 1 week after dosing, whereas brain ChE in adults had not recovered at 2 weeks. Muscarinic-receptor binding assays revealed apparent down-regulation in some brain areas, mostly at 24 and 72 h. PND17 rats generally showed more receptor down-regulation than adults, whereas only adult female rats showed receptor changes in striatal

  7. Impaired recovery of brain muscarinic receptor sites following an adaptive down-regulation induced by repeated administration of diisopropyl fluorophosphate in aged rats

    SciTech Connect

    Pintor, A.; Fortuna, S.; De Angelis, S.; Michalek, H. )

    1990-01-01

    Potential age-related differences in the recovery rate of brain cholinesterase activity (ChE) and muscarinic acetylcholine receptor binding sites (mAChRs) following reduction induced by repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. Male 3- and 24-month old rats were s.c. injected with DFP on alternate days for 2 weeks and killed 48 hr and 7, 14, 21, 28 and 35 days after the last treatment. In the hippocampus and striatum, but not in the cerebral cortex, of control rats there as a significant age-related decline of ChE activity and maximal density of 3H-QNB binding sites (Bmax). The repeated administration of DFP during the first week caused a syndrome of cholinergic stimulation both in aged and young rats. The syndrome was more pronounced, in terms of intensity and duration in aged than in young animals resulting in 40 and 12% mortality, respectively; during the second week the syndrome attenuated in the two age-groups. The percentage inhibition of brain ChE at the end of DFP treatment did not differ between young and surviving aged rats. The down-regulation of mACRs was present in the three brain regions of both young and age rats (from 20 to 40%). Factorial analysis of variance showed significant differences for age, recovery rate, and significant interaction between age and recovery rate, both for ChE and mAChRs in young rats the three brain areas.

  8. Physiological levels of thrombospondin-1 decrease NO-dependent vasodilation in coronary microvessels from aged rats.

    PubMed

    Nevitt, Chris; McKenzie, Grant; Christian, Katelyn; Austin, Jeff; Hencke, Sarah; Hoying, James; LeBlanc, Amanda

    2016-06-01

    Aging and cardiovascular disease are associated with the loss of nitric oxide (NO) signaling and a decline in the ability to increase coronary blood flow reserve (CFR). Thrombospondin-1 (Thbs-1), through binding of CD47, has been shown to limit NO-dependent vasodilation in peripheral vascular beds via formation of superoxide (O2 (-)). The present study tests the hypothesis that, similar to the peripheral vasculature, blocking CD47 will improve NO-mediated vasoreactivity in coronary arterioles from aged individuals, resulting in improved CFR. Isolated coronary arterioles from young (4 mo) or old (24 mo) female Fischer 344 rats were challenged with the NO donor, DEA-NONO-ate (1 × 10(-7) to 1 × 10(-4) M), and vessel relaxation and O2 (-) production was measured before and after Thbs-1, αCD47, and/or Tempol and catalase exposure. In vivo CFR was determined in anesthetized rats (1-3% isoflurane-balance O2) via injected microspheres following control IgG or αCD47 treatment (45 min). Isolated coronary arterioles from young and old rats relax similarly to exogenous NO, but addition of 2.2 nM Thbs-1 inhibited NO-mediated vasodilation by 24% in old rats, whereas young vessels were unaffected. Thbs-1 increased O2 (-) production in coronary arterioles from rats of both ages, but this was exaggerated in old rats. The addition of CD47 blocking antibody completely restored NO-dependent vasodilation in isolated arterioles from aged rats and attenuated O2 (-) production. Furthermore, αCD47 treatment increased CFR from 9.6 ± 9.3 (IgG) to 84.0 ± 23% in the left ventricle in intact, aged animals. These findings suggest that the influence of Thbs-1 and CD47 on coronary perfusion increases with aging and may be therapeutically targeted to reverse coronary microvascular dysfunction. PMID:27199114

  9. Age-related light scattering in rat lenses observed in a 2-year inhalation toxicity study.

    PubMed

    Wegener, A; Kaegler, M; Stinn, W

    2002-01-01

    Normal light scattering in the eye is determined primarily by the size of alpha-crystalline molecules. Ageing effects appear as an increase in normal lens light scattering in distinct layers. Subliminal effects of toxins on lens transparency can also cause an increase in light scattering due to protein molecule aggregation before visible opacities appear. Scheimpflug photography of the anterior eye segment with subsequent densitometric image analysis is the method of choice to evaluate such effects. To gain more insight into normal ageing and the potential effects of complex aerosols, a subset of Wistar rats (both sexes) belonging to a larger chronic inhalation toxicity study was documented at baseline and after 2 years with a Topcon SL-45 Scheimpflug camera on Kodak T(max) 400 ISO film. The recording procedure, film development, and microdensitometric image analysis were all performed according to standard protocol. A second group from the same study was documented at the start and after 5 months of a 6-month posttreatment period immediately following the inhalation period. Rats were nose-only exposed for 6 h/day, 7 days/week, for 2 years to low (3 microg/l) or high (10 microg/l) concentrations of room-aged cigarette sidestream smoke or diesel engine exhaust. Control animals were exposed to filtered fresh air. At the baseline examination, there were no relevant differences between groups with respect to corneal density or density of defined layers in the lens capsule (1), epithelium and superficial cortex (2), deep cortex (3), supranuclear layer (4) and nucleus (5). At the 2-year examination, mean corneal density was significantly lower in females than in males. This same trend, although not significant, was also found in most layers of the lens. The most prominent differences in density over time were measured in lens layers 3 and 4, but neither corneal density nor lenticular density showed any consistent treatment-related effects in any of the layers. The data

  10. Effect of high fat diet on metabolic indices, cognition and neuronal physiology in aging F344 rats

    PubMed Central

    Pancani, Tristano; Anderson, Katie L.; Brewer, Lawrence D.; Kadish, Inga; DeMoll, Chris; Landfield, Philip W.; Blalock, Eric M.; Porter, Nada M.; Thibault, Olivier

    2013-01-01

    The prevalence of obesity and type 2 diabetes increases with age. Despite this, few studies have examined these conditions simultaneously in aged animals, and fewer studies have measured the impact of these conditions on brain function. Using an established animal model of brain aging (F344 rats), we investigated whether high fat diet (HFD) exacerbates cognitive decline and the hippocampal calcium-dependent afterhyperpolarization (a marker of age-dependent calcium dysregulation). Young and mid-aged animals were maintained on control or HFD for 4.5 months and peripheral metabolic variables, cognitive function, and electrophysiological responses to insulin in the hippocampus were measured. HFD increased lipid accumulation in the periphery, though overt diabetes did not develop, nor was spatial learning and memory altered. Hippocampal adiponectin levels were reduced in aging animals but unaffected by HFD. For the first time, however, we show that the AHP is sensitive to insulin, and that this sensitivity is reduced by HFD. Interestingly, although peripheral glucose regulation was relatively insensitive to HFD, the brain appeared to show greater sensitivity to HFD in F344 rats. PMID:23545425

  11. Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin.

    PubMed

    Camerino, Giulia Maria; De Bellis, Michela; Conte, Elena; Liantonio, Antonella; Musaraj, Kejla; Cannone, Maria; Fonzino, Adriano; Giustino, Arcangela; De Luca, Annamaria; Romano, Rossella; Camerino, Claudia; Laghezza, Antonio; Loiodice, Fulvio; Desaphy, Jean-Francois; Conte Camerino, Diana; Pierno, Sabata

    2016-09-01

    Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly. PMID:27377005

  12. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Farkhondeh, Tahereh

    2016-08-01

    This study evaluated whether crocin, a bioactive component of saffron, has a protective effect on kidney through reducing the oxidative stress and inflammatory response in aged rats. In this study the changes in activities of antioxidant enzymes, lipid peroxidation, glutathione (GSH) levels and the expression of pro-inflammatory cytokines in the serum and renal tissue were evaluated by ELISA and RT-PCR, respectively. The middle and aged rats were given intraperitoneal injections of crocin (10, 20, 30 mg/kg/day) for 4 weeks. After 4 weeks, animals were anesthetized with diethyl ether. The kidney samples were taken for biochemical analysis. The results revealed the aging was associated with a significant decrease in the activities of antioxidant enzymes, and GSH content with increase in lipid peroxidation level in kidney of the aged rats (p < 0.001). The increased levels of serum renal functional parameter, oxidative parameters (p < 0.01) and also pro-inflammatory cytokine levels were significantly reduced by crocin administration (p < 0.05). The aged rats exhibited a dysregulation of the oxidative stress, and inflammation in the kidneys, but crocin treatment significantly reduced the expression of the inflammatory genes. These results provide pivotal documentation that crocin has a renoprotective effects against the development of oxidative stress and inflammation in the kidney of old rats. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27279282

  13. Spatial Reference Memory in Normal Aging Fischer 344 × Brown Norway F1 Hybrid Rats

    PubMed Central

    McQuail, Joseph A.; Nicolle, Michelle M.

    2014-01-01

    Fischer 344 × Brown Norway F1 (F344×BN-F1) hybrid rats express greater longevity with improved health relative to aging rodents of other strains; however, few behavioral reports have thoroughly evaluated cognition across the F344×BN-F1 lifespan. Consequently, this study evaluated spatial reference memory in F344×BN-F1 rats at 6, 18, 24 or 28 months (mo) of age in the Morris water maze. Reference memory decrements were observed between 6 mo and 18 mo and between 18 mo and 24 mo. At 28 mo, spatial learning was not worse than 24 mo, but swim speed was significantly slower. Reliable individual differences revealed that ~50% of 24-28 mo performed similarly to 6 mo while others were spatial learning-impaired. Aged rats were impaired at learning within daily training sessions, but not impaired at retaining information between days of training. Aged rats were also slower to learn to escape onto the platform, regardless of strategy. In summary, these data clarify the trajectory of cognitive decline in aging F344×BN-F1 rats and elucidate relevant behavioral parameters. PMID:25086838

  14. Testis structure and function in a nongenetic hyperadipose rat model at prepubertal and adult ages.

    PubMed

    França, L R; Suescun, M O; Miranda, J R; Giovambattista, A; Perello, M; Spinedi, E; Calandra, R S

    2006-03-01

    There are few data for hormonal levels and testis structure and function during postnatal development in rats neonatally treated with monosodium L-glutamate (MSG). In our study, newborn male pups were ip injected with MSG (4 mg/g body weight) every 2 d up to 10 d of age and investigated at prepubertal and adult ages. Plasma levels of leptin, LH, FSH, prolactin, testosterone (T), corticosterone, and free T4 (FT4) were measured. MSG rats displayed elevated circulating levels of corticosterone and hyperadiposity/hyperleptinemia, regardless of the age examined; conversely, circulating prolactin levels were not affected. Moreover, prepubertal MSG rats revealed a significant (P < 0.05) reduction in testis weight and the number of Sertoli (SC) and Leydig cells per testis. Leptin plasma levels were severalfold higher (2.41 vs. 8.07; P < 0.05) in prepubertal MSG rats, and these animals displayed plasma LH, FSH, T, and FT4 levels significantly decreased (P < 0.05). Taken together, these data indicate that testis development, as well as SC and Leydig cell proliferation, were disturbed in prepubertal MSG rats. Adult MSG rats also displayed significantly higher leptin plasma levels (7.26 vs. 27.04; P < 0.05) and lower (P < 0.05) LH and FSH plasma levels. However, T and FT4 plasma levels were normal, and no apparent alterations were observed in testis structure of MSG rats. Only the number of SCs per testis was significantly (P < 0.05) reduced in the adult MSG rats. In conclusion, although early installed hyperadipose/hyperleptinemia phenotype was probably responsible for the reproductive axis damages in MSG animals, it remains to be investigated whether this condition is the main factor for hypothalamus-pituitary-gonadal axis dysfunction in MSG rats. PMID:16339210

  15. Rats with minimal hepatic encephalopathy show reduced cGMP-dependent protein kinase activity in hypothalamus correlating with circadian rhythms alterations.

    PubMed

    Felipo, Vicente; Piedrafita, Blanca; Barios, Juan A; Agustí, Ana; Ahabrach, Hanan; Romero-Vives, María; Barrio, Luis C; Rey, Beatriz; Gaztelu, Jose M; Llansola, Marta

    2015-01-01

    Patients with liver cirrhosis show disturbances in sleep and in its circadian rhythms which are an early sign of minimal hepatic encephalopathy (MHE). The mechanisms of these disturbances are poorly understood. Rats with porta-caval shunt (PCS), a model of MHE, show sleep disturbances reproducing those of cirrhotic patients. The aims of this work were to characterize the alterations in circadian rhythms in PCS rats and analyze the underlying mechanisms. To reach these aims, we analyzed in control and PCS rats: (a) daily rhythms of spontaneous and rewarding activity and of temperature, (b) timing of the onset of activity following turning-off the light, (c) synchronization to light after a phase advance and (d) the molecular mechanisms contributing to these alterations in circadian rhythms. PCS rats show altered circadian rhythms of spontaneous and rewarding activities (wheel running). PCS rats show more rest bouts during the active phase, more errors in the onset of motor activity and need less time to re-synchronize after a phase advance than control rats. Circadian rhythm of body temperature is also slightly altered in PCS rats. The internal period length (tau) of circadian rhythm of motor activity is longer in PCS rats. We analyzed some mechanisms by which hypothalamus modulate circadian rhythms. PCS rats show increased content of cGMP in hypothalamus while the activity of cGMP-dependent protein kinase was reduced by 41% compared to control rats. Altered cGMP-PKG pathway in hypothalamus would contribute to altered circadian rhythms and synchronization to light. PMID:26203935

  16. Reduced cortical vasodilatory response to stimulation of the nucleus basalis of Meynert in the aged rat and evidence for a control of the cerebral circulation.

    PubMed

    Lacombe, P; Sercombe, R; Vaucher, E; Seylaz, J

    1997-09-26

    In earlier studies we showed that electrical stimulation of the rat nucleus basalis of Meynert (NBM) induces large increases in cerebral blood flow, mainly through cholinergic mechanisms. We then investigated the effect of aging on this influence by measuring cortical blood flow (CoBF) and tissue gas partial pressures (PtO2, PtCO2) in the conscious young adult and aged rat. NBM stimulation increased frontal (+101%) and parietal (+29%) CoBF in young rats. The effects were halved in aged rats. Moreover, PtO2 was significantly increased in young but not in aged rats. By contrast, the corticovascular reactivity to hypercapnia did not differ between young and aged rats, nor did the potentiating vasodilator effect of physostigmine. In combined autoradiographic measurements of cerebral blood flow and cerebral glucose utilization, we recently found that the cortical circulatory response to NBM stimulation was not accompanied by significant metabolic change. Thus, the blood flow changes observed in the cortex cannot be ascribed to increased metabolic activity. The distribution of this uncoupling coincides with that of cholinergic NBM projections directly impinging on cortical microvessels. These data support the cortical microcirculation and suggest the possible involvement of NBM dysfunction in the pathology of cortical microcirculation. PMID:9329714

  17. Saponins from Aralia taibaiensis attenuate D-galactose-induced aging in rats by activating FOXO3a and Nrf2 pathways.

    PubMed

    Li, Ying-Na; Guo, Yu; Xi, Miao-Miao; Yang, Pei; Zhou, Xue-Ying; Yin, Shuang; Hai, Chun-Xu; Li, Jin-Gang; Qin, Xu-Jun

    2014-01-01

    Reactive oxygen species (ROS) are closely related to the aging process. In our previous studies, we found that the saponins from Aralia taibaiensis have potent antioxidant activity, suggesting the potential protective activity on the aging. However, the protective effect of the saponins and the possible underlying molecular mechanism remain unknown. In the present study, we employed a D-galactose-induced aging rat model to investigate the protective effect of the saponins. We found that D-galactose treatment induced obvious aging-related changes such as the decreased thymus and spleen coefficients, the increased advanced glycation end products (AGEs) level, senescence-associated β-galactosidase (SAβ-gal) activity, and malondialdehyde (MDA) level. Further results showed that Forkhead box O3a (FOXO3a), nuclear factor-erythroid 2-related factor 2 (Nrf2), and their targeted antioxidants such as superoxide dismutase 2 (SOD2), catalase (CAT), glutathione reductase (GR), glutathione (GSH), glutamate-cysteine ligase (GCL), and heme oxygenase 1 (HO-1) were all inhibited in the aging rats induced by D-galactose treatment. Saponins supplementation showed effective protection on these changes. These results demonstrate that saponins from Aralia taibaiensis attenuate the D-galactose-induced rat aging. By activating FOXO3a and Nrf2 pathways, saponins increase their downstream multiple antioxidants expression and function, at least in part contributing to the protection on the D-galactose-induced aging in rats. PMID:24669284

  18. Region-specific changes in presynaptic agmatine and glutamate levels in the aged rat brain.

    PubMed

    Jing, Y; Liu, P; Leitch, B

    2016-01-15

    During the normal aging process, the brain undergoes a range of biochemical and structural alterations, which may contribute to deterioration of sensory and cognitive functions. Age-related deficits are associated with altered efficacy of synaptic neurotransmission. Emerging evidence indicates that levels of agmatine, a putative neurotransmitter in the mammalian brain, are altered in a region-specific manner during the aging process. The gross tissue content of agmatine in the prefrontal cortex (PFC) of aged rat brains is decreased whereas levels in the temporal cortex (TE) are increased. However, it is not known whether these changes in gross tissue levels are also mirrored by changes in agmatine levels at synapses and thus could potentially contribute to altered synaptic function with age. In the present study, agmatine levels in presynaptic terminals in the PFC and TE regions (300 terminals/region) of young (3month; n=3) and aged (24month; n=3) brains of male Sprague-Dawley rats were compared using quantitative post-embedding immunogold electron-microscopy. Presynaptic levels of agmatine were significantly increased in the TE region (60%; p<0.001) of aged rats compared to young rats, however no significant differences were detected in synaptic levels in the PFC region. Double immunogold labeling indicated that agmatine and glutamate were co-localized in the same synaptic terminals, and quantitative analyses revealed significantly reduced glutamate levels in agmatine-immunopositive synaptic terminals in both regions in aged rats compared to young animals. This study, for the first time, demonstrates differential effects of aging on agmatine and glutamate in the presynaptic terminals of PFC and TE. Future research is required to understand the functional significance of these changes and the underlying mechanisms. PMID:26548412

  19. Elevated plus-maze performance of Fischer-344 rats as a function of age and of exposure to 56Fe particles

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty L.; Carey, Amanda N.; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    The aging process is characterized by a series of changes in neurochemical functioning and in motor and cognitive performance. In addition to changes in cognitive/behavioral performance, aged rats also show an increase in baseline anxiety measured using the elevated plus-maze. Exposure to 56Fe particles, a component of cosmic rays, produces neurochemical and behavioral changes in young animals which are characteristic of aged organisms. The present study was designed to determine the relationships between aging and exposure to 56Fe particles on anxiety. Fischer-344 (F-344), which were 2, 7, 12, and 16 months of age at the time of irradiation, were exposed to 56Fe particles (50 200 cGy). Concordant with previous results, the oldest rats spent less time exploring the open arms of the maze. Exposure to 56Fe particles also produced decreased exploration of the open arms of the plus-maze. The dose needed to produce increased levels of anxiety was a function of age at the time of irradiation. The dose of 56Fe particles needed to produce a decrease in open arm exploration was significantly lower in the rats that were irradiated at 7 and 12 months of age than in the rats irradiated at 2 months of age. These results suggest the possibility that exposing middle-aged astronauts to cosmic rays during exploratory class missions outside the magnetosphere, and the resultant effects on exploration-induced anxiety, may affect their ability to successfully complete mission requirements.

  20. β-Adrenergic Responsive Induction of Insulin Resistance in Liver of Aging Rats.

    PubMed

    Muscogiuri, Giovanna; Kamat, Amrita; Balas, Bogdan; Giaccari, Andrea; Defronzo, Ralph A; Musi, Nicolas; Katz, Michael S

    2011-01-01

    INTRODUCTION. We previously demonstrated increases in β-adrenergic receptor (β-AR) density in rat liver, in association with increased β-AR-mediated stimulation of glucose output in rat hepatocytes, during senescent aging. We therefore hypothesized that pharmacologic β-adrenergic stimulation might induce insulin resistance and glucose output in liver of aging rats in vivo. METHODS. In this study, pancreatic clamps were performed on young adult (4-month-old) and senescent (24-month-old) Fischer 344 male rats by infusing somatostatin (3 μg/kg/min) at time 0 to inhibit insulin secretion, and then infusing insulin (1 mU/kg/min) to replace basal insulin concentrations. At time 0 rats also received either the β-AR agonist isoproterenol (100 ng/kg/min) or saline (control). After 120 min the insulin infusion rate was increased to 4 mU/kg/min for an additional 120 min. Tritiated glucose was infused throughout the study to measure glucose turnover rates. RESULTS AND CONCLUSION. The results of the pancreatic clamp studies demonstrated that under saline control conditions hepatic glucose production (HGP) was suppressed during hyperinsulinemia in both young and old rats, with a trend toward reduced insulin sensitivity in the older animals. Isoproterenol infusion impaired insulin-induced suppression of HGP in both age groups. The results suggest that β-AR stimulation by isoproterenol increases HGP and acutely induces hepatic insulin resistance in both young and old rats. A similar role for β-adrenergic-mediated hepatic insulin resistance in aging humans would suggest a novel therapeutic target for the treatment or prevention of glucose dysregulation and diabetes developing with advancing age. PMID:21438725

  1. Spontaneous malignant craniopharyngioma in an aged Wistar rat

    PubMed Central

    Heinrichs, Martin; Ernst, Heinrich

    2016-01-01

    Craniopharyngiomas are extremely rare epithelial tumors of the sellar region in human beings and domestic and laboratory animals. A craniopharyngioma, 0.6 cm in diameter, was observed grossly in the sellar and parasellar regions of an untreated 23-month-old male Wistar-derived rat sacrificed moribund. The tumor was composed of cords, columns, and nests of neoplastic stratified squamous epithelium with marked hyperkeratosis and parakeratosis. Neoplastic cells formed solid or cystic areas, infiltrating the base of the skull, brain, and pituitary gland. Immunocytochemical evaluation revealed a strong cytoplasmic reaction for pan-cytokeratin in all tumor cells. Malignant craniopharyngioma should be considered a differential diagnosis in the rat when a tumor with stratified squamous epithelial features and a locally aggressive growth pattern is observed in the sellar or suprasellar region. PMID:27559246

  2. Spontaneous malignant craniopharyngioma in an aged Wistar rat.

    PubMed

    Heinrichs, Martin; Ernst, Heinrich

    2016-07-01

    Craniopharyngiomas are extremely rare epithelial tumors of the sellar region in human beings and domestic and laboratory animals. A craniopharyngioma, 0.6 cm in diameter, was observed grossly in the sellar and parasellar regions of an untreated 23-month-old male Wistar-derived rat sacrificed moribund. The tumor was composed of cords, columns, and nests of neoplastic stratified squamous epithelium with marked hyperkeratosis and parakeratosis. Neoplastic cells formed solid or cystic areas, infiltrating the base of the skull, brain, and pituitary gland. Immunocytochemical evaluation revealed a strong cytoplasmic reaction for pan-cytokeratin in all tumor cells. Malignant craniopharyngioma should be considered a differential diagnosis in the rat when a tumor with stratified squamous epithelial features and a locally aggressive growth pattern is observed in the sellar or suprasellar region. PMID:27559246

  3. Efficacy of dietary aloe vera supplementation on hepatic cholesterol and oxidative status in aged rats.

    PubMed

    Lim, Beong Ou; Seong, Nak Sul; Choue, Ryo Won; Kim, Jong Dai; Lee, Hyeon Yong; Kim, Sun Yeou; Yu, Byung Pal; Jeon, Tae Il; Park, Dong Ki

    2003-08-01

    In the current study, we show the anti-oxidative and hypocholesterol effects of aloe vera in the liver. Male specific pathogen-free (SPF) Fischer 344 rats were randomly assigned to one of four groups: Group A (control) was fed test chow without aloe supplementation; Group B was fed a diet containing a 1% (per weight basis) freeze-dried aloe filet; Group C was fed a diet containing a 1% (per weight basis) charcoal-processed, freeze-dried aloe filet; and Group D was fed a diet containing a charcoal-processed freeze-dried, whole leaf aloe (0.02% per weight basis) in the drinking water. Our results show that a life-long intake of aloe had superior anti-oxidative action against lipid peroxidation in vivo, as indicated by reduced levels of hepatic phosphatidylcholine hydroperoxide. Additional anti-oxidative action was evidenced by enhanced superoxide dismutase (SOD) and catalase activity in groups B and C. Furthermore, our study revealed that hepatic cholesterol significantly increased in the control group during aging in contrast to the aloe-supplemented groups, which showed approximately 30% lower cholesterol levels, thereby an effective hypocholesteremic efficacy. In this report, we suggest that life-long dietary aloe supplementation suppresses free radical-induced oxidative damage and age-related increases in hepatic cholesterol. PMID:14598919

  4. The synthesis of glycosaminoglycans in aging rat liver. A brief note.

    PubMed

    Gressner, A M; Schulz, W; Greiling, H

    1979-07-01

    The synthesis of glycosaminoglycans (GAG) was studied in liver slices from postnatal (9 days), young (140 days), adult (490 days) and senescent (940 days) rats. It was found that the rate of synthesis was highest in postnatal rat liver and decreased to about half in young rats with no further reduction in adult and senescent age groups. The specific radioactivity of the precursors of GAG synthesis did not change with age. The synthesis pattern of specific types of GAG in postnatal liver was characterized by a significant higher percentage of chondroitin sulfate and hyaluronic acid. In the following age classes the profile of specific GAG synthesis did not change significantly (heparin sulfate: chondroitin sulfate" hyaluronic acid: "keratin sulfate" = 84%:8.3%:1.5%:1.6%). PMID:470468

  5. Novel AAV-Based Rat Model of Forebrain Synucleinopathy Shows Extensive Pathologies and Progressive Loss of Cholinergic Interneurons

    PubMed Central

    Aldrin-Kirk, Patrick; Davidsson, Marcus; Holmqvist, Staffan; Li, Jia-Yi; Björklund, Tomas

    2014-01-01

    Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB) are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV) vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable to

  6. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2014-01-01

    The dopaminergic neurons of the substantia nigra (SN), which constitute the origin of the nigrostriatal system, are vulnerable to age-related degenerative processes. For example, in humans there is a relatively small age-related loss of neurons but a marked decline of the dopaminergic phenotype associated with impaired voluntary motor control. However, the mechanisms responsible for the dysfunction and degeneration of SN dopamine neurons remain poorly understood. One potential contributor is mitochondrial dysfunction, resulting from an increased abundance of mitochondrial DNA (mtDNA) mutations such as deletions. Human studies have identified relatively high levels of mtDNA deletions in these cells in both aging and Parkinson's disease (>35%), with a higher abundance of deletions (>60%) in individual neurons with mitochondrial dysfunction. However, it is unknown whether similar mtDNA mutations occur in other species such as the rat. In the present study, we quantified mtDNA deletion abundance in laser microdissected SN dopaminergic neurons from young and old F344 rats. Our results indicate that mtDNA deletions accumulated with age, with approximately 20% more mtDNA deletions in SN dopaminergic neurons from old compared to young animals. Thus, while rat SN dopaminergic neurons do accumulate mtDNA deletions with aging, this does not reflect the deletion burden in humans, and other mechanisms may be operating to compensate for age-related mtDNA damage in the rat SN dopaminergic neurons. PMID:25612740

  7. Effects of hydrogen-rich water on aging periodontal tissues in rats.

    PubMed

    Tomofuji, Takaaki; Kawabata, Yuya; Kasuyama, Kenta; Endo, Yasumasa; Yoneda, Toshiki; Yamane, Mayu; Azuma, Tetsuji; Ekuni, Daisuke; Morita, Manabu

    2014-01-01

    Oxidative damage is involved in age-related inflammatory reactions. The anti-oxidative effects of hydrogen-rich water suppress oxidative damage, which may aid in inhibiting age-related inflammatory reactions. We investigated the effects of drinking hydrogen-rich water on aging periodontal tissues in healthy rats. Four-month-old male Fischer 344 rats (n = 12) were divided into two groups: the experimental group (hydrogen-rich water treatment) and the control group (distilled water treatment). The rats consumed hydrogen-rich water or distilled water until 16 months of age. The experimental group exhibited lower periodontal oxidative damage at 16 months of age than the control group. Although protein expression of interleukin-1β did not differ, gene expression of Nod-like receptor protein 3 inflammasomes was activated in periodontal tissues from the experimental group as compared with the control group. Drinking hydrogen-rich water is proposed to have anti-aging effects on periodontal oxidative damage, but not on inflammatory reactions in healthy rats. PMID:24985521

  8. Lifespan Changes in the Countermanding Performance of Young and Middle Aged Adult Rats.

    PubMed

    Beuk, Jonathan; Beninger, Richard J; Paré, Martin

    2016-01-01

    Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time (RT), stop signal response time (SSRT) and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16) were trained to respond to a visual stimulus (go signal) by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal) that was presented occasionally (25% of trials) at a variable delay. Subjects were tested in 1 h sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial RT, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent SSRT and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations. PMID:27555818

  9. Lifespan Changes in the Countermanding Performance of Young and Middle Aged Adult Rats

    PubMed Central

    Beuk, Jonathan; Beninger, Richard J.; Paré, Martin

    2016-01-01

    Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time (RT), stop signal response time (SSRT) and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16) were trained to respond to a visual stimulus (go signal) by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal) that was presented occasionally (25% of trials) at a variable delay. Subjects were tested in 1 h sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial RT, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent SSRT and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations. PMID:27555818

  10. Increased prolyl 4-hydroxylase expression and differential regulation of hypoxia-inducible factors in the aged rat brain

    PubMed Central

    Ndubuizu, Obinna I.; Chavez, Juan C.; LaManna, Joseph C.

    2009-01-01

    Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors that mediate the adaptive response of mammalian cells and tissues to changes in tissue oxygenation. In the present study, we show an age-dependent decline in cortical HIF-1α accumulation and activation of HIF target genes in response to hypoxia. This inducible response is significantly attenuated in the cerebral cortex of 18-mo-old Fischer 344 rat yet virtually absent in the cerebral cortex of 24-mo-old Fischer 344 rat. This attenuated HIF-1α response had no effect on mRNA upregulation of HIF-independent genes in the aged cortex. We have provided evidence that this absent HIF-1α response is directly correlated with an increase in the expression of the HIF regulatory enzyme, prolyl 4-hydroxylase (PHD). In addition, our study shows that cortical HIF-2α expression in senescent normoxic controls is also significantly greater than that of younger normoxic controls, despite no difference in HIF-2α mRNA levels. The posttranslational regulation of HIF-2α under normoxic conditions seems to be attenuated in the aged rat brain, which is an in vivo demonstration of differential regulation of HIF-1α and HIF-2α. PMID:19420289

  11. Alterations in immune function in rats caused by dietary lipotrope deficiency: effect of age.

    PubMed

    Nauss, K M; Connor, A M; Kavanaugh, A; Newberne, P M

    1982-12-01

    Weanling male Sprague-Dawley rats were maintained on a control (C), folacin-deficient (F) or marginal methionine-choline diet (M/C) for 3 weeks, 3 months or 12 months. The immunocompetence of the animals was determined by in vivo (response to infection with salmonella typhimurium) and in vitro (lymphocyte transformation assay) methods. It was found that young animals were most sensitive to dietary lipotrope deficiency, and the in vivo response to bacterial infection did not always correlate with in vitro assessment of immune function. Histopathologic examination of spleens from S. typhimurium-infected rats maintained for 3 weeks on the experimental diets showed an overall decreased cellularity especially in the follicular areas, compared to controls. No differences were seen in the spleens of infected animals at later time points. A short-term (3-week) lipotrope deficiency resulted in a depressed lymphocyte transformation response to concanavalin A (Con A) in the spleen, thymus and lymph nodes; to phytohemagglutinin A (PHA) in the spleen and lymph nodes only. After 3 months on the F or M/C diets, a depressed Con A-induced transformation response was still seen in the spleen, but the normal aging-induced immunosuppression resulted in a low response in all animals, with few significant differences existing among groups. PMID:6754890

  12. Age related changes in the lipoprotein substrates for the esterification of plasma cholesterol in rats.

    PubMed

    Lee, S M; Kudchodkar, B J; Lacko, A G

    1991-11-15

    The activity of the enzyme lecithin:cholesterol acyltransferase (LCAT) and the properties of its lipoprotein substrates have been investigated in 6- and 19-month-old Fischer-344 rats. These studies were carried out to determine the nature of the relationship between the observed hypercholesterolemia and the age-related decrease in the fractional rate of lipoprotein cholesterol esterification. The distribution of LCAT activity of plasma fractions was determined following gel chromatography and ultracentrifugation respectively. LCAT activity was found to be associated with the high density lipoprotein (HDL) fraction when rat plasma was passed through a Bio-Gel A-5 M column. Upon density gradient ultracentrifugation for 24 h it was found associated with HDL fraction; d = 1.125-1.21 g/ml. However, following prolonged ultracentrifugation (40 h), the majority of the LCAT activity was displaced into the lipoprotein-free infranatant (d greater than 1.225 g/ml). The dissociation of LCAT from its complex with HDL occurred to a smaller extent in aged rat plasma than in young rat plasma. Substrate specificity studies indicated that HDL was a considerably better substrate for LCAT than very low density lipoproteins (VLDL) in both young and aged rats. In addition, HDL from young rats was a better substrate for LCAT than the HDL from aged rats. Incubation experiments followed by the isolation of lipoproteins and the subsequent analyses of their cholesterol contents revealed that the age-related hypercholesterolemia was mainly due to an increase in the cholesterol carried by lipoprotein fractions d = 1.025 -1.07 g/ml (LDL + HDL1). These and other low density lipoproteins (d less than 1.025 g/ml) were poor substrates for LCAT. However, these lipoproteins could provide free cholesterol for esterification by first transferring it to HDL (d = 1.07-1.21). The HDL isolated from the plasma of aged rats was enriched with apolipoprotein (apo) E and these lipoprotein particles were found to

  13. Common prefrontal cortical gene expression profiles between adolescent SHR/NCrl and WKY/NCrl rats which showed inattention behavior.

    PubMed

    dela Peña, Ike; Bang, Minji; Lee, Jinhee; de la Peña, June Bryan; Kim, Bung-Nyun; Han, Doug Hyun; Noh, Minsoo; Shin, Chan Young; Cheong, Jae Hoon

    2015-09-15

    Factor analyses of attention-deficit/hyperactivity (ADHD) symptoms divide the behavioral symptoms of ADHD into two separate domains, one reflecting inattention and the other, a combination of hyperactivity and impulsivity. Identifying domain-specific genetic risk variants may aid in the discovery of specific biological risk factors for ADHD. In contrast with data available on genes involved in hyperactivity and impulsivity, there is limited information on the genetic influences of inattention. Transcriptional profiling analysis in animal models of disorders may provide an important tool to identify genetic involvement in behavioral phenotypes. To explore some of the potential genetic underpinnings of ADHD inattention, we examined common differentially expressed genes (DEGs) in the prefrontal cortex of SHR/NCrl, the most validated animal model of ADHD and WKY/NCrl, animal model of ADHD-inattentive type. In contrast with Wistar rats, strain representing the "normal" heterogeneous population, SHR/NCrl and WKY/NCrl showed inattention behavior in the Y-maze task. The common DEGs in the PFC of SHR/NCrl and WKY/NCrl vs. Wistar rats are those involved in transcription (e.g. Creg1, Thrsp, Zeb2), synaptic transmission (e.g. Atp2b2, Syt12, Chrna5), neurological system process (e.g. Atg7, Cacnb4, Grin3a), and immune response (e.g. Atg7, Ip6k2, Mx2). qRT-PCR analyses validated expression patterns of genes representing the major functional gene families among the DEGs (Grin3a, Thrsp, Vof-16 and Zeb2). Although further studies are warranted, the present findings indicate novel genes associated with known functional pathways of relevance to ADHD which are assumed to play important roles in the etiology of ADHD-inattentive subtype. PMID:26048425

  14. Dopamine receptor dysregulation in hippocampus of aged rats underlies chronic pulsatile L-Dopa treatment induced cognitive and emotional alterations.

    PubMed

    Hernández, Vito S; Luquín, Sonia; Jáuregui-Huerta, Fernando; Corona-Morales, Aleph A; Medina, Mauricio P; Ruíz-Velasco, Silvia; Zhang, Limei

    2014-07-01

    L-Dopa is the major symptomatic therapy for Parkinson's disease, which commonly occurs in elderly patients. However, the effects of chronic use on mood and cognition in old subjects remain elusive. In order to compare the effects of a chronic pulsatile L-Dopa treatment on emotional and cognitive functions in young (3 months) and old (18 months) intact rats, an L-Dopa/carbidopa treatment was administered every 12 h over 4 weeks. Rats were assessed for behavioural despair (repeated forced swimming test, RFST), anhedonia (sucrose preference test, SPT) and spatial learning (Morris water maze, MWM) in the late phase of treatment (T). Neuronal expression of Fos in the hippocampus at the early and late phases of T, as well as after MWM was studied. The density and ratio of dopamine D5r, D3r and D2r receptors were also evaluated in the hippocampus using immunohistochemistry and confocal microscopy. Young rats showed similar patterns during behavioural tests, whereas aged treated rats showed increased immobility counts in RFST, diminished sucrose liquid intake in SPT, and spatial learning impairment during MWM. Fos expression was significantly blunted in the aged treated group after MWM. The density of D5r, D3r and D2r was increased in both aged groups. The treatment reduced the ratio of D5r/D3r and D5r/D2r in both groups. Moreover, aged treated subjects had significant lower values of D5r/D3r and higher values of D5r/D2r when compared with young treated subjects. These results indicate that chronic L-Dopa treatment in itself could trigger emotional and cognitive dysfunctions in elderly subjects through dopamine receptor dysregulation. PMID:24291463

  15. Mice lacking the Parkinson's related GPR37/PAEL receptor show non-motor behavioral phenotypes: age and gender effect.

    PubMed

    Mandillo, S; Golini, E; Marazziti, D; Di Pietro, C; Matteoni, R; Tocchini-Valentini, G P

    2013-06-01

    Non-motor symptoms in Parkinson's disease (PD) have been often described at different stages of the disease but they are poorly understood. We observed specific phenotypes related to these symptoms in mice lacking the PD-associated GPR37/PAEL receptor. GPR37 is an orphan G-protein-coupled receptor highly expressed in the mammalian central nervous system. It is a substrate of parkin and it is involved in the pathogenesis of PD. GPR37 interacts with the dopamine transporter (DAT), modulating nigro-striatal dopaminergic signaling and behavioral responses to amphetamine and cocaine. GPR37 knockout (KO) mice are resistant to MPTP and exhibit several motor behavioral abnormalities related to altered dopaminergic system function. To evaluate non-motor behavioral domains, adult and aged, male and female GPR37 KO mice and their wild-type (WT) littermates were analyzed in a series of cross-sectional studies. Aged GPR37 KO female mice showed mild improvements in olfactory function, while anxiety and depression-like behaviors appeared to be significantly increased. A reduction of the startle response to acoustic stimuli was observed only in adult GPR37 KO mice of both genders. Furthermore, HPLC analysis of major neurotransmitter levels revealed gender differences in the striatum, hippocampus and olfactory bulb of mutant mice. The absence of GPR37 receptor could have a neuroprotective effect in an age and gender-dependent manner, and the study of this receptor could be valuable in the search for novel therapeutic targets. PMID:23574697

  16. The metabolic response to postnatal leptin in rats varies with age and may be litter dependent.

    PubMed

    Granado, M; Diaz, F; Fuente-Martín, E; García-Cáceres, C; Argente, J; Chowen, J A

    2014-06-01

    Hyperleptinemia during postnatal life induces long-term effects on metabolism. However, these effects are controversial as both increased and decreased propensity towards obesity has been reported. To further analyze the effects of chronic neonatal hyperleptinemia on the subsequent metabolic profile, male Wistar rats proceeding from 18 different litters (8 pups/litter) received a daily subcutaneous injection of either saline (10 ml/kg, n=36) or leptin (3 μg/g, n=36) from postnatal day (PND) 2 to PND9. Rats were sacrificed at 10, 40, or 150 days of age. At 10 days of age, leptin treated rats had decreased body weight (p<0.001) and body fat (p<0.05). Leptin levels and glycemia were increased (p<0.01), whereas insulin, total lipids, triglycerides and glycerol levels were decreased (p<0.05). At PND40 rats receiving leptin had increased glycemia (p<0.01) and plasma HDL and LDL levels, but decreased total lipids (p<0.05). At PND150 neonatal leptin treatment induced different effects in rats raised in different litters. Rats from litter 1 had increased body weight (p<0.05), body fat (p<0.01), and plasma leptin (p<0.001), cholesterol (p<0.001), triglyceride (p<0.001), total lipid (p<0.001), LDL (p<0.05), and glycerol (p<0.001) levels. In rats from litter 2 these parameters did not differ from controls. Rats from litter 3 had decreased body weight (p<0.05), visceral fat (p<0.01) and plasma leptin (p<0.001), cholesterol (p<0.001), triglyceride (p<0.001), glycerol (p<0.001), and HDL (p<0.001) levels. In conclusion, the metabolic response to postnatal leptin varies with age, with the response in adulthood being variable and most likely influenced by other factors, including the genetic make-up. PMID:24446159

  17. SERUM BIOMARKERS OF AGING IN THE BROWN NORWAY RAT

    EPA Science Inventory

    Serum biomarkers to identify susceptibility to disease in aged humans are well researched. On the other hand, our understanding of biomarkers in animal models of aging is limited. Hence, we applied a commercially available panel of 58 serum analytes to screen for possible biomark...

  18. Age-Related Differences in the Disposition of Nicotine and Metabolites in Rat Brain and Plasma

    PubMed Central

    2013-01-01

    Introduction: Studies have evaluated the behavioral and neurochemical impact of nicotine administration in rodents. However, the distribution of nicotine and metabolites in rat brain and plasma as a function of age has not been investigated. This is a significant issue because human adolescents have a greater risk for developing nicotine addiction than adults, and reasons underlying this observation have not been fully determined. Thus, in this present study, we evaluated the impact of the transition from adolescence (postnatal day [PND 40]) to adulthood (PND 90) on nicotine distribution in rats. Methods: PND 40, 60, and 90 rats received a single injection of (−) nicotine (0.8mg/kg, subcutaneously). Liquid chromatography tandem-mass spectrometry was used to measure concentration of nicotine and metabolites in selected biological matrices. Results: Nicotine, cotinine, and nornicotine were detected in rat striata and frontal cortex 30min, 1hr, 2hr, and 4hr after a single administration. These and several additional metabolites (nicotine-1′-oxide, cotinine-N-oxide, norcotinine, and trans-3′-hydroxycotinine) were also detected in plasma at these same timepoints. The mean concentration of nicotine in brain and plasma was lower in PND 40 versus PND 90 rats. In contrast, the mean concentration of nornicotine was higher in the plasma and brain of PND 40 versus PND 90 rats. Conclusions: Nicotine and metabolite distribution differs between adolescent and adult rats. These data suggest that adolescent rats metabolize nicotine to some metabolites faster than adult rats. Further studies are needed to investigate the potential correlation between age, drug distribution, and nicotine addiction. PMID:23737496

  19. Adaptive and regulatory mechanisms in aged rats with postoperative cognitive dysfunction

    PubMed Central

    Bi, Yanlin; Liu, Shuyun; Yu, Xinjuan; Wang, Mingshan; Wang, Yuelan

    2014-01-01

    Inflammation may play a role in postoperative cognitive dysfunction. 5′ Adenosine monophosphate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-α are involved in inflammation. Therefore, these inflammatory mediators may be involved in postoperative cognitive dysfunction. Western immunoblot analysis revealed 5′ adenosine monophosphate-activated protein kinase and nuclear factor-kappa B in the hippocampus of aged rats were increased 1–7 days after splenectomy. Moreover, interleukin-1β and tumor necrosis factor-α were upregulated and gradually decreased. Therefore, these inflammatory mediators may participate in the splenectomy model of postoperative cognitive dysfunction in aged rats. PMID:25206851

  20. Combined Administration of Human Ghrelin and Human Growth Hormone Attenuates Organ Injury and Improves Survival in Aged Septic Rats

    PubMed Central

    Yang, Weng-Lang; Ma, Gaifeng; Zhou, Mian; Aziz, Monowar; Yen, Hao-Ting; Marvropoulos, Spyros A; Ojamaa, Kaie; Wang, Ping

    2016-01-01

    Sepsis is a major healthcare concern, especially in the elderly population. The use of an animal model closely resembling clinical conditions in this population may provide a better prediction in translating bench studies to the bedside. Ghrelin inhibits sympathetic nerve activity and inflammation in young septic animals; however, aged animals become hyporesponsive to ghrelin. In this study, we evaluated the efficacy of combined human ghrelin and growth hormone (GH) for sepsis treatment in the elderly utilizing a clinically relevant animal model of sepsis. Male Fischer 344 rats 22 to 24 months old were subjected to cecal ligation and puncture (CLP). Human ghrelin plus GH or vehicle (normal saline) was administered subcutaneously at 5 h after CLP. At 20 h after CLP, blood and tissue samples were collected for various analyses. Combined treatment attenuated serum levels of lactate, lactate dehydrogenase, creatinine, blood urea nitrogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in aged septic rats. The integrity of the microscopic structure in the lungs, liver and kidneys was well preserved after treatment. Expression of IL-6, TNF-α, macrophage inflammatory protein-2 and keratinocyte-derived chemokine as well as myeloperoxidase activity and caspase-3 activation were significantly reduced in the lungs and liver of treated rats. Moreover, treated rats showed an improvement in cardiovascular function and increased expression of ghrelin receptor and c-fos in the brainstem. Finally, the 10-d survival of aged septic rats was increased from 29% to 64% after combined treatment and was associated with less body weight loss. Our findings warrant the development of combined human ghrelin and GH for sepsis treatment in the geriatric population. PMID:26835699

  1. The effects of dietary treatment with S-equol on learning and memory processes in middle-aged ovariectomized rats

    PubMed Central

    Neese, Steven L.; Pisani, Samantha L.; Doerge, Daniel R.; Helferich, William G.; Sepehr, Estatira; Chittiboyina, Amar G.; Rotte, Sateesh Chandra Kumar; Smillie, Troy J.; Khan, Ikhlas A.; Korol, Donna L.; Schantz, Susan L.

    2014-01-01

    The use of over-the-counter botanical estrogens containing isolated soy isoflavones, including genistein and daidzein, has become a popular alternative to traditional hormone therapies. Menopausal women use these products as an aide in healthy aging, including for the maintenance of cognitive function. The safety and efficacy of many of these commercial preparations remains unknown. Previous research in our lab found that treatment of ovariectomized (OVX) female Long-Evans rats with genistein impaired working memory in an operant delayed spatial alternation (DSA) task and response learning in a plus-maze, but enhanced place learning assessed in the plus-maze. The present study further examined the effects of isolated isoflavones on working memory and place learning by treating middle-aged (12–13 month old) OVX female Long-Evans rats with S-equol, the exclusive enantiomer produced by metabolism of daidzein in the mammalian gut. S-equol binds selectively to ERβ with an affinity similar to that of genistein but has low transcriptional potency. For DSA testing, S-equol at 1.94, 0.97 mg, or 0 mg (sucrose control) was orally administered to animals daily, 30 minutes before behavioral testing, and again both 4 and 8 hours after the first treatment. Rats were tested on the DSA task following the first, morning dose. For place learning, rats received 0.97 mg S-equol every 4 hours during the light portion of the cycle beginning 48 hours prior to behavioral testing (total exposure 8.7 mg S-equol). S-equol treatment was largely without effect on the DSA and place learning tasks. This is the first study to test the behavioral effects of isolated S-equol in OVX rodents, and shows that, unlike genistein or estradiol, repeated daily treatment with this isoflavone metabolite does not alter learning and memory processes in middle-aged OVX rats. PMID:24368316

  2. Quantitating silver-stained neurodegeneration: the neurotoxicity of trimethlytin (TMT) in aged rats.

    PubMed

    Scallet, A C; Pothuluri, N; Rountree, R L; Matthews, J C

    2000-05-15

    This report describes the development of a histoanalytical procedure to measure the degree of neurodegeneration produced by the organometal toxicant trimethyltin (TMT). Based on a previous, non-quantitated experiment we hypothesized that the same dose of TMT would produce greater damage in animals of increasing age. Male rats aged 6, 12, 18, or 24 months at the time of dosing were given either 4.5 mg/kg TMT or saline (i.p.). One month after dosing, rats were perfused and their brains removed and processed to selectively silver-impregnate degenerating cell bodies as well as axon terminals and dendrites. Neurodegeneration was most prominent in the hippocampi (especially CA1 stratum radiatum) of TMT-treated rats, but not in the controls. Computer-assisted counting of the silver grains marking damage indicated greater neurotoxicity from the same dose of TMT when given to the older animals. Thus the grain density in the 6-month-old TMT-treated rats was not significantly elevated from the 6-month-old controls (P>0.10). The 12-month-old TMT-treated rats had significantly increased grain densities compared to their controls (P<0.05), but still larger increases of grain counts were observed in the 18- and 24-month-old rats (both P-values<0.01). Our findings with TMT are similar to previous, but nonquantitative, reports that the neurotoxic effects of kainic acid and methionine sulfoximine were also greater in older rats. An increased sensitivity to neurotoxicants might help explain the apparently spontaneous degeneration of cortical neurons in aging and in the neurological diseases of old age. The method we report here for quantitation of silver grains marking neurodegeneration should be adaptable to a wide range of histologically-based neurotoxicology investigations. PMID:10837873

  3. Effects of homozygosity of the nude (rnu) gene in an inbred strain of rats: studies of lymphoid and non--lymphoid organs in different age groups of nude rats of LEW background at a stage in the gene transfer.

    PubMed

    Hougen, H P; Klausen, B

    1984-01-01

    Several age groups of nude homozygous rnu/rnu and heterozygous rnu/+ rats of the same genetic background at an early stage of back-crossing (LEW/Mol) were compared as to body and organ weights, histological appearance and cell density of lymphoid organs, haematological values and differential counts of bone marrow and peripheral blood. No thymic tissue was found in the nude animals. 7-week-old nudes were smaller than control animals and had relatively larger non-lymphoid organs and cell-depleted peripheral lymphoid organs. Other age groups showed little difference. Peripheral blood of nude rats showed no signs of lymphopaenia in contrast with the findings in nude mice. The number of thoracic duct lymphocytes was, however, significantly smaller in all age groups of the nude rats, and the bone marrow tended to contain fewer lymphocytes. PMID:10628778

  4. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    SciTech Connect

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  5. Long-Lived αMUPA Mice Show Attenuation of Cardiac Aging and Leptin-Dependent Cardioprotection

    PubMed Central

    Levy, Esther; Kornowski, Ran; Gavrieli, Reut; Fratty, Ilana; Greenberg, Gabriel; Waldman, Maayan; Birk, Einat; Shainberg, Asher; Akirov, Amit; Miskin, Ruth; Hochhauser, Edith

    2015-01-01

    αMUPA transgenic mice spontaneously consume less food compared with their wild type (WT) ancestors due to endogenously increased levels of the satiety hormone leptin. αMUPA mice share many benefits with mice under caloric restriction (CR) including an extended life span. To understand mechanisms linked to cardiac aging, we explored the response of αMUPA hearts to ischemic conditions at the age of 6, 18, or 24 months. Mice were subjected to myocardial infarction (MI) in vivo and to ischemia/reperfusion ex vivo. Compared to WT mice, αMUPA showed functional and histological advantages under all experimental conditions. At 24 months, none of the WT mice survived the first ischemic day while αMUPA mice demonstrated 50% survival after 7 ischemic days. Leptin, an adipokine decreasing under CR, was consistently ~60% higher in αMUPA sera at baseline. Leptin levels gradually increased in both genotypes 24h post MI but were doubled in αMUPA. Pretreatment with leptin neutralizing antibodies or with inhibitors of leptin signaling (AG-490 and Wortmannin) abrogated the αMUPA benefits. The antibodies also reduced phosphorylation of the leptin signaling components STAT3 and AKT specifically in the αMUPA myocardium. αMUPA mice did not show elevation in adiponectin, an adipokine previously implicated in CR-induced cardioprotection. WT mice treated for short-term CR exhibited cardioprotection similar to that of αMUPA, however, along with increased adiponectin at baseline. Collectively, the results demonstrate a life-long increased ischemic tolerance in αMUPA mice, indicating the attenuation of cardiac aging. αMUPA cardioprotection is mediated through endogenous leptin, suggesting a protective pathway distinct from that elicited under CR. PMID:26673217

  6. AGEs Induce Apoptosis in Rat Osteoblast Cells by Activating the Caspase-3 Signaling Pathway Under a High-Glucose Environment In Vitro.

    PubMed

    Liu, Jiaqiang; Mao, Jing; Jiang, Yi; Xia, Lunguo; Mao, Lixia; Wu, Yong; Ma, Pan; Fang, Bing

    2016-03-01

    Advanced glycation end products (AGEs) accumulate under high-glucose conditions and affect the healing of bone damage through various pathways; however, the detail mechanisms underlying these changes are unknown. In this study, we investigated the effects of AGEs on the apoptosis of in vitro-cultured rat osteoblasts under high-glucose conditions and explored the underlying mechanisms of these effects. First, we cultured rat osteoblasts and determined the accumulation of AGEs in the culture medium under high-glucose conditions. Then, we cultured rat osteoblasts under a high glucose concentration (35 mM), a normal glucose concentration (5.5 mM), and a normal glucose concentration (5.5 mM) in the presence of AGEs. We examined the effects of high glucose and AGEs on the apoptosis of rat osteoblasts at different time points and further analyzed the activity and changes in the levels of procaspase-3, caspase-3, and the caspase-3 substrate poly ADP-ribose polymerase (PARP). Finally, we added sRAGE (soluble RAGE) (an AGE inhibitor) or DEVD (a caspase-3 inhibitor) to each culture group and examined apoptosis under each culture condition and the changes in the levels of procaspase-3, caspase-3, and its substrate PARP. The results showed that the high-glucose condition and the addition of AGEs increased the apoptosis of rat osteoblast cells and simultaneously increased the activity and quantity of caspase-3. These increases could be inhibited by the AGE inhibitor sRAGE or the caspase-3 inhibitor DEVD. The above results demonstrate that high-glucose conditions lead to the accumulation of AGEs and activation of the caspase-3 signaling pathway, resulting in the increased apoptosis of cultured rat osteoblast cells. PMID:26573666

  7. Racemized and Isomerized Proteins in Aging Rat Teeth and Eye Lens.

    PubMed

    Warmack, Rebeccah A; Mansilla, Eduardo; Goya, Rodolfo G; Clarke, Steven G

    2016-08-01

    The quantification of aspartic acid racemization in the proteins of nonmetabolically active tissues can be used as a measure of chronological aging in humans and other long-lived organisms. However, very few studies have been conducted in shorter-lived animals such as rodents, which are increasingly used as genetic and metabolic models of aging. An initial study had reported significant changes in the ratio of d- to l-aspartate in rat molars with age. Using a sensitive HPLC method for the determination of d- and l-aspartate from protein hydrolysates, we found no accumulation of d-aspartate in the molars of 17 rats that ranged in age from 2 to 44 months, and the amount of d-aspartate per molar did not correspond with molar eruption date as had been previously reported. However, developing an alternate approach, we found significant accumulation of isomerized aspartyl residues in eye lens proteins that are also formed by spontaneous degradation processes. In this study, we used the human protein l-isoaspartate/d-aspartate O-methyltransferase (PCMT1) as an analytical reagent in a sensitive and convenient procedure that could be used to rapidly examine multiple samples simultaneously. We found levels of isomerized aspartyl residues to be about 35 times higher in the lens extracts of 18-month-old rats versus 2-month-old rats, suggesting that isomerization may be an effective marker for biological aging in this range of ages. Importantly, we found that the accumulation appeared to plateau in rats of 18 months and older, indicating that potentially novel mechanisms for removing altered proteins may develop with age. PMID:26650547

  8. Probiotic Mixture KF Attenuates Age-Dependent Memory Deficit and Lipidemia in Fischer 344 Rats.

    PubMed

    Jeong, Jin-Ju; Kim, Kyung-Ah; Ahn, Young-Tae; Sim, Jae-Hun; Woo, Jae-Yeon; Huh, Chul-Sung; Kim, Dong-Hyun

    2015-09-01

    To investigate the memory-enhancing effect of lactic acid bacteria, we selected the probiotic mixture KF, which consisted of Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 (1 × 10(11) CFU/g of each strain), and investigated its antilipidemic and memoryenhancing effects in aged Fischer 344 rats. KF (1 × 10(10) CFU/rat/day), which was administered orally once a day (6 days per week) for 8 weeks, significantly inhibited age-dependent increases of blood triglyceride and reductions of HDL cholesterol (p < 0.05). KF restored agereduced spontaneous alternation in the Y-maze task to 94.4% of that seen in young rats (p < 0.05). KF treatment slightly, but not significantly, shortened the escape latency daily for 4 days. Oral administration of KF restored age-suppressed doublecortin and brain-derived neurotrophic factor expression in aged rats. Orally administered KF suppressed the expression of p16, p53, and cyclooxygenase-2, the phosphorylation of Akt and mTOR, and the activation of NF-κB in the hippocampus of the brain. These findings suggest that KF may ameliorate age-dependent memory deficit and lipidemia by inhibiting NF-κB activation. PMID:25975611

  9. Age-Related Changes in Hepatic Activity and Expression of Detoxification Enzymes in Male Rats

    PubMed Central

    Vyskočilová, Erika; Szotáková, Barbora; Skálová, Lenka; Bártíková, Hana; Hlaváčová, Jitka

    2013-01-01

    Process of aging is accompanied by changes in the biotransformation of xenobiotics and impairment of normal cellular functions by free radicals. Therefore, this study was designed to determine age-related differences in the activities and/or expressions of selected drug-metabolizing and antioxidant enzymes in young and old rats. Specific activities of 8 drug-metabolizing enzymes and 4 antioxidant enzymes were assessed in hepatic subcellular fractions of 6-week-old and 21-month-old male Wistar rats. Protein expressions of carbonyl reductase 1 (CBR1) and glutathione S-transferase (GST) were determined using immunoblotting. Remarkable age-related decrease in specific activities of CYP2B, CYP3A, and UDP-glucuronosyl transferase was observed, whereas no changes in activities of CYP1A2, flavine monooxygenase, aldo-keto reductase 1C, and antioxidant enzymes with advancing age were found. On the other hand, specific activity of CBR1 and GST was 2.4 folds and 5.6 folds higher in the senescent rats compared with the young ones, respectively. Interindividual variability in CBR1 activity increased significantly with rising age. We suppose that elevated activities of GST and CBR1 may protect senescent rats against xenobiotic as well as eobiotic electrophiles and reactive carbonyls, but they may alter metabolism of drugs, which are CBR1 and especially GSTs substrates. PMID:23971034

  10. Markers of Oxidative Stress in Senescent Erythrocytes Obtained from Young and Old Age Rats

    PubMed Central

    Kumar, Dileep

    2014-01-01

    Abstract The role of oxidative stress during aging is well documented. Evidence is available linking animal life span to the development of oxidative stress. Up to a certain limit of oxidative stress, cells function to counteract the oxidant effects and to restore redox balance by resetting critical homeostatic parameters. Red blood cells (RBCs) offer a very good model to study cellular senescence. In vivo aging of red blood cells is associated with increased cellular density, which corresponds to increased cell age. The present study aims to investigate age-dependent oxidative stress in RBC subpopulations obtained after Percoll density gradient centrifugation from young and old rats. We observe an increase in plasma membrane redox system (PMRS) activity (p<0.001) and lipid peroxidation (p<0.001) between less dense and senescent RBCs in both young and old rats. Our findings provide evidence of a higher level of oxidative stress in senescent erythrocytes, with the effect being more pronounced in old (24-month-old) rats compared to young (4-month-old) rats. The present findings emphasize the role of oxidative stress not only in organismal aging but also in cell senescence. PMID:25065263

  11. Influence of age on inducibility and cholinergic modulation of arrhythmia in isolated rat right atria.

    PubMed

    Faria, D M; Viviane, A G; Galvão, K M; Caricati-Neto, A; Godoy, C M G

    2009-03-01

    The effects of carbachol and atropine on the number of trains (NT) and on the train stimulus strength (SS) necessary to induce arrhythmia were studied in isolated right atria of infant, young, adult and mature rats submitted to electric field stimulation (66.7 Hz, 5 ms pulse-duration, 250 pulses). Carbachol (1 microM) decreased NT from four (control) to two in all ages tested. Atropine (1 microM) prevented tachyarrhythmia induction in tissue of all ages, even with NT equal to 12, except for mature rats (typically four trains). The SS decreases from infant to adult age [5- to 2-fold atrial threshold (AT)] and increases in mature animals (5-fold AT). Carbachol changes this result only for mature rats (5- to 2-fold AT). The SS was decreased by carbachol (1 microM) from 5- to 3-fold AT in mature rats, but atropine did not modify SS in this age. These results indicate that inducibility and cholinergic modulation of atrial tachyarrhythmia is influenced by age. PMID:19234768

  12. The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats.

    PubMed

    Lana, Daniele; Iovino, Ludovica; Nosi, Daniele; Wenk, Gary L; Giovannini, Maria Grazia

    2016-10-01

    We examined the effects of inflammaging on memory encoding, and qualitative and quantitative modifications on proinflammatory proteins, apoptosis, neurodegeneration and morphological changes of neuron-astrocyte-microglia triads in CA3 Stratum Pyramidale (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of young (3months) and aged rats (20months). Aged rats showed short-term memory impairments in the inhibitory avoidance task, increased expression of iNOS and activation of p38MAPK in SP, increase of apoptotic neurons in SP and of ectopic neurons in SL, and decrease of CA3 pyramidal neurons. The number of astrocytes and their branches length decreased in the three CA3 subregions of aged rats, with morphological signs of clasmatodendrosis. Total and activated microglia increased in the three CA3 subregions of aged rats. In aged rats CA3, astrocytes surrounded ectopic degenerating neurons forming "micro scars" around them. Astrocyte branches infiltrated the neuronal cell body, and, together with activated microglia formed "triads". In the triads, significantly more numerous in CA3 SL and SR of aged rats, astrocytes and microglia cooperated in fragmentation and phagocytosis of ectopic neurons. Inflammaging-induced modifications of astrocytes and microglia in CA3 of aged rats may help clearing neuronal debris derived from low-grade inflammation and apoptosis. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Targeting the triads may represent a therapeutic strategy which may control inflammatory processes and spread of further cellular damage to neighboring cells. PMID:27466072

  13. Activity of cholinesterases of blood and heart in rats of different sex and age during muscular loads and hypokinesia

    NASA Technical Reports Server (NTRS)

    Rozanova, V. D.; Antonova, G. A.

    1979-01-01

    The activity of acetylcholinesterase (Ache) and butyrilcholinesterase (Bche) in the blood and the heart of 3 and 13 month old control male rats is considerably lower than in female rats. In 25 month old rats, no sex differences in the Ache and Bche were revealed in the heart. In 3 and 13 month old male and female rats, under conditions of muscular exercises, the Ache and Bche activity is lower, and in hypokinetic male rats -- higher than that in respective control animals. In all the rats, irrespective of sex, age, and motor conditions, Ache and Bche activity tended to decrease from the sinoatrial node to the heart apex.

  14. Effect of age and diet on renal cadmium retention in rats

    SciTech Connect

    Kostial, K.

    1984-03-01

    The results of previous and recent work on cadmium metabolism in relation to age and diet are presented. Experiments were performed on albino rats aged 1-26 weeks. In some experiments rats were given different foods (milk, meat, bread) instead of standard rat diet. Some animals received trisodium calcium salt of diethylenetriaminepentaacetate (DTPA) intraperitoneally to decrease cadmium retention. Radioactive cadmium (/sup 115m/Cd) was administered orally and intraperitoneally. Whole body (WB), carcass (C) and organ (kidney, liver and brain) retentions were determined 1 and 2 weeks after a single radioisotope administration. The results are expressed as percentages of the administered dose (% D) and as percentages of whole body (% WB) and carcass (% C) radioactivities. After oral administration whole-body cadmium retention was higher in sucklings than in weaned animals, primarily due to increased gut retention. The kidney retention of orally administered cadmium was about 5-7 times higher in sucklings than in older rats. Cadmium distribution (% C) was similar after oral and intraperitoneal administration. In sucklings, kidney retention made a lower fraction of the carcass radioactivity one week after /sup 115m/Cd administration but reached adult values a week later. Liver retention in sucklings was a slightly lower fraction of the carcass radioactivity than in older rats at both time intervals. Brain retention (% C) was about 10 times higher in sucklings than in older rats throughout the experiment. 39 references, 5 tables.

  15. Intestinal morphology adjustments caused by dietary restriction improves the nutritional status during the aging process of rats.

    PubMed

    de Oliveira Belém, Mônica; Cirilo, Carla Possani; de Santi-Rampazzo, Ana Paula; Schoffen, João Paulo Ferreira; Comar, Jurandir Fernando; Natali, Maria Raquel Marçal; de Almeida Araújo, Eduardo José

    2015-09-01

    During the aging process, the body's systems change structurally and loss of function can occur. Ingesting a smaller amount of food has been considered a plausible proposal for increased longevity with the quality of life. However, the effects of dietary restriction (DR) during aging are still poorly understood, especially for organs of the digestive system. This study aimed to describe the body weight, oxidative status and possible morphological changes of the intestinal wall of rats submitted to DR during the aging process (7 to 18months old). Twelve 7-month-old male Wistar rats fed ad libitum since birth were assigned to two groups: control group (CG, n=6) fed ad libitum from 7 to 18months old; and dietary restriction group (DRG, n=6) fed 50% of the amount of chow consumed by the CG from 7 to 18months old. The body weight, feed and water intake were monitored throughout the experiment. Blood, periepididymal adipose tissue (PAT) and retroperitoneal adipose tissue (RAT), and the small intestine were collected at 18months old. The blood was collected to evaluate its components and oxidative status. Sections from the duodenum and ileum were stained with HE, PAS and AB pH2.5 for morphometric analyses of the intestinal wall components, and to count intraepithelial lymphocytes (IELs), goblet cells and cells in mitosis in the epithelium. DR rats showed a reduction in weight, naso-anal length, PAT, RAT and intestinal length; however, they consumed more water. Blood parameters indicate that the DR rats remained well nourished. In addition, they showed lower lipid peroxidation. Hypertrophy of the duodenal mucosa and atrophy of the ileal mucosa were observed. The number of goblet cells and IELs was reduced, but the mitotic index remained unaltered in both duodenum and ileum. In conclusion, 50% dietary restriction for rats from 7 to 18months old contributed to improving their nutritional parameters but, to achieve this, adjustments were required in the structure of the body

  16. Ageing-related tissue-specific alterations in mitochondrial composition and function are modulated by dietary fat type in the rat.

    PubMed

    Quiles, José L; Martínez, Estrella; Ibáñez, Susana; Ochoa, Julio J; Martín, Yolanda; López-Frías, Magdalena; Huertas, Jesús R; Mataix, José

    2002-12-01

    This study investigated the way in which feeding rats with two fat sources (olive or sunflower oils) affected electron-transport components and function of mitotic (liver) and postmitotic (heart and skeletal muscle) tissues during ageing. Rats adapted the mitochondrial-membrane-lipid profile to dietary fat throughout the study, suggesting that the benefits to eat either of the two fats might be maintained lifelong. Liver was more resistant to dietary changes and ageing than heart and skeletal muscle, which showed higher levels of coenzyme Q, cytochrome b, and cytochrome a + a3 with ageing and lower cytochrome c oxidase and complex IV turnover. Dietary fat differentially modulated the response of tissues during ageing, with sunflower oil leading to the highest levels of coenzyme Q and cytochromes b and a + a3. Since high levels of cytochrome b have been related to increased age, it could be hypothesized that olive oil could lead to less aged mitochondria. PMID:12678443

  17. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats

    PubMed Central

    Azman, Khairunnuur Fairuz; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system. PMID:27119005

  18. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats.

    PubMed

    Azman, Khairunnuur Fairuz; Zakaria, Rahimah; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system. PMID:27119005

  19. Up-regulation of Alzheimer's disease-associated proteins may cause enflurane anesthesia induced cognitive decline in aged rats.

    PubMed

    Liu, Haijian; Weng, Hao

    2014-02-01

    Isoflurane anesthesia can cause post-operative cognitive dysfunction in elderly patients. As an isomer of isoflurane, enflurane may also account for cognitive dysfunction. However, the mechanism of enflurane-induced cognitive dysfunction remains obscure. In this study, we investigated the effects of enflurane anesthesia on cognitive function and the possible roles of β-amyloid protein and phosphorylated tau protein in response to enflurane anesthesia in aged rats. After intraperitoneal injection of enflurane, the Morris water maze and the step-down passive avoidance tests were conducted to test the cognitive ability and memory. The enflurane group showed prolonged escape latency, extended space exploration time and increased number of errors at early stage after enflurane anesthesia, suggesting that enflurane should be responsible for the impairment of cognition in aged rats. In addition, we analyzed the expression level of β-amyloid and phosphorylation level of tau in the hippocampus by immunoblotting. Interestingly, the levels of β-amyloid and phosphorylated tau in the hippocampus increased significantly at early stage and then restored to pre-anesthetic levels. Taken together, our results suggest that increasing of β-amyloid and phosphorylation of tau are important to cause cognitive decline in aged rats during initial stage after enflurane anesthesia. PMID:23934553

  20. Interplay between interictal spikes and behavioral seizures in young, but not aged pilocarpine-treated epileptic rats.

    PubMed

    Bajorat, Rika; Goerss, Doreen; Brenndörfer, Linda; Schwabe, Lars; Köhling, Rüdiger; Kirschstein, Timo

    2016-04-01

    Interictal spike activity is commonly observed in the EEG of patients with epilepsy, but the causal interrelationship between interictal spikes and behavioral seizures is poorly understood. We performed long-term video-EEG monitoring of 16 epileptic rats after pilocarpine-induced status epilepticus and five control animals. To quantify the interplay between periods of spikes and seizures, we calculated the time spent with spikes as well as the time spent with seizures for each animal. Within a given subject, we found a significant correlation between these two measures in 7/11 young epileptic rats (<400days); this correlation was positive in six cases and negative in one. By contrast, none of five aged pilocarpine-treated animals exhibited significant correlation coefficients between spike periods and seizures (>600days, P<0.05). Instead, aged epileptic rats showed a prominent predominance for either spike periods or seizures, which might explain the absence of significant correlation in this population. We found that there is a significant interplay between interictal periods of spikes and behavioral seizures in young epileptic animals, but this association is absent during aging. PMID:26926072

  1. Intestinal absorption of triglyceride and vitamin D3 in aged and young rats

    SciTech Connect

    Holt, P.R.; Dominguez, A.A.

    1981-12-01

    (3H)Trioleyl glycerol (TO) and (14C)vitamin D3 were perfused intraduodenally for 5 hr in aged (19-21 months) and young adult (4-5 months) Sprague-Dawley rats. The rate of intestinal uptake from the gastrointestinal lumen and transport into the body of these lipids were decreased in the aged animals. Since the distribution of TO lipolytic products in the lumen was unchanged, reduced intestinal uptake rate probably occurred at the mucosal membrane. Furthermore, in the aged rats, the rate of transintestinal transport of both trioleyl glycerol and vitamin D3 was impaired. No evidence for impaired mucosal TO reesterification or for accumulation of vitamin D3 metabolites was found, suggesting that intestinal lipid accumulation resulted from a defect in lipoprotein assembly or in discharge from the mucosal cell. Impaired absorption of lipids may contribute to malnutrition and osteopenia of advancing age.

  2. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. PMID:26002078

  3. Age-related differences in the bone mineralization pattern of rats following exercise

    SciTech Connect

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-07-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process.

  4. Neurons in the inferior colliculus of the rat show stimulus-specific adaptation for frequency, but not for intensity

    PubMed Central

    Duque, Daniel; Wang, Xin; Nieto-Diego, Javier; Krumbholz, Katrin; Malmierca, Manuel S.

    2016-01-01

    Electrophysiological and psychophysical responses to a low-intensity probe sound tend to be suppressed by a preceding high-intensity adaptor sound. Nevertheless, rare low-intensity deviant sounds presented among frequent high-intensity standard sounds in an intensity oddball paradigm can elicit an electroencephalographic mismatch negativity (MMN) response. This has been taken to suggest that the MMN is a correlate of true change or “deviance” detection. A key question is where in the ascending auditory pathway true deviance sensitivity first emerges. Here, we addressed this question by measuring low-intensity deviant responses from single units in the inferior colliculus (IC) of anesthetized rats. If the IC exhibits true deviance sensitivity to intensity, IC neurons should show enhanced responses to low-intensity deviant sounds presented among high-intensity standards. Contrary to this prediction, deviant responses were only enhanced when the standards and deviants differed in frequency. The results could be explained with a model assuming that IC neurons integrate over multiple frequency-tuned channels and that adaptation occurs within each channel independently. We used an adaptation paradigm with multiple repeated adaptors to measure the tuning widths of these adaption channels in relation to the neurons’ overall tuning widths. PMID:27066835

  5. Phosphorylation of Ser-180 of rat aquaporin-4 shows marginal affect on regulation of water permeability: molecular dynamics study.

    PubMed

    Sachdeva, Ruchi; Singh, Balvinder

    2014-04-01

    Water permeation through rat aquaporin-4 (rAQP4), predominantly found in mammalian brain is regulated by phosphorylation of Ser-180. The present study has been carried out to understand the structural mechanism of regulation of water permeability across the channel. Molecular dynamics (MD) simulations have been carried out to investigate the structural changes caused due to phosphorylation of Ser-180 in the tetrameric assembly of rAQP4 along with predicted C-terminal region (255-323). The interactions involving opposite charges are observed between cytoplasmic loops and the C-terminal region during MD simulations. This results in movement of C-terminal region of rAQP4 towards the cytoplasmic mouth of water channel. Despite this movement, there was a gap between C-terminal region and cytoplasmic mouth of the channel through which water molecules were able to gain entry into the channel. The interactions between C-terminus and loop D of neighboring monomers in a tetrameric assembly appear to prevent the complete closure of cytoplasmic mouth of the water channel. Further, the rates of water permeation through phosphorylated and unphosphorylated rAQP4 have also been compared. The simulation studies showed a continuous movement of water in a single file across pore of unphosphorylated as well as phosphorylated rAQP4. PMID:23651078

  6. Influence of paradoxical sleep deprivation and sleep recovery on testosterone level in rats of different ages

    PubMed Central

    Oh, Mi Mi; Kim, Jin Wook; Jin, Myeong Heon; Kim, Je Jong; Moon, Du Geon

    2012-01-01

    This study was performed to assess serum testosterone alterations induced by paradoxical sleep deprivation (PSD) and to verify their attenuation during sleep recovery (SR) based on different durations and ages. Wistar male rats aged 12 weeks for the younger group and 20 weeks for the elder group were randomly distributed into one of the following groups: a control group (cage and platform), 3-day SD, 5-day SD, 7-day SD, 1-day SR, 3-day SR and 5-day SR groups. For PSD, the modified multiple platform method was used to specifically limit rapid eye movement (REM) sleep. Differences in the testosterone and luteinizing hormone levels between the younger group and the elder group according to duration of PSD and SR recovery were analysed. Testosterone continued to fall during the sleep deprivation period in a time-dependent manner in both the younger (P=0.001, correlation coefficient r=−0.651) and elder groups (P=0.001, correlation coefficient r=−0.840). The elder group showed a significantly lower level of testosterone compared with the younger group after PSD. Upon SR after 3 days of PSD, the testosterone level continued to rise for 5 days after sleep recovery in the younger group (P=0.013), whereas testosterone concentrations failed to recover until day 5 in the elder group. PSD caused a more detrimental effect on serum testosterone in the elder group compared to the younger group with respect to decreases in luteinizing hormone (LH) levels. The replenishment of serum testosterone level was prohibited in the elder group suggesting that the effects of SD/SR may be age-dependent. The mechanism by which SD affects serum testosterone and how age may modify the process are still unclear. PMID:22157981

  7. Effects of MHY908, a New Synthetic PPARα/γ Dual Agonist, on Inflammatory Responses and Insulin Resistance in Aged Rats.

    PubMed

    Park, Min Hi; Kim, Dae Hyun; Kim, Min Jo; Lee, Eun Kyeong; An, Hye Jin; Jeong, Ji Won; Kim, Hye Rim; Kim, Seong Jin; Yu, Byung Pal; Moon, Hyung Ryong; Chung, Hae Young

    2016-03-01

    Insulin resistance is common with aging and is associated with the inflammatory response in both humans and rodents. A number of peroxisome proliferator-activated receptor (PPAR) α/γ dual agonists have been tested for their abilities to attenuate insulin resistance and type 2 diabetes. However, there is no study on the effects of PPARα/γ dual agonists on inflammation and insulin resistance during aging. In the present study, we investigated the ability of 2-[4-(5-chlorobenzothiazothiazol-2-yl)phenoxy]-2-methyl-propionic acid (MHY908), a newly synthesized novel PPARα/γ dual agonist, to suppress the inflammatory response and attenuate insulin resistance in aged rats. Twenty-month-old rats were divided into four groups: ad libitum fed, ad libitum fed supplemented with MHY908 (1 mg and 3 mg/kg/day for 4 weeks), and 40% calorie restricted. Six-month-old ad libitum fed rats were used as an age control. The aged rats supplemented with MHY908 showed reduced serum glucose, triglyceride, and insulin levels, as well as reduced liver triglyceride levels. MHY908 brought about a reduction in endoplasmic reticulum stress and activation of the c-Jun N-terminal kinase in the livers of aged rats, which consequently improved insulin signaling. In the kidneys of aged rats, the efficacy of MHY908 as a potent anti-inflammatory agent was shown by its suppression of NF-κB activation through inhibition of the Akt/IκB kinase signaling pathway. Therefore, the major finding of this study is that MHY908 acts as a therapeutic agent against age-related inflammation associated with insulin resistance by activating PPARα and PPARγ, thus attenuating endoplasmic reticulum stress. PMID:26219845

  8. Working Memory in Bisphenol-A Treated Middle-Aged Ovariectomized Rats

    PubMed Central

    Neese, Steven L.; Bandara, Suren B.; Schantz, Susan L.

    2014-01-01

    Over 90% of the U.S. population has detectable bisphenol-A (BPA) in their urine according to recent biomonitoring data. BPA is best known for its estrogenic properties, and most rodent research on the nervous system effects of BPA has focused on determining if chronic exposures during pre- and perinatal development have organizational effects on brain development and behavior. Estrogens also have important impacts on brain and behavior during adulthood, particularly in females during aging, but the impact of BPA on the adult brain is less studied. We have published a series of studies documenting that chronic exposure to various estrogens including 17β-estradiol, ERβ selective SERMs and soy phytoestrogens impairs performance of middle-aged female rats on an operant working memory task. The purpose of this study was to determine if chronic oral exposure to BPA would alter working memory on this same task. Ovariectomized (OVX) middle-aged Long Evans rats were tested on an operant delayed spatial alternation (DSA) task. Rats were treated for 8–10 weeks with either a 0 (vehicle control), 5 or 50 μg/kg bw/day oral bolus of BPA. A subset of the vehicle control rats were implanted with a Silastic implant containing 17β-estradiol (low physiological range) to serve as a positive control. All rats were tested for 25 sessions on the DSA task. BPA treatment did not influence performance accuracy on the DSA task, whereas 17β-estradiol significantly impaired performance, as previously reported. The results of this study suggest that chronic oral exposure to BPA does not alter working memory processes of middle-aged OVX rats assessed by this operant DSA task. PMID:23339879

  9. Autophagy Is Involved in the Sevoflurane Anesthesia-Induced Cognitive Dysfunction of Aged Rats

    PubMed Central

    Zhang, Xiaoming; Zhou, Youfa; Xu, Mingmin; Chen, Gang

    2016-01-01

    Autophagy is associated with regulation of both the survival and death of neurons, and has been linked to many neurodegenerative diseases. Postoperative cognitive dysfunction is commonly observed in elderly patients following anesthesia, but the pathophysiological mechanisms are largely unexplored. Similar effects have been found in aged rats under sevoflurane anesthesia; however, the role of autophagy in sevoflurane anesthesia-induced hippocampal neuron apoptosis of older rats remains elusive. The present study was designed to investigate the effects of autophagy on the sevoflurane-induced cognitive dysfunction in aged rats, and to identify the role of autophagy in sevoflurane-induced neuron apoptosis. We used 20-month-old rats under sevoflurane anesthesia to study memory performance, neuron apoptosis, and autophagy. The results demonstrated that sevoflurane anesthesia significantly impaired memory performance and induced hippocampal neuron apoptosis. Interestingly, treatment of rapamycin, an autophagy inducer, improved the cognitive deficit observed in the aged rats under sevoflurane anesthesia by improving autophagic flux. Rapamycin treatment led to the rapid accumulation of autophagic bodies and autophagy lysosomes, decreased p62 protein levels, and increased the ratio of microtubule-associated protein light chain 3 II (LC3-II) to LC3-I in hippocampal neurons through the mTOR signaling pathway. However, administration of an autophagy inhibitor (chloroquine) attenuated the autophagic flux and increased the severity of sevoflurane anesthesia-induced neuronal apoptosis and memory impairment. These findings suggest that impaired autophagy in the hippocampal neurons of aged rats after sevoflurane anesthesia may contribute to cognitive impairment. Therefore, our findings represent a potential novel target for pro-autophagy treatments in patients with sevoflurane anesthesia-induced neurodegeneration. PMID:27111854

  10. AGE-DEPENDENT DIFFERENCES IN THE SUSCEPTIBILITY OF RATS TO DELTAMETHRIN

    EPA Science Inventory

    Separate groups of weanling and adult rats were exposed to both behaviorally-active and lethal doses of deltamethrin to examine age-dependent toxicity of a pyrethroid over a wide dose range. he acoustic startle response (ASR) was selected for comparison at low doses since it is a...

  11. Age-related changes in body composition in laboratory rats: Strain and gender comparisons

    EPA Science Inventory

    Long Evans (LE), Sprague Dawley (SD), Fischer 344 (F344), and Brown Norway (BN) rats are all commonly used as laboratory research subjects. These strains have been studied under many conditions, but few studies have measured changes in body composition as the animals age. Underst...

  12. Coordinated Changes in Xenobiotic Metabolizing Enzyme Gene Expression in Aging Male Rats

    EPA Science Inventory

    In order to gain better insight on aging and susceptibility, we characterized the expression of xenobiotic metabolizing enzymes (XMEs) from the livers of rats to evaluate the change in capacity to respond to xenobiotics across the adult lifespan. Gene expression profiles for XMEs...

  13. MODULATION OF HIPPOCAMPAL NEUROGENESIS AND COGNITIVE PERFORMANCE IN THE AGED RAT: THE BLUEBERRY EFFECT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The decline of memory with age is associated with a reduction in hippocampal neurogenesis, suggesting that this process may be an important factor in memory modulation. Thus, factors such as head injury, depression and stress that lead to decreases in neurogenesis are all associated with greater rat...

  14. Age-related increases in F344 rat intestine microsomal quercetin glucuronidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to establish the extent age modifies intestinal quercetin glucuronidation capacity. Pooled microsomal fractions of three equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats (n=8/group) were employed to model the enzyme kinetics of UDP-gl...

  15. PHARMACOKINETIC DIFFERENCES MAY EXPLAIN THE AGE-RELATED SENSITIVITY OF DELTAMETHRIN, A PYRETHROID INSECTICIDE, IN RATS.

    EPA Science Inventory

    This study was designed to examine the age-related sensitivity to the pyrethroid insecticide, deltamethrin [(S)- -cyano-3-phenoxybenzyl (1R,3R)-3-(2,2-dibromomovinyl)2,2-dimethylcyclopropanecarboxylate], in Long Evans, hooded, male rats. Deltamethrin has been shown to be more ...

  16. AGE-DEPENDENT EFFECTS OF 6-HYDROXYDOPAMINE ON LOCOMOTOR ACTIVITY IN THE RAT

    EPA Science Inventory

    This experiment examined the effects on locomotor activity of intraventricular 6-hydroxydopamine (6-OHDA) administered to developing and adult rats. 6-OHDA was administered subsequent to pargyline treatment at 3 and 6 days of age; or 6-OHDA was administered subsequent to desmethy...

  17. Microsomal quercetin glucuronidation in rat small intestine depends on age and segment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UDP-glucuronosyltransferase (UGT) activity toward the flavonoid quercetin and UGT protein were characterized in 3 equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats, n=8/age using villin to control for enterocyte content. SI microsomal intrinsic clearance of quercetin...

  18. Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex

    PubMed Central

    Ouellet, Lydia; de Villers-Sidani, Etienne

    2014-01-01

    In both humans and rodents, decline in cognitive function is a hallmark of the aging process; the basis for this decrease has yet to be fully characterized. However, using aged rodent models, deficits in auditory processing have been associated with significant decreases in inhibitory signaling attributed to a loss of GABAergic interneurons. Not only are these interneurons crucial for pattern detection and other large-scale population dynamics, but they have also been linked to mechanisms mediating plasticity and learning, making them a prime candidate for study and modeling of modifications to cortical communication pathways in neurodegenerative diseases. Using the rat primary auditory cortex (A1) as a model, we probed the known markers of GABAergic interneurons with immunohistological methods, using antibodies against gamma aminobutyric acid (GABA), parvalbumin (PV), somatostatin (SOM), calretinin (CR), vasoactive intestinal peptide (VIP), choline acetyltransferase (ChAT), neuropeptide Y (NPY), and cholecystokinin (CCK) to document the changes observed in interneuron populations across the rat's lifespan. This analysis provided strong evidence that several but not all GABAergic neurons were affected by the aging process, showing most dramatic changes in expression of parvalbumin (PV) and somatostatin (SOM) expression. With this evidence, we show how understanding these trajectories of cell counts may be factored into a simple model to quantify changes in inhibitory signaling across the course of life, which may be applied as a framework for creating more advanced simulations of interneuronal implication in normal cerebral processing, normal aging, or pathological processes. PMID:24917792

  19. LPS alters pattern of sickness behavior but does not affect glutathione level in aged male rats.

    PubMed

    Wrotek, Sylwia; Jędrzejewski, Tomasz; Nowakowska, Anna; Kozak, Wiesław

    2016-08-01

    Behavioral symptoms of sickness, such as fever and motor activity are a coordinated set of changes that develop during infection. The aim of study was to compare the sickness behaviour (SB) in healthy old and young rats treated with pyrogenic dose of endotoxin and to check their glutathione level. Before experimentation male Wistar rats were selected according to standard body mass, motor activity, and white blood cells count. Intraperitoneal injection of lipopolysaccharide (LPS) from E. coli was used to provoke SB. The level of liver glutathione, interleukin (IL) -6, deep body temperature (Tb) and motor activity were measured. Glutathione level in old and young rats did not differ significantly. In both young and old rats LPS administration provoked fever (the mean value of Tb was 38.06 ± 0.01 °C in old rats, and 38.19 ± 0.06 °C in young rats). LPS injection affected night-time activity in both groups (12 h averages were 1.56 ± 0.40 counts in old LPS-treated rats vs 2.74 ± 0.53 counts in not-treated old rats and 3.44 ± 0.60 counts for young LPS-treated vs 4.28 ± 0.57 counts for young not-treated rats). The injection of LPS provoked an elevation of plasma IL-6 concentration (from values below the lowest detectable standard in not-treated groups of animals to 6322.82 ± 537.00 pg/mL in old LPS-treated rats and 7415.62 ± 451.88 pg/mL in young LPS-treated rats). Based on these data, we conclude that good health of aged rats prevents decrease in the glutathione level. Old rats are still able to develop SB in response to pyrogenic dose of LPS, although its components have changed pattern compared to young animals. PMID:26829940

  20. DNA aptamer raised against advanced glycation end products (AGEs) improves glycemic control and decreases adipocyte size in fructose-fed rats by suppressing AGE-RAGE axis.

    PubMed

    Ojima, A; Matsui, T; Nakamura, N; Higashimoto, Y; Ueda, S; Fukami, K; Okuda, S; Yamagishi, S

    2015-04-01

    Advanced glycation end products (AGEs) decrease adiponectin expression and suppress insulin signaling in cultured adipocytes through the interaction with a receptor for AGEs (RAGE) via oxidative stress generation. We have recently found that high-affinity DNA aptamer directed against AGE (AGE-aptamer) prevents the progression of experimental diabetic nephropathy by blocking the harmful actions of AGEs in the kidney. This study examined the effects of AGE-aptamer on adipocyte remodeling, AGE-RAGE-oxidative stress axis, and adiponectin expression in fructose-fed rats. Although AGE-aptamer treatment by an osmotic mini pump for 8 weeks did not affect serum insulin levels, it significantly decreased average fasting blood glucose and had a tendency to inhibit body weight gain in fructose-fed rats. Furthermore, AGE-aptamer significantly suppressed the increase in adipocyte size and prevented the elevation in AGEs, RAGE, and an oxidative stress marker, 8-hydroxydeoxyguanosine (8-OHdG), levels in adipose tissues of fructose-fed rats at 14-week-old, while it restored the decrease in adiponectin mRNA levels. Our present study suggests that AGE-aptamer could improve glycemic control and prevent adipocyte remodeling in fructose-fed rats partly by suppressing the AGE-RAGE-mediated oxidative stress generation. AGE-aptamer might be a novel therapeutic strategy for fructose-induced metabolic derangements. PMID:25105541

  1. Rats with a truncated ghrelin receptor (GHSR) do not respond to ghrelin, and show reduced intake of palatable, high-calorie food.

    PubMed

    MacKay, Harry; Charbonneau, Valerie R; St-Onge, Veronique; Murray, Emma; Watts, Alexander; Wellman, Martin K; Abizaid, Alfonso

    2016-09-01

    Ghrelin, a peptide hormone produced by the stomach, is the endogenous ligand for the Growth Hormone Secretagogue Receptor (GHSR). Ghrelin acts on the GHSR to increase food intake, appetitive behaviors, and adiposity. Recently, a rat model with a null mutation to the GHSR gene (FHH-GHSR(m1/Mcwi)) was generated and used in behavioral studies, but the basic metabolic phenotype of this strain as well as that of the background strain (Fawn Hooded Hypertensive, FHH) has not been characterized in detail. Here we compared male FHH-GHSR(m1/Mcwi) rats with their wild-type littermates (FHH-WT) in a number of metabolic parameters. In the 24h of recovery following an acute overnight fast, FHH-GHSR(m1/Mcwi) rats consumed less food than FHH-WT animals, and relative to their body weights, adult FHH-GHSR(m1/Mcwi) rats consumed fewer calories when placed on a high-fat diet. Despite this, FHH-GHSR(m1/Mcwi) rats did not show a difference in diet-induced obesity or weight gain. Fasted FHH-GHSR(m1/Mcwi) rats exhibited increased Agouti-Related Peptide (AgRP) and Neuropeptide Y (NPY) expression in the Arcuate Nucleus (ARC), indicative of altered central regulation of feeding and energy balance. FHH-GHSR(m1/Mcwi) rats exhibited lower levels of home cage locomotor behavior over the entire light/dark cycle, and reduced levels of food anticipatory activity when placed on a restricted feeding schedule. Finally, FHH-GHSR(m1/Mcwi) rats consumed less of a palatable dessert (cookie dough) given after the completion of the scheduled meal. Altogether, our data show that rats lacking a functional GHSR tend to eat less than their wild-type counterparts in the face of acute fasts, chronic high-fat diet exposure, and exposure to a palatable dessert, despite not showing differences in body weight and glucose homeostasis that are characteristic of GHSR null mice. These data indicate that many, but not all responses to GHSR ablation are conserved between rats and mice. The FHH-GHSR(m1/Mcwi) rat thus

  2. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats

    PubMed Central

    LI, YALI; LIU, JIAN; GAO, DENGFENG; WEI, JIN; YUAN, HAIFENG; NIU, XIAOLIN; ZHANG, QIAOJUN

    2016-01-01

    The aim of the present study was to investigate the age-related alterations in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats (SHR) and the underlying mechanisms. Aging resulted in a significant increase in the number of activated astrocytes and apoptotic cells in the SHR group, which was accompanied by increased expression of oxidative stress markers (iNOS and gp47phox) and apoptotic regulatory proteins (Bax and caspase-3). In addition, the expression of PPAR-γ and Bcl-2 were progressively reduced with increasing age in the SHR group. The 32 and 64-week-old SHRs exhibited significantly increased numbers of apoptotic cells, oxidative stress markers and pro-apoptotic proteins compared with age-matched WKY rats, which was accompanied by reduced expression of PPAR-γ. Compared with the 16 and 32-week-old WKY group, the 64-week-old WKY rats exhibited increased oxidative stress and pro-apoptotic markers, and increased levels apoptotic cells. In conclusion, the present study indicated that both aging and hypertension enhanced brain damage and oxidative stress injury in the hippocampi of SHRs, indicated by an increased presence of apoptotic cells and astrocytes. In addition, reduced expression of PPAR-γ may contribute to the age-related brain damage in SHRs. PMID:26846626

  3. Age-related changes in neurochemical components and retinal projections of rat intergeniculate leaflet.

    PubMed

    Fiuza, Felipe P; Silva, Kayo D A; Pessoa, Renata A; Pontes, André L B; Cavalcanti, Rodolfo L P; Pires, Raquel S; Soares, Joacil G; Nascimento Júnior, Expedito S; Costa, Miriam S M O; Engelberth, Rovena C G J; Cavalcante, Jeferson S

    2016-02-01

    Aging leads to several anatomical and functional deficits in circadian timing system. In previous works, we observed morphological alterations with age in hypothalamic suprachiasmatic nuclei, one central component of this system. However, there are few data regarding aging effects on other central components of this system, such as thalamic intergeniculate leaflet (IGL). In this context, we studied possible age-related alterations in neurochemical components and retinal projections of rat IGL. For this goal, young (3 months), adult (13 months), and aged (23 months) Wistar rats were submitted to an intraocular injection of neural tracer, cholera toxin subunit b (CTb), 5 days before a tissue fixation process by paraformaldehyde perfusion. Optical density measurements and cell count were performed at digital pictures of brain tissue slices processed by immunostaining for glutamic acid decarboxylase (GAD), enkephalin (ENK), neuropeptide Y (NPY) and CTb, characteristic markers of IGL and its retinal terminals. We found a significant age-related loss in NPY immunoreactive neurons, but not in immunoreactivity to GAD and ENK. We also found a decline of retinal projections to IGL with age. We conclude aging impairs both a photic environmental clue afferent to IGL and a neurochemical expression which has an important modulatory circadian function, providing strong anatomical correlates to functional deficits of the aged biological clock. PMID:26718202

  4. Adenosine A1 Receptor-Mediated Endocytosis of AMPA Receptors Contributes to Impairments in Long-Term Potentiation (LTP) in the Middle-Aged Rat Hippocampus.

    PubMed

    Chen, Zhicheng; Stockwell, Jocelyn; Cayabyab, Francisco S

    2016-05-01

    Aging causes multiple changes in the mammalian brain, including changes in synaptic signaling. Previous reports have shown increased extracellular adenosine in the aging brain, and we recently reported that activation of adenosine A1 receptors (A1Rs) induces AMPA receptor (AMPAR) internalization in rat hippocampus. This study investigated whether aging-related changes in the rat hippocampus include altered surface expression of adenosine A1 and A2A receptors, and whether these changes correspond to changes in AMPAR surface expression and altered synaptic plasticity. We found reduced A1R surface expression in middle-aged rat hippocampus, and also reduced GluA1 and GluA2 AMPAR subunit surface expression. Using a chemically-induced LTP (cLTP) experimental protocol, we recorded fEPSPs in young (1 month old) and middle-aged (7-12 month old) rat hippocampal slices. There were significant impairments in cLTP in middle-aged slices, suggesting impaired synaptic plasticity. Since we previously showed that the A1R agonist N(6)-cyclopentyladenosine (CPA) reduced both A1Rs and GluA2/GluA1 AMPARs, we hypothesized that the observed impaired synaptic plasticity in middle-aged brains is regulated by A1R-mediated AMPAR internalization by clathrin-mediated endocytosis. Following cLTP, we found a significant increase in GluA1 and GluA2 surface expression in young rats, which was blunted in middle-aged brains or in young brains pretreated with CPA. Blocking A1Rs with 8-cyclopentyl-1,3-dipropylxanthine or AMPAR endocytosis with either Tat-GluA2-3Y peptide or dynasore (dynamin inhibitor) similarly enhanced AMPAR surface expression following cLTP. These data suggest that age-dependent alteration in adenosine receptor expression contributes to increased AMPAR endocytosis and impaired synaptic plasticity in aged brains. PMID:26700433

  5. Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats

    PubMed Central

    Liu, Albert; Jain, Neeraj; Vyas, Ajai; Lim, Lee Wei

    2015-01-01

    Memory dysfunction is a key symptom of age-related dementia. Although recent studies have suggested positive effects of electrical stimulation for memory enhancement, its potential targets remain largely unknown. In this study, we hypothesized that spatially targeted deep brain stimulation of ventromedial prefrontal cortex enhanced memory functions in a middle-aged rat model. Our results show that acute stimulation enhanced the short-, but not the long-term memory in the novel-object recognition task. Interestingly, after chronic high-frequency stimulation, both the short- and long-term memories were robustly improved in the novel-object recognition test and Morris water-maze spatial task compared to sham. Our results also demonstrated that chronic ventromedial prefrontal cortex high-frequency stimulation upregulated neurogenesis-associated genes along with enhanced hippocampal cell proliferation. Importantly, these memory behaviors were strongly correlated with the hippocampal neurogenesis. Overall, these findings suggest that chronic ventromedial prefrontal cortex high-frequency stimulation may serve as a novel effective therapeutic target for dementia-related disorders. DOI: http://dx.doi.org/10.7554/eLife.04803.001 PMID:25768425

  6. Age and microenvironment outweigh genetic influence on the Zucker rat microbiome.

    PubMed

    Lees, Hannah; Swann, Jonathan; Poucher, Simon M; Nicholson, Jeremy K; Holmes, Elaine; Wilson, Ian D; Marchesi, Julian R

    2014-01-01

    Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional scaling, principal component analysis) showed that age was the most significant source of variation in the composition of the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal microbiota, with samples from animals from within the same cage showing high community structure concordance, but large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have major implications for understanding the significance of functional metagenomic data in experimental studies and beg the question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture? PMID:25232735

  7. Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome

    PubMed Central

    Lees, Hannah; Swann, Jonathan; Poucher, Simon M.; Nicholson, Jeremy K.; Holmes, Elaine; Wilson, Ian D.; Marchesi, Julian R.

    2014-01-01

    Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional scaling, principal component analysis) showed that age was the most significant source of variation in the composition of the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal microbiota, with samples from animals from within the same cage showing high community structure concordance, but large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have major implications for understanding the significance of functional metagenomic data in experimental studies and beg the question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture? PMID:25232735

  8. AGING-RELATED CARBARYL EFFECTS IN BROWN NORWAY RATS

    EPA Science Inventory

    The rapid increase in older adults in the population highlights the importance ofunderstanding the role of aging in susceptibility to environmental contaminants. Aspart of a larger research program on life-stage susceptibility, this experiment determined the effect of the carbama...

  9. An observational assessment method for aging laboratory rats

    EPA Science Inventory

    The growth of the aging population highlights the need for laboratory animal models to study the basic biological processes ofaging and susceptibility to toxic chemicals and disease. Methods to evaluate health ofaging animals over time are needed, especially efficient methods for...

  10. AN OBSERVATIONAL ASSESSMENT OF AGING IN BROWN NORWAY RATS.

    EPA Science Inventory

    The growth of the aging population highlights the need for laboratory animal models that can be used to (1) efficiently monitor the health ofaging research colonies, and (2) aid in unraveling the mechanisms ofsusceptibility to toxic chemicals and disease. An observational assessm...

  11. Gender- and region-dependent changes of redox biomarkers in the brain of successfully aging LOU/C rats.

    PubMed

    Moyse, Emmanuel; Arseneault, Madeleine; Gaudreau, Pierrette; Ferland, Guylaine; Ramassamy, Charles

    2015-07-01

    The LOU/C (LOU) rat is an obesity resistant strain with higher longevity and healthspan than common rats. The management of oxidative stress being important to successful aging, we characterized this process in the aging LOU rat. Male/female LOU rats were euthanized at 4, 20, and 29 months. Macrodissected hippocampus, striatum, parietal cortex, cerebellum were assayed for tissue concentrations of glutathione (GSH), gamma-glutamyl-cysteine-synthetase (γ-GCS), total thiols, protein carbonyls, mRNAs of clusterin and the known protective enzymes thioredoxine-1 (TRX-1), glutaredoxine-1 (GLRX-1), superoxide dismutase-1 (SOD-1). Brain levels of GSH, γ-GCS, total thiols remained constant with age, except for GSH and γ-GCS which decreases in females. Clusterin, TRX-1, GLRX-1, SOD-1 mRNA levels were maintained or increased in the hippocampus with age. Age-dependency of the markers differed between sexes, with SOD-1 and TRX-1 decreases out of hippocampus in females. Since antioxidants were reported to decrease with age in the brain of Wistar rats, maintenance of GSH levels and of protective enzymes mRNA levels in the LOU rat brain could contribute to the preservation of cognitive functions in old age. Altogether, the successful aging of LOU rats may, at least in part, involve the conservation of functional antioxidant mechanisms in the brain, supporting the oxidative stress theory of aging. PMID:25956602

  12. Effects of aging and levodopa on the laryngeal adductor reflex in rats

    PubMed Central

    Feng, Xin; Xu, Zengrui; Butler, Susan G.; Leng, Iris; Zhang, Tan; Kritchevsky, Stephen B.

    2016-01-01

    Dopaminergic neurotransmission plays an essential role in sensorimotor function, and declines with age. Previously, we found the laryngeal adductor reflex (LAR) was increased in excitation by a dopamine receptor antagonist. If this airway-protective reflex is similarly affected by aging, it will interfere with volitional control in older adults. The current study tested whether the LAR was affected by aging, and whether such deficits were reversed by levodopa administration in aging rats. We recorded thyroarytenoid (TA) muscle activity at rest and during elicitation of LAR responses by stimulation of the internal branch of the superior laryngeal nerve (iSLN) in 6-, 18- and 30-month-old rats under alpha-chloralose anesthesia. Using paired stimuli at different inter-stimulus intervals (ISIs), LAR central conditioning, resting muscle activity, and reflex latency and amplitudes were quantified. Numbers of dopaminergic neurons in the substantia nigra pars compacta (SNpc) were measured using tyrosine hydroxylase staining. We found: (1) increased resting TA muscle activity and LAR amplitude occurred with fewer dopaminergic neurons in the SNpc in 18- and 30-month-old rats; (2) decreases in LAR latency and increases in amplitude correlated with reduced numbers of dopaminergic neurons in the SNpc; (3) test responses were greater at 1000 ms ISI in 18-month-old rats compared with 6-month-old rats; and (4) levodopa administration further increased response latency but did not alter muscle activity, response amplitude, or central conditioning. In conclusion, increases in laryngeal muscle activity levels and re-flex amplitudes accompanied age reductions in dopaminergic neurons but were not reversed with levodopa administration. PMID:22824541

  13. Effects of the anti-dementia drug hopantenate calcium upon striatal dopaminergic neurons in young and aged rats.

    PubMed

    Toide, K

    1989-01-01

    In the present study we investigated the effects of the anti-dementia drug calcium D-(+)-4-(2,4-dihydroxy-3,3-dimethyl-butyramido) butyrate hemihydrate (hopantenate) on the dopaminergic neurons of rats, and also compared the effects of the drug on dopaminergic neurons in young adult rats (4 months old) and aged rats (21 months old). Hopantenate 1000 mg/kg, p.o. significantly increased striatal dopamine (DA) levels, but displayed almost no effect upon the DOPAC and HVA levels. Furthermore, we investigated the effects of hopantenate upon tyrosine hydroxylase activity by examining NSD-1015-induced L-DOPA accumulation and found that hopantenate 1000 mg/kg, p.o. significantly increased the L-DOPA accumulation. In addition, comparing the effect of hopantenate on dopaminergic neurons in young adult rats and aged rats, we found that the striatal DA, DOPAC and HVA levels were decreased as a concomitant of aging, and hopantenate 1000 mg/kg, p.o. significantly increased DA and DOPAC levels in both ages. The above results clearly indicate that hopantenate enhanced DA biosynthesis by stimulating the activity of tyrosine hydroxylase. Furthermore, the results of hopantenate upon dopaminergic neurons in young adult rats and aged rats suggest that sensitivity to the drug may not be different with age, though the striatal DA, DOPAC and HVA levels of rats were decreased as a concomitant of aging. PMID:2570556

  14. Rats with mild bile duct ligation show hepatic encephalopathy with cognitive and motor impairment in the absence of cirrhosis: effects of alcohol ingestion.

    PubMed

    Giménez-Garzó, Carla; Salhi, Dounia; Urios, Amparo; Ruíz-Sauri, Amparo; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente

    2015-02-01

    Studies in animal models allow identifying mechanisms and treatments for cognitive and motor alterations in hepatic encephalopathy (HE). Liver diseases leading to HE in humans have different aetiologies (alcoholic, viral, etc.). The International Society for Hepatic Encephalopathy points out that satisfactory model for HE resulting from alcoholic cirrhosis are lacking. This work aimed to develop and characterize an animal model for HE in alcoholic liver cirrhosis. To potentiate the effects of alcohol on liver we administered it (5, 8 or 10% in drinking water) to rats showing mild liver damage induced by "mild" bile duct ligation (MBDL), obtained by sectioning 3 out of 5 bile ducts. MBDL rats show increased markers of cholestasis and liver damage, hyperammonemia and inflammation. MBDL rats also show motor in-coordination, hypokinesia, impaired learning ability in a Y maze and reduced spatial memory in the Morris water maze. Ingesting 10% ethanol does not induce relevant liver damage in control rats but potentiates liver damage in MBDL rats. In contrast, ethanol did not enhance the biochemical or neurological alterations in MBDL rats. This supports that the combination of certain levels of hyperammonemia and inflammation is enough to induce mild cognitive impairment, even in the absence of liver cirrhosis. Rats with MBDL and MBDL-OH survived more than 3 months, allowing performing long-term studies on cognitive and motor alterations and on underlying mechanisms. MBDL-OH rats are a good model to study the mechanisms of ethanol-induced liver cirrhosis and the factors making the liver susceptible to ethanol damage. PMID:24838616

  15. The effects of strength training and raloxifene on bone health in aging ovariectomized rats.

    PubMed

    Stringhetta-Garcia, Camila Tami; Singulani, Monique Patrício; Santos, Leandro Figueiredo; Louzada, Mário Jefferson Quirino; Nakamune, Ana Cláudia Stevanato; Chaves-Neto, Antonio Hernandes; Rossi, Ana Cláudia; Ervolino, Edilson; Dornelles, Rita Cássia Menegati

    2016-04-01

    The aim of this study was to investigate the effects of strength training (ST) and raloxifene (Ral), alone or in combination, on the prevention of bone loss in an aging estrogen-deficient rat model. Aging Wistar female rats were ovariectomized at 14months and allocated to four groups: (1) non-trained and treated with vehicle, NT-Veh; (2) strength training and treated with vehicle, ST-Veh; (3) non-trained and treated with raloxifene, NT-Ral; and (4) strength training and treated with raloxifene, ST-Ral. ST was performed on a ladder three times per week and Ral was administered daily by gavage (1mg/kg/day), both for 120days. Areal bone mineral density (aBMD), strength, microarchitecture, and biomarkers (osteocalcin, OCN; osteoprotegerin, OPG; and tartrate-resistant acid phosphatase, TRAP) were assessed. Immunohistochemistry was performed for runt-related transcription factor 2 (RUNX2), osterix (OSX), OCN, OPG, TRAP, and receptor activator of nuclear factor kappa-B ligand (RANKL). The rats that performed ST (ST-Veh) or were treated with Ral (NT-Ral) showed significant improvements in aBMD (p=0.001 and 0.004), bone strength (p=0.001), and bone microarchitecture, such as BV/TV (%) (p=0.001), BS/TV (mm(2)/mm(3)) (p=0.023 and 0.002), Conn.Dn (1/mm(3)) (p=0.001), Tb.N (1/mm) (p=0.012 and 0.011), Tb.Th (1/mm) (p=0.001), SMI (p=0.001 and 0.002), Tb.Sp (p=0.001), and DA (p=0.002 and 0.007); there was also a significant decrease in plasma levels of OCN (p=0.001 and 0.002) and OPG (p=0.003 and 0.014), compared with animals in the NT-Veh group. Ral, with or without ST, promoted an increased immunolabeling pattern for RUNX2 (p=0.0105 and p=0.0006) and OSX (p=0.0105), but a reduced immunolabeling pattern for TRAP (p=0.0056) and RANKL (p=0.033 and 0.004). ST increased the immunolabeling pattern for RUNX2 (p=0.0105), and association with Ral resulted in an increased immunolabeling pattern for OPG (p=0.0034) and OCN (p=0.0024). In summary, ST and Ral administration in aged, estrogen

  16. Effect of aging on phosphate metabolites of rat brain as revealed by the in vivo and in vitro sup 31 P NMR measurements

    SciTech Connect

    Liu, Hsiuchih; Chi, Chinwen; Liu, Tsungyun; Liu, Lianghui ); Luh, Wenming; Hsieh, Changhuain; Wu, Wenguey )

    1991-01-01

    Changes of phosphate metabolism in brains of neonate, weaning and adult rats were compared using both in vivo and in vitro nuclear magnetic resonance spectra. Ratios of phosphocreatine/nucleoside triphosphate (PCr/NTP) were the same in neonatal brain in both in vivo and in vitro studies, but not in weaning and adult brains. This discrepancy may have resulted from extended cerebral hypoxia due to slowed freezing of the brain by the increased skull thickness and brain mass in the weaning and adult rats. Variations of in vitro extraction condition for this age-related study may lead to systematic errors in the adult rats. Nevertheless, the phosphomonoester/nucleoside triphosphate (PME/NTP) ratios in extracts of brain from neonatal rats were higher than those obtained in vivo. In addition, the glycerophosphorylethanolamine plus glycerophosphorylcholine/nucleoside triphosphate (GPE+GPC/NTP) ratios, which were not measurable in vivo, showed age-dependent increase in extracts of rat brain. Some of the phosphomonoester and phosphodiester molecules in rat brain may be undetectable in in vivo NMR analysis because of their interaction with cellular components. The total in vitro GPE and GPC concentration in brain from neonatal rat was estimated to be 0.34 mmole/g wet tissue.

  17. A preliminary study of age-related difference in resistance to sepsis in the rat model.

    PubMed

    Wei, C I; Gilliam, M C; Cohen, M D; Cornell, J A; Moazam, F

    1987-11-01

    Although the pathophysiology of intraabdominal sepsis is well established in the adult animal, there is a paucity of similar information in the newborn animal. Using the Wichterman (K.A. Wichterman, A.E. Baue, and I.H. Chaudry, Journal of Surgical Research 29: 189, 1980) model of intraabdominal sepsis, 42 Sprague-Dawley suckling rat pups and 42 adults underwent cecal ligation followed by a single needle puncture of the cecum. Whereas a mortality of 47.6% was noted in the adult animals, only 7.1% of the suckling animals succumbed by the end of 1 week. After the ip LD50 of Escherichia coli was determined independently in each age group, appropriate doses of the bacteria were injected into the peritoneums of 36 suckling and 30 adult rats. The peritoneal fluid was aspirated at 0, 2, 4, 8, 24, and 48 hr and the bacterial concentration in the suspension was determined. The rate of bacterial clearance from the peritoneum of the suckling rats was found to be significantly greater at 2, 4, and 8 hr as compared with the adult animal. In vitro assay of the phagocytic activity of the peritoneal macrophages demonstrated a significantly higher activity in the cells obtained from the suckling rats than in those from the adult (P less than 0.05). A more efficient bacterial clearance and a higher phagocytic activity in the peritoneal macrophages of the suckling rats may contribute to the difference in the mortality between the two age groups. PMID:3316844

  18. Influence of age on reactivity to diverse emotional challenges in low- and high-anxiety rats.

    PubMed

    de Oliveira, Luciana C; Gomes, Margareth Z; Brandão, Marcus L

    2011-02-01

    Studies have revealed that the extent of reactivity of high-anxiety rats to diverse challenges is different than low-anxiety rats and have provided important insights into the psychopathology of anxiety. Various factors intervene to allow defensive mechanisms to react to diverse threatening challenges, including ontogeny and the nature of the emotional challenge (e.g., conditioned vs. unconditioned). The present study investigated the extent to which a particular type of fear extrapolates to other emotional responses to diverse threatening challenges. Groups of 30- and 60-day-old rats were assigned to low freezing behavior (LFB) and high freezing behavior (HFB) groups using the contextual fear conditioning paradigm and subjected to either the fear-potentiated startle (FPS) test, novelty-induced ultrasound vocalizations (USVs) or elevated plus-maze (EPM) tests. At 30 days of age, HFB rats exhibited greater FPS than LFB rats. In contrast, prior selection of HFB and LFB did not affect the performance of 30-day-old animals in the EPM and novelty-induced USVs. Sixty-day-old animals exhibited a performance deficit in all three tests. These data suggest that the performance of young rats in animal models of anxiety parallels their selection as LFB and HFB in the contextual fear conditioning paradigm. However, the increased fear-like behavior exhibited by the 60-day-old HFB rats may elicit performance deficits in conditioned and unconditioned fear tests. These results suggest that the interaction between hyperanxiety and age may cause a performance deficit despite the animals' increased fear-like behavior when facing emotional challenges, thus resembling psychiatric patients in many respects. PMID:20833243

  19. SRF binding to SRE in the rat heart: influence of age.

    PubMed

    Lu, X G; Azhar, G; Liu, L; Tsou, H; Wei, J Y

    1998-01-01

    One important promoter element at the 5' end of the c-fos gene is the serum response element (SRE). SRE is the site of attachment of the 67-kDa protein serum response factor (SRF) and several accessory proteins (Elk1, SAP1, SAP2/NET), termed the ternary complex factors. The binding of SRF to SRE plays an integral role in c-fos transcription and may occur independently of the association of the ternary complex factors. In the current study, we found that SRF protein expression was increased in the hearts of the old vs young adult rats in the basal condition. The hearts of old rats may have posttranslationally modified SRF proteins that are different compared to that of the young adults. The SRF increase was present both in the cytoplasm as well as in the nucleus in the old hearts. To test whether SRF protein levels in response to acute stress might be altered with age, we studied hearts of young adult and old rats during myocardial infarction. The young adult rat hearts responded to acute ischemic stress with an increase in both p62 and p67 SRF. The hearts of the old rats, however, did not exhibit a significant change in SRF protein expression. These findings demonstrate qualitative as well as quantitative age differences in SRF protein levels, both at baseline and following stimulation. The reduced SRF expression in response to acute cardiac ischemic stress in the old rats might contribute to the observed age-related decrease in the induction of immediate early genes such as c-fos in the heart. PMID:9467416

  20. Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats.

    PubMed

    Leeuwenburgh, C; Hansen, P; Shaish, A; Holloszy, J O; Heinecke, J W

    1998-02-01

    Many lines of evidence implicate oxidative damage in aging. Possible pathways include reactions that modify aromatic amino acid residues on proteins. o-Tyrosine is a stable marker for oxidation of protein-bound phenylalanine by hydroxyl radical, whereas 3-nitrotyrosine is a marker for oxidation of protein-bound tyrosine by reactive nitrogen species. To test the hypothesis that proteins damaged by hydroxyl radical and reactive nitrogen accumulate with aging, we used isotope dilution gas chromatography-mass spectrometry to measure levels of o-tyrosine and 3-nitrotyrosine in heart, skeletal muscle, and liver from young adult (9 mo) and old (24 mo) female Long-Evans/Wistar hybrid rats. We also measured these markers in young adult and old rats that received antioxidant supplements (alpha-tocopherol, beta-carotene, butylated hydroxytoluene, and ascorbic acid) from the age of 5 mo. We found that aging did not significantly increase levels of protein-bound o-tyrosine or 3-nitrotyrosine in any of the tissues. Antioxidant supplementation had no effect on the levels of protein-bound o-tyrosine and 3-nitrotyrosine in either young or old animals. These observations indicate that the o-tyrosine and 3-nitrotyrosine do not increase significantly in heart, skeletal muscle, and liver in old rats, suggesting that proteins damaged by hydroxyl radical and reactive nitrogen species do not accumulate in these tissues with advancing age. PMID:9486304

  1. Age dependence of myosin heavy chain transitions induced by creatine depletion in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Baldwin, Kenneth M.

    1995-01-01

    This study was designed to test the hypothesis that myosin heavy chain (MHC) plasticity resulting from creatine depletion is an age-dependent process. At weaning (age 28 days), rat pups were placed on either standard rat chow (normal diet juvenile group) or the same chow supplemented with 1% wt/wt of the creatine analogue beta-guanidinopropionic acid (creatine depletion juvenile (CDJ) group). Two groups of adult rats (age approximately 8 wk) were placed on the same diet regimens (normal diet adult and creatine depletion adult (CDA) groups). After 40 days (CDJ and normal diet juvenile groups) and 60 days (CDA and normal diet adult groups), animals were killed and several skeletal muscles were removed for analysis of creatine content or MHC ditribution. In the CDJ group, creatine depletion (78%) was accompanied by significant shifts toward expression of slower MHC isoforms in two slow and three fast skeletal muscles. In contrast, creatine depletion in adult animals did not result in similar shifts toward slow MHC isoform expression in either muscle type. The results of this study indicate that there is a differential effect of creatine depletion on MHC tranitions that appears to be age dependent. These results strongly suggest that investigators contemplating experimental designs involving the use of the creatine analogue beta-guanidinopropionic acid should consider the age of the animals to be used.

  2. Nitric oxide synthase in rat brain: age comparisons quantitated with NADPH-diaphorase histochemistry.

    PubMed

    Kuo, H; Hengemihle, J; Ingram, D K

    1997-05-01

    We examined age-related differences in nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) containing neurons and neuropil in the striatum and hippocampus of male Fischer 344 rats at 6, 12, and 26 mo of age. NADPH-d staining is considered to be a marker for neurons and neuronal processes containing nitric oxide synthase. Rat brains were processed for NADPH-d histochemistry and analyzed morphometrically using computerized image analysis. The following NADPH-d histochemical parameters were examined: neuronal density, neuronal size, and neuropil staining optical density of selected regions. In the striatum, significant age-related declines were observed in NADPH-d-positive neuronal density and in neuropil staining, while neuronal size increased between 6 and 12 mo and then declined between 12 and 26 mo. In the hippocampus no significant age-related changes were noted in NADPH-d-positive neuronal density or size, or in the optical density of the molecular layer of the hippocampal dentate gyrus. Thus, age differences in NADPH-d histochemistry appear to be regionally specific in the Fischer 344 rat. PMID:9158548

  3. Renal brush-border Na/sup +/-H/sup +/ exchange activity in the aging rat

    SciTech Connect

    Kinsella, J.L.; Sacktor, B.

    1987-04-01

    Amiloride-sensitive Na/sup +/-H/sup +/ exchange activity in brush-border membrane vesicles isolated from male rat proximal tubules was decreased in the senescent rat (24 mo) compared with the young adult (6 mo). There was no significant loss in Na/sup +/-H/sup +/ exchange activity in the kidneys of animals between 6 and 18 mo of age. Amiloride-insensitive /sup 22/Na/sup +/ uptake and the rate of pH gradient dissipation were not altered during aging. The decrease in sodium-dependent (/sup 32/P) phosphate transport preceded the decline in Na/sup +/-H/sup +/ exchange activity by at least 6 mo. Sodium-dependent D-(/sup 3/H) glucose transport was not significantly altered during aging. Thus various renal plasma membrane transport functions were affected differently in the aging rat. The decrease in Na/sup +/-H/sup +/ exchange activity during aging contrasted with the increase in exchange activity reported previously in acute ablation models of chronic renal failure.

  4. Protective Effects of Gelam Honey against Oxidative Damage in Young and Aged Rats

    PubMed Central

    Sahhugi, Zulaikha; Jubri, Zakiah

    2014-01-01

    Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities. PMID:25505937

  5. Dietary Intake of Resveratrol Enhances the Adaptive Immunity of Aged Rats

    PubMed Central

    Yuan, Jiangshui; Lu, Linlin; Zhang, Zongliang

    2012-01-01

    Abstract It is well known that immune response declines with aging. Resveratrol, a polyphenol that occurs naturally in several plant species including grapevines and berries, has been shown to have potent antiaging and health-promoting activities. However, the mechanism underlying these activities remains largely unknown. Here we clearly demonstrate that: (1) Dietary intake of resveratrol induced a significant increase in T helper cells (CD4+) in middle-aged (12 months old) and aged (21 months old) Wistar male rats; (2) resveratrol supplementation considerably increased the delayed-type hypersensitivity response, a T cell–mediated immune response, in aged rats; and (3) reveratrol supplementation remarkably promoted the production of total anti-keyhole limpet hemocyanin (KLH) immunoglobulin G (IgG), anti-KLH IgG1, and anti-KLH IgG2α in aged rats without disturbing immune homeostasis. These data together indicate that resveratrol is capable of counteracting immunosenescence, thereby leading to rejuvenation. In practice, resveratrol can be useful to help the elderly generate an improved response to vaccine with stronger humoral and cell-mediated immune responses. PMID:22950432

  6. Immune marker CD68 correlates with cognitive impairment in normally aged rats.

    PubMed

    Farso, Mark; Ménard, Caroline; Colby-Milley, Jessica; Quirion, Rémi

    2013-08-01

    The relationship between heightened neuroinflammation and cognitive decline in the normally aged brain is still debatable, as most data are derived from insult-related models. Accordingly, the aim of the current study was to determine whether a link could be established for 2 immune markers at the post-transcriptional level; CD68 and MHC-II, in a normally aged (24-month-old) rat population discriminated for their learning abilities. Using the Morris Water Maze (MWM) task, aged rats were divided into aged learning-impaired (AI) or -unimpaired (AU) groups. Western immunoblots of hippocampal tissue revealed a significant increase of CD68 in AI rats compared to the AU group. Moreover, up-regulated CD68 expression correlated with increased latency times in the MWM task. Immunofluorescence for CD68 revealed intense staining in the white matter regions and CA3 subregion of the hippocampus in the AI group. Despite expression of MHC-II in the AI group, no correlation was found. Overall, these data suggest that CD68 could play a role associated with cognitive decline in a subgroup of the normally aged population. PMID:23523271

  7. Adaptation of Cancellous Bone to Aging and Immobilization in Growing Rats

    NASA Technical Reports Server (NTRS)

    Chen, Meng-Meng; Jee, Webster S. S.; Ke, Hua-Zhu; Lin, Bai-Yun; Li, Qing-Nan; Li, Xiao-Jian

    1992-01-01

    Two-and-half-month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 tLm sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55 to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at I and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59% at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobiliza- tion. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9-month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated sooner in

  8. Adaptation of Cancellous Bone to Aging and Immobilization in Growing Rats

    NASA Technical Reports Server (NTRS)

    Chen, Meng Meng; Jee, Webster S. S.; Ke, Hua Zhu; Lin, Bia Yun; Li, Qing Nan; Li, Xiao Jian

    1992-01-01

    Two-and-a half month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 micron sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55% to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at 1 and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59%c at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobilization. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9 month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated

  9. Age-related Declines in Thirst and Salt Appetite Responses in Male Fischer 344 x Brown Norway Rats

    PubMed Central

    Thunhorst, Robert L.; Beltz, Terry; Johnson, Alan Kim

    2014-01-01

    The F344xBN strain is the first generational cross between Fischer 344 (F344) and Brown Norway (BN) rats. The F344xBN strain is widely used in aging studies as it is regarded as a model of “healthy” aging (Sprott, 1991). In the present work, male F344xBN rats aged 4 mo (young, n = 6) and 20 mo (old, n = 9) received a series of experimental challenges to body fluid homeostasis to determine their thirst and salt appetite responses. Corresponding urinary responses were measured in some of the studies. Following sodium depletion, old rats ingested less saline solution (0.3 M NaCl) than young rats on a body weight basis, but both ages drank enough saline solution to completely repair the accrued sodium deficits. Following intracellular dehydration, old rats drank less water than young rats, again on a body weight basis, and were less able than young rats to drink amounts of water proportionate to the osmotic challenge. Compared with young rats, old rats drank less of both water and saline solution after combined food and fluid restriction, and also were refractory to the stimulatory effects of low doses of captopril on water drinking and sodium ingestion. Age differences in urinary water and sodium excretion could not account for the age differences in accumulated water and sodium balances. These results extend observations of diminished behavioral responses of aging animals to the F344xBN rat strain and support the idea that impairments in behavior contribute more to the waning ability of aging animals to respond to body fluid challenges than do declines in kidney function. In addition, the results suggest that behavioral defense of sodium homeostasis is less diminished with age in the F344xBN strain compared to other strains so far studied. PMID:24952266

  10. Decrease in free-radical production with age in rat peritoneal macrophages.

    PubMed Central

    Alvarez, E; Conde, M; Machado, A; Sobrino, F; Santa Maria, C

    1995-01-01

    The respiratory-burst reaction has been studied in rat peritoneal macrophages of different ages (3, 12 and 24 months) using phorbol 12-myristate 13-acetate (PMA) to stimulate NADPH oxidase. Production of O2-. and H2O2 decreased with age (about 50 and 75% respectively); however, no difference in NADPH oxidase activity was found. NO. production was also reduced with age (40%). Furthermore, a progressive and significant decrease in the pentose phosphate flux was detected as a function of age in control and PMA-stimulated macrophages. The NADPH/NADP+ ratio decreased with age in control and PMA-stimulated macrophages. Glucose uptake was lower in middle-aged (12 months) and old (24 months) animals but no differences were found between these groups. PMID:8526870

  11. Age-related dendritic hypertrophy and sexual dimorphism in rat basolateral amygdala

    PubMed Central

    Rubinow, Marisa J.; Drogos, Lauren L.; Juraska, Janice M.

    2008-01-01

    Little research has examined the influence of aging or sex on anatomical measures in the basolateral amygdala. We quantified spine density and dendritic material in Golgi-Cox stained tissue of the basolateral nucleus in young adult (3–5 months) and aged (20–24 months) male and female Long-Evans rats. Dendritic branching and spine density were measured in principal neurons. Age, but not sex, influenced the dendritic tree, with aged animals displaying significantly more dendritic material. Previous findings from our laboratory in the same set of subjects indicate an opposite effect of aging on dendritic material in the medial prefrontal cortex and hippocampus. We also report here a sex difference across ages in dendritic spine density, favoring males. PMID:17570563

  12. The giant miniature endplate potentials frequency is increased in aged rats.

    PubMed

    Pousinha, Paula A; Correia, Alexandra M; Sebastião, Ana M; Ribeiro, Joaquim A

    2015-01-01

    At the neuromuscular junction, spontaneous giant events (GMEPPs) are enhanced in different conditions when degenerative and/or remodeling processes take place, but no one investigated their incidence upon aging. In the present work, we evaluated evoked and spontaneous neuromuscular transmission events recorded from single muscle fibers. Phrenic-diaphragm preparations of 3-4, 12-16, 36-40 and 70-80 weeks old rat males were used. We found that the occurrence of GMEPPs significantly increases in aged rats. Moreover, in old rats the neuromuscular transmission was significantly impaired due to a significant decrease in the amplitude and quantal content of evoked endplate potentials. Interestingly, the number of observed EPPs failures were ∼ 3 times lower than the predicted value based on the quantal content. This discrepancy was not observed in infant or adult rats. The coincidence of a high GMEPPs frequency with a lower than expected EPPs failure rate suggests that GMEPPs events are needed to preserve effective neuromuscular transmission in aged animals. PMID:25449868

  13. Diminished acute phase response and increased hepatic inflammation of aged rats in response to intraperitoneal injection of lipopolysaccharide.

    PubMed

    Gomez, Christian R; Acuña-Castillo, Claudio; Pérez, Claudio; Leiva-Salcedo, Elías; Riquelme, Denise M; Ordenes, Gamaliel; Oshima, Kiyoko; Aravena, Mauricio; Pérez, Viviana I; Nishimura, Sumiyo; Sabaj, Valeria; Walter, Robin; Sierra, Felipe

    2008-12-01

    Aging is associated with a deterioration of the acute phase response to inflammatory challenges. However, the nature of these defects remains poorly defined. We analyzed the hepatic inflammatory response after intraperitoneal administration of lipopolysaccharide (LPS) given to Fisher 344 rats aged 6, 15, and 22-23 months. Induction of the acute phase proteins (APPs), haptoglobin, alpha-1-acid glycoprotein, and T-kininogen was reduced and/or retarded with aging. Initial induction of interleukin-6 in aged rats was normal, but the later response was increased relative to younger counterparts. An exacerbated hepatic injury was observed in aged rats receiving LPS, as evidenced by the presence of multiple microabscesses in portal tracts, confluent necrosis, higher neutrophil accumulation, and elevated serum levels of alanine aminotransferase, relative to younger animals. Our results suggest that aged rats displayed a reduced expression of APPs and increased hepatic injury in response to the inflammatory insult. PMID:19126842

  14. Elevated dynorphin in the hippocampal formation of aged rats: Relation to cognitive impairment on a spatial learning task

    SciTech Connect

    Jiang, Hannkuang; Owyang, V.; Hong, Jaushyong; Gallagher, M. )

    1989-04-01

    Radioimmunoassay revealed increased dynorphin A(1-8)-like immunoreactivity (dynA(1-8)LI) in the aged rat brain. Among a number of brain regions examined, an age-related dynA(1-8)LI elevation was found only in the hippocampal formation and frontal cortex. Moreover, the increase in dynA(1-8)LI in the aged hippocampus was associated with a decline in spatial learning ability: dynA(1-8)LI distinguished aged rats that were behaviorally impaired from aged cohorts that learned the spatial task as rapidly as younger animals. Northern blot hybridization using a {sup 32}P-labeled complementary RNA probe encoding rat prodynorphin indicated that the abundance of prodynorphin mRNA was also significantly increased in the hippocampal formation of aged rats with identified spatial learning impairments.

  15. Age- and hypertension-induced changes in abnormal contractions in rat aorta.

    PubMed

    Abeywardena, Mahinda Y; Jablonskis, Lina T; Head, Richard J

    2002-12-01

    The current investigation explored the potential age-dependant modulation of abnormal spontaneous constrictions (thromboxane-like) in the spontaneously hypertensive rat (SHR) aorta, observed only after the inhibition of endogenous production of nitric oxide (NO). Aortic rings from SHR and Wistar-Kyoto (WKY) control rats of varying ages (4, 8, 12, and 18 months) were mounted in organ baths, and changes in tension were monitored. Inhibition of NO with Nomega-nitro-L-arginine (NOLA) unmasked a slow contraction, which appeared to be age dependent (p < 0.05). This contraction was found in SHRs of all age groups and in older WKY rats. Denuding the endothelium in young SHRs did not influence the constriction, confirming a nonendothelial cell origin, while in the older groups this led to a 30-40% reduction in contraction. Comparable attenuation of the constrictor response was observed after incubation of endothelium intact rings with superoxide dismutase (100 U/ml) or 3-amino-1,2,4-triazole. Of the residual activity that was unaffected by free radical scavengers or de-endothelialization, 60-70% was sensitive to cyclooxygenase inhibition by indomethacin and/or ibuprofen. The thromboxane (TxA ) receptor antagonist SQ29548 induced a complete reversal of the abnormal constriction. In contrast, thromboxane synthetase inhibition had no effect, ruling out any involvement of TxA in mediating this abnormality. Collectively, these observations support the view that as compared with the normotensive setting, contraction induced by NO inhibition in the SHR develops prematurely and deteriorates more rapidly during the aging process. In aged rats, prostaglandin endoperoxide intermediates PGG /H and endothelium-derived free radicals rather than TxA per se appear to contribute to the NOLA-dependent TxA -like vasoconstriction. PMID:12451327

  16. Increased hippocampal NgR1 signaling machinery in aged rats with deficits of spatial cognition

    PubMed Central

    VanGuilder Starkey, Heather D.; Sonntag, William E.; Freeman, Willard M.

    2013-01-01

    Myelin-associated inhibitor/NgR1 signaling has important roles in modulation of synaptic plasticity, with demonstrated effects on cognitive function. We have previously demonstrated that NgR1 and its ligands are upregulated in the hippocampus of aged rats with impaired spatial learning and memory, but it is unknown whether increased expression of these proteins indicates a potential increase in pathway signaling because NgR1 requires co-receptors for signal transduction through RhoA. Two co-receptor complexes have been identified to date, comprised of NgR1 and LINGO-1, and either p75 or TROY. In this study, we assessed the expression of LINGO-1, p75 and TROY, and the downstream effector RhoA in mature adult (12 months) and aged (26 months) male Fischer 344/Brown Norway hybrid rats classified as cognitively impaired or cognitively intact by Morris water maze testing. The hippocampal distribution of NgR1 and its co-receptors was assessed to determine whether receptor/co-receptor interaction, and therefore signaling through this pathway, is possible. Protein expression of LINGO-1, p75, TROY, and RhoA was significantly elevated in cognitively impaired, but not intact, aged rats compared to mature adults, and expression levels correlated significantly with water maze performance. Co-localization of NgR1 with LINGO-1, p75 and TROY was observed in hippocampal neurons of aged, cognitively impaired rats. Further, expression profiles of NgR1 pathway components were demonstrated to classify rats as cognitively intact or cognitively impaired with high accuracy. Together, this suggests that hippocampal induction of this pathway is a conserved phenomenon in cognitive decline that may impair learning and memory by suppressing neuronal plasticity. PMID:23438185

  17. Distinctive roles of PLD signaling elicited by oxidative stress in synaptic endings from adult and aged rats.

    PubMed

    Mateos, Melina V; Giusto, Norma M; Salvador, Gabriela A

    2012-12-01

    The role of iron in oxidative injury in the nervous system has been extensively described. However, little is known about the role of lipid signal transduction in neurodegeneration processes triggered by iron overload. The purpose of this work was to characterize the regulation and the crosstalk between phosphatidylcholine (PC)-derived diacylglycerol (DAG) and cannonical signaling pathways during iron-induced oxidative stress in cerebral cortex synaptic endings (Syn) obtained from adult (4 months old) and aged (28 months old) rats. DAG production was increased in Syn exposed to iron. This rise in DAG formation was due to phospholipase D1 (PLD1) and PLD2 activations. In adult rats, PKD1, ERK1/2 and PKCα/βII activations were PLD1 and PLD2 dependent. In contrast, in senile rats, DAG formation catalyzed by PLDs did not participate in PKD1, ERK1/2 and PKCα/βII regulations, but it was dependent on ERK and PKC activities. Iron-induced oxidative stress promoted an increased localization of PLD1 in membrane rafts, whereas PLD2 was excluded from these domains and appeared to be involved in glutamate transporter function. Our results show a differential regulation and synaptic function of DAG generated by PLDs during iron-induced oxidative stress as a consequence of aging. PMID:23010583

  18. Influence of age and of desmotropic drugs on the step phenomenon observed in rat skin.

    PubMed

    Vogel, H G; Hilgner, W

    1979-03-31

    Comprehensive analysis of the mechanical properties of rat skin revealed the "step phenomenon". This particular observation was made after constant strain rate (analysis of stress strain curves) as well as after constant load (creep experiments). Relative low extensions or low loads were necessary to provoke the steps. In most cases two, sometimes three steps were observed. The step phenomenon was found mainly in skin strips punched out perpendicularly to the body axis. Probably some bonds in the fibrous network are broken giving way to additional elongation whereafter stronger links take over the stress. Since earlier studies demonstrated a pronounced influence of age and of desmotropic drugs on mechanical properties at ultimate load, e.g., tensile strength, ultimate modulus of elasticity, and ultimate strain, also the step phenomenon was studied under these conditions. In stress-strain experiments most of the steps were found at the ages of 2 and 4 months. Total stress loss and total work loss due to the steps were the highest at the age of 4 months. If, however, these values were calculated as percentage of ultimate values, the highest figures were found in young animals. Elongation gain due to the steps also showed a maximum at time of maturation, e.g., 4 months. Similar findings were achieved in creep experiments at medium load (200 g). After treatment with prednisolone acetate more steps and after treatment with D-penicillamine fewer steps were observed. In stress-strain experiments total stress loss and total work loss due to steps were more than twice as high than controls after prednisolone treatment and only one half after D-penicillamine. If calculated as percentage of ultimate stress or percentage of work input, these changes disappeared because of similar changes at ultimate load. However, elongation gain due to steps, which was not significantly influenced by prednisolone acetate but significantly decreased by D-penicillamine, showed the same changes

  19. Protein Synthesis Inhibitors Did Not Interfere with Long-Term Depression Induced either Electrically in Juvenile Rats or Chemically in Middle-Aged Rats.

    PubMed

    Abbas, Abdul-Karim

    2016-01-01

    In testing the hypothesis that long-term potentiation (LTP) maintenance depends on triggered protein synthesis, we found no effect of protein synthesis inhibitors (PSIs) on LTP stabilization. Similarly, some studies reported a lack of effect of PSIs on long-term depression (LTD); the lack of effect on LTD has been suggested to be resulting from the short time recordings. If this proposal were true, LTD might exhibit sensitivity to PSIs when the recording intervals were enough long. We firstly induced LTD by a standard protocol involving low frequency stimulation, which is suitable for eliciting NMDAR-LTD in CA1 area of hippocampal slices obtained from juvenile Sprague-Dawley rats. This LTD was persistent for intervals in range of 8-10 h. Treating slices with anisomycin, however, did not interfere with the magnitude and persistence of this form of LTD. The failure of anisomycin to block synaptic-LTD might be relied on the age of animal, the type of protein synthesis inhibitors and/or the inducing protocol. To verify whether those variables altogether were determinant, NMDA or DHPG was used to chemically elicit LTD recorded up to 10 h on hippocampal slices obtained from middle-aged rats. In either form of LTD, cycloheximide did not interfere with LTD stabilization. Furthermore, DHPG application did show an increase in the global protein synthesis as assayed by radiolabeled methodology indicating that though triggered protein synthesis can occur but not necessarily required for LTD expression. The findings confirm that stabilized LTD in either juvenile, or middle-aged rats can be independent of triggered protein synthesis. Although the processes responsible for the independence of LTD stabilization on the triggered protein synthesis are not yet defined, these findings raise the possibility that de novo protein synthesis is not universally necessary. PMID:27517693

  20. Protein Synthesis Inhibitors Did Not Interfere with Long-Term Depression Induced either Electrically in Juvenile Rats or Chemically in Middle-Aged Rats

    PubMed Central

    2016-01-01

    In testing the hypothesis that long-term potentiation (LTP) maintenance depends on triggered protein synthesis, we found no effect of protein synthesis inhibitors (PSIs) on LTP stabilization. Similarly, some studies reported a lack of effect of PSIs on long-term depression (LTD); the lack of effect on LTD has been suggested to be resulting from the short time recordings. If this proposal were true, LTD might exhibit sensitivity to PSIs when the recording intervals were enough long. We firstly induced LTD by a standard protocol involving low frequency stimulation, which is suitable for eliciting NMDAR-LTD in CA1 area of hippocampal slices obtained from juvenile Sprague-Dawley rats. This LTD was persistent for intervals in range of 8–10 h. Treating slices with anisomycin, however, did not interfere with the magnitude and persistence of this form of LTD. The failure of anisomycin to block synaptic-LTD might be relied on the age of animal, the type of protein synthesis inhibitors and/or the inducing protocol. To verify whether those variables altogether were determinant, NMDA or DHPG was used to chemically elicit LTD recorded up to 10 h on hippocampal slices obtained from middle-aged rats. In either form of LTD, cycloheximide did not interfere with LTD stabilization. Furthermore, DHPG application did show an increase in the global protein synthesis as assayed by radiolabeled methodology indicating that though triggered protein synthesis can occur but not necessarily required for LTD expression. The findings confirm that stabilized LTD in either juvenile, or middle-aged rats can be independent of triggered protein synthesis. Although the processes responsible for the independence of LTD stabilization on the triggered protein synthesis are not yet defined, these findings raise the possibility that de novo protein synthesis is not universally necessary. PMID:27517693

  1. Progesterone and vitamin D: improvement after traumatic brain injury in middle-aged rats

    PubMed Central

    Tang, Huiling; Hua, Fang; Wang, Jun; Sayeed, Iqbal; Wang, Xiaojing; Chen, Zhengjia; Yousuf, Seema; Atif, Fahim; Stein, Donald G.

    2013-01-01

    Progesterone (PROG) and vitamin D hormone (VDH) have both shown promise in treating traumatic brain injury (TBI). Both modulate apoptosis, inflammation, oxidative stress, and excitotoxicity. We investigated whether 21 days of VDH deficiency would alter cognitive behavior after TBI and whether combined PROG and VDH would improve behavioral and morphological outcomes more than either hormone alone in VDH-deficient middle-aged rats given bilateral contusions of the medial frontal cortex. PROG (16 mg/kg) and VDH (5 µg/kg) were injected intraperitoneally 1 hour post-injury. Eight additional doses of PROG were injected subcutaneously over 7 days post-injury. VDH deficiency itself did not significantly reduce baseline behavioral functions or aggravate impaired cognitive outcomes. Combination therapy showed moderate improvement in preserving spatial and reference memory but was not significantly better than PROG monotherapy. However, combination therapy significantly reduced neuronal loss and the proliferation of reactive astrocytes, and showed better efficacy compared to VDH or PROG alone in preventing MAP-2 degradation. VDH+PROG combination therapy may attenuate some of the potential long-term, subtle, pathophysiological consequences of brain injury in older subjects. PMID:23896206

  2. Age-related metabolic fatigue during low glucose conditions in rat hippocampus

    PubMed Central

    Galeffi, Francesca; Shetty, Pavan K.; Sadgrove, Matthew P.; Turner, Dennis A.

    2015-01-01

    Previous reports have indicated that with aging, intrinsic brain tissue changes in cellular bioenergetics may hamper the brain’s ability to cope with metabolic stress. Therefore, we analyzed the effects of age on neuronal sensitivity to glucose deprivation by monitoring changes in field excitatory postsynaptic potentials (fEPSPs), tissue Po2, and NADH fluorescence imaging in the CA1 region of hippocampal slices obtained from F344 rats (1–2, 3–6, 12–20, and >22 months). Forty minutes of moderate low glucose (2.5 mM) led to approximately 80% decrease of fEPSP amplitudes and NADH decline in all 4 ages that reversed after reintroduction of 10 mM glucose. However, tissue slices from 12 to 20 months and >22-month-old rats were more vulnerable to low glucose: fEPSPs decreased by 50% on average 8 minutes faster compared with younger slices. Tissue oxygen utilization increased after onset of 2.5 mM glucose in all ages of tissue slices, which persisted for 40 minutes in younger tissue slices. But, in older tissue slices the increased oxygen utilization slowly faded and tissue Po2 levels increased toward baseline values after approximately 25 minutes of glucose deprivation. In addition, with age the ability to regenerate NADH after oxidation was diminished. The NAD+/NADH ratio remained relatively oxidized after low glucose, even during recovery. In young slices, glycogen levels were stable throughout the exposure to low glucose. In contrast, with aging utilization of glycogen stores was increased during low glucose, particularly in hippocampal slices from >22 months old rats, indicating both inefficient metabolism and increased demand for glucose. Lactate addition (20 mM) improved oxidative metabolism by directly supplementing the mitochondrial NADH pool and maintained fEPSPs in young as well as aged tissue slices, indicating that inefficient metabolism in the aging tissue can be improved by directly enhancing NADH regeneration. PMID:25443286

  3. Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles

    NASA Technical Reports Server (NTRS)

    Muller-Delp, Judy; Spier, Scott A.; Ramsey, Michael W.; Lesniewski, Lisa A.; Papadopoulos, Anthony; Humphrey, J. D.; Delp, Michael D.

    2002-01-01

    Exercise capacity and skeletal muscle blood flow during exercise are reduced with advancing age. This reduction in blood flow capacity may be related to increased reactivity of skeletal muscle resistance vessels to vasoconstrictor stimuli. The purpose of this study was to test the hypothesis that aging results in increased vasoconstrictor responses of skeletal muscle resistance arterioles. First-order (1A) arterioles (90-220 microm) from the gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-344 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasoconstriction in response to increases in norepinephrine (NE; 1 x 10(-9)-1 x 10(-4) M) and KCl (20-100 mM) concentrations and increases in intraluminal pressure (10-130 cmH(2)O) were evaluated in the absence of flow. Responses to NE and KCl were similar in both soleus and gastrocnemius muscle arterioles from young and aged rats. In contrast, active myogenic responses to changes in intraluminal pressure were diminished in soleus and gastrocnemius arterioles from aged rats. To assess whether alterations in the mechanical properties of resistance arterioles underlie altered myogenic responsiveness, passive diameter responses to pressure and mechanical stiffness were evaluated. There was no effect of age on the structural behavior (passive pressure-diameter relationship) or stiffness of arterioles from either the soleus or gastrocnemius muscles. These results suggest that aging does not result in a nonspecific decrease in vasoconstrictor responsiveness of skeletal muscle arterioles. Rather, aging-induced adaptations of vasoreactivity of resistance arterioles appear to be limited to mechanisms that are uniquely involved in the signaling of the myogenic response.

  4. Four-vessel occlusion model using aged male Wistar rats: a reliable model to resolve the discrepancy related to age in cerebral ischemia research.

    PubMed

    Ancer-Rodríguez, Jesús; Villarreal-Silva, Eliud Enrique; Salazar-Ybarra, Rodolfo Amador; Quiroga-García, Oscar; Rodríguez-Rocha, Humberto; García-García, Aracely; Morales-Avalos, Rodolfo; Morales-Gómez, Jesús Alberto; Quiroga-Garza, Alejandro; Saucedo-Cárdenas, Odila; Xu, Zao Cheng; Elizondo-Omaña, Rodrigo Enrique; Martínez-Ponce-de-León, Angel Raymundo; Guzmán-López, Santos

    2016-06-01

    Animal models of cerebral ischemia have typically been established and performed using young animals, even though cerebral ischemia (CI) affects primarily elderly patients. This situation represents a discrepancy that complicates the translation of novel therapeutic strategies for CI. Models of transient global CI using aged animals have demonstrated an apparent neuroprotective effect on CA1 hippocampal neurons; however, this effect is not completely understood. Our study used a model in which young (3-6 months) and aged (18-21 months) male Wistar rats were subjected to 15 min of transient global CI using the four-vessel occlusion (4 VO) model. We determined that the 4 VO model can be performed on aged rats with a slight increase in mortality rate. In aged rats, the morphological damage was completely established by the 4th day after reperfusion, displaying no difference from their younger counterparts. These results demonstrated the lack of a neuroprotective effect of aging on CA1 hippocampal neurons in aged male Wistar rats. This study determined and characterized the morphological damage to the CA1 area after 15 min of 4 VO in aged male Wistar rats, validating the use of this model in CI and aging research. PMID:25966656

  5. Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats.

    PubMed

    Zakaria, Mohamed Naguib; El-Bassossy, Hany M; Barakat, Waleed

    2015-01-01

    Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs) is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE), AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE) and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS) complications in STZ-induced (50 mg/kg, IP) diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze), neuronal degeneration (Fluoro-Jade staining), AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde). These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications. PMID:26491434

  6. Short-term environmental enrichment enhances synaptic plasticity in hippocampal slices from aged rats.

    PubMed

    Stein, Liana R; O'Dell, Kazuko A; Funatsu, Michiyo; Zorumski, Charles F; Izumi, Yukitoshi

    2016-08-01

    Age-associated changes in cognition are mirrored by impairments in cellular models of memory and learning, such as long-term potentiation (LTP) and long-term depression (LTD). In young rodents, environmental enrichment (EE) can enhance memory, alter LTP and LTD, as well as reverse cognitive deficits induced by aging. Whether short-term EE can benefit cognition and synaptic plasticity in aged rodents is unclear. Here, we tested if short-term EE could overcome age-associated impairments in induction of LTP and LTD. LTP and LTD could not be induced in the CA1 region of hippocampal slices in control, aged rats using standard stimuli that are highly effective in young rats. However, exposure of aged littermates to EE for three weeks enabled successful induction of LTP and LTD. EE-facilitated LTP was dependent upon N-methyl-d-aspartate receptors (NMDARs). These alterations in synaptic plasticity occurred with elevated levels of phosphorylated cAMP response element-binding protein and vascular endothelial growth factor, but in the absence of changes in several other synaptic and cellular markers. Importantly, our study suggests that even a relatively short period of EE is sufficient to alter synaptic plasticity and molecular markers linked to cognitive function in aged animals. PMID:27208617

  7. Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats

    PubMed Central

    Zakaria, Mohamed Naguib; El-Bassossy, Hany M.; Barakat, Waleed

    2015-01-01

    Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs) is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE), AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE) and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS) complications in STZ-induced (50 mg/kg, IP) diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze), neuronal degeneration (Fluoro-Jade staining), AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde). These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications. PMID:26491434

  8. Greater Glucocorticoid Receptor Activation in Hippocampus of Aged Rats Sensitizes Microglia

    PubMed Central

    Barrientos, Ruth M.; Thompson, Vanessa M.; Kitt, Meagan M.; Amat, Jose; Hale, Matthew W.; Frank, Matthew G.; Crysdale, Nicole Y.; Stamper, Christopher E.; Hennessey, Patrick A.; Watkins, Linda R.; Spencer, Robert L.; Lowry, Christopher A.; Maier, Steven F.

    2014-01-01

    Healthy aging individuals are more likely to suffer profound memory impairments following an immune challenge than are younger adults. These challenges produce a brain inflammatory response that is exaggerated with age. Sensitized microglia found in the normal aging brain are responsible for this amplified response, which in turn interferes with processes involved in memory formation. Here, we examine factors that may lead aging to sensitize microglia. Aged rats exhibited higher CORT levels in the hippocampus, but not in plasma, throughout the daytime (diurnal inactive phase). These elevated hippocampal CORT levels were associated with increased hippocampal 11β-HSD1 protein expression, the enzyme that catalyzes glucocorticoid formation, and greater hippocampal glucocorticoid receptor (GR) activation. Intracisternal administration of mifepristone, a GR antagonist, effectively reduced immune-activated proinflammatory responses, specifically from hippocampal microglia, and prevented E. coli-induced memory impairments in aged rats. Voluntary exercise as a therapeutic intervention significantly reduced total hippocampal GR expression. These data strongly suggest that increased GR activation in the aged hippocampus plays a critical role in sensitizing microglia. PMID:25559333

  9. Early Postnatal Parathion Exposure in Rats Causes Sex-Selective Cognitive Impairment and Neurotransmitter Defects Which Emerge in Aging

    PubMed Central

    Levin, Edward D.; Timofeeva, Olga A.; Yang, Liwei; Petro, Ann; Ryde, Ian T.; Wrench, Nicola; Seidler, Frederic J.; Slotkin, Theodore A.

    2010-01-01

    Developmental exposure of rats to the organophosphate (OP) pesticides leads to altered neurobehavioral function in juvenile and young adult stages. The current study was conducted to determine whether effects of neonatal parathion exposure on cognitive performance persist in older adult and aged rats, and the relationship of behavioral changes to underlying cholinergic and serotonergic mechanisms. We administered parathion to rat pups on postnatal days 1–4, at doses spanning the threshold for the initial signs of systemic toxicity and for barely-detectable cholinesterase inhibition (0.1 or 0.2 mg/kg/day). Beginning at 14 months of age and continuing until 19 months, the rats were trained in the 16-arm radial maze. Controls showed the normal sex difference in this spatial learning and memory task, with the males committing significantly fewer working memory errors than females. Neonatal parathion exposure eliminated the sex difference primarily by causing impairment in males. In association with the effects on cognitive performance, neonatal parathion exposure elicited widespread abnormalities in indices of serotonergic and cholinergic synaptic function, characterized by upregulation of 5HT2 receptors and the 5HT transporter, deficits in choline acetyltransferase activity and nicotinic cholinergic receptors, and increases in hemicholinium-3 binding to the presynaptic choline transporter. Within-animal correlations between behavior and neurochemistry indicated a specific correlation between working memory performance and hippocampal hemicholinium-3 binding; parathion exposure destroyed this relationship. Like the behavioral effects, males showed greater effects of parathion on neurochemical parameters. This study demonstrates the sex-selective, long-term behavioral alterations caused by otherwise nontoxic neonatal exposure to parathion, with effects persisting into the beginning of senescence. PMID:20015457

  10. Molecular and metabolomic effects of voluntary running wheel activity on skeletal muscle in late middle-aged rats

    PubMed Central

    Garvey, Sean M; Russ, David W; Skelding, Mary B; Dugle, Janis E; Edens, Neile K

    2015-01-01

    We examined the molecular and metabolomic effects of voluntary running wheel activity in late middle-aged male Sprague Dawley rats (16–17 months). Rats were assigned either continuous voluntary running wheel access for 8 weeks (RW+) or cage-matched without running wheel access (RW−). The 9 RW+ rats averaged 83 m/day (range: 8–163 m), yet exhibited both 84% reduced individual body weight gain (4.3 g vs. 26.3 g, P = 0.02) and 6.5% reduced individual average daily food intake (20.6 g vs. 22.0 g, P = 0.09) over the 8 weeks. Hindlimb muscles were harvested following an overnight fast. Muscle weights and myofiber cross-sectional area showed no difference between groups. Western blots of gastrocnemius muscle lysates with a panel of antibodies suggest that running wheel activity improved oxidative metabolism (53% increase in PGC1α, P = 0.03), increased autophagy (36% increase in LC3B-II/-I ratio, P = 0.03), and modulated growth signaling (26% increase in myostatin, P = 0.04). RW+ muscle also showed 43% increased glycogen phosphorylase expression (P = 0.04) and 45% increased glycogen content (P = 0.04). Metabolomic profiling of plantaris and soleus muscles indicated that even low-volume voluntary running wheel activity is associated with decreases in many long-chain fatty acids (e.g., palmitoleate, myristoleate, and eicosatrienoate) relative to RW− rats. Relative increases in acylcarnitines and acyl glycerophospholipids were also observed in RW+ plantaris. These data establish that even modest amounts of physical activity during late middle-age promote extensive metabolic remodeling of skeletal muscle. PMID:25716928

  11. Behaviorally Activated mRNA Expression Profiles Produce Signatures of Learning and Enhanced Inhibition in Aged Rats with Preserved Memory

    PubMed Central

    Haberman, Rebecca P.; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela

    2013-01-01

    Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to

  12. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.

    PubMed

    Haberman, Rebecca P; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela

    2013-01-01

    Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to

  13. Alcohol-preferring rats show decreased corticotropin-releasing hormone 2 receptor expression and differences in HPA activation compared to alcohol-nonpreferring rats

    PubMed Central

    Yong, Weidong; Spence, John Paul; Eskay, Robert; Fitz, Stephanie D.; Damadzic, Ruslan; Lai, Dongbing; Foroud, Tatiana; Carr, Lucinda G.; Shekhar, Anantha; Chester, Julia A.; Heilig, Markus; Liang, Tiebing

    2014-01-01

    Background Corticotropin releasing hormone (CRH) and urocortins (UCNs) bind to corticotropin releasing hormone type 2 receptor (CRH-R2), a Gs protein-coupled receptor that plays an important role in modulation of anxiety and stress responses. The Crhr2 gene maps to a quantitative trait locus (QTL) for alcohol preference on chromosome 4 previously identified in inbred alcohol-preferring (iP) and non-preferring (iNP) F2 rats. Methods and Results Crhr2 mRNA expression was determined in male alcohol-naïve iP and iNP rats in several brain regions, and lower levels of Crhr2 mRNA were observed in iP rats compared to iNP rats. To identify genetic variation that may underlie differences detected in Crhr2 expression, DNA sequencing was performed and variations were identified in the promoter region, coding region and 3’-untranslated region between the iP and iNP rats. A 7bp insertion in the Crhr2 promoter of iP rats altered expression in vitro as measured by reporter assays. While CRH-R2 binding affinity did not significantly differ between male iP and iNP receptor variants, CRH-R2 density was lower in the amygdala of iP as compared to iNP rats. Male P rats displayed decreased social interaction and significantly higher corticosterone levels directly following 30 minute restraint when compared to male NP rats. Conclusions This study identified Crhr2 as a candidate gene of interest underlying the chromosome 4 QTL for alcohol consumption that was previously identified in the P and NP model. Crhr2 promoter polymorphism reduced mRNA expression in certain brain regions, particularly the amygdala, and lowered the density of CRH-R2 in the amygdala of iP compared to iNP rats. Together, these differences between the animals may contribute to the drinking disparity as well as the anxiety differences of the P and NP animals. PMID:24611993

  14. Effect of Aging on Adipose Tissue Inflammation in the Knee Joints of F344BN Rats.

    PubMed

    Fu, Yao; Huebner, Janet L; Kraus, Virginia B; Griffin, Timothy M

    2016-09-01

    The infrapatellar fat pad (IFP) secretes inflammatory mediators in osteoarthritic knees, but the effect of aging on IFP inflammation is unknown. We tested the hypothesis that aging increases basal and interleukin-1β (IL-1β)-stimulated IFP inflammation in 10-, 20-, and 30-month-old male F344BN F1-hybrid rats. IFPs were cultured ex vivo for 24 hours and treated ±1ng/mL IL-1β to simulate injury-induced inflammation. IFP inflammation was evaluated by measuring secreted cytokine concentrations and by quantitative expression of immunoregulatory and pro- and anti-adipogenic genes. With age, osteoarthritis pathology increased and IFP mass decreased. Although adipocyte size did not change with age, variation in adipocyte size was positively associated with synovial thickness independent of age whereas associations with cartilage damage were age dependent. In the absence of IL-1β, aging was associated with a significant increase in IFP secretion of tumor necrosis factor α by 67% and IL-13 by 35% and a reduction in the expression of immunoregulatory M2 macrophage genes. However, following an IL-1β challenge, adipogenesis markers decreased and pro- and anti-inflammatory cytokines increased independent of age. The lone exception was leptin, which decreased >70% with age. Thus, although aging promotes osteoarthritis risk by increasing basal inflammation, our findings also revealed a potentially protective effect of aging by decreasing IL-1β-stimulated leptin production. PMID:26450946

  15. Age-dependent increase of etheno-DNA-adducts in liver and brain of ROS overproducing OXYS rats

    SciTech Connect

    Nair, Jagadeesan; Sinitsina, Olga; Vasunina, Elena A.; Nevinsky, Georgy A.; Laval, Jacques; Bartsch, Helmut . E-mail: h.bartsch@dkfz.de

    2005-10-21

    Reactive oxygen species (ROS) and lipid peroxidation (LPO) play a role in aging and degenerative diseases. To correlate oxidative stress and LPO-derived DNA damage, we determined etheno-DNA-adducts in liver and brain from ROS overproducing OXYS rats in comparison with age-matched Wistar rats. Liver DNA samples from 3- and 15-month-old OXYS and Wistar rats were analyzed for 1,N {sup 6}-ethenodeoxyadenosine ({epsilon}dA) and 3,N {sup 4}-ethenodeoxycytidine ({epsilon}dC) by immunoaffinity/{sup 32}P-postlabelling. While {epsilon}dA and {epsilon}dC levels were not different in young rats, adduct levels were significantly higher in old OXYS rats when compared to old Wistar or young OXYS rats. Frozen rat brain sections were analyzed for {epsilon}dA by immunostaining of nuclei. Brains from old OXYS rats accumulated {epsilon}dA more frequently than age-matched Wistar rats. Our results demonstrate increased LPO-induced DNA damage in organs of OXYS rats which correlates with their known shorter life-span and elevated frequency of chronic degenerative diseases.

  16. Maternal age as a factor in determining the reproductive and behavioral outcome of rats prenatally exposed to ethanol.

    PubMed

    Vorhees, C V

    1988-01-01

    Nulliparous Long-Evans rats were bred at one of four different ages and assigned to one of three treatment groups within each age condition. Maternal ages were 9, 18, 32, and 36 weeks. Treatment groups were ethanol (E), administered by gavage as 8 g/kg in two divided doses on days 10-14 of gestation, pair-fed (PF) controls, administered as an isocaloric sucrose solution by gavage on days 10-14 of gestation, and ad lib fed controls (C). All offspring were surrogate fostered shortly after delivery to untreated recently parturient dams. Litter sizes were standardized to 8 on the day of birth. Offspring were assessed longitudinally for growth, mortality, and behavior (olfaction, locomotor activity, maze learning, avoidance acquisition and startle). Approximately 85% of the 36 week old dams did not produce viable litters. In the remaining maternal age conditions, ethanol delayed offspring olfactory orientation and increased locomotor activity, the latter dissipating after 50-60 days of age. These ethanol-related effects occurred independent of maternal age condition. Maternal age, independent of ethanol, was a factor which reduced litter size and offspring weight up to 50 days, but produced few effects on behavior. The combination of maternal age and prenatal ethanol interacted to increase pregnancy loss (oldest maternal age), reduce offspring weight up to day 99 (oldest and middle maternal age), alter olfactory orientation performance (oldest and middle maternal age), reverse the typical ethanol-induced increase in activity for males in the figure-8 test (oldest maternal age group), shift the pattern of open-field activity, and change errors in a complex water maze. Not all of these interactions turned out to be specific to the ethanol X old maternal age condition. Several of the interactions occurred in both the old and middle maternal age conditions. The only effect of old maternal age that interacted strongly with ethanol was in their combined effects on

  17. Thermoeffector neuronal pathways in fever: a study in rats showing a new role of the locus coeruleus

    PubMed Central

    Almeida, Maria C; Steiner, Alexandre A; Coimbra, Norberto C; Branco, Luiz G S

    2004-01-01

    It is known that brain noradrenaline (norepinephrine) mediates fever, but the neuronal group involved is unknown. We studied the role of the major noradrenergic nucleus, the locus coeruleus (LC), in lipopolysaccharide (LPS)-induced fever. Male Wistar rats had their LC completely ablated electrolytically or their catecholaminergic LC neurones selectively lesioned by microinjection of 6-hydroxydopamine; the controls were sham-operated. Both lesions resulted in a marked attenuation of LPS (1 or 10 μg kg−1, i.v.) fever at a subneutral (23°C) ambient temperature (Ta). Because electrolytic and chemical lesions produced similar effects, the role of the LC in fever was further investigated using electrolytic lesions only. The levels of prostaglandin (PG) E2, the terminal mediator of fever, were equally raised in the anteroventral third ventricular region of LC-lesioned and sham-operated rats during the course of LPS fever, indicating that LC neurones are not involved in febrigenic signalling to the brain. To investigate the potential involvement of the LC in an efferent thermoregulatory neuronal pathway, the thermoregulatory response to PGE2 (25 ng, i.c.v.) was studied at a subneutral (23°C, when fever is brought about by thermogenesis) or neutral (28°C, when fever is brought about by tail skin vasoconstriction) Ta. The PGE2-induced increases in metabolic rate (an index of thermogenesis) and fever were attenuated in LC-lesioned rats at 23°C, whereas PGE2-induced skin vasoconstriction and fever normally developed in LC-lesioned rats at 28°C. The LC-lesioned rats had attenuated PGE2 thermogenesis despite the fact that they were fully capable of activating thermogenesis in response to noradrenaline and cold exposure. It is concluded that LC neurones are part of a neuronal network that is specifically activated by PGE2 to increase thermogenesis and produce fever. PMID:15146040

  18. Age-dependent differences in the strength and persistence of psychostimulant-induced conditioned activity in rats: effects of a single environment-cocaine pairing.

    PubMed

    McDougall, Sanders A; Pipkin, Joseph A; Der-Ghazarian, Taleen; Cortez, Anthony M; Gutierrez, Arnold; Lee, Ryan J; Carbajal, Sandra; Mohd-Yusof, Alena

    2014-10-01

    The aim of the present study was to determine the strength and persistence of cocaine-induced conditioned activity in young and adult rats. A one-trial protocol has proven useful for studying the ontogeny of psychostimulant-induced behavioral sensitization; therefore, a similar procedure was used to examine conditioned activity. On postnatal day (PD) 19 or PD 80, rats were injected with saline or cocaine in either a novel test chamber or the home cage. After various drug abstinence intervals (1-21 days), rats were injected with saline and returned to the test chamber, where conditioned activity was assessed. In a separate experiment, we examined whether cocaine-induced conditioned activity was a consequence of Pavlovian conditioning or a failure to habituate to the test environment. The results indicated that adult rats showed strong one-trial conditioned activity that persisted for at least 21 days, whereas young rats did not show a conditioned locomotor response. The conditioned activity shown by adult rats did not result from a failure to habituate to the cocaine-paired environment. These results indicate that cocaine-paired contextual stimuli differentially affect behavior depending on the age of the animal. The data obtained from adult rats have potential translational relevance for humans because a single environment-drug pairing caused long-term alterations in behavior. PMID:25171082

  19. A deregulated expression of estrogen-target genes is associated with an altered response to estradiol in aged rats perinatally exposed to bisphenol A.

    PubMed

    Vigezzi, Lucía; Ramos, Jorge G; Kass, Laura; Tschopp, María V; Muñoz-de-Toro, Mónica; Luque, Enrique H; Bosquiazzo, Verónica L

    2016-05-01

    Here we assessed the effects of perinatal exposure to bisphenol A (BPA) on the uterine response to 17β-estradiol (E2) in aged rats. Pregnant rats were orally exposed to 0.5 or 50 μg BPA/kg/day from gestational day 9 until weaning. On postnatal day (PND) 360, the rats were ovariectomized and treated with E2 for three months. The uterine tissue of BPA50 and BPA0.5 rats showed increased density of glands with squamous metaplasia (GSM) and glands with daughter glands respectively. Wnt7a expression was lower in GSM of BPA50 rats than in controls. The expression of estrogen receptor 1 (ESR1) and its 5'- untranslated exons ESR1-O and ESR1-OT was lower in BPA50 rats. Both doses of BPA modified the expression of coactivator proteins and epigenetic regulatory enzymes. Thus, perinatal BPA-exposed rats showed different glandular abnormalities associated with deregulated expression of E2-target genes. Different mechanisms would be involved depending on the BPA dose administered. PMID:26898831

  20. The role of hepatic & splenic macrophages in E. coli-induced memory impairments in aged rats

    PubMed Central

    Barrientos, Ruth M.; Thompson, Vanessa M.; Arnold, T. Hayes; Frank, Matthew G.; Watkins, Linda R.; Maier, Steven F.

    2014-01-01

    Bi-directional communication between the peripheral and central nervous systems has been extensively demonstrated. Aged rats exhibit a prolonged proinflammatory response in the hippocampus region of the brain following a peripheral bacterial infection, and this response in turn causes robust memory declines. Here we aimed to determine whether hepatic or splenic macrophages play a role in the maintenance of this central response. Proinflammatory cytokines measured in liver and spleen four days following an E. coli infection revealed a potentiated proinflammatory response in liver, and to a lesser extent in spleen, in aged relative to young rats. To determine whether this potentiated response was caused by impaired bacterial clearance in these organs, E. coli colony forming units in liver and spleen were measured 4 days after infection, and there were no difference between young and aged rats in either organ. No E. coli was detected in the hippocampus, eliminating the possibility that the aged blood brain barrier allowed E. coli to enter the brain. Depletion of hepatic and splenic macrophages with clodronate-encapsulated liposomes effectively eliminated the proinflammatory response to E. coli at four days in both organs. However, this treatment failed to reduce the proinflammatory response in the hippocampus. Moreover, depletion of peripheral macrophages from liver and spleen did not prevent E. coli-induced memory impairment. These data strongly suggest that hepatic and splenic macrophages do not play a major role in the long-lasting maintenance of the proinflammatory response in the hippocampus of aged rats following a bacterial infection, or the memory declines that this response produces. PMID:25043992

  1. Effects of age and sex on cerebrovascular function in the rat middle cerebral artery

    PubMed Central

    2014-01-01

    Background Although the mechanisms underlying the beneficial effects of estrogen on cerebrovascular function are well known, the age-dependent deleterious effects of estrogen are largely unstudied. It was hypothesized that age and sex interact in modulating cerebrovascular reactivity to vasopressin (VP) by altering the role of prostanoids in vascular function. Methods Female (F) Sprague–Dawley rats approximating key stages of “hormonal aging” in humans were studied: premenopausal (mature multigravid, MA, cyclic, 5–6 months) and postmenopausal (reproductively senescent, RS, acyclic, 10–12 months). Age-matched male (M) rats were also studied. Reactivity to VP (10−12–10−7 M) was measured in pressurized middle cerebral artery segments in the absence or presence of selective inhibitors of COX-1 (SC560, SC, 1 μM) or COX-2 (NS398, NS, 10 μM). VP-stimulated release of PGI2 and TXA2 were measured using radioimmunoassay of 6-keto-PGF1α and TXB2 (stable metabolites, pg/mg dry wt/45 min). Results In M, there were no changes in VP-induced vasoconstriction with age. Further, there were no significant differences in basal or in low- or high-VP-stimulated PGI2 or TXA2 production in younger or older M. In contrast, there were marked differences in cerebrovascular reactivity and prostanoid release with advancing age in F. Older RS F exhibited reduced maximal constrictor responses to VP, which can be attributed to enhanced COX-1 derived dilator prostanoids. VP-induced vasoconstriction in younger MA F utilized both COX-1 and COX-2 derived constrictor prostanoids. Further, VP-stimulated PGI2 and TXA2 production was enhanced by endogenous estrogen and decreased with advancing age in F, but not in M rats. Conclusions This is the first study to examine the effects of age and sex on the mechanisms underlying cerebrovascular reactivity to VP. Interestingly, VP-mediated constriction was reduced by age in F, but was unchanged in M rats. Additionally, it was observed

  2. Effect of age and diet on renal cadmium retention in rats.

    PubMed Central

    Kostial, K

    1984-01-01

    The results of our previous and recent work on cadmium metabolism in relation to age and diet are presented. Experiments were performed on albino rats aged 1-26 weeks. In some experiments rats were given different foods (milk, meat, bread) instead of standard rat diet. Some animals received trisodium calcium salt of diethylenetriaminepentaacetate (DTPA) intraperitoneally to decrease cadmium retention. Radioactive cadmium (115mCd) was administered orally and intraperitoneally. Whole body (WB), carcass (C) and organ (kidney, liver and brain) retentions were determined 1 and 2 weeks after a single radioisotope administration. The results are expressed as percentages of the administered dose (% D) and as percentages of whole body (% WB) and carcass (% C) radioactivities. After oral administration whole-body cadmium retention was higher in sucklings than in weaned animals, primarily due to increased gut retention. The kidney retention of orally administered cadmium was about 5-7 times higher in sucklings than in older rats. Cadmium distribution (% C) was similar after oral and intraperitoneal administration. In sucklings, kidney retention made a lower fraction of the carcass radioactivity one week after 115mCd administration but reached adult values a week later. Liver retention in sucklings was a slightly lower fraction of the carcass radioactivity than in older rats at both time intervals. Brain retention (% C) was about 10 times higher in sucklings than in older rats throughout the experiment. Preliminary data on the influence of dietary treatments and treatment with DTPA indicate that some treatments which influence cadmium retention also influence cadmium distribution.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6734570

  3. The GABAA antagonist bicuculline attenuates progesterone-induced memory impairments in middle-aged ovariectomized rats

    PubMed Central

    Braden, B. Blair; Kingston, Melissa L.; Koenig, Elizabeth N.; Lavery, Courtney N.; Tsang, Candy W. S.; Bimonte-Nelson, Heather A.

    2015-01-01

    In women, high levels of natural progesterone have been associated with detrimental cognitive effects via the “maternal amnesia” phenomenon as well as in controlled experiments. In aged ovariectomized (Ovx) rats, progesterone has been shown to impair cognition and impact the GABAergic system in cognitive brain regions. Here, we tested whether the GABAergic system is a mechanism of progesterone’s detrimental cognitive effects in the Ovx rat by attempting to reverse progesterone-induced impairments via concomitant treatment with the GABAA antagonist, bicuculline. Thirteen month old rats received Ovx plus daily vehicle, progesterone, bicuculline, or progesterone+bicuculline injections beginning 2 weeks prior to testing. The water radial-arm maze was used to evaluate spatial working and reference memory. During learning, rats administered progesterone made more working memory errors than those administered vehicle, and this impairment was reversed by the addition of bicuculline. The progesterone impairment was transient and all animals performed similarly by the end of regular testing. On the last day of testing, a 6 hour delay was administered to evaluate memory retention. Progesterone-treated rats were the only group to increase working memory errors with the delay relative to baseline performance; again, the addition of bicuculline prevented the progesterone-induced impairment. The vehicle, bicuculline, and progesterone+bicuculline groups were not impaired by the delay. The current rodent findings corroborate prior research reporting progesterone-induced detriments on cognition in women and in the aging Ovx rat. Moreover, the data suggest that the progesterone-induced cognitive impairment is, in part, related to the GABAergic system. Given that progesterone is included in numerous clinically-prescribed hormone therapies and contraceptives (e.g., micronized), and as synthetic analogs, further research is warranted to better understand the parameters and

  4. Effect of fetal hypothyroidism on tolerance to ischemia-reperfusion injury in aged male rats: Role of nitric oxide.

    PubMed

    Jeddi, Sajad; Zaman, Jalal; Ghasemi, Asghar

    2016-05-01

    Aging is associated with increased prevalence of cardiovascular disease. Thyroid hormone deficiency during fetal life decreases myocardial tolerance to ischemia-reperfusion (IR) injury in later life. The long-term effects of fetal hypothyroidism (FH) on response to IR injury in aged rats have not been well documented. The aim of this study was therefore to compare the effect of FH on tolerance to IR injury in young and aged male rats and to determine contribution of iNOS (inducible nitric oxide synthase), Bax, and Bcl-2. Pregnant female rats were divided into two groups: The FH group received water containing 0.025% 6-propyl-2-thiouracil during gestation and the controls consumed tap water. Isolated perfused hearts from young (3 months) and aged (12 months) rats were subjected to IR. Hemodynamic parameters, infarct size, and heart NOx (nitrite+nitrate) levels were measured; in addition, mRNA expression of iNOS, Bax, and Bcl-2 and their protein levels in heart were measured. Recovery of post-ischemic LVDP and ±dp/dt were lower and infarct sizes were higher than controls in aged FH rats (68.38 ± 6.7% vs. 50.5 ± 1.7%; P < 0.05). Aged FH rats had higher heart NOx values than controls (74.3 ± 2.6 vs. 47.6 ± 2.5 μmol/L, P < 0.05). After IR, in FH rats, mRNA expression of iNOS and Bax were higher and Bcl-2 was lower in both the young (350 and 240% for iNOS and Bax, respectively and 51% for Bcl-2) and aged rats (504 and 567% for iNOS and Bax, respectively and 67% for Bcl-2). Compared to controls, in FH rats protein levels of iNOS (37% for young and 45% for aged rats) and Bax (94% for young and 118% for aged rats) were higher while for Bcl-2 (36% for young and 62% for aged rats) were lower. After IR, in FH rats, aminoguanidine, a selective iNOS inhibitor, decreased mRNA expression of iNOS and Bax and increased expression of Bcl-2 in both young (65% and 58% for iNOS and Bax, respectively and 152% for Bcl-2) and aged rats (76% and 64% for iNOS and Bax

  5. In vivo and in vitro assessment of brain bioenergetics in aging rats

    PubMed Central

    Vančová, Ol’ga; Bačiak, Ladislav; Kašparová, Svatava; Kucharská, Jarmila; Palacios, Hector H; Horecký, Jaromír; Aliev, Gjumrakch

    2010-01-01

    Abstract Brain energy disorders can be present in aged men and animals. To this respect, the mitochondrial and free radical theory of aging postulates that age-associated brain energy disorders are caused by an imbalance between pro- and anti-oxidants that can result in oxidative stress. Our study was designed to investigate brain energy metabolism and the activity of endogenous antioxidants during their lifespan in male Wistar rats. In vivo brain bioenergetics were measured using 31P nuclear magnetic resonance (NMR) spectroscopy and in vitro by polarographic analysis of mitochondrial oxidative phosphorylation. When compared to the young controls, a significant decrease of age-dependent mitochondrial respiration and adenosine-3-phosphate (ATP) production measured in vitro correlated with significant reduction of forward creatine kinase reaction (kfor) and with an increase in phosphocreatine (PCr)/ATP, PCr/Pi and PME/ATP ratio measured in vivo. The levels of enzymatic antioxidants catalase, GPx and GST significantly decreased in the brain tissue as well as in the peripheral blood of aged rats. We suppose that mitochondrial dysfunction and oxidative inactivation of endogenous enzymes may participate in age-related disorders of brain energy metabolism. PMID:19906014

  6. Sympathetic axonopathies and hyperinnervation in the small intestine smooth muscle of aged Fischer 344 rats

    PubMed Central

    Phillips, Robert J.; Hudson, Cherie N.; Powley, Terry L.

    2013-01-01

    It is well documented that the intrinsic enteric nervous system of the gastrointestinal (GI) tract sustains neuronal losses and reorganizes as it ages. In contrast, age-related remodeling of the extrinsic sympathetic projections to the wall of the gut is poorly characterized. The present experiment, therefore, surveyed the sympathetic projections to the aged small intestine for axonopathies. Furthermore, the experiment evaluated the specific prediction that catecholaminergic inputs undergo hyperplastic changes. Jejunal tissue was collected from 3-, 8-, 16-, and 24-month-old male Fischer 344 rats, prepared as whole mounts consisting of the muscularis, and processed immunohistochemically for tyrosine hydroxylase, the enzymatic marker for norepinephrine, and either the protein CD163 or the protein MHCII, both phenotypical markers for macrophages. Four distinctive sympathetic axonopathy profiles occurred in the small intestine of the aged rat: (1) swollen and dystrophic terminals, (2) tangled axons, (3) discrete hyperinnervated loci in the smooth muscle wall, including at the bases of Peyer's patches, and (4) ectopic hyperplastic or hyperinnervating axons in the serosa/subserosal layers. In many cases, the axonopathies occurred at localized and limited foci, involving only a few axon terminals, in a pattern consistent with incidences of focal ischemic, vascular, or traumatic insult. The present observations underscore the complexity of the processes of aging on the neural circuitry of the gut, with age-related GI functional impairments likely reflecting a constellation of adjustments that range from selective neuronal losses, through accumulation of cellular debris, to hyperplasias and hyperinnervation of sympathetic inputs. PMID:24104187

  7. Age Impaired endothelium-dependent vasodilation is improved by resveratrol in rat mesenteric arteries

    PubMed Central

    Gocmez, Semil S; Scarpace, Philip J; Whidden, Melissa A; Erdos, Benedek; Kirichenko, Nataliya; Sakarya, Yasemin; Utkan, Tijen; Tumer, Nihal

    2016-01-01

    [Purpose] To determine whether resveratrol improves the adverse effects age on vascular function in mesenteric arteries (MAs), and diminishes the hyperactivity in adrenal gland with age. [Methods] Male F344 x Brown Norway rats were assigned to 6-month control (YC), 6-month resveratrol (YR), 24-month control (OC) and 24-month resveratrol (OR). Resveratrol (15 mg/kg) was provided to resveratrol groups in drinking water for 14 days. [Results] Concentration response curves to phenylephrine (PE, 10-9-10-5M), acetylcholine (Ach, 10-9-10-5M) and resveratrol (10-8-10-4M) were evaluated in pressurized isolated MAs. The Ach concentration-response curve was right shifted with maximal response diminished in OC compared with YC rats. These effects were reversed by resveratrol treatment. The resveratrol-mediated relaxant responses were unchanged with age or resveratrol suggesting an endothelium-independent mechanism. Resveratrol tended to increase endothelial nitric oxide synthase; caused no effect on copper-zinc superoxide dismutase; and normalized the age-related elevatation in DβH and NPY levels in adrenal medulla, two indicators of sympathetic activity [Conclusion] These data indicate that resveratrol reverses age-related dysfunction in endothelium-dependent vasodilation in MAs and partially reverses hyperactivity of adrenomedullary function with age. This treatment may have a therapeuticpotential in the treatment of cardiovascular diseases or hypertension in the elderly. PMID:27298812

  8. A 3-month age difference profoundly alters the primary rat stromal vascular fraction phenotype.

    PubMed

    Quaade, Marlene Louise; Jensen, Charlotte Harken; Andersen, Ditte Caroline; Sheikh, Søren Paludan

    2016-06-01

    The stromal vascular fraction (SVF) is a heterogeneous population obtained from collagenase digestion of adipose tissue. When cultured the population becomes more homogeneous and the cells are then termed adipose stromal/stem cells (ASCs). Both the freshly isolated primary SVF population and the cultured ASC population possess regenerative abilities suggested to be mediated by paracrine mechanisms mainly. The use of ASCs and SVF cells, both in animal studies and human clinical studies, has dramatically increased during recent years. However, more knowledge regarding optimal donor characteristics such as age is demanded. Here we report that even a short age difference has an impact on the phenotype of primary SVF cells. We observed that a 3-month difference in relatively young adult rats affects the expression pattern of several mesenchymal stem cell markers in their primary SVF. The younger animals had significantly more CD90+/CD44+/CD29+/PDGFRα+primary cells, than the aged rats, suggesting an age dependent shift in the relative cell type distribution within the population. Taken together with recent studies of much more pronounced age differences, our data strongly suggest that donor age is a very critical parameter that should be taken into account in future stem cell studies, especially when using primary cells. PMID:27265810

  9. Aging and sex influence the permeability of the blood-brain barrier in the rat

    SciTech Connect

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer ({sup 14}C)-{alpha}-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels.

  10. Interrogating the Aged Striatum: Robust Survival of Grafted Dopamine Neurons in Aging Rats Produces Inferior Behavioral Recovery and Evidence of Impaired Integration

    PubMed Central

    Collier, Timothy J.; O’Malley, Jennifer; Rademacher, David J.; Stancati, Jennifer A.; Sisson, Kellie A.; Sortwell, Caryl E.; Paumier, Katrina L.; Gebremedhin, Kibrom G.; Steece-Collier, Kathy

    2015-01-01

    Advanced age is the primary risk factor for Parkinson disease (PD). In PD patients and rodent models of PD, advanced age is associated with inferior symptomatic benefit following intrastriatal grafting of embryonic dopamine (DA) neurons, a pattern believed to result from decreased survival and reinnervation provided by grafted neurons in the aged host. To help understand the capacity of the aged, parkinsonian striatum to be remodeled with new DA terminals, we used a grafting model and examined whether increasing the number of grafted DA neurons in aged rats would translate to enhanced behavioral recovery. Young (3 mo), middle-aged (15 mo), and aged (22 mo) parkinsonian rats were grafted with proportionately increasing numbers of embryonic ventral mesencephalic (VM) cells to evaluate whether the limitations of the graft environment in subjects of advancing age can be offset by increased numbers of transplanted neurons. Despite robust survival of grafted neurons in aged rats, reinnervation of striatal neurons remained inferior and amelioration of levodopa-induced dyskinesias (LID) was delayed or absent. This study demonstrates that: 1) counter to previous evidence, under certain conditions the aged striatum can support robust survival of grafted DA neurons; and 2) unknown factors associated with the aged striatum result in inferior integration of graft and host, and continue to present obstacles to full therapeutic efficacy of DA cell-based therapy in this model of aging. PMID:25771169

  11. Hyperactivity in the Gunn rat model of neonatal jaundice: age-related attenuation and emergence of gait deficits