Science.gov

Sample records for aged samp8 mice

  1. Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8).

    PubMed

    Cuesta, Sara; Kireev, Roman; García, Cruz; Rancan, Lisa; Vara, Elena; Tresguerres, Jesús A F

    2013-06-01

    The aim of the present study was to investigate the effect of aging on several parameters related to glucose homeostasis and insulin resistance in pancreas and how melatonin administration could affect these parameters. Pancreas samples were obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant mice (SAMR1). Insulin levels in plasma were increased with aging in both SAMP8 and SAMR1 mice, whereas insulin content in pancreas was decreased with aging in SAMP8 and increased in SAMR1 mice. Expressions of glucagon and GLUT2 messenger RNAs (mRNAs) were increased with aging in SAMP8 mice, and no differences were observed in somatostatin and insulin mRNA expressions. Furthermore, aging decreased also the expressions of Pdx-1, FoxO 1, FoxO 3A and Sirt1 in pancreatic SAMP8 samples. Pdx-1 was decreased in SAMR1 mice, but no differences were observed in the rest of parameters on these mice strains. Treatment with melatonin was able to decrease plasma insulin levels and to increase its pancreatic content in SAMP8 mice. In SAMR1, insulin pancreatic content and plasma levels were decreased. HOMA-IR was decreased with melatonin treatment in both strains of animals. On the other hand, in SAMP8 mice, treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin mRNA. Furthermore, it was also able to increase the expression of Sirt1, Pdx-1 and FoxO 3A. According to these results, aging is associated with significant alterations in the relative expression of pancreatic genes associated to glucose metabolism. This has been especially observed in SAMP8 mice. Melatonin administration was able to improve pancreatic function in old SAMP8 mice and to reduce HOMA-IR improving their insulin physiology and glucose metabolism.

  2. Effect of growth hormone treatment on pancreatic inflammation, oxidative stress, and apoptosis related to aging in SAMP8 mice.

    PubMed

    Cuesta, Sara; Kireev, Roman; García, Cruz; Forman, Katherine; Vara, Elena; Tresguerres, Jesús A F

    2011-10-01

    Aging is associated with an increase in inflammation, oxidative stress, and apoptosis. Furthermore, aging is accompanied by an alteration of the growth hormone (GH) -insulin-like growth factor-1 (IGF-1) axis. The aim of this study was to examine the regulation of these parameters in the pancreas of old mice and how GH treatment could affect this process. Male senescence-accelerated prone mice (SAMP8) and male senescence-accelerated resistant mice (SAMR1) 2 (young) and 10 months old were used (n = 40). Animals were divided into five experimental groups: 1 and 2, SAMP8/R1 young control; 3 and 4, SAMP8/R1 old control (untreated); and 5, SAMP8 old treated with GH. Physiologically equivalent doses of GH were administered for 1 month (2 mg subcutaneously [s.c.]/kg/day) and several parameters were analyzed. Aging was associated with increased inflammation, oxidative stress, and apoptosis (increased tumor necrosis factor-α [TNF-α], interleukin-β [IL-β], IL-6, monocyte chemoattractant protein-1 [MCP1], IL-2, heme oxygenase [HO-1], inducible nitric oxide synthase [iNOS], and nitric oxide metabolites [NOx]). The ratio of anti/pro apoptotic mRNA expression-B cell lymphoma 2 (Bcl-2) Bcl-2-associated X protein (BAX) + Bcl-xL/Bcl-2-associated death promoter (BAD)-was decreased during aging in SAMP8 mice. X-inhibitor of apoptosis (XIAP) was decreased during the aging process. Furthermore, no changes were observed in protein expression of nuclear factor-κB (NF-κB p65 and NF-κBp50-105. However, the protein expression of NF-κB p52-100 and inhibitor kappa B (IκB) alpha was increased with age in the pancreas of SAMP8 mice. On the other hand, the expression of IκB beta was decreased with aging. These results indicate that aging is associated with significant alterations in the relative expression of pancreatic genes involved in inflammation, oxidative stress, and apoptosis. According to our results, GH administration to old SAMP8 mice was able to improve pancreas from

  3. Protective effect of resveratrol against inflammation, oxidative stress and apoptosis in pancreas of aged SAMP8 mice.

    PubMed

    Ginés, Cristina; Cuesta, Sara; Kireev, Roman; García, Cruz; Rancan, Lisa; Paredes, Sergio D; Vara, Elena; Tresguerres, Jesús A F

    2017-04-01

    Aging is a physiological state in which a progressive decline in organ functions is accompanied by the development of age-related diseases. Resveratrol supplementation has been shown to exert anti-inflammatory and antioxidant effects in various mammalian models of aging. Senescence-accelerated mice (SAM) are commonly used as animal models to investigate the aging process. In the present study, the effects of inflammation, oxidative stress and apoptosis in pancreas of two different types of SAM (SAMR1 or resistant to aging, and SAMP8 or prone to aging) have been analysed, as well as the effect of resveratrol administration (5mg/kg/day) on these parameters in the SAMP8 strain. mRNA expressions of sirtuin 1 and FoxO factors were found to be decreased with aging in SAMP8 mice. An increase in inflammatory status and nuclear-factor kappa B (NFκB) protein expression was also observed in old mice, together with a decrease of anti-apoptotic markers and antioxidant-enzyme activity. Resveratrol administration was able to increase sirtuin 1 mRNA expression, as well as decreasing NFκB expression and reducing the proinflammatory and prooxidant status associated with age. In conclusion, resveratrol was able to modulate the inflammatory, oxidative and apoptotic status related to aging, thereby exerting a protective effect on pancreas age-induced damage.

  4. Shortened estrous cycle length, increased FSH levels, FSH variance, oocyte spindle aberrations, and early declining fertility in aging senescence-accelerated mouse prone-8 (SAMP8) mice: concomitant characteristics of human midlife female reproductive aging.

    PubMed

    Bernstein, Lori R; Mackenzie, Amelia C L; Kraemer, Duane C; Morley, John E; Farr, Susan; Chaffin, Charles L; Merchenthaler, István

    2014-06-01

    Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.

  5. The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice.

    PubMed

    Lin, Wei-Sheng; Chen, Jun-Yi; Wang, Jo-Chiao; Chen, Liang-Yu; Lin, Che-Hao; Hsieh, Tsung-Ren; Wang, Ming-Fu; Fu, Tsai-Feng; Wang, Pei-Yu

    2014-04-01

    We investigated the anti-aging effects of Ludwigia octovalvis (Jacq.) P. H. Raven (Onagraceae), an extract of which is widely consumed as a healthful drink in a number of countries. Using the fruit fly, Drosophila melanogaster, as a model organism, we demonstrated that L. octovalvis extract (LOE) significantly extended fly lifespan on a high, but not a low, calorie diet, indicating that LOE may regulate lifespan through a dietary restriction (DR)-related pathway. LOE also attenuated age-related cognitive decline in both flies and in the senescence-accelerated-prone 8 (SAMP8) mouse, without causing any discernable negative trade-offs, including water intake, food intake, fecundity, or spontaneous motor activity. LOE contained high levels of polyphenols and flavonoids, which possess strong DPPH radical scavenging activity, and was shown to attenuate paraquat-induced oxidative damage and lethality in flies. Gas chromatography-mass spectrometry (GC-MS) analyses identified 17 known molecules, of which β-sitosterol and squalene were the two most abundant. We further demonstrated that β-sitosterol was capable of extending lifespan, likely through activating AMP-activated protein kinase (AMPK) in the fat body of adult flies. Taken together, our data suggest that LOE is a potent anti-aging intervention with potential for treating age-related disorders.

  6. Effect of a combined treatment with growth hormone and melatonin in the cardiological aging on male SAMP8 mice.

    PubMed

    Forman, Katherine; Vara, Elena; García, Cruz; Kireev, Roman; Cuesta, Sara; Escames, Germaine; Tresguerres, J A F

    2011-08-01

    The effect of a chronic combined treatment with growth hormone (GH) plus melatonin (Mel) on different age-related processes in cytosolic and nuclear fractions of hearts from SAMP8 mice (2 and 10 months) has been investigated. The parameters studied have been messenger RNA expressions of IL-1, IL-10, NFkBp50, NFkBp52, TNFα, eNOS, iNOS, HO-1, HO-2, BAD, BAX, and Bcl2 and protein expressions of iNOS, eNOS, TNFα, IL-1, IL-10, NFkBp50, NFKbp52, and caspase activity (3 and 9). Our results supported the existence of a proapoptotic and oxidative status together with inflammatory processes in the heart of old mice, with increases of inflammatory cytokines, caspase activity, HO-1, BAX, NFkBp50, and NFkBp52 and decreases of eNOS and Bcl2. Also, we were able to observe the translocation of NFkB to nuclei. The combined treatment was able to partially reduce the incidence of these deleterious changes, showing differences with the separated treatments with GH and Mel as were investigated in previous articles from our group.

  7. Antisense directed against PS-1 gene decreases brain oxidative markers in aged senescence accelerated mice (SAMP8) and reverses learning and memory impairment: a proteomics study.

    PubMed

    Fiorini, Ada; Sultana, Rukhsana; Förster, Sarah; Perluigi, Marzia; Cenini, Giovanna; Cini, Chiara; Cai, Jian; Klein, Jon B; Farr, Susan A; Niehoff, Michael L; Morley, John E; Kumar, Vijaya B; Allan Butterfield, D

    2013-12-01

    Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD. In the current study, aged SAMP8 were treated by AO directed against PS-1, a component of the γ-secretase complex, and tested for learning and memory in T-maze foot shock avoidance and novel object recognition. Brain tissue was collected to identify the decrease of oxidative stress and to evaluate the proteins that are differently expressed and oxidized after the reduction in free radical levels induced by Aβ. We used both expression proteomics and redox proteomics approaches. In brain of AO-treated mice a decrease of oxidative stress markers was found, and the proteins identified by proteomics as expressed differently or nitrated are involved in processes known to be impaired in AD. Our results suggest that the treatment with AO directed against PS-1 in old SAMP8 mice reverses learning and memory deficits and reduces Aβ-mediated oxidative stress with restoration to the normal condition and identifies possible pharmacological targets to combat this devastating dementing disease.

  8. Neuroprotective role of intermittent fasting in senescence-accelerated mice P8 (SAMP8).

    PubMed

    Tajes, M; Gutierrez-Cuesta, J; Folch, J; Ortuño-Sahagun, D; Verdaguer, E; Jiménez, A; Junyent, F; Lau, A; Camins, A; Pallàs, M

    2010-09-01

    Dietary interventions have been proposed as a way to increase lifespan and improve health. The senescence-accelerated prone 8 (SAMP8) mice have a shorter lifespan and show alterations in the central nervous system. Moreover, this mouse strain shows decreased sirtuin 1 protein expression and elevated expression of the acetylated targets NFkappaB and FoxO1, which are implicated in transcriptional control of key genes in cell proliferation and cell survival, in reference to control strain, SAMR1. After eight weeks of intermittent fasting, sirtuin 1 protein expression was recovered in SAMP8. This recovery was accompanied by a reduction in the two acetylated targets. Furthermore, SAMP8 showed a lower protein expression of BDNF and HSP70 while intermittent fasting re-established normal values. The activation of JNK and FoxO1 was also reduced in SAMP8 mice subjected to an IF regimen, compared with control SAMP8. Our findings provide new insights into the participation of sirtuin 1 in ageing and point to a potential novel application of this enzyme to prevent frailty due to ageing processes in the brain.

  9. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage.

    PubMed

    He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen

    2014-11-15

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that

  10. Melatonin improves inflammation processes in liver of senescence-accelerated prone male mice (SAMP8).

    PubMed

    Cuesta, Sara; Kireev, Roman; Forman, Katherine; García, Cruz; Escames, Germaine; Ariznavarreta, Carmen; Vara, Elena; Tresguerres, Jesús A F

    2010-12-01

    Aging is associated with an increase in oxidative stress and inflammation. The aim of this study was to investigate the effect of aging on various physiological parameters related to inflammation in livers obtained from two types of male mice models: Senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant (SAMR1) mice, and to study the influence of the administration of melatonin (1mg/kg/day) for one month on old SAMP8 mice on these parameters. The parameters studied have been the mRNA expression of TNF-α, iNOS, IL-1β, HO-1, HO-2, MCP1, NFkB1, NFkB2, NFkB protein or NKAP and IL-10. All have been measured by real-time reverse transcription polymerase chain reaction RT-PCR. Furthermore we analyzed the protein expression of TNF-α, iNOS, IL-1β, HO-1, HO-2, and IL-10 by Western-blot. Aging increased oxidative stress and inflammation especially in the liver of SAMP8 mice. Treatment with melatonin decreased the mRNA expression of TNF-α, IL-1β, HO (HO-1 and HO-2), iNOS, MCP1, NFκB1, NFκB2 and NKAP in old male mice. The protein expression of TNF-α, IL-1β was also decreased and IL-10 increased with melatonin treatment and no significant differences were observed in the rest of parameters analyzed. The present study showed that aging was related to inflammation in livers obtained from old male senescence prone mice (SAMP8) and old male senescence resistant mice (SAMR1) being the alterations more evident in the former. Exogenous administration of melatonin was able to reduce inflammation.

  11. Extra virgin olive oil improves learning and memory in SAMP8 mice.

    PubMed

    Farr, Susan A; Price, Tulin O; Dominguez, Ligia J; Motisi, Antonio; Saiano, Filippo; Niehoff, Michael L; Morley, John E; Banks, William A; Ercal, Nuran; Barbagallo, Mario

    2012-01-01

    Polyphenols are potent antioxidants found in extra virgin olive oil (EVOO); antioxidants have been shown to reverse age- and disease-related learning and memory deficits. We examined the effects of EVOO on learning and memory in SAMP8 mice, an age-related learning/memory impairment model associated with increased amyloid-β protein and brain oxidative damage. We administered EVOO, coconut oil, or butter to 11 month old SAMP8 mice for 6 weeks. Mice were tested in T-maze foot shock avoidance and one-trial novel object recognition with a 24 h delay. Mice which received EVOO had improved acquisition in the T-maze and spent more time with the novel object in one-trial novel object recognition versus mice which received coconut oil or butter. Mice that received EVOO had improve T-maze retention compared to the mice that received butter. EVOO increased brain glutathione levels suggesting reduced oxidative stress as a possible mechanism. These effects plus increased glutathione reductase activity, superoxide dismutase activity, and decreased tissue levels of 4-hydroxynoneal and 3-nitrotyrosine were enhanced with enriched EVOO (3 × and 5 × polyphenols concentration). Our findings suggest that EVOO has beneficial effects on learning and memory deficits found in aging and diseases, such as those related to the overproduction of amyloid-β protein, by reversing oxidative damage in the brain, effects that are augmented with increasing concentrations of polyphenols in EVOO.

  12. Modulation of infection-induced inflammation and locomotive deficit and longevity in senescence-accelerated mice-prone (SAMP8) model by the oligomerized polyphenol Oligonol.

    PubMed

    Tomobe, Koji; Fujii, Hajime; Sun, Buxiang; Nishioka, Hiroshi; Aruoma, Okezie I

    2007-08-01

    Oligonol is produced from the oligomerization of polyphenols (typically proanthocyanidin from a variety of fruits such as lychees, grapes, apples, persimmons, etc.) and contains catechin-type monomers and oligomers of proanthocyanidins. The ability of Oligonol to affect infection-dependent eye inflammation, locomotion and longevity in senescence-accelerated prone mice (SAMP8) (a model of senescence acceleration and geriatric disorders with increased oxidative stress and neuronal deficit) was investigated. Oligonol (60mg/kg) significantly modulated the extent of inflammation scores in the eye of SAMP8 mice. Examination of the mice indicated infection with mouse hepatitis virus and pinworm (Syphacia obvelata) in both males and females and with the intestinal protozoa (trichomonad) in males. A comparison of the two groups (using log-rank test) and the difference in the mean life span between groups (using Student's t-test) indicated significant differences in survival (p=0.043) and the mean life span (p=0.033) in male SAMP8 mice. Oligonol increased the mean life span and this was statistically significant. In the open-field locomotive test, the 7-week-old SAMP8 mice crossed more than 40 partitioned lines in 1min. At 48-week-old control untreated male SAMP8 crossed 2 lines. The Oligonol-treated 48-week-old male SAMP8 mice crossed 17 lines however. The improved locomotive activity was statistically significant even after 36weeks in the Oligonol-treated male SAMP8 but this was not the case throughout the time course of the study in the Oligonol-treated female SAMP8. Thus Oligonol treatment to SAMP8 mice modulated the severity of infection-dependent inflammation, prolonged life-span and significantly improved locomotive activity indicating potential benefit to aging-associated diseases such as Alzheimer's or Parkinson's diseases. This presents potential for further research to define infection-dependent inflammation associated with degenerative conditions and the

  13. Cognitive-enhancing effects of hydrolysate of polygalasaponin in SAMP8 mice*

    PubMed Central

    Xu, Pan; Xu, Shu-ping; Wang, Ke-zhu; Lu, Cong; Zhang, Hong-xia; Pan, Rui-le; Qi, Chang; Yang, Yan-yan; Li, Ying-hui; Liu, Xin-min

    2016-01-01

    Objectives: The aim of the study is to evaluate the cognitive-enhancing effects of hydrolysate of polygalasaponin (HPS) on senescence accelerate mouse P8 (SAMP8) mice, an effective Alzheimer’s disease (AD) model, and to research the relevant mechanisms. Methods: The cognitive-enhancing effects of HPS on SAMP8 mice were assessed using Morris water maze (MWM) and step-through passive avoidance tests. Then N-methyl-D-aspartate (NMDA) receptor subunit expression for both the cortex and hippocampus of mice was observed using Western blotting. Results: HPS (25 and 50 mg/kg) improved the escape rate and decreased the escape latency and time spent in the target quadrant for the SAMP8 mice in the MWM after oral administration of HPS for 10 d. Moreover, it decreased error times in the passive avoidance tests. Western blotting showed that HPS was able to reverse the levels of NMDAR1 and NMDAR2B expression in the cortex or hippocampus of model mice. Conclusions: The present study suggested that HPS can improve cognitive deficits in SAMP8 mice, and this mechanism might be associated with NMDA receptor (NMDAR)-related pathways. PMID:27381727

  14. Age-related spatial cognitive impairment is correlated with a decrease in ChAT in the cerebral cortex, hippocampus and forebrain of SAMP8 mice.

    PubMed

    Wang, Feng; Chen, Hong; Sun, Xiaojiang

    2009-05-01

    At present, the mechanisms underlying cognitive disorders remain unclear. The senescence-accelerated mice (SAM) prone/8 (P8) has been proposed as a useful model for the study of aging, and SAM resistant/1 (R1) is its control as a normal aging strain. The purpose of this study was to investigate choline acetyltransferase (ChAT) expression in SAM brain. The age-related decline of learning and memory ability in P8 mice (4, 8 and 12 months old, n=10 for each group) was proved in Morris water maze test (MWM). After the behavioral test, protein and mRNA levels of ChAT were determined in the cerebral cortex, hippocampus and forebrain by means of immunostaining, Western blotting, and real time quantitative PCR (QPCR). Comparing with 4-month-old P8 and R1, 8- and 12-month-old P8 showed age-related cognitive impairment in MWM test. The latencies of the 4-month-old P8 in a hidden platform trial were significantly shorter, and the retention time was significantly longer than that of the older P8 groups. In addition, significantly low level of ChAT protein was observed in older P8 groups. Comparing with the 4-month-old P8, ChAT mRNA in the 12-month-old P8 declined significantly in all three regions of P8 brain. Pearson correlation test showed that the latencies in the MWM were positively correlated with the level of ChAT in P8. Such phenomenon could not be detected in normal aging R1 mice. These findings suggest that the decrease of ChAT in P8 mice was responsible for the age-related learning and memory impairments in some sense.

  15. Regulation of the p19Arf/p53 pathway by histone acetylation underlies neural stem cell behavior in senescence-prone SAMP8 mice

    PubMed Central

    Soriano-Cantón, Raúl; Perez-Villalba, Ana; Morante-Redolat, José Manuel; Marqués-Torrejón, María Ángeles; Pallás, Mercé; Pérez-Sánchez, Francisco; Fariñas, Isabel

    2015-01-01

    Brain aging is associated with increased neurodegeneration and reduced neurogenesis. B1/neural stem cells (B1-NSCs) of the mouse subependymal zone (SEZ) support the ongoing production of olfactory bulb interneurons, but their neurogenic potential is progressively reduced as mice age. Although age-related changes in B1-NSCs may result from increased expression of tumor suppressor proteins, accumulation of DNA damage, metabolic alterations, and microenvironmental or systemic changes, the ultimate causes remain unclear. Senescence-accelerated-prone mice (SAMP8) relative to senescence-accelerated-resistant mice (SAMR1) exhibit signs of hastened senescence and can be used as a model for the study of aging. We have found that the B1-NSC compartment is transiently expanded in young SAMP8 relative to SAMR1 mice, resulting in disturbed cytoarchitecture of the SEZ, B1-NSC hyperproliferation, and higher yields of primary neurospheres. These unusual features are, however, accompanied by premature loss of B1-NSCs. Moreover, SAMP8 neurospheres lack self-renewal and enter p53-dependent senescence after only two passages. Interestingly, in vitro senescence of SAMP8 cells could be prevented by inhibition of histone acetyltransferases and mimicked in SAMR1 cells by inhibition of histone deacetylases (HDAC). Our data indicate that expression of the tumor suppressor p19, but not of p16, is increased in SAMP8 neurospheres, as well as in SAMR1 neurospheres upon HDAC inhibition, and suggest that the SAMP8 phenotype may, at least in part, be due to changes in chromatin status. Interestingly, acute HDAC inhibition in vivo resulted in changes in the SEZ of SAMR1 mice that resembled those found in young SAMP8 mice. PMID:25728253

  16. Effects of dihydrotestosterone on synaptic plasticity of the hippocampus in mild cognitive impairment male SAMP8 mice

    PubMed Central

    Pan, Wensen; Han, Shuo; Kang, Lin; Li, Sha; Du, Juan; Cui, Huixian

    2016-01-01

    The current study focused on how dihydrotestosterone (DHT) regulates synaptic plasticity in the hippocampus of mild cognitive impairment male senescence-accelerated mouse prone 8 (SAMP8) mice. Five-month-old SAMP8 mice were divided into the control, castrated and castrated-DHT groups, in which the mice were castrated and treated with physiological doses of DHT for a period of 2 months. To determine the regulatory mechanisms of DHT in the cognitive capacity, the effects of DHT on the morphology of the synapse and the expression of synaptic marker proteins in the hippocampus were investigated using immunohistochemistry, qPCR and western blot analysis. The results showed that the expression of cAMP-response element binding protein (CREB), postsynaptic density protein 95 (PSD95), synaptophysin (SYN) and developmentally regulated brain protein (Drebrin) was reduced in the castrated group compared to the control group. However, DHT promoted the expression of CREB, PSD95, SYN and Drebrin in the hippocampus of the castrated-DHT group. Thus, androgen depletion impaired the synaptic plasticity in the hippocampus of SAMP8 and accelerated the development of Alzheimer's disease (AD)-like neuropathology, suggesting that a similar mechanism may underlie the increased risk for AD in men with low testosterone. In addition, DHT regulated synaptic plasticity in the hippocampus of mild cognitive impairment (MCI) SAMP8 mice and delayed the progression of disease to Alzheimer's dementia. In conclusion, androgen-based hormone therapy is a potentially useful strategy for preventing the progression of MCI in aging men. Androgens enhance synaptic markers (SYN, PSD95, and Drebrin), activate CREB, modulate the fundamental biology of synaptic structure, and lead to the structural changes of plasticity in the hippocampus, all of which result in improved cognitive function. PMID:27588067

  17. Neuroprotective Properties of Panax notoginseng Saponins via Preventing Oxidative Stress Injury in SAMP8 Mice

    PubMed Central

    Jing, Xin; Tian, Xin; Qin, Mei-Chun; Xu, Zhe-Hao

    2017-01-01

    Inhibiting oxidative damage in early stage of Alzheimer's disease (AD) is considered as a strategy for AD treatment. Our previous study has shown that Panax notoginseng saponins (PNS) have an antiaging action by increasing the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) in the serum of aged rats. In this study, we aimed to investigate the effects of PNS on antioxidant enzymes and uncoupling proteins (UCPs) involved in oxidative stress in AD mice. The results showed that PNS prevented neuronal loss in hippocampal CA1 region and alleviated pathomorphological change of neurons in CA1 region. Moreover, PNS inhibited the production of 8-hydroxydeoxyguanosine (8-OHdG), enhanced the expressions and activities of SOD, CAT, and GSH-PX, and improved the mRNA and protein levels of UCP4 and UCP5 in the brains of SAMP8 mice. Together, our study shows that PNS has the ability to protect neurons in AD brain from oxidative stress damage through attenuating the production of 8-OHdG, enhancing the activities of antioxidant enzymes and the expressions levels of UCP4 and UCP5. Accordingly, PNS may be a promising agent for AD treatment. PMID:28250796

  18. Creatine supplementation augments skeletal muscle carnosine content in senescence-accelerated mice (SAMP8).

    PubMed

    Derave, Wim; Jones, Glenys; Hespel, Peter; Harris, Roger C

    2008-06-01

    The histidine-containing dipeptides (HCD) carnosine and anserine are found in high concentrations in mammalian skeletal muscle. Given its versatile biologic properties, such as antioxidative, antiglycation, and pH buffering capacity, carnosine has been implicated as a protective factor in the aging process. The present study aimed to systematically explore age-related changes in skeletal muscles HCD content in a murine model of accelerated aging. Additionally, we investigated the effect of lifelong creatine supplementation on muscle HCD content and contractile fatiguability. Male senescence-accelerated mice (SAMP8) were fed control or creatine-supplemented (2% of food intake) diet from the age of 10 to 60 weeks. At week 10, 25, and 60, tibialis anterior muscles were dissected and analysed for HCD and taurine content by HPLC. Soleus and EDL muscles were tested for in vitro contractile fatigue and recovery. From 10 to 60 weeks of age, muscular carnosine (-45%), taurine (-24%), and total creatine (-42%) concentrations gradually and significantly decreased. At 25 but not at 60 weeks, oral creatine supplementation significantly increased carnosine (+88%) and anserine (+40%) content compared to age-matched control-fed animals. Taurine and total creatine content were not affected by creatine supplementation at any age. Creatine-treated mice showed attenuated muscle fatigue (soleus) and enhanced force recovery (m. extensor digitorum longus [EDL]) compared to controls at 25 weeks, but not at 60 weeks. From the present study, we can conclude that skeletal muscle tissue exhibits a significant decline in HCD content at old age. Oral creatine supplementation is able to transiently but potently increase muscle carnosine and anserine content, which coincides with improved resistance to contractile fatigue.

  19. Osteoporosis Recovery by Antrodia camphorata Alcohol Extracts through Bone Regeneration in SAMP8 Mice

    PubMed Central

    Liu, Hen-Yu; Huang, Chiung-Fang; Li, Chun-Hao; Tsai, Ching-Yu; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Kuo, Yueh-Hsiung; Cheong, Mei-Leng; Deng, Win-Ping

    2016-01-01

    Antrodia camphorata has previously demonstrated the efficacy in treating cancer and anti-inflammation. In this study, we are the first to evaluate Antrodia camphorata alcohol extract (ACAE) for osteoporosis recovery in vitro with preosteoblast cells (MC3T3-E1) and in vivo with an osteoporosis mouse model established in our previous studies, ovariectomized senescence accelerated mice (OVX-SAMP8). Our results demonstrated that ACAE treatment was slightly cytotoxic to preosteoblast at 25 μg/mL, by which the osteogenic gene expression (RUNX2, OPN, and OCN) was significantly upregulated with an increased ratio of OPG to RANKL, indicating maintenance of the bone matrix through inhibition of osteoclastic pathway. Additionally, evaluation by Alizarin Red S staining showed increased mineralization in ACAE-treated preosteoblasts. For in vivo study, our results indicated that ACAE inhibits bone loss and significantly increases percentage bone volume, trabecular bone number, and bone mineral density in OVX-SAMP8 mice treated with ACAE. Collectively, in vitro and in vivo results showed that ACAE could promote osteogenesis and prevent bone loss and should be considered an evidence-based complementary and alternative medicine for osteoporosis therapy through the maintenance of bone health. PMID:27143981

  20. Osteoporosis Recovery by Antrodia camphorata Alcohol Extracts through Bone Regeneration in SAMP8 Mice.

    PubMed

    Liu, Hen-Yu; Huang, Chiung-Fang; Li, Chun-Hao; Tsai, Ching-Yu; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Kuo, Yueh-Hsiung; Cheong, Mei-Leng; Deng, Win-Ping

    2016-01-01

    Antrodia camphorata has previously demonstrated the efficacy in treating cancer and anti-inflammation. In this study, we are the first to evaluate Antrodia camphorata alcohol extract (ACAE) for osteoporosis recovery in vitro with preosteoblast cells (MC3T3-E1) and in vivo with an osteoporosis mouse model established in our previous studies, ovariectomized senescence accelerated mice (OVX-SAMP8). Our results demonstrated that ACAE treatment was slightly cytotoxic to preosteoblast at 25 μg/mL, by which the osteogenic gene expression (RUNX2, OPN, and OCN) was significantly upregulated with an increased ratio of OPG to RANKL, indicating maintenance of the bone matrix through inhibition of osteoclastic pathway. Additionally, evaluation by Alizarin Red S staining showed increased mineralization in ACAE-treated preosteoblasts. For in vivo study, our results indicated that ACAE inhibits bone loss and significantly increases percentage bone volume, trabecular bone number, and bone mineral density in OVX-SAMP8 mice treated with ACAE. Collectively, in vitro and in vivo results showed that ACAE could promote osteogenesis and prevent bone loss and should be considered an evidence-based complementary and alternative medicine for osteoporosis therapy through the maintenance of bone health.

  1. Regional age-related changes in neuronal nitric oxide synthase (nNOS), messenger RNA levels and activity in SAMP8 brain

    PubMed Central

    Colas, Damien; Gharib, Abdallah; Bezin, Laurent; Morales, Anne; Guidon, Gérard; Cespuglio, Raymond; Sarda, Nicole

    2006-01-01

    Background Nitric oxide (NO) is a multifunctional molecule synthesized by three isozymes of the NO synthase (NOSs) acting as a messenger/modulator and/or a potential neurotoxin. In rodents, the role of NOSs in sleep processes and throughout aging is now well established. For example, sleep parameters are highly deteriorated in senescence accelerated-prone 8 (SAMP8) mice, a useful animal model to study aging or age-associated disorders, while the inducible form of NOS (iNOS) is down-regulated within the cortex and the sleep-structures of the brainstem. Evidence is now increasing for a role of iNOS and resulting oxidative stress but not for the constitutive expressed isozyme (nNOS). To better understand the role of nNOS in the behavioural impairments observed in SAMP8 versus SAMR1 (control) animals, we evaluated age-related variations occurring in the nNOS expression and activity and nitrites/nitrates (NOx-) levels, in three brain areas (n = 7 animals in each group). Calibrated reverse transcriptase (RT) and real-time polymerase chain reaction (PCR) and biochemical procedures were used. Results We found that the levels of nNOS mRNA decreased in the cortex and the hippocampus of 8- vs 2-month-old animals followed by an increase in 12-vs 8-month-old animals in both strains. In the brainstem, levels of nNOS mRNA decreased in an age-dependent manner in SAMP8, but not in SAMR1. Regional age-related changes were also observed in nNOS activity. Moreover, nNOS activity in hippocampus was found lower in 8-month-old SAMP8 than in SAMR1, while in the cortex and the brainstem, nNOS activities increased at 8 months and afterward decreased with age in SAMP8 and SAMR1. NOx- levels showed profiles similar to nNOS activities in the cortex and the brainstem but were undetectable in the hippocampus of SAMP8 and SAMR1. Finally, NOx- levels were higher in the cortex of 8 month-old SAMP8 than in age-matched SAMR1. Conclusion Concomitant variations occurring in NO levels derived from n

  2. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways.

    PubMed

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E

    2014-01-01

    The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.

  3. Cerebrosides from Sea Cucumber Protect Against Oxidative Stress in SAMP8 Mice and PC12 Cells.

    PubMed

    Che, Hongxia; Du, Lei; Cong, Peixu; Tao, Suyuan; Ding, Ning; Wu, Fengjuan; Xue, Changhu; Xu, Jie; Wang, Yuming

    2017-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder. Emerging evidence implicates β-amyloid (Aβ) plays a critical role in the progression of AD. In this study, we investigated the protective effect of cerebrosides obtained from sea cucumber against senescence-accelerated mouse prone 8 (SAMP8) mice in vivo. We also studied the effect of cerebrosides on Aβ-induced cytotoxicity on the rat pheochromocytoma cell (PC12) and the underlying molecular mechanisms. Cerebrosides ameliorated learning and memory deficits and the Aβ accumulation in demented mice, decreased the content of malondialdehyde (MDA), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG), 8-hydroxy-2'-deoxyguanosine (8-oxo-G), and nitric oxide (NO), and enhanced the superoxide dismutase (SOD) activity significantly. The neuroprotective effect of sea cucumber cerebrosides (SCC) was also verified in vitro: the cerebrosides increased the survival rate of PC12 cells, recovered the cellular morphology, downregulated the protein levels of Caspase-9, cleaved Caspase-3, total Caspase-3, and Bax, and upregulated the protein level of Bcl-2, revealing that cerebrosides could inhibit Aβ-induced cell apoptosis. The results showed the protective effect of SCC was regulated by the mitochondria-dependent apoptotic pathway. Our results provide a new approach to developing the marine organisms as functional foods for neuroprotection.

  4. Aβ increases neural stem cell activity in senescence-accelerated SAMP8 mice.

    PubMed

    Díaz-Moreno, María; Hortigüela, Rafael; Gonçalves, Ania; García-Carpio, Irmina; Manich, Gemma; García-Bermúdez, Edurne; Moreno-Estellés, Mireia; Eguiluz, César; Vilaplana, Jordi; Pelegrí, Carme; Vilar, Marçal; Mira, Helena

    2013-11-01

    Neurogenesis persists in the adult brain as a form of plasticity due to the existence of neural stem cells (NSCs). Alterations in neurogenesis have been found in transgenic Alzheimer's disease (AD) mouse models, but NSC activity and neurogenesis in sporadic AD models remains to be examined. We herein describe a remarkable increase in NSC proliferation in the forebrain of SAMP8, a non-transgenic mouse strain that recapitulates the transition from healthy aging to AD. The increase in proliferation is transient, precedes AD-like symptoms such as amyloid beta 1-42 [Aβ(1-42)] increase or gliosis, and is followed by a steep decline at later stages. Interestingly, in vitro studies indicate that secreted Aβ(1-42) and PI3K signaling may account for the early boost in NSC proliferation. Our results highlight the role of soluble Aβ(1-42) peptide and PI3K in the autocrine regulation of NSCs, and further suggest that over-proliferation of NSCs before the appearance of AD pathology may underlie neurogenic failure during the age-related progression of the disease. These findings have implications for therapeutic approaches based on neurogenesis in AD.

  5. MicroRNA-139 modulates Alzheimer's-associated pathogenesis in SAMP8 mice by targeting cannabinoid receptor type 2.

    PubMed

    Tang, Y; Bao, J S; Su, J H; Huang, W

    2017-02-16

    Alzheimer's disease (AD) is a neurodegenerative disorder, and is the most common type of dementia in the elderly population. Growing evidence indicates that microRNAs (miRNAs) play a crucial role in neuroinflammation associated with AD progression. In this study, we analyzed the expression of microRNA-139 (miR-139) as well as the learning and memory function in AD. We observed that the miR-139 expression was significantly higher in the hippocampus of aged senescence accelerated mouse prone 8 (SAMP8) mice (2.92 ± 0.13) than in the control mice (1.49 ± 0.08). Likewise, the overexpression of miR-139 by means of hippocampal injection impaired the hippocampus-dependent learning and memory formation. In contrast, the downregulation of miR-139 in mice improved learning and memory function in the mice. The level of cannabinoid receptor type 2 (CB2), a potential target gene of miR-139, was inversely correlated with the miR-139 expression in primary hippocampal cells. Furthermore, we demonstrated that miR-139 inversely modulated the responses to proinflammatory stimuli. Together, our findings demonstrate that miR-139 exerts a pathogenic effect in AD by modulating CB2-meditated neuroinflammatory processes.

  6. Western-style diet modulates contractile responses to phenylephrine differently in mesenteric arteries from senescence-accelerated prone (SAMP8) and resistant (SAMR1) mice.

    PubMed

    Jiménez-Altayó, Francesc; Onetti, Yara; Heras, Magda; Dantas, Ana P; Vila, Elisabet

    2013-08-01

    The influence of two known cardiovascular risk factors, aging and consumption of a high-fat diet, on vascular mesenteric artery reactivity was examined in a mouse model of accelerated senescence (SAM). Five-month-old SAM prone (SAMP8) and resistant (SAMR1) female mice were fed a Western-type high-fat diet (WD; 8 weeks). Mesenteric arteries were dissected, and vascular reactivity, protein and messenger RNA expression, superoxide anion (O 2 (·-) ) and hydrogen peroxide formation were evaluated by wire myography, immunofluorescence, RT-qPCR, ethidium fluorescence and ferric-xylenol orange, respectively. Contraction to KCl and relaxation to acetylcholine remained unchanged irrespective of senescence and diet. Although similar contractions to phenylephrine were observed in SAMR1 and SAMP8, accelerated senescence was associated with decreased eNOS and nNOS and increased O 2 (·-) synthesis. Senescence-related alterations were compensated, at least partly, by the contribution of NO derived from iNOS and the enhanced endogenous antioxidant capacity of superoxide dismutase 1 to maintain vasoconstriction. Administration of a WD induced qualitatively different alterations in phenylephrine contractions of mesenteric arteries from SAMR1 and SAMP8. SAMR1 showed increased contractions partly as a result of decreased NO availability generated by decreased eNOS and nNOS and enhanced O 2 (·-) formation. In contrast, WD feeding in SAMP8 resulted in reduced contractions due to, at least in part, the increased functional participation of iNOS-derived NO. In conclusion, senescence-dependent intrinsic alterations during early stages of vascular senescence may promote vascular adaptation and predispose to further changes in response to high-fat intake, which may lead to the progression of aging-related cardiovascular disease, whereas young subjects lack the capacity for this adaptation.

  7. Neuroendocrine immunomodulation network dysfunction in SAMP8 mice and PrP-hAβPPswe/PS1ΔE9 mice: potential mechanism underlying cognitive impairment

    PubMed Central

    Wang, Jian-hui; Cheng, Xiao-rui; Zhang, Xiao-rui; Wang, Tong-xing; Xu, Wen-jian; Li, Fei; Liu, Feng; Cheng, Jun-ping; Bo, Xiao-chen; Wang, Sheng-qi; Zhou, Wen-xia; Zhang, Yong-xiang

    2016-01-01

    Senescence-accelerated mouse prone 8 strain (SAMP8) and PrP-hAβPPswe/PS1ΔE9 (APP/PS1) mice are classic animal models of sporadic Alzheimer's disease and familial AD respectively. Our study showed that object recognition memory, spatial learning and memory, active and passive avoidance were deteriorated and neuroendocrine immunomodulation (NIM) network was imbalance in SAMP8 and APP/PS1 mice. SAMP8 and APP/PS1 mice had their own specific phenotype of cognition, neuroendocrine, immune and NIM molecular network. The endocrine hormone corticosterone, luteinizing hormone and follicle-stimulating hormone, chemotactic factor monocyte chemotactic protein-1, macrophage inflammatory protein-1β, regulated upon activation normal T cell expressed and secreted factor and eotaxin, pro-inflammatory factor interleukin-23, and the Th1 cell acting as cell immunity accounted for cognitive deficiencies in SAMP8 mice, while adrenocorticotropic hormone and gonadotropin-releasing hormone, colony stimulating factor granulocyte colony stimulating factor, and Th2 cell acting as humoral immunity in APP/PS1 mice. On the pathway level, chemokine signaling and T cell receptor signaling pathway played the key role in cognition impairments of two models, while cytokine-cytokine receptor interaction and natural killer cell mediated cytotoxicity were more important in cognitive deterioration of SAMP8 mice than APP/PS1 mice. This mechanisms of NIM network underlying cognitive impairment is significant for further understanding the pathogenesis of AD and can provide useful information for development of AD therapeutic drug. PMID:27049828

  8. High-fat diet intake from senescence inhibits the attenuation of cell functions and the degeneration of villi with aging in the small intestine, and inhibits the attenuation of lipid absorption ability in SAMP8 mice.

    PubMed

    Yamamoto, Kazushi; E, Shuang; Hatakeyama, Yu; Sakamoto, Yu; Tsuduki, Tsuyoshi

    2015-11-01

    We examined the effect of a high-fat diet from senescence as a means of preventing malnutrition among the elderly. The senescence-accelerated mouse P8 was used and divided into three groups. The 6C group was given a normal diet until 6 months old. The 12N group was given a normal diet until 12 months old. The 12F group was given a normal diet until 6 months old and then a high-fat diet until 12 months old. In the oral fat tolerance test, there was a decrease in area under the curve for serum triacylglycerol level in the 12N group and a significant increase in the 12F group, suggesting that the attenuation of lipid absorption ability with aging was delayed by a high-fat diet from senescence. To examine this mechanism, histological analysis in the small intestine was performed. As a result, the degeneration of villi with aging was inhibited by the high-fat diet. There was also a significant decrease in length of villus in the small intestine in the 12N group and a significant increase in the 12F group. The high-fat diet from senescence inhibited the degeneration of villi with aging in the small intestine, and inhibited the attenuation of lipid absorption ability.

  9. Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice

    PubMed Central

    Mackenzie, Amelia C. L.; Lee, Se-Jin; Chaffin, Charles L.; Merchenthaler, István

    2016-01-01

    Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called “egg infertility.” A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women. PMID:26713784

  10. Resveratrol Protects SAMP8 Brain Under Metabolic Stress: Focus on Mitochondrial Function and Wnt Pathway.

    PubMed

    Palomera-Avalos, V; Griñán-Ferré, C; Puigoriol-Ilamola, D; Camins, A; Sanfeliu, C; Canudas, A M; Pallàs, M

    2017-04-01

    Metabolic stress induced by high-fat (HF) diet leads to cognitive dysfunction and aging, but the physiological mechanisms are not fully understood. Senescence-accelerated prone mouse (SAMP8) models were conducted under metabolic stress conditions by feeding HF for 15 weeks, and the preventive effect of resveratrol was studied. This dietary strategy demonstrates cognitive impairment in SAMP8-HF and significant preventive effect by resveratrol-treated animals. Hippocampal changes in the proteins involved in mitochondrial dynamics optic atrophy-1 protein (OPA1) and mitofusin 2 (MFN2) comprised a differential feature found in SAMP8-HF that was prevented by resveratrol. Electronic microscopy showed a larger mitochondria in SAMP8-HF + resveratrol (SAMP8-HF + RV) than in SAMP8-HF, indicating increases in fusion processes in resveratrol-treated mice. According to the mitochondrial morphology, significant increases in the I-NDUFB8, II-SDNB, III-UQCRC2, and V-ATPase complexes, in addition to that of voltage-dependent anion channel 1 (VDAC1)/porin, were found in resveratrol-treated animals with regard to SAMP8-HF, reaching control-animal levels. Moreover, tumor necrosis factor alpha (TNF-α) and interleukin (IL-6) were increased after HF, and resveratrol prevents its increase. Moreover, we found that the HF diet affected the Wnt pathway, as demonstrated by β-catenin inactivation and modification in the expression of several components of this pathway. Resveratrol induced strong activation of β-catenin. The metabolic stress rendered in the cognitive and cellular pathways altered in SAMP8 focus on different targets in order to act on preventing cognitive impairment in neurodegeneration, and resveratrol can offer therapeutic possibilities for preventive strategies in aging or neurodegenerative conditions.

  11. The protective effect of eicosapentaenoic acid-enriched phospholipids from sea cucumber Cucumaria frondosa on oxidative stress in PC12 cells and SAMP8 mice.

    PubMed

    Wu, Feng-Juan; Xue, Yong; Liu, Xiao-Fang; Xue, Chang-Hu; Wang, Jing-Feng; Du, Lei; Takahashi, Koretaro; Wang, Yu-Ming

    2014-01-01

    Alzheimer's disease (AD) is a common neurodegenerative disorders, in which oxidative stress plays an important role. The present study investigated the effect of eicosapentaenoic acid-enriched phospholipids (EPA-enriched PL) from the sea cucumber Cucumaria frondosa on oxidative injury in PC12 cells induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide (t-BHP). We also studied the effect of EPA-enriched PL on learning and memory functions in senescence-accelerated prone mouse strain 8 (SAMP8) in vivo. Pretreatment with EPA-enriched PL resulted in an enhancement of survival in a dose-dependent manner in H2O2 or t-BHP damaged PC12 cells. EPA-enriched PL pretreatment could also reduce the leakage of lactate dehydrogenase (LDH), and increase the intracellular total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity compared with the H2O2 or t-BHP group. The down-regulated Bcl-2 mRNA level and up-regulated Bax, Caspase-9, and Caspase-3 mRNA expression induced by H2O2 or t-BHP could be restored by EPA-enriched PL pretreatment. These results demonstrated that EPA-enriched PL exhibited its neuroprotective effects by virtue of its antioxidant activity, which might be achieved by inhibiting the mitochondria-dependent apoptotic pathway. The neuroprotective effect of EPA-enriched PL was also verified in vivo test: the EPA-enriched PL administration prevented the development of learning and memory impairments in SAMP8 mice. Our results indicated that EPA-enriched PL could offer an efficient and novel strategy to explore novel drugs or functional food for neuronprotection and cognitive improvement.

  12. Greater nucleic acids oxidation in the temporal lobe than the frontal lobe in SAMP8.

    PubMed

    Shi, Fei; Gan, Wei; Nie, Ben; Takagi, Yasumitsu; Hayakawa, Hiroshi; Sekiguchi, Mutsuo; Cai, Jian-Ping

    2012-05-30

    Our previous studies have shown that substantial amounts of 8-oxoguanine are present in the DNA and RNA in the hippocampi of old senescence-accelerated mice (SAMP8); however, oxidative damage to DNA and RNA in the other regions of the brain from a month after birth to the onset of aging has not been examined completely. In this study, we analyzed the amount of 8-oxoguanine in DNA and RNA in the temporal and frontal lobes of SAMP8 during aging by the immunohistochemical method. Compared with age-matched control acceleration-resistant mice (SAMR1), 8- and 12-month-old SAMP8 had increased amounts of 8-oxoguanine in the DNA and RNA in the frontal lobe, whereas in the temporal lobe, this trend began to appear as early as 4 months. The levels of 8-oxoguanine in the temporal lobe were significantly higher than those in the frontal lobe. These results indicate that nucleic acid oxidative damage occurs as an age-associated phenomenon, and can occur more easily in the temporal lobe than in the frontal lobe of SAMP8.

  13. Antisense Oligonucleotide Against GSK-3β in Brain of SAMP8 Mice Improves Learning and Memory and Decreases Oxidative Stress: Involvement of Transcription Factor Nrf2 and Implications for Alzheimer Disease

    PubMed Central

    Farr, Susan A.; Ripley, Jessica L.; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L.; Platt, Thomas L.; Murphy, M. Paul; Morley, John E.; Kumar, Vijaya; Butterfield, D. Allan

    2014-01-01

    Glycogen synthase kinase (GSK) -3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer’s disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ) and neurodegeneration. In this study we used 12 month old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured indicating decreased oxidative stress. Nuclear factor erythroid -2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with

  14. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease.

    PubMed

    Farr, Susan A; Ripley, Jessica L; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L; Platt, Thomas L; Murphy, M Paul; Morley, John E; Kumar, Vijaya; Butterfield, D Allan

    2014-02-01

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased

  15. Neurochemistry, neuropathology, and heredity in SAMP8: a mouse model of senescence.

    PubMed

    Tomobe, Koji; Nomura, Yasuyuki

    2009-04-01

    The SAMP8 strain spontaneously develops learning and memory deficits with characteristics of aging, and is a good model for studying the mechanism of cognitive dysfunction with age. Oxidative stress occurs systemically in SAMP8 from early on in life and increases with aging. Neuropathological changes such as the deposition of A beta, hyperphosphorylation of tau, impaired development of dendritic spines, and sponge formation, and neurochemical changes were found in the SAMP8 brain. These changes may be partially mediated by oxidative stress. Oxidative damage is a major factor in neurodegenerative disorders and aging. A decline in the respiratory control ratio suggesting mitochondrial dysfunction was found in the brain of SAMP8. The rise in oxidative stress following mitochondrial dysfunction may trigger neuropathological and neurochemical changes, disrupting the development of neural networks in the brain in SAMP8.

  16. Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice.

    PubMed

    Currais, Antonio; Prior, Marguerite; Lo, David; Jolivalt, Corinne; Schubert, David; Maher, Pamela

    2012-12-01

    Mounting evidence supports a link between diabetes, cognitive dysfunction, and aging. However, the physiological mechanisms by which diabetes impacts brain function and cognition are not fully understood. To determine how diabetes contributes to cognitive dysfunction and age-associated pathology, we used streptozotocin to induce type 1 diabetes (T1D) in senescence-accelerated prone 8 (SAMP8) and senescence-resistant 1 (SAMR1) mice. Contextual fear conditioning demonstrated that T1D resulted in the development of cognitive deficits in SAMR1 mice similar to those seen in age-matched, nondiabetic SAMP8 mice. No further cognitive deficits were observed when the SAMP8 mice were made diabetic. T1D dramatically increased Aβ and glial fibrillary acidic protein immunoreactivity in the hippocampus of SAMP8 mice and to a lesser extent in age-matched SAMR1 mice. Further analysis revealed aggregated Aβ within astrocyte processes surrounding vessels. Western blot analyses from T1D SAMP8 mice showed elevated amyloid precursor protein processing and protein glycation along with increased inflammation. T1D elevated tau phosphorylation in the SAMR1 mice but did not further increase it in the SAMP8 mice where it was already significantly higher. These data suggest that aberrant glucose metabolism potentiates the aging phenotype in old mice and contributes to early stage central nervous system pathology in younger animals.

  17. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.

  18. Limited hippocampal neurogenesis in SAMP8 mouse model of Alzheimer's disease.

    PubMed

    Gang, Baozhi; Yue, Cen; Han, Na; Xue, Hongjuan; Li, Baoxin; Sun, Lihua; Li, Xuelian; Zhao, Qingjie

    2011-05-10

    Increasing adult neurogenesis in the hippocampal formation (HF) has been proposed as a potential foundation for neuronal repair in Alzheimer's disease (AD), but the evidence remains controversial. We used P8 strain of senescence-accelerated mice (SAMP8) as a model of AD to investigate changes in adult neurogenesis. We examined new proliferating cells and their survival in the dentate gyrus (DG) of the HF using 5-bromodeoxyuridine (BrdU) labeling and investigated newborn cell development and differentiation with a combination of phenotype markers. In 5-month-old SAMP8, the number of BrdU(+) cells in the DG was significantly increased relative to controls, in accordance with the rising numbers of doublecortin-positive (DCX(+)) immature neurons. Some of these BrdU(+) cells migrated to cornu ammonis 1 (CA1), possibly related to the compensation of neuronal loss. However, the capacity of neurogenesis to compensate neuronal loss during neurodegeneration was limited. First, only half of the BrdU(+) cells survived 4weeks after mitosis, and even fewer developed into neuron-specific nuclear protein positive (NeuN(+)) mature neurons. Second, the number of BrdU(+) cells and DCX(+) cells was decreased in 10-month-old SAMP8, which exhibited progressive neurodegeneration. In addition, the results provided insight into astrocytes as a crucial component of the neurogenic niche. The number of newborn astrocytes and expression of glial fibrillary acidic protein (GFAP) were diminished in the DG of SAMP8 animals, possibly explaining the insufficient neurogenesis. Thus, stimulating limited neurogenesis in AD by improving the neurogenic niche may have therapeutic potential.

  19. Analyses of mRNA Profiling through RNA Sequencing on a SAMP8 Mouse Model in Response to Ginsenoside Rg1 and Rb1 Treatment

    PubMed Central

    Zhang, Shuai; Zhu, Dina; Li, Hong; Zhang, Haijing; Feng, Chengqiang; Zhang, Wensheng

    2017-01-01

    Ginsenoside Rg1 and Rb1 are the major ingredients in two medicines called QiShengLi (Z20027165) and QiShengJing (Z20027164) approved by China. These ingredients are believed to mitigate forgetfulness. Numerous studies have confirmed that GRg1 and GRb1 offer protection against Alzheimer's disease (AD), and our morris water maze (MWM) experiment also indicated that GRg1 and GRb1 may attenuate memory deficits in the 7-month-old SAMP8 mice; however, comprehensive understanding of their roles in AD remains limited. This study systematically explored the mechanism at the genome level of the anti-AD effects of GRg1 and GRb1 in a senescence-accelerated mouse prone 8 (SAMP8) model through deep RNA sequencing. A total of 74,885 mRNA transcripts were obtained. Expression analysis showed that 1,780 mRNA transcripts were differentially expressed in SAMP8 mice compared with the SAMP8+GRg1 mice. Moreover, 1,066 significantly dysregulated mRNA transcripts were identified between SAMP8 and SAMP8+GRb1 mice. Analyses according to gene ontology and the Kyoto Encyclopedia of Genes and Genomes revealed that oral administration of GRg1 and GRb1 improved the learning performance of the SAMP8 mouse model from various aspects, such as nervous system development and mitogen-activated protein kinase signaling pathway. The most probable AD-related transcriptional responses after medication were predicted and discussed in detail. This study is the first to provide a systematic dissection of mRNA profiling in SAMP8 mouse brain in response to GRg1 and GRb1 treatment. We explained their efficacy thoroughly from the source (gene-level explanation). The findings serve as a theoretical basis for the exploration of GRg1 and GRb1 as functional drugs with anti-AD activity. PMID:28289387

  20. Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model.

    PubMed

    Cuesta, Sara; Kireev, Roman; García, Cruz; Forman, Katherine; Escames, Germaine; Vara, Elena; Tresguerres, Jesús A F

    2011-01-01

    This study has investigated the effect of aging on parameters of inflammation, oxidative stress and apoptosis in pancreas obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and resistant mice (SAMR1). Animals of 2 (young) and 10 months of age (old) were used (n = 64). The influence of the administration of melatonin in the drinking water for one month at two different dosages (1 and 10mg/(kg day) on old SAMP8 mice on these parameters was also studied. SAMP8 mice showed with age a significant increase in the relative expression of pancreatic genes involved in inflammation, oxidative stress and apoptosis. Furthermore the protein expression of several NFκB subunits was also enhanced. On the contrary aged SAMR1 mice did not show significant increases in these parameters. Melatonin administration to SAMP8 mice was able to reduce these age related alterations at the two used dosages.

  1. Cardiological aging in SAM model: effect of chronic treatment with growth hormone.

    PubMed

    Forman, K; Vara, E; García, C; Ariznavarreta, C; Escames, G; Tresguerres, J A F

    2010-06-01

    The purpose of this study was to investigate the effect of aging on different parameters related to inflammation, oxidative stress and apoptosis in hearts from two types of male mice models: senescence-accelerated mice (SAM-P8) and senescence-accelerated-resistant (SAM-R1), and the influence of chronic administration of Growth Hormone (GH) on old SAM-P8 mice. Forty male mice were used. Animals were divided into five experimental groups: two 10 month old untreated groups (SAM-P8/SAM-R1), two 2 month old young groups (SAM-P8/SAM-R1) and one 10 month old group (SAM-P8) treated with GH for 30 days. The expression of tumor necrosis factor-alpha, interleukin 1, interleukin 10, heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases, NFkB, Bad, Bax and Bcl-2 were determined by real-time reverse transcription polymerase chain reaction (RT-PCR). Results were submitted to a two way ANOVA statistical evaluation using the Statgraphics program. Inflammation, as well as, oxidative stress and apoptosis markers were increased in the heart of old SAM-P8 males, as compared to young controls and this situation was not observed in the old SAM-R1 mice. Exogenous GH administration reverted the effect of aging in the described parameters of old SAM-P8 mice. Our results suggest that inflammation, apoptosis and oxidative stress could play an important role in the observed cardiovascular alterations related to aging of SAM-P8 mice and that GH may play a potential protective effect on the cardiovascular system of these animals.

  2. Environmental Enrichment Modified Epigenetic Mechanisms in SAMP8 Mouse Hippocampus by Reducing Oxidative Stress and Inflammaging and Achieving Neuroprotection

    PubMed Central

    Griñan-Ferré, Christian; Puigoriol-Illamola, Dolors; Palomera-Ávalos, Verónica; Pérez-Cáceres, David; Companys-Alemany, Júlia; Camins, Antonio; Ortuño-Sahagún, Daniel; Rodrigo, M. Teresa; Pallàs, Mercè

    2016-01-01

    With the increase in life expectancy, aging and age-related cognitive impairments are becoming one of the most important issues for human health. At the same time, it has been shown that epigenetic mechanisms are emerging as universally important factors in life expectancy. The Senescence Accelerated Mouse P8 (SAMP8) strain exhibits age-related deterioration evidenced in learning and memory abilities and is a useful model of neurodegenerative disease. In SAMP8, Environmental Enrichment (EE) increased DNA-methylation levels (5-mC) and reduced hydroxymethylation levels (5-hmC), as well as increased histone H3 and H4 acetylation levels. Likewise, we found changes in the hippocampal gene expression of some chromatin-modifying enzyme genes, such as Dnmt3b. Hdac1. Hdac2. Sirt2, and Sirt6. Subsequently, we assessed the effects of EE on neuroprotection-related transcription factors, such as the Nuclear regulatory factor 2 (Nrf2)–Antioxidant Response Element pathway and Nuclear Factor kappa Beta (NF-κB), which play critical roles in inflammation. We found that EE produces an increased expression of antioxidant genes, such as Hmox1. Aox1, and Cox2, and reduced the expression of inflammatory genes such as IL-6 and Cxcl10, all of this within the epigenetic context modified by EE. In conclusion, EE prevents epigenetic changes that promote or drive oxidative stress and inflammaging. PMID:27803663

  3. Influence of aging and growth hormone on different members of the NFkB family and IkB expression in the heart from a murine model of senescence-accelerated aging.

    PubMed

    Forman, K; Vara, E; García, C; Kireev, R; Cuesta, S; Acuña-Castroviejo, D; Tresguerres, J A F

    2016-01-01

    Inflammation is related to several pathological processes. The aim of this study was to investigate the protein expression of the different subunits of the nuclear factor Kappa b (NFkBp65, p50, p105, p52, p100) and the protein expressions of IkB beta and alpha in the hearts from a murine model of accelerated aging (SAM model) by Western blot. In addition, the translocation of some isoforms of NFkB from cytosol to nuclei (NFkBp65, p50, p52) and ATP level content was studied. In addition we investigated the effect of the chronic administration of growth hormone (GH) on these age-related parameters. SAMP8 and SAMR1 mice of 2 and 10 months of age were used (n = 30). Animals were divided into five experimental groups: 2 old untreated (SAMP8/SAMR1), 2 young control (SAMP8/SAMR1) and one GH treated-old groups (SAMP8). Age-related changes were found in the studied parameters. We were able to see decreases of ATP level contents and the translocation of the nuclear factor kappa B p50, p52 and p65 from cytosol to nuclei in old SAMP8 mice together with a decrease of IKB proteins. However p100 and p105 did not show differences with aging. No significant changes were recorded in SAMR1 animals. GH treatment showed beneficial effects in old SAMP8 mice inducing an increase in ATP levels and inhibiting the translocation of some NFkB subunits such as p52. Our results supported the relation of NFkB activation with enhanced apoptosis and pro-inflammatory status in old SAMP8 mice and suggested a selective beneficial effect of the GH treatment, which was able to partially reduce the incidence of some deleterious changes in the heart of those mice.

  4. A comprehensive multiomics approach toward understanding the relationship between aging and dementia.

    PubMed

    Currais, Antonio; Goldberg, Joshua; Farrokhi, Catherine; Chang, Max; Prior, Marguerite; Dargusch, Richard; Daugherty, Daniel; Armando, Aaron; Quehenberger, Oswald; Maher, Pamela; Schubert, David

    2015-11-01

    Because age is the greatest risk factor for sporadic Alzheimer's disease (AD), phenotypic screens based upon old age-associated brain toxicities were used to develop the potent neurotrophic drug J147. Since certain aspects of aging may be primary cause of AD, we hypothesized that J147 would be effective against AD-associated pathology in rapidly aging SAMP8 mice and could be used to identify some of the molecular contributions of aging to AD. An inclusive and integrative multiomics approach was used to investigate protein and gene expression, metabolite levels, and cognition in old and young SAMP8 mice. J147 reduced cognitive deficits in old SAMP8 mice, while restoring multiple molecular markers associated with human AD, vascular pathology, impaired synaptic function, and inflammation to those approaching the young phenotype. The extensive assays used in this study identified a subset of molecular changes associated with aging that may be necessary for the development of AD.

  5. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier.

    PubMed

    Yanai, Shuichi; Toyohara, Jun; Ishiwata, Kiichi; Ito, Hideki; Endo, Shogo

    2017-04-01

    Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2-(18)F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity.

  6. Mechanisms of aging in senescence-accelerated mice

    PubMed Central

    Carter, Todd A; Greenhall, Jennifer A; Yoshida, Shigeo; Fuchs, Sebastian; Helton, Robert; Swaroop, Anand; Lockhart, David J; Barlow, Carrolee

    2005-01-01

    Background Progressive neurological dysfunction is a key aspect of human aging. Because of underlying differences in the aging of mice and humans, useful mouse models have been difficult to obtain and study. We have used gene-expression analysis and polymorphism screening to study molecular senescence of the retina and hippocampus in two rare inbred mouse models of accelerated neurological senescence (SAMP8 and SAMP10) that closely mimic human neurological aging, and in a related normal strain (SAMR1) and an unrelated normal strain (C57BL/6J). Results The majority of age-related gene expression changes were strain-specific, with only a few common pathways found for normal and accelerated neurological aging. Polymorphism screening led to the identification of mutations that could have a direct impact on important disease processes, including a mutation in a fibroblast growth factor gene, Fgf1, and a mutation in and ectopic expression of the gene for the chemokine CCL19, which is involved in the inflammatory response. Conclusion We show that combining the study of inbred mouse strains with interesting traits and gene-expression profiling can lead to the discovery of genes important for complex phenotypes. Furthermore, full-genome polymorphism detection, sequencing and gene-expression profiling of inbred mouse strains with interesting phenotypic differences may provide unique insights into the molecular genetics of late-manifesting complex diseases. PMID:15960800

  7. Beneficial effect of melatonin treatment on age-related insulin resistance and on the development of type 2 diabetes.

    PubMed

    Tresguerres, Jesus A F; Cuesta, Sara; Kireev, Roman A; Garcia, Cruz; Acuña-Castroviejo, Dario; Vara, Elena

    2013-12-01

    Abstract This paper will review the effect of aging on glucose metabolism and insulin resistance in pancreas and in peripheral tissues and how melatonin administration could affect these parameters. In SAMP8 mice insulin levels in plasma were found to be increased together with enhanced HOMA-IR values, whereas insulin content in pancreas showed a decrease with aging. Aging in SAMP8 mice was also associated with a significant increase in the relative expression of both protein and mRNA of different pro-inflammatory mediators. Furthermore, aging was associated with a decrease in the expression of Pdx-1, FoxO 1 and FoxO 3A and Sirt 1 in pancreas SAMP8 samples. Melatonin administration was able to reduce these age-related alterations, decreasing plasma insulin levels and increasing its pancreatic content in SAMP8 mice. HOMA-IR was decreased with melatonin treatment in all animals. Conversely, in SAMP8 mice, melatonin treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin. Furthermore it was also able to increase the expression of Sirt 1, Pdx-1 and FoxO 3A. The present study has shown that aging is associated with significant alterations in the relative expression of pancreatic genes involved in both insulin secretion and glucose metabolism and that these are associated with an increase in inflammation and oxidative stress. Melatonin administration was able to reduce oxidative stress and inflammation and thus to improve pancreatic function in old mice. By doing so, insulin resistance is diminished and plasma insulin is reduced, enhancing insulin pancreatic content and reducing plasma glucose levels and HOMA index.

  8. Tooth loss early in life accelerates age-related bone deterioration in mice.

    PubMed

    Kurahashi, Minori; Kondo, Hiroko; Iinuma, Mitsuo; Tamura, Yasuo; Chen, Huayue; Kubo, Kin-ya

    2015-01-01

    Both osteoporosis and tooth loss are health concerns that affect many older people. Osteoporosis is a common skeletal disease of the elderly, characterized by low bone mass and microstructural deterioration of bone tissue. Chronic mild stress is a risk factor for osteoporosis. Many studies showed that tooth loss induced neurological alterations through activation of a stress hormone, corticosterone, in mice. In this study, we tested the hypothesis that tooth loss early in life may accelerate age-related bone deterioration using a mouse model. Male senescence-accelerated mouse strain P8 (SAMP8) mice were randomly divided into control and toothless groups. Removal of the upper molar teeth was performed at one month of age. Bone response was evaluated at 2, 5 and 9 months of age. Tooth loss early in life caused a significant increase in circulating corticosterone level with age. Osteoblast bone formation was suppressed and osteoclast bone resorption was activated in the toothless mice. Trabecular bone volume fraction of the vertebra and femur was decreased in the toothless mice with age. The bone quality was reduced in the toothless mice at 5 and 9 months of age, compared with the age-matched control mice. These findings indicate that tooth loss early in life impairs the dynamic homeostasis of the bone formation and bone resorption, leading to reduced bone strength with age. Long-term tooth loss may have a cumulative detrimental effect on bone health. It is important to take appropriate measures to treat tooth loss in older people for preventing and/or treating senile osteoporosis.

  9. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging.

    PubMed

    Forman, Katherine; Vara, Elena; García, Cruz; Kireev, Roman; Cuesta, Sara; Acuña-Castroviejo, Darío; Tresguerres, J A F

    2010-10-01

    This study investigated the effect of aging-related parameters such as inflammation, oxidative stress and cell death in the heart in an animal model of accelerated senescence and analyzed the effects of chronic administration of melatonin on these markers. Thirty male mice of senescence-accelerated prone (SAMP8) and 30 senescence-accelerated-resistant mice (SAMR1) at 2 and 10 months of age were used. Animals were divided into eight experimental groups, four from each strain: two young control groups, two old untreated control groups, and four melatonin-treated groups. Melatonin was provided at two different dosages (1 and 10 mg/kg/day) in the drinking water. After 30 days of treatment, the expression of inflammatory mediators (tumor necrosis factor-alpha, interleukin 1 and 10, NFkBp50 and NFkBp52), apoptosis markers (BAD, BAX and Bcl2) and parameters related to oxidative stress (heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases) were determined in the heart by real-time reverse transcription polymerase chain reaction (RT-PCR). Inflammation, as well as, oxidative stress and apoptosis markers was increased in old SAMP8 males, when compared to its young controls. SAMR1 mice showed significantly lower basal levels of the measured parameters and smaller increases with age or no increases at all. After treatment with melatonin, these age-altered parameters were partially reversed, especially in SAMP8 mice. The results suggest that oxidative stress and inflammation increase with aging and that chronic treatment with melatonin, a potent antioxidant, reduces these parameters. The effects were more marked in the SAMP8 animals.

  10. Resilience in Aging Mice.

    PubMed

    Kirkland, James L; Stout, Michael B; Sierra, Felipe

    2016-11-01

    Recently discovered interventions that target fundamental aging mechanisms have been shown to increase life span in mice and other species, and in some cases, these same manipulations have been shown to enhance health span and alleviate multiple age-related diseases and conditions. Aging is generally associated with decreases in resilience, the capacity to respond to or recover from clinically relevant stresses such as surgery, infections, or vascular events. We hypothesize that the age-related increase in susceptibility to those diseases and conditions is driven by or associated with the decrease in resilience. Thus, a test for resilience at middle age or even earlier could represent a surrogate approach to test the hypothesis that an intervention delays the process of aging itself. For this, animal models to test resilience accurately and predictably are needed. In addition, interventions that increase resilience might lead to treatments aimed at enhancing recovery following acute illnesses, or preventing poor outcomes from medical interventions in older, prefrail subjects. At a meeting of basic researchers and clinicians engaged in research on mechanisms of aging and care of the elderly, the merits and drawbacks of investigating effects of interventions on resilience in mice were considered. Available and potential stressors for assessing physiological resilience as well as the notion of developing a limited battery of such stressors and how to rank them were discussed. Relevant ranking parameters included value in assessing general health (as opposed to focusing on a single physiological system), ease of use, cost, reproducibility, clinical relevance, and feasibility of being repeated in the same animal longitudinally. During the discussions it became clear that, while this is an important area, very little is known or established. Much more research is needed in the near future to develop appropriate tests of resilience in animal models within an aging context

  11. Changes in nerve- and endothelium-mediated contractile tone of the corpus cavernosum in a mouse model of pre-mature ageing.

    PubMed

    Lafuente-Sanchis, A; Triguero, D; Garcia-Pascual, A

    2014-07-01

    Erectile dysfunction (ED) is very prevalent in the older population, although the ageing-related mechanisms involved in the development of ED are poorly understood. We propose that age-induced differences in nerve- and endothelium-mediated smooth muscle contractility in the corpus cavernosum (CC) could be found between a senescent-accelerated mouse prone (SAMP8) and senescent-accelerated mouse resistant (SAMR1) strains. We analysed the changes in muscle tension induced by electrical field stimulation (EFS) or agonist addition 'in vitro', assessing nerve density (adrenergic, cholinergic and nitrergic), the expression of endothelial nitric oxide synthase (eNOS), cGMP accumulation and the distribution of interstitial cells (ICs) by immunofluorescence. We observed no change in both the nerve-dependent adrenergic excitatory contractility at physiological levels of stimulation and in the nitrergic inhibitory response in SAMP8 animals. Unlike cholinergic innervation, the density of adrenergic and nitrergic nerves increased in SAMP8 mice. In contrast, smooth muscle sensitivity to exogenous noradrenaline (NA) was slightly reduced, whereas cGMP accumulation in response to EFS and DEA/NO, and relaxations to DEA/NO and sildenafil, were not modified. No changes in the expression of eNOS and in the distribution of vimentin-positive ICs were detected in the aged animals. The ACh induced atropine-sensitive biphasic endothelium-dependent responses involved relaxation at low concentrations that turned into contractions at the highest doses. CC relaxation was mainly because of the production of NO together with some relaxant prostanoid, which did not change in SAMP8 animals. In contrast, the contractile component was considerably higher in the aged animals and it was completely inhibited by indomethacin. In conclusion, a clear imbalance towards enhanced production of contractile prostanoids from the endothelium may contribute to ED in the elderly. On the basis of these data, we

  12. Age-related alterations in the expression of glial cell line-derived neurotrophic factor in the senescence-accelerated mouse brain.

    PubMed

    Miyazaki, Hiroyuki; Okuma, Yasunobu; Nomura, Jun; Nagashima, Kazuo; Nomura, Yasuyuki

    2003-05-01

    Senescence-accelerated mouse prone 8 (SAMP8) and prone 10 (SAMP10) are useful murine model of accelerated aging. SAMP8 shows marked impairment of learning and memory, whereas SAMP10 shows brain atrophy and aging-associated depressive behavior. This study examined the expression of glial cell line-derived neurotrophic factor (GDNF) in SAMP8 and SAMP10 brains, relative to that in SAM resistant 1 (SAMR1) controls, which age normally. Hippocampal GDNF mRNA expression decreased in an age-dependent manner (10- vs 2-month-old animals) in the SAMR1, but not in the SAMP8 or SAMP10 strains. Furthermore, GDNF mRNA expression in 2-month-old SAMP8 and SAMP10 strains was less than in SAMR1 specimens of the same age. The number of surviving neurons in the CA1 region decreased with age in SAMP8 and SAMP10, and also decreased relative to the number of neurons in 10-month-old SAMR1 controls. Immunohistochemistry revealed that cells that were positive for GDNF-like activity in 10-month-old SAMP8 and SAMP10 were diffusely distributed, in part, around the pyramidal cell layer in the hippocampus. These findings suggest that low GDNF expression in young SAMP8 and SAMP10 may be involved in hippocampal dysfunctions, such as age-related learning impairment and neuronal death.

  13. Practical pathology of aging mice

    PubMed Central

    Pettan-Brewer, Christina; Treuting, Piper M.

    2011-01-01

    Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington. PMID:22953032

  14. Rhein lysinate decreases the generation of β-amyloid in the brain tissues of Alzheimer's disease model mice by inhibiting inflammatory response and oxidative stress.

    PubMed

    Liu, Jiang; Hu, Gang; Xu, Rong; Qiao, Yue; Wu, He-Ping; Ding, Xun; Duan, Peng; Tu, Ping; Lin, Ya-Jun

    2013-07-01

    The protective effect of rhein lysinate (RHL) on Alzheimer's disease (AD) was explored in senescence-accelerated mouse prone-8 (SAMP8) mice. SAMP8 mice without treatment were used as the AD-positive control, and senescence-accelerated-resistant mice were used as the AD-negative control. In this study, 4-month-old male SAMP8 mice were orally administered 25 and 50 mg/kg RHL in drinking water for 6 months. The results of brain tissue enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and Western blot were demonstrated that compared with SAMP8 group, β-amyloid1-40 and β-amyloid1-42 were reduced; the levels of tumor necrosis factor-α and interleukin 6 of brain tissues were also significantly decreased; however, the level of sirtuin 1 (SIRT1) was increased in the RHL-treated group. Compared with SAMP8 group, the ROS levels and malondialdehyde levels were decreased; however, superoxide dismutase and glutathione peroxidase levels were increased in the brain tissues of SAMP8 25 and 50 mg/kg RHL-treated groups. In conclusion, the reduction of Aβ induced by RHL was related to the increase of SIRT1 and the inhibition of the inflammatory response and oxidative stress in SAMP8 mice. It might be a promising biological therapeutic drug for AD.

  15. Chronic stress impairs learning and hippocampal cell proliferation in senescence-accelerated prone mice.

    PubMed

    Yan, Weihong; Zhang, Ting; Jia, Weiping; Sun, Xiaojiang; Liu, Xueyuan

    2011-02-25

    Chronic stress can induce cognitive impairment. It is unclear whether a higher susceptibility to chronic stress is associated with the progression of pathological brain aging. Senescence-accelerated prone mouse 8 (SAMP8) is a naturally occurring animal model of accelerated brain aging. Senescence-accelerated resistant mouse 1 (SAMR1) is usually used as the normal control. In this study, we examined the effects of chronic restraint stress (CRS) on learning in the Y-maze, hippocampal cell proliferation, and the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of 4-month-old SAMP8 and SAMR1. The results showed that exposure to CRS impaired learning and hippocampal cell proliferation in SAMP8 and SAMR1 but to a much greater extent in SAMP8. Furthermore, CRS significantly decreased the expression of BDNF protein and mRNA in the hippocampus of SAMP8 and SAMR1. These data indicated that SAMP8 is more sensitive to the deleterious effects of CRS on learning than SAMR1. A greater decrease in hippocampal cell proliferation caused by chronic stress may be part of the underlying mechanism for the more severe learning deficit observed in SAMP8. In addition, our findings suggested a role of BDNF in the stress-induced impairment of learning and hippocampal cell proliferation in both strains.

  16. Mutagenic safety and fatty liver improvement of nanonized black soybeans in senescence-accelerated prone-8 mice.

    PubMed

    Liao, J-W; Hong, L-Z; Wang, M-F; Tsai, S-C; Lin, Y-J; Chan, Y-C

    2010-06-01

    Nanotechnology, as a new enabling technology, has the potential to revolutionize food systems. However, much attention has been focused on nanoparticle foods due to their potential physiological properties. This study was aimed to evaluate the mutagenic safety and fatty liver improvement of black soybean in senescence-accelerated mice (SAMP8). The mutagenic activity of black soybeans was investigated using the Ames test (Salmonella Typhimurium TA98, 100, 102, and 1535). Furthermore, senescence-accelerated prone-8 mice (SAMP8) have been reported to display spontaneous fatty liver. Male SAMP8 mice were divided into control and supplemented with 10% micronized or nanonized black soybeans diet and fed for 12 wk. The results revealed that the Ames test of micronized and nanonized black soybeans exhibited no mutagenicity. Administration of black soybeans to mice showed no effects on food intake and body and organ weights. The nanonized black soybean group had a lower degree of spontaneous fatty liver, alanine aminotransferase, and thiobarbituric acid-reactive substance concentrations, and had enhanced superoxide dismutase, catalase, and glutathione peroxidase activities of livers when compared with the SAMP8 control and micronized black soybean groups. The mice fed with black soybeans had significantly lower triglyceride concentrations than the SAMP8 control group. The results of this study suggest that nanonized black soybeans have no side effects and, moreover, may minimize liver lesions in SAMP8 mice.

  17. Aging Selectively Modulates Vitamin C Transporter Expression Patterns in the Kidney.

    PubMed

    Forman, Katherine; Martínez, Fernando; Cifuentes, Manuel; Bertinat, Romina; Salazar, Katterine; Nualart, Francisco

    2016-07-27

    In the kidney, vitamin C is reabsorbed from the glomerular ultrafiltrate by sodium-vitamin C cotransporter isoform 1 (SVCT1) located in the brush border membrane of the proximal tubules. Although we know that vitamin C levels decrease with age, the adaptive physiological mechanisms used by the kidney for vitamin C reabsorption during aging remain unknown. In this study, we used an animal model of accelerated senescence (SAMP8 mice) to define the morphological alterations and aging-induced changes in the expression of vitamin C transporters in renal tissue. Aging induced significant morphological changes, such as periglomerular lymphocytic infiltrate and glomerular congestion, in the kidneys of SAMP8 mice, although no increase in collagen deposits was observed using 2-photon microscopy analysis and second harmonic generation. The most characteristic histological alteration was the dilation of intracellular spaces in the basolateral region of proximal tubule epithelial cells. Furthermore, a combination of laser microdissection, qRT-PCR and immunohistochemical analyses allowed us to determine that SVCT1 expression specifically increased in the proximal tubules from the outer strip of the outer medulla (segment S3) and cortex (segment S2) during aging and that these tubules also express GLUT1. We conclude that aging modulates vitamin C transporter expression and that renal over-expression of SVCT1 enhances vitamin C reabsorption in aged animals that may synthesize less vitamin C. This article is protected by copyright. All rights reserved.

  18. 1'-Acetoxychavicol acetate ameliorates age-related spatial memory deterioration by increasing serum ketone body production as a complementary energy source for neuronal cells.

    PubMed

    Kojima-Yuasa, Akiko; Yamamoto, Tomiya; Yaku, Keisuke; Hirota, Shiori; Takenaka, Shigeo; Kawabe, Kouichi; Matsui-Yuasa, Isao

    2016-09-25

    1'-Acetoxychavicol acetate (ACA) is naturally obtained from the rhizomes and seeds of Alpinia galangal. Here, we examined the effect of ACA on learning and memory in senescence-accelerated mice prone 8 (SAMP8). In mice that were fed a control diet containing 0.02% ACA for 25 weeks, the learning ability in the Morris water maze test was significantly enhanced in comparison with mice that were fed the control diet alone. In the Y-maze test, SAMP8 mice showed decreased spontaneous alterations in comparison with senescence-accelerated resistant/1 (SAMR1) mice, a homologous control, which was improved by ACA pretreatment. Serum metabolite profiles were obtained by GC-MS analysis, and each metabolic profile was plotted on a 3D score plot. Based upon the diagram, it can be seen that the distribution areas for the three groups were completely separate. Furthermore, the contents of β-hydroxybutyric acid and palmitic acid in the serum of SAMP8-ACA mice were higher than those of SAMP8-control mice and SAMR1-control mice. We also found that SAMR1 mice did not show histological abnormalities, whereas histological damage in the CA1 region of the hippocampus in SAMP8-control mice was observed. However, SAMP8-ACA mice were observed in a similar manner as SAMR1 mice. These findings confirm that ACA increases the serum concentrations of β-hydroxybutyric acid and palmitic acid levels and thus these fuels might contribute to the maintenance of the cognitive performance of SAMP8 mice.

  19. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline.

    PubMed

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-08-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline.

  20. Age-Related Alterations in the Metabolic Profile in the Hippocampus of the Senescence-Accelerated Mouse Prone 8: A Spontaneous Alzheimer's Disease Mouse Model

    PubMed Central

    Wang, Hualong; Lian, Kaoqi; Han, Bing; Wang, Yanyong; Kuo, Sheng-Han; Geng, Yuan; Qiang, Jing; Sun, Meiyu; Wang, Mingwei

    2015-01-01

    Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD. PMID:24284365

  1. Electroencephalographic changes with age in male mice.

    PubMed

    Eleftheriou, B E; Zolovick, A J; Elias, M F

    1975-01-01

    Electroencephalographic (EEG) changes, as measured by the awake state, slow-wave sleep (SWS), rapid-eye movement (REM) patterns and ratio of REM/total sleep, were recorded in aging male mice of DBA/2J and C57BL/6J strains. Results indicate that there is a significant increase in the awake state accompanied by significant decrease in SWS with advancing age for both strains, although these changes appear more pronounced in DBA/2J mice than C57BL/6J mice. Of considerable significance is the finding that REM sleep is absent in mice of DBA/2J strain at 23.5 months of age. Based on these findings, the conclusion was reached that strain DBA/2J ages significantly faster than C57BL/6J. The difference in aging between the two strains emphasizes the need for additional studies dealing with genetic aspects of aging.

  2. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    ERIC Educational Resources Information Center

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  3. Melatonin decreases the expression of inflammation and apoptosis markers in the lung of a senescence-accelerated mice model.

    PubMed

    Puig, Ángela; Rancan, Lisa; Paredes, Sergio D; Carrasco, Adrián; Escames, Germaine; Vara, Elena; Tresguerres, Jesús A F

    2016-03-01

    Aging is associated with an increase in oxidative stress and inflammation. The aging lung is particularly affected since it is continuously exposed to environmental oxidants while antioxidant machinery weakens with age. Melatonin, a free radical scavenger, counteracts inflammation and apoptosis in healthy cells from several tissues. Its effects on the aging lung are, however, not yet fully understood. This study aimed to investigate the effect of chronic administration of melatonin on the expression of inflammation markers (TNF-α, IL-1β, NFκB2, HO-1) and apoptosis parameters (BAD, BAX, AIF) in the lung tissue of male senescence-accelerated prone mice (SAMP8). In addition, RNA oxidative damage, as the formation of 8-hydroxyguanosine (8-OHG), was also evaluated. Young and old animals, aged 2 and 10 months respectively, were divided into 4 groups: untreated young, untreated old, old mice treated with 1mg/kg/day melatonin, and old animals treated with 10mg/kg/day melatonin. Untreated young and old male senescence accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed. Lungs were collected and immediately frozen in liquid nitrogen. mRNA and protein expressions were measured by RT-PCR and Western blotting, respectively. Levels of 8-OHG were quantified by ELISA. Mean values were analyzed using ANOVA. Old nontreated SAMP8 animals showed increased (p<0.05) mRNA and protein levels of TNF-α, IL-1β, NFκB2, and HO-1 compared to young mice and SAMR1 mice. Melatonin treatment with either dose reversed the aging-derived inflammation (p<0.05). BAD, BAX and AIF expressions also rose with aging, the effect being counteracted with melatonin (p<0.05). Aging also caused a significant elevation (p<0.05) in SAMP8 8-OHG values. This increase was not observed in animals treated with melatonin (p<0.05). In conclusion, melatonin treatment was able to modulate the inflammatory and apoptosis status of the aging lungs, exerting a

  4. Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma.

    PubMed

    Liu, Hen-Yu; Huang, Chiung-Fang; Lin, Tzu-Chieh; Tsai, Ching-Yu; Tina Chen, Szu-Yu; Liu, Alice; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Williams, David F; Deng, Win-Ping

    2014-12-01

    Aging is related to loss of functional stem cell accompanying loss of tissue and organ regeneration potentials. Previously, we demonstrated that the life span of ovariectomy-senescence accelerated mice (OVX-SAMP8) was significantly prolonged and similar to that of the congenic senescence-resistant strain of mice after platelet rich plasma (PRP)/embryonic fibroblast transplantation. The aim of this study is to investigate the potential of PRP for recovering cellular potential from senescence and then delaying animal aging. We first examined whether stem cells would be senescent in aged mice compared to young mice. Primary adipose derived stem cells (ADSCs) and bone marrow derived stem cells (BMSCs) were harvested from young and aged mice, and found that cell senescence was strongly correlated to animal aging. Subsequently, we demonstrated that PRP could recover cell potential from senescence, such as promote cell growth (cell proliferation and colony formation), increase osteogenesis, decrease adipogenesis, restore cell senescence related markers and resist the oxidative stress in stem cells from aged mice. The results also showed that PRP treatment in aged mice could delay mice aging as indicated by survival, body weight and aging phenotypes (behavior and gross morphology) in term of recovering the cellular potential of their stem cells compared to the results on aged control mice. In conclusion these findings showed that PRP has potential to delay aging through the recovery of stem cell senescence and could be used as an alternative medicine for tissue regeneration and future rejuvenation.

  5. Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1

    PubMed Central

    Fujitsuka, N; Asakawa, A; Morinaga, A; Amitani, M S; Amitani, H; Katsuura, G; Sawada, Y; Sudo, Y; Uezono, Y; Mochiki, E; Sakata, I; Sakai, T; Hanazaki, K; Yada, T; Yakabi, K; Sakuma, E; Ueki, T; Niijima, A; Nakagawa, K; Okubo, N; Takeda, H; Asaka, M; Inui, A

    2016-01-01

    Caloric restriction (CR) is known to retard aging and delay functional decline as well as the onset of diseases in most organisms. Ghrelin is secreted from the stomach in response to CR and regulates energy metabolism. We hypothesized that in CR ghrelin has a role in protecting aging-related diseases. We examined the physiological mechanisms underlying the ghrelin system during the aging process in three mouse strains with different genetic and biochemical backgrounds as animal models of accelerated or normal human aging. The elevated plasma ghrelin concentration was observed in both klotho-deficient and senescence-accelerated mouse prone/8 (SAMP8) mice. Ghrelin treatment failed to stimulate appetite and prolong survival in klotho-deficient mice, suggesting the existence of ghrelin resistance in the process of aging. However, ghrelin antagonist hastened death and ghrelin signaling potentiators rikkunshito and atractylodin ameliorated several age-related diseases with decreased microglial activation in the brain and prolonged survival in klotho-deficient, SAMP8 and aged ICR mice. In vitro experiments, the elevated sirtuin1 (SIRT1) activity and protein expression through the cAMP–CREB pathway was observed after ghrelin and ghrelin potentiator treatment in ghrelin receptor 1a-expressing cells and human umbilical vein endothelial cells. Furthermore, rikkunshito increased hypothalamic SIRT1 activity and SIRT1 protein expression of the heart in the all three mouse models of aging. Pericarditis, myocardial calcification and atrophy of myocardial and muscle fiber were improved by treatment with rikkunshito. Ghrelin signaling may represent one of the mechanisms activated by CR, and potentiating ghrelin signaling may be useful to extend health and lifespan. PMID:26830139

  6. Mechanism of Isoflavone Aglycone's Effect on Cognitive Performance of Senescence-Accelerated Mice

    ERIC Educational Resources Information Center

    Yang, Hong; Jin, Guifang; Ren, Dongdong; Luo, Sijing; Zhou, Tianhong

    2011-01-01

    This study investigated the effect of isoflavone aglycone (IA) on the learning and memory performance of senescence-accelerated mice, and explored its neural protective mechanism. Results showed that SAM-P/8 senescence-accelerated mice treated with IA performed significantly better in the Y-maze cognitive test than the no treatment control (P less…

  7. Unexpected regeneration in middle-aged mice.

    PubMed

    Reines, Brandon; Cheng, Lily I; Matzinger, Polly

    2009-02-01

    Complete regeneration of damaged extremities, including both the epithelium and the underlying tissues, is thought to occur mainly in embryos, fetuses, and juvenile mammals, but only very rarely in adult mammals. Surprisingly, we found that common strains of mice are able to regenerate all of the tissues necessary to completely fill experimentally punched ear holes, but only if punched at middle age. Although young postweaning mice regrew the epithelium without typical pre-scar granulation tissue, they showed only minimal regeneration of connective tissues. In contrast, mice punched at 5-11 months of age showed true amphibian-like blastema formation and regrowth of cartilage, fat, and dermis, with blood vessels, sebaceous glands, hair follicles, and, in black mice, melanocytes. These data suggest that at least partial appendage regeneration may be more common in adult mammals than previously thought and call into question the common view that regenerative ability is lost with age. The data suggest that the age at which various inbred mouse strains become capable of epimorphic regeneration may be correlated with adult body weight.

  8. Unexpected Regeneration in Middle-Aged Mice

    PubMed Central

    Cheng, Lily I.; Matzinger, Polly

    2009-01-01

    Abstract Complete regeneration of damaged extremities, including both the epithelium and the underlying tissues, is thought to occur mainly in embryos, fetuses, and juvenile mammals, but only very rarely in adult mammals. Surprisingly, we found that common strains of mice are able to regenerate all of the tissues necessary to completely fill experimentally punched ear holes, but only if punched at middle age. Although young postweaning mice regrew the epithelium without typical pre-scar granulation tissue, they showed only minimal regeneration of connective tissues. In contrast, mice punched at 5–11 months of age showed true amphibian-like blastema formation and regrowth of cartilage, fat, and dermis, with blood vessels, sebaceous glands, hair follicles, and, in black mice, melanocytes. These data suggest that at least partial appendage regeneration may be more common in adult mammals than previously thought and call into question the common view that regenerative ability is lost with age. The data suggest that the age at which various inbred mouse strains become capable of epimorphic regeneration may be correlated with adult body weight. PMID:19226206

  9. Oligomerised lychee fruit-derived polyphenol attenuates cognitive impairment in senescence-accelerated mice and endoplasmic reticulum stress in neuronal cells.

    PubMed

    Sakurai, Takuya; Kitadate, Kentaro; Nishioka, Hiroshi; Fujii, Hajime; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Fujiwara, Tomonori; Akagawa, Kimio; Izawa, Tetsuya; Ohno, Hideki

    2013-11-14

    Recently, the ability of polyphenols to reduce the risk of dementia and Alzheimer's disease (AD) has attracted a great deal of interest. In the present study, we investigated the attenuating effects of oligomerised lychee fruit-derived polyphenol (OLFP, also called Oligonol) on early cognitive impairment. Male senescence-accelerated mouse prone 8 (SAMP8) mice (4 months old) were given OLFP (100 mg/kg per d) for 2 months, and then conditioned fear memory testing was conducted. Contextual fear memory, which is considered hippocampus-dependent memory, was significantly impaired in SAMP8 mice compared with non-senescence-accelerated mice. OLFP attenuated cognitive impairment in SAMP8 mice. Moreover, the results of real-time PCR analysis that followed DNA array analysis in the hippocampus revealed that, compared with SAMP8 mice, the mRNA expression of Wolfram syndrome 1 (Wfs1) was significantly higher in SAMP8 mice administered with OLFP. Wfs1 reportedly helps to protect against endoplasmic reticulum (ER) stress, which is thought to be one of the causes for AD. The expression of Wfs1 was significantly up-regulated in NG108-15 neuronal cells by the treatment with OLFP, and the up-regulation was inhibited by the treatment of the cells with a c-Jun N-terminal kinase-specific inhibitor rather than with an extracellular signal-regulated kinase inhibitor. Moreover, OLFP significantly attenuated the tunicamycin-induced expression of the ER stress marker BiP (immunoglobulin heavy chain-binding protein) in the cells. These results suggest that OLFP has an attenuating effect on early cognitive impairment in SAMP8 mice, and diminishes ER stress in neuronal cells.

  10. Changes in nerve-mediated contractility of the lower urinary tract in a mouse model of premature ageing

    PubMed Central

    Triguero, D; Lafuente-Sanchis, A; Garcia-Pascual, A

    2014-01-01

    Background and Purpose A high incidence of lower urinary tract disorders is associated with ageing. In the senescent-accelerated prone (SAMP8) mouse strain and the senescent-accelerated resistant (SAMR1) strain, we compared smooth muscle contractility in responses to intrinsic neurotransmitters, both in the bladder and urethra. Experimental Approach We analysed micturition frequency, the changes in muscle tension induced by electrical field stimulation or agonist administration, the density of nerves (adrenergic, cholinergic and nitrergic) and interstitial cells (ICs), as well as cGMP accumulation in bladder and urethral preparations. Key Results Senescent mice of the SAMP8 strain displayed increased micturition frequency and excitatory contractility of neurogenic origin in the bladder. While cholinergic nerve density remained unchanged, there was a mild sensitization to ACh in male mice. Potentiation in the detrusor may be also provoked by the stronger contribution of ATP, together with reduced adrenergic innervation in males and COX-derived prostanoid production in females. The greater excitatory contractility in the urethra was probably due to the sensitization to noradrenaline, in conjunction with attenuated nitrergic relaxation. There were also fewer neuronal NOS immunoreactive (ir) nerves and vimentin-positive ICs, although the sildenafil-and diethylamine-NONOate-induced relaxations and cGMP-ir remained unchanged. Conclusions and Implications Premature senescent mice exhibit bladder and urethral hyperexcitability, coupled with reduced urethral relaxation of neurogenic origin, which could model the impaired urinary function in elderly humans. We propose that senescence-accelerated mice provide a useful tool to analyse the basic mechanisms of age-related changes in bladder and urethral function. PMID:24372152

  11. Moxidectin toxicity in senescence-accelerated prone and resistant mice.

    PubMed

    Lee, Vanessa K; Tiwary, Asheesh K; Sharma-Reddy, Prachi; Lieber, Karen A; Taylor, Douglas K; Mook, Deborah M

    2009-06-01

    Moxidectin has been used safely as an antiparasitic in many animal species, including for the eradication of the mouse fur mite, Mycoptes musculinus. Although no side effects of moxidectin have previously been reported to occur in mice, 2 strains of the senescence-accelerated mouse (SAMP8 and SAMR1) sustained considerable mortality after routine prophylactic treatment. To investigate the mechanism underlying this effect, moxidectin toxicosis in these mice was evaluated in a controlled study. Moxidectin was applied topically (0.015 mg), and drug concentrations in both brain and serum were analyzed by using HPLC coupled with mass spectrometry. The moxidectin concentration in brain of SAMP8 mice was 18 times that in controls, and that in brain of SAMR1 mice was 14 times higher than in controls, whereas serum moxidectin concentrations did not differ significantly among the 3 strains. Because deficiency of the blood-brain barrier protein P-glycoprotein leads to sensitivity to this class of drugs in other SAM mice, Pgp immunohistochemistry of brain sections from a subset of mice was performed to determine whether this commercially available analysis could predict sensitivity to this class of drug. The staining analysis showed no difference among the strains of mice, indicating that this test does not correlate with sensitivity. In addition, no gross or histologic evidence of organ toxicity was found in brain, liver, lung, or kidney. This report shows that topically applied moxidectin at a standard dose accumulates in the CNS causing toxicosis in both SAMP8 and SAMR1 mice.

  12. Western-type diet induces senescence, modifies vascular function in non-senescence mice and triggers adaptive mechanisms in senescent ones.

    PubMed

    Onetti, Yara; Jiménez-Altayó, Francesc; Heras, Magda; Vila, Elisabet; Dantas, Ana Paula

    2013-12-01

    The effects of high-fat diet ingestion on senescence-induced modulation of contractile responses to phenylephrine (Phe) were determined in aortas of senescence-accelerated (SAMP8) and non-senescent (SAMR1) mice fed (8weeks) a Western-type high-fat diet (WD). Increased levels of senescence-associated β-galactosidase staining were found in aortas of SAMP8 and SAMR1 with WD. In SAMR1, WD did not modify Phe contraction in spite of inducing major changes in the mechanisms of regulation of contractile responses. Although WD increased NAD(P)H-oxidase-derived O2(-) and augmented peroxynitrite formation, we found an increase of inducible NOS (iNOS)-derived NO production which may contribute to maintain Phe contraction in SAMR1 WD. On SAMP8, WD significantly decreased Phe-induced contractions when compared with SAMP8 under normal chow. This response was not dependent on changes of NOS expression, but rather as consequence of increased antioxidant capacity by superoxide dismutase (SOD1). A similar constrictor influence from cyclooxygenase (COX) pathway on Phe responses was found in SAMR1 and SAMP8 ND. However, WD removed that influence on SAMR1, and produced a switch in the balance from a vasoconstrictor to a vasodilator component in SAMP8. These results were associated to the increased COX-2 expression, suggesting that a COX-2-derived vasodilator prostaglandin may contribute to the vascular adaptations after WD intake. Taken together, our data suggest that WD plays a detrimental role in the vasculature of non-senescent mice by increasing pro-inflammatory (iNOS) and pro-oxidative signaling pathways and may contribute to increase vascular senescence. In senescent vessels, however, WD triggers different intrinsic compensatory alterations which include increase of antioxidant activity by SOD1 and vasodilator prostaglandin production via COX-2.

  13. Lipopolysaccharide-induced lethality and cytokine production in aged mice.

    PubMed Central

    Tateda, K; Matsumoto, T; Miyazaki, S; Yamaguchi, K

    1996-01-01

    This study was designed to define the lipopolysaccharide (LPS) sensitivity of aged mice in terms of lethality and cytokine production and to determine down-regulating responses of corticosterone and interleukin 10 (IL-10). The 50% lethal doses of LPS in young (6- to 7-week-old) and aged (98- to 102-week-old) mice were 601 and 93 microg per mouse (25.6 and 1.6 mg per kg of body weight), respectively. Aged mice were approximately 6.5-fold more sensitive to the lethal toxicity of LPS in micrograms per mouse (16-fold more sensitive in milligrams per kilogram) than young mice. Levels in sera of tumor necrosis factor-alpha (TNF-alpha) IL-1alpha, and IL-6 after intraperitoneal injection of 100 microg of LPS peaked at 1.5, 3, and 3 h, respectively, and declined thereafter in both groups of mice. However, the peak values of these cytokines were significantly higher in aged than in young mice (P < 0.05). Gamma interferon (IFN-gamma) was detectable at 3 h, and sustained high levels were still detected after 12 h in both age groups. Although there were no significant differences in levels of IFN-gamma in sera from both groups, aged mice showed higher IFN-gamma levels throughout the 3- to 12-h study period. Administration of increasing doses of LPS revealed that aged mice had a lower threshold to IL-1alpha production than young mice. In addition, aged mice were approximately 4-fold more sensitive to the lethal toxicity of exogenous TNF in units per mouse (10-fold more sensitive in units per kilogram) than young mice. With regard to down-regulating factors, corticosterone amounts were similar at basal levels and no differences in kinetics after the LPS challenge were observed, whereas IL-10 levels in sera were significantly higher in aged mice at 1.5 and 3 h than in young mice (P < 0.01). These results indicate that aged mice are more sensitive to the lethal toxicities of LPS and TNF than young mice. We conclude that a relatively activated, or primed, state for LPS

  14. Rhabdomyosarcomas in Aging A/J Mice

    PubMed Central

    Sher, Roger B.; Cox, Gregory A.; Mills, Kevin D.; Sundberg, John P.

    2011-01-01

    Rhabdomyosarcomas (RSCs) are skeletal muscle neoplasms found in humans and domestic mammals. The A/J inbred strain developed a high frequency (between 70–80%) of adult pleomorphic type (APT) RSC at >20 months of age while BALB/cByJ also develop RSC but less frequently. These neoplasms invaded skeletal muscle surrounding either the axial or proximal appendicular skeleton and were characterized by pleomorphic cells with abundant eosinophilic cytoplasm, multiple nuclei, and cross striations. The diagnosis was confirmed by detection of alpha-sarcomeric actin and myogenin in the neoplastic cells using immunocytochemistry. The A/J strain, but not the related BALB/c substrains, is also characterised by a progressive muscular dystrophy homologous to limb-girdle muscular dystrophy type 2B. The association between the development of RSC in similar muscle groups to those most severely affected by the progressive muscular dystrophy suggested that these neoplasms developed from abnormal regeneration of the skeletal muscle exacerbated by the dysferlin mutation. Transcriptome analyses of RSCs revealed marked downregulation of genes in muscular development and function signaling networks. Non-synonymous coding SNPs were found in Myl1, Abra, Sgca, Ttn, and Kcnj12 suggesting these may be important in the pathogenesis of RSC. These studies suggest that A strains of mice can be useful models for dissecting the molecular genetic basis for development, progression, and ultimately for testing novel anticancer therapeutic agents dealing with rhabdomyosarcoma. PMID:21853140

  15. Exercise Enhances Learning and Hippocampal Neurogenesis in Aged Mice

    PubMed Central

    Praag, Henriette van; Shubert, Tiffany; Zhao, Chunmei; Gage, Fred H.

    2005-01-01

    Aging causes changes in the hippocampus that may lead to cognitive decline in older adults. In young animals, exercise increases hippocampal neurogenesis and improves learning. We investigated whether voluntary wheel running would benefit mice that were sedentary until 19 months of age. Specifically, young and aged mice were housed with or without a running wheel and injected with bromodeoxyuridine or retrovirus to label newborn cells. After 1 month, learning was tested in the Morris water maze. Aged runners showed faster acquisition and better retention of the maze than age-matched controls. The decline in neurogenesis in aged mice was reversed to 50% of young control levels by running. Moreover, fine morphology of new neurons did not differ between young and aged runners, indicating that the initial maturation of newborn neurons was not affected by aging. Thus, voluntary exercise ameliorates some of the deleterious morphological and behavioral consequences of aging. PMID:16177036

  16. Neutrophil depletion delays wound repair in aged mice

    PubMed Central

    Nishio, Naomi; Okawa, Yayoi; Sakurai, Hidetoshi

    2008-01-01

    One of the most important clinical problems in caring for elderly patients is treatment of pressure ulcers. One component of normal wound healing is the generation of an inflammatory reaction, which is characterized by the sequential infiltration of neutrophils, macrophages and lymphocytes. Neutrophils migrate early in the wound healing process. In aged C57BL/6 mice, wound healing is relatively inefficient. We examined the effects of neutrophil numbers on wound healing in both young and aged mice. We found that the depletion of neutrophils by anti-Gr-1 antibody dramatically delayed wound healing in aged mice. The depletion of neutrophils in young mice had less effect on the kinetics of wound healing. Intravenous G-CSF injection increased the migration of neutrophils to the wound site. While the rate of wound repair did not change significantly in young mice following G-CSF injection, it increased significantly in old mice. PMID:19424869

  17. Spontaneous development of autoimmune sialadenitis in aging BDF1 mice.

    PubMed Central

    Hayashi, Y.; Kurashima, C.; Utsuyama, M.; Hirokawa, K.

    1988-01-01

    This study reports that spontaneous autoimmune sialadenitis developed in aging female, rather than male, BDF1 mice. The lesions first appeared in 6-month-old female BDF1 mice and were aggravated with advancing age, especially in 24-month-old and 30-month-old senescent mice. In contrast, significant inflammatory changes did not develop in aging male BDF1 mice. The presence of antisalivary duct antibody was found in sera from mice with sialadenitis. The infiltrating cells in the lesions of submandibular salivary glands were mainly composed of T cells, especially Lyt 1+ and L3T4+ cells. Moreover, mild inflammatory lesions were observed in parotid, sublingual salivary glands, pancreas, or kidneys in some mice that developed spontaneously occurring sialadenitis. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3260751

  18. Atrial structure, function and arrhythmogenesis in aged and frail mice

    PubMed Central

    Jansen, Hailey J.; Moghtadaei, Motahareh; Mackasey, Martin; Rafferty, Sara A.; Bogachev, Oleg; Sapp, John L.; Howlett, Susan E.; Rose, Robert A.

    2017-01-01

    Atrial fibrillation (AF) is prevalent in aging populations; however not all individuals age at the same rate. Instead, individuals of the same chronological age can vary in health status from fit to frail. Our objective was to determine the impacts of age and frailty on atrial function and arrhythmogenesis in mice using a frailty index (FI). Aged mice were more frail and demonstrated longer lasting AF compared to young mice. Consistent with this, aged mice showed longer P wave duration and PR intervals; however, both parameters showed substantial variability suggesting differences in health status among mice of similar chronological age. In agreement with this, P wave duration and PR interval were highly correlated with FI score. High resolution optical mapping of the atria demonstrated reduced conduction velocity and action potential duration in aged hearts that were also graded by FI score. Furthermore, aged mice had increased interstitial fibrosis along with changes in regulators of extracellular matrix remodelling, which also correlated with frailty. These experiments demonstrate that aging results in changes in atrial structure and function that create a substrate for atrial arrhythmias. Importantly, these changes were heterogeneous due to differences in health status, which could be identified using an FI. PMID:28290548

  19. Chronic stress impairs collateral blood flow recovery in aged mice.

    PubMed

    Lassance-Soares, Roberta M; Sood, Subeena; Chakraborty, Nabarun; Jhamnani, Sunny; Aghili, Nima; Nashin, Hajra; Hammamieh, Rasha; Jett, Marti; Epstein, Stephen E; Burnett, Mary Susan

    2014-11-01

    Chronic stress is associated with increased risk of cardiovascular diseases. Aging is also associated with vascular dysfunction. We hypothesize that chronic stress accelerates collateral dysfunction in old mice. Mice were subjected to either chronic social defeat (CSD) or chronic cold stress (CCS). The CSD mice were housed in a box inside an aggressor's cage and exposed to the aggressor. The CCS group was placed in iced water. After chronic stress, mice underwent femoral artery ligation (FAL) and flow recovery was measured. For the CSD group, appearance and use scores of the foot and a behavioral test were performed. CSD impaired collateral flow recovery after FAL. Further, stressed mice had greater ischemic damage, impaired foot function, and altered behavior. The CCS mice also showed impaired collateral flow recovery. Chronic stress causes hind limb collateral dysfunction in old mice, a conclusion reinforced by the fact that two types of stress produced similar changes.

  20. Hhip haploinsufficiency sensitizes mice to age-related emphysema.

    PubMed

    Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong; Qiu, Weiliang; Guo, Feng; Huang, Chunfang; Mancini, John Dominic; Gupta, Kushagra; Laucho-Contreras, Maria E; Naing, Zun Zar Chi; Zhang, Li; Perrella, Mark A; Owen, Caroline A; Silverman, Edwin K; Zhou, Xiaobo

    2016-08-09

    Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip.

  1. Respiratory and sniffing behaviors throughout adulthood and aging in mice

    PubMed Central

    Wesson, Daniel W.; Varga-Wesson, Adrienn G.; Borkowski, Anne H.; Wilson, Donald A.

    2011-01-01

    Orienting responses are physiological and active behavioral reactions evoked by novel stimulus perception and are critical for survival. We explored whether odor orienting responses are impacted throughout both adulthood and normal and pathological aging in mice. Novel odor investigation (including duration and bout numbers) and its subsequent habituation as assayed in the odor habituation task were preserved in adult C57BL/6J mice up to 12mo of age with <6% variability between age groups in investigation time. Separately, using whole-body plethysmography we found that both spontaneous respiration and odor-evoked sniffing behaviors were strikingly preserved in wildtype (WT) mice up to 26mo of age. In contrast, mice accumulating amyloid-β protein in the brain by means of overexpressing mutations in the human amyloid precursor protein gene (APP) showed preserved spontaneous respiration up to 12mo, but starting at 14mo showed significant differences from WT. Similar to WTs, odor-evoked sniffing was not impacted in APP mice up to 26mo. These results show that odor-orienting responses are minimally impacted throughout aging in mice, and suggest that the olfactomotor network is mostly spared of insults due to aging. PMID:21524667

  2. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice

    PubMed Central

    Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921

  3. Astaxanthin affects oxidative stress and hyposalivation in aging mice

    PubMed Central

    Kuraji, Manatsu; Matsuno, Tomonori; Satoh, Tazuko

    2016-01-01

    Oral dryness, a serious problem for the aging Japanese society, is induced by aging-related hyposalivation and causes dysphagia, dysgeusia, inadaptation of dentures, and growth of oral Candida albicans. Oxidative stress clearly plays a role in decreasing saliva secretion and treatment with antioxidants such astaxanthin supplements may be beneficial. Therefore, we evaluated the effects of astaxanthin on the oral saliva secretory function of aging mice. The saliva flow increased in astaxanthin-treated mice 72 weeks after administration while that of the control decreased by half. The plasma d-ROMs values of the control but not astaxanthin-treated group measured before and 72 weeks after treatment increased. The diacron-reactive oxygen metabolites (d-ROMs) value of astaxanthin-treated mice 72 weeks after treatment was significantly lower than that of the control group was. The plasma biological antioxidative potential (BAP) values of the control but not astaxanthin-treated mice before and 72 weeks after treatment decreased. Moreover, the BAP value of the astaxanthin-treated group 72 weeks after treatment was significantly higher than that of the control was. Furthermore, the submandibular glands of astaxanthin-treated mice had fewer inflammatory cells than the control did. Specifically, immunofluorescence revealed a significantly large aquaporin-5 positive cells in astaxanthin-treated mice. Our results suggest that astaxanthin treatment may prevent age-related decreased saliva secretion. PMID:27698533

  4. Absence of cytoglobin promotes multiple organ abnormalities in aged mice

    PubMed Central

    Thuy, Le Thi Thanh; Van Thuy, Tuong Thi; Matsumoto, Yoshinari; Hai, Hoang; Ikura, Yoshihiro; Yoshizato, Katsutoshi; Kawada, Norifumi

    2016-01-01

    Cytoglobin (Cygb) was identified in hepatic stellate cells (HSCs) and pericytes of all organs; however, the effects of Cygb on cellular functions remain unclear. Here, we report spontaneous and age-dependent malformations in multiple organs of Cygb−/− mice. Twenty-six percent of young Cygb−/− mice (<1 year old) showed heart hypertrophy, cystic disease in the kidney or ovary, loss of balance, liver fibrosis and lymphoma. Furthermore, 71.3% (82/115) of aged Cygb−/− mice (1–2 years old) exhibited abnormalities, such as heart hypertrophy and cancer development in multiple organs; by contrast, 5.8% (4/68) of aged wild-type (WT) mice had abnormalities (p < 0.0001). Interestingly, serum and urine analysis demonstrated that the concentration of nitric oxide metabolites increased significantly in Cygb−/− mice, resulting in an imbalance in the oxidative stress and antioxidant defence system that was reversed by NG-monomethyl-L-arginine treatment. A senescent phenotype and evidence of DNA damage were found in primary HSCs and the liver of aged Cygb−/− mice. Moreover, compared with HSC+/+, HSC−/− showed high expression of Il-6 and chemokine mRNA when cocultured with mouse Hepa 1–6 cells. Thus, the absence of Cygb in pericytes provokes organ abnormalities, possibly via derangement of the nitric oxide and antioxidant defence system and through accelerated cellular senescence. PMID:27146058

  5. Cerebral lipid deposition in aged apolipoprotein-E-deficient mice.

    PubMed Central

    Walker, L. C.; Parker, C. A.; Lipinski, W. J.; Callahan, M. J.; Carroll, R. T.; Gandy, S. E.; Smith, J. D.; Jucker, M.; Bisgaier, C. L.

    1997-01-01

    To assess the influence of age and diet on cerebral pathology in mice lacking apolipoprotein E (apoE), four male apoE knockout mice (epsilon -/-), and five male wild-type (epsilon +/+) littermate controls were placed on a high-fat/high-cholesterol diet for 7 weeks beginning at 17 months of age. All four aged knockout mice developed xanthomatous lesions in the brain consisting mostly of crystalline cholesterol clefts, lipid globules, and foam cells. Smaller xanthomas were confined mainly to the choroid plexus and ventral fornix in the roof of the third ventricle, occasionally extending subpially along the choroidal fissure and into the adjacent parenchyma. More advanced xanthomas disrupted adjoining neural tissue in the fornix, hippocampus, and dorsal diencephalon; in one case, over 60% of one telencephalic hemisphere, including nearly the entire neocortex, was obliterated by the lesion. No xanthomas were observed in aged wild-type controls fed the high-fat/high-cholesterol diet. Brains from 42 additional animals, fed only conventional chow, were examined; 3 of 15 aged (15- to 23-month-old) apoE knockout mice developed small choroidal xanthomas. In contrast, no lesions were observed in five young (2- to 4-month-old) apoE knockout mice or in any wild-type controls between the ages of 2 and 23 months. Our findings indicate that disorders of lipid metabolism can induce significant pathological changes in the central nervous system of aged apoE knockout mice, particularly those on a high-fat/high-cholesterol diet. It may be fruitful to seek potential interactions between genetic factors and diet in modulating the risk of Alzheimer's disease and other neurodegenerative disorders in aged humans. Images Figure 1 Figure 2 PMID:9358763

  6. Oxidative stress in aging: advances in proteomic approaches.

    PubMed

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.

  7. Oxidative Stress in Aging: Advances in Proteomic Approaches

    PubMed Central

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E.

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging. PMID:24688629

  8. [Total flavones derived from Lagotis brevituba maxim reduce the levels of inflammatory cytokines in cerebral cortex and hippocampus of Alzheimer's disease mice].

    PubMed

    Yang, Bailing; Hou, Qian; Hu, Feng; Zhang, Fan

    2016-07-01

    Objective To investigate the mechanism behind the treatment of Alzheimer's disease (AD) with total flavones derived from Lagotis brevituba maxim (TF-LBM). Methods Fifty SAMP8 mice (aged 8 months) were randomly divided into 5 groups, (150, 300, 600) mg/kg TF-LBM groups, 0.65 g/kg donepezil HCl group and AD model group; 10 SAMR1 mice (aged 8 months) were used as a control group of normal aging. The AD model group and the normal aging control group were given the same volume of distilled water as TF-LBM groups. Eight weeks after intragastric administration, Morris water maze experiment was conducted to calculate the latency of place navigation. After the behavioral experiment, the brain cortical tissue and hippocampus (CA1 region) of the mice from various groups were taken to observe the morphological changes of the cortical tissue and hippocampus and test IL-1β, IL-6, TNF-α content. Results Compared with the model group, the escape latency of the normal aging group, the high-dose TF-LBM group and the donepezil HCl group were evidently shortened; compared with the normal aging group, IL-1β, IL-6, TNF-αof the model group increased significantly; compared with the model group, IL-1β content of the low-dose TF-LBM group had no obvious difference, while IL-1β content of the median-dose and high-dose TF-LBM groups and the donepezil HCl group decreased significantly; IL-6 content decreased in all TF-LBM groups and the donepezil HCl group; TNF-α level in the low-dose and median-dose TF-LBM groups had no evident difference, while it was reduced significantly in the high-dose TF-LBM group and the donepezil HCl group. Compared with the normal aging group, IL-1β, IL-6 and TNF-α content of the model group increased significantly; compared with the model group, IL-1β, IL-6 and TNF-α content of all TF-LBM groups and the donepezil HCl group decreased. Conclusion TF-LBM can improve the behavior change of SAMP8 mice with AD. TF-LBM can reduce the content of IL-6, IL-1β and

  9. Disruption of Protein Kinase A in Mice Enhances Healthy Aging

    PubMed Central

    Enns, Linda C.; Morton, John F.; Treuting, Piper R.; Emond, Mary J.; Wolf, Norman S.; McKnight, G. S.; Rabinovitch, Peter S.; Ladiges, Warren C.

    2009-01-01

    Mutations that cause a reduction in protein kinase A (PKA) activity have been shown to extend lifespan in yeast. Loss of function of mammalian RIIβ, a regulatory subunit of PKA expressed in brain and adipose tissue, results in mice that are lean and insulin sensitive. It was therefore hypothesized that RIIB null (RIIβ−/−) mice would express anti-aging phenotypes. We conducted lifespan studies using 40 mutant and 40 wild type (WT) littermates of equal gender numbers and found that both the median and maximum lifespans were significantly increased in mutant males compared to WT littermates. The median lifespan was increased from 884 days to 1005 days (p = 0.006 as determined by the log rank test) and the 80% lifespan (defined here as 80% deaths) was increased from 941 days to 1073 days (p = 0.004 as determined by the Wang-Allison test). There was no difference in either median or 80% lifespan in female genotypes. WT mice of both genders became increasingly obese with age, while mutant mice maintained their lean phenotype into old age. Adiposity was found to correlate with lifespan for males only. 50% of male mice between 30 and 35 g, corresponding to about 5% body fat, for either genotype lived over 1000 days. No male mouse outside of this weight range achieved this lifespan. During their last month of life, WT mice began losing weight (a total of 8% and 15% of body weight was lost for males and females, respectively), but RIIβ−/− male mice maintained their lean body mass to end of life. This attenuation of decline was not seen in female mutant mice. Old male mutant mice were insulin sensitive throughout their life. Both genders showed modestly lower blood glucose levels in old mutants compared to WT. Male mutants were also resistant to age-induced fatty liver. Pathological assessment of tissues from end of life male mutant mice showed a decrease in tumor incidence, decreased severity of renal lesions, and a trend towards a decrease in age

  10. Running reduces stress and enhances cell genesis in aged mice.

    PubMed

    Kannangara, Timal S; Lucero, Melanie J; Gil-Mohapel, Joana; Drapala, Robert J; Simpson, Jessica M; Christie, Brian R; van Praag, Henriette

    2011-12-01

    Cell proliferation and neurogenesis are diminished in the aging mouse dentate gyrus. However, it is not known whether isolated or social living affects cell genesis and stress levels in old animals. To address this question, aged (17-18 months old) female C57Bl/6 mice were single or group housed, under sedentary or running conditions. We demonstrate that both individual and socially housed aged C57Bl/6 mice have comparable basal cell proliferation levels and demonstrate increased running-induced cell genesis. To assess stress levels in young and aged mice, corticosterone (CORT) was measured at the onset of the active/dark cycle and 4h later. In young mice, no differences in CORT levels were observed as a result of physical activity or housing conditions. However, a significant increase in stress in socially housed, aged sedentary animals was observed at the onset of the dark cycle; CORT returned to basal levels 4h later. Together, these results indicate that voluntary exercise reduces stress in group housed aged animals and enhances hippocampal cell proliferation.

  11. Transmitochondrial mito-miceΔ and mtDNA mutator mice, but not aged mice, share the same spectrum of musculoskeletal disorders.

    PubMed

    Mito, Takayuki; Ishizaki, Hikari; Suzuki, Michiko; Morishima, Hitomi; Ota, Azusa; Ishikawa, Kaori; Nakada, Kazuto; Maeno, Akiteru; Shiroishi, Toshihiko; Hayashi, Jun-Ichi

    2015-01-24

    The spectra of phenotypes associated with aging and mitochondrial diseases sometimes appear to overlap with each other. We used aged mice and a mouse model of mitochondrial diseases (transmitochondrial mito-miceΔ with deleted mtDNA) to study whether premature aging phenotypes observed in mtDNA mutator mice are associated with aging or mitochondrial diseases. Here, we provide convincing evidence that all the mice examined had musculoskeletal disorders of osteoporosis and muscle atrophy, which correspond to phenotypes prevalently observed in the elderly. However, precise investigation of musculoskeletal disorders revealed that the spectra of osteoporosis and muscle atrophy phenotypes in mtDNA mutator mice were very close to those in mito-miceΔ, but different from those of aged mice. Therefore, mtDNA mutator mice and mito-miceΔ, but not aged mice, share the spectra of musculoskeletal disorders.

  12. Accelerated retinal aging in PACAP knock-out mice.

    PubMed

    Kovács-Valasek, Andrea; Szabadfi, Krisztina; Dénes, Viktória; Szalontai, Bálint; Tamás, Andrea; Kiss, Péter; Szabó, Aliz; Setalo, Gyorgy; Reglődi, Dóra; Gábriel, Robert

    2017-02-13

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide. PACAP and its receptors are widely distributed in the retina. A number of reports provided evidence that PACAP is neuroprotective in retinal degenerations. The current study compared retina cell type-specific differences in young (3-4months) and aged adults (14-16months), of wild-type (WT) mice and knock-out (KO) mice lacking endogenous PACAP production during the course of aging. Histological, immunocytochemical and Western blot examinations were performed. The staining for standard neurochemical markers (tyrosine hydroxylase for dopaminergic cells, calbindin 28 kDa for horizontal cells, protein kinase Cα for rod bipolar cells) of young adult PACAP KO retinas showed no substantial alterations compared to young adult WT retinas, except for the specific PACAP receptor (PAC1-R) staining. We could not detect PAC1-R immunoreactivity in bipolar and horizontal cells in young adult PACAP KO animals. Some other age-related changes were observed only in the PACAP KO mice only. These alterations included horizontal and rod bipolar cell dendritic sprouting into the photoreceptor layer and decreased ganglion cell number. Also, Müller glial cells showed elevated GFAP expression compared to the aging WT retinas. Furthermore, Western blot analyses revealed significant differences between the phosphorylation state of ERK1/2 and JNK in KO mice, indicating alterations in the MAPK signaling pathway. These results support the conclusion that endogenous PACAP contributes to protection against aging of the nervous system.

  13. Age-related deterioration of rod vision in mice.

    PubMed

    Kolesnikov, Alexander V; Fan, Jie; Crouch, Rosalie K; Kefalov, Vladimir J

    2010-08-18

    Even in healthy individuals, aging leads to deterioration in visual acuity, contrast sensitivity, visual field, and dark adaptation. Little is known about the neural mechanisms that drive the age-related changes of the retina and, more specifically, photoreceptors. According to one hypothesis, the age-related deterioration in rod function is due to the limited availability of 11-cis-retinal for rod pigment formation. To determine how aging affects rod photoreceptors and to test the retinoid-deficiency hypothesis, we compared the morphological and functional properties of rods of adult and aged B6D2F1/J mice. We found that the number of rods and the length of their outer segments were significantly reduced in 2.5-year-old mice compared with 4-month-old animals. Aging also resulted in a twofold reduction in the total level of opsin in the retina. Behavioral tests revealed that scotopic visual acuity and contrast sensitivity were decreased by twofold in aged mice, and rod ERG recordings demonstrated reduced amplitudes of both a- and b-waves. Sensitivity of aged rods determined from single-cell recordings was also decreased by 1.5-fold, corresponding to not more than 1% free opsin in these photoreceptors, and kinetic parameters of dim flash response were not altered. Notably, the rate of rod dark adaptation was unaffected by age. Thus, our results argue against age-related deficiency of 11-cis-retinal in the B6D2F1/J mouse rod visual cycle. Surprisingly, the level of cellular dark noise was increased in aged rods, providing an alternative mechanism for their desensitization.

  14. Kidney EPO expression during chronic hypoxia in aged mice.

    PubMed

    Benderro, Girriso F; LaManna, Joseph C

    2013-01-01

    In order to maintain normal cellular function, mammalian tissue oxygen concentrations must be tightly regulated within a narrow physiological range. The hormone erythropoietin (EPO) is essential for maintenance of tissue oxygen supply by stimulating red blood cell production and promoting their survival. In this study we compared the effects of 290 Torr atmospheric pressure on the kidney EPO protein levels in young (4-month-old) and aged (24-month-old) C57BL/6 mice. The mice were sacrificed after being anesthetized, and kidney samples were collected and processed by Western blot analysis. Relatively low basal expression of EPO during normoxia in young mice showed significant upregulation in hypoxia and stayed upregulated throughout the hypoxic period (threefold compared to normoxic control), showing a slight decline toward the third week. Whereas, a relatively higher normoxic basal EPO protein level in aged mice did not show significant increase until seventh day of hypoxia, but showed significant upregulation in prolonged hypoxia. Hence, we confirmed that there is a progressively increased accumulation of EPO during chronic hypoxia in young and aged mouse kidney, and the EPO upregulation during hypoxia showed a similarity with the pattern of increase in hematocrit, which we have reported previously.

  15. Lung remodeling in aging surfactant protein D deficient mice.

    PubMed

    Schneider, Jan Philipp; Arkenau, Martina; Knudsen, Lars; Wedekind, Dirk; Ochs, Matthias

    2017-02-07

    Pulmonary surfactant, a mixture of lipids and proteins at the air-liquid interface of alveoli, prevents the lungs from collapsing due to surface tension. One constituent is surfactant-associated protein-D (SP-D), a protein involved in surfactant homeostasis and innate immunity. Mice deficient in SP-D (SP-D (-/-)) has been described as developing a characteristic phenotype which affects the surfactant system (including changes in the intra-cellular and intra-alveolar surfactant pool, alveolar epithelial type II cells and alveolar macrophages), lung architecture and its inflammatory state (development of an emphysema-like pathology, inflammatory cell infiltration). Furthermore, it has been described that these mice develop sub-pleural fibrosis and a thickening of alveolar septal walls. The aim of the present study was to systematically investigate the long term progression of this phenotype with special focus on parenchymal remodeling, whether there are progressive emphysematous changes and whether there is progressive septal wall thickening which might indicate the development of pulmonary fibrosis. By means of design-based stereology and light microscopy, lungs of wild type (wt) and SP-D (-/-) mice of four age groups (3, 6, 12 and ∼18 months) were investigated. The data do not suggest a relevant spontaneous pro-fibrotic remodeling or a destructive process in the aging SP-D (-/-) mice. We demonstrated neither a significant destructive emphysema nor significant thickening of alveolar septal walls, but the data suggest an increase in the number weighted mean alveolar volume in aging SP-D (-/-) mice without loss of alveoli or alveolar epithelial surface area per lung. This increase may reflect over-distension due to altered mechanical properties of alveoli. In the light of our findings and data from the literature, the question arises as to whether a lack of SP-D promotes structural changes in the lung which have been described as being associated with aging lungs

  16. Taurine improves learning and retention in aged mice.

    PubMed

    El Idrissi, Abdeslem

    2008-05-02

    Aging of the brain is characterized by several neurochemical modifications involving structural proteins, neurotransmitters, neuropeptides and related receptors. Alterations of neurochemical indices of synaptic function have been considered as indicators of age-related impairment of central functions, such as locomotion, memory and sensory performances. Several studies demonstrated that GABA receptors, glutamic acid decarboxylase (GAD65&67), and different subpopulations of GABAergic neurons are markedly decreased in experimental animal brains during aging. Thus, the age-related decline in cognitive functions could be attributable, at least in part, to decrements in GABA inhibitory neurotransmission. In this study, using a passive avoidance test, we show that chronic supplementation of taurine to aged mice significantly ameliorates the age-dependent decline in memory acquisition and retention. We have previously shown that taurine supplementation caused changes in the GABAergic system. These changes include increased levels of the neurotransmitters GABA and glutamate, increased expression of glutamic acid decarboxylase and the neuropeptide somatostatin and increase in the number of somatostatin-positive neurons. These specific alterations of the inhibitory system caused by taurine treatment oppose those naturally occurring in aging, and suggest a protective role of taurine against the normal aging process. Increased understanding of age-related neurochemical changes in the GABAergic system will be important in elucidating the underpinnings of the functional changes of aging. Taurine might help forestall the age-related decline in cognitive functions through alterations of the GABAergic system.

  17. Ca2+ dynamics in oocytes from naturally-aged mice

    PubMed Central

    Haverfield, Jenna; Nakagawa, Shoma; Love, Daniel; Tsichlaki, Elina; Nomikos, Michail; Lai, F. Anthony; Swann, Karl; FitzHarris, Greg

    2016-01-01

    The ability of human metaphase-II arrested eggs to activate following fertilisation declines with advancing maternal age. Egg activation is triggered by repetitive increases in intracellular Ca2+ concentration ([Ca2+]i) in the ooplasm as a result of sperm-egg fusion. We therefore hypothesised that eggs from older females feature a reduced ability to mount appropriate Ca2+ responses at fertilisation. To test this hypothesis we performed the first examination of Ca2+ dynamics in eggs from young and naturally-aged mice. Strikingly, we find that Ca2+ stores and resting [Ca2+]i are unchanged with age. Although eggs from aged mice feature a reduced ability to replenish intracellular Ca2+ stores following depletion, this difference had no effect on the duration, number, or amplitude of Ca2+ oscillations following intracytoplasmic sperm injection or expression of phospholipase C zeta. In contrast, we describe a substantial reduction in the frequency and duration of oscillations in aged eggs upon parthenogenetic activation with SrCl2. We conclude that the ability to mount and respond to an appropriate Ca2+ signal at fertilisation is largely unchanged by advancing maternal age, but subtle changes in Ca2+ handling occur that may have more substantial impacts upon commonly used means of parthenogenetic activation. PMID:26785810

  18. Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice

    ERIC Educational Resources Information Center

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…

  19. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    PubMed

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-02-21

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  20. Progranulin Knockout Accelerates Intervertebral Disc Degeneration in Aging Mice

    PubMed Central

    Zhao, Yun-peng; Tian, Qing-yun; Liu, Ben; Cuellar, Jason; Richbourgh, Brendon; Jia, Tang-hong; Liu, Chuan-ju

    2015-01-01

    Intervertebral disc (IVD) degeneration is a common degenerative disease, yet much is unknown about the mechanisms during its pathogenesis. Herein we investigated whether progranulin (PGRN), a chondroprotective growth factor, is associated with IVD degeneration. PGRN was detectable in both human and murine IVD. The levels of PGRN were upregulated in murine IVD tissue during aging process. Loss of PGRN resulted in an early onset of degenerative changes in the IVD tissue and altered expressions of the degeneration-associated molecules in the mouse IVD tissue. Moreover, PGRN knockout mice exhibited accelerated IVD matrix degeneration, abnormal bone formation and exaggerated bone resorption in vertebra with aging. The acceleration of IVD degeneration observed in PGRN null mice was probably due to the enhanced activation of NF-κB signaling and β-catenin signaling. Taken together, PGRN may play a critical role in homeostasis of IVD, and may serve as a potential molecular target for prevention and treatment of disc degenerative diseases. PMID:25777988

  1. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    PubMed

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.

  2. Age Sensitivity of Behavioral Tests and Brain Substrates of Normal Aging in Mice

    PubMed Central

    Kennard, John A.; Woodruff-Pak, Diana S.

    2011-01-01

    Knowledge of age sensitivity, the capacity of a behavioral test to reliably detect age-related changes, has utility in the design of experiments to elucidate processes of normal aging. We review the application of these tests in studies of normal aging and compare and contrast the age sensitivity of the Barnes maze, eyeblink classical conditioning, fear conditioning, Morris water maze, and rotorod. These tests have all been implemented to assess normal age-related changes in learning and memory in rodents, which generalize in many cases to age-related changes in learning and memory in all mammals, including humans. Behavioral assessments are a valuable means to measure functional outcomes of neuroscientific studies of aging. Highlighted in this review are the attributes and limitations of these measures in mice in the context of age sensitivity and processes of brain aging. Attributes of these tests include reliability and validity as assessments of learning and memory, well-defined neural substrates, and sensitivity to neural and pharmacological manipulations and disruptions. These tests engage the hippocampus and/or the cerebellum, two structures centrally involved in learning and memory that undergo functional and anatomical changes in normal aging. A test that is less well represented in studies of normal aging, the context pre-exposure facilitation effect (CPFE) in fear conditioning, is described as a method to increase sensitivity of contextual fear conditioning to changes in the hippocampus. Recommendations for increasing the age sensitivity of all measures of normal aging in mice are included, as well as a discussion of the potential of the under-studied CPFE to advance understanding of subtle hippocampus-mediated phenomena. PMID:21647305

  3. Effects of sleep deprivation and aging on long-term and remote memory in mice

    PubMed Central

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a month after training, sleep-deprived and control aged animals performed similarly, primarily due to remote memory decay in the control aged animals. Gene expression analysis supported the finding that SD has similar effects on the hippocampus in young and aged mice. PMID:25776037

  4. Runx3 deficiency results in myeloproliferative disorder in aged mice.

    PubMed

    Wang, Chelsia Qiuxia; Motoda, Lena; Satake, Masanobu; Ito, Yoshiaki; Taniuchi, Ichiro; Tergaonkar, Vinay; Osato, Motomi

    2013-07-25

    The RUNX family genes encode transcription factors that are involved in development and human diseases. RUNX1 is one of the most frequently mutated genes in human hematological malignancies and is a critical factor for the generation and maintenance of hematopoietic stem cells. Another Runx family gene, Runx3, is known to be expressed in hematopoietic cells. However, its involvement in hematopoiesis remains unclear. Here we show the hematopoietic phenotypes in Runx3 conditional knockout (KO) mice (Runx3(fl/fl);Mx1-Cre(+)): whereas young Runx3 KO mice did not exhibit any significant hematopoietic defects, aged Runx3 KO mice developed a myeloproliferative disorder characterized by myeloid-dominant leukocytosis, splenomegaly, and an increase of hematopoietic stem/progenitor cells (HSPCs). Notably, Runx3-deficient cells showed hypersensitivity to granulocyte-colony stimulating factor, suggesting enhanced proliferative and mobilization capability of Runx3-deficient HSPCs when stimulated. These results suggest that, besides Runx1, Runx3 also plays a role in hematopoiesis.

  5. Memory Deficits Are Associated with Impaired Ability to Modulate Neuronal Excitability in Middle-Aged Mice

    ERIC Educational Resources Information Center

    Kaczorowski, Catherine C.; Disterhoft, John F.

    2009-01-01

    Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…

  6. Restoration of Regenerative Osteoblastogenesis in Aged Mice: Modulation of TNF

    PubMed Central

    Wahl, Elizabeth C; Aronson, James; Liu, Lichu; Fowlkes, John L; Thrailkill, Kathryn M; Bunn, Robert C; Skinner, Robert A; Miller, Mike J; Cockrell, Gael E; Clark, Lindsey M; Ou, Yang; Isales, Carlos M; Badger, Thomas M; Ronis, Martin J; Sims, John; Lumpkin, Charles K

    2010-01-01

    Skeletal changes accompanying aging are associated with both increased risk of fractures and impaired fracture healing, which, in turn, is due to compromised bone regeneration potential. These changes are associated with increased serum levels of selected proinflammatory cytokines, e.g., tumor necrosis factor α (TNF-α). We have used a unique model of bone regeneration to demonstrate (1) that aged-related deficits in direct bone formation can be restored to young mice by treatment with TNF blockers and (2) that the cyclin-dependent kinase inhibitor p21 is a candidate for mediation of the osteoinhibitory effects of TNF. It has been hypothesized recently that TNF antagonists may represent novel anabolic agents, and we believe that the data presented here represent a successful test of this hypothesis. © 2010 American Society for Bone and Mineral Research PMID:19580462

  7. Differential Responses to Adjuvants of Macrophages from Young Virgin, Aging Virgin and Aging Breeder Mice.

    DTIC Science & Technology

    1985-12-01

    Rb-Ai.62 483 DIFFERENTIAL RESPONSES TO ADJUVANTS OF MACROPHAGES FROM i/i YOUNG VIRGIN AGIN (U) MINNESOTA UNIV DULUTH DEPT OF MEDICAL MICROBIOLOGY RN...ADDRESS (City, State. an ZI 0EC 18 198E- Dept. of Medical Microbiology & Immunology 800 N. Quincy Street E1 8 Duluth, MN 55812-2487 Arlington, VA 22217-5...Aging Breeder Mice by Pamela R. Petrequin and Arthur G. Johnson Dept. of Medical Microbiology /Immunology University of Minnesota-Duluth School of

  8. Macronutrient balance, reproductive function, and lifespan in aging mice

    PubMed Central

    Solon-Biet, Samantha M.; Walters, Kirsty A.; Simanainen, Ulla K.; McMahon, Aisling C.; Ruohonen, Kari; Ballard, John William O.; Raubenheimer, David; Le Couteur, David G.; Simpson, Stephen J.

    2015-01-01

    In invertebrates, reproductive output and lifespan are profoundly impacted by dietary macronutrient balance, with these traits achieving their maxima on different diet compositions, giving the appearance of a resource-based tradeoff between reproduction and longevity. For the first time in a mammal, to our knowledge, we evaluate the effects of dietary protein (P), carbohydrate (C), fat (F), and energy (E) on lifespan and reproductive function in aging male and female mice. We show that, as in invertebrates, the balance of macronutrients has marked and largely opposing effects on reproductive and longevity outcomes. Mice were provided ad libitum access to one of 25 diets differing in P, C, F, and E content, with reproductive outcomes assessed at 15 months. An optimal balance of macronutrients exists for reproductive function, which, for most measures, differs from the diets that optimize lifespan, and this response differs with sex. Maximal longevity was achieved on diets containing a P:C ratio of 1:13 in males and 1:11 for females. Diets that optimized testes mass and epididymal sperm counts (indicators of gamete production) contained a higher P:C ratio (1:1) than those that maximized lifespan. In females, uterine mass (an indicator of estrogenic activity) was also greatest on high P:C diets (1:1) whereas ovarian follicle number was greatest on P:C 3:1 associated with high-F intakes. By contrast, estrous cycling was more likely in mice on lower P:C (1:8), and the number of corpora lutea, indicative of recent ovulations, was greatest on P:C similar to those supporting greatest longevity (1:11). PMID:25733862

  9. Dexmedetomidine improves early postoperative cognitive dysfunction in aged mice.

    PubMed

    Qian, Xiao-Lan; Zhang, Wei; Liu, Ming-Zheng; Zhou, Yu-Bing; Zhang, Jing-Min; Han, Li; Peng, You-Mei; Jiang, Jin-hua; Wang, Qing-Duan

    2015-01-05

    Postoperative cognitive dysfunction (POCD) is a frequent complication following major surgery in the elderly. However, the exact pathogenic mechanisms are still unknown. Dexmedetomidine, a selective alpha 2 adrenal receptor agonist, was revealed anesthesia and brain protective role. The present study aimed to examine whether dexmedetomdine protects against POCD induced by major surgical trauma under general anesthesia in aged mice. In the present study, cognitive function was assessed by Y-maze. Proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor (TNF-α), apoptosis-related factor caspase-3 and Bax were detected by real-time PCR, Western blot or immunohistochemistry. The results showed that anesthesia alone caused weak cognitive dysfunction on the first day after general anesthesia. Cognitive function in mice with splenectomy under general anesthesia was significantly exacerbated at the first and third days after surgery, and was significantly improved by dexmedetomidine administration. Splenectomy increased the expression of IL-1β, TNF-α, Bax and caspase-3 in hippocampus. These changes were significantly inversed by dexmedetomidine. These results suggest that hippocampal inflammatory response and neuronal apoptosis may contribute to POCD, and selective alpha 2 adrenal receptor excitation play a protective role.

  10. Emotionality, exploratory behavior, and locomotion in aging inbred strains of mice.

    PubMed

    Elias, P K; Elias, M F; Eleftheriou, B E

    1975-01-01

    Two inbred strains of mice, C57BL/6J and DBA/2J, ranging in age from 2 to 38 months, were tested in an open field using the free exploration method. Scores were obtained for locomotor activity, exploratory behavior and emotionality. Strain differences were observed for all three variables. Beginning at late maturity (12 months), locomotor activity decreased with increasing age. Exploratory behavior was at a low level for DBA/2J mice at all ages. For C57BL/6J mice, exploratory behavior decreased significantly between 2 and 6 months and remained stable thereafter. Emotionality remained unchanged with advancing age for both strains of mice.

  11. Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice

    PubMed Central

    Buchanan, J.B.; Sparkman, N.L.; Chen, J.; Johnson, R.W.

    2008-01-01

    Summary Peripheral immune stimulation as well as certain types of psychological stress increases brain levels of inflammatory cytokines such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNFα). We have demonstrated that aged mice show greater increases in central inflammatory cytokines, as well as greater cognitive deficits, compared to adults in response to peripheral lipopolysaccharide (LPS) administration. Because aged mice are typically more sensitive to systemic stressors such as LPS, and certain psychological stressors induce physiological responses similar to those that follow LPS, we hypothesized that aged mice would be more sensitive to the physiological and cognitive effects of mild stress than adult mice. Here, adult (3–5 mo) and aged (22–23 mo) male BALB/c mice were trained in the Morris water maze for 5 days. Mice were then exposed to a mild restraint stress of 30 minutes before being tested in a working memory version of the water maze over a 3 day period. On day 4 mice were stressed and then killed for collection of blood and brain. In a separate group of animals, mice were killed immediately after one, two or three 30 min restraint sessions and blood for peripheral corticosterone and cytokine protein measurement, and brains were dissected for central cytokine mRNA measurement. Stress disrupted spatial working memory in both adult and aged mice but to a much greater extent in the aged mice. In addition, aged mice showed an increase in stress-induced expression of hippocampal IL-1β mRNA and MHC class II protein compared to non-stressed controls while expression in adult mice was unaffected by stress. These data show that aged mice are more sensitive to both the cognitive and inflammatory effects of mild stress than are adult mice and suggest a possible a role for IL-1β. PMID:18407425

  12. TRPA1 contributes to chronic pain in aged mice with CFA-induced arthritis

    PubMed Central

    Garrison, Sheldon R.; Stucky, Cheryl L.

    2014-01-01

    Objective Investigate age-related differences in mechanical sensitivity and determine the contribution of transient receptor potential ankyrin 1 (TRPA1) to mechanical hypersensitivity during chronic inflammation in young and aged animals. Methods Mechanical sensitivity in young (3-month) and aged (24-month) wild-type (TRPA1+/+) and TRPA1-deficient (TRPA1-/-) mice was measured behaviorally for 8-weeks following injection of Complete Freund's Adjuvant (CFA) into the plantar hindpaw. Histological analysis and hindpaw measurements evaluated inflammation. Ex-vivo skin-saphenous nerve preparations quantified C-fiber sensitivity. Results In naïve wild-type mice, aged animals were less sensitive to mechanical stimuli than young. Afferent recordings from TRPA1-/- mice indicate that TRPA1 contributes to the normal mechanical sensitivity in both age groups. Following CFA injection, both young and aged TRPA1+/+ mice exhibited mechanical hypersensitivity. Development of mechanical hypersensitivity was delayed until week 4 in young TRPA1-/- mice, when they exhibited a sharp decrease (9-fold) in mechanical thresholds. In contrast, CFA-injected aged TRPA1-/- mice did not exhibit mechanical hypersensitivity at any time during the entire 8-weeks. Recordings of C-fibers supported these findings and showed that action potential firing increased in both young (25%) and aged (60%) TRPA1+/+ mice 8 weeks after CFA. Interestingly, mechanical firing increased markedly in C-fibers from young TRPA1-/- mice (80%) but not in C-fibers from aged TRPA1-/- mice after CFA. Conclusions These data reveal marked differences in long-term mechanical behavioral sensitivity of aged and young mice, and suggest that TRPA1 may be a key contributor to the transition from acute to chronic inflammatory mechanical pain and nociceptor sensitization selectively in aged mice. PMID:24891324

  13. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice

    PubMed Central

    Mirsoian, Annie; Bouchlaka, Myriam N.; Sckisel, Gail D.; Chen, Mingyi; Pai, Chien-Chun Steven; Maverakis, Emanuel; Spencer, Richard G.; Fishbein, Kenneth W.; Siddiqui, Sana; Monjazeb, Arta M.; Martin, Bronwen; Maudsley, Stuart; Hesdorffer, Charles; Ferrucci, Luigi; Longo, Dan L.; Blazar, Bruce R.; Wiltrout, Robert H.; Taub, Dennis D.

    2014-01-01

    Aging is a contributing factor in cancer occurrence. We recently demonstrated that systemic immunotherapy (IT) administration in aged, but not young, mice resulted in induction of rapid and lethal cytokine storm. We found that aging was accompanied by increases in visceral fat similar to that seen in young obese (ob/ob or diet-induced obese [DIO]) mice. Yet, the effects of aging and obesity on inflammatory responses to immunotherapeutics are not well defined. We determine the effects of adiposity on systemic IT tolerance in aged compared with young obese mice. Both young ob/ob- and DIO-generated proinflammatory cytokine levels and organ pathologies are comparable to those in aged ad libitum mice after IT, culminating in lethality. Young obese mice exhibited greater ratios of M1/M2 macrophages within the peritoneal and visceral adipose tissues and higher percentages of TNF+ macrophages in response to αCD40/IL-2 as compared with young lean mice. Macrophage depletion or TNF blockade in conjunction with αCD40/IL-2 prevented cytokine storms in young obese mice and protected from lethality. Calorie-restricted aged mice contain less visceral fat and displayed reduced cytokine levels, protection from organ pathology, and protection from lethality upon αCD40/IL-2 administration. Our data demonstrate that adiposity is a critical factor in the age-associated pathological responses to systemic anti-cancer IT. PMID:25366964

  14. Suppression of oxidative stress by resveratrol after isometric contractions in gastrocnemius muscles of aged mice.

    PubMed

    Ryan, Michael J; Jackson, Janna R; Hao, Yanlei; Williamson, Courtney L; Dabkowski, Erinne R; Hollander, John M; Alway, Stephen E

    2010-08-01

    This study tested the hypothesis that resveratrol supplementation would lower oxidative stress in exercised muscles of aged mice. Young (3 months) and aged (27 months) C57BL/6 mice received a control or a 0.05% trans-resveratrol-supplemented diet for 10 days. After 7 days of dietary intervention, 20 maximal electrically evoked isometric contractions were obtained from the plantar flexors of one limb in anesthetized mice. Exercise was conducted for three consecutive days. Resveratrol supplementation blunted the exercise-induced increase in xanthine oxidase activity in muscles from young (25%) and aged (53%) mice. Resveratrol lowered H(2)O(2) levels in control (13%) and exercised (38%) muscles from aged animals, reduced Nox4 protein in both control and exercised muscles of young (30%) and aged mice (40%), and increased the ratio of reduced glutathione to oxidized glutathione in exercised muscles from young (38%) and aged (135%) mice. Resveratrol prevented the increase in lipid oxidation, increased catalase activity, and increased MnSOD activity in exercised muscles from aged mice. These data show that dietary resveratrol suppresses muscle indicators of oxidative stress in response to isometric contractions in aged mice.

  15. Glial dysfunction in parkin null mice: effects of aging.

    PubMed

    Solano, Rosa M; Casarejos, Maria J; Menéndez-Cuervo, Jamie; Rodriguez-Navarro, Jose A; García de Yébenes, Justo; Mena, Maria A

    2008-01-16

    Parkin mutations in humans produce parkinsonism whose pathogenesis is related to impaired protein degradation, increased free radicals, and abnormal neurotransmitter release. The role of glia in parkin deficiency is little known. We cultured midbrain glia from wild-type (WT) and parkin knock-out (PK-KO) mice. After 18-20 d in vitro, PK-KO glial cultures had less astrocytes, more microglia, reduced proliferation, and increased proapoptotic protein expression. PK-KO glia had greater levels of intracellular glutathione (GSH), increased mRNA expression of the GSH-synthesizing enzyme gamma-glutamylcysteine synthetase, and greater glutathione S-transferase and lower glutathione peroxidase activities than WT. The reverse happened in glia cultured in serum-free defined medium (EF12) or in old cultures. PK-KO glia was more susceptible than WT to transference to EF12 or neurotoxins (1-methyl-4-phenylpyridinium, blockers of GSH synthesis or catalase, inhibitors of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3 kinases), aging of the culture, or combination of these insults. PK-KO glia was less susceptible than WT to Fe2+ plus H2O2 and less responsive to protection by deferoxamine. Old WT glia increased the expression of heat shock protein 70, but PK-KO did not. Glia conditioned medium (GCM) from PK-KO was less neuroprotective and had lower levels of GSH than WT. GCM from WT increased the levels of dopamine markers in midbrain neuronal cultures transferred to EF12 more efficiently than GCM from PK-KO, and the difference was corrected by supplementation with GSH. PK-KO-GCM was a less powerful suppressor of apoptosis and microglia in neuronal cultures. Our data prove that abnormal glial function is critical in parkin mutations, and its role increases with aging.

  16. Changes of Ovarian microRNA Profile in Long-Living Ames Dwarf Mice during Aging

    PubMed Central

    Schneider, Augusto; Matkovich, Scot J.; Victoria, Berta; Spinel, Lina; Bartke, Andrzej; Golusinski, Pawel; Masternak, Michal M.

    2017-01-01

    The Ames dwarf (df/df) mice have extended longevity and can preserve the ovarian reserve longer than Normal (N) mice. Based on this, the aim of our study was to evaluate the ovarian microRNA (miRNA) profile in young and aged df/df and N mice. Ovarian tissue was collected at 5–6 months and at 21–22 months of age for miRNA sequencing. We detected a total of 404 miRNAs in the ovarian samples, from which the abundance of 22 and 33 miRNAs changed with age in N and df/df mice, respectively. Of these, only three miRNAs were commonly regulated with age between N and df/df mice, indicating a very divergent miRNA profile between genotypes. We also detected that 46 miRNAs were regulated between N and df/df mice, of which 23 were regulated exclusively in young mice, 12 exclusively in old mice and 12 commonly regulated at young and old ages. Many genes likely to be targeted by these miRNAs are involved in the FoxO, mTOR, PI3k/Akt and insulin signaling pathways. These results suggest that the aging process has a differential impact on the ovarian miRNA profile in df/df mice, and suggest that these miRNAs can be central players in the maintenance of a younger ovarian phenotype. PMID:28046124

  17. Manipulation of Ovarian Function Significantly Influenced Sarcopenia in Postreproductive-Age Mice

    PubMed Central

    Peterson, Rhett L.

    2016-01-01

    Previously, transplantation of ovaries from young cycling mice into old postreproductive-age mice increased life span. We anticipated that the same factors that increased life span could also influence health span. Female CBA/J mice received new (60 d) ovaries at 12 and 17 months of age and were evaluated at 16 and 25 months of age, respectively. There were no significant differences in body weight among any age or treatment group. The percentage of fat mass was significantly increased at 13 and 16 months of age but was reduced by ovarian transplantation in 16-month-old mice. The percentages of lean body mass and total body water were significantly reduced in 13-month-old control mice but were restored in 16- and 25-month-old recipient mice by ovarian transplantation to the levels found in six-month-old control mice. In summary, we have shown that skeletal muscle mass, which is negatively influenced by aging, can be positively influenced or restored by reestablishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females. PMID:27747096

  18. Exogenous Testosterone, Aging, and Changes in Behavioral Response of Gonadally Intact Male Mice

    PubMed Central

    Onaolapo, Olakunle J.; Onaolapo, Adejoke Y.; Omololu, Tope A.; Oludimu, Adedunke T.; Segun-Busari, Toluwalase; Omoleke, Taofeeq

    2016-01-01

    This study tested the hypothesis that aging significantly affects the influence of exogenous testosterone on neurobehavior in gonadally intact male mice. Groups of prepubertal and aged male mice received daily vehicle or testosterone propionate (TP; 2.5 or 5.0 mg/kg intraperitoneal [i.p.]) for 21 days. Behaviors were assessed on days 1 and 21. Weight gain was significant in prepubertal mice. Locomotion and rearing increased in prepubertal mice after first dose and decreased after last dose of TP. Rearing was suppressed in aged mice throughout. Suppression of grooming occurred in both age groups at day 21. Significant increase in working memory in both age groups was seen in the radial-arm maze (at specific doses) and in prepubertal mice in the Y-maze. Elevated plus maze test showed mixed anxiolytic/anxiogenic effects. Aged mice had higher serum testosterone. In conclusion, age is an important determinant for the influence of exogenous testosterone on behavior in gonadally intact male mice. PMID:27158222

  19. Anti-aging effect of Blakeslea trispora powder on adult mice.

    PubMed

    Hu, Weilian; Dai, Dehui; Li, Wei

    2013-08-01

    Blakeslea trispora powder that contains 1.9 % lycopene was tested for its anti-aging effect on adult mice. 48 adult mice were administered with the powder at 0, 267, 534, 1,068 mg lycopene kg(-1) body daily for 30 days. The body weight, hematology, clinical chemical and antioxidant activities in major organs of adult mice were measured. The powder had no effect on the body weight, hematology, clinical chemical parameters of adult mice but improved the antioxidant activities in major organs of adult mice. Increased activities of superoxide dismutase, catalase and glutathione peroxidase and a decreased amount of malondialdehyde in liver, brain, kidney and skin of adult mice when a high-dose of the B. trispora powder was administered, suggests that it has the ability to enhance the antioxidation system and improve the anti-aging abilities of adult mice.

  20. Establishment of a model of acetaminophen-induced hepatotoxicity in different weekly-aged ICR mice.

    PubMed

    Taguchi, K; Tokuno, M; Yamasaki, K; Kadowaki, D; Seo, H; Otagiri, M

    2015-10-01

    Acetaminophen (APAP), a widely used analgesic and antipyretic drug, has the potential to cause lethal hepatotoxicity. Mice are widely used for developing murine models of APAP-induced hepatotoxicity, and many researchers have used these models for APAP-related studies including the fields of biology, pharmacology and toxicology. Although drug-induced hepatotoxicity is dependent on a number of factors (species, gender and age), very few studies have investigated the effect of aging on APAP hepatotoxicity. In this study, we evaluated the effect of age on APAP-induced hepatotoxicity in different weekly-aged mice to establish a model of APAP-induced hepatotoxicity that is an accurate reflection of general experimental conditions. Male ICR mice 4, 6, 8, 10 and 12 weeks old were given APAP intraperitoneally, and mortality, hepatic damage and the plasma concentration of APAP metabolites were evaluated. It was found that younger male ICR mice were relatively resistant to hepatotoxicity induced by intraperitoneal APAP administration. In addition, the APAP-glucuronide concentration in plasma remained essentially the same among the differently-aged mice, while APAP-sulfate levels were dramatically decreased in an age-dependent manner. Thus, it is recommended that mice of the same ages be used in studies related to APAP-induced hepatotoxixity. These results provide evidence in support of not only the age-related changes in susceptibility to APAP-derived hepatotoxicity in mice but also in developing mouse models for APAP-related studies.

  1. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  2. Enhanced Dopamine Transporter Activity in Middle-Aged Gdnf Heterozygous Mice

    PubMed Central

    Littrell, Ofelia M.; Pomerleau, Francois; Huettl, Peter; Surgener, Stewart; McGinty, Jacqueline F.; Middaugh, Lawrence D.; Granholm, Ann-Charlotte; Gerhardt, Greg A.; Boger, Heather A.

    2010-01-01

    Glial cell line-derived neurotrophic factor (GDNF) supports the viability of midbrain dopamine (DA) neurons that degenerate in Parkinson’s disease. Middle aged, 12-month-old, Gdnf heterozygous (Gdnf+/−) mice have diminished spontaneous locomotor activity and enhanced synaptosomal DA uptake compared to wildtype mice. In this study, dopamine transporter (DAT) function in middle-aged, 12-month-old Gdnf+/− mice was more thoroughly investigated using in vivo electrochemistry. Gdnf+/− mice injected with the DAT inhibitor, nomifensine, exhibited significantly more locomotor activity than wildtype mice. In vivo electrochemistry with carbon fiber microelectrodes demonstrated enhanced clearance of DA in the striatum of Gdnf+/− mice, suggesting greater surface expression of DAT than in wildtype littermates. Additionally, 12 month old Gdnf+/− mice expressed greater D2 receptor mRNA and protein in the striatum than wildtype mice. Neurochemical analyses of striatal tissue samples indicated significant reductions in DA and a faster DA metabolic rate in Gdnf+/− mice than in wildtype mice. Altogether, these data support an important role for GDNF in the regulation of uptake, synthesis, and metabolism of DA during aging. PMID:21144620

  3. IMMMUNOPHENOTYPE OF SPONTANEOUS HEMATOLYMPHOID TUMORS OCCURRING IN YOUNG AND AGING FEMALE CD-1 MICE

    PubMed Central

    Rehg, Jerold E.; Rahija, Richard; Bush, Dorothy; Bradley, Alys; Ward, Jerrold M.

    2015-01-01

    A few reports indicated the incidence of hematolymphoid neoplasms in old CD-1 mice, but the cellular lineage of CD-1 mouse neoplasms has not be published. In this study, immunohistochemistry (IHC) was used to characterize the cellular lineage of spontaneous hematolymphoid neoplasms arising in young female CD-1 mice used as health monitoring sentinels and aging female CD-1 mice used as controls in 80 wk carcinogenesis studies. Lymphoblastic lymphomas of T-cell and B-cell lineage were common in mice 12 mo or less of age, whereas a wide range of non-lymphoblastic B-cell lymphomas and lymphoblastic T-cell lymphomas were common in mice > 12 mo old. Renal hyaline droplets positive for lysozyme were observed in aged mice with a histiocytic-associated large B-cell lymphoma (HA-BCL) and a myeloid leukemia. Endogenous ecotropic MuLV genes have been recovered from CD-1 mice, but MuLV protein expression has not been previously demonstrated. We reported for the first time the expression of MuLV protein by IHC in lymphomas and some normal tissues of both young and aging CD-1 mice. This report should help to differentiate spontaneous lymphomas and leukemias in CD-1 mice from those induced by chemicals and other methods. PMID:26224701

  4. In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice.

    PubMed

    Logan, Angela; Shabalina, Irina G; Prime, Tracy A; Rogatti, Sebastian; Kalinovich, Anastasia V; Hartley, Richard C; Budd, Ralph C; Cannon, Barbara; Murphy, Michael P

    2014-08-01

    In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria-targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro-apoptotic and pro-inflammatory redox signaling pathways.

  5. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    PubMed Central

    Wang, Qing M.; Meng, Zhaoxiang; Yin, Zhenglu

    2017-01-01

    Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD) lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75) and an abnormal gait group (n = 25). Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV) in stride length, two with base of support (BOS) deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was significantly higher in

  6. Anti-inflammaging effects of Lactobacillus brevis OW38 in aged mice.

    PubMed

    Jeong, J-J; Kim, K A; Hwang, Y-J; Han, M J; Kim, D-H

    2016-11-30

    In the present study, lactic acid bacteria (LAB) strains were collected from kimchi and were screened to isolate strains that inhibit lipopolysaccharide (LPS) production by Escherichia coli and p16 expression and nuclear factor-kappa B (NF-κB) activation in LPS-stimulated macrophages. Oral administration of Lactobacillus brevis OW38 (1×10(9) cfu/mouse) to aged mice (male, 18 months old) for 8 weeks reduced the LPS level in colon fluid and blood. In addition, OW38 treatment also reduced the ratio of Firmicutes or Proteobacteria to Bacteroidetes, which was significantly higher in aged mice than in young mice. Treatment with OW38 in aged mice inhibited the expression of inflammatory markers, such as myeloperoxidase, tumour necrosis factor (TNF), and interleukin (IL)-1β, and inhibited NF-κB activation. Furthermore, it induced the expression of colonic tight junction proteins zonula occludens-1, occludin, and claudin-1. OW38 treatment also suppressed the expression of senescence markers p16, p53, and SAMHD1 in the colon and the hippocampus of aged mice. In addition, it significantly restored spontaneous alternation as well as the expression of brain-derived neurotrophic factor and doublecortin in aged mice compared to that in young mice (P<0.05). Based on these findings, we conclude that OW38 treatment may ameliorate aging-associated colitis and memory impairment by inhibiting gut microbiota LPS production, NF-κB activation, and p16 expression.

  7. Age-associated changes in hippocampal-dependent cognition in Diversity Outbred mice.

    PubMed

    Koh, Ming Teng; Spiegel, Amy M; Gallagher, Michela

    2014-11-01

    Episodic memory impairment due to aging has been linked to hippocampal dysfunction. Evidence exists for alterations in specific circuits within the hippocampal system that are closely coupled to individual differences in the presence and severity of such memory loss. Here, we used the newly developed Diversity Outbred (DO) mouse that was designed to model the genetic diversity in human populations. Young and aged DO mice were tested in a hippocampal-dependent water maze task. Young mice showed higher proficiency and more robust memory compared to the overall performance of aged mice. A substantial number of the older mice, however, performed on par with the normative performance of the younger mice. Stereological quantification of somatostatin-immunoreactive neurons in the dentate hilus showed that high-performing young and unimpaired aged mice had similar numbers of somatostatin-positive interneurons, while aged mice that were impaired in the spatial task had significantly fewer such neurons. These data in the DO model tie loss of hilar inhibitory network integrity to age-related memory impairment, paralleling data in other rodent models.

  8. Eurycoma longifolia Jack enhances sexual motivation in middle-aged male mice.

    PubMed

    Ang, Hooi Hoon; Lee, Kheng Leng; Kiyoshi, Matsumoto

    2003-01-01

    Eurycoma longifolia Jack was investigated for sexual motivation activity in adult, middle-aged male mice and in retired breeders, using the modified open field and the modified runway choice methods. Each mouse received 500 mg/kg of one of 4 fractions of E. longifolia Jack, viz. chloroform, methanol, butanol, and water, whereas the mice in the control and yohimbine groups received 3 ml/kg of normal saline and 30 mg/kg of yohimbine daily respectively for 10 d. The results show a transient increase in the percentage of male mice responding to the right choice after chronic consumption of the fractions with 50 percent of the adult middle-aged male mice treated with E. longifolia Jack and yohimbine scoring the right choice after 8 and 5 days post-treatment respectively. In conclusion, this study has shown that E. longifolia Jack continues to enhance sexual motivation in adult, middle-aged male mice and in retired breeders.

  9. Differential response to intrahippocampal interleukin-4/interleukin-13 in aged and exercise mice.

    PubMed

    Littlefield, Alyssa; Kohman, Rachel A

    2017-02-20

    Normal aging is associated with low-grade neuroinflammation that results from age-related priming of microglial cells. Further, aging alters the response to several anti-inflammatory factors, including interleukin (IL)-4 and IL-13. One intervention that has been shown to modulate microglia activation in the aged brain, both basally and following an immune challenge, is exercise. However, whether engaging in exercise can improve responsiveness to anti-inflammatory cytokines is presently unknown. The current study evaluated whether prior exercise training increases sensitivity to anti-inflammatory cytokines that promote the M2 (alternative) microglia phenotype in adult (5-month-old) and aged (23-month-old) C57BL/6J mice. After 8weeks of exercise or control housing, mice received bilateral hippocampal injections of an IL-4/IL-13 cocktail or vehicle. Twenty-four hours later hippocampal samples were collected and analyzed for expression of genes associated with the M1 (inflammatory) and M2 microglia phenotypes. Results show that IL-4/IL-13 administration increased expression of the M2-associated genes found in inflammatory zone 1 (Fizz1), chitinase-like 3 (Ym1), Arginase-1 (Arg1), SOCS1, IL-1ra, and CD206. In response to IL-4/IL-13 administration, aged mice showed increased hippocampal expression of the M2-related genes Arg1, SOCS1, Ym1, and CD206 relative to adult mice. Aged mice also showed increased expression of IL-1β relative to adults, which was unaffected by wheel running or IL-4/IL-13. Wheel running was found to have modest effects on expression of Ym1 and Fizz1 in aged and adult mice. Collectively, our findings indicate that aged mice show a differential response to anti-inflammatory cytokines relative to adult mice and that exercise has limited effects on modulating this response.

  10. Age-Dependent Changes in the Inflammatory Nociceptive Behavior of Mice

    PubMed Central

    King-Himmelreich, Tanya S.; Möser, Christine V.; Wolters, Miriam C.; Olbrich, Katrin; Geisslinger, Gerd; Niederberger, Ellen

    2015-01-01

    The processing of pain undergoes several changes in aging that affect sensory nociceptive fibers and the endogenous neuronal inhibitory systems. So far, it is not completely clear whether age-induced modifications are associated with an increase or decrease in pain perception. In this study, we assessed the impact of age on inflammatory nociception in mice and the role of the hormonal inhibitory systems in this context. We investigated the nociceptive behavior of 12-month-old versus 6–8-week-old mice in two behavioral models of inflammatory nociception. Levels of TRP channels, and cortisol as well as cortisol targets, were measured by qPCR, ELISA, and Western blot in the differently aged mice. We observed an age-related reduction in nociceptive behavior during inflammation as well as a higher level of cortisol in the spinal cord of aged mice compared to young mice, while TRP channels were not reduced. Among potential cortisol targets, the NF-κB inhibitor protein alpha (IκBα) was increased, which might contribute to inhibition of NF-κB and a decreased expression and activity of the inducible nitric oxide synthase (iNOS). In conclusion, our results reveal a reduced nociceptive response in aged mice, which might be at least partially mediated by an augmented inflammation-induced increase in the hormonal inhibitory system involving cortisol. PMID:26593904

  11. Manganese-mediated acceleration of age-related hearing loss in mice

    PubMed Central

    Ohgami, Nobutaka; Yajima, Ichiro; Iida, Machiko; Li, Xiang; Oshino, Reina; Kumasaka, Mayuko Y.; Kato, Masashi

    2016-01-01

    Despite the fact that manganese (Mn) is known to be a neurotoxic element relevant to age-related disorders, the risk of oral exposure to Mn for age-related hearing loss remains unclear. In this study, we orally exposed wild-type young adult mice to Mn (Mn-exposed WT-mice) at 1.65 and 16.50 mg/L for 4 weeks. Mn-exposed WT-mice showed acceleration of age-related hearing loss. Mn-exposed WT-mice had neurodegeneration of spiral ganglion neurons (SGNs) with increased number of lipofuscin granules. Mn-exposed WT-mice also had increased hypoxia-inducible factor-1 alpha (Hif-1α) protein with less hydroxylation at proline 564 and decreased c-Ret protein in SGNs. Mn-mediated acceleration of age-related hearing loss involving neurodegeneration of SGNs was rescued in RET-transgenic mice carrying constitutively activated RET. Thus, oral exposure to Mn accelerates age-related hearing loss in mice with Ret-mediated neurodegeneration of SGNs. PMID:27824154

  12. Joint dysfunction and functional decline in middle age myostatin null mice.

    PubMed

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway.

  13. An inherited mild middle-aged adiposity in wild mice.

    PubMed Central

    Wallace, M. E.; MacSwiney, F. M.

    1979-01-01

    In a warfarin-resistant population of wild mice reared in the laboratory, a dominant gene for adiposity, Ad, was found to segregate. The onset of obesity is at 4--6 months, and adipose mice suffer from hyperinsulinaemia; the sexes differ in penetrance, males having greater penetrance then females. Linkage backcrosses show the gene to be situated on chromosome 7 with about 25% recombination with the closely linked warfarin-resistance genes War, and frizzy, fr. The finding of adipose in two other wild populations also carrying War is discussed as an ecological and physiological problem. PMID:429792

  14. Reduced COX-2 Expression in Aged Mice Is Associated With Impaired Fracture Healing

    PubMed Central

    Naik, Amish A; Xie, Chao; Zuscik, Michael J; Kingsley, Paul; Schwarz, Edward M; Awad, Hani; Guldberg, Robert; Drissi, Hicham; Puzas, J Edward; Boyce, Brendan; Zhang, Xinping; O'Keefe, Regis J

    2009-01-01

    The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E2 (PGE2) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7–9 or 52–56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging. PMID:18847332

  15. Cuprizone-induced demyelination in mice: age-related vulnerability and exploratory behavior deficit.

    PubMed

    Wang, Hongkai; Li, Chengren; Wang, Hanzhi; Mei, Feng; Liu, Zhi; Shen, Hai-Ying; Xiao, Lan

    2013-04-01

    Schizophrenia is a mental disease that mainly affects young individuals (15 to 35 years old) but its etiology remains largely undefined. Recently, accumulating evidence indicated that demyelination and/or dysfunction of oligodendrocytes is an important feature of its pathogenesis. We hypothesized that the vulnerability of young individuals to demyelination may contribute to the onset of schizophrenia. In the present study, three different age cohorts of mice, i.e. juvenile (3 weeks), young-adult (6 weeks) and middle-aged (8 months), were subjected to a 6-week diet containing 0.2% cuprizone (CPZ) to create an animal model of acute demyelination. Then, age-related vulnerability to CPZ-induced demyelination, behavioral outcomes, and myelination-related molecular biological changes were assessed. We demonstrated: (1) CPZ treatment led to more severe demyelination in juvenile and young-adult mice than in middle-aged mice in the corpus callosum, a region closely associated with the pathophysiology of schizophrenia; (2) the higher levels of demyelination in juvenile and young-adult mice were correlated with a greater reduction of myelin basic protein, more loss of CC-1-positive mature oligodendrocytes, and higher levels of astrocyte activation; and (3) CPZ treatment resulted in a more prominent exploratory behavior deficit in juvenile and young-adult mice than in middle-aged mice. Together, our data demonstrate an age-related vulnerability to demyelination with a concurrent behavioral deficit, providing supporting evidence for better understanding the susceptibility of the young to the onset of schizophrenia.

  16. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice

    PubMed Central

    Aso, Kazuyoshi; Tsuruhara, Akitoshi; Takagaki, Kentaro; Oki, Katsuyuki; Ota, Megumi; Nose, Yasuhiro; Tanemura, Hideki; Urushihata, Naoki; Sasanuma, Jinichi; Sano, Masayuki; Hirano, Atsuyuki; Aso, Rio; McGhee, Jerry R.; Fujihashi, Kohtaro

    2016-01-01

    It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer’s patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice. PMID:26840058

  17. Telomere shortening in diaphragm and tibialis anterior muscles of aged mdx mice.

    PubMed

    Lund, Troy C; Grange, Robert W; Lowe, Dawn A

    2007-09-01

    The progression of Duchenne muscular dystrophy (DMD) is, in part, due to satellite cell senescence driven by high replicative pressure as these muscle stem cells repeatedly divide and fuse to damaged muscle fibers. We hypothesize that telomere shortening in satellite cells underlies their senescence. To test this hypothesis, we evaluated the diaphragm and a leg muscle from dystrophic mice of various ages for telomere dynamics. We found 30% telomere shortening in tibialis anterior muscles from 600-day-old mdx mice relative to age-matched wildtype mice. We also found a more severe shortening of telomere length in diaphragm muscles of old mdx mice. In those muscles, telomeres were shortened by approximately 15% and 40% in 100- and 600-day-old mdx mice, respectively. These findings indicate that satellite cells undergo telomere erosion, which may contribute to the inability of these cells to perpetually repair DMD muscle.

  18. Normal aging of offspring mice of mothers with induced inflammation during pregnancy.

    PubMed

    Golan, H; Stilman, M; Lev, V; Huleihel, M

    2006-09-15

    Intrauterine inflammation is a major risk for offspring neurodevelopmental brain damage and may result in cognitive limitations and poor cognitive and perceptual outcomes. In the present study we tested the possibility that prenatal exposure to a high level of inflammatory factors may increase the risk for neurodegeneration in aging. The effect of systemic maternal inflammation (MI), induced by lipopolysaccharide (LPS) on offspring brain aging, was examined in 8 month old (adult) and 20 month old (aged) offspring mice. A significant effect of age was found in the distance and velocity of exploration in the open field in both groups. In addition, MI aged offspring covered longer distances and enter frequently to the center of the field compared with the aged control group. Although only little difference was found in the aged MI offspring compared with the control offspring, the overall profile of behavior of these mice differs from that of the control group, as detected by clustering analysis. The expression of the death-associated protein FAS-ligand and the amount of apoptotic cell death were examined in the brains of aged offspring. Similar levels of FAS-ligand expression and parallel density of apoptotic cells were detected in the brains of aged mice of control and MI groups. Altogether, moderate systemic MI was not found to increase the risk for cell death in the aged offspring; limited effect was found in mice profile of behavior.

  19. Exposure to light at night accelerates aging and spontaneous uterine carcinogenesis in female 129/Sv mice

    PubMed Central

    Popovich, Irina G.; Zabezhinski, Mark A.; Panchenko, Andrei V.; Piskunova, Tatiana S.; Semenchenko, Anna V.; Tyndyk, Maragriata L.; Yurova, Maria N.; Anisimov, Vladimir N.

    2013-01-01

    The effect of the constant illumination on the development of spontaneous tumors in female 129/Sv mice was investigated. Forty-six female 129/Sv mice starting from the age of 2 mo were kept under standard light/dark regimen [12 h light (70 lx):12hr dark; LD, control group], and 46 of 129/Sv mice were kept under constant illumination (24 h a day, 2,500 lx, LL) from the age of 5 mo until to natural death. The exposure to the LL regimen significantly accelerated body weight gain, increased body temperature as well as acceleration of age-related disturbances in estrous function, followed by significant acceleration of the development of the spontaneous uterine tumors in female 129/Sv mice. Total tumor incidence as well as a total number of total or malignant tumors was similar in LL and LD group (p > 0.05). The mice from the LL groups survived less than those from the LD group (χ2 = 8.5; p = 0.00351, log-rank test). According to the estimated parameters of the Cox’s regression model, constant light regimen increased the relative risk of death in female mice compared with the control (LD) group (p = 0.0041). The data demonstrate in the first time that the exposure to constant illumination was followed by the acceleration of aging and spontaneous uterine tumorigenesis in female 129/Sv mice. PMID:23656779

  20. Haploinsufficiency of the Myc regulator Mtbp extends survival and delays tumor development in aging mice

    PubMed Central

    Grieb, Brian C.; Boyd, Kelli; Mitra, Ramkrishna; Eischen, Christine M.

    2016-01-01

    Alterations of specific genes can modulate aging. Myc, a transcription factor that regulates the expression of many genes involved in critical cellular functions was shown to have a role in controlling longevity. Decreased expression of Myc inhibited many of the deleterious effects of aging and increased lifespan in mice. Without altering Myc expression, reduced levels of Mtbp, a recently identified regulator of Myc, limit Myc transcriptional activity and proliferation, while increased levels promote Myc-mediated effects. To determine the contribution of Mtbp to the effects of Myc on aging, we studied a large cohort of Mtbp heterozygous mice and littermate matched wild-type controls. Mtbp haploinsufficiency significantly increased longevity and maximal survival in mice. Reduced levels of Mtbp did not alter locomotor activity, litter size, or body size, but Mtbp heterozygous mice did exhibit elevated markers of metabolism, particularly in the liver. Mtbp+/− mice also had a significant delay in spontaneous cancer development, which was most prominent in the hematopoietic system, and an altered tumor spectrum compared to Mtbp+/+ mice. Therefore, the data suggest Mtbp is a regulator of longevity in mice that mimics some, but not all, of the properties of Myc in aging. PMID:27803394

  1. Age-independent and age-related deficits in visuospatial learning, sleep-wake states, thermoregulation and motor activity in PDAPP mice.

    PubMed

    Huitrón-Reséndiz, Salvador; Sánchez-Alavez, Manuel; Gallegos, Roger; Berg, Greta; Crawford, Elena; Giacchino, Jeannie L; Games, Dora; Henriksen, Steven J; Criado, José R

    2002-02-22

    Recent studies demonstrated that mice overexpressing the human mutant beta-amyloid precursor protein (hbetaAPP; PDAPP mice) show age-independent and age-related deficits in spatial learning. We used behavioral and electrophysiological techniques to determine in young and aged PDAPP mice whether deficits in spatial learning also involve alterations in sleep-wake states, thermoregulation and motor activity. Consistent with earlier studies, young PDAPP mice exhibited selective age-independent deficits using spatial, but not random and serial strategies in the circular maze. Aged PDAPP mice exhibited deficits using all search strategies. The core body temperature (Tb) in young and aged PDAPP mice was significantly lower than in age-matched non-transgenic (non-Tg) littermates. During the dark period, the motor activity (LMA) was significantly increased in young PDAPP mice, but not in aged PDAPP mice. During the light period, young PDAPP mice showed a reduction in the generation of rapid-eye-movement (REM) sleep. In contrast, aged PDAPP mice exhibited a reduction in the amount of time spent in W and an increase in SWS during the light period. Aged PDAPP mice also showed an increase in the amount of time spent in W and a reduction in REM sleep during the dark period. Our findings support previous reports indicating deficits in spatial learning in young and aged PDAPP mice. These data also suggest that PDAPP mice exhibit age-independent and age-related deficits in neural mechanisms regulating visuospatial learning, the total amount and the circadian distribution of sleep-wake states, thermoregulation and motor activity.

  2. Comparison of mice with accelerated aging caused by distinct mechanisms

    PubMed Central

    Gurkar, Aditi U.; Niedernhofer, Laura J.

    2015-01-01

    Aging is the primary risk factor for numerous chronic, debilitating diseases. These diseases impact quality of life of the elderly and consume a large portion of health care costs. The cost of age-related diseases will only increase as the world's population continues to live longer. Thus it would be advantageous to consider aging itself as a therapeutic target, potentially stemming multiple age-related diseases simultaneously. While logical, this is extremely challenging as the molecular mechanisms that drive aging are still unknown. Furthermore, clinical trials to treat aging are impractical. Even in preclinical models, testing interventions to extend healthspan in old age is lengthy and therefore costly. One approach to expedite aging studies is to take advantage of mouse strains that are engineered to age rapidly. These strains are genetically and phenotypically quite diverse. This review aims to offer a comparison of several of these strains to highlight their relative strengths and weaknesses as models of mammalian and more specifically human aging. Additionally, careful identification of commonalities amongst the strains may lead to the identification of fundamental pathways of aging. PMID:25617508

  3. Initial evidence linking synaptic superoxide production with poor short-term memory in aged mice.

    PubMed

    Ali, Sameh S; Young, Jared W; Wallace, Chelsea K; Gresack, Jodi; Jeste, Dilip V; Geyer, Mark A; Dugan, Laura L; Risbrough, Victoria B

    2011-01-12

    Unregulated production of reactive oxygen species (ROS) is a marker of cellular and organismal aging linked to cognitive decline in humans and rodents. The sources of elevated ROS contributing to cognitive decline are unknown. Because NADPH oxidase (Nox) inhibition may prevent memory decline with age, we hypothesized that Nox and not mitochondrial sources of synaptic ROS production are linked to individual variance in cognitive performance in aged mice. Young (8 months) and aged (26 months) mice were tested in the novel object recognition task (NORT). Mitochondrial and Nox ROS production was assayed in isolated synaptosomes using spin trapping electron paramagnetic resonance (EPR) spectroscopy. Aged mice exhibited variance in NORT performance, with some performing similar to young mice while others exhibited poorer short-term memory. EPR studies indicated that Nox rather than mitochondria was the major ROS source at the synapse, and Nox-induced but not mitochondrial-induced ROS levels correlated with NORT performance in aged mice. Our findings support the hypothesis that variance in Nox-specific synaptic ROS production may predict short-term memory deficits with age.

  4. Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice.

    PubMed

    Diderich, Karin E M; Nicolaije, Claudia; Priemel, Matthias; Waarsing, Jan H; Day, Judd S; Brandt, Renata M C; Schilling, Arndt F; Botter, Sander M; Weinans, Harrie; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J; van Leeuwen, Johannes P T M

    2012-08-01

    Trichothiodystrophy (TTD) is a rare, autosomal recessive nucleotide excision repair (NER) disorder caused by mutations in components of the dual functional NER/basal transcription factor TFIIH. TTD mice, carrying a patient-based point mutation in the Xpd gene, strikingly resemble many features of the human syndrome and exhibit signs of premature aging. To examine to which extent TTD mice resemble the normal process of aging, we thoroughly investigated the bone phenotype. Here, we show that female TTD mice exhibit accelerated bone aging from 39 weeks onwards as well as lack of periosteal apposition leading to reduced bone strength. Before 39 weeks have passed, bones of wild-type and TTD mice are identical excluding a developmental defect. Albeit that bone formation is decreased, osteoblasts in TTD mice retain bone-forming capacity as in vivo PTH treatment leads to increased cortical thickness. In vitro bone marrow cell cultures showed that TTD osteoprogenitors retain the capacity to differentiate into osteoblasts. However, after 13 weeks of age TTD females show decreased bone nodule formation. No increase in bone resorption or the number of osteoclasts was detected. In conclusion, TTD mice show premature bone aging, which is preceded by a decrease in mesenchymal stem cells/osteoprogenitors and a change in systemic factors, identifying DNA damage and repair as key determinants for bone fragility by influencing osteogenesis and bone metabolism.

  5. Altered left ventricular performance in aging physically active mice with an ankle sprain injury.

    PubMed

    Turner, Michael J; Guderian, Sophie; Wikstrom, Erik A; Huot, Joshua R; Peck, Bailey D; Arthur, Susan T; Marino, Joseph S; Hubbard-Turner, Tricia

    2016-02-01

    We assessed the impact of differing physical activity levels throughout the lifespan, using a musculoskeletal injury model, on the age-related changes in left ventricular (LV) parameters in active mice. Forty male mice (CBA/J) were randomly placed into one of three running wheel groups (transected CFL group, transected ATFL/CFL group, SHAM group) or a SHAM Sedentary group (SHAMSED). Before surgery and every 6 weeks after surgery, LV parameters were measured under 2.5 % isoflurane inhalation. Group effects for daily distance run was significantly greater for the SHAM and lesser for the ATLF/CFL mice (p = 0.013) with distance run decreasing with age for all mice (p < 0.0001). Beginning at 6 months of age, interaction (group × age) was noted with LV posterior wall thickness-to-radius ratios (h/r) where h/r increased with age in the ATFL/CFL and SHAMSED mice while the SHAM and CFL mice exhibited decreased h/r with age (p = 0.0002). Passive filling velocity (E wave) was significantly greater in the SHAM mice and lowest for the ATFL/CFL and SHAMSED mice (p < 0.0001) beginning at 9 months of age. Active filling velocity (A wave) was not different between groups (p = 0.10). Passive-to-active filling velocity ratio (E/A ratio) was different between groups (p < 0.0001), with higher ratios for the SHAM mice and lower ratios for the ATFL/CFL and SHAMSED mice in response to physical activity beginning at 9 months of age. Passive-to-active filling velocity ratio decreased with age (p < 0.0001). Regular physical activity throughout the lifespan improved LV structure, passive filling velocity, and E/A ratio by 6 to 9 months of age and attenuated any negative alterations throughout the second half of life. The diastolic filling differences were found to be significantly related to the amount of activity performed by 9 months and at the end of the lifespan.

  6. Sirt1 is involved in decreased bone formation in aged apolipoprotein E-deficient mice

    PubMed Central

    Hong, Wei; Xu, Xiao-ya; Qiu, Zhao-hui; Gao, Jian-jun; Wei, Zhan-ying; Zhen, Li; Zhang, Xiao-li; Ye, Zhi-bing

    2015-01-01

    Aim: Apolipoprotein E (ApoE) plays an important role in the transport and metabolism of lipids. Recent studies show that bone mass is increased in young apoE−/− mice. In this study we investigated the bone phenotype and metabolism in aged apoE−/− mice. Methods: Femurs and tibias were collected from 18- and 72-week-old apoE−/− mice and their age-matched wild-type (WT) littermates, and examined using micro-CT and histological analysis. Serum levels of total cholesterol, oxidized low-density lipoprotein (ox-LDL) and bone turnover markers were measured. Cultured bone mesenchymal stem cells (BMSCs) from tibias and femurs of 18-week-old apoE−/− mice were used in experiments in vitro. The expression levels of Sirt1 and Runx2 in bone tissue and BMSCs were measured using RT-PCR and Western blot analysis. Results: Compared with age-matched WT littermates, young apoE−/− mice exhibited high bone mass with increased bone formation, accompanied by higher serum levels of bone turnover markers OCN and TRAP5b, and higher expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. In contrast, aged apoE−/− mice showed reduced bone formation and lower bone mass relative to age-matched WT mice, accompanied by lower serum OCN levels, and markedly reduced expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. After BMSCs were exposed to ox-LDL (20 μg/mL), the expression of Sirt1 and Runx2 proteins was significantly increased at 12 h, and then decreased at 72 h. Treatment with the Sirt1 inhibitor EX527 (10 μmol/L) suppressed the expression of Runx2, ALP and OCN in BMSCs. Conclusion: In contrast to young apoE−/− mice, aged apoE−/− mice showe lower bone mass than age-matched WT mice. Long-lasting exposure to ox-LDL decreases the expression of Sirt1 and Runx2 in BMSCs, which may explain the decreased bone formation in aged apoE−/− mice. PMID:26592520

  7. Age-related dystrophic changes in corneal endothelium from DNA repair-deficient mice.

    PubMed

    Roh, Danny S; Du, Yiqin; Gabriele, Michelle L; Robinson, Andria R; Niedernhofer, Laura J; Funderburgh, James L

    2013-12-01

    The corneal endothelium (CE) is a single layer of cells lining the posterior face of the cornea providing metabolic functions essential for maintenance of corneal transparency. Adult CE cells lack regenerative potential, and the number of CE cells decreases throughout life. To determine whether endogenous DNA damage contributes to the age-related spontaneous loss of CE, we characterized CE in Ercc1(-/Δ) mice, which have impaired capacity to repair DNA damage and age prematurely. Eyes from 4.5- to 6-month-old Ercc1(-/Δ) mice, age-matched wild-type (WT) littermates, and old WT mice (24- to 34-month-old) were compared by spectral domain optical coherence tomography and corneal confocal microscopy. Histopathological changes in CE were further identified in paraffin tissue sections, whole-mount immunostaining, and scanning electron and transmission electron microscopy. The CE of old WT mice displayed polymorphism and polymegathism, polyploidy, decreased cell density, increased cell size, increases in Descemet's thickness, and the presence of posterior projections originating from the CE toward the anterior chamber, similar to changes documented for aging human corneas. Similar changes were observed in young adult Ercc1(-/Δ) mice CE, demonstrating spontaneous premature aging of the CE of these DNA repair-deficient mice. CD45(+) immune cells were associated with the posterior surface of CE from Ercc1(-/Δ) mice and the tissue expressed increased IL-1α, Cxcl2, and TNFα, pro-inflammatory proteins associated with senescence-associated secretory phenotype. These data provide strong experimental evidence that DNA damage can promote aging of the CE and that Ercc1(-/Δ) mice offer a rapid and accurate model to study CE pathogenesis and therapy.

  8. Age-related dystrophic changes in corneal endothelium from DNA repair–deficient mice

    PubMed Central

    Roh, Danny S.; Du, Yiqin; Gabriele, Michelle L.; Robinson, Andria R.; Niedernhofer, Laura J.; Funderburgh, James L.

    2014-01-01

    Summary The corneal endothelium (CE) is a single layer of cells lining the posterior face of the cornea providing metabolic functions essential for maintenance of corneal transparency. Adult CE cells lack regenerative potential, and the number of CE cells decreases throughout life. To determine whether endogenous DNA damage contributes to the age-related spontaneous loss of CE, we characterized CE in Ercc1−/Δ mice, which have impaired capacity to repair DNA damage and age prematurely. Eyes from 4.5- to 6-month-old Ercc1−/Δ mice, age-matched wild-type (WT) litter-mates, and old WT mice (24- to 34-month-old) were compared by spectral domain optical coherence tomography and corneal confocal microscopy. Histopathological changes in CE were further identified in paraffin tissue sections, whole-mount immunostaining, and scanning electron and transmission electron microscopy. The CE of old WT mice displayed polymorphism and polymegathism, polyploidy, decreased cell density, increased cell size, increases in Descemet’s thickness, and the presence of posterior projections originating from the CE toward the anterior chamber, similar to changes documented for aging human corneas. Similar changes were observed in young adult Ercc1−/Δ mice CE, demonstrating spontaneous premature aging of the CE of these DNA repair–deficient mice. CD45+ immune cells were associated with the posterior surface of CE from Ercc1−/Δ mice and the tissue expressed increased IL-1α, Cxcl2, and TNFα, proinflammatory proteins associated with senescence-associated secretory phenotype. These data provide strong experimental evidence that DNA damage can promote aging of the CE and that Ercc1−/Δ mice offer a rapid and accurate model to study CE pathogenesis and therapy. PMID:23927039

  9. Preoperative Fasting Protects against Renal Ischemia-Reperfusion Injury in Aged and Overweight Mice

    PubMed Central

    Jongbloed, Franny; de Bruin, Ron W. F.; Pennings, Jeroen L. A.; Payán-Gómez, César; van den Engel, Sandra; van Oostrom, Conny T.; de Bruin, Alain; Hoeijmakers, Jan H. J.; van Steeg, Harry; IJzermans, Jan N. M.; Dollé, Martijn E. T.

    2014-01-01

    Ischemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly leading to a different response to fasting, we investigated the effects of preoperative fasting on renal IRI in aged-overweight male and female mice. Male and female F1-FVB/C57BL6-hybrid mice, average age 73 weeks weighing 47.2 grams, were randomized to preoperative ad libitum feeding or 3 days fasting, followed by renal IRI. Body weight, kidney function and survival of the animals were monitored until day 28 postoperatively. Kidney histopathology was scored for all animals and gene expression profiles after fasting were analyzed in kidneys of young and aged male mice. Preoperative fasting significantly improved survival after renal IRI in both sexes compared with normal fed mice. Fasted groups had a better kidney function shown by lower serum urea levels after renal IRI. Histopathology showed less acute tubular necrosis and more regeneration in kidneys from fasted mice. A mRNA analysis indicated the involvement of metabolic processes including fatty acid oxidation and retinol metabolism, and the NRF2-mediated stress response. Similar to young-lean, healthy male mice, preoperative fasting protects against renal IRI in aged-overweight mice of both genders. These findings suggest a general protective response of fasting against renal IRI regardless of age, gender, body weight and genetic background. Therefore, fasting could be a non-invasive intervention inducing increased oxidative stress resistance in older and overweight patients as well. PMID:24959849

  10. Restoration of Retarded Influenza Virus-specific Immunoglobulin Class Switch in Aged Mice

    PubMed Central

    Zhang, Yongxin; Wang, Ying; Zhang, Monica; Liu, Lin; Mbawuike, Innocent N

    2016-01-01

    Objective The declined immune response to infection causes significant higher morbidity and mortality in aging in spite of the coexisted hyperimmunoglobulinemia (HIG). This study is to reveal the cellular basis of HIG and mechanism of weakened HA-specific IgG response in aged mice and to test cell therapy in the treatment of age-related IgG antibody production deficiency with immunocyte adoptive transfer. Methods BALB/c mice was immunized with Influenza A/Taiwan vaccine and challenged with the same strain of virus. ELISA was used to assess the levels of total immunoglobulins and antigen specific antibody response. The flow cytometry and ELISPOT were used to evaluate the frequencies of total immunoglobulin- and specific antibody-producing and secreting B lymphocytes. In vitro expanded mononuclear cells, CD4+ T lymphocytes and CD20+ B lymphocytes from old and young mice were adoptively transferred into influenza virus-challenged aged mice, and HA-specific IgG responses were observed. Results It is found that old mice exhibited higher levels of total serum IgG, IgM and IgA, higher frequencies of IgG+, IgM+ and IgA+ cells, and greater antigen-specific IgM and IgA responses to influenza infection, in comparison to young mice. However, influenza antigen- specific IgG and its subclass responses in old mice were significantly lower. Conclusion The retarded specific IgG response could be attributed to an insufficiency of immunoglobulin class switch in aging. Correlation analysis indicated that HIG and deficient specific IgG production in aged mice could be independent to each other in their pathogenesis. Correction of deficient specific IgG production by adoptive transfer of in vitro expanded and unexpanded CD4+ cells from immunized young mice suggests the CD4+ cell dysfunction contributes to the insufficiency of immunoglobulin class switch in aged mice. The transfusion of in vitro expanded lymphocytes could be a potential effective therapy for the age

  11. Improved Learning and Memory in Aged Mice Deficient in Amyloid β-Degrading Neutral Endopeptidase

    PubMed Central

    Walther, Thomas; Albrecht, Doris; Becker, Matthias; Schubert, Manja; Kouznetsova, Elena; Wiesner, Burkard; Maul, Björn; Schliebs, Reinhard; Grecksch, Gisela; Furkert, Jens; Sterner-Kock, Anja; Schultheiss, Heinz-Peter; Becker, Axel; Siems, Wolf-Eberhard

    2009-01-01

    Background Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-β (Aβ) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice. Methodology/Principal Findings We found that while endogenous Aβ concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Aβ deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in mice due to the accumulation of peptides other than Aβ degradable by NEP. By conducting degradation studies and peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1 and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice. Conclusions/Significance Thus, the existence of peptides targeted by NEP that improve learning and memory in older individuals may represent a promising avenue for the treatment of neurodegenerative diseases. PMID:19240795

  12. Age and sex differences in immune response following LPS treatment in mice.

    PubMed

    Cai, Kyle Chiman; van Mil, Spencer; Murray, Emma; Mallet, Jean-François; Matar, Chantal; Ismail, Nafissa

    2016-11-01

    Puberty is an important developmental event that is marked by the reorganizing and remodeling of the brain. Exposure to stress during this critical period of development can have enduring effects on both reproductive and non-reproductive behaviors. The purpose of this study was to investigate age and sex differences in immune response by examining sickness behavior, body temperature changes, and serum cytokine levels following an immune challenge. The effects of circulating gonadal hormones on age and sex differences in immune response were also examined. Results showed that male mice display more sickness behavior and greater fluctuations in body temperature following LPS treatment than female mice. Moreover, adult male mice display more sickness behavior and a greater drop in body temperature following LPS treatment compared to pubertal male mice. Following gonadectomy, pubertal and adult males displayed steeper and prolonged drops in body temperature compared to sham-operated counterparts. Gonadectomy did not eliminate sex differences in LPS-induced body temperature changes, suggesting that additional factors contribute to the observed differences. LPS treatment increased cytokine levels in all mice. However, the increase in pro-inflammatory cytokines was higher in adult compared to pubertal mice, while the increase in anti-inflammatory cytokines was greater in pubertal than in adult mice. Our findings contribute to a better understanding of age and sex differences in acute immune response following LPS treatment and possible mechanisms involved in the enduring alterations in behavior and brain function following pubertal exposure to LPS.

  13. Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling

    PubMed Central

    Delire, Bénédicte; Lebrun, Valérie; Selvais, Charlotte; Henriet, Patrick; Bertrand, Amélie; Horsmans, Yves; Leclercq, Isabelle A.

    2017-01-01

    Clinical data identify age as a factor for severe liver fibrosis. We evaluate whether and how aging modulates the fibrotic response in a mouse model. Liver fibrosis was induced by CCl4 injections (thrice weekly for 2 weeks) in 7 weeks- and 15 months-old mice (young and old, respectively). Livers were analyzed for fibrosis, inflammation and remodeling 48 and 96 hours after the last injection. Old mice developed more severe fibrosis compared to young ones as evaluated by sirius red morphometry. Expression of pro-fibrogenic genes was equally induced in the two age-groups but enhanced fibrolysis in young mice was demonstrated by a significantly higher Mmp13 induction and collagenase activity. While fibrosis resolution occurred in young mice within 96 hours, no significant fibrosis attenuation was observed in old mice. Although recruitment of monocytes-derived macrophages was similar in young and old livers, young macrophages had globally a remodeling phenotype while old ones, a pro-fibrogenic phenotype. Moreover, we observed a higher proportion of thick fibers and enhanced expression of enzymes involved in collagen maturation in old mice. Conclusion Impaired fibrolysis of a matrix less prone to remodeling associated with a pro-inflammatory phenotype of infiltrated macrophages contribute to a more severe fibrosis in old mice. PMID:27941216

  14. Age-related changes in pial arterial structure and blood flow in mice.

    PubMed

    Kang, Hye-Min; Sohn, Inkyung; Jung, Junyang; Jeong, Joo-Won; Park, Chan

    2016-01-01

    Age-related cerebral blood flow decreases are thought to deteriorate cognition and cause senescence, although the related mechanism is unclear. To investigate the relationships between aging and changes in cerebral blood flow and vasculature, we obtained fluorescence images of young (2-month-old) and old (12-month-old) mice using indocyanine green (ICG). First, we found that the blood flow in old mice's brains is lower than that in young mice and that old mice had more curved pial arteries and fewer pial artery junctions than young mice. Second, using Western blotting, we determined that the ratio of collagen to elastin (related to cerebral vascular wall distensibility) increased with age. Finally, we found that the peak ICG intensity and blood flow index decreased, whereas the mean transit time increased, with age in the middle cerebral artery and superior sagittal sinus. Age-related changes in pial arterial structure and composition, concurrent with the observed changes in the blood flow parameters, suggest that age-related changes in the cerebral vasculature structure and distensibility may induce altered brain blood flow.

  15. Evidence for loss of synaptic AMPA receptors in anterior piriform cortex of aged mice.

    PubMed

    Gocel, James; Larson, John

    2013-01-01

    It has been suggested that age-related impairments in learning and memory may be due to age-related deficits in long-term potentiation of glutamatergic synaptic transmission. For example, olfactory discrimination learning is significantly affected by aging in mice and this may be due, in part, to diminished synaptic plasticity in piriform cortex. In the present study, we tested for alterations in electrophysiological properties and synaptic transmission in this simple cortical network. Whole-cell recordings were made from principal neurons in slices of anterior piriform cortex from young (3-6 months old) and old (24-28 months) C57Bl/6 mice. Miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were collected from cells in presence of tetrodotoxin (TTX) and held at -80 mV in voltage-clamp. Amplitudes of mEPSCs were significantly reduced in aged mice, suggesting that synaptic AMPA receptor expression is decreased during aging. In a second set of experiments, spontaneous excitatory postsynaptic currents (s/mEPSCs) were recorded in slices from different cohorts of young and old mice, in the absence of TTX. These currents resembled mEPSCs and were similarly reduced in amplitude in old mice. The results represent the first electrophysiological evidence for age-related declines in glutamatergic synaptic function in the mammalian olfactory system.

  16. Homeostatic imbalance between apoptosis and cell renewal in the liver of premature aging Xpd mice.

    PubMed

    Park, Jung Yoon; Cho, Mi-Ook; Leonard, Shanique; Calder, Brent; Mian, I Saira; Kim, Woo Ho; Wijnhoven, Susan; van Steeg, Harry; Mitchell, James; van der Horst, Gijsbertus T J; Hoeijmakers, Jan; Cohen, Pinchas; Vijg, Jan; Suh, Yousin

    2008-06-11

    Unrepaired or misrepaired DNA damage has been implicated as a causal factor in cancer and aging. Xpd(TTD) mice, harboring defects in nucleotide excision repair and transcription due to a mutation in the Xpd gene (R722W), display severe symptoms of premature aging but have a reduced incidence of cancer. To gain further insight into the molecular basis of the mutant-specific manifestation of age-related phenotypes, we used comparative microarray analysis of young and old female livers to discover gene expression signatures distinguishing Xpd(TTD) mice from their age-matched wild type controls. We found a transcription signature of increased apoptosis in the Xpd(TTD) mice, which was confirmed by in situ immunohistochemical analysis and found to be accompanied by increased proliferation. However, apoptosis rate exceeded the rate of proliferation, resulting in homeostatic imbalance. Interestingly, a metabolic response signature was observed involving decreased energy metabolism and reduced IGF-1 signaling, a major modulator of life span. We conclude that while the increased apoptotic response to endogenous DNA damage contributes to the accelerated aging phenotypes and the reduced cancer incidence observed in the Xpd(TTD) mice, the signature of reduced energy metabolism is likely to reflect a compensatory adjustment to limit the increased genotoxic stress in these mutants. These results support a general model for premature aging in DNA repair deficient mice based on cellular responses to DNA damage that impair normal tissue homeostasis.

  17. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice.

    PubMed

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana; Klein, Dennis; Martini, Rudolf; Krarup, Christian

    2016-03-01

    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice. With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na(+) channel isoform expression contributes to changes in motor axon function during aging.

  18. FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice

    PubMed Central

    Ahlenius, Henrik; Chanda, Soham; Webb, Ashley E.; Yousif, Issa; Karmazin, Jesse; Prusiner, Stanley B.; Brunet, Anne; Südhof, Thomas C.; Wernig, Marius

    2016-01-01

    We and others have shown that embryonic and neonatal fibroblasts can be directly converted into induced neuronal (iN) cells with mature functional properties. Reprogramming of fibroblasts from adult and aged mice, however, has not yet been explored in detail. The ability to generate fully functional iN cells from aged organisms will be particularly important for in vitro modeling of diseases of old age. Here, we demonstrate production of functional iN cells from fibroblasts that were derived from mice close to the end of their lifespan. iN cells from aged mice had apparently normal active and passive neuronal membrane properties and formed abundant synaptic connections. The reprogramming efficiency gradually decreased with fibroblasts derived from embryonic and neonatal mice, but remained similar for fibroblasts from postnatal mice of all ages. Strikingly, overexpression of a transcription factor, forkhead box O3 (FoxO3), which is implicated in aging, blocked iN cell conversion of embryonic fibroblasts, whereas knockout or knockdown of FoxO3 increased the reprogramming efficiency of adult-derived but not of embryonic fibroblasts and also enhanced functional maturation of resulting iN cells. Hence, FoxO3 has a central role in the neuronal reprogramming susceptibility of cells, and the importance of FoxO3 appears to change during development. PMID:27402759

  19. Intrahippocampal glucocorticoids generated by 11β-HSD1 affect memory in aged mice.

    PubMed

    Yau, Joyce L W; Wheelan, Nicola; Noble, June; Walker, Brian R; Webster, Scott P; Kenyon, Christopher J; Ludwig, Mike; Seckl, Jonathan R

    2015-01-01

    11Beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) locally amplifies active glucocorticoids within specific tissues including in brain. In the hippocampus, 11β-HSD1 messenger RNA increases with aging. Here, we report significantly greater increases in intrahippocampal corticosterone (CORT) levels in aged wild-type (WT) mice during the acquisition and retrieval trials in a Y-maze than age-matched 11β-HSD1(-/-) mice, corresponding to impaired and intact spatial memory, respectively. Acute stress applied to young WT mice led to increases in intrahippocampal CORT levels similar to the effects of aging and impaired retrieval of spatial memory. 11β-HSD1(-/-) mice resisted the stress-induced memory impairment. Pharmacologic inhibition of 11β-HSD1 abolished increases in intrahippocampal CORT levels during the Y-maze trials and prevented spatial memory impairments in aged WT mice. These data provide the first in vivo evidence that dynamic increases in hippocampal 11β-HSD1 regenerated CORT levels during learning and retrieval play a key role in age- and stress-associated impairments of spatial memory.

  20. CD36 expression contributes to age induced cardiomyopathy in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cardiac remodeling and impaired cardiac performance in the elderly significantly increase the risk of developing heart disease. Although vascular abnormalities associated with aging contribute to the age-related decline in cardiac function, myocardium-specific events may also be involved. We show th...

  1. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  2. The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Niehoff, Michael L; Morley, John E; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Farr, Susan A; Vrang, Niels

    2015-01-01

    Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of amyloid-β plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD.

  3. Longitudinal Attentional Engagement Rescues Mice from Age-Related Cognitive Declines and Cognitive Inflexibility

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm…

  4. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats

    SciTech Connect

    Canada, A.T.; Calabrese, E.J.; Leonard, D.

    1986-09-01

    The effect of age on the metabolism of pentobarbital in mice and rats was investigated following exposure to 0.3 ppm of ozone for 3.75 hr. Young animals were 2.5 months of age and the mature were 18 months. The pentobarbital sleeping time was significantly prolonged following the ozone exposure in both the mice and rats when compared with an air control. No ozone effect on sleeping time was found in the young animals. The results indicate that there may be an age-related sensitivity to the occurrence of ozone-related inhibition of pentobarbital metabolism.

  5. Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice.

    PubMed

    Kim, In Hee; Xu, Jun; Liu, Xiao; Koyama, Yukinori; Ma, Hsiao-Yen; Diggle, Karin; You, Young-Hyun; Schilling, Jan M; Jeste, Dilip; Sharma, Kumar; Brenner, David A; Kisseleva, Tatiana

    2016-08-01

    We aimed to investigate whether aging increases the susceptibility of hepatic and renal inflammation or fibrosis in response to high-fat diet (HFD) and explore the underlying genetic alterations. Middle (10 months old) and old (20 months old) aged, male C57BL/6N mice were fed either a low-fat diet (4 % fat) or HFD (60 % fat) for 4 months. Young (3 months old) aged mice were included as control group. HFD-induced liver and kidney injuries were analyzed by serum and urine assay, histologic staining, immunohistochemistry, and reverse-transcription real-time quantitative polymerase chain reaction. Total RNA sequencing with next-generation technology was done with RNA extracted from liver tissues. With HFD feeding, aged was associated with higher serum alanine aminotransferase levels, marked infiltration of hepatic macrophages, and increased expression of inflammatory cytokines (MCP1, TNF-α, IL-1β, IL-6, IL-12, IL-17A). Importantly, aged mice showed more advanced hepatic fibrosis and increased expression of fibrogenic markers (Col-I-α1, αSMA, TGF-β1, TGF-β2, TGFβRII, PDGF, PDGFRβII, TIMP1) in response to HFD. Aged mice fed on HFD also showed increased oxidative stress and TLR4 expression. In the total RNA seq and gene ontology analysis of liver, old-aged HFD group showed significant up-regulation of genes linked to innate immune response, immune response, defense response, inflammatory response compared to middle-aged HFD group. Meanwhile, aging and HFD feeding showed significant increase in glomerular size and mesangial area, higher urine albumin/creatinine ratio, and advanced renal inflammation or fibrosis. However, the difference of HFD-induced renal injury between old-aged group and middle-aged group was not significant. The susceptibility of hepatic fibrosis as well as hepatic inflammation in response to HFD was significantly increased with aging. In addition, aging was associated with glomerular alterations and increased renal inflammation or

  6. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  7. Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice.

    PubMed

    Portal-Núñez, Sergio; Ardura, Juan Antonio; Lozano, Daniel; Bolívar, Oskarina Hernández; López-Herradón, Ana; Gutiérrez-Rojas, Irene; Proctor, Alexander; van der Eerden, Bram; Schreuders-Koedam, Marijke; van Leeuwen, Johannes; Alcaraz, María José; Mulero, Francisca; de la Fuente, Mónica; Esbrit, Pedro

    2016-03-01

    In the present study, the possibility that a diabetic (DM) status might worsen age-related bone deterioration was explored in mice. Male CD-1 mice aged 2 (young control group) or 16 months, nondiabetic or made diabetic by streptozotocin injections, were used. DM induced a decrease in bone volume, trabecular number, and eroded surface, and in mineral apposition and bone formation rates, but an increased trabecular separation, in L1-L3 vertebrae of aged mice. Three-point bending and reference point indentation tests showed slight changes pointing to increased frailty and brittleness in the mouse tibia of diabetic old mice. DM was related to a decreased expression of both vascular endothelial growth factor and its receptor 2, which paralleled that of femoral vasculature, and increased expression of the pro-adipogenic gene peroxisome proliferator-activated receptor γ and adipocyte number, without affecting β-catenin pathway in old mouse bone. Concomitant DM in old mice failed to affect total glutathione levels or activity of main anti-oxidative stress enzymes, although xanthine oxidase was slightly increased, in the bone marrow, but increased the senescence marker caveolin-1 gene. In conclusion, DM worsens bone alterations of aged mice, related to decreased bone turnover and bone vasculature and increased senescence, independently of the anti-oxidative stress machinery.

  8. Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8.

    PubMed

    Tha, K K; Okuma, Y; Miyazaki, H; Murayama, T; Uehara, T; Hatakeyama, R; Hayashi, Y; Nomura, Y

    2000-12-01

    The senescence-accelerated mouse (SAM) is known to be a murine model for accelerated aging. The SAMP8 strain shows age-related deterioration of learning and memory at an earlier age than control mice (SAMR1). In the present study, we investigated the changes in expressions of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in the brain of SAMP8. In the hippocampus of 10 months old SAMP8, the expression of IL-1 mRNA was significantly elevated in comparison with that of SAMR1. In both strains of SAMs, increases in IL-1beta protein in the brain were observed at 10 months of age compared with 2 and 5 months. The only differences found between the strain in protein levels were at 10 months and were elevations in IL-1beta in the hippocampus and hypothalamus, and in TNF-alpha and IL-6 in the cerebral cortex and the hippocampus in SAMP8 as compared with SAMR1. However, lipopolysaccharide-induced increases in the expression of these cytokines in brain did not differ between SAMP8 and SAMR1. Increases in expression of proinflammatory cytokines in the brain may be involved in the age-related neural dysfunction and/or learning deficiency in SAMP8.

  9. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling.

    PubMed

    Koopman, Jacob J E; van Heemst, Diana; van Bodegom, David; Bonkowski, Michael S; Sun, Liou Y; Bartke, Andrzej

    2016-03-01

    Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species.

  10. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling

    PubMed Central

    Koopman, Jacob J.E.; van Heemst, Diana; van Bodegom, David; Bonkowski, Michael S.; Sun, Liou Y.; Bartke, Andrzej

    2016-01-01

    Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species. PMID:26959761

  11. Effect of age on testicular germ cell apoptosis and sperm aneuploidy in MF-1 mice.

    PubMed

    Brinkworth, M H; Schmid, T E

    2003-01-01

    The spontaneous mutation rate in the male germ-line increases with age. The reason for this is unknown, but presumably involves an age-related degeneration in the efficacy of cellular processes. To investigate the possibility that rates of apoptosis and genetic damage (represented by aneuploidy) might vary with age in mice, the testes and sperm of 2- and 12-month-old male MF-1 mice were examined by a modified TUNEL technique and 3-colour sperm-FISH assay, respectively. Sperm were labeled with probes to chromosomes 8, X and Y and 20,000 sperm scored from each of 5 animals per group. A significant increase in gonosomal disomy was found in the aged mice, especially X-X-8. This suggests that advanced paternal age is associated primarily with meiosis II rather than meiosis I disjunction errors. Neither diploidy nor autosomal disomy was affected in the older group. The rate of germ cell apoptosis (apoptotic cells per seminiferous tubule cross-section per animal per group) was higher in the old mice than controls, but not significantly. Considerable inter-animal variability was observed in the older group. The finding of an increase in levels of sperm aneuploidy is novel for 1-year-old mice and confirms the genotoxic effect of ageing in mice. Since apoptosis is assumed to eliminate cells with unrepaired damage, it may be that the apoptotic response in older mice is compromised, resulting in the higher levels of aneuploidy in sperm. However, given the inter-animal variability in testicular germ cell apoptosis, this awaits confirmation.

  12. Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice

    PubMed Central

    Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice (n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD. PMID:28217289

  13. Age and isolation influence steroids release and chemical signaling in male mice.

    PubMed

    Mucignat-Caretta, Carla; Cavaggioni, Andrea; Redaelli, Marco; Da Dalt, Laura; Zagotto, Giuseppe; Gabai, Gianfranco

    2014-05-01

    Social interactions in mice involve olfactory signals, which convey information about the emitter. In turn, the mouse social and physiological status may modify the release of chemical cues. In this study, the influences of age and social isolation on the endocrine response and the release of chemical signals were investigated in male CD1 mice, allocated into four groups: Young Isolated (from weaning till 60days; N=6), Adult Isolated (till 180days; N=6), Young Grouped (6 mice/cage; till 60days; N=18), Adult Grouped (6 mice/cage; till 180days; N=18). Mice were transferred in a clean cage to observe the micturition pattern and then sacrificed. Body and organs weights, serum testosterone, dehydroepiandrosterone, corticosterone and the ratio Major Urinary Protein/creatinine were measured. Urinary volatile molecules potentially involved in pheromonal communication were identified. Androgen secretion was greater in isolated mice (P<0.05), suggesting a greater reactivity of the Hypothalamic-Pituitary-Gonadal axis. Grouped mice presented a higher degree of adrenal activity, and young mice showed a higher serum corticosterone (P<0.05) suggesting a greater stimulation of the Hypothalamic-Pituitary-Adrenal axis. The micturition pattern typical of dominant male, consisting in voiding numerous droplets, was observed in Young Isolated mice only, which showed a higher protein/creatinine ratio (P<0.05). Urinary 2-s-butyl-thiazoline was higher in both Young and Adult Isolated mice (P<0.005). Young Isolated mice showed the most prominent difference in both micturition pattern and potentially active substance emission, while long term isolation resulted in a less extreme phenotype; therefore social isolation had a higher impact on young mice hormone and pheromone release.

  14. The synthetic thyroid hormone, levothyroxine, protects cholinergic neurons in the hippocampus of naturally aged mice

    PubMed Central

    Fu, Ailing; Zhou, Rumei; Xu, Xingran

    2014-01-01

    The thyroid hormones, triiodothyronine and thyroxine, play important roles in cognitive function during the mammalian lifespan. However, thyroid hormones have not yet been used as a therapeutic agent for normal age-related cognitive deficits. In this study, CD-1 mice (aged 24 months) were intraperitoneally injected with levothyroxine (L-T4; 1.6 μg/kg per day) for 3 consecutive months. Our findings revealed a significant improvement in hippocampal cytoskeletal rearrangement of actin and an increase in serum hormone levels of L-T4-treated aged mice. Furthermore, the survival rate of these mice was dramatically increased from 60% to 93.3%. The Morris water maze task indicated that L-T4 restored impaired spatial memory in aged mice. Furthermore, level of choline acetyltransferase, acetylcholine, and superoxide dismutase were increased in these mice, thus suggesting that a possible mechanism by which L-T4 reversed cognitive impairment was caused by increased activity of these markers. Overall, supplement of low-dosage L-T4 may be a potential therapeutic strategy for normal age-related cognitive deficits. PMID:25206902

  15. Overactive mTOR signaling leads to endometrial hyperplasia in aged women and mice.

    PubMed

    Bajwa, Preety; Nielsen, Sarah; Lombard, Janine M; Rassam, Loui; Nahar, Pravin; Rueda, Bo R; Wilkinson, J Erby; Miller, Richard A; Tanwar, Pradeep S

    2017-01-31

    During aging, uncontrolled epithelial cell proliferation in the uterus results in endometrial hyperplasia and/or cancer development. The mTOR signaling pathway is one of the major regulators of aging as suppression of this pathway prolongs lifespan in model organisms. Genetic alterations in this pathway via mutations and/or amplifications are often encountered in endometrial cancers. However, the exact contribution of mTOR signaling and uterine aging to endometrial pathologies is currently unclear. This study examined the role of mTOR signaling in uterine aging and its implications in the development of endometrial hyperplasia. The hyperplastic endometrium of both postmenopausal women and aged mice exhibited elevated mTOR activity as seen with increased expression of the pS6 protein. Analysis of uteri from Pten heterozygous and Pten overexpressing mice further confirmed that over-activation of mTOR signaling leads to endometrial hyperplasia. Pharmacological inhibition of mTOR signaling using rapamycin treatment suppressed endometrial hyperplasia in aged mice. Furthermore, treatment with mTOR inhibitors reduced colony size and proliferation of a PTEN negative endometrial cancer cell line in 3D culture. Collectively, this study suggests that hyperactivation of the mTOR pathway is involved in the development of endometrial hyperplasia in aged women and mice.

  16. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose

    PubMed Central

    Zhou, Yue-Yue; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance. PMID:26176541

  17. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose.

    PubMed

    Zhou, Yue-Yue; Ji, Xiong-Fei; Fu, Jian-Ping; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.

  18. Involvement of oxidative stress in SAMP10 mice with age-related neurodegeneration.

    PubMed

    Wang, Jun; Lei, Hongtao; Hou, Jincai; Liu, Jianxun

    2015-05-01

    Age-related changes in the brain tissue are reflected in many aspects. We sought to determine the morphology, Nissl bodies, behavioral appearance and oxidative stress in the brain using SAMP10 mice, a substrain of the senescence-accelerated mouse. SAMP10 mice groups divided by different ages (3, 5, 8 and 14 months) were compared with those of control groups with the above corresponding ages. Cortical thickness, Nissl bodies, behavioral appearance and oxidative stress were evaluated through image software, thionine staining, step-down test and colorimetry, respectively. The weight and cortical thickness of the brain in SAMP10 mice significantly reduced from 8 months of age. The results showed that the number of Nissl bodies decreased or Nissl bodies shrank with dark staining in histology. The same result appeared in a step-down test. As the SAMP10 mice grew older, the oxidative stress-related markers superoxide dismutase decreased and malondialdehyde increased after 8 months. Glutathione peroxidase activities showed no age-related changes. The changes of brain morphology and productions of oxidative stress in the brain tissue might contribute to the behavioral abnormality. Deceleration of age-related production of oxidative stress might be expected to be a potent strategy for anti-aging interventions.

  19. Susceptibility to glaucoma damage related to age and connective tissue mutations in mice.

    PubMed

    Steinhart, Matthew R; Cone-Kimball, Elizabeth; Nguyen, Cathy; Nguyen, Thao D; Pease, Mary E; Chakravarti, Shukti; Oglesby, Ericka N; Quigley, Harry A

    2014-02-01

    The purpose of this research was to study the effects of age and genetic alterations in key connective tissue proteins on susceptibility to experimental glaucoma in mice. We used mice haploinsufficient in the elastin gene (EH) and mice without both alleles of the fibromodulin gene (FM KO) and their wild type (WT) littermates of B6 and CD1 strains, respectively. FM KO mice were tested at two ages: 2 months and 12 months. Intraocular pressure (IOP) was measured by Tonolab tonometer, axial lengths and widths measured by digital caliper post-enucleation, and chronic glaucoma damage was measured using a bead injection model and optic nerve axon counts. IOP in EH mice was not significantly different from WT, but FM KO were slightly lower than their controls (p = 0.04). Loss of retinal ganglion cell (RGC) axons was somewhat, but not significantly greater in young EH and younger or older FM KO strains than in age-matched controls (p = 0.48, 0.34, 0.20, respectively, multivariable regression adjusting for IOP exposure). Older CD1 mice lost significantly more RGC axons than younger CD1 (p = 0.01, multivariable regression). The CD1 mouse strain showed age-dependence of experimental glaucoma damage to RGC in the opposite, and more expected, direction than in B6 mice in which older mice are more resistant to damage. Genetic alteration in two genes that are constituents of sclera, fibromodulin and elastin do not significantly affect RGC loss.

  20. Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice.

    PubMed

    Latimer, Caitlin S; Searcy, James L; Bridges, Michael T; Brewer, Lawrence D; Popović, Jelena; Blalock, Eric M; Landfield, Philip W; Thibault, Olivier; Porter, Nada M

    2011-01-01

    Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.

  1. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    PubMed

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  2. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice.

    PubMed

    Arendash, Gary W; Mori, Takashi; Cao, Chuanhai; Mamcarz, Malgorzata; Runfeldt, Melissa; Dickson, Alexander; Rezai-Zadeh, Kavon; Tane, Jun; Citron, Bruce A; Lin, Xiaoyang; Echeverria, Valentina; Potter, Huntington

    2009-01-01

    We have recently shown that Alzheimer's disease (AD) transgenic mice given a moderate level of caffeine intake (the human equivalent of 5 cups of coffee per day) are protected from development of otherwise certain cognitive impairment and have decreased hippocampal amyloid-beta (Abeta) levels due to suppression of both beta-secretase (BACE1) and presenilin 1 (PS1)/gamma-secretase expression. To determine if caffeine intake can have beneficial effects in "aged" APPsw mice already demonstrating cognitive impairment, we administered caffeine in the drinking water of 18-19 month old APPsw mice that were impaired in working memory. At 4-5 weeks into caffeine treatment, those impaired transgenic mice given caffeine (Tg/Caff) exhibited vastly superior working memory compared to the continuing impairment of control transgenic mice. In addition, Tg/Caff mice had substantially reduced Abeta deposition in hippocampus (decrease 40%) and entorhinal cortex (decrease 46%), as well as correlated decreases in brain soluble Abeta levels. Mechanistically, evidence is provided that caffeine suppression of BACE1 involves the cRaf-1/NFkappaB pathway. We also determined that caffeine concentrations within human physiological range effectively reduce active and total glycogen synthase kinase 3 levels in SweAPP N2a cells. Even with pre-existing and substantial Abeta burden, aged APPsw mice exhibited memory restoration and reversal of AD pathology, suggesting a treatment potential of caffeine in cases of established AD.

  3. Aged mice receiving caffeine since adulthood show distinct patterns of anxiety-related behavior.

    PubMed

    Botton, Paulo Henrique S; Pochmann, Daniela; Rocha, Andreia S; Nunes, Fernanda; Almeida, Amanda S; Marques, Daniela M; Porciúncula, Lisiane O

    2017-03-01

    Caffeine is the psychostimulant most consumed worldwide. Anxiogenic effects of caffeine have been described in adult animals with controversial findings about its anxiogenic potential. Besides, the effects of caffeine on anxiety with aging are still poorly known. In this study, adult mice (6months old) started to receive caffeine (0.3 and 1.0mg/mL, drinking water) during 12-14months only in the light cycle and at weekdays. The open field (OF) and elevated plus maze (EPM) testing were used to determine the effects of caffeine on anxiety-related behavior in adult and aged mice (18-20months old). Because aging alters synaptic proteins, we also evaluated SNAP-25 (as a nerve terminals marker), GFAP (as an astrocyte marker) and adenosine A1 and A2A receptors levels in the cortex. According to the OF analysis, caffeine did not change both hypolocomotion and anxiety with aging. However, aged mice showed less anxiety behavior in the EPM, but after receiving caffeine (0.3mg/mL) during adulthood they were anxious as adult mice. While SNAP-25 and adenosine A2A receptors increased with aging, both GFAP and adenosine A1 receptors were not affected. Caffeine at moderate dose prevented the age-related increase of the SNAP-25, with no effect on adenosine A2A receptors. The absence of effect for the highest dose suggests that tolerance to caffeine may have developed over time. Aged mice showed high responsiveness to the OF, being difficult to achieve any effect of caffeine. On the other hand this substance sustained the adult anxious behavior over time in a less stressful paradigm, and this effect was coincident with changes in the SNAP-25, suggesting the involvement of this synaptic protein in the ability of caffeine to preserve changes related to emotionality with aging.

  4. Influence of aging on the activity of mice Sca-1+CD31− cardiac stem cells

    PubMed Central

    Pu, Shiming; Qin, Liu; Li, Yun; Zhou, Zuping

    2017-01-01

    Therapeutic application of cardiac resident stem/progenitor cells (CSC/CPCs) is limited due to decline of their regenerative potential with donor age. A variety of studies have shown that the cardiac aging was the problem of the stem cells, but little is known about the impact of age on the subgroups CSC/CPCs, the relationship between subgroups CSC/CPCs ageing and age-related dysfunction. Here, we studied Sca-1+CD31− subgroups of CSCs from younger(2~3months) and older(22~24months) age mice, biological differentiation was realized using specific mediums for 14 days to induce cardiomyocyte, smooth muscle cells or endothelial cells and immunostain analysis of differentiated cell resulting were done. Proliferation and cell cycle were measured by flow cytometry assay, then used microarray to dissect variability from younger and older mice. Although the number of CSCs was higher in older mice, the advanced age significantly reduced the differentiation ability into cardiac cell lineages and the proliferation ability. Transcriptional changes in Sca-1+CD31− subgroups of CSCs during aging are related to Vitamin B6 metabolism, circadian rhythm, Tyrosine metabolism, Complement and coagulation cascades. Taking together these results indicate that Cardiac resident stem/progenitor cells have significant differences in their proliferative, pluripotency and gene profiles and those differences are age depending. PMID:27980224

  5. Aging-related changes in respiratory system mechanics and morphometry in mice.

    PubMed

    Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C

    2016-07-01

    Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice.

  6. Effect of Colla corii asini (E'jiao) on D-galactose induced aging mice.

    PubMed

    Wang, Dongliang; Liu, Maoxuan; Cao, Jichao; Cheng, Yanna; Zhuo, Chen; Xu, Hongyan; Tian, Shousheng; Zhang, Yan; Zhang, Jian; Wang, Fengshan

    2012-01-01

    Colla corii asini (E'jiao), donkey-hide gelatin prepared by stewing and concentrating from Equus asinus L. donkey hide, is a traditional Chinese medicine preparation widely used in clinical hematic antanemic therapy in China. The aim of the present study was to investigate potential anti-aging effect of Colla corii asini and explore related mechanisms in D-galactose (gal) induced aging model mice. The mice were artificially induced aging by subcutaneously injection with D-gal at the dose of 100 mg/kg·d for 8 weeks. Colla corii asini was simultaneously treated to them once daily by intragastric gavage. Appetite, mental condition, body weight, and organ index were observed. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), as well as levels of malondialdehyde (MDA) in serum, brain, and liver were determined by according assay kits. Western blotting analysis was used to detect p16 and p21 expression. Results indicated that Colla corii asini could improve appetite, mental condition, body weight, and organ condition of model mice, improve SOD, CAT, and GSH-Px activities, reduce MDA levels, and modulate age-related genes expression in D-gal induced mice. Therefore, Colla corii asini may have effect to suppress the aging process through enhancing antioxidant activity, scavenging free radicals, and modulating aging-related gene expression.

  7. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice

    PubMed Central

    Li, Li; Xu, Meng; Shen, Bo; Li, Man; Gao, Qian; Wei, Shou-gang

    2016-01-01

    D-galactose has been widely used in aging research because of its efficacy in inducing senescence and accelerating aging in animal models. The present study investigated the benefits of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-galactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected to exercise training by running on a treadmill for 6 days a week. Shortened escape latency in a Morris water maze test indicated that exercise improved learning and memory in aging mice. The ameliorative changes were likely induced by an upregulation of Bcl-2 and brain-derived neurotrophic factor, the repression of apoptosis factors such as Fas and Bax, and an increase in the activity of glucose transporters-1 and 4. The data suggest moderate exercise may retard or inhibit neurodegeneration in D-galactose-induced aging mice. PMID:27335566

  8. Intravenous administration of piceatannol, an arginase inhibitor, improves endothelial dysfunction in aged mice

    PubMed Central

    Nguyen, Minh Cong

    2017-01-01

    Advanced age is one of the risk factors for vascular diseases that are mainly caused by impaired nitric oxide (NO) production. It has been demonstrated that endothelial arginase constrains the activity of endothelial nitric oxide synthase (eNOS) and limits NO generation. Hence, arginase inhibition is suggested to be vasoprotective in aging. In this study, we examined the effects of intravenous injection of Piceatannol, an arginase inhibitor, on aged mice. Our results show that Piceatannol administration reduced the blood pressure in aged mice by inhibiting arginase activity, which was associated with NO production and reactive oxygen species generation. In addition, Piceatannol administration recovered Ca2+/calmodulin-dependent protein kinase II phosphorylation, eNOS phosphorylation and eNOS dimer stability in the aged mice. The improved NO signaling was shown to be effective in attenuating the phenylephrine-dependent contractile response and in enhancing the acetylcholine-dependent vasorelaxation response in aortic rings from the aged mice. These data suggest Piceatannol as a potential treatment for vascular disease. PMID:28066144

  9. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice

    PubMed Central

    Hu, Longyuan; Tan, Jia; Yang, Xiaomei; Tan, Haitao; Xu, Xiaozhen; You, Manhang; Qin, Wu; Huang, Liangzhao; Li, Siqi; Mo, Manqiu; Wei, Huifen; Li, Jing; Tan, Jiyong

    2016-01-01

    This study aimed to determine the effect of topically applied Laminaria polysaccharide (LP) on skin aging. We applied ointment containing LP (10, 25, and 50 μg/g) or vitamin E (10 μg/g) to the dorsal skin of aging mice for 12 months and young control mice for 4 weeks. Electron microscopy analysis of skin samples revealed that LP increased dermal thickness and skin collagen content. Tissue inhibitor of metalloprotease- (TIMP-) 1 expression was upregulated while that of matrix metalloproteinase- (MMP-) 1 was downregulated in skin tissue of LP-treated as compared to untreated aging mice. Additionally, phosphorylation of c-Jun N-terminal kinase (JNK) and p38 was higher in aging skin than in young skin, while LP treatment suppressed phospho-JNK expression. LP application also enhanced the expression of antioxidative enzymes in skin tissue, causing a decrease in malondialdehyde levels and increases in superoxide dismutase, catalase, and glutathione peroxidase levels relative to those in untreated aging mice. These results indicate that LP inhibits MMP-1 expression by preventing oxidative stress and JNK phosphorylation, thereby delaying skin collagen breakdown during aging. PMID:27143987

  10. Increased human AP endonuclease 1 level confers protection against the paternal age effect in mice

    PubMed Central

    Sanchez, Jamila R.; Reddick, Traci L.; Perez, Marissa; Centonze, Victoria E.; Mitra, Sankar; Izumi, Tadahide; McMahan, C. Alex; Walter, Christi A.

    2015-01-01

    Increased paternal age is associated with a greater risk of producing children with genetic disorders originating from de novo germline mutations. Mice mimic the human condition by displaying an age-associated increase in spontaneous mutant frequency in spermatogenic cells. The observed increase in mutant frequency appears to be associated with a decrease in the DNA repair protein, AP endonuclease1 (APEX1) and Apex1 heterozygous mice display an accelerated paternal age effect as young adults. In this study, we directly tested if APEX1 over-expression in cell lines and transgenic mice could prevent increases in mutagenesis. Cell lines with ectopic expression of APEX1 had increased APEX1 activity and lower spontaneous and induced mutations in the lacI reporter gene relative to the control. Spermatogenic cells obtained from mice transgenic for human APEX1 displayed increased APEX1 activity, were protected from the age-dependent increase in spontaneous germline mutagenesis, and exhibited increased apoptosis in the spermatogonial cell population. These results directly indicate that increases in APEX1 level confer protection against the murine paternal age effect, thus highlighting the role of APEX1 in preserving reproductive health with increasing age and in protection against genotoxin-induced mutagenesis in somatic cells. PMID:26201249

  11. Restoration of regenerative osteoblastogenesis in aged mice: Modulation of TNF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skeletal changes accompanying aging are associated with both increased risk of fractures and impaired fracture healing, which, in turn, is due to compromised bone regeneration potential. These changes are associated with increased serum levels of selected proinflammatory cytokines, e.g., tumor necro...

  12. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice

    PubMed Central

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato (Lycopersicon esculentum) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders. PMID:27792185

  13. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice.

    PubMed

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho

    2016-10-26

    A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato (Lycopersicon esculentum) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders.

  14. Age-related changes in the bone marrow and spleen of SAS/4 mice.

    PubMed

    Coggle, J E; Gordon, M Y; Proukakis, C; Bogg, C E

    1975-01-01

    The total number of nucleated cells in the bone marrow of SAS/4 mice increase some twofold between 1 and 24 months of age but when related to body weight remains essentially constant over a wide range of ages. The concentration of CFU-S in femoral marrow is also constant with age and since other bones containing marrow appear, at least in young mice, to have the same CFU-S concentration as the femur it is concluded that the CFU-S compartment size of the whole bone marrow is independent of age when expressed on a body weight basis, In contrast, both the absolute number and the concentration of exogenous CFU-S in the spleen decline markedly in old mice. Smilary there is a decline in the number of endogenous colony-forming cells and the spleens of 24-month-old mice seem virtually devoid of such colonies. Not only were older mice less capable of supporting the growth of endogenous colonies, but their spleens also appear to provide a poorer environment for exogenous colony growth when compared with growth in younger recipient spleens.

  15. The nigrostriatal dopamine system of aging GFRalpha-1 heterozygous mice: neurochemistry, morphology and behavior.

    PubMed

    Zaman, Vandana; Boger, Heather A; Granholm, Ann-Charlotte; Rohrer, Baerbel; Moore, Alfred; Buhusi, Mona; Gerhardt, Greg A; Hoffer, Barry J; Middaugh, Lawrence D

    2008-10-01

    Given the established importance of glial cell line-derived neurotrophic factor (GDNF) in maintaining dopaminergic neurotransmitter systems, the nigrostriatal system and associated behaviors of mice with genetic reduction of its high-affinity receptor, GDNF receptor (GFR)alpha-1 (GFRalpha-1(+/-)), were compared with wild-type controls. Motor activity and the stimulatory effects of a dopamine (DA) D1 receptor agonist (SKF 82958) were assessed longitudinally at 8 and 18 months of age. Monoamine concentrations and dopaminergic nerve terminals in the striatum and the number of dopaminergic neurons in the substantia nigra (SN) were assessed. The results support the importance of GFRalpha-1 in maintaining normal function of the nigrostriatal dopaminergic system, with deficits being observed for GFRalpha-1(+/-) mice at both ages. Motor activity was lower and the stimulatory effects of the DA agonist were enhanced for the older GFRalpha-1(+/-) mice. DA in the striatum was reduced in the GFRalpha-1(+/-) mice at both ages, and tyrosine hydroxylase-positive cell numbers in the SN were reduced most substantially in the older GFRalpha-1(+/-) mice. The combined behavioral, pharmacological probe, neurochemical and morphological measures provide evidence of abnormalities in GFRalpha-1(+/-) mice that are indicative of an exacerbated aging-related decline in dopaminergic system function. The noted deficiencies, in turn, suggest that GFRalpha-1 is necessary for GDNF to maintain normal function of the nigrostriatal dopaminergic system. Although the precise mechanism(s) for the aging-related changes in the dopaminergic system remain to be established, the present study clearly establishes that genetic reductions in GFRalpha-1 can contribute to the degenerative changes observed in this system during the aging process.

  16. Food restriction increases long-term memory persistence in adult or aged mice.

    PubMed

    Talhati, F; Patti, C L; Zanin, K A; Lopes-Silva, L B; Ceccon, L M B; Hollais, A W; Bizerra, C S; Santos, R; Tufik, S; Frussa-Filho, R

    2014-04-03

    Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12h) or repeated (12h/day for 2days) FR protocols on learning and memory of adult and aged mice evaluated in the plus-maze discriminative avoidance task (PM-DAT), an animal model that concurrently (but independently) evaluates learning and memory, anxiety and locomotion. We also investigated the possible role of FR-induced stress by the corticosterone concentration in adult mice. Male mice were kept at home cage with food ad libitum (CTRL-control condition) or subjected to FR during the dark phase of the cycle for 12h/day or 12h/2days. The FR protocols were applied before training, immediately after it or before testing. Our results demonstrated that only FR for 2days enhanced memory persistence when applied before training in adults and before testing in aged mice. Conversely, FR for 2days impaired consolidation and exerted no effects on retrieval irrespective of age. These effects do not seem to be related to corticosterone concentration. Collectively, these results indicate that FR for 2days can promote promnestic effects not only in aged mice but also in adults.

  17. Characterisation of Age-Dependent Beta Cell Dynamics in the Male db/db Mice

    PubMed Central

    Dalbøge, Louise S.; Almholt, Dorthe L. C.; Neerup, Trine S. R.; Vassiliadis, Efstathios; Vrang, Niels; Pedersen, Lars; Fosgerau, Keld; Jelsing, Jacob

    2013-01-01

    Aim To characterise changes in pancreatic beta cell mass during the development of diabetes in untreated male C57BLKS/J db/db mice. Methods Blood samples were collected from a total of 72 untreated male db/db mice aged 5, 6, 8, 10, 12, 14, 18, 24 and 34 weeks, for measurement of terminal blood glucose, HbA1c, plasma insulin, and C-peptide. Pancreata were removed for quantification of beta cell mass, islet numbers as well as proliferation and apoptosis by immunohistochemistry and stereology. Results Total pancreatic beta cell mass increased significantly from 2.1 ± 0.3 mg in mice aged 5 weeks to a peak value of 4.84 ± 0.26 mg (P < 0.05) in 12-week-old mice, then gradually decreased to 3.27 ± 0.44 mg in mice aged 34 weeks. Analysis of islets in the 5-, 10-, and 24-week age groups showed increased beta cell proliferation in the 10-week-old animals whereas a low proliferation is seen in older animals. The expansion in beta cell mass was driven by an increase in mean islet mass as the total number of islets was unchanged in the three groups. Conclusions/Interpretation The age-dependent beta cell dynamics in male db/db mice has been described from 5-34 weeks of age and at the same time alterations in insulin/glucose homeostasis were assessed. High beta cell proliferation and increased beta cell mass occur in young animals followed by a gradual decline characterised by a low beta cell proliferation in older animals. The expansion of beta cell mass was caused by an increase in mean islet mass and not islet number. PMID:24324833

  18. Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice

    PubMed Central

    Jensen, Cathy Joanna; Demol, Frauke; Bauwens, Romy; Kooijman, Ron; Massie, Ann; Villers, Agnès; Ris, Laurence; De Keyser, Jacques

    2016-01-01

    In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox) and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2). Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment) test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle) administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP) was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function. PMID:27776147

  19. Age-dependent effects of UCP2 deficiency on experimental acute pancreatitis in mice.

    PubMed

    Müller, Sarah; Kaiser, Hannah; Krüger, Burkhard; Fitzner, Brit; Lange, Falko; Bock, Cristin N; Nizze, Horst; Ibrahim, Saleh M; Fuellen, Georg; Wolkenhauer, Olaf; Jaster, Robert

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of acute pancreatitis (AP) for many years but experimental evidence is still limited. Uncoupling protein 2 (UCP2)-deficient mice are an accepted model of age-related oxidative stress. Here, we have analysed how UCP2 deficiency affects the severity of experimental AP in young and older mice (3 and 12 months old, respectively) triggered by up to 7 injections of the secretagogue cerulein (50 μg/kg body weight) at hourly intervals. Disease severity was assessed at time points from 3 hours to 7 days based on pancreatic histopathology, serum levels of alpha-amylase, intrapancreatic trypsin activation and levels of myeloperoxidase (MPO) in lung and pancreatic tissue. Furthermore, in vitro studies with pancreatic acini were performed. At an age of 3 months, UCP2-/- mice and wild-type (WT) C57BL/6 mice were virtually indistinguishable with respect to disease severity. In contrast, 12 months old UCP2-/- mice developed a more severe pancreatic damage than WT mice at late time points after the induction of AP (24 h and 7 days, respectively), suggesting retarded regeneration. Furthermore, a higher peak level of alpha-amylase activity and gradually increased MPO levels in pancreatic and lung tissue were observed in UCP2-/- mice. Interestingly, intrapancreatic trypsin activities (in vivo studies) and intraacinar trypsin and elastase activation in response to cerulein treatment (in vitro studies) were not enhanced but even diminished in the knockout strain. Finally, UCP2-/- mice displayed a diminished ratio of reduced and oxidized glutathione in serum but no increased ROS levels in pancreatic acini. Together, our data indicate an aggravating effect of UCP2 deficiency on the severity of experimental AP in older but not in young mice. We suggest that increased severity of AP in 12 months old UCP2-/- is caused by an imbalanced inflammatory response but is unrelated to acinar cell functions.

  20. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    PubMed

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1(∆/-)) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg(-/-) (also known as Ercc5(-/-)) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1(∆/-) mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1(∆/-) mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1(∆/-) mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  1. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions

    PubMed Central

    Parikh, Ishita; Guo, Janet; Chuang, Kai-Hsiang; Zhong, Yu; Rempe, Ralf G.; Hoffman, Jared D.; Armstrong, Rachel; Bauer, Björn; Hartz, Anika M.S.; Lin, Ai-Ling

    2016-01-01

    Neurovascular integrity plays an important role in protecting cognitive and mental health in aging. Lifestyle interventions that sustain neurovascular integrity may thus be critical on preserving brain functions in aging and reducing the risk for age-related neurodegenerative disorders. Here we show that caloric restriction (CR) had an early effect on neurovascular enhancements, and played a critical role in preserving vascular, cognitive and mental health in aging. In particular, we found that CR significantly enhanced cerebral blood flow (CBF) and blood-brain barrier function in young mice at 5-6 months of age. The neurovascular enhancements were associated with reduced mammalian target of rapamycin expression, elevated endothelial nitric oxide synthase signaling, and increased ketone bodies utilization. With age, CR decelerated the rate of decline in CBF. The preserved CBF in hippocampus and frontal cortex were highly correlated with preserved memory and learning, and reduced anxiety, of the aging mice treated with CR (18-20 months of age). Our results suggest that dietary intervention started in the early stage (e.g., young adults) may benefit cognitive and mental reserve in aging. Understanding nutritional effects on neurovascular functions may have profound implications in human brain aging and age-related neurodegenerative disorders. PMID:27829242

  2. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  3. Towards the modelling of ageing and atherosclerosis effects in ApoE(-/-) mice aortic tissue.

    PubMed

    Waffenschmidt, Tobias; Cilla, Myriam; Sáez, Pablo; Pérez, Marta M; Martínez, Miguel A; Menzel, Andreas; Peña, Estefanía

    2016-08-16

    The goal of this work consists in a quantitative analysis and constitutive modelling of ageing processes associated to plaque formation in mice arteries. Reliable information on the characteristic evolution of pressure-stretch curves due to the ageing effects is extracted from previous inflation test experiments. Furthermore, characteristic age-dependent material parameters are identified on the basis of a continuum-mechanics-based parameter optimisation technique. The results indicate that the aorta-stiffness of the healthy control mice remains basically constant irrespective of the diet-time and age. In contrast, significant differences exist within the material response and in consequence within the material parameters between the ApoE(-/-) and the control mice as well as for the different locations over the aorta which is underlined by our experimental observations. With regard to the temporal evolution of the material parameters, we observe that the material parameters for the ApoE(-/-) mice aortas exhibit a saturation-type increase with respect to age.

  4. Ablation of the p16(INK4a) tumour suppressor reverses ageing phenotypes of klotho mice.

    PubMed

    Sato, Seidai; Kawamata, Yuka; Takahashi, Akiko; Imai, Yoshinori; Hanyu, Aki; Okuma, Atsushi; Takasugi, Masaki; Yamakoshi, Kimi; Sorimachi, Hiroyuki; Kanda, Hiroaki; Ishikawa, Yuichi; Sone, Saburo; Nishioka, Yasuhiko; Ohtani, Naoko; Hara, Eiji

    2015-04-29

    The p16(INK4a) tumour suppressor has an established role in the implementation of cellular senescence in stem/progenitor cells, which is thought to contribute to organismal ageing. However, since p16(INK4a) knockout mice die prematurely from cancer, whether p16(INK4a) reduces longevity remains unclear. Here we show that, in mutant mice homozygous for a hypomorphic allele of the α-klotho ageing-suppressor gene (kl(kl/kl)), accelerated ageing phenotypes are rescued by p16(INK4a) ablation. Surprisingly, this is due to the restoration of α-klotho expression in kl(kl/kl) mice and does not occur when p16(INK4a) is ablated in α-klotho knockout mice (kl(-/-)), suggesting that p16(INK4a) is an upstream regulator of α-klotho expression. Indeed, p16(INK4a) represses α-klotho promoter activity by blocking the functions of E2Fs. These results, together with the observation that the expression levels of p16(INK4a) are inversely correlated with those of α-klotho throughout ageing, indicate that p16(INK4a) plays a previously unrecognized role in downregulating α-klotho expression during ageing.

  5. Differential peptidomics assessment of strain and age differences in mice in response to acute cocaine administration.

    PubMed

    Romanova, Elena V; Rubakhin, Stanislav S; Ossyra, John R; Zombeck, Jonathan A; Nosek, Michael R; Sweedler, Jonathan V; Rhodes, Justin S

    2015-12-01

    Neurochemical differences in the hypothalamic-pituitary axis between individuals and between ages may contribute to differential susceptibility to cocaine abuse. This study measured peptide levels in the pituitary gland (Pit) and lateral hypothalamus (LH) in adolescent (age 30 days) and adult (age 65 days) mice from four standard inbred strains, FVB/NJ, DBA/2J, C57BL/6J, and BALB/cByJ, which have previously been characterized for acute locomotor responses to cocaine. Individual peptide profiles were analyzed using mass spectrometric profiling and principal component analysis. Sequences of assigned peptides were verified by tandem mass spectrometry. Principal component analysis classified all strains according to their distinct peptide profiles in Pit samples from adolescent mice, but not adults. Select pro-opiomelanocortin-derived peptides were significantly higher in adolescent BALB/cByJ and DBA/2J mice than in FVB/NJ or C57BL/6J mice. A subset of peptides in the LH, but not in the Pit, was altered by cocaine in adolescents. A 15 mg/kg dose of cocaine induced greater peptide alterations than a 30 mg/kg dose, particularly in FVB/NJ animals, with larger differences in adolescents than adults. Neuropeptides in the LH affected by acute cocaine administration included pro-opiomelanocortin-, myelin basic protein-, and glutamate transporter-derived peptides. The observed peptide differences could contribute to differential behavioral sensitivity to cocaine among strains and ages. Peptides were measured using mass spectrometry (MALDI-TOF) in individual lateral hypothalamus and pituitary samples from four strains and two ages of inbred mice in response to acute cocaine administration. Principal component analyses (PCA) classified the strains according to their peptide profiles from adolescent mice, and a subset of peptides in the lateral hypothalamus was altered by cocaine in adolescents.

  6. Sex and age differences in mercury distribution and excretion in methylmercury-administered mice

    SciTech Connect

    Hirayama, K.; Yasutake, A.

    1986-01-01

    Sex differences in mercury distribution and excretion after single administration of methylmercury chloride (MMC, 5 mg/kg were studied in mice. A sex difference in urinary mercury excretion was found in sexually mature mice (age of 7 wk) of C57BL/6N and BALB/cA strains. Males showed higher mercury levels in urine than females, though no significant difference was found in fecal mercury levels 24 h post exposure to MMC. The higher urinary excretion rates in males accounted for significant lowering of mercury levels in the brain, liver, and blood, but not in the kidney, which showed higher values. At 5 min, however, the sex difference was found only in the kidney, showing higher levels in males. Changes in mercury distribution with time were studied in C57BL/6N mice. The brain mercury increased in both sexes up to 3 d, and decreased only in males on d 5. Liver and blood mercury decreased with time in both sexes, and these were constantly higher in females than in males. Renal mercury in males decreased to similar levels to females on d 3. The sex differences at various ages were studied with C57BL/6N mice 24 h after dosing. Two-week-old mice did not show significant sex differences in the mercury distribution and excretion, and their urinary mercury levels were much lower as compared to the older mice. Urinary mercury excretion in both sexes increased at 4 wk of age and then decreased at 45 wk of age. At 4, 7, 10, and 45 wk of age, males showed higher urinary mercury levels than females. From these findings, it has been suggested that urinary mercury excretion may be related to sex hormones, especially androgens.

  7. Effects of rhein lysinate on D-galactose-induced aging mice

    PubMed Central

    ZHEN, YONG-ZHAN; LIN, YA-JUN; LI, KAI-JI; ZHANG, GUANG-LING; ZHAO, YU-FANG; WANG, MEI-MEI; WEI, JING-BO; WEI, JIE; HU, GANG

    2016-01-01

    The aim of the present study was to investigate the anti-aging effects of rhein lysinate (RHL), and to explore its mechanism of action in a D-galactose-induced aging mouse model. Aging was induced by D-galactose (100 mg/kg/day) that was subcutaneously injected to animals for 8 weeks. RHL was simultaneously administered once a day by intragastric gavage. The appetite, mental condition, body weight and organ index of the mice were monitored. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined, and the levels of malondialdehyde (MDA) in the liver, kidney and serum were measured by appropriate assay kits. Western blot analysis was used to detect proteins associated with age. The results indicated that RHL may improve the appetite, mental state and organ conditions of the model mice, improve the activities of SOD and GSH-Px, reduce MDA levels and modulate the expression of age-associated proteins (Sirtuin 1, p21 and p16) in D-galactose-induced mice. Therefore, RHL may be effective at suppressing the aging process through a combination of enhancing antioxidant activity, scavenging free radicals and modulating aging-associated gene expression. PMID:26889258

  8. Senescence-accelerated Mice (SAMs) as a Model for Brain Aging and Immunosenescence

    PubMed Central

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2011-01-01

    The Senescence-Accelerated Mouse (SAM) represents a group of inbred mouse strains developed as a model for the study of human aging and age-related diseases. Senescence-prone (SAMP) strains exhibit an early onset of age-related decline in the peripheral immunity such as thymic involution, loss of CD4+ T cells, impaired helper T cell function, decreased antibody-forming capacity, dysfunction of antigen-presenting cells, decreased natural killer activity, increased auto-antibodies, and susceptibility to virus infection. Senescence-prone SAMP10 mice undergo age-related changes in the brain such as brain atrophy, shrinkage and loss of cortical neurons, retraction of cortical neuronal dendrites, loss of dendritic spines, loss of synapses, impaired learning and memory, depressive behavior, accumulation of neuronal DNA damage, neuronal ubiquitinated inclusions, reduced hippocampal cholinergic receptors, decreased neurotrophic factors, decreased hippocampal zinc and zinc transporters, increased sphyngomyelinase, and elevated oxidative-nitrative stress. Recent data indicating increased pro-inflammatory cytokines in the brain of SAMP10 mice are directing investigators toward an integration of immune and neural abnormalities to enhance understanding of the principles of brain aging. We highlight how mouse brain cells adopt cytokine-mediated responses and how SAMP10 mice are defective in these responses. SAMP10 model would be useful to study how age-related disturbances in peripheral immunity have an impact on dysregulation of brain tissue homeostasis, resulting in age-related neurodegeneration. PMID:22396891

  9. Mathematical modeling of left ventricular dimensional changes in mice during aging

    PubMed Central

    2012-01-01

    Cardiac aging is characterized by diastolic dysfunction of the left ventricle (LV), which is due in part to increased LV wall stiffness. In the diastolic phase, myocytes are relaxed and extracellular matrix (ECM) is a critical determinant to the changes of LV wall stiffness. To evaluate the effects of ECM composition on cardiac aging, we developed a mathematical model to predict LV dimension and wall stiffness changes in aging mice by integrating mechanical laws and our experimental results. We measured LV dimension, wall thickness, LV mass, and collagen content for wild type (WT) C57/BL6J mice of ages ranging from 7.3 months to those of 34.0 months. The model was established using the thick wall theory and stretch-induced tissue growth to an isotropic and homogeneous elastic composite with mixed constituents. The initial conditions of the simulation were set based on the data from the young mice. Matlab simulations of this mathematical model demonstrated that the model captured the major features of LV remodeling with age and closely approximated experimental results. Specifically, the temporal progression of the LV interior and exterior dimensions demonstrated the same trend and order-of-magnitude change as our experimental results. In conclusion, we present here a validated mathematical model of cardiac aging that applies the thick-wall theory and stretch-induced tissue growth to LV remodeling with age. PMID:23281647

  10. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice

    PubMed Central

    Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-01-01

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders. PMID:27750221

  11. Procognitive effect of AC-3933 in aged mice, and synergistic effect of combination with donepezil in scopolamine-treated mice.

    PubMed

    Hashimoto, Takashi; Hatayama, Yuki; Nakamichi, Keiko; Yoshida, Naoyuki

    2014-12-15

    We have previously reported that AC-3933, a newly developed benzodiazepine receptor partial inverse agonist, facilitates acetylcholine release in the hippocampus and ameliorates scopolamine-induced memory deficits in rats. To further confirm the procognitive effect of AC-3933, we assessed in this study the beneficial effects of this compound in aged mice using the Y-maze and object recognition tests. In addition, we investigated the synergistic effect of AC-3933 and donepezil, a cholinesterase inhibitor, on scopolamine-induced memory impairment in mice. In aged mice, oral administration of AC-3933 at doses of 0.05-0.1 mg/kg and 0.05 mg/kg significantly improved spatial working memory and episodic memory, respectively. In scopolamine-treated mice, both AC-3933 and donepezil significantly ameliorated memory deficits in the Y-maze test at doses of 0.3-3 mg/kg and 10-15 mg/kg, respectively. The beneficial effect of AC-3933, but not that of donepezil, on scopolamine-induced memory impairment was antagonized by flumazenil, a benzodiazepine receptor antagonist, indicating that the procognitive action of AC-3933 arises via a mechanism different from that of donepezil. Co-administration of donepezil at the suboptimal dose of 3 mg/kg with AC-3933 at doses of 0.1-1 mg/kg significantly ameliorated scopolamine-induced memory impairment, suggesting that AC-3933 potentiates the effect of donepezil on memory impairment induced by cholinergic hypofunction. These findings indicate that AC-3933 not only has good potential as a cognitive enhancer by itself, but also is useful as a concomitant drug for the treatment of Alzheimer׳s disease.

  12. Pathobiology of aging mice and GEM: background strains and experimental design.

    PubMed

    Brayton, C F; Treuting, P M; Ward, J M

    2012-01-01

    The use of induced and spontaneous mutant mice and genetically engineered mice (and combinations thereof) to study cancers and other aging phenotypes to advance improved functional human life spans will involve studies of aging mice. Genetic background contributes to pathology phenotypes and to causes of death as well as to longevity. Increased recognition of expected phenotypes, experimental variables that influence phenotypes and research outcomes, and experimental design options and rationales can maximize the utility of genetically engineered mice (GEM) models to translational research on aging. This review aims to provide resources to enhance the design and practice of chronic and longevity studies involving GEM. C57BL6, 129, and FVB/N strains are emphasized because of their widespread use in the generation of knockout, transgenic, and conditional mutant GEM. Resources are included also for pathology of other inbred strain families, including A, AKR, BALB/c, C3H, C57L, C58, CBA, DBA, GR, NOD.scid, SAMP, and SJL/J, and non-inbred mice, including 4WC, AB6F1, Ames dwarf, B6, 129, B6C3F1, BALB/c,129, Het3, nude, SENCAR, and several Swiss stocks. Experimental strategies for long-term cross-sectional and longitudinal studies to assess causes of or contributors to death, disease burden, spectrum of pathology phenotypes, longevity, and functional healthy life spans (health spans) are compared and discussed.

  13. Lack of fibulin-3 causes early aging and herniation, but not macular degeneration in mice.

    PubMed

    McLaughlin, Precious J; Bakall, Benjamin; Choi, Jiwon; Liu, Zhonglin; Sasaki, Takako; Davis, Elaine C; Marmorstein, Alan D; Marmorstein, Lihua Y

    2007-12-15

    A mutation in the EFEMP1 gene causes Malattia Leventinese, an inherited macular degenerative disease with strong similarities to age-related macular degeneration. EFEMP1 encodes fibulin-3, an extracellular matrix protein of unknown function. To investigate its biological role, the murine Efemp1 gene was inactivated through targeted disruption. Efemp1(-/-) mice exhibited reduced reproductivity, and displayed an early onset of aging-associated phenotypes including reduced lifespan, decreased body mass, lordokyphosis, reduced hair growth, and generalized fat, muscle and organ atrophy. However, these mice appeared to have normal wound healing ability. Efemp1(-/-) mice on a C57BL/6 genetic background developed multiple large hernias including inguinal hernias, pelvic prolapse and protrusions of the xiphoid process. In contrast, Efemp1(-/-) mice on a BALB/c background rarely had any forms of hernias, indicating the presence of modifiers for fibulin-3's function in different mouse strains. Histological analysis revealed a marked reduction of elastic fibers in fascia, a thin layer of connective tissue maintaining and protecting structures throughout the body. No apparent macular degeneration associated defects were found in Efemp1(-/-) mice, suggesting that loss of fibulin-3 function is not the mechanism by which the mutation in EFEMP1 causes macular degeneration. These data demonstrate that fibulin-3 plays an important role in maintaining the integrity of fascia connective tissues and regulates aging.

  14. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice.

    PubMed

    Peferoen, Laura A N; Breur, Marjolein; van de Berg, Sarah; Peferoen-Baert, Regina; Boddeke, Erik H W G M; van der Valk, Paul; Pryce, Gareth; van Noort, Johannes M; Baker, David; Amor, Sandra

    2016-10-01

    Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical features of MS including relapsing-remitting episodes and secondary-progressive disability. To address the contribution of recurrent inflammatory events and ageing as factors that amplify progressive neurological disease, we examined EAE in 8- to 12-week-old and 12-month-old ABH mice. Compared with the relapsing-remitting (RREAE) and secondary progressive (SPEAE) EAE observed in young mice, old mice developed progressive disease from onset (PEAE) associated with pronounced axonal damage and increased numbers of CD3(+) T cells and microglia/macrophages, but not B cells. Whereas the clinical neurological features of PEAE and SPEAE were comparable, the pathology was distinct. SPEAE was associated with significantly reduced perivascular infiltrates and T-cell numbers in the central nervous system (CNS) compared with PEAE and the acute phase of RREAE. In contrast to perivascular infiltrates that declined during progression from RREAE into SPEAE, the numbers of microglia clusters remained constant. Similar to what is observed during MS, the microglia clusters emerging during EAE were associated with axonal damage and oligodendrocytes expressing heat-shock protein B5, but not lymphocytes. Taken together, our data reveal that the course of EAE is dependent on the age of the mice. Younger mice show a relapsing-remitting phase followed by progressive disease, whereas old mice immediately show progression. This indicates that recurrent episodes of inflammation in the CNS, as well as age, contribute to progressive neurological disease.

  15. Evidence of subclinical prion disease in aged mice following exposure to bovine spongiform encephalopathy.

    PubMed

    Brown, Karen L; Mabbott, Neil A

    2014-01-01

    The occurrence of variant Creutzfeldt-Jakob (vCJD) disease in humans was almost certainly the result of consumption of food contaminated with bovine spongiform encephalopathy (BSE) prions. Despite probable widespread exposure of the UK population to BSE-contaminated food in the 1980s, vCJD has been identified predominantly in young individuals, and there have been fewer cases of clinical disease than anticipated. The reasons for this are uncertain. Following peripheral exposure, many prions replicate within the lymphoid tissues before infecting the central nervous system. We have shown that the effects of host age on the microarchitecture of the spleen significantly impair susceptibility to mouse-adapted prions after peripheral exposure. The transmission of prions between different mammalian species is considered to be limited by the 'species barrier', which is dependent on several factors, including an intact immune system. Thus, cross-species prion transmission may be much less efficient in aged individuals. To test this hypothesis, we compared prion pathogenesis in groups of young (6-8 weeks old) and aged (600 days old) mice injected with primary BSE brain homogenate. We showed that prion pathogenesis was impaired dramatically in aged mice when compared with young animals. Whereas most young mice succumbed to clinical prion disease, all aged mice failed to develop clinical disease during their lifespans. However, the demonstration that prion accumulation was detected in the lymphoid tissues of some aged mice after injection with primary BSE brain homogenate, in the absence of clinical signs of prion disease, has important implications for human health.

  16. Chronic Oral Estrogen Affects Memory and Neurochemistry in Middle-Aged Female Mice

    PubMed Central

    Fernandez, Stephanie M.; Frick, Karyn M.

    2006-01-01

    This study tested whether chronic oral estrogen could improve memory and alter neural plasticity in the hippocampus and neocortex of middle-aged female mice. Ovariectomized C57BL/6 mice were administered 1,000, 1,500, or 2,500 nM 17β-estradiol in drinking water for 5 weeks prior to and during spatial and object memory testing. Synaptophysin, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) levels were then measured in hippocampus and neocortex. The medium dose impaired spatial reference memory in the radial-arm maze, whereas all doses improved object recognition. The high dose increased hippocampal synaptophysin and NGF levels, whereas the medium dose decreased these neocortical levels. The high dose decreased neocortical BDNF levels. These data suggest that chronic oral estrogen selectively affects memory and neural function in middle-aged female mice. PMID:15598143

  17. Modulation of cutaneous wound healing by ozone: differences between young and aged mice.

    PubMed

    Lim, Yunsook; Phung, Anh D; Corbacho, Ana M; Aung, Hnin Hnin; Maioli, Emanuela; Reznick, Abraham Z; Cross, Carroll E; Davis, Paul A; Valacchi, Giuseppe

    2006-01-05

    Cutaneous tissues are frequently exposed to prooxidative environments, including UV radiation and air pollutants. Among the latter, ozone (O(3)) is of particular concern because of its high and dominating presence in photochemical smog. It is well known that O(3) depletes small molecular weight antioxidants, oxidizes proteins, induces lipid peroxidation and activates cellular responses in various tissues. Using an in vivo model (SKH-1 hairless mice), the interaction between O(3) exposure (0.5ppmx6h/day) and age was examined in relation to cutaneous wound healing. Compared to younger (8 weeks) mice, older (18 months) mice exposed to O(3) (day 0 to day 9 after wounding) exhibited delayed wound closure, increased lipid peroxidation (measured as 4-HNE protein adducts) and protein oxidation (measured as carbonyls concentration) and decreased levels of P-IkappaBalpha and TGFbeta protein. These findings support the hypothesis that oxidant pollutant exposure and age interact so as to disrupt normal wound healing processes.

  18. Effect of chronic piracetam on age-related changes of cross-maze exploration in mice.

    PubMed

    Salimov, R; Salimova, N; Shvets, L; Shvets, N

    1995-11-01

    Normal aging is known to deteriorate memory, spatial orientation, and perceptual recognition. Experiment 1 examined behavioral manifestations of aging by using a cross-maze exploration test in 2-, 6-, and 10-month-old hybrid mice (CBA x C57BL). A decrease in explorative patrolling and an increase in arm reentries, a latency to start and a total time of exploration were found in 10-month-old mice. In Experiment 2, administration of the cognition enhancer piracetam (2-oxo-1-pirrolidone acetamide) (400 mg/kg, IP, once a day for 10 days) enhanced arm patrolling and decreased reentries in 10-month-old mice to the level displayed by the 2-month-old animals. The results suggest that the cross-maze test may be useful for a preliminary screening of antisenescent drugs.

  19. Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice.

    PubMed

    Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-10-01

    The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia.

  20. A study of axonal degeneration in the optic nerves of aging mice

    NASA Technical Reports Server (NTRS)

    Johnson, J. E., Jr.; Philpott, D. E.; Miquel, J.

    1978-01-01

    The optic nerves of C57BL/6J mice ranging from 3 to 30 months were examined by electron microscopy. At all ages investigated, optic nerve axons contained enlarged mitochondria with abnormal cristae. With increasing age, a large number of necrotic axons were observed and were in the process of being phagocytized. The abnormal mitochondria may represent preliminary changes that eventually lead to necrosis of the axon.

  1. Age-related decline in oligodendrogenesis retards white matter repair in mice

    PubMed Central

    Miyamoto, Nobukazu; Pham, Loc-Duyen D.; Hayakawa, Kazuhide; Matsuzaki, Toshinori; Seo, Ji Hae; Magnain, Caroline; Ayata, Cenk; Kim, Kyu-Won; Boas, David; Lo, Eng H.; Arai, Ken

    2013-01-01

    Background/Purpose Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask if compared to young brains, white matter regions in older brains may be more vulnerable in part due to decreased rates of compensatory oligodendrogenesis after injury. Methods A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells (OPCs) to sub-lethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Results Baseline myelin density in the corpus callosum was similar in 2-month and 8-month old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in CREB signaling may be involved because activating CREB with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of OPCs, alleviated myelin loss and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of OPCs. Conclusions An age-related decline in CREB-mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate CREB signaling provide a potential therapeutic approach for treating white matter injury in aging brains. PMID:23881957

  2. Characteristics of bone marrow-derived endothelial progenitor cells in aged mice

    SciTech Connect

    Zhang Wei; Zhang Guoping; Jin Huiming . E-mail: hmjin@shmu.edu.cn; Hu Renming

    2006-09-29

    Evidence for dysfunction of endothelial repair in aged mice was sought by studying the pattern of induced differentiation, quantity, and function of bone marrow-derived endothelial progenitor cells (EPCs) in aged mice. The CD117-positive stem cell population was separated from bone marrow by magnetic activated cell-sorting system (MACS), and EPCs were defined by demonstrating the expression of CD117{sup +}CD34{sup +}Flk-1{sup +} by flow cytometry. After 7 days of culture, the number of clones formed was counted, and proliferation and migration of EPCs were analyzed by MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and modified Boyden chamber assay. The results demonstrated that compared to the control group, the quantity of bone marrow-derived CD117{sup +} stem cells and EPCs, as well as the proliferation, migration, the number of clones formed, and phagocytotic function of EPCs were significantly reduced in aged mice. There were no significant differences in the morphology and induced differentiation pattern of EPCs between the aged mouse group and the control group. Authors suggest that the dysfunction of EPCs may serve as a surrogate parameter of vascular function in old mice.

  3. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    PubMed

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  4. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice

    PubMed Central

    Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.

    2015-01-01

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793

  5. Exogenous Hsp70 delays senescence and improves cognitive function in aging mice

    PubMed Central

    Bobkova, Natalia V.; Evgen’ev, Mikhail; Garbuz, David G.; Kulikov, Alexei M.; Morozov, Alexei; Samokhin, Alexander; Velmeshev, Dmitri; Medvinskaya, Natalia; Nesterova, Inna; Pollock, Andrew; Nudler, Evgeny

    2015-01-01

    Molecular chaperone Heat Shock Protein 70 (Hsp70) plays an important protective role in various neurodegenerative disorders often associated with aging, but its activity and availability in neuronal tissue decrease with age. Here we explored the effects of intranasal administration of exogenous recombinant human Hsp70 (eHsp70) on lifespan and neurological parameters in middle-aged and old mice. Long-term administration of eHsp70 significantly enhanced the lifespan of animals of different age groups. Behavioral assessment after 5 and 9 mo of chronic eHsp70 administration demonstrated improved learning and memory in old mice. Likewise, the investigation of locomotor and exploratory activities after eHsp70 treatment demonstrated a significant therapeutic effect of this chaperone. Measurements of synaptophysin show that eHsp70 treatment in old mice resulted in larger synaptophysin-immunopositive areas and higher neuron density compared with control animals. Furthermore, eHsp70 treatment decreased accumulation of lipofuscin, an aging-related marker, in the brain and enhanced proteasome activity. The potential of eHsp70 intranasal treatment to protect synaptic machinery in old animals offers a unique pharmacological approach for various neurodegenerative disorders associated with human aging. PMID:26668376

  6. Exogenous Hsp70 delays senescence and improves cognitive function in aging mice.

    PubMed

    Bobkova, Natalia V; Evgen'ev, Mikhail; Garbuz, David G; Kulikov, Alexei M; Morozov, Alexei; Samokhin, Alexander; Velmeshev, Dmitri; Medvinskaya, Natalia; Nesterova, Inna; Pollock, Andrew; Nudler, Evgeny

    2015-12-29

    Molecular chaperone Heat Shock Protein 70 (Hsp70) plays an important protective role in various neurodegenerative disorders often associated with aging, but its activity and availability in neuronal tissue decrease with age. Here we explored the effects of intranasal administration of exogenous recombinant human Hsp70 (eHsp70) on lifespan and neurological parameters in middle-aged and old mice. Long-term administration of eHsp70 significantly enhanced the lifespan of animals of different age groups. Behavioral assessment after 5 and 9 mo of chronic eHsp70 administration demonstrated improved learning and memory in old mice. Likewise, the investigation of locomotor and exploratory activities after eHsp70 treatment demonstrated a significant therapeutic effect of this chaperone. Measurements of synaptophysin show that eHsp70 treatment in old mice resulted in larger synaptophysin-immunopositive areas and higher neuron density compared with control animals. Furthermore, eHsp70 treatment decreased accumulation of lipofuscin, an aging-related marker, in the brain and enhanced proteasome activity. The potential of eHsp70 intranasal treatment to protect synaptic machinery in old animals offers a unique pharmacological approach for various neurodegenerative disorders associated with human aging.

  7. Modeling early-onset post-ischemic seizures in aging mice.

    PubMed

    Wu, Chiping; Wang, Justin; Peng, Jessie; Patel, Nisarg; Huang, Yayi; Gao, Xiaoxing; Aljarallah, Salman; Eubanks, James H; McDonald, Robert; Zhang, Liang

    2015-09-01

    Stroke is the leading cause of seizures and epilepsy in the aged population, with post-stroke seizures being a poor prognostic factor. The pathological processes underlying post-stroke seizures are not well understood and studies of these seizures in aging/aged animals remain scarce. Therefore, our primary objective was to model post-stroke seizures in aging mice (C57 black strain, 16-20 months-old), with a focus on early-onset, convulsive seizures that occur within 24-hours of brain ischemia. We utilized a middle cerebral artery occlusion model and examined seizure activity and brain injury using combined behavioral and electroencephalographic monitoring and histological assessments. Aging mice exhibited vigorous convulsive seizures within hours of the middle cerebral artery occlusion. These seizures manifested with jumping, rapid running, barrel-rolling and/or falling all in the absence of hippocampal-cortical electrographic discharges. Seizure development was closely associated with severe brain injury and acute mortality. Anticonvulsive treatments after seizure occurrence offered temporary seizure control but failed to improve animal survival. A separate cohort of adult mice (6-8 months-old) exhibited analogous early-onset convulsive seizures following the middle cerebral artery occlusion but had better survival outcomes following anticonvulsive treatment. Collectively, our data suggest that early-onset convulsive seizures are a result of severe brain ischemia in aging animals.

  8. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses.

    PubMed

    Clark, Erica S; Flannery, Brenna M; Gardner, Elizabeth M; Pestka, James J

    2015-10-19

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  9. Frontiers of Model Animals for Neuroscience:Two Prosperous Aging Model Animals forPromoting Neuroscience Research

    PubMed Central

    Ito, Koichi

    2013-01-01

    A model animal showing spontaneous onset is a useful tool for investigating the mechanism of disease. Here, I would like to introduce two aging model animals expected to be useful for neuroscience research: the senescence-accelerated mouse (SAM) and the klotho mouse. The SAM was developed as a mouse showing a senescence-related phenotype such as a short lifespan or rapid advancement of senescence. In particular, SAMP8 and SAMP10 show age-related impairment of learning and memory. SAMP8 has spontaneous spongy degeneration in the brain stem and spinal cord with aging, and immunohistochemical studies reveal excess protein expression of amyloid precursor protein and amyloid β in the brain, indicating that SAMP8 is a model for Alzheimer’s disease. SAMP10 also shows age-related impairment of learning and memory, but it does not seem to correspond to Alzheimer’s disease because senile plaques primarily composed of amyloid β or neurofibrillary tangles primarily composed of phosphorylated tau were not observed. However, severe atrophy in the frontal cortex, entorhinal cortex, amygdala, and nucleus accumbens can be seen in this strain in an age-dependent manner, indicating that SAMP10 is a model for normal aging. The klotho mouse shows a phenotype, regulated by only one gene named α-klotho, similar to human progeria. The α-klotho gene is mainly expressed in the kidney and brain, and oxidative stress is involved in the deterioration of cognitive function of the klotho mouse. These animal models are potentially useful for neuroscience research now and in the near future. PMID:24172191

  10. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice.

    PubMed

    Jaskelioff, Mariela; Muller, Florian L; Paik, Ji-Hye; Thomas, Emily; Jiang, Shan; Adams, Andrew C; Sahin, Ergun; Kost-Alimova, Maria; Protopopov, Alexei; Cadiñanos, Juan; Horner, James W; Maratos-Flier, Eleftheria; Depinho, Ronald A

    2011-01-06

    An ageing world population has fuelled interest in regenerative remedies that may stem declining organ function and maintain fitness. Unanswered is whether elimination of intrinsic instigators driving age-associated degeneration can reverse, as opposed to simply arrest, various afflictions of the aged. Such instigators include progressively damaged genomes. Telomerase-deficient mice have served as a model system to study the adverse cellular and organismal consequences of wide-spread endogenous DNA damage signalling activation in vivo. Telomere loss and uncapping provokes progressive tissue atrophy, stem cell depletion, organ system failure and impaired tissue injury responses. Here, we sought to determine whether entrenched multi-system degeneration in adult mice with severe telomere dysfunction can be halted or possibly reversed by reactivation of endogenous telomerase activity. To this end, we engineered a knock-in allele encoding a 4-hydroxytamoxifen (4-OHT)-inducible telomerase reverse transcriptase-oestrogen receptor (TERT-ER) under transcriptional control of the endogenous TERT promoter. Homozygous TERT-ER mice have short dysfunctional telomeres and sustain increased DNA damage signalling and classical degenerative phenotypes upon successive generational matings and advancing age. Telomerase reactivation in such late generation TERT-ER mice extends telomeres, reduces DNA damage signalling and associated cellular checkpoint responses, allows resumption of proliferation in quiescent cultures, and eliminates degenerative phenotypes across multiple organs including testes, spleens and intestines. Notably, somatic telomerase reactivation reversed neurodegeneration with restoration of proliferating Sox2(+) neural progenitors, Dcx(+) newborn neurons, and Olig2(+) oligodendrocyte populations. Consistent with the integral role of subventricular zone neural progenitors in generation and maintenance of olfactory bulb interneurons, this wave of telomerase

  11. Age-Related Changes in Cochlear Gene Expression In Normal and Shaker 2 Mice

    PubMed Central

    Gong, Tzy-Wen L.; Karolyi, I. Jill; MacDonald, James; Beyer, Lisa; Raphael, Yehoash; Kohrman, David C.; Camper, Sally A.

    2006-01-01

    The vertebrate cochlea is a complex organ optimized for sound transduction. Auditory hair cells, with their precisely arranged stereocilia bundles, transduce sound waves to electrical signals that are transmitted to the brain. Mutations in the unconventional myosin XV cause deafness in both human DFNB3 families and in shaker 2 (sh2) mice as a result of defects in stereocilia. In these mutant mice, hair cells have relatively normal spatial organization of stereocilia bundles but lack the graded, stair-step organization. We used sh2 mice as an experimental model to investigate the molecular consequences of the sh2 mutation in the Myo15 gene. Gene expression profiling with Affymetrix GeneChips in deaf homozygous (sh2/sh2) mice at 3 weeks and 3 months of age, and in age-matched, normal-hearing heterozygotes (+/sh2) identified only a few genes whose expression was affected by genotype, but a large number with age-associated changes in expression in both normal mice and sh2/sh2 homozygotes. Microarray data analyzed using Robust Multiarray Average identified Aim1, Dbi, and Tm4sf3 as genes with increased expression in sh2/sh2 homozygotes. These increases were confirmed by quantitative reverse transcription-polymerase chain reaction. Genes exhibiting altered expression with age encoded collagens and proteins involved in collagen maturation, extracellular matrix, and bone mineralization. These results identified potential cellular pathways associated with myosin XV defects, and age-associated molecular events that are likely to be involved in maturation of the cochlea and auditory function. PMID:16794912

  12. Age-Associated Changes in the Vascular Renin-Angiotensin System in Mice

    PubMed Central

    Yoon, Hye Eun; Kim, Eun Nim; Kim, Min Young; Lim, Ji Hee; Jang, In-Ae; Ban, Tae Hyun; Shin, Seok Joon; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-01-01

    Background. This study evaluated whether the change in the renin-angiotensin system (RAS) is associated with arterial aging in mice. Methods. Histologic changes and expressions of transforming growth factor-β (TGF-β), collagen IV, fibronectin, angiotensin II (Ang II), angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), angiotensin II type 1 receptor (AT1R), angiotensin II type 2 receptor (AT2R), prorenin receptor (PRR), Mas receptor (MasR), endothelial nitric oxide synthase (eNOS), NADPH oxidase 2 and oxidase 4 (Nox2 and Nox4), 8-hydroxy-2′-deoxyguanosine (8-OHdG), 3-nitrotyrosine, and superoxide dismutase 1 and dismutase 2 (SOD1 and SOD2) were measured in the thoracic aortas from 2-month-old, 12-month-old, and 24-month-old C57/BL6 mice. Results. Twenty-four-month-old mice showed significantly increased aortic media thickness and expressions of TGF-β, collagen IV, and fibronectin, compared to 2-month-old and 12-month-old mice. The expressions of PRR, ACE, and Ang II, and AT1R-positive area significantly increased, whereas expressions of ACE2 and MasR and AT2R-positive area decreased with age. The expressions of phosphorylated serine1177-eNOS, SOD1, and SOD2 decreased, and the 8-OHdG-positive area and the 3-nitrotyrosine-positive area increased with age. The expression of Nox2 significantly increased with age, but that of Nox4 did not change. Conclusions. The enhanced PRR-ACE-Ang II-AT1R axis and reduced ACE2-MasR axis were associated with arterial aging in mice. PMID:27200147

  13. Age-Associated Changes in the Vascular Renin-Angiotensin System in Mice.

    PubMed

    Yoon, Hye Eun; Kim, Eun Nim; Kim, Min Young; Lim, Ji Hee; Jang, In-Ae; Ban, Tae Hyun; Shin, Seok Joon; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-01-01

    Background. This study evaluated whether the change in the renin-angiotensin system (RAS) is associated with arterial aging in mice. Methods. Histologic changes and expressions of transforming growth factor-β (TGF-β), collagen IV, fibronectin, angiotensin II (Ang II), angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), angiotensin II type 1 receptor (AT1R), angiotensin II type 2 receptor (AT2R), prorenin receptor (PRR), Mas receptor (MasR), endothelial nitric oxide synthase (eNOS), NADPH oxidase 2 and oxidase 4 (Nox2 and Nox4), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 3-nitrotyrosine, and superoxide dismutase 1 and dismutase 2 (SOD1 and SOD2) were measured in the thoracic aortas from 2-month-old, 12-month-old, and 24-month-old C57/BL6 mice. Results. Twenty-four-month-old mice showed significantly increased aortic media thickness and expressions of TGF-β, collagen IV, and fibronectin, compared to 2-month-old and 12-month-old mice. The expressions of PRR, ACE, and Ang II, and AT1R-positive area significantly increased, whereas expressions of ACE2 and MasR and AT2R-positive area decreased with age. The expressions of phosphorylated serine(1177)-eNOS, SOD1, and SOD2 decreased, and the 8-OHdG-positive area and the 3-nitrotyrosine-positive area increased with age. The expression of Nox2 significantly increased with age, but that of Nox4 did not change. Conclusions. The enhanced PRR-ACE-Ang II-AT1R axis and reduced ACE2-MasR axis were associated with arterial aging in mice.

  14. Acetaminophen hepatotoxicity in mice: Effect of age, frailty and exposure type.

    PubMed

    Kane, Alice E; Mitchell, Sarah J; Mach, John; Huizer-Pajkos, Aniko; McKenzie, Catriona; Jones, Brett; Cogger, Victoria; Le Couteur, David G; de Cabo, Rafael; Hilmer, Sarah N

    2016-01-01

    Acetaminophen is a commonly used analgesic that can cause severe hepatotoxicity in overdose. Despite old age and frailty being associated with extensive and long-term utilization of acetaminophen and a high prevalence of adverse drug reactions, there is limited information on the risks of toxicity from acetaminophen in old age and frailty. This study aimed to assess changes in the risk and mechanisms of hepatotoxicity from acute, chronic and sub-acute acetaminophen exposure with old age and frailty in mice. Young and old male C57BL/6 mice were exposed to either acute (300 mg/kg via oral gavage), chronic (100 mg/kg/day in diet for six weeks) or sub-acute (250 mg/kg, t.i.d., for three days) acetaminophen, or saline control. Pre-dosing mice were scored for the mouse clinical frailty index, and after dosing serum and liver tissue were collected for assessment of toxicity and mechanisms. There were no differences with old age or frailty in the degree of hepatotoxicity induced by acute, chronic or subacute acetaminophen exposure as assessed by serum liver enzymes and histology. Age-related changes in the acetaminophen toxicity pathways included increased liver GSH concentrations, increased NQO1 activity and an increased pro- and anti-inflammatory response to acetaminophen in old age. Frailty-related changes included a negative correlation between frailty index and serum protein, albumin and ALP concentrations for some mouse groups. In conclusion, although there were changes in some pathways that would be expected to influence susceptibility to acetaminophen toxicity, there was no overall increase in acetaminophen hepatotoxicity with old age or frailty in mice.

  15. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    SciTech Connect

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  16. Beneficial behavioral, neurochemical and molecular effects of 1-(R)-aminoindan in aged mice.

    PubMed

    Badinter, Felix; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H; Weinreb, Orly

    2015-12-01

    Previous neuroprotective studies demonstrated that 1-(R)-aminoindan (AI), which is the major metabolite of the anti-Parkinsonian drug rasagiline, possesses beneficial pharmacological effects in various cell culture and animal models of neurodegeneration. The present study was aimed at investigating the possible neuroprotective effects of AI on cognitive impairments and neurochemical alterations in aged mice. Our findings provide evidence that following chronic systemic treatment with AI (5 mg/kg; daily; 3 months) of aged mice (24 months old), the compound exerted a significant positive impact on neuropsychiatric functions and cognitive behavior deficits, assessed in a variety of tasks (spatial learning and memory retention, working memory, learning abilities and nest building behavior) and produced an antidepressant-like effect. In addition, chronic AI treatment significantly enhanced expression levels of neurotrophins, including brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF), tyrosine kinase- B (Trk-B) receptor and synaptic plasticity markers, such as synapsin-1 and growth-associated protein-43 (GAP-43) in the striatum and hippocampus in aged mice. Our results also indicate that AI treatment up-regulated the expression levels of the pro-survival Bcl-2 mRNA, increased the anti-apoptotic index Bcl-2/Bax and enhanced the activity of the antioxidant enzyme catalase in the brain of aged mice. These effects of AI were also confirmed in aged rats (24 months old). Altogether, the present findings indicate that AI can induce neuroprotective effects on age-related alterations in neurobehavioral functions and exerts neurotrophic up-regulatory and anti-apoptotic properties in aged animals.

  17. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice

    NASA Astrophysics Data System (ADS)

    Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD.

  18. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice.

    PubMed

    Murillo-Cuesta, Silvia; Contreras, Julio; Zurita, Esther; Cediel, Rafael; Cantero, Marta; Varela-Nieto, Isabel; Montoliu, Lluís

    2010-02-01

    Strial melanocytes are required for normal development and correct functioning of the cochlea. Hearing deficits have been reported in albino individuals from different species, although melanin appears to be not essential for normal auditory function. We have analyzed the auditory brainstem responses (ABR) of two transgenic mice: YRT2, carrying the entire mouse tyrosinase (Tyr) gene expression-domain and undistinguishable from wild-type pigmented animals; and TyrTH, non-pigmented but ectopically expressing tyrosine hydroxylase (Th) in melanocytes, which generate the precursor metabolite, L-DOPA, but not melanin. We show that young albino mice present a higher prevalence of profound sensorineural deafness and a poorer recovery of auditory thresholds after noise-exposure than transgenic mice. Hearing loss was associated with absence of cochlear melanin or its precursor metabolites and latencies of the central auditory pathway were unaltered. In summary, albino mice show impaired hearing responses during ageing and after noise damage when compared to YRT2 and TyrTH transgenic mice, which do not show the albino-associated ABR alterations. These results demonstrate that melanin precursors, such as L-DOPA, have a protective role in the mammalian cochlea in age-related and noise-induced hearing loss.

  19. Running for REST: Physical activity attenuates neuroinflammation in the hippocampus of aged mice.

    PubMed

    Dallagnol, Karine Mathilde Campestrini; Remor, Aline Pertile; da Silva, Rodrigo Augusto; Prediger, Rui Daniel; Latini, Alexandra; Aguiar, Aderbal Silva

    2017-03-01

    Exercise improves mental health and synaptic function in the aged brain. However, the molecular mechanisms involved in exercise-induced healthy brain aging are not well understood. Evidence supports the role of neurogenesis and neurotrophins in exercise-induced neuroplasticity. The gene silencing transcription factor neuronal RE1-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) and an anti-inflammatory role of exercise are also candidate mechanisms. We evaluate the effect of 8weeks of physical activity on running wheels (RW) on motor and depressive-like behavior and hippocampal gene expression of brain-derived neurotrophic factor (BDNF), REST, and interleukins IL-1β and IL-10 of adult and aged C57BL/6 mice. The aged animals exhibited impaired motor function and a depressive-like behavior: decreased mobility in the RW and open field and severe immobility in the tail suspension test. The gene expression of REST, IL-1β, and IL-10 was increased in the hippocampus of aged mice. Physical activity was anxiolytic and antidepressant and improved motor behavior in aged animals. Physical activity also boosted BDNF and REST expression and decreased IL-1β and IL-10 expression in the hippocampus of aged animals. These results support the beneficial role of REST in the aged brain, which can be further enhanced by regular physical activity.

  20. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice

    PubMed Central

    Cummins, Nathan W.; Weaver, Eric A.; May, Shannon M.; Croatt, Anthony J.; Foreman, Oded; Kennedy, Richard B.; Poland, Gregory A.; Barry, Michael A.; Nath, Karl A.; Badley, Andrew D.

    2012-01-01

    Underlying mechanisms of individual variation in severity of influenza infection and response to vaccination are poorly understood. We investigated the effect of reduced heme oxygenase-1 (HO-1) expression on vaccine response and outcome of influenza infection. HO-1-deficient and wild-type (WT) mice (kingdom, Animalia; phylum, Chordata; genus/species, Mus musculus) were infected with influenza virus A/PR/8/34 with or without prior vaccination with an adenoviral-based influenza vaccine. A genome-wide association study evaluated the expression of single-nucleotide polymorphisms (SNPs) in the HO-1 gene and the response to influenza vaccination in healthy humans. HO-1-deficient mice had decreased survival after influenza infection compared to WT mice (median survival 5.5 vs. 6.5 d, P=0.016). HO-1-deficient mice had impaired production of antibody following influenza vaccination compared to WT mice (mean antibody titer 869 vs. 1698, P=0.02). One SNP in HO-1 and one SNP in the constitutively expressed isoform HO-2 were independently associated with decreased antibody production after influenza vaccination in healthy human volunteers (P=0.017 and 0.014, respectively). HO-1 deficient mice were paired with sex- and age-matched WT controls. HO-1 affects the immune response to both influenza infection and vaccination, suggesting that therapeutic induction of HO-1 expression may represent a novel adjuvant to enhance influenza vaccine effectiveness.—Cummins, N. W., Weaver, E. A., May, S. M., Croatt, A. J., Foreman, O., Kennedy, R. B., Poland, G. A., Barry, M. A., Nath, K. A., Badley, A. D. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice. PMID:22490782

  1. Age-Related Changes in Body Composition of Bovine Growth Hormone Transgenic Mice

    PubMed Central

    Palmer, Amanda J.; Chung, Min-Yu; List, Edward O.; Walker, Jennifer; Okada, Shigeru; Kopchick, John J.; Berryman, Darlene E.

    2009-01-01

    GH has a significant impact on body composition due to distinct anabolic and catabolic effects on lean and fat mass, respectively. Several studies have assessed body composition in mice expressing a GH transgene. Whereas all studies report enhanced growth of transgenic mice as compared with littermate controls, there are inconsistencies in terms of the relative proportion of lean mass to fat mass in these animals. The purpose of this study was to characterize the accumulation of adipose and lean mass with age and according to gender in a bovine (b) GH transgenic mouse line. Weight and body composition measurements were assessed in male and female bGH mice with corresponding littermate controls in the C57BL/6J genetic background. Body composition measurements began at 6 wk and continued through 1 yr of age. At the conclusion of the study, tissue weights were determined and triglyceride content was quantified in liver and kidney. Although body weights for bGH mice were significantly greater than their corresponding littermate controls at all time points, body composition measurements revealed an unexpected transition midway through analyses. That is, younger bGH mice had relatively more fat mass than nontransgenic littermates, whereas bGH mice became significantly leaner than controls by 4 months in males and 6 months in females. These results reveal the importance in timing and gender when conducting studies related to body composition or lean and fat tissue in GH transgenic mice or in other genetically manipulated mouse strains in which body composition may be impacted. PMID:18948397

  2. Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice

    PubMed Central

    Toivola, Diana M.; Habtezion, Aida; Misiorek, Julia O.; Zhang, Linxing; Nyström, Joel H.; Sharpe, Orr; Robinson, William H.; Kwan, Raymond; Omary, M. Bishr

    2015-01-01

    Human mutations in keratin 8 (K8) and keratin 18 (K18), the intermediate filament proteins of hepatocytes, predispose to several liver diseases. K8-null mice develop chronic liver injury and fragile hepatocytes, dysfunctional mitochondria, and Th2-type colitis. We tested the hypothesis that autoantibody formation accompanies the liver damage that associates with K8/K18 absence. Sera from wild-type control, K8-null, and K18-null mice were analyzed by immunoblotting and immunofluorescence staining of cell and mouse tissue homogenates. Autoantibodies to several antigens were identified in 81% of K8-null male mice 8 mo or older. Similar autoantibodies were detected in aging K18-null male mice that had a related liver phenotype but normal colon compared with K8-null mice, suggesting that the autoantibodies are linked to liver rather than colonic disease. However, these autoantibodies were not observed in nontransgenic mice subjected to 4 chronic injury models. The autoantigens are ubiquitous and partition with mitochondria. Mass spectrometry and purified protein analysis identified, mitochondrial HMG-CoA synthase, aldehyde dehydrogenase, and catalase as the primary autoantigens, and glutamate dehydrogenase and epoxide hydrolase-2 as additional autoantigens. Therefore, absence of the hepatocyte keratins results in production of anti-mitochondrial autoantibodies (AMA) that recognize proteins involved in energy metabolism and oxidative stress, raising the possibility that AMA may be found in patients with keratin mutations that associate with liver and other diseases.—Toivola, D. M., Habtezion, A., Misiorek, J. O., Zhang, L., Nyström, J. H., Sharpe, O., Robinson, W. H., Kwan, R., Omary, M. B. Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice. PMID:26399787

  3. Aging-induced Seizure-related Changes to the Hippocampal Mossy Fiber Pathway in Forebrain Specific BDNF Overexpressing Mice

    PubMed Central

    Weidner, Kate L.; Goodman, Jeffrey H.; Chadman, Kathryn K.; McCloskey, Daniel P.

    2011-01-01

    Aging confers an increased risk for developing seizure activity, especially within brain regions that mediate learning and synaptic plasticity. Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that has an important role in regulating growth and development of the nervous system. BDNF is upregulated after pharmacological seizure induction and this upregulation contributes to enhanced excitability of the hippocampal mossy fiber–CA3 pathway, which is accompanied by neuropeptide Y (NPY) upregulation. Mice overexpressing a BDNF transgene in forebrain neurons provide an avenue for understanding the role of neurotrophic support in the aged hippocampus. In this study BDNF transgenic (TG) mice were utilized to determine whether increased BDNF expression through genetic manipulation resulted in age-related changes in hippocampal excitability and NPY expression. Spontaneous behavioral seizures were observed in TG mice, but not WT mice, past 5 months of age and the severity of behavioral seizures increased with age. Electrophysiological investigation of hippocampal CA3 activity indicated that slices from aged TG mice (86%), but not age-matched WT mice, or young TG mice, showed epileptiform activity in response to either repeated paired pulse or high frequency (tetanic) stimulation. Electrophysiological results were supported by the observation of robust ectopic NPY immunoreactivity in hippocampal mossy fibers of most aged TG mice (57%), which was absent in age-matched WT mice and young TG mice. The results from this study indicate that forebrain restricted BDNF overexpression produces age-related changes in hyperexcitability and NPY immunoreactivity in mossy fiber–CA3 pathway. Together, these data suggest that the capability for BDNF to promote epileptogenesis is maintained, and may be enhanced, in the aging hippocampus. PMID:22396883

  4. Aging-induced Seizure-related Changes to the Hippocampal Mossy Fiber Pathway in Forebrain Specific BDNF Overexpressing Mice.

    PubMed

    Weidner, Kate L; Goodman, Jeffrey H; Chadman, Kathryn K; McCloskey, Daniel P

    2011-08-01

    Aging confers an increased risk for developing seizure activity, especially within brain regions that mediate learning and synaptic plasticity. Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that has an important role in regulating growth and development of the nervous system. BDNF is upregulated after pharmacological seizure induction and this upregulation contributes to enhanced excitability of the hippocampal mossy fiber-CA3 pathway, which is accompanied by neuropeptide Y (NPY) upregulation. Mice overexpressing a BDNF transgene in forebrain neurons provide an avenue for understanding the role of neurotrophic support in the aged hippocampus. In this study BDNF transgenic (TG) mice were utilized to determine whether increased BDNF expression through genetic manipulation resulted in age-related changes in hippocampal excitability and NPY expression. Spontaneous behavioral seizures were observed in TG mice, but not WT mice, past 5 months of age and the severity of behavioral seizures increased with age. Electrophysiological investigation of hippocampal CA3 activity indicated that slices from aged TG mice (86%), but not age-matched WT mice, or young TG mice, showed epileptiform activity in response to either repeated paired pulse or high frequency (tetanic) stimulation. Electrophysiological results were supported by the observation of robust ectopic NPY immunoreactivity in hippocampal mossy fibers of most aged TG mice (57%), which was absent in age-matched WT mice and young TG mice. The results from this study indicate that forebrain restricted BDNF overexpression produces age-related changes in hyperexcitability and NPY immunoreactivity in mossy fiber-CA3 pathway. Together, these data suggest that the capability for BDNF to promote epileptogenesis is maintained, and may be enhanced, in the aging hippocampus.

  5. Estradiol reduces anxiety- and depression-like behavior of aged female mice.

    PubMed

    Walf, Alicia A; Frye, Cheryl A

    2010-02-09

    Beneficial effects of the ovarian steroid, 17beta-estradiol (E(2)), for affective behavior have been reported in young individuals, but less is known about the effects of E(2) among older individuals, and the capacity of older individuals to respond to E(2) following its decline. In the present study, the effects of acute E(2) administration to aged mice for anxiety-like and depression-like behaviors were investigated. Intact female C57BL/6 mice (N=18) that were approximately 24 months old were administered vehicle (sesame oil, n=9) or E(2) (10 microg, n=9) subcutaneously 1h prior to behavioral testing. Mice were tested for anxiety-like behavior (open field, elevated plus maze, mirror chamber, light-dark transition task, Vogel conflict task) and depression-like behavior (forced swim task). To assess the role of general motor behavior and coordination in these aged mice, performance in an activity monitor and rotarod task, and total entries made in tasks (open field, elevated plus maze, light-dark transition task) were determined. Mice administered E(2), compared to vehicle, demonstrated anti-anxiety behavior in the open field, mirror chamber, and light-dark transition task, and anti-depressive-like behavior in the forced swim task. E(2) also tended to have anti-anxiety effects in the elevated plus maze and Vogel task compared to vehicle administration, but these effects did not reach statistical significance. E(2) did not alter motor behavior and/or coordination in the activity monitor, open field, or rotarod tasks. Thus, an acute E(2) regimen produced specific anti-anxiety and anti-depressant effects, independent of effects on motor behavior, when administered to aged female C57BL/6 mice.

  6. Strial microvascular pathology and age-associated endocochlear potential decline in NOD congenic mice

    PubMed Central

    Ohlemiller, Kevin K.; Rice, Mary E. Rybak; Gagnon, Patricia M.

    2008-01-01

    NOD/ShiLtJ (previously NOD/LtJ) inbred mice show polygenic autoimmune disease and are commonly used to model autoimmune-related Type I diabetes, as well as Sjogren’s syndrome. They also show rapidly progressing hearing loss, partly due to the combined effects of Cdh23ahl and Ahl2. Congenic NOD.NON-H2nb1/LtJ mice, which carry corrective alleles within the H2 histocompatibility gene complex, are free from diabetes and other overt signs of autoimmune disease, but still exhibit rapidly progressive hearing loss. Here we show that cochlear pathology in these congenics broadly includes hair cell and neuronal loss, plus endocochlear potential (EP) decline from initially normal values after 2 months of age. The EP reduction follows often dramatic degeneration of capillaries in stria vascularis, with resulting strial degeneration. The cochlear modiolus in the congenic mice also features perivascular inclusions that resemble those in some mouse autoimmune models. We posit that cochlear hair cell/neural and strial pathology in NOD.NON-H2nb1 mice arise independently. While sensory cell loss may be closely tied to Cdh23ahl and Ahl2, the strial microvascular pathology and modiolar anomalies we observe may arise from alleles on the NOD background related to immune function. Age-associated EP decline in NOD.NON-H2nb1 mice may model forms of strial age-related hearing loss caused principally by microvascular disease. The remarkable strial capillary loss in these mice may also be useful for studying the relation between strial vascular insufficiency and strial function. PMID:18727954

  7. Estradiol reduces anxiety- and depression-like behavior of aged female mice

    PubMed Central

    Walf, Alicia A.; Frye, Cheryl A.

    2013-01-01

    Beneficial effects of the ovarian steroid, 17β-estradiol (E2), for affective behavior have been reported in young individuals, but less is known about the effects of E2 among older individuals, and the capacity of older individuals to respond to E2 following its decline. In the present study, the effects of acute E2 administration to aged mice for anxiety-like and depression-like behaviors were investigated. Intact female C57BL/6 mice (N=18) that were approximately 24 months old were administered vehicle (sesame oil, n=9) or E2 (10 μg, n=9) subcutaneously 1h prior to behavioral testing. Mice were tested for anxiety-like behavior (open field, elevated plus maze, mirror chamber, light–dark transition task, Vogel conflict task) and depression-like behavior (forced swim task). To assess the role of general motor behavior and coordination in these aged mice, performance in an activity monitor and rotarod task, and total entries made in tasks (open field, elevated plus maze, light–dark transition task) were determined. Mice administered E2, compared to vehicle, demonstrated anti-anxiety behavior in the open field, mirror chamber, and light–dark transition task, and anti-depressive-like behavior in the forced swim task. E2 also tended to have anti-anxiety effects in the elevated plus maze and Vogel task compared to vehicle administration, but these effects did not reach statistical significance. E2 did not alter motor behavior and/or coordination in the activity monitor, open field, or rotarod tasks. Thus, an acute E2 regimen produced specific anti-anxiety and anti-depressant effects, independent of effects on motor behavior, when administered to aged female C57BL/6 mice. PMID:19804793

  8. Chronic and progressive Parkinson's disease MPTP model in adult and aged mice.

    PubMed

    Muñoz-Manchado, Ana B; Villadiego, Javier; Romo-Madero, Sonia; Suárez-Luna, Nela; Bermejo-Navas, Alfonso; Rodríguez-Gómez, José A; Garrido-Gil, Pablo; Labandeira-García, José L; Echevarría, Miriam; López-Barneo, José; Toledo-Aral, Juan J

    2016-01-01

    Despite the different animal models of Parkinson's disease developed during the last years, they still present limitations modelling the slow and progressive process of neurodegeneration. Here, we undertook a histological, neurochemical and behavioural analysis of a new chronic parkinsonian mouse model generated by the subcutaneous administration of low doses of MPTP (20 mg/kg, 3 times per week) for 3 months, using both young adult and aged mice. The MPTP-induced nigrostriatal neurodegeneration was progressive and was accompanied by a decrease in striatal dopamine levels and motor impairment. We also demonstrated the characteristic neuroinflammatory changes (microglial activation and astrogliosis) associated with the neurodegenerative process. Aged animals showed both a faster time course of neurodegeneration and an altered neuroinflammatory response. The long-term systemic application of low MPTP doses did not induce any increase in mortality in either young adult or aged mice and better resembles the slow evolution of the neurodegenerative process. This treatment could be useful to model different stages of Parkinson's disease, providing a better understanding of the pathophysiology of the disease and facilitating the testing of both protective and restorative treatments. Here, we show a new chronic and progressive parkinsonian mouse model, in young and aged mice. This model produces a stable degeneration of the dopaminergic nigrostriatal pathway, continuous neuroinflammatory reaction and motor deficits. Aged animals showed a faster neurodegeneration and an altered neuroinflammatory response. This treatment could be useful to model different stages of PD and to test both protective and restorative therapeutic approaches.

  9. Red ginseng delays age-related hearing and vestibular dysfunction in C57BL/6 mice.

    PubMed

    Tian, Chunjie; Kim, Yeon Ju; Lim, Hye Jin; Kim, Young Sun; Park, Hun Yi; Choung, Yun-Hoon

    2014-09-01

    Since Korean red ginseng (KRG) has been proven to protect against gentamicin-induced vestibular and hearing dysfunction, the effects of KRG on age-related inner ear disorder in C57BL/6 mice were investigated. While age-related hearing loss was detected at the age of 6months (32kHz) and 9months (16kHz) in the control group, it was significantly delayed (p<0.05) in the 150mg/kg KRG-treated group. Vestibular dysfunction was observed in the tail-hanging and swimming tests, with significantly different severity scores and swimming times detected between the control and 150mg/kg KRG-treated group at the age of 12months (p<0.05). Mice treated with 500mg/kg KRG exhibited irritability and aggravated inner ear dysfunction. Histological observation supported the findings of hearing and vestibular function defects. In conclusion, C57BL/6 mice showed early-onset hearing loss and progressive vestibular dysfunction with aging, which were delayed by treatment with 150mg/kg KRG. However, 500mg/kg KRG treatment may induce aggressive behavior.

  10. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice.

    PubMed

    Weindruch, R; Kayo, T; Lee, C K; Prolla, T A

    2001-03-01

    An active research area in biological gerontology concerns the mechanisms by which caloric restriction (CR) retards the aging process in laboratory rodents. We used high density oligonucleotide arrays representing 6347 genes to determine the gene expression profile of the aging process in gastrocnemius muscle of male C57BL/6 mice. Aging resulted in a differential gene expression pattern indicative of a marked stress response and lower expression of metabolic and biosynthetic genes. Most alterations were completely or partially prevented by CR. Transcriptional patterns of muscle from calorie-restricted animals suggest that CR retards the aging process by causing a metabolic shift toward increased protein turnover and decreased macromolecular damage. The use of high density oligonucleotide microarrays provides a new tool to measure biological age on a tissue-specific basis and to evaluate at the molecular level the efficacy of nutritional interventions designed to retard the aging process.

  11. Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice.

    PubMed

    Wood, Lauren K; Kayupov, Erdan; Gumucio, Jonathan P; Mendias, Christopher L; Claflin, Dennis R; Brooks, Susan V

    2014-08-15

    Advanced age is associated with increases in muscle passive stiffness, but the contributors to the changes remain unclear. Our purpose was to determine the relative contributions of muscle fibers and extracellular matrix (ECM) to muscle passive stiffness in both adult and old animals. Passive mechanical properties were determined for isolated individual muscle fibers and bundles of muscle fibers that included their associated ECM, obtained from tibialis anterior muscles of adult (8-12 mo old) and old (28-30 mo old) mice. Maximum tangent moduli of individual muscle fibers from adult and old muscles were not different at any sarcomere length tested. In contrast, the moduli of bundles of fibers from old mice was more than twofold greater than that of fiber bundles from adult muscles at sarcomere lengths >2.5 μm. Because ECM mechanical behavior is determined by the composition and arrangement of its molecular constituents, we also examined the effect of aging on ECM collagen characteristics. With aging, muscle ECM hydroxyproline content increased twofold and advanced glycation end-product protein adducts increased threefold, whereas collagen fibril orientation and total ECM area were not different between muscles from adult and old mice. Taken together, these findings indicate that the ECM of tibialis anterior muscles from old mice has a higher modulus than the ECM of adult muscles, likely driven by an accumulation of densely packed extensively crosslinked collagen.

  12. Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice.

    PubMed

    Wu, Zhen; Yang, Bin; Liu, Chunxia; Liang, Ge; Liu, Weixia; Pickup, Stephen; Meng, Qingcheng; Tian, Yuke; Li, Shitong; Eckenhoff, Maryellen F; Wei, Huafeng

    2015-01-01

    In this study, we investigated the long-term treatment of dantrolene on amyloid and tau neuropathology, brain volume, and cognitive function in aged triple transgenic Alzheimer (3xTg-AD) mice. Fifteen-month old 3xTg-AD mice and wild-type controls were treated with oral dantrolene (5 mg/kg) or vehicle control twice a week for 6 months. Learning and memory were examined using the Morris Water Maze at 21 and 22 months of age. After the behavioral testing, hippocampal and cortical brain volumes were calculated with magnetic resonance imaging and motor function was evaluated using the rotorod. The amyloid burden and tau neurofibrillary tangles in the hippocampus were determined using immunohistochemistry. We found that dantrolene significantly decreased the intraneuronal amyloid accumulation by as much as 76% compared with its corresponding vehicle control, together with a trend to reduce phosphorylated tau in the hippocampus. No significant differences could be detected in hippocampal or cortical brain volume, motor function or cognition among all experimental groups, indicating that the mice were still presymptomatic for Alzheimer disease. Thus, presymptomatic and long-term dantrolene treatment significantly decreased the intraneuronal amyloid burden in aged 3xTg-AD mice before significant changes in brain volume, or cognition.

  13. Effects of Resveratrol Supplementation and Exercise Training on Exercise Performance in Middle-Aged Mice.

    PubMed

    Kan, Nai-Wen; Ho, Chin-Shan; Chiu, Yen-Shuo; Huang, Wen-Ching; Chen, Pei-Yu; Tung, Yu-Tang; Huang, Chi-Chang

    2016-05-18

    Resveratrol (RES) has antioxidative, anti-inflammatory, anticancer, antidiabetic, antiasthmatic, antalgic, and anti-fatigue activities. Exercise training (ET) improves frailty resulting from aging. This study evaluated the effects of a combination of RES supplementation and ET on the exercise performance of aged mice. C57BL/6J mice (16 months old) were randomly divided into four groups: an older control group (OC group), supplementation with RES group (RES group), ET group (ET group), and a combination of ET and RES supplementation group (ET+RES group). Other 10-week-old mice were used as a young control group (Y-Ctrl group). In this study, exercise performance was evaluated using forelimb grip strength and exhaustive swimming time, as well as levels of plasma lactate, ammonia, glucose, and creatine kinase after an acute swimming exercise. Our results showed that the forelimb grip strength of mice in the ET+RES group was significantly higher than those in the OC, RES, and ET groups (by 1.3-, 1.2-, and 1.1-fold, respectively, p < 0.05), and exhibited no difference with the Y-Ctrl group. The endurance swimming test showed that swimming times of the ET and ET+RES groups were significantly longer than those of the OC and RES groups. Moreover, plasma lactate and ammonia levels of the ET + RES group after acute swimming exercise were significantly lower compared to the OC group (p < 0.05). Thus, it was suggested that by combining RES supplementation with ET for 4 weeks, the muscle strength and endurance performance of aged mice were significantly improved compared to the single intervention with either RES or ET alone. This combination might help shorten the extent of deterioration accompanying the aging process.

  14. Inhibition of Advanced Glycation End Products (AGEs) Accumulation by Pyridoxamine Modulates Glomerular and Mesangial Cell Estrogen Receptor α Expression in Aged Female Mice.

    PubMed

    Pereira-Simon, Simone; Rubio, Gustavo A; Xia, Xiaomei; Cai, Weijing; Choi, Rhea; Striker, Gary E; Elliot, Sharon J

    2016-01-01

    Age-related increases in oxidant stress (OS) play a role in regulation of estrogen receptor (ER) expression in the kidneys. In this study, we establish that in vivo 17β-estradiol (E2) replacement can no longer upregulate glomerular ER expression by 21 months of age in female mice (anestrous). We hypothesized that advanced glycation end product (AGE) accumulation, an important source of oxidant stress, contributes to these glomerular ER expression alterations. We treated 19-month old ovariectomized female mice with pyridoxamine (Pyr), a potent AGE inhibitor, in the presence or absence of E2 replacement. Glomerular ERα mRNA expression was upregulated in mice treated with both Pyr and E2 replacement and TGFβ mRNA expression decreased compared to controls. Histological sections of kidneys demonstrated decreased type IV collagen deposition in mice receiving Pyr and E2 compared to placebo control mice. In addition, anti-AGE defenses Sirtuin1 (SIRT1) and advanced glycation receptor 1 (AGER1) were also upregulated in glomeruli following treatment with Pyr and E2. Mesangial cells isolated from all groups of mice demonstrated similar ERα, SIRT1, and AGER1 expression changes to those of whole glomeruli. To demonstrate that AGE accumulation contributes to the observed age-related changes in the glomeruli of aged female mice, we treated mesangial cells from young female mice with AGE-BSA and found similar downregulation of ERα, SIRT1, and AGER1 expression. These results suggest that inhibition of intracellular AGE accumulation with pyridoxamine may protect glomeruli against age-related oxidant stress by preventing an increase of TGFβ production and by regulation of the estrogen receptor.

  15. Age and High-Fat Diet Effects on Glutamine Synthetase Immunoreactivity in Liver and Hippocampus and Recognition Memory in Mice

    PubMed Central

    Soontornniyomkij, Virawudh; Kesby, James P.; Soontornniyomkij, Benchawanna; Kim, Jane J.; Kisseleva, Tatiana; Achim, Cristian L.; Semenova, Svetlana; Jeste, Dilip V.

    2016-01-01

    BACKGROUND High-fat diet (HFD)-induced obesity may promote age-related memory impairment via disturbances of ammonia-glutamine metabolism. OBJECTIVE We studied the effects of age and long-term HFD exposure on glutamine synthetase (GS) expression in the liver and hippocampus and recognition memory in mice. METHODS Adult (5-month-old) and aged (15-month-old) male C57BL/6 mice were exposed to control diet (CD, 14% calories from fat) or HFD (60% fat). Novel place recognition testing was conducted and tissue was collected after 4 and 5 months on HFD, respectively. Tissue GS expression levels were assessed using immunohistochemistry and image analysis. RESULTS The obese mice developed moderate/severe hepatic steatosis. GS immunoreactivity was observed in perivenous hepatocytes and in hippocampal astrocytes and neuropil. Hepatic GS immunoreactivity density was higher in aged mice on HFD (n = 8) than CD (n = 13, P = 0.004). In aged mice, hippocampal GS immunoreactivity density was higher with HFD than CD (P = 0.037). In the novel place recognition test, aged mice were classified into impaired (n = 7) and unimpaired (n = 12), relative to adult mice (n = 22). Hippocampal GS immunoreactivity density was higher in impaired than unimpaired aged mice (P < 0.05). CONCLUSION Long-term exposure of aged mice to HFD was associated with increased GS expression in the liver and hippocampus. Novel place recognition impairment in aged mice was associated with increased hippocampal GS expression. These findings suggest that excess ammonia is involved in the age-related effects of HFD exposure and in neurotoxicity. PMID:27071478

  16. Effects of Aging on Current Vocalization Threshold in Mice Measured by a Novel Nociception Assay

    PubMed Central

    Finkel, Julia C.; Besch, Virginia G.; Hergen, Adrienne; Kakareka, John; Pohida, Thomas; Melzer, Jonathan M.; Koziol, Deloris; Wesley, Robert; Quezado, Zenaide M. N.

    2016-01-01

    Background Age-related changes in nociception have been extensively studied in the past decades. However, it remains unclear whether in addition to the increased incidence of chronic illness, age-related changes in nociception contribute to increased prevalence of pain in the elderly. Although a great deal of evidence suggests that nociception thresholds increase with aging, other studies yield disparate results. The aim of this investigation was to longitudinally determine the effect of aging on nociception. Methods The authors developed a nociception assay for mice using electrical stimuli at 2,000, 250, and 5 Hz that reportedly stimulate Aβ, Aδ, and C sensory nerve fibers, respectively. A system was designed to automate a method that elicits and detects pain-avoiding behavior in mice. Using a Latin square design, the authors measured current vocalization thresholds serially over the course of mice’s life span. Results For 2,000-Hz (Aβ), 250-Hz (Aδ), and 5-Hz (C) electrical stimuli, current vocalization thresholds first decreases and then increases with aging following a U-shaped pattern (P < 0.001). In addition, average current vocalization thresholds at youth and senescence are significantly higher than those at middle age for the 250-Hz (Aδ) and 5-Hz (C fiber) electrical stimulus (P < 0.05). Conclusions Using a novel and noninjurious nociception assay, the authors showed that over the life span of mice, current vocalization threshold to electrical stimuli changes in a U-shaped pattern. The findings support the notion that age-related changes in nociception are curvilinear, and to properly study and treat pain, the age of subjects should be considered. PMID:16871071

  17. Aged mice display an altered pulmonary host response to Francisella tularensis live vaccine strain (LVS) infections

    PubMed Central

    CA, Mares; SS, Ojeda; Q, Li; EG, Morris; JJ, Coalson; JM, Teale

    2012-01-01

    Aging is a complex phenomenon that has been shown to affect many organ systems including the innate and adaptive immune systems. The current study was designed to examine the potential effect of immunosenescence on the pulmonary immune response using a Francisella tularensis live vaccine strain (LVS) inhalation infection model. F. tularensis is a gram-negative intracellular pathogen that can cause a severe pneumonia.In this study both young (8-12 week old) and aged (20-24 month old) mice were infected intranasally with LVS. Lung tissues from young and aged mice were used to assess pathology, recruitment of immune cell types and cytokine expression levels at various times post infection. Bacterial burdens were also assessed. Interestingly, the lungs of aged animals harbored fewer organisms at early time points of infection (day 1, day 3) compared with their younger counterparts. In addition, only aged animals displayed small perivascular aggregates at these early time points that appeared mostly mononuclear in nature. However, the kinetics of infiltrating polymorphonuclear neutrophils (PMNs) and increased cytokine levels measured in the bronchial alveolar lavage fluid (BALF) were delayed in infected aged animals relative to young infected animals with neutrophils appearing at day 5 post infection (PI) in the aged animals as opposed to day 3 PI in the young infected animals. Also evident were alterations in the ratios of mononuclear to PMNs at distinct post infection times. The above evidence indicates that aged mice elicit an altered immune response in the lung to respiratory Francisella tularensis LVS infections compared to their younger counterparts. PMID:19825409

  18. Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice

    PubMed Central

    2013-01-01

    Background Aging is associated with low-grade neuroinflammation that includes basal increases in proinflammatory cytokines and expression of inflammatory markers on microglia. Exercise can reduce neuroinflammation following infection in aged animals, but whether exercise modulates basal changes in microglia activation is unknown. Therefore, we evaluated changes in basal microglia activation in cells isolated from the hippocampus and remaining brain following running-wheel access. Methods Adult (4 months) and aged (22 months) male and female BALB/c mice were housed with or without running wheels for 10 weeks. Microglia were isolated from the hippocampus or remaining brain. Flow cytometry was used to determine microglia (CD11b+ and CD45low) that co-labeled with CD86, CD206, and MHC II. Results Aged mice showed a greater proportion of CD86 and MHC II positive microglia. In aged females, access to a running wheel decreased proportion of CD86+ and MHC II+ microglia in the hippocampus whereas aged males in the running group showed a decrease in the proportion of CD86+ microglia in the brain and an increase in the proportion of MHC II+ microglia in hippocampus and brain. Conclusion Overall, these data indicate that running-wheel access modulates microglia activation, but these effects vary by age, sex, and brain region. PMID:24044641

  19. Dietary Polyphenol Supplementation Prevents Alterations of Spatial Navigation in Middle-Aged Mice

    PubMed Central

    Bensalem, Julien; Servant, Laure; Alfos, Serge; Gaudout, David; Layé, Sophie; Pallet, Véronique; Lafenetre, Pauline

    2016-01-01

    Spatial learning and memory deficits associated with hippocampal synaptic plasticity impairments are commonly observed during aging. Besides, the beneficial role of dietary polyphenols has been suggested as potential functional food candidates to prevent this memory decline. Indeed, polyphenols could potentiate the signaling pathways of synaptic plasticity underlying learning and memory. In this study, spatial learning deficits of middle-aged mice were first highlighted and characterized according to their navigation patterns in the Morris water maze task. An eight-week polyphenol-enriched diet, containing a polyphenol-rich extract from grape and blueberry (PEGB; from the Neurophenols Consortium) with high contents of flavonoids, stilbenes and phenolic acids, was then successful in reversing these age-induced effects. The use of spatial strategies was indeed delayed with aging whereas a polyphenol supplementation could promote the occurrence of spatial strategies. These behavioral results were associated with neurobiological changes: while the expression of hippocampal calmodulin kinase II (CaMKII) mRNA levels was reduced in middle-aged animals, the polyphenol-enriched diet could rescue them. Besides, an increased expression of nerve growth neurotrophic factor (NGF) mRNA levels was also observed in supplemented adult and middle-aged mice. Thus these data suggest that supplementation with polyphenols could be an efficient nutritional way to prevent age-induced cognitive decline. PMID:26903826

  20. Effects of Portulaca oleracea ethanolic extract on reproductive system of aging female mice

    PubMed Central

    Ahangarpour, Akram; Lamoochi, Zohreh; Fathi Moghaddam, Hadi; Mansouri, Seyed Mohamad Taghi

    2016-01-01

    Background: Aging contains morphological and functional deterioration in biological systems. D-galactose (D-gal) generates free radicals and accelerates aging. Portulaca oleracea (Purslane) may have protective effect against oxidative stress. Objective: Purslane ethanolic extract effects were evaluated on antioxidant indices and sex hormone in D-gal aging female mice. Materials and Methods: 48 female NMRI mice (25-35 gr) were randomly divided into, 6 groups: 1- control (normal saline for 45 days), 2- Purslane (200 mg/kg for last 3 weeks), 3-D-gal (500 mg/kg for 45 days), 4-D-gal+Purslane, 5- Aging, 6-Aging+Purslane. Sex hormones, antioxidants and malondialdehyde (MDA) level of ovary and uterus were measured. Histological assessment was also done. Results: In D-gal treated and aging animals, LH and FSH levels were significantly increased (p<0.001) while estrogen and progesterone levels were significantly reduced (p<0.001) in comparison with control group. MDA contents were significantly increased in ovaries and uterus of D-gal and aging groups (p<0.01). Superoxide dismutase (SOD) (p<0.001) and catalase (p<0.01) activities were significantly decreased in both aging and D-gal treated animals. Ovarian follicles were degenerated and atrophy on uterine wall and endometrial glands was observed in D-gal and aging groups. Alteration in hormone levels, MDA contents and antioxidant activity were significantly reversed by Purslane (p<0.05). Purslane could also improve histological changes such as atrophy of endometrium. Conclusion: These findings indicate that Purslane can attenuate aging alternations induced by D-gal and aging in female reproductive system. PMID:27294220

  1. Spirulina prevents memory dysfunction, reduces oxidative stress damage and augments antioxidant activity in senescence-accelerated mice.

    PubMed

    Hwang, Juen-Haur; Lee, I-Te; Jeng, Kee-Ching; Wang, Ming-Fu; Hou, Rolis Chien-Wei; Wu, Su-Mei; Chan, Yin-Ching

    2011-01-01

    Spirulina has proven to be effective in treating certain cancers, hyperlipidemia, immunodeficiency, and inflammatory processes. In this study, we aimed to investigate the effects of Spirulina on memory dysfunction, oxidative stress damage and antioxidant enzyme activity. Three-month-old male senescence-accelerated prone-8 (SAMP8) mice were randomly assigned to either a control group or to one of two experimental groups (one receiving daily dietary supplementation with 50 mg/kg BW and one with 200 mg/kg BW of Spirulina platensis water extract). Senescence-accelerated-resistant (SAMR1) mice were used as the external control. Results showed that the Spirulina-treated groups had better passive and avoidance scores than the control group. The amyloid β-protein (Aβ) deposition was significantly reduced at the hippocampus and whole brain in both Spirulina groups. The levels of lipid peroxidation were significantly reduced at the hippocampus, striatum, and cortex in both Spirulina groups, while catalase activity was significantly higher only in the 200 mg/kg BW Spirulina group than in the control group. Glutathione peroxidase activity was significantly higher only in the cortex of the 200 mg/kg group than in that of the SAMP8 control group. However, superoxide dismutase activity in all parts of the brain did not significantly differ among all groups. In conclusion, Spirulina platensis may prevent the loss of memory possibly by lessening Aβ protein accumulation, reducing oxidative damage and mainly augmenting the catalase activity.

  2. C-phycocyanin protects against low fertility by inhibiting reactive oxygen species in aging mice.

    PubMed

    Li, Yan-Jiao; Han, Zhe; Ge, Lei; Zhou, Cheng-Jie; Zhao, Yue-Fang; Wang, Dong-Hui; Ren, Jing; Niu, Xin-Xin; Liang, Cheng-Guang

    2016-04-05

    Women over 35 have higher rates of infertility, largely due to deterioration of oocyte quality characterized by fragmentation, abnormal meiotic spindle-chromosome complexes, and oxidative stress. C-phycocyanin (PC) is a biliprotein enriched in Spirulina platensis that is known to possess antioxidant, anti-inflammatory, and radical-scavenging properties. D-galactose-induced aging acceleration in mice has been extensively used to study aging mechanisms and for pharmaceutical screening. In this study, adult female B6D2F/1 mice injected with D-galactose were used as a model to test the age-reversing effects of PC on degenerated reproductive ability. Our results show that PC can prevent oocyte fragmentation and aneuploidy by maintaining cytoskeletal integrity. Moreover, PC can reverse the expression of antioxidant genes, increase superoxide dismutase (SOD) activity and decrease methane dicarboxylic aldehyde (MDA) content, and normalize mitochondria distribution. PC exerts its benefit by inhibiting reactive oxygen species (ROS) production, which decreases apoptosis. Finally, we observe a significant increase in litter size after PC administration to D-galactose-induced aging mice. Our study demonstrates for the first time that D-galactose-induced impaired female reproductive capability can be partially rescued by the antioxidant effects of PC.

  3. Voluntary exercise rescues sevoflurane-induced memory impairment in aged male mice.

    PubMed

    Tian, Dan; Tian, Miao; Ma, Zhiming; Zhang, Leilei; Cui, Yunfeng; Li, Jinlong

    2016-12-01

    Postoperative cognitive impairment is especially common in older patients following major surgery. Although exposure to sevoflurane is known to cause memory deficits, few studies have examined the putative approaches to reduce such impairments. This study tested the hypotheses that sevoflurane exposure can decrease NR2B subunit-containing NMDA receptor activity in hippocampus of aged mice, and voluntary exercise may counteract the declining hippocampal functions. We found that long exposure (3 h/day for 3 days), but not short exposure (1 h/day for 3 days), to 3 % sevoflurane produced a long-lasting spatial memory deficits up to 3 weeks in aged mice, and such an effect was not due to the neuronal loss in the hippocampus, but was correlated with a long-term decrease in Fyn kinase expression and NR2B subunit phosphorylation in the hippocampus. Furthermore, voluntary exercise rescued sevoflurane-induced spatial memory deficits in aged mice and restored Fyn kinase expression and NR2B subunit phosphorylation in the hippocampus to a level comparable to control animals. Generally, our results suggested that Fyn-mediated NR2B subunit phosphorylation may play a critical role in sevoflurane-induced impairment in cognitive functions in aged animals, and voluntary exercise might be an important non-pharmacological approach to treatment of inhaled anesthetics-induced postoperative cognitive impairment in clinical settings.

  4. Luteolin Inhibits Microglia and Alters Hippocampal-Dependent Spatial Working Memory in Aged Mice123

    PubMed Central

    Jang, Saebyeol; Dilger, Ryan N.; Johnson, Rodney W.

    2010-01-01

    A dysregulated overexpression of inflammatory mediators by microglia may facilitate cognitive aging and neurodegeneration. Considerable evidence suggests the flavonoid luteolin has antiinflammatory effects, but its ability to inhibit microglia, reduce inflammatory mediators, and improve hippocampal-dependent learning and memory in aged mice is unknown. In initial studies, pretreatment of BV-2 microglia with luteolin inhibited the induction of inflammatory genes and the release of inflammatory mediators after lipopolysaccharide (LPS) stimulation. Supernatants from LPS-stimulated microglia caused discernible death in Neuro.2a cells. However, treating microglia with luteolin prior to LPS reduced neuronal cell death caused by conditioned supernatants, indicating luteolin was neuroprotective. In subsequent studies, adult (3–6 mo) and aged (22–24 mo) mice were fed control or luteolin (20 mg/d)-supplemented diet for 4 wk and spatial working memory was assessed as were several inflammatory markers in the hippocampus. Aged mice fed control diet exhibited deficits in spatial working memory and expression of inflammatory markers in the hippocampus indicative of increased microglial cell activity. Luteolin consumption improved spatial working memory and restored expression of inflammatory markers in the hippocampus compared with that of young adults. Luteolin did not affect either spatial working memory or inflammatory markers in young adults. Taken together, the current findings suggest dietary luteolin enhanced spatial working memory by mitigating microglial-associated inflammation in the hippocampus. Therefore, luteolin consumption may be beneficial in preventing or treating conditions involving increased microglial cell activity and inflammation. PMID:20685893

  5. Experimental febrile seizures induce age-dependent structural plasticity and improve memory in mice.

    PubMed

    Tao, K; Ichikawa, J; Matsuki, N; Ikegaya, Y; Koyama, R

    2016-03-24

    Population-based studies have demonstrated that children with a history of febrile seizure (FS) perform better than age-matched controls at hippocampus-dependent memory tasks. Here, we report that FSs induce two distinct structural reorganizations in the hippocampus and bidirectionally modify future learning abilities in an age-dependent manner. Compared with age-matched controls, adult mice that had experienced experimental FSs induced by hyperthermia (HT) on postnatal day 14 (P14-HT) performed better in a cognitive task that requires dentate granule cells (DGCs). The enhanced memory performance correlated with an FS-induced persistent increase in the density of large mossy fiber terminals (LMTs) of the DGCs. The memory enhancement was not observed in mice that had experienced HT-induced seizures at P11 which exhibited abnormally located DGCs in addition to the increased LMT density. The ectopic DGCs of the P11-HT mice were abolished by the diuretic bumetanide, and this pharmacological treatment unveiled the masked memory enhancement. Thus, this work provides a novel basis for age-dependent structural plasticity in which FSs influence future brain function.

  6. C-phycocyanin protects against low fertility by inhibiting reactive oxygen species in aging mice

    PubMed Central

    Li, Yan-Jiao; Han, Zhe; Ge, Lei; Zhou, Cheng-Jie; Zhao, Yue-Fang; Wang, Dong-Hui; Ren, Jing; Niu, Xin-Xin; Liang, Cheng-Guang

    2016-01-01

    Women over 35 have higher rates of infertility, largely due to deterioration of oocyte quality characterized by fragmentation, abnormal meiotic spindle-chromosome complexes, and oxidative stress. C-phycocyanin (PC) is a biliprotein enriched in Spirulina platensis that is known to possess antioxidant, anti-inflammatory, and radical-scavenging properties. D-galactose-induced aging acceleration in mice has been extensively used to study aging mechanisms and for pharmaceutical screening. In this study, adult female B6D2F/1 mice injected with D-galactose were used as a model to test the age-reversing effects of PC on degenerated reproductive ability. Our results show that PC can prevent oocyte fragmentation and aneuploidy by maintaining cytoskeletal integrity. Moreover, PC can reverse the expression of antioxidant genes, increase superoxide dismutase (SOD) activity and decrease methane dicarboxylic aldehyde (MDA) content, and normalize mitochondria distribution. PC exerts its benefit by inhibiting reactive oxygen species (ROS) production, which decreases apoptosis. Finally, we observe a significant increase in litter size after PC administration to D-galactose-induced aging mice. Our study demonstrates for the first time that D-galactose-induced impaired female reproductive capability can be partially rescued by the antioxidant effects of PC. PMID:27008700

  7. Restoration of the immune functions in aged mice by supplementation with a new herbal composition, HemoHIM.

    PubMed

    Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee; Yee, Sung-Tae

    2008-01-01

    The effect of a new herbal composition, HemoHIM, on immune functions was examined in aged mice, in which various immune responses had been impaired. The composition HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Supplementation to the aged mice with HemoHIM restored the proliferative response and cytokine production of splenocytes with a response to ConA. Also, HemoHIM recovered the NK cell activity which had been impaired in the aged mice. Meanwhile aging is known to reduce the Th1-like function, but not the Th2-like function, resulting in a Th1/Th2 imbalance. HemoHIM restored the Th1/Th2 balance in the aged mice through enhanced IFN-gamma and IgG2a production, and conversely a reduced IL-4 and IgG1 production. It was found that one factor for the Th1/Th2 imbalance in the aged mice was a lower production of IL-12p70. However, HemoHIM restored the IL-12p70 production in the aged mice. These results suggested that HemoHIM was effective for the restoration of impaired immune functions of the aged mice and therefore could be a good recommendation for immune restoration in elderly humans.

  8. Memory retrieval improvement by Ptychopetalum olacoides in young and aging mice.

    PubMed

    da Silva, Adriana L; Piato, Angelo L S; Bardini, Simone; Netto, Carlos A; Nunes, Domingos S; Elisabetsky, Elaine

    2004-12-01

    Amazonian peoples use traditional remedies prepared with Ptychopetalum olacoides (PO) roots for treating various age-related conditions. This study shows that a single intraperitoneally (i.p.) administration of Ptychopetalum olacoides ethanol extract (POEE, 50 and 100mg/kg) improved memory retrieval in step-down inhibitory avoidance (P mice. Comparable results were obtained with POEE given p.o. at 800 and 1000mg/kg (P aging (14 months) mice presenting memory deficit (14.95 [10.8-41]) as compared to adult (2.5 months) mice (57 [15.7-141.2]), with the extract given acutely i.p. 100 mg/kg (300 [133.1-300] versus control 14.95 [10.8-41]) or p.o. 800 mg/kg (28.4 [15.1-84.6] versus control 11.5 [7.8-23.3]). Indeed, aging mice treated with POEE (800 mg/kg, p.o.) performed as well as adult mice. Consistently with its traditional use, the data suggest that POEE facilitates memory retrieval. Although the antioxidant and acetylcholinesterase inhibitory properties previously described for this extract may be of relevance, the molecular mechanism(s) underlying the improvement in memory retrieval here reported merit further scrutiny.

  9. Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke.

    PubMed

    Stodieck, Sophia Katharina; Greifzu, Franziska; Goetze, Bianka; Schmidt, Karl-Friedrich; Löwel, Siegrid

    2014-12-01

    In the primary visual cortex (V1), monocular deprivation (MD) induces a shift in the ocular dominance (OD) of binocular neurons towards the open eye (Wiesel and Hubel, 1963; Gordon and Stryker, 1996). In V1 of C57Bl/6J mice, this OD-plasticity is maximal in juveniles, declines in adults and is absent beyond postnatal day (PD) 110 (Lehmann and Löwel, 2008) if mice are raised in standard cages. Since it was recently shown that brief dark exposure (DE) restored OD-plasticity in young adult rats (PD70-100) (He et al., 2006), we wondered whether DE would restore OD-plasticity also in adult and old mice and after a cortical stroke. To this end, we raised mice in standard cages until adulthood and transferred them to a darkroom for 10-14 days. Using intrinsic signal optical imaging we demonstrate that short-term DE can restore OD-plasticity after MD in both adult (PD138) and old mice (PD535), and that OD-shifts were mediated by an increase of open eye responses in V1. Interestingly, restored OD-plasticity after DE was accompanied by a reduction of both parvalbumin expressing cells and perineuronal nets and was prevented by increasing intracortical inhibition with diazepam. DE also maintained OD-plasticity in adult mice (PD150) after a stroke in the primary somatosensory cortex. In contrast, short-term DE did not affect basic visual parameters as measured by optomotry. In conclusion, short-term DE was able to restore OD-plasticity in both adult and aging mice and even preserved plasticity after a cortical stroke, most likely mediated by reducing intracortical inhibition.

  10. Reactive Oxygen Species Limit the Ability of Bone Marrow Stromal Cells to Support Hematopoietic Reconstitution in Aging Mice

    PubMed Central

    Khatri, Rahul; Krishnan, Shyam; Roy, Sushmita; Chattopadhyay, Saborni; Kumar, Vikash

    2016-01-01

    Aging of organ and abnormal tissue regeneration are recurrent problems in physiological and pathophysiological conditions. This is most crucial in case of high-turnover tissues, like bone marrow (BM). Using reciprocal transplantation experiments in mouse, we have shown that self-renewal potential of hematopoietic stem and progenitor cells (HSPCs) and BM cellularity are markedly influenced with the age of the recipient mice rather than donor mice. Moreover, accumulation of excessive reactive oxygen species (ROS) in BM stromal cells compared to HSPC compartment, in time-dependent manner, suggests that oxidative stress is involved in suppression of BM cellularity by affecting microenvironment in aged mice. Treatment of these mice with a polyphenolic antioxidant curcumin is found to partially quench ROS, thereby rescues stromal cells from oxidative stress-dependent cellular injury. This rejuvenation of stromal cells significantly improves hematopoietic reconstitution in 18-month-old mice compared to age control mice. In conclusion, this study implicates the role of ROS in perturbation of stromal cell function upon aging, which in turn affects BM's reconstitution ability in aged mice. Thus, a rejuvenation therapy using curcumin, before HSPC transplantation, is found to be an efficient strategy for successful marrow reconstitution in older mice. PMID:27140293

  11. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer's disease animal model.

    PubMed

    Cheng, Xiao-rui; Zhou, Wen-xia; Zhang, Yong-xiang

    2014-01-01

    Alzheimer's disease (AD) is a widespread and devastating progressive neurodegenerative disease. Disease-modifying treatments remain beyond reach, and the etiology of the disease is uncertain. Animal model are essential for identifying disease mechanisms and developing effective therapeutic strategies. Research on AD is currently being carried out in rodent models. The most common transgenic mouse model mimics familial AD, which accounts for a small percentage of cases. The senescence-accelerated mouse prone 8 (SAMP8) strain is a spontaneous animal model of accelerated aging. Many studies indicate that SAMP8 mice harbor the behavioral and histopathological signatures of AD, namely AD-like cognitive and behavioral alterations, neuropathological phenotypes (neuron and dendrite spine loss, spongiosis, gliosis and cholinergic deficits in the forebrain), β-amyloid deposits resembling senile plaques, and aberrant hyperphosphorylation of Tau-like neurofibrillary tangles. SAMP8 mice are useful in the development of novel therapies, and many pharmacological agents and approaches are effective in SAMP8 mice. SAMP8 mice are considered a robust model for exploring the etiopathogenesis of sporadic AD and a plausible experimental model for developing preventative and therapeutic treatments for late-onset/age-related AD, which accounts for the vast majority of cases.

  12. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion

    PubMed Central

    Chen, Jichun; Bryant, Mark A.; Dent, James J.; Sun, Yu; Desierto, Marie J.; Young, Neal S.

    2015-01-01

    A deletion of telomerase RNA component (Terc−/−) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b+ myeloid cells and decreased red blood cells and CD45R+ B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit+Sca-1+Lin− (KSL) cells in old Terc−/− mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc−/− donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc−/− mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b+ myeloid cells and a decrease in CD45R+ B cells, similar to those observed in old Terc−/− mice. Treatment of 11–13 month old Terc−/− mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc−/− animals. PMID:26523501

  13. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion.

    PubMed

    Chen, Jichun; Bryant, Mark A; Dent, James J; Sun, Yu; Desierto, Marie J; Young, Neal S

    2015-12-01

    A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals.

  14. Premature aging of the hippocampal neurogenic niche in adult Bmal1‐ deficient mice

    PubMed Central

    Ali, Amira A. H.; Schwarz‐Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-01-01

    Hippocampal neurogenesis undergoes dramatic age‐related changes. Mice with targeted deletion of the clock gene Bmal1 (Bmal1‐/‐) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1‐/‐ mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1‐/‐ mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70kDa and expression of the cell cycle inhibitor p21 Waf1/CIP1 were increased in adult Bmal1‐/‐ mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age‐dependent decline in adult neurogenesis presumably as a consequence of oxidative stress. PMID:26142744

  15. Decreased c-Jun expression correlates with impaired spinal motoneuron regeneration in aged mice following sciatic nerve crush.

    PubMed

    Yuan, Qiuju; Su, Huanxing; Guo, Jiasong; Tsang, Kwok Yeung; Cheah, Kathryn S E; Chiu, Kin; Yang, Jian; Wong, Wai-Man; So, Kwok-Fai; Huang, Jian-Dong; Wu, Wutian; Lin, Zhi-xiu

    2012-04-01

    Post-injury nerve regeneration of the peripheral nervous system declines with age, but the mechanisms underlying the weakened axonal regeneration are not well understood. Increased synthesis and activity of the AP-1 transcription factor c-Jun have been implicated in efficient motor axonal regeneration. In the present study, we evaluated the hypothesis that the impaired regenerative capacity in the aged is associated with impaired induction of c-Jun. In non-manipulated young adult or aged mice, no c-Jun and its phosphorylated form were detected in the ventral horn of the spinal cord. Following nerve crush, significant c-Jun and phosphorylated c-Jun occurred in the injured motoneurons of young adult mice, but not in aged animals. In accord with the immunohistochemistry, Western blots also showed that sciatic nerve crush induced c-Jun and its phosphorylation expression in the ventral horn of young adult but not in aged mice. Changes in c-Jun mRNA level detected by in situ hybridization are congruent with that in c-Jun protein content, showing an increase at 5 days after crush in young adult but not aged. Moreover, compared with young adult mice, aged mice showed impaired motor axonal regeneration. These results demonstrate that the impaired motor axonal regeneration seen in aged mice is correlated with impaired c-Jun expression and phosphorylation following injury. These data provide a neurobiological explanation for the poor outcome associated with nerve repair in the aged.

  16. Diet restriction delays accelerated aging and genomic stress in DNA repair deficient mice

    PubMed Central

    Vermeij, W.P.; Dollé, M.E.T.; Reiling, E.; Jaarsma, D.; Payan-Gomez, C.; Bombardieri, C.R.; Wu, H.; Roks, A.J.M.; Botter, S.M.; van der Eerden, B.C.; Youssef, S.A.; Kuiper, R.V.; Nagarajah, B.; van Oostrom, C.T.; Brandt, R.M.C.; Barnhoorn, S.; Imholz, S.; Pennings, J.L.A.; de Bruin, A.; Gyenis, Á.; Pothof, J.; Vijg, J.; van Steeg, H.; Hoeijmakers, J.H.J.

    2016-01-01

    DNA repair-deficient Ercc1Δ/− mice show numerous accelerated aging features limiting lifespan to 4–6 month1–4. Simultaneously they exhibit a ‘survival response’, which suppresses growth and enhances maintenance, resembling the anti-aging response induced by dietary restriction (DR)1,5. Here we report that subjecting these progeroid, dwarf mutants to 30% DR tripled median and maximal remaining lifespan, and drastically retarded numerous aspects of accelerated aging, e.g. DR animals retained 50% more neurons and maintained full motoric function, even far beyond the lifespan of ad libitum (AL) animals. Repair-deficient, progeroid Xpg−/− mice, a Cockayne syndrome model6, responded similarly, extending this observation to other repair mutants. The DR response in Ercc1Δ/− mice closely resembled DR in wild type animals. Interestingly, AL Ercc1Δ/− liver showed preferential extinction of expression of long genes, a phenomenon we also observe in several normal aging tissues. This is consistent with accumulation of stochastic, transcription-blocking lesions, affecting long genes more than short ones. DR largely prevented declining transcriptional output and reduced γH2AX DNA damage foci, indicating that DR preserves genome function by alleviating DNA damage. Our findings establish Ercc1Δ/− mice as powerful model for interventions sustaining health, reveal untapped potential for reducing endogenous damage, provide new venues for understanding the molecular mechanism of DR, and suggest a counterintuitive DR-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general. PMID:27556946

  17. Dietary wolfberry supplementation enhances the protective effect of flu vaccine against influenza challenge in aged mice.

    PubMed

    Du, Xiaogang; Wang, Junpeng; Niu, Xinli; Smith, Donald; Wu, Dayong; Meydani, Simin Nikbin

    2014-02-01

    Current vaccines for influenza do not fully protect the aged against influenza infection. Although wolfberry (goji berry) has been shown to improve immune response, including enhanced antibody production, after vaccination in the aged, it is not known if this effect would translate to better protection after influenza infection, nor is its underlying mechanism well understood. To address these issues, we conducted a study using a 2 × 2 design in which aged male mice (20-22 mo) were fed a control or a 5% wolfberry diet for 30 d, then immunized with an influenza vaccine or saline (control) on days 31 and 52 of the dietary intervention, and finally challenged with influenza A/Puerto Rico/8/34 virus. Mice fed wolfberry had higher influenza antibody titers and improved symptoms (less postinfection weight loss) compared with the mice treated by vaccine alone. Furthermore, an in vitro mechanistic study showed that wolfberry supplementation enhanced maturation and activity of antigen-presenting dendritic cells (DCs) in aged mice, as indicated by phenotypic change in expression of DC activation markers major histocompatibility complex class II, cluster of differentiation (CD) 40, CD80, and CD86, and functional change in DC production of cytokines interleukin-12 and tumor necrosis factor-α as well as DC endocytosis. Also, adoptive transfer of wolfberry-treated bone marrow DCs (loaded with ovalbumin(323-339)-peptide) promoted antigen-specific T cell proliferation as well as interleukin-4 and interferon-γ production in CD4(+) T cells. In summary, our data indicate that dietary wolfberry enhances the efficacy of influenza vaccination, resulting in better host protection to prevent subsequent influenza infection; this effect may be partly attributed to improved DC function.

  18. Oxidative stress is involved in age-dependent spermatogenic damage of Immp2l mutant mice.

    PubMed

    George, Sunil K; Jiao, Yan; Bishop, Colin E; Lu, Baisong

    Mitochondrial reactive oxygen species (ROS) have been implicated in spermatogenic damage, although direct in vivo evidence is lacking. We recently generated a mouse in which the inner mitochondrial membrane peptidase 2-like (Immp2l) gene is mutated. This Immp2l mutation impairs the processing of signal peptide sequences from mitochondrial cytochrome c₁ and glycerol phosphate dehydrogenase 2. The mitochondria from mutant mice generate elevated levels of superoxide ion, which causes age-dependent spermatogenic damage. Here we confirm age-dependent spermatogenic damage in a new cohort of mutants, which started at the age of 10.5 months. Compared with age-matched controls, protein carbonyl content was normal in testes of 2- to 5-month-old mutants, but significantly elevated in testes of 13-month-old mutants, indicating elevated oxidative stress in the testes at the time of impaired spermatogenesis. Testicular expression of superoxide dismutases was not different between control and mutant mice, whereas that of catalase was increased in young and old mutants. The expression of cytosolic glutathione peroxidase 4 (phospholipid hydroperoxidase) in testes was significantly reduced in 13-month-old mutants, concomitant with impaired spermatogenesis. Apoptosis of all testicular populations was increased in mutant mice with spermatogenic damage. The mitochondrial DNA (mtDNA) mutation rate in germ cells of mutant mice with impaired spermatogenesis was unchanged, excluding a major role of mtDNA mutation in ROS-mediated spermatogenic damage. Our data show that increased mitochondrial ROS are one of the driving forces for spermatogenic impairment.

  19. Age- and sex-dependent thymic abnormalities in NZB × SJL F1 hybrid mice

    PubMed Central

    Dumont, F.; Robert, F.

    1980-01-01

    The cellular organization of the thymus was investigated in 3- and 12-month-old NZB × SJL F1 hybrid (NS) mice. Age-dependent alterations were demonstrated which differed strikingly according to the sex of the animals. In female mice, marked abnormalities of the thymus developed during ageing. They consisted of a more or less pronounced hypertrophy accompanied by histological changes and modifications in the nature of the lymphocyte populations. Three types of qualitative changes were found at 12 months of age: (1) depletion of cortical thymocytes as evidenced by histology, by the evaluation of peanut-agglutinin (PNA) binding and by cell electrophoresis; (2) hyperplasia of the medullary lymphoid tissue, probably reflecting the expansion of a population of mature T lymphocytes. This was further suggested by a rise (up to 60%) in the frequency of lymphocytes lacking both PNA receptor and B cell markers, by an increased proportion (57%) of high electrophoretic mobility (EPM) lymphocytes and by an augmentation of in vitro reactivities to phytohaemagglutinin (PHA) and, although to a lesser extent, to concanavalin A (Con A). (3) The appearance of significant numbers of B lymphocytes (up to 20%) as assessed by surface immunoglobulin (sIg) and complement receptor (CR) detection which was accompanied by a vigorous responsiveness of thymus cells to lipopolysaccharide (LPS). None of these abnormalities was seen in the male mice. Instead, the thymus of NS males displayed a nearly normal age-related involution without major change in the proportions of its lymphocyte subpopulations. NS mice thus provide an interesting model of thymic disease influenced by sex-linked factors. ImagesFig. 3 PMID:7438550

  20. NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging.

    PubMed

    Bonsignore, Lindsay A; Tooley, John G; Van Hoose, Patrick M; Wang, Eugenia; Cheng, Alan; Cole, Marsha P; Schaner Tooley, Christine E

    2015-03-01

    Though defective genome maintenance and DNA repair have long been known to promote phenotypes of premature aging, the role protein methylation plays in these processes is only now emerging. We have recently identified the first N-terminal methyltransferase, NRMT1, which regulates protein-DNA interactions and is necessary for both accurate mitotic division and nucleotide excision repair. To demonstrate if complete loss of NRMT1 subsequently resulted in developmental or aging phenotypes, we constructed the first NRMT1 knockout (Nrmt1(-/-)) mouse. The majority of these mice die shortly after birth. However, the ones that survive, exhibit decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration; phenotypes characteristic of other mouse models deficient in DNA repair. The livers from Nrmt1(-/-) mice produce less reactive oxygen species (ROS) than wild type controls, and Nrmt1(-/-) mouse embryonic fibroblasts show a decreased capacity for handling oxidative damage. This indicates that decreased mitochondrial function may benefit Nrmt1(-/-) mice and protect them from excess internal ROS and subsequent DNA damage. These studies position the NRMT1 knockout mouse as a useful new system for studying the effects of genomic instability and defective DNA damage repair on organismal and tissue-specific aging.

  1. NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging

    PubMed Central

    Bonsignore, Lindsay A.; Tooley, John G.; Van Hoose, Patrick M.; Wang, Eugenia; Cheng, Alan; Cole, Marsha P.; Tooley, Christine E. Schaner

    2015-01-01

    Though defective genome maintenance and DNA repair have long been know to promote phenotypes of premature aging, the role protein methylation plays in these processes is only now emerging. We have recently identified the first N-terminal methyltransferase, NRMT1, which regulates protein-DNA interactions and is necessary for both accurate mitotic division and nucleotide excision repair. To demonstrate if complete loss of NRMT1 subsequently resulted in developmental or aging phenotypes, we constructed the first NRMT1 knockout (Nrmt1−/−) mouse. The majority of these mice die shortly after birth. However, the ones that survive exhibit decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration; phenotypes characteristic of other mouse models deficient in DNA repair. The livers from Nrmt1−/− mice produce less reactive oxygen species (ROS) than wild type controls, and Nrmt1−/− mouse embryonic fibroblasts show a decreased capacity for handling oxidative damage. This indicates that decreased mitochondrial function may benefit Nrmt1−/− mice and protect them from excess internal ROS and subsequent DNA damage. These studies position the NRMT1 knockout mouse as a useful new system for studying the effects of genomic instability and defective DNA damage repair on organismal and tissue-specific aging. PMID:25843235

  2. Developmental and age-related changes in apolipoprotein B mRNA editing in mice.

    PubMed

    Higuchi, K; Kitagawa, K; Kogishi, K; Takeda, T

    1992-12-01

    Apolipoprotein B (apoB) mRNA is modified by a post-transcriptional editing reaction (C to U) changing a glutamine (CAA) to a translational stop codon (UAA) and producing apoB-48 mRNA in mammalian liver and intestine. Developmental and age-related changes in apoB mRNA editing were studied using two mouse strains with different aging processes (SAM-R/1 with a normal aging process and SAM-P/1 with an accelerated aging process). During growth of both strains, the proportion of unedited (apoB-100) mRNA decreased from 80% in the fetal liver at the 17th day of gestation to 30% in the liver of mature 2-month-old mice. Age-associated increase in the proportion of hepatic apoB-100 mRNA was observed from the age of 18 months in the SAM-R/1 strain. In the SAM-P/1 strain, apoB-100 mRNA in the liver continued to increase from the age of 10 months to death. The profiles of developmental and age-related changes in the proportion of two serum apoB isoproteins (apoB-100 and apoB-48) followed the extent of hepatic apoB mRNA editing. Age-related changes in the extent of apoB mRNA editing in the small intestine were not observed in either strain. A slight expression of apoB was detected by reverse transcriptase-polymerase chain reaction in the kidney, stomach, and colon, and age-associated change in the extent of editing was observed in the kidney. These correlated changes in apoB mRNA editing and serum apoB proteins suggest that RNA editing may be one mechanism involved in the regulation of lipoprotein biogenesis in biological development and in senescent mice. An age-associated decrease in the extent of hepatic apoB mRNA editing and increases of the proportion of serum apoB-100 protein were observed in senescent mice.

  3. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice

    PubMed Central

    Ozkosem, Burak; Feinstein, Sheldon I.; Fisher, Aron B.; O’Flaherty, Cristian

    2015-01-01

    Due to socioeconomic factors, more couples are choosing to delay conception than ever. Increasing average maternal and paternal age in developed countries over the past 40 years has raised the question of how aging affects reproductive success of males and females. Since oxidative stress in the male reproductive tract increases with age, we investigated the impact of advanced paternal age on the integrity of sperm nucleus and reproductive success of males by using a Prdx6−/− mouse model. We compared sperm motility, cytoplasmic droplet retention sperm chromatin quality and reproductive outcomes of young (2-month-old), adult (8-month-old), and old (20-month-old) Prdx6−/− males with their age-matched wild type (WT) controls. Absence of PRDX6 caused age-dependent impairment of sperm motility and sperm maturation and increased sperm DNA fragmentation and oxidation as well as decreased sperm DNA compaction and protamination. Litter size, total number of litters and total number of pups per male were significantly lower in Prdx6−/− males compared to WT controls. These abnormal reproductive outcomes were severely affected by age in Prdx6−/− males. In conclusion, the advanced paternal age affects sperm chromatin integrity and fertility more severely in the absence of PRDX6, suggesting a protective role of PRDX6 in age-associated decline in the sperm quality and fertility in mice. PMID:25796034

  4. Age-associated cardiomyopathy in heterozygous carrier mice of a pathological mutation of carnitine transporter gene, OCTN2.

    PubMed

    Xiaofei, E; Wada, Yasuhiko; Dakeishi, Miwako; Hirasawa, Fujiko; Murata, Katsuyuki; Masuda, Hirotake; Sugiyama, Toshihiro; Nikaido, Hiroko; Koizumi, Akio

    2002-07-01

    The purpose of this study was to test whether heterozygotes of juvenile visceral steatosis mice, a model for systemic carnitine deficiency, may develop age-associated cardiomyopathy. Tissue morphological observations were carried out by light and electron microscopy to compare the heterozygous and age-matched control mice at periods of 1 and 2 years. Possible effects of the pathological mutation on lipid and glucose levels was also evaluated in humans and mice. Except mild increases in serum cholesterol levels in male heterozygous mice and humans, no changes were found in other factors, indicating that none of the confounding factors seems to be profound. Results demonstrated that heterozygous mice had larger left ventriclular myocyte diameters than the control mice. Morphological changes in cardiac muscles by electron microscopy revealed age-associated changes of lipid deposition and abnormal mitochondria in heterozygous mice. Two out of 60 heterozygous cohort and one out of nine heterozygous trim-kill mice had cardiac hypertrophy at ages older than 2 years. The present study and our previous work suggest that the carrier state of OCTN2 pathological mutations might be a risk factor for age-associated cardiomyopathy.

  5. Arginase I expression is upregulated by dietary restriction in the liver of mice as a function of age.

    PubMed

    Majaw, Teikur; Sharma, Ramesh

    2015-09-01

    Arginase is a cytosolic enzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. This reaction comprises the final step of the urea cycle, which provides the principal route for the disposal of nitrogenous waste from protein catabolism. The present study investigates the normal endogenous activity and expression level of arginase I as a function of age in the liver of 2-, 6-, and 18-month-old mice. The effect of dietary restriction (DR) on the expression of arginase I was also investigated in two age groups of mice, 2- and 18-month old. Arginase I activity was assessed spectrophotometrically, and the level of arginase I protein was further confirmed by Western blotting analyses. Arginase I mRNA level was measured using real-time PCR. Our results show that the arginase I activity (U/mg protein) and protein level in liver was higher in 2-month-old mice and decreased gradually with age. In contrast, arginase I mRNA was observed to be higher in the older mice as compared to the younger mice. DR was seen to upregulate the arginase I activity and expression in both 2- and 18-month-old mice. The findings concluded that arginase I is down-regulated with the advancement of age in the liver of mice and is upregulated by DR. This suggests that DR plays an important role in maintaining related metabolic processes as a function of age in mice.

  6. Anti-Aging Effect of Nigella Sativa Fixed Oil on D-Galactose-Induced Aging in Mice

    PubMed Central

    Shahroudi, Mahdieh Jafari; Mehri, Soghra; Hosseinzadeh, Hossein

    2017-01-01

    Objectives: Aging is an unconscious and gradual process that can lead to changes in biological systems. Induction of oxidative stress and apoptosis, hepatotoxicity and neurotoxicity are involved in the aging process. Regarding the antioxidant property of black seed oil, the aim of this study was to evaluate the anti-aging effect of Nigella sativa (N. sativa) oil on d-galactose-induced aging in mice. Methods: For induction of aging, D-galactose (500 mg/kg, subcoutaneously SC) was administrated to male mice for 42 days. Animals were treated with D-galactose alone or with b lack seed oil (0.1, 0.2, 0.5 mL/kg, intraperitoneally (ip)). Additionally, vitamin E (200 mg/kg) was used as a positive control. At the end of treatment, the malondialdehyde (MDA) and the glutathione (GSH) contents in brain and liver tissues were measured. Also, enzymes in serum, including aspartate aminotransferase (AST) and alanine amino transferase (ALT), were determined. The levels of the proteins Bax, Bcl2, caspase-3 (pro and cleaved) in brain and liver tissues were evaluated. Results: Administration of D-galactose (500 mg/kg, SC) for 42 days increased serum levels of ALT and AST, as well as the MDA content, in brain and liver tissues, but decreased the GSH content. Additionally, the levels of apoptotic proteins, including Bax, procaspase-3 and caspase-3 cleaved, were markedly increased. N. sativa oil (0.1 and 0.2 mL/kg) diminished the levels of the biochemical markers ALT and AST. Administration of black seed oil (0.1, 0.2 and 0.5 mL/kg) reduced lipid peroxidation and at doses 0.1 and 0.2 mL/kg significantly recovered the GSH content. The oil decreased Bax/Bcl2 levels and at 0.1 mL/kg down-regulated the expressions of caspase-3 (pro and cleaved) proteins in brain and liver tissues. Conclusion: Through its antioxidant and anti-apoptosis properties, black seed oil exhibited an anti-aging effect in a model of aging induced with D-galactose. PMID:28392960

  7. Age-related reduction of structural complexity in spleen hematopoietic tissue architecture in mice.

    PubMed

    Pantic, Igor; Paunovic, Jovana; Basta-Jovanovic, Gordana; Perovic, Milan; Pantic, Senka; Milosevic, Nebojsa T

    2013-09-01

    The effects of aging on structural complexity in hematopoietic tissue are unknown. In this work, in a mouse experimental model, we report the age-related reduction of spleen hematopoietic tissue (SHT) complexity. Spleen tissue was obtained from the total of 64 male Swiss albino mice divided into 8 age groups: newborns (0 days old), 10 days, 20 days, 30 days, 120 days, 210 days, 300 and 390 days old. SHT was stained using conventional hematoxylin/eosin, and DNA-binding toluidine blue dyes. Fractal dimension as an indicator of cellular complexity, and lacunarity as indicator of tissue heterogeneity were determined based on the binarized SHT micrographs. Results indicate that fractal dimension of mice spleen hematopoietic tissue decreases with age, while lacunarity increases. These changes/trends have been detected in SHT stained both with toluidine blue and conventional hematoxylin/eosin. Fractal dimension was negatively correlated with lacunarity. The detected reduction in complexity suggests that age-related structural changes are present in mouse SHT both in general tissue architecture and progenitor cell DNA.

  8. Metabolism and aging: effects of cold exposure on metabolic rate, body composition, and longevity in mice.

    PubMed

    Vaanholt, Lobke M; Daan, Serge; Schubert, Kristin A; Visser, G Henk

    2009-01-01

    The proposition that increased energy expenditure shortens life has a long history. The rate-of-living theory (Pearl 1928 ) states that life span and average mass-specific metabolic rate are inversely proportional. Originally based on interspecific allometric comparisons between species of mammals, the theory was later rejected on the basis of comparisons between taxa (e.g., birds have higher metabolic rates than mammals of the same size and yet live longer). It has rarely been experimentally tested within species. Here, we investigated the effects of increased energy expenditure, induced by cold exposure, on longevity in mice. Longevity was measured in groups of 60 male mice maintained at either 22 degrees C (WW) or 10 degrees C (CC) throughout adult life. Forty additional mice were maintained at both of these temperatures to determine metabolic rate (by stable isotope turnover, gas exchange, and food intake) as well as the mass of body and organs of subsets of animals at four different ages. Because energy expenditure might affect longevity by either accumulating damage or by instantaneously affecting mortality rate, we included a third group of mice exposed to 10 degrees C early in life and to 22 degrees C afterward (CW). Exposure to cold increased mean daily energy expenditure by ca. 48% (from 47.8 kJ d(-1) in WW to 70.6 kJ d(-1) in CC mice, with CW intermediate at 59.9 kJ d(-1)). However, we observed no significant differences in median life span among the groups (WW, 832 d; CC, 834 d; CW, 751 d). CC mice had reduced body mass (lifetime mean 30.7 g) compared with WW mice (33.8 g), and hence their lifetime energy potential (LEP) per gram whole-body mass had an even larger excess than per individual. Greenberg ( 1999 ) has pointed out that the size of the energetically costly organs, rather than that of the whole body, may be relevant for the rate-of-living idea. We therefore expressed LEP also in terms of energy expenditure per gram dry lean mass or per gram

  9. Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters.

    PubMed

    Del Campo, Andrea; Jaimovich, Enrique; Tevy, Maria Florencia

    2016-01-01

    Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice.

  10. Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters

    PubMed Central

    2016-01-01

    Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice. PMID:27630760

  11. Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice.

    PubMed

    Mitchell, Sarah J; Madrigal-Matute, Julio; Scheibye-Knudsen, Morten; Fang, Evandro; Aon, Miguel; González-Reyes, José A; Cortassa, Sonia; Kaushik, Susmita; Gonzalez-Freire, Marta; Patel, Bindi; Wahl, Devin; Ali, Ahmed; Calvo-Rubio, Miguel; Burón, María I; Guiterrez, Vincent; Ward, Theresa M; Palacios, Hector H; Cai, Huan; Frederick, David W; Hine, Christopher; Broeskamp, Filomena; Habering, Lukas; Dawson, John; Beasley, T Mark; Wan, Junxiang; Ikeno, Yuji; Hubbard, Gene; Becker, Kevin G; Zhang, Yongqing; Bohr, Vilhelm A; Longo, Dan L; Navas, Placido; Ferrucci, Luigi; Sinclair, David A; Cohen, Pinchas; Egan, Josephine M; Mitchell, James R; Baur, Joseph A; Allison, David B; Anson, R Michael; Villalba, José M; Madeo, Frank; Cuervo, Ana Maria; Pearson, Kevin J; Ingram, Donald K; Bernier, Michel; de Cabo, Rafael

    2016-06-14

    Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.

  12. Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice.

    PubMed

    Rivas, Daniel; Li, Wei; Akter, Rahima; Henderson, Janet E; Duque, Gustavo

    2009-10-01

    Age-related bone loss is associated with changes in bone cellularity, which include marrow fat infiltration and decreasing levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although nuclear lamina alterations occur in premature aging syndromes that include changes in body fat and severe osteoporosis, the role of proteins of the nuclear lamina in age-related bone loss remains unknown. Using the Zmpste24-null progeroid mice (Zmpste24(-/-)), which exhibit nuclear lamina defects and accumulate unprocessed prelamin A, we identified several alterations in bone cellularity in vivo. We found that defective prelamin A processing induced accelerated features of age-related bone loss including lower osteoblast and osteocyte numbers and higher levels of marrow adipogenesis. In summary, processing of prelamin A could become a new approach to regulate osteoblastogenesis and bone turnover and thus for the prevention and treatment of senile osteoporosis.

  13. Effects of velvet antler polypeptide on sexual behavior and testosterone synthesis in aging male mice

    PubMed Central

    Zang, Zhi-Jun; Tang, Hong-Feng; Tuo, Ying; Xing, Wei-Jie; Ji, Su-Yun; Gao, Yong; Deng, Chun-Hua

    2016-01-01

    Twenty-four-month-old male C57BL/6 mice with low serum testosterone levels were used as a late-onset hypogonadism (LOH) animal model for examining the effects of velvet antler polypeptide (VAP) on sexual function and testosterone synthesis. These mice received VAP for 5 consecutive weeks by daily gavage at doses of 100, 200, or 300 mg kg−1 body weight per day (n = 10 mice per dose). Control animals (n = 10) received the same weight-based volume of vehicle. Sexual behavior and testosterone levels in serum and interstitial tissue of testis were measured after the last administration of VAP. Furthermore, to investigate the mechanisms of how VAP affects sexual behavior and testosterone synthesis in vivo, the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in Leydig cells was also measured by immunofluorescence staining and quantitative real-time PCR. As a result, VAP produced a significant improvement in the sexual function of these aging male mice. Serum testosterone level and intratesticular testosterone (ITT) concentration also increased in the VAP-treated groups. The expression of StAR, P450scc, and 3β-HSD was also found to be enhanced in the VAP-treated groups compared with the control group. Our results suggested that VAP was effective in improving sexual function in aging male mice. The effect of velvet antler on sexual function was due to the increased expression of several rate-limiting enzymes of testosterone synthesis (StAR, P450scc, and 3β-HSD) and the following promotion of testosterone synthesis in vivo. PMID:26608944

  14. Effects of velvet antler polypeptide on sexual behavior and testosterone synthesis in aging male mice.

    PubMed

    Zang, Zhi-Jun; Tang, Hong-Feng; Tuo, Ying; Xing, Wei-Jie; Ji, Su-Yun; Gao, Yong; Deng, Chun-Hua

    2016-01-01

    Twenty-four-month-old male C57BL/6 mice with low serum testosterone levels were used as a late-onset hypogonadism (LOH) animal model for examining the effects of velvet antler polypeptide (VAP) on sexual function and testosterone synthesis. These mice received VAP for 5 consecutive weeks by daily gavage at doses of 100, 200, or 300 mg kg-1 body weight per day (n = 10 mice per dose). Control animals (n = 10) received the same weight-based volume of vehicle. Sexual behavior and testosterone levels in serum and interstitial tissue of testis were measured after the last administration of VAP. Furthermore, to investigate the mechanisms of how VAP affects sexual behavior and testosterone synthesis in vivo, the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in Leydig cells was also measured by immunofluorescence staining and quantitative real-time PCR. As a result, VAP produced a significant improvement in the sexual function of these aging male mice. Serum testosterone level and intratesticular testosterone (ITT) concentration also increased in the VAP-treated groups. The expression of StAR, P450scc, and 3β-HSD was also found to be enhanced in the VAP-treated groups compared with the control group. Our results suggested that VAP was effective in improving sexual function in aging male mice. The effect of velvet antler on sexual function was due to the increased expression of several rate-limiting enzymes of testosterone synthesis (StAR, P450scc, and 3β-HSD) and the following promotion of testosterone synthesis in vivo.

  15. Molecular detection of chromosomal abnormalities in germ and somatic cells of aged male mice

    SciTech Connect

    Lowe, X.; Baulch, J.; Quintana, L.; Ramsey, M.; Breneman, J.; Tucker, J.; Wyrobek, A.; Collins, B.; Allen, J.; Holland, N.

    1994-12-31

    Three cytogenetic methods were applied to eight B6C3F1 male mice aged 22.5 - 30.5mo to determine if advanced age was associated with an elevated risk of producing chromosomally defective germinal and somatic cells; sperm aneuploidy analysis by multi-color fluorescence in situ hybridization for three chromosomes, spermatid micronucleus analysis with anti-kinetochore antibodies, and translocation analysis of somatic metaphases by {open_quotes}painting{close_quotes} for two chromosomes. Eight mice aged 2.4mo served as controls. Sperm aneuploidy was measured by multi-color fluorescence in situ co-hybridization with DNA probes specific for chromosomes X, Y and 8, scoring 10,000 cells per animal. The aged group showed significant 1.5 - 2.0 fold increases in the hyperhaploidy phenotypes X-X-8, Y-Y-8, 8-8-Y, and 8-8-X with the greater effects appearing in animals aged >29mo. The aged group also showed significantly increased frequencies of micronucleated spermatids (2.0 vs 0.4 per 1000; all were kinetochore negative). Analysis of metaphase chromosomes from blood by {open_quotes}painting{close_quotes} of chromosomes 2 and 8 yielded 4 translocation per 858 cell-equivalents in the aged group which was a non-significant elevation over 0/202 in controls. Although interpretation must be cautious due to the small number of animals analyzed, these findings suggest that advanced paternal age may be a risk factor for chromosomal abnormalities of reproductive and somatic importance.

  16. High folic acid intake reduces natural killer cell cytotoxicity in aged mice.

    PubMed

    Sawaengsri, Hathairat; Wang, Junpeng; Reginaldo, Christina; Steluti, Josiane; Wu, Dayong; Meydani, Simin Nikbin; Selhub, Jacob; Paul, Ligi

    2016-04-01

    Presence of unmetabolized folic acid in plasma, which is indicative of folic acid intake beyond the metabolic capacity of the body, is associated with reduced natural killer (NK) cell cytotoxicity in postmenopausal women ≥50years. NK cells are cytotoxic lymphocytes that are part of the innate immune system critical for surveillance and defense against virus-infected and cancer cells. We determined if a high folic acid diet can result in reduced NK cell cytotoxicity in an aged mouse model. Female C57BL/6 mice (16-month-old) were fed an AIN-93M diet with the recommended daily allowance (1× RDA, control) or 20× RDA (high) folic acid for 3months. NK cytotoxicity was lower in splenocytes from mice fed a high folic acid diet when compared to mice on control diet (P<.04). The lower NK cell cytotoxicity in high folic acid fed mice could be due to their lower mature cytotoxic/naïve NK cell ratio (P=.03) when compared to the control mice. Splenocytes from mice on high folic acid diet produced less interleukin (IL)-10 when stimulated with lipopolysaccharide (P<.05). The difference in NK cell cytotoxicity between dietary groups was abolished when the splenocytes were supplemented with exogenous IL-10 prior to assessment of the NK cytotoxicity, suggesting that the reduced NK cell cytotoxicity of the high folic acid group was at least partially due to reduced IL-10 production. This study demonstrates a causal relationship between high folic acid intake and reduced NK cell cytotoxicity and provides some insights into the potential mechanisms behind this relationship.

  17. Aging has small effects on initial ischemic acute kidney injury development despite changing intrarenal immunologic micromilieu in mice.

    PubMed

    Jang, Hye Ryoun; Park, Ji Hyeon; Kwon, Ghee Young; Park, Jae Berm; Lee, Jung Eun; Kim, Dae Joong; Kim, Yoon-Goo; Kim, Sung Joo; Oh, Ha Young; Huh, Wooseong

    2016-02-15

    Inflammatory process mediated by innate and adaptive immune systems is a major pathogenic mechanism of renal ischemia-reperfusion injury (IRI). There are concerns that organ recipients may be at increased risk of developing IRI after receiving kidneys from elder donors. To reveal the effects of aging on the development of renal IRI, we compared the immunologic micromilieu of normal and postischemic kidneys from mice of three different ages (9 wk, 6 mo, and 12 mo). There was a higher number of total T cells, especially effector memory CD4/CD8 T cells, and regulatory T cells in the normal kidneys of old mice. On day 2 after IRI, the proportion of necrotic tubules and renal functional changes were comparable between groups although old mice had a higher proportion of damaged tubule compared with young mice. More T cells, but less B cells, trafficked into the postischemic kidneys of old mice. The infiltration of NK T cells was similar across the groups. Macrophages and neutrophils were comparable between groups in both normal kidneys and postischemic kidneys. The intrarenal expressions of TNF-α and VEGF were decreased in normal and postischemic kidneys of aged mice. These mixed effects of aging on lymphocytes and cytokines/chemokines were not different between the two groups of old mice. Our study demonstrates that aging alters the intrarenal micromilieu but has small effects on the development of initial renal injury after IRI. Further study investigating aging-dependent differences in the repair process of renal IRI may be required.

  18. Autoimmune manifestations in aged mice arise from early-life immune dysregulation

    PubMed Central

    Mahmoud, Tamer I.; Wang, Jingya; Karnell, Jodi L.; Wang, Qiming; Wang, Shu; Naiman, Brian; Gross, Phillip; Brohawn, Philip Z.; Morehouse, Chris; Aoyama, Jordan; Wasserfall, Clive; Carter, Laura; Atkinson, Mark A.; Serreze, David V.; Braley-Mullen, Helen; Mustelin, Tomas; Kolbeck, Roland; Herbst, Ronald; Ettinger, Rachel

    2017-01-01

    Autoantibodies can be present years to decades prior to the onset of disease manifestations in autoimmunity. This suggests that the initial autoimmune trigger involves a peripheral lymphoid component, which ultimately drives disease pathology in local tissues later in life. Here we show Sjögren’s Syndrome manifestations that develop in aged NOD.H-2h4 mice were driven by and dependent on peripheral dysregulation that arose in early life. Specifically, elimination of spontaneous germinal centers in spleens of young NOD.H-2h4 mice by transient blockade of CD40 ligand (CD40L) or splenectomy abolished Sjögren’s pathology of aged mice. Strikingly, a single injection of anti-CD40L at 4 weeks-of-age prevented tertiary follicle neogenesis and greatly blunted the formation of key autoantibodies implicated in glandular pathology, including anti-muscarinic receptor antibodies. Microarray profiling of the salivary gland characterized the expression pattern of genes that increased with disease progression and showed early anti-CD40L greatly repressed B cell function, while having a broader effect on multiple biological pathways including IL-12 and interferon signaling. Importantly, a single, prophylactic treatment with anti-CD40L also inhibited the development of autoimmune thyroiditis and diabetes in NOD.H-2h4 and NOD mice, respectively, supporting a key role for CD40L in the pathophysiology of several autoimmune models. These results strongly suggest early peripheral immune dysregulation gives rise to autoimmune manifestations later in life and for diseases pre-dated by autoantibodies, early prophylactic intervention with biologics may prove efficacious. PMID:27798262

  19. The Ageing Brain: Effects on DNA Repair and DNA Methylation in Mice

    PubMed Central

    Langie, Sabine A. S.; Cameron, Kerry M.; Ficz, Gabriella; Oxley, David; Tomaszewski, Bartłomiej; Gorniak, Joanna P.; Maas, Lou M.; Godschalk, Roger W. L.; van Schooten, Frederik J.; Reik, Wolf; von Zglinicki, Thomas; Mathers, John C.

    2017-01-01

    Base excision repair (BER) may become less effective with ageing resulting in accumulation of DNA lesions, genome instability and altered gene expression that contribute to age-related degenerative diseases. The brain is particularly vulnerable to the accumulation of DNA lesions; hence, proper functioning of DNA repair mechanisms is important for neuronal survival. Although the mechanism of age-related decline in DNA repair capacity is unknown, growing evidence suggests that epigenetic events (e.g., DNA methylation) contribute to the ageing process and may be functionally important through the regulation of the expression of DNA repair genes. We hypothesize that epigenetic mechanisms are involved in mediating the age-related decline in BER in the brain. Brains from male mice were isolated at 3–32 months of age. Pyrosequencing analyses revealed significantly increased Ogg1 methylation with ageing, which correlated inversely with Ogg1 expression. The reduced Ogg1 expression correlated with enhanced expression of methyl-CpG binding protein 2 and ten-eleven translocation enzyme 2. A significant inverse correlation between Neil1 methylation at CpG-site2 and expression was also observed. BER activity was significantly reduced and associated with increased 8-oxo-7,8-dihydro-2′-deoxyguanosine levels. These data indicate that Ogg1 and Neil1 expression can be epigenetically regulated, which may mediate the effects of ageing on DNA repair in the brain. PMID:28218666

  20. Supplemental nitric oxide augments satellite cell activity on cultured myofibers from aged mice.

    PubMed

    Betters, Jenna L; Lira, Vitor A; Soltow, Quinlyn A; Drenning, Jason A; Criswell, David S

    2008-12-01

    Skeletal muscle regenerative potential is reduced with aging. We hypothesized that in vitro activation of muscle satellite cells would be compromised, and that nitric oxide (NO) supplementation would improve satellite cell activity in old muscle. Single intact myofibers were isolated from the gastrocnemius muscles of young (2 mo), adult (10 mo), and aged (22 mo) mice. Fibers were centrifuged to stimulate satellite cells and incubated with L-arginine (2mM), the NO donor, diethylenetriamine NONOate (DETA-NO; 10 microM), or control media for 48 h. The number of activated satellite cells after centrifugation was reduced in aged fibers compared to young and adult. L-arginine or DETA-NO treatment increased satellite cell activation in all age groups. However, an age-dependent deficit in satellite cell activity persisted within treatment groups. In separate fibers, exogenous HGF was equally effective in activating satellite cells across age groups, indicating that events downstream of HGF release are intact in aged muscle. These data suggest that l-arginine bioavailability and NO production limit muscle satellite cell activity in response to a submaximal mechanical stimulus, regardless of age. Further, the decline in satellite cell activity in early senescence can be partially abrogated by exogenous L-arginine or an NO donor.

  1. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice.

    PubMed

    Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart

    2015-12-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.

  2. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice.

    PubMed

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M; Schrøder, Henrik Daa

    2007-11-01

    Muscular dystrophies are characterized by insufficient restoration and gradual replacement of the skeletal muscle by fat and connective tissue. ADAM12 has previously been shown to alleviate the pathology of young dystrophin-deficient mdx mice, a model for Duchenne muscular dystrophy. The observed effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, alpha7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also improved regeneration after freeze injury, presumably by the same mechanism. Hence, it was suggested that ADAM12 could be a candidate for nonreplacement gene therapy of Duchenne muscular dystrophy. We therefore evaluated the long-term effect of ADAM12 overexpression in muscle. Surprisingly, we observed loss of skeletal muscle and accelerated fibrosis and adipogenesis in 1-year-old mdx mice transgenically overexpressing ADAM12 (ADAM12(+)/mdx mice), even though their utrophin levels were mildly elevated compared with age-matched controls. Thus, membrane stabilization was not sufficient to provide protection during prolonged disease. Consequently, we reinvestigated skeletal muscle regeneration in ADAM12 transgenic mice (ADAM12(+)) after a knife cut lesion and observed that the regeneration process was significantly impaired. ADAM12 seemed to inhibit the satellite cell response and delay myoblast differentiation. These results discourage long-term therapeutic use of ADAM12. They also point to impaired regeneration as a possible factor in development of muscular dystrophy.

  3. Global gene profiling of aging lungs in Atp8b1 mutant mice

    PubMed Central

    Soundararajan, Ramani; Stearns, Timothy M.; Czachor, Alexander; Fukumoto, Jutaro; Turn, Christina; Westermann-Clark, Emma; Breitzig, Mason; Tan, Lee; Lockey, Richard F.; King, Benjamin L.; Kolliputi, Narasaiah

    2016-01-01

    Objective Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. Methods We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). Results Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. Conclusion Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases. PMID:27689529

  4. Royal jelly prevents the progression of sarcopenia in aged mice in vivo and in vitro.

    PubMed

    Niu, Kaijun; Guo, Hui; Guo, Yinting; Ebihara, Satoru; Asada, Masanori; Ohrui, Takashi; Furukawa, Katsutoshi; Ichinose, Masakazu; Yanai, Kazuhiko; Kudo, Yukitsuka; Arai, Hiroyuki; Okazaki, Tatsuma; Nagatomi, Ryoichi

    2013-12-01

    Sarcopenia is characterized by the age-related loss of muscle mass and strength. One of the mechanisms of sarcopenia is the loss in the function and number of muscle satellite cells. Royal jelly (RJ) is a health food used worldwide. To obtain better digestion and absorption than RJ, protease-treated RJ (pRJ) has been developed. RJ and pRJ have been suggested to have potential pharmacological benefits such as prolonging the life span and reducing fatigue. Because these effects may improve sarcopenia and the functions of satellite cells, we examined the effects of RJ or pRJ treatment on the skeletal muscles in an animal model using aged mice. In vivo, RJ/pRJ treatment attenuated the decrease in the muscle weight and grip strength and increased the regenerating capacity of injured muscles and the serum insulin-like growth factor-1 levels compared with controls. In vitro, using isolated satellite cells from aged mice, pRJ treatment increased the cell proliferation rate, promoted cell differentiation, and activated Akt intracellular signaling pathway compared with controls. These findings suggest that RJ/pRJ treatment had a beneficial effect on age-related sarcopenia.

  5. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice

    PubMed Central

    Bitto, Alessandro; Ito, Takashi K; Pineda, Victor V; LeTexier, Nicolas J; Huang, Heather Z; Sutlief, Elissa; Tung, Herman; Vizzini, Nicholas; Chen, Belle; Smith, Kaleb; Meza, Daniel; Yajima, Masanao; Beyer, Richard P; Kerr, Kathleen F; Davis, Daniel J; Gillespie, Catherine H; Snyder, Jessica M; Treuting, Piper M; Kaeberlein, Matt

    2016-01-01

    The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome. DOI: http://dx.doi.org/10.7554/eLife.16351.001 PMID:27549339

  6. Cytokinetic Failure-induced Tetraploidy Develops into Aneuploidy, Triggering Skin Aging in Phosphovimentin-deficient Mice.

    PubMed

    Tanaka, Hiroki; Goto, Hidemasa; Inoko, Akihito; Makihara, Hiroyuki; Enomoto, Atsushi; Horimoto, Katsuhisa; Matsuyama, Makoto; Kurita, Kenichi; Izawa, Ichiro; Inagaki, Masaki

    2015-05-22

    Tetraploidy, a state in which cells have doubled chromosomal sets, is observed in ∼20% of solid tumors and is considered to frequently precede aneuploidy in carcinogenesis. Tetraploidy is also detected during terminal differentiation and represents a hallmark of aging. Most tetraploid cultured cells are arrested by p53 stabilization. However, the fate of tetraploid cells in vivo remains largely unknown. Here, we analyze the ability to repair wounds in the skin of phosphovimentin-deficient (VIM(SA/SA)) mice. Early into wound healing, subcutaneous fibroblasts failed to undergo cytokinesis, resulting in binucleate tetraploidy. Accordingly, the mRNA level of p21 (a p53-responsive gene) was elevated in a VIM(SA/SA)-specific manner. Disappearance of tetraploidy coincided with an increase in aneuploidy. Thereafter, senescence-related markers were significantly elevated in VIM(SA/SA) mice. Because our tetraploidy-prone mouse model also exhibited subcutaneous fat loss at the age of 14 months, another premature aging phenotype, our data suggest that following cytokinetic failure, a subset of tetraploid cells enters a new cell cycle and develops into aneuploid cells in vivo, which promote premature aging.

  7. Aging accentuates and bone marrow transplantation ameliorates metabolic defects in Fabry disease mice

    PubMed Central

    Ohshima, Toshio; Schiffmann, Raphael; Murray, Gary J.; Kopp, Jeffrey; Quirk, Jane M.; Stahl, Stefanie; Chan, Chi-Chao; Zerfas, Patricia; Tao-Cheng, Jung-Hwa; Ward, J. M.; Brady, Roscoe O.; Kulkarni, Ashok B.

    1999-01-01

    Fabry disease is an X-linked metabolic disorder caused by a deficiency of α-galactosidase A (α-Gal A). The enzyme defect leads to the systemic accumulation of glycosphingolipids with α-galactosyl moieties consisting predominantly of globotriaosylceramide (Gb3). In patients with this disorder, glycolipid deposition in endothelial cells leads to renal failure and cardiac and cerebrovascular disease. Recently, we generated α-Gal A gene knockout mouse lines and described the phenotype of 10-week-old mice. In the present study, we characterize the progression of the disease with aging and explore the effects of bone marrow transplantation (BMT) on the phenotype. Histopathological analysis of α-Gal A −/0 mice revealed subclinical lesions in the Kupffer cells in the liver and macrophages in the skin with no gross lesions in the endothelial cells. Gb3 accumulation and pathological lesions in the affected organs increased with age. Treatment with BMT from the wild-type mice resulted in the clearance of accumulated Gb3 in the liver, spleen, and heart with concomitant elevation of α-Gal A activity. These findings suggest that BMT may have a potential role in the management of patients with Fabry disease. PMID:10339603

  8. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age.

    PubMed

    Hwee, Darren T; Baehr, Leslie M; Philp, Andrew; Baar, Keith; Bodine, Sue C

    2014-02-01

    Age-related loss of muscle mass occurs to varying degrees in all individuals and has a detrimental effect on morbidity and mortality. Muscle RING Finger 1 (MuRF1), a muscle-specific E3 ubiquitin ligase, is believed to mediate muscle atrophy through the ubiquitin proteasome system (UPS). Deletion of MuRF1 (KO) in mice attenuates the loss of muscle mass following denervation, disuse, and glucocorticoid treatment; however, its role in age-related muscle loss is unknown. In this study, skeletal muscle from male wild-type (WT) and MuRF1 KO mice was studied up to the age of 24 months. Muscle mass and fiber cross-sectional area decreased significantly with age in WT, but not in KO mice. In aged WT muscle, significant decreases in proteasome activities, especially 20S and 26S β5 (20-40% decrease), were measured and were associated with significant increases in the maladaptive endoplasmic reticulum (ER) stress marker, CHOP. Conversely, in aged MuRF1 KO mice, 20S or 26S β5 proteasome activity was maintained or decreased to a lesser extent than in WT mice, and no increase in CHOP expression was measured. Examination of the growth response of older (18 months) mice to functional overload revealed that old WT mice had significantly less growth relative to young mice (1.37- vs. 1.83-fold), whereas old MuRF1 KO mice had a normal growth response (1.74- vs. 1.90-fold). These data collectively suggest that with age, MuRF1 plays an important role in the control of skeletal muscle mass and growth capacity through the regulation of cellular stress.

  9. Aging does not affect spermatogenic recovery after experimentally induced injury in mice.

    PubMed

    Ehmcke, Jens; Joshi, Bhavika; Hergenrother, Scott D; Schlatt, Stefan

    2007-01-01

    Testes in aging mammals undergo a variety of age-related changes, such as reduction of size, lower sperm output, an increase in abnormal forms of sperm, and endocrine malfunctions. It has been suggested that the spermatogenic defects are due to loss and dysfunction of spermatogonial stem cells as well as deterioration of the tubule microenvironment. In the present study, we explore the depletion and recovery of spermatogenesis in young (3 month) and old (12 month) mice exposed to cooling, X-irradiation (5 Gy) or cytotoxic treatment using Busulfan (40 mg/kg). We aim to determine a potential age-related change of vulnerability to gonadotoxic treatments by describing the intensity of spermatogenic depletion and the degree of spermatogenic recolonization with qualitative and quantitative parameters on organ weights and histological parameters at two time points (2 weeks, depletion; 6 weeks, recovery). Our data reveal specific acute effects of cooling on multinucleation of germ cells but no other severe injury. Irradiation and Busulfan-treatment exerted the expected depletional wave of germ cells leading to severe testicular injury and spermatogenic failure. The recovery of spermatogenesis occurred in both treatment groups and both age groups to a similar extent. We therefore noted no prominent age-related differences in spermatogenic depletion and recovery in any treatment group. We conclude that in both age groups, the remaining spermatogonial stem cells are capable to induce spermatogenic recovery and the aging tubule microenvironment at 1 year has not become more vulnerable to irradiation, Busulfan-treatment or testicular cooling.

  10. Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging.

    PubMed

    Brink, Thore C; Demetrius, Lloyd; Lehrach, Hans; Adjaye, James

    2009-10-01

    Individual differences in the rate of aging are determined by the efficiency with which an organism transforms resources into metabolic energy thus maintaining the homeostatic condition of its cells and tissues. This observation has been integrated with analytical studies of the metabolic process to derive the following principle: The metabolic stability of regulatory networks, that is the ability of cells to maintain stable concentrations of reactive oxygen species (ROS) and other critical metabolites is the prime determinant of life span. The metabolic stability of a regulatory network is determined by the diversity of the metabolic pathways or the degree of connectivity of genes in the network. These properties can be empirically evaluated in terms of transcriptional changes in gene expression. We use microarrays to investigate the age-dependence of transcriptional changes of genes in the insulin signaling, oxidative phosphorylation and glutathione metabolism pathways in mice. Our studies delineate age and tissue specific patterns of transcriptional changes which are consistent with the metabolic stability-longevity principle. This study, in addition, rejects the free radical hypothesis which postulates that the production rate of ROS, and not its stability, determines life span.

  11. Sex and age mortality responses in zinc acetate-treated mice

    SciTech Connect

    Hogan, G.R.; Cole, B.S.; Lovelace, J.M.

    1987-07-01

    In regard to trace metal treatment or exposure, a number of variables are known to affect the expression of toxicity concerning its time course and degree. For example, known variables are route of administration, anionic component of the test substance, and sex and age of the recipient animal. Concerning the latter, little, if any, data have been reported dealing with sex- and age-related responses to excess zinc in mammalian systems. The primary purpose of the short communication presented here focuses on the determination of median lethal dose in sexually immature, i.e., juvenile, and adult female and male mice following a single zinc acetate insult. In addition, variation of lethality responses was examined with the age and sex groups to a divided treatment of a lethal dosage of zinc acetate, the injections of which were separated by various intervals.

  12. Proteome wide reduction in AGE modification in streptozotocin induced diabetic mice by hydralazine mediated transglycation

    PubMed Central

    Kesavan, Suresh K.; Bhat, Shweta; Golegaonkar, Sandeep B.; Jagadeeshaprasad, Mashanipalya G.; Deshmukh, Arati B.; Patil, Harshal S.; Bhosale, Santosh D.; Shaikh, Mahemud L.; Thulasiram, Hirekodathakallu V.; Boppana, Ramanamurthy; Kulkarni, Mahesh J.

    2013-01-01

    The non-enzymatic reaction between glucose and protein can be chemically reversed by transglycation. Here we report the transglycation activity of hydralazine using a newly developed MALDI-TOF-MS based assay. Hydralazine mediated transglycation of HbA1c, plasma proteins and kidney proteins was demonstrated in streptozotocin (STZ) induced diabetic mice, as evidenced by decrease in protein glycation, as well as presence of hydralazine-glucose conjugate in urine of diabetic mice treated with hydralazine. Hydralazine down regulated the expression of Receptor for Advanced Glycation End products (RAGE), NADPH oxidase (NOX), and super oxide dismutase (SOD). These findings will provide a new dimension for developing intervention strategies for the treatment of glycation associated diseases such as diabetes complications, atherosclerosis, and aging. PMID:24126953

  13. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans.

    PubMed

    Donato, Anthony J; Magerko, Katherine A; Lawson, Brooke R; Durrant, Jessica R; Lesniewski, Lisa A; Seals, Douglas R

    2011-09-15

    We tested the hypothesis that reductions in the cellular deacetylase, sirtuin-1 (SIRT-1), contribute to vascular endothelial dysfunction with ageing via modulation of endothelial nitric oxide synthase (eNOS) acetylation/activation-associated nitric oxide (NO) production. In older (30 months, n = 14) vs. young (5-7 months, n = 16) B6D2F1 mice, aortic protein expression of SIRT-1 and eNOS phosphorylated at serine 1177 were lower (both P < 0.05), and acetylated eNOS was 6-fold higher (P < 0.05), whereas total eNOS did not differ (P = 0.65). Acetylcholine (ACh)-induced peak endothelium-dependent dilatation (EDD) was lower in isolated femoral arteries with ageing (P < 0.001). Incubation with sirtinol, a SIRT-1 inhibitor, reduced EDD in both young and older mice, abolishing age-related differences, whereas co-administration with l-NAME, an eNOS inhibitor, further reduced EDD similarly in both groups. Endothelium-independent dilatation to sodium nitroprusside (EID), was not altered by age or sirtinol treatment. In older (64 ± 1 years, n = 22) vs. young (25 ± 1 years, n = 16) healthy humans, ACh-induced forearm EDD was impaired (P = 0.01) and SIRT-1 protein expression was 37% lower in endothelial cells obtained from the brachial artery (P < 0.05), whereas EID did not differ. In the overall group, EDD was positively related to endothelial cell SIRT-1 protein expression (r = 0.44, P < 0.01). Reductions in SIRT-1 may play an important role in vascular endothelial dysfunction with ageing. SIRT-1 may be a key therapeutic target to treat arterial ageing.

  14. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans

    PubMed Central

    Donato, Anthony J; Magerko, Katherine A; Lawson, Brooke R; Durrant, Jessica R; Lesniewski, Lisa A; Seals, Douglas R

    2011-01-01

    Abstract We tested the hypothesis that reductions in the cellular deacetylase, sirtuin-1 (SIRT-1), contribute to vascular endothelial dysfunction with ageing via modulation of endothelial nitric oxide synthase (eNOS) acetylation/activation-associated nitric oxide (NO) production. In older (30 months, n = 14) vs. young (5–7 months, n = 16) B6D2F1 mice, aortic protein expression of SIRT-1 and eNOS phosphorylated at serine 1177 were lower (both P < 0.05), and acetylated eNOS was 6-fold higher (P < 0.05), whereas total eNOS did not differ (P = 0.65). Acetylcholine (ACh)-induced peak endothelium-dependent dilatation (EDD) was lower in isolated femoral arteries with ageing (P < 0.001). Incubation with sirtinol, a SIRT-1 inhibitor, reduced EDD in both young and older mice, abolishing age-related differences, whereas co-administration with l-NAME, an eNOS inhibitor, further reduced EDD similarly in both groups. Endothelium-independent dilatation to sodium nitroprusside (EID), was not altered by age or sirtinol treatment. In older (64 ± 1 years, n = 22) vs. young (25 ± 1 years, n = 16) healthy humans, ACh-induced forearm EDD was impaired (P = 0.01) and SIRT-1 protein expression was 37% lower in endothelial cells obtained from the brachial artery (P < 0.05), whereas EID did not differ. In the overall group, EDD was positively related to endothelial cell SIRT-1 protein expression (r = 0.44, P < 0.01). Reductions in SIRT-1 may play an important role in vascular endothelial dysfunction with ageing. SIRT-1 may be a key therapeutic target to treat arterial ageing. PMID:21746786

  15. A human apolipoprotein E mimetic peptide reduces atherosclerosis in aged apolipoprotein E null mice

    PubMed Central

    Xu, Yanyong; Liu, Hongmei; Liu, Mengting; Li, Feifei; Liu, Liangchen; Du, Fen; Fan, Daping; Yu, Hong

    2016-01-01

    Apolipoprotein E (apoE) is well known as an antiatherogenic protein via regulating lipid metabolism and inflammation. We previously reported that a human apoE mimetic peptide, EpK, reduced atherosclerosis in apoE null (apoE-/-) mice through reducing inflammation without affecting plasma lipid levels. Here, we construct another human apoE mimetic peptide, named hEp, and investigate whether expression of hEp can reduce atherosclerotic lesion development in aged female apoE-/- mice with pre-existing lesions. We found that chemically synthesized hEp significantly decreased cholesterol accumulation induced by oxidized low density lipoprotein and the expression of inflammatory cytokines TNFα and IL-6 induced by lipopolysaccharide in macrophages. In an in vivo study, Lv-hEp-GFP lentiviruses were intravenously injected into 9 month-old apoE-/- mice. Mice were then fed a chow diet for 18 weeks. Results showed that in comparison to the Lv-GFP lentivirus injection (Lv-GFP) group, Lv-hEp-GFP lentivirus injection achieved hepatic hEp expression and secretion in apoE-/- mice. It was observed that hEp expression significantly reduced plasma VLDL and LDL cholesterol levels and decreased aortic atherosclerotic lesions. This was accompanied by an increase of LDL receptor expression and a reduction of TNFα and IL-6 mRNA levels in the liver. Moreover, expression of hEp increased plasma paraoxonase-1 activity and decreased plasma myeloperoxidase activity and serum amyloid A levels. Our study provides evidence that hEp may be developed as a promising therapeutic apoE mimetic peptide for atherosclerosis-related cardiovascular diseases through its induction of plasma VLDL/LDL cholesterol clearance as well as its anti-oxidative and anti-inflammatory activities. PMID:27648138

  16. Effect of Erabu sea snake (Laticauda semifasciata) lipids on the swimming endurance of aged mice.

    PubMed

    Zhang, Guihua; Shirai, Nobuya; Higuchi, Tomoyuki; Suzuki, Hiramitsu; Shimizu, Eiji

    2007-12-01

    The effect of Erabu sea snake (Laticauda semifasciata) lipids on the swimming endurance was investigated in aged mice. Fifty three-week-old male Crlj:CD-1 (ICR) mice were fed one of three experimental diets containing either 6% lard, 6% fish oil, or 6% sea snake lipids for 16 wk. The swimming exercise was carried out in an acrylic plastic tank filled with 25 cm of water maintained at 23(o)C. Swimming times to exhaustion were measured with a load of 2% of their body weights attached to the tails of the mice. The swimming times to exhaustion of the group that were fed the sea snake lipid diet tended to be longer than those of the lard diet group, and were significantly improved compared with the fish oil diet group (p<0.05). The plasma and muscle lactate levels were significantly lower in the sea snake lipid diet group than in the lard and fish oil diet groups (p<0.05). The liver glycogen and plasma glucose levels of the sea snake lipid diet group did not differ markedly from those of the lard diet group (p>0.05), and were significantly higher than those of the fish oil diet group (p<0.05). These results suggest that an intake of sea snake lipids but not the fish oil, which is also rich in n-3 polyunsaturated fatty acids (n-3 PUFAs), is useful for improving the swimming endurance of aged mice by attenuating lactate production and/or enhancing lactate clearance during swimming exercise, and the n-3 PUFAs contained in the sea snake lipids did little or nothing for this improved endurance.

  17. Gender differences between hypocretin/orexin knockout and wild type mice: age, body weight, body composition, metabolic markers, leptin and insulin resistance.

    PubMed

    Ramanathan, Lalini; Siegel, Jerome M

    2014-12-01

    Female hypocretin knockout (Hcrt KO) mice have increased body weight despite decreased food intake compared to wild type (WT) mice. In order to understand the nature of the increased body weight, we carried out a detailed study of Hcrt KO and WT, male, and female mice. Female KO mice showed consistently higher body weight than WT mice, from 4 to 20 months (20-60%). Fat, muscle, and free fluid levels were all significantly higher in adult (7-9 months) as well as old (18-20 months) female KO mice compared to age-matched WT mice. Old male KO mice showed significantly higher fat content (150%) compared to age-matched WT mice, but no significant change in body weight. Respiratory quotient (-19%) and metabolic rates (-14%) were significantly lower in KO mice compared to WT mice, regardless of gender or age. Female KO mice had significantly higher serum leptin levels (191%) than WT mice at 18-20 months, but no difference between male mice were observed. Conversely, insulin resistance was significantly higher in both male (73%) and female (93%) KO mice compared to age- and sex-matched WT mice. We conclude that absence of the Hcrt peptide has gender-specific effects. In contrast, Hcrt-ataxin mice and human narcoleptics, with loss of the whole Hcrt cell, show weight gain in both sexes.

  18. Aging reduces the high-frequency and short-term adaptation of the vestibulo-ocular reflex in mice.

    PubMed

    Khan, Serajul I; Hübner, Patrick P; Brichta, Alan M; Smith, Doug W; Migliaccio, Americo A

    2017-03-01

    Prevailing evidence indicates a relatively late life decline in human vestibulo-ocular reflex (VOR) function. Although mice are commonly used in mechanistic studies of vestibular function, it remains unclear whether aging produces a corresponding decline in VOR function in mice. We sought to determine how the baseline VOR and its short-term adaptation were affected by aging. We tested 8 young (3-month old) and 8 aged (30-month old-equivalent to a ∼80-year old human) C57BL/6 mice. We measured their VOR response to whole-body static tilts and during 0.1-10 Hz whole-body sinusoidal and transient rotations before and after VOR adaptation training. Our data revealed minimal differences in static counter-tilt response between young and aged mice, but a significant deficit in baseline VOR gain in aged mice during transient rotations. Moreover, aged mice had a significant decrease in short-term VOR adaptation, particularly for training that sought to decrease the VOR response.

  19. Phenotype screening for genetically deermined age-onset disorders and increased longevity in ENU-mutagenized mice

    SciTech Connect

    Johnson, Dabney K; Rinchik, Eugene M; Moustaid-Moussa, Naima; Miller, Darla R; Williams, Robert; Michaud III, Edward J; Jablonski, Monica M.; Elberger, Andrea; Hamre, Kristin M.; Smeyne, Richard; Chesler, Elissa J; Goldowitz, Daniel

    2005-01-01

    With the goal of discovering genes that contribute to late-onset neurological and ocular disorders and also genes that extend the healthy life span in mammals, we are phenotyping mice carrying new mutations induced by the chemical N-ethyl-N-nitrosourea (ENU). The phenotyping plan includes basic behavioral, neurohistological, and vision testing in sibling cohorts of mice aged to 18 months, and then evaluation for markers of growth trajectory and stress response in these same cohorts aged up to 28 months. Statistical outliers are identified by comparison to test results of similar aged cohorts, and potential mutants are recovered for re-aging to confirm heritability of the phenotype.

  20. Dietary Fat and Aging Modulate Apoptotic Signaling in Liver of Calorie-Restricted Mice

    PubMed Central

    López-Domínguez, José Alberto; Khraiwesh, Husam; González-Reyes, José Antonio; López-Lluch, Guillermo; Navas, Plácido; Ramsey, Jon Jay; de Cabo, Rafael; Burón, María Isabel

    2015-01-01

    Imbalance between proliferation and cell death accounts for several age-linked diseases. Aging, calorie restriction (CR), and fat source are all factors that may influence apoptotic signaling in liver, an organ that plays a central metabolic role in the organism. Here, we have studied the combined effect of these factors on a number of apoptosis regulators and effectors. For this purpose, animals were fed diets containing different fat sources (lard, soybean oil, or fish oil) under CR for 6 or 18 months. An age-linked increase in the mitochondrial apoptotic pathway was detected with CR, including a decrease in Bcl-2/Bax ratio, an enhanced release of cytochrome c to the cytosol and higher caspase-9 activity. However, these changes were not fully transmitted to the effectors apoptosis-inducing factor and caspase-3. CR (which abated aging-related inflammatory responses) and dietary fat altered the activities of caspases-8, -9, and -3. Apoptotic index (DNA fragmentation) and mean nuclear area were increased in aged animals with the exception of calorie-restricted mice fed a lard-based fat source. These results suggest possible protective changes in hepatic homeostasis with aging in the calorie-restricted lard group. PMID:24691092

  1. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    PubMed

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment.

  2. Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice

    PubMed Central

    Kim, Ok-Hee; Kim, Hyojung; Kang, Jinku; Yang, Dongki; Kang, Yu-Hoi; Lee, Dae Ho; Cheon, Gi Jeong; Park, Sang Chul; Oh, Byung-Chul

    2017-01-01

    Accumulation of tissue macrophages is a significant characteristic of disease-associated chronic inflammation, and facilitates the progression of disease pathology. However, the functional roles of these bone marrow-derived macrophages (BMDMs) in aging are unclear. Here, we identified age-dependent macrophage accumulation in the bone marrow, showing that aging significantly increases the number of M1 macrophages and impairs polarization of BMDMs. We found that age-related dysregulation of BMDMs is associated with abnormal overexpression of the anti-inflammatory interleukin-10. BMDM dysregulation in aging impairs the expression levels of pro-inflammatory cytokines and genes involved in B-cell maturation and activation. Phagocytosis of apoptotic Jurkat cells by BMDMs was reduced because of low expression of phagocytic receptor CD14, indicating that increased apoptotic cells may result from defective phagocytosis of apoptotic cells in the BM of aged mice. Therefore, CD14 may represent a promising target for preventing BMDM dysregulation, and macrophage accumulation may provide diagnostic and therapeutic clues. PMID:27866511

  3. Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice.

    PubMed

    Takeshita, Hikari; Yamamoto, Koichi; Nozato, Satoko; Inagaki, Tadakatsu; Tsuchimochi, Hirotsugu; Shirai, Mikiyasu; Yamamoto, Ryohei; Imaizumi, Yuki; Hongyo, Kazuhiro; Yokoyama, Serina; Takeda, Masao; Oguro, Ryosuke; Takami, Yoichi; Itoh, Norihisa; Takeya, Yasushi; Sugimoto, Ken; Fukada, So-Ichiro; Rakugi, Hiromi

    2017-02-08

    The conventional forelimb grip strength test is a widely used method to assess skeletal muscle function in rodents; in this study, we modified this method to improve its variability and consistency. The modified test had lower variability among trials and days than the conventional test in young C57BL6 mice, especially by improving the variabilities in male. The modified test was more sensitive than the conventional test to detect a difference in motor function between female and male mice, or between young and old male mice. When the modified test was performed on male mice during the aging process, reduction of grip strength manifested between 18 and 24 months of age at the group level and at the individual level. The modified test was similar to the conventional test in detecting skeletal muscle dysfunction in young male dystrophic mice. Thus, the modified forelimb grip strength test, with its improved validity and reliability may be an ideal substitute for the conventional method.

  4. Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice

    PubMed Central

    Gioscia-Ryan, Rachel A.; Battson, Micah L.; Cuevas, Lauren M.; Zigler, Melanie C.; Sindler, Amy L.; Seals, Douglas R.

    2016-01-01

    Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12;−32.5±-10.5%) versus young (~7 mo., YC n=11;−5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running;−0.8±-2.1% and −8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise. PMID:27875805

  5. Palladium and Platinum Nanoparticles Attenuate Aging-Like Skin Atrophy via Antioxidant Activity in Mice

    PubMed Central

    Shibuya, Shuichi; Ozawa, Yusuke; Watanabe, Kenji; Izuo, Naotaka; Toda, Toshihiko; Yokote, Koutaro; Shimizu, Takahiko

    2014-01-01

    Cu-Zn superoxide dismutase (Sod1) loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd) and platinum (Pt) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In the present study, we investigated the protective effects of PAPLAL against aging-related skin pathologies in mice. Transdermal PAPLAL treatment reversed skin thinning associated with increased lipid peroxidation in Sod1−/− mice. Furthermore, PAPLAL normalized the gene expression levels of Col1a1, Mmp2, Has2, Tnf-α, Il-6, and p53 in the skin of the Sod1−/− mice. Pt nanoparticles exhibited marked SOD and catalase activity, while Pd nanoparticles only displayed weak SOD and catalase activity in vitro. Although the SOD and catalase activity of the Pt nanoparticles significantly declined after they had been oxidized in air, a mixture of Pd and Pt nanoparticles continued to exhibit SOD and catalase activity after oxidation. Importantly, a mixture of Pd and Pt nanoparticles with a molar ratio of 3 or 4 to 1 continued to exhibit SOD and catalase activity after oxidation, indicating that Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles. These findings indicate that PAPLAL stably suppresses intrinsic superoxide generation both in vivo and in vitro via SOD and catalase activity. PAPLAL is a potentially powerful tool for the treatment of aging-related skin diseases caused by oxidative damage. PMID:25333617

  6. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice.

    PubMed

    Shibuya, Shuichi; Ozawa, Yusuke; Watanabe, Kenji; Izuo, Naotaka; Toda, Toshihiko; Yokote, Koutaro; Shimizu, Takahiko

    2014-01-01

    Cu-Zn superoxide dismutase (Sod1) loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd) and platinum (Pt) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In the present study, we investigated the protective effects of PAPLAL against aging-related skin pathologies in mice. Transdermal PAPLAL treatment reversed skin thinning associated with increased lipid peroxidation in Sod1-/- mice. Furthermore, PAPLAL normalized the gene expression levels of Col1a1, Mmp2, Has2, Tnf-α, Il-6, and p53 in the skin of the Sod1-/- mice. Pt nanoparticles exhibited marked SOD and catalase activity, while Pd nanoparticles only displayed weak SOD and catalase activity in vitro. Although the SOD and catalase activity of the Pt nanoparticles significantly declined after they had been oxidized in air, a mixture of Pd and Pt nanoparticles continued to exhibit SOD and catalase activity after oxidation. Importantly, a mixture of Pd and Pt nanoparticles with a molar ratio of 3 or 4 to 1 continued to exhibit SOD and catalase activity after oxidation, indicating that Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles. These findings indicate that PAPLAL stably suppresses intrinsic superoxide generation both in vivo and in vitro via SOD and catalase activity. PAPLAL is a potentially powerful tool for the treatment of aging-related skin diseases caused by oxidative damage.

  7. Longevity and age-related pathology of mice deficient in pregnancy-associated plasma protein-A.

    PubMed

    Conover, Cheryl A; Bale, Laurie K; Mader, Jessica R; Mason, Megan A; Keenan, Kevin P; Marler, Ronald J

    2010-06-01

    The pregnancy-associated plasma protein-A knockout (PAPP-A KO) mouse is a model of reduced local insulin-like growth factor (IGF)-I activity with normal circulating IGF-I levels. In this study, PAPP-A KO mice had significantly increased mean (27%), median (27%), and maximum (35%) life span compared with wild-type (WT) littermates. End-of-life pathology indicated that the incidence of neoplastic disease was not significantly different in the two groups of mice; however, it occurred in older aged PAPP-A KO compared with WT mice. Furthermore, PAPP-A KO mice were less likely to show degenerative changes of age. Scheduled pathologies at 78, 104, and 130 weeks of age indicated that WT mice, in general, had more degenerative changes and tumors earlier than PAPP-A KO mice. This was particularly true for abnormalities in heart, testes, brain, kidney, spleen, and thymus. In summary, the major contributors to the extended life span of PAPP-A KO mice are delayed occurrence of fatal neoplasias and decreased incidence of age-related degenerative changes.

  8. Tyrosine hydroxylase haploinsufficiency prevents age-associated arterial pressure elevation and increases half-life in mice.

    PubMed

    Gamella-Pozuelo, Luis; Grande, María T; Clemente-Lorenzo, Milagros; Murillo-Gómez, Cayetana; De Pablo, Flora; López-Novoa, José M; Hernández-Sánchez, Catalina

    2017-01-01

    Catecholamines are essential for the maintenance of physiological homeostasis under basal and stress conditions. We aim to determine the impact of deletion of a single allele of the tyrosine hydroxylase (Th) gene might have on aging arterial pressure and life-span. We found that Th haploinsufficiency prevents age-associated increase of arterial pressure (AP) in mature adult mice, and it results in the extension of the half-life of Th-heterozygous (TH-HET) mice respect to their wild-type (WT) littermates. Heart performance was similar in both genotypes. To further investigate the lack of increase in AP with age in TH-HET mice, we measured the AP response to intra-peritoneal administration of substances involved in AP regulation. The response to acetylcholine and the basal sympathetic tone were similar in both genotypes, while norepinephrine had a greater pressor effect in TH-HET mice, which correlated with altered adrenoreceptor expression in blood vessels and the heart. Furthermore, sympatho-adrenomedular response to stress was attenuated in TH-HET mice. Plasma catecholamine levels and urine glucose increased markedly in WT but not in TH-HET mice after stress. Our results showed that TH-HET mice are resistant to age-associated hypertension, present a reduction in the sympathetic response to stress and display an extended half-life.

  9. Of flies, mice, and men: evolutionarily conserved tissue damage responses and aging.

    PubMed

    Neves, Joana; Demaria, Marco; Campisi, Judith; Jasper, Heinrich

    2015-01-12

    Studies in flies, mice, and human models have provided a conceptual framework for how paracrine interactions between damaged cells and the surrounding tissue control tissue repair. These studies have amassed evidence for an evolutionarily conserved secretory program that regulates tissue homeostasis. This program coordinates cell survival and proliferation during tissue regeneration and repair in young animals. By virtue of chronic engagement, however, it also contributes to the age-related decline of tissue homeostasis leading to degeneration, metabolic dysfunction, and cancer. Here, we review recent studies that shed light on the nature and regulation of this evolutionarily conserved secretory program.

  10. EPHA2 is associated with age-related cortical cataract in mice and humans.

    PubMed

    Jun, Gyungah; Guo, Hong; Klein, Barbara E K; Klein, Ronald; Wang, Jie Jin; Mitchell, Paul; Miao, Hui; Lee, Kristine E; Joshi, Tripti; Buck, Matthias; Chugha, Preeti; Bardenstein, David; Klein, Alison P; Bailey-Wilson, Joan E; Gong, Xiaohua; Spector, Tim D; Andrew, Toby; Hammond, Christopher J; Elston, Robert C; Iyengar, Sudha K; Wang, Bingcheng

    2009-07-01

    Age-related cataract is a major cause of blindness worldwide, and cortical cataract is the second most prevalent type of age-related cataract. Although a significant fraction of age-related cataract is heritable, the genetic basis remains to be elucidated. We report that homozygous deletion of Epha2 in two independent strains of mice developed progressive cortical cataract. Retroillumination revealed development of cortical vacuoles at one month of age; visible cataract appeared around three months, which progressed to mature cataract by six months. EPHA2 protein expression in the lens is spatially and temporally regulated. It is low in anterior epithelial cells, upregulated as the cells enter differentiation at the equator, strongly expressed in the cortical fiber cells, but absent in the nuclei. Deletion of Epha2 caused a significant increase in the expression of HSP25 (murine homologue of human HSP27) before the onset of cataract. The overexpressed HSP25 was in an underphosphorylated form, indicating excessive cellular stress and protein misfolding. The orthologous human EPHA2 gene on chromosome 1p36 was tested in three independent worldwide Caucasian populations for allelic association with cortical cataract. Common variants in EPHA2 were found that showed significant association with cortical cataract, and rs6678616 was the most significant in meta-analyses. In addition, we sequenced exons of EPHA2 in linked families and identified a new missense mutation, Arg721Gln, in the protein kinase domain that significantly alters EPHA2 functions in cellular and biochemical assays. Thus, converging evidence from humans and mice suggests that EPHA2 is important in maintaining lens clarity with age.

  11. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice

    PubMed Central

    van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-01-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  12. Loss of HtrA2/Omi activity in non-neuronal tissues of adult mice causes premature aging.

    PubMed

    Kang, S; Louboutin, J-P; Datta, P; Landel, C P; Martinez, D; Zervos, A S; Strayer, D S; Fernandes-Alnemri, T; Alnemri, E S

    2013-02-01

    mnd2 mice die prematurely as a result of neurodegeneration 30-40 days after birth due to loss of the enzymatic activity of the mitochondrial quality control protease HtrA2/Omi. Here, we show that transgenic expression of human HtrA2/Omi in the central nervous system of mnd2 mice rescues them from neurodegeneration and prevents their premature death. Interestingly, adult transgenic mnd2 mice develop accelerated aging phenotypes, such as premature weight loss, hair loss, reduced fertility, curvature of the spine, heart enlargement, increased autophagy, and death by 12-17 months of age. These mice also have elevated levels of clonally expanded mitochondrial DNA (mtDNA) deletions in their tissues. Our results provide direct genetic evidence linking mitochondrial protein quality control to mtDNA deletions and aging in mammals.

  13. Age dependence of glucose tolerance in adult KK-Ay mice, a model of non-insulin dependent diabetes mellitus.

    PubMed

    Chakraborty, Goutam; Thumpayil, Sherin; Lafontant, David-Erick; Woubneh, Wolde; Toney, Jeffrey H

    2009-11-01

    Yellow KK mice carrying the 'yellow obese' gene Ay are a well established polygenic model for human non-insulin dependent diabetes mellitus. These animals develop marked adiposity and decreased glucose tolerance relative to their control littermates, KK mice. The authors monitored glucose tolerance in KK-Ay mice over time and observed a significant (Page-dependent improvement (13.3% by 175 d of age and 36.4% by 212 d of age, relative to 85 d of age). During the same time period, body weight and food and water consumption were relatively constant. The authors also measured plasma levels of endocrine hormones that are important in diabetes. Levels of insulin were approximately 8 times higher and levels of amylin 3 times higher in 220-d-old KK-Ay mice than in 180-d-old mice, whereas levels of glucagon-like peptide 1, glucagon and leptin remained relatively constant. These findings suggest that KK-Ay mice undergo an age-dependent improvement of glucose tolerance when maintained on a normal diet for 25 weeks or longer, due in part to increases in plasma levels of insulin and amylin.

  14. Spontaneous failure of the estrous cycle induces anxiogenic-related behaviors in middle-aged female mice.

    PubMed

    Guimarães, Rebecca A M; Asth, Laila; Engelberth, Rovena C; Cavalcante, Jeferson de Souza; Soares-Rachetti, Vanessa de Paula; Gavioli, Elaine C

    2015-08-01

    Clinical studies have shown that women during perimenopause and menopause have a higher incidence in the diagnoses of psychiatric problems compared with men. However, little literature information about the influence of spontaneous perimenopause on anxiety- and mood-related behaviors in mice is available. To this aim, we compared the behavioral responses of middle-aged and young adult female mice both in the diestrus phase in the elevated plus-maze, open field and forced swimming tests. In middle-aged mice, the duration of the estrous cycle was significantly prolonged compared to young adults, thus indicating that our middle-aged mice are in the perimenopausal period. In the elevated plus-maze test, middle-aged mice explored less the open arms when compared to young adults, suggesting an anxiogenic-like phenotype. No significant differences were observed in the estrogen plasma levels and emotional behavior in the forced swim and open field tests. In conclusion, the spontaneous failure of the estrous cycle increased anxiety in middle-aged females. These data suggest that the perimenopausal period has a significant influence on anxiety-related behaviors in female mice.

  15. mTORC1 promotes aging-related venous thrombosis in mice via elevation of platelet volume and activation

    PubMed Central

    Yang, Jun; Zhou, Xuan; Fan, Xiaorong; Xiao, Min; Yang, Dinghua; Liang, Bo; Dai, Meng; Shan, Lanlan; Lu, Jingbo; Lin, Zhiqi; Liu, Rong; Liu, Jun; Wang, Liping; Zhong, Mei; Jiang, Yu

    2016-01-01

    Aging is associated with an increased incidence of venous thromboembolism (VTE), resulting in significant morbidity and mortality in the elderly. Platelet hyperactivation is linked to aging-related VTE. However, the mechanisms through which aging enhances platelet activation and susceptibility to VTE are poorly understood. In this study, we demonstrated that mechanistic target of rapamycin complex 1 (mTORC1) signaling is essential for aging-related platelet hyperactivation and VTE. mTORC1 was hyperactivated in platelets and megakaryocytes (MKs) from aged mice, accompanied by elevated mean platelet volume (MPV) and platelet activation. Inhibition of mTORC1 with rapamycin led to a significant reduction in susceptibility to experimental deep vein thrombosis (DVT) in aged mice (P < .01). To ascertain the specific role of platelet mTORC1 activation in DVT, we generated mice with conditional ablation of the mTORC1-specific component gene Raptor in MKs and platelets (Raptor knockout). These mice developed markedly smaller and lighter thrombi, compared with wild-type littermates (P < .01) in experimental DVT. Mechanistically, increased reactive oxygen species (ROS) production with aging induced activation of mTORC1 in MKs and platelets, which, in turn, enhanced bone marrow MK size, MPV, and platelet activation to promote aging-related VTE. ROS scavenger administration induced a significant decrease (P < .05) in MK size, MPV, and platelet activation in aged mice. Our findings collectively demonstrate that mTORC1 contributes to enhanced venous thrombotic susceptibility in aged mice via elevation of platelet size and activation. PMID:27288518

  16. Age-Related Deterioration of Perineuronal Nets in the Primary Auditory Cortex of Mice

    PubMed Central

    Brewton, Dustin H.; Kokash, Jamiela; Jimenez, Oliva; Pena, Eloy R.; Razak, Khaleel A.

    2016-01-01

    Age-related changes in inhibitory neurotransmission in sensory cortex may underlie deficits in sensory function. Perineuronal nets (PNNs) are extracellular matrix components that ensheath some inhibitory neurons, particularly parvalbumin positive (PV+) interneurons. PNNs may protect PV+ cells from oxidative stress and help establish their rapid spiking properties. Although PNN expression has been well characterized during development, possible changes in aging sensory cortex have not been investigated. Here we tested the hypothesis that PNN+, PV+ and PV/PNN co-localized cell densities decline with age in the primary auditory cortex (A1). This hypothesis was tested using immunohistochemistry in two strains of mice (C57BL/6 and CBA/CaJ) with different susceptibility to age-related hearing loss and at three different age ranges (1–3, 6–8 and 14–24 months old). We report that PNN+ and PV/PNN co-localized cell densities decline significantly with age in A1 in both mouse strains. In the PNN+ cells that remain in the old group, the intensity of PNN staining is reduced in the C57 strain, but not the CBA strain. PV+ cell density also declines only in the C57, but not the CBA, mouse suggesting a potential exacerbation of age-effects by hearing loss in the PV/PNN system. Taken together, these data suggest that PNN deterioration may be a key component of altered inhibition in the aging sensory cortex, that may lead to altered synaptic function, susceptibility to oxidative stress and processing deficits. PMID:27877127

  17. Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice

    PubMed Central

    Song, Chao; Peng, Wei; Yin, Songna; Zhao, Jiamin; Fu, Beibei; Zhang, Jingcheng; Mao, Tingchao; Wu, Haibo; Zhang, Yong

    2016-01-01

    Increasing evidence shows that melatonin protected against age-related mitochondrial oxidative damage. However, the protective effects of melatonin against ovarian aging has not been explored. Young Kunming females (aged 2–3 months) were fed with melatonin added to drinking water for 6 or 12 months (mo). We found that long-term (12 mo) melatonin treatment significantly reduced ovarian aging, as indicated by substantial increases in litter size, pool of follicles, and telomere length as well as oocyte quantity and quality. Melatonin treatment suppressed ovarian mitochondrial oxidative damage by decreasing mitochondrial reactive oxygen species (mROS) generation, inhibiting apoptosis, repressing collapse of mitochondrial membrane potential and preserving respiratory chain complex activities. Female mice fed with melatonin had enhanced mitochondrial antioxidant activities, thus reducing the risk of mitochondrial oxidative damage cause by free radicals. Notably, melatonin treatment enhanced SIRT3 activity but not the protein expression level, and increased the binding affinity of FoxO3a to the promoters of both superoxide dismutase 2 (SOD2) and catalase (CAT). In conclusion, melatonin exerted protection against aging-induced fertility decline and maintenance of mitochondrial redox balance. PMID:27731402

  18. [The activity of gas metabolism, thermoregulation, and antioxidant enzymes in aging C57Bl/6 mice].

    PubMed

    Utko, N O; Pishel', I M; Bezrukov, V V; Muradian, Kh K

    2008-01-01

    The distribution type and correlative links between physiological and biochemical indices characterizing functional condition of the systems of gaseous exchange (V(O2) and V(CO2)), thermoregulation (body temperature and coefficient of thermoconductivity) and antioxidant defense have been studied in 62 young (3-5 mo.) and 58 old (23-26 mo.) male C57Bl/ 6 mice. The coefficients of variation differed significantly depending on the variable but not the age-group. Mean values of V(O2) and V(CO2), body temperature and thermoconductivity, but not activities of the antioxidant enzymes, declined in aging. Moreover, the activities of catalase, glutathione-peroxidase and glutathionereductase, i.e. enzymes involved in regulation of hydrogen peroxide level, increased in aging. The correlations between V(O2) and V(CO2), V(O2) and body temperature or V(O2) and the liver pH, as well as between the antioxidant enzyme activities exhibited little age-changes. However, three-dimensional non-linear models revealed significant age-changes in relations between the studied variables.

  19. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice.

    PubMed

    Leduc-Gaudet, Jean-Philippe; Picard, Martin; St-Jean Pelletier, Félix; Sgarioto, Nicolas; Auger, Marie-Joëlle; Vallée, Joanne; Robitaille, Richard; St-Pierre, David H; Gouspillou, Gilles

    2015-07-20

    Skeletal muscle aging is associated with a progressive decline in muscle mass and strength, a process termed sarcopenia. Evidence suggests that accumulation of mitochondrial dysfunction plays a causal role in sarcopenia, which could be triggered by impaired mitophagy. Mitochondrial function, mitophagy and mitochondrial morphology are interconnected aspects of mitochondrial biology, and may coordinately be altered with aging. However, mitochondrial morphology has remained challenging to characterize in muscle, and whether sarcopenia is associated with abnormal mitochondrial morphology remains unknown. Therefore, we assessed the morphology of SubSarcolemmal (SS) and InterMyoFibrillar (IMF) mitochondria in skeletal muscle of young (8-12wk-old) and old (88-96wk-old) mice using a quantitative 2-dimensional transmission electron microscopy approach. We show that sarcopenia is associated with larger and less circular SS mitochondria. Likewise, aged IMF mitochondria were longer and more branched, suggesting increased fusion and/or decreased fission. Accordingly, although no difference in the content of proteins regulating mitochondrial dynamics (Mfn1, Mfn2, Opa1 and Drp1) was observed, a mitochondrial fusion index (Mfn2-to-Drp1 ratio) was significantly increased in aged muscles. Our results reveal that sarcopenia is associated with complex changes in mitochondrial morphology that could interfere with mitochondrial function and mitophagy, and thus contribute to aging-related accumulation of mitochondrial dysfunction and sarcopenia.

  20. Genome Instability in Development and Aging: Insights from Nucleotide Excision Repair in Humans, Mice, and Worms.

    PubMed

    Edifizi, Diletta; Schumacher, Björn

    2015-08-13

    DNA damage causally contributes to aging and cancer. Congenital defects in nucleotide excision repair (NER) lead to distinct cancer-prone and premature aging syndromes. The genetics of NER mutations have provided important insights into the distinct consequences of genome instability. Recent work in mice and C. elegans has shed new light on the mechanisms through which developing and aging animals respond to persistent DNA damage. The various NER mouse mutants have served as important disease models for Xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD), while the traceable genetics of C. elegans have allowed the mechanistic delineation of the distinct outcomes of genome instability in metazoan development and aging. Intriguingly, highly conserved longevity assurance mechanisms respond to transcription-blocking DNA lesions in mammals as well as in worms and counteract the detrimental consequences of persistent DNA damage. The insulin-like growth factor signaling (IIS) effector transcription factor DAF-16 could indeed overcome DNA damage-driven developmental growth delay and functional deterioration even when DNA damage persists. Longevity assurance mechanisms might thus delay DNA damage-driven aging by raising the threshold when accumulating DNA damage becomes detrimental for physiological tissue functioning.

  1. Genome Instability in Development and Aging: Insights from Nucleotide Excision Repair in Humans, Mice, and Worms

    PubMed Central

    Edifizi, Diletta; Schumacher, Björn

    2015-01-01

    DNA damage causally contributes to aging and cancer. Congenital defects in nucleotide excision repair (NER) lead to distinct cancer-prone and premature aging syndromes. The genetics of NER mutations have provided important insights into the distinct consequences of genome instability. Recent work in mice and C. elegans has shed new light on the mechanisms through which developing and aging animals respond to persistent DNA damage. The various NER mouse mutants have served as important disease models for Xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD), while the traceable genetics of C. elegans have allowed the mechanistic delineation of the distinct outcomes of genome instability in metazoan development and aging. Intriguingly, highly conserved longevity assurance mechanisms respond to transcription-blocking DNA lesions in mammals as well as in worms and counteract the detrimental consequences of persistent DNA damage. The insulin-like growth factor signaling (IIS) effector transcription factor DAF-16 could indeed overcome DNA damage-driven developmental growth delay and functional deterioration even when DNA damage persists. Longevity assurance mechanisms might thus delay DNA damage-driven aging by raising the threshold when accumulating DNA damage becomes detrimental for physiological tissue functioning. PMID:26287260

  2. TRPV1 deletion exacerbates hyperthermic seizures in an age-dependent manner in mice.

    PubMed

    Barrett, Karlene T; Wilson, Richard J A; Scantlebury, Morris H

    2016-12-01

    Febrile seizures (FS) are the most common seizure disorder to affect children. Although there is mounting evidence to support that FS occur when children have fever-induced hyperventilation leading to respiratory alkalosis, the underlying mechanisms of hyperthermia-induced hyperventilation and links to FS remain poorly understood. As transient receptor potential vanilloid-1 (TRPV1) receptors are heat-sensitive, play an important role in adult thermoregulation and modulate respiratory chemoreceptors, we hypothesize that TRPV1 activation is important for hyperthermia-induced hyperventilation leading to respiratory alkalosis and decreased FS thresholds, and consequently, TRPV1 KO mice will be relatively protected from hyperthermic seizures. To test our hypothesis we subjected postnatal (P) day 8-20 TRPV1 KO and C57BL/6 control mice to heated dry air. Seizure threshold temperature, latency and the rate of rise of body temperature during hyperthermia were assessed. At ages where differences in seizure thresholds were identified, head-out plethysmography was used to assess breathing and the rate of expired CO2 in response to hyperthermia, to determine if the changes in seizure thresholds were related to respiratory alkalosis. Paradoxically, we observed a pro-convulsant effect of TRPV1 deletion (∼4min decrease in seizure latency), and increased ventilation in response to hyperthermia in TRPV1 KO compared to control mice at P20. This pro-convulsant effect of TRPV1 absence was not associated with an increased rate of expired CO2, however, these mice had a more rapid rise in body temperature following exposure to hyperthermia than controls, and the expected linear relationship between body weight and seizure latency was absent. Based on these findings, we conclude that deletion of the TRPV1 receptor prevents reduction in hyperthermic seizure susceptibility in older mouse pups, via a mechanism that is independent of hyperthermia-induced respiratory alkalosis, but possibly

  3. The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer's disease mice

    PubMed Central

    2013-01-01

    Introduction Despite years of research, there are no disease-modifying drugs for Alzheimer's disease (AD), a fatal, age-related neurodegenerative disorder. Screening for potential therapeutics in rodent models of AD has generally relied on testing compounds before pathology is present, thereby modeling disease prevention rather than disease modification. Furthermore, this approach to screening does not reflect the clinical presentation of AD patients which could explain the failure to translate compounds identified as beneficial in animal models to disease modifying compounds in clinical trials. Clearly a better approach to pre-clinical drug screening for AD is required. Methods To more accurately reflect the clinical setting, we used an alternative screening strategy involving the treatment of AD mice at a stage in the disease when pathology is already advanced. Aged (20-month-old) transgenic AD mice (APP/swePS1ΔE9) were fed an exceptionally potent, orally active, memory enhancing and neurotrophic molecule called J147. Cognitive behavioral assays, histology, ELISA and Western blotting were used to assay the effect of J147 on memory, amyloid metabolism and neuroprotective pathways. J147 was also investigated in a scopolamine-induced model of memory impairment in C57Bl/6J mice and compared to donepezil. Details on the pharmacology and safety of J147 are also included. Results Data presented here demonstrate that J147 has the ability to rescue cognitive deficits when administered at a late stage in the disease. The ability of J147 to improve memory in aged AD mice is correlated with its induction of the neurotrophic factors NGF (nerve growth factor) and BDNF (brain derived neurotrophic factor) as well as several BDNF-responsive proteins which are important for learning and memory. The comparison between J147 and donepezil in the scopolamine model showed that while both compounds were comparable at rescuing short term memory, J147 was superior at rescuing spatial

  4. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior.

    PubMed

    Townsend, Brigitte E; Chen, Yung-Ju; Jeffery, Elizabeth H; Johnson, Rodney W

    2014-11-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. Sulforaphane increases antioxidant enzymes including NAD(P)H quinone oxidoreductase and heme oxygenase I and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide (LPS)-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days before an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 hours after LPS, and mRNA was quantified in liver and brain at 24 hours. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin-1β (IL-1β) expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. In addition, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS.

  5. Evaluation of diagnostic methods for Myocoptes musculinus according to age and treatment status of mice (Mus musculus).

    PubMed

    Rice, Kelly A; Albacarys, Lauren K; Metcalf Pate, Kelly A; Perkins, Cheryl; Henderson, Kenneth S; Watson, Julie

    2013-11-01

    Detecting and controlling murine fur mites continues to be challenging. Here we compared the efficacy of fur-pluck, cage PCR, and fur PCR testing of mice naturally infested with Myocoptes musculinus and make recommendations regarding the application of these diagnostic strategies in aged or treated mice. We compared all 3 diagnostic methods in groups of infested and noninfested control mice over time. For fur plucks, we used a scoring system to quantitatively compare mite infestations across ages. Mice that were 4 wk old had higher egg and mite scores than did older mice, with average scores at 4 wk corresponding to 40 to 100 individual fur mites and eggs per sample. Furthermore, 15% and 20% of samples from infested mice at 24 and 28 wk of age, respectively, lacked all fur mites and eggs. Cage PCR results varied as mice grew older. Fur PCR testing was the most sensitive and specific assay in untreated infested mice, particularly when mite densities were low. In addition, we compared fur-pluck and fur PCR tests for evaluating the efficacy of selamectin treatment. Two treatments with selamectin eliminated Myocoptes fur-mite infestations. At 8 wk after treatment, all fur-pluck samples were negative, but one-third of treated infested cages remained positive by fur PCR assay; at 16 wk after treatment, all cages were negative by fur PCR assay. Because offspring of infested mice were invariably heavily infested, breeding of suspected infested mice with subsequent testing of offspring was the definitive testing strategy when fur-pluck and PCR results conflicted.

  6. Enhanced inflammation in aged mice following infection with Streptococcus pneumoniae is associated with decreased IL-10 and augmented chemokine production.

    PubMed

    Williams, Andrew E; José, Ricardo J; Brown, Jeremy S; Chambers, Rachel C

    2015-03-15

    Streptococcus pneumoniae is the most common cause of severe pneumonia in the elderly. However, the impact of aging on the innate inflammatory response to pneumococci is poorly defined. We compared the innate immune response in old vs. young adult mice following infection with S. pneumoniae. The accumulation of neutrophils recovered from bronchoalveolar lavage fluid and lung homogenates was increased in aged compared with young adult mice, although bacterial outgrowth was similar in both age groups, as were markers of microvascular leak. Aged mice had similar levels of IL-1β, TNF, IFN-γ, IL-17, and granulocyte colony-stimulating factor following S. pneumoniae infection, compared with young mice, but increased levels of the chemokines CXCL9, CXCL12, CCL3, CCL4, CCL5, CCL11, and CCL17. Moreover, levels of IL-10 were significantly lower in aged animals. Neutralization of IL-10 in infected young mice was associated with increased neutrophil recruitment but no decrease in bacterial outgrowth. Furthermore, IL-10 neutralization resulted in increased levels of CCL3, CCL5, and CXCL10. We conclude that aging is associated with enhanced inflammatory responses following S. pneumoniae infection as a result of a compromised immunomodulatory cytokine response.

  7. Minocycline improves postoperative cognitive impairment in aged mice by inhibiting astrocytic activation.

    PubMed

    Jin, Wen-Jie; Feng, Shan-Wu; Feng, Zhou; Lu, Shun-Mei; Qi, Tao; Qian, Yan-Ning

    2014-01-08

    Astrocytes are proving to be critical for the development of cognitive functions. In addition, astrocytic activation contributes to cognitive impairment induced by chronic cerebral hypoperfusion. Minocycline has been shown to exhibit long-term neuroprotective effects in vascular cognitive impairment rat models through the inhibition of astrogliosis, and has demonstrated potential for the prevention and treatment of postoperative cognitive decline in elderly patients. This study aimed to examine the effect of minocycline on hippocampal astrocytes and long-term postoperative cognitive dysfunction in aged mice. Mice were intraperitoneally injected with 45 mg/kg minocycline once a day for 30 days after 70% hepatectomy. Hippocampus-dependent spatial memory ability was evaluated using the Morris water maze test. The expression levels of hippocampal glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 were evaluated by western blotting, and the hippocampal mRNA relative expression levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 were tested using real-time PCR. The Morris water maze test showed that escape latency and swim distance were significantly prolonged by the surgery, but the extent of impairment was mitigated by minocycline treatment. Hippocampal GFAP levels and mRNA levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 showed corresponding changes that were consistent with the variations in spatial memory. Minocycline was able to alleviate hepatectomy-related long-term spatial memory impairment in aged mice, and was associated with reduced levels of hippocampal GFAP and proinflammatory cytokines resulting from astrocytic activation.

  8. Adult but Not Aged C57BL/6 Male Mice Are Capable of Using Geometry for Orientation

    ERIC Educational Resources Information Center

    Schachner, Melitta; Morellini, Fabio; Fellini, Laetitia

    2006-01-01

    Geometry, e.g., the shape of the environment, can be used by numerous animal species to orientate, but data concerning the mouse are lacking. We addressed the question of whether mice are capable of using geometry for navigating. To test whether aging could affect searching strategies, we compared adult (3- to 5-mo old) and aged (20- to 21-mo old)…

  9. Alpha- and gamma- tocopherol prevent age-related transcriptional alterations in the heart and brain of mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the global effects of vitamin E supplementation on aging, we used high density oligonucleotide arrays to measure transcriptional alterations in the heart and brain (neocortex) of 30-month-old B6C3F1 mice supplemented with alpha- and gamma-tocopherol since middle age (15 months). Gene ...

  10. Oxidative Stress Induced Age Dependent Meibomian Gland Dysfunction in Cu, Zn-Superoxide Dismutase-1 (Sod1) Knockout Mice

    PubMed Central

    Ibrahim, Osama M. A.; Dogru, Murat; Matsumoto, Yukihiro; Igarashi, Ayako; Kojima, Takashi; Wakamatsu, Tais Hitomi; Inaba, Takaaki; Shimizu, Takahiko; Shimazaki, Jun; Tsubota, Kazuo

    2014-01-01

    Purpose The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1−/−) mouse. Methods Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1−/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed. Results Corneal vital staining scores in the Sod1−/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1−/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1−/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1−/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1−/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1−/− mice. Conclusions Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1−/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations. PMID:25036096

  11. Early Signs of Pathological Cognitive Aging in Mice Lacking High-Affinity Nicotinic Receptors.

    PubMed

    Konsolaki, Eleni; Tsakanikas, Panagiotis; Polissidis, Alexia V; Stamatakis, Antonios; Skaliora, Irini

    2016-01-01

    In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. A deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-), which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioral signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviors, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm the hypothesis that β2-/- animals exhibit age-related cognitive impairments in spatial learning. In addition, they document age-related deficits in other areas, such as recognition memory, burrowing and nesting building, thereby extending the validity of this animal model for the study of pathological aging. Finally, our data reveal deficits in spontaneous behavior and habituation processes that precede the onset of cognitive decline and could therefore be useful as a non-invasive behavioral screen for identifying animals at risk. To our knowledge, this is the first study to perform an extensive behavioral assessment of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioral changes to global dementia due to the combined effect of the neuropathology and aging.

  12. Early Signs of Pathological Cognitive Aging in Mice Lacking High-Affinity Nicotinic Receptors

    PubMed Central

    Konsolaki, Eleni; Tsakanikas, Panagiotis; Polissidis, Alexia V.; Stamatakis, Antonios; Skaliora, Irini

    2016-01-01

    In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. A deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-), which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioral signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviors, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm the hypothesis that β2-/- animals exhibit age-related cognitive impairments in spatial learning. In addition, they document age-related deficits in other areas, such as recognition memory, burrowing and nesting building, thereby extending the validity of this animal model for the study of pathological aging. Finally, our data reveal deficits in spontaneous behavior and habituation processes that precede the onset of cognitive decline and could therefore be useful as a non-invasive behavioral screen for identifying animals at risk. To our knowledge, this is the first study to perform an extensive behavioral assessment of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioral changes to global dementia due to the combined effect of the neuropathology and aging. PMID:27199738

  13. Pressor responsiveness to angiotensin II in female mice is enhanced with age: role of the angiotensin type 2 receptor

    PubMed Central

    2014-01-01

    Background The pressor response to angiotensin II (AngII) is attenuated in adult females as compared to males via an angiotensin type 2 receptor (AT2R)-dependent pathway. We hypothesized that adult female mice are protected against AngII-induced hypertension via an enhanced AT2R-mediated pathway and that in reproductively senescent females this pathway is no longer operative. Methods Mean arterial pressure was measured via telemetry in 4-month-old (adult) and 16-month-old (aged) and aged ovariectomized (aged-OVX) wild-type and AT2R knockout (AT2R-KO) female mice during baseline and 14-day infusion of vehicle (saline) or AngII (600 ng/kg/min s.c.). Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to determine renal gene expression of angiotensin receptors and angiotensin-converting enzyme 2 in response to 14-day treatment with vehicle or AngII. Results Basal mean arterial pressure was similar between the groups. The pressor response to AngII was augmented in adult AT2R-KO compared to adult wild-type mice (29 ± 3 mmHg versus 10 ± 4 mmHg, respectively, on day 14 as compared to basal mean arterial pressure, P = 0.002). In wild-type mice, pressor responsiveness to AngII was augmented with age, such that the pressor response to AngII was similar between aged AT2R-KO and wild-type female mice (31 ± 4 mmHg versus 34 ± 3 mmHg, respectively, on day 14, P = 0.9). There were no significant differences in pressor responsiveness to AngII between aged and aged-OVX mice. Vehicle-treated aged wild-type mice had a lower renal AT2R/AT1R balance as compared to adult counterparts. In response to AngII, the renal AT2R/AT1R balance in aged wild-type females was greater than that observed in vehicle-treated aged wild-type females and adult wild-type females, yet the protective effects of AT2R activation were not restored. Conclusions The protective role of the AT2R depressor pathway is lost with age in female mice. Therefore

  14. Effects of Prolonged GRP78 Haploinsufficiency on Organ Homeostasis, Behavior, Cancer and Chemotoxic Resistance in Aged Mice

    PubMed Central

    Lee, Amy S.; Brandhorst, Sebastian; Rangel, Daisy F.; Navarrete, Gerardo; Cohen, Pinchas; Longo, Valter D.; Chen, Jeannie; Groshen, Susan; Morgan, Todd E.; Dubeau, Louis

    2017-01-01

    GRP78, a multifunctional protein with potent cytoprotective properties, is an emerging therapeutic target to combat cancer development, progression and drug resistance. The biological consequences of prolonged reduction in expression of this essential chaperone which so far has been studied primarily in young mice, was investigated in older mice, as older individuals are likely to be important recipients of anti-GRP78 therapy. We followed cohorts of Grp78+/+ and Grp78+/− male and female mice up to 2 years of age in three different genetic backgrounds and characterized them with respect to body weight, organ integrity, behavioral and memory performance, cancer, inflammation and chemotoxic response. Our results reveal that body weight, organ development and integrity were not impaired in aged Grp78+/− mice. No significant effect on cancer incidence and inflammation was observed in aging mice. Interestingly, our studies detected some subtle differential trends between the WT and Grp78+/− mice in some test parameters dependent on gender and genetic background. Our studies provide the first evidence that GRP78 haploinsufficiency for up to 2 years of age has no major deleterious effect in rodents of different genetic background, supporting the merit of anti-GRP78 drugs in treatment of cancer and other diseases affecting the elderly. PMID:28145503

  15. Effects of Prolonged GRP78 Haploinsufficiency on Organ Homeostasis, Behavior, Cancer and Chemotoxic Resistance in Aged Mice.

    PubMed

    Lee, Amy S; Brandhorst, Sebastian; Rangel, Daisy F; Navarrete, Gerardo; Cohen, Pinchas; Longo, Valter D; Chen, Jeannie; Groshen, Susan; Morgan, Todd E; Dubeau, Louis

    2017-02-01

    GRP78, a multifunctional protein with potent cytoprotective properties, is an emerging therapeutic target to combat cancer development, progression and drug resistance. The biological consequences of prolonged reduction in expression of this essential chaperone which so far has been studied primarily in young mice, was investigated in older mice, as older individuals are likely to be important recipients of anti-GRP78 therapy. We followed cohorts of Grp78(+/+) and Grp78(+/-) male and female mice up to 2 years of age in three different genetic backgrounds and characterized them with respect to body weight, organ integrity, behavioral and memory performance, cancer, inflammation and chemotoxic response. Our results reveal that body weight, organ development and integrity were not impaired in aged Grp78(+/-) mice. No significant effect on cancer incidence and inflammation was observed in aging mice. Interestingly, our studies detected some subtle differential trends between the WT and Grp78(+/-) mice in some test parameters dependent on gender and genetic background. Our studies provide the first evidence that GRP78 haploinsufficiency for up to 2 years of age has no major deleterious effect in rodents of different genetic background, supporting the merit of anti-GRP78 drugs in treatment of cancer and other diseases affecting the elderly.

  16. Bupropion induced changes in exploratory and anxiety-like behaviour in NMRI male mice depends on the age.

    PubMed

    Carrasco, M Carmen; Vidal, Jose; Redolat, Rosa

    2013-09-01

    The aim of this study was to assess the effects of the antidepressant bupropion on anxiety and novelty-seeking in adolescent mice of different ages and adults. Behavioural differences between early adolescent, late adolescent and adult NMRI mice were measured both in the elevated plus-maze and the hole-board tasks following acute administration of bupropion (5, 10, 15, 20mg/kg) or saline. In the plus maze test, early and late adolescent mice treated with bupropion (10, 15mg/kg, respectively) had lower percentages of entries in the open-arms compared to their vehicle controls. Adult mice treated with bupropion did not differ from their vehicle controls. These results suggest that the effect of this drug on anxiety-like behaviour in mice depends on the age, showing adolescents an anxiogenic-like profile. In the hole-board, adolescents showed more elevated levels of novelty-seeking than adults, exhibiting shorter latency to the first head-dip (HD) and a higher number of HD's. Bupropion increases the latency to the first HD and decreases the number of HD's in all age-groups, indicating a decline in exploratory tendency. Findings reveal that the age can modulate the behaviour displayed by mice in both animal models, and that adolescents are more sensitive to bupropion's anxiogenic effects.

  17. Enhancement of natural killer cell activity of aged mice by modified arabinoxylan rice bran (MGN-3/Biobran).

    PubMed

    Ghoneum, Mamdooh; Abedi, Sarah

    2004-12-01

    The present study is aimed to examine the possibility of enhancement of natural killer (NK) cell activity in aged C57BL/6 and C3H mice using MGN-3, a modified arabinoxylan from rice bran. Intraperitoneal injection of MGN-3 (10 mg kg(-1) per day) caused a remarkable increase in the peritoneal NK activity as early as 2 days (35.2 lytic units), and the level remained elevated through day 14. The control aged mice had a level of 5.8 lytic units. Enhancement in NK activity was associated with an increase in both the binding capacity of NK cells to tumour targets and in the granular content as measured by BLT-esterase activity. Treatment did not alter the percentage of peritoneal NK cells. Data showed that peritoneal macrophages inhibit NK activity. In conclusion, MGN-3 enhances murine NK activity of aged mice and may be useful for enhancing NK function in aged humans.

  18. Central inhibition of interleukin-6 trans-signaling during peripheral infection reduced neuroinflammation and sickness in aged mice

    PubMed Central

    Burton, Michael D; Rytych, Jennifer L; Freund, Gregory G; Johnson, Rodney W

    2013-01-01

    During systemic infection, inflammatory cytokines such as interleukin (IL)-6 are produced in excess in the brain of aged mice and induce severe behavioral deficits. However, no studies have examined how pro-inflammatory IL-6 trans-signaling is involved in the exaggerated production of IL-6 in the aged brain, nor the extent to which IL-6 trans-signaling affects other markers of neuroinflammation, adhesion molecules, and behavior. Therefore, this study investigated in aged mice the presence of IL-6 signaling subunits in microglia; the central effects of soluble gp130 (sgp130)—a natural inhibitor of the IL-6 trans-signaling pathway—on IL-6 production in microglia; and the effects of sgp130 given intracerebroventricularly (ICV) on neuroinflammation and sickness behavior caused by i.p. injection of lipopolysaccharide (LPS). Here we show that microglia isolated from aged mice have higher expression of IL-6 receptor (IL-6R) compared to microglia from adults; and the level of mRNA for ADAM17, the enzyme responsible for shedding membrane-bound IL-6R in trans-signaling, is higher in the hippocampus of aged mice compared to adults. Additionally, we show in aged mice that peripheral LPS challenge elicits a hyperactive IL-6 response in microglia, and selective blockade of trans-signaling by ICV injection of sgp130 mitigates this. The sgp130-associated inhibition of IL-6 was paralleled by amelioration of exaggerated and protracted sickness behavior in aged mice. Taken together, the results show that microglia are important regulators of the IL-6 trans-signaling response in the aged brain and sgp130 exerts an anti-inflammatory effect by inhibiting the pro-inflammatory arm of IL-6 signaling. PMID:23354002

  19. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders

    PubMed Central

    Kimura, Ryuichi; Tucci, Valter; Kaneda, Hideki; Wakana, Shigeharu; Osumi, Noriko

    2016-01-01

    Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies. PMID:27855195

  20. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders.

    PubMed

    Yoshizaki, Kaichi; Furuse, Tamio; Kimura, Ryuichi; Tucci, Valter; Kaneda, Hideki; Wakana, Shigeharu; Osumi, Noriko

    2016-01-01

    Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.

  1. Bexarotene targets autophagy and is protective against thromboembolic stroke in aged mice with tauopathy

    PubMed Central

    Huuskonen, Mikko T.; Loppi, Sanna; Dhungana, Hiramani; Keksa-Goldsteine, Velta; Lemarchant, Sighild; Korhonen, Paula; Wojciechowski, Sara; Pollari, Eveliina; Valonen, Piia; Koponen, Juho; Takashima, Akihiko; Landreth, Gary; Goldsteins, Gundars; Malm, Tarja; Koistinaho, Jari; Kanninen, Katja M.

    2016-01-01

    Stroke is a highly debilitating, often fatal disorder for which current therapies are suitable for only a minor fraction of patients. Discovery of novel, effective therapies is hampered by the fact that advanced age, primary age-related tauopathy or comorbidities typical to several types of dementing diseases are usually not taken into account in preclinical studies, which predominantly use young, healthy rodents. Here we investigated for the first time the neuroprotective potential of bexarotene, an FDA-approved agent, in a co-morbidity model of stroke that combines high age and tauopathy with thromboembolic cerebral ischemia. Following thromboembolic stroke bexarotene enhanced autophagy in the ischemic brain concomitantly with a reduction in lesion volume and amelioration of behavioral deficits in aged transgenic mice expressing the human P301L-Tau mutation. In in vitro studies bexarotene increased the expression of autophagy markers and reduced autophagic flux in neuronal cells expressing P301L-Tau. Bexarotene also restored mitochondrial respiration deficits in P301L-Tau neurons. These newly described actions of bexarotene add to the growing amount of compelling data showing that bexarotene is a potent neuroprotective agent, and identify a novel autophagy-modulating effect of bexarotene. PMID:27624652

  2. DNA methylation errors in cloned mice disappear with advancement of aging.

    PubMed

    Senda, Sho; Wakayama, Teruhiko; Arai, Yoshikazu; Yamazaki, Yukiko; Ohgane, Jun; Tanaka, Satoshi; Hattori, Naka; Yanagimachi, Ryuzo; Shiota, Kunio

    2007-01-01

    Cloned animals have various health problems. Aberrant DNA methylation is a possible cause of the problems. Restriction landmark genomic scanning (RLGS) that enabled us to analyze more than 1,000 CpG islands simultaneously demonstrated that all cloned newborns had aberrant DNA methylation. To study whether this aberration persists throughout the life of cloned individuals, we examined genome-wide DNA methylation status of newborn (19.5 dpc, n=2), adult (8-11 months old, n=3), and aged (23-27 months old, n=4) cloned mice using kidney cells as representatives. In the adult and aged groups, cloning was repeated using cumulus cells of the adult founder clone of each group as nucleus donor. Two newborn clones had three with aberrantly methylated loci, which is consistent with previous reports that all cloned newborns had DNA methylation aberrations. Interestingly, we could detect only one aberrantly methylated locus in two of the three adult clones in mid-age and none of four senescent clones, indicating that errors in DNA methylation disappear with advancement of animals' aging.

  3. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    PubMed

    Timaru-Kast, Ralph; Luh, Clara; Gotthardt, Philipp; Huang, Changsheng; Schäfer, Michael K; Engelhard, Kristin; Thal, Serge C

    2012-01-01

    After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation

  4. Enhanced humoral response to influenza vaccine in aged mice with a novel adjuvant, rOv-ASP-1.

    PubMed

    Jiang, Jiu; Fisher, Erin M; Concannon, Mark; Lustigman, Sara; Shen, Hao; Murasko, Donna M

    2016-02-10

    Immunization is the best way to prevent seasonal epidemics and pandemics of influenza. There are two kinds of influenza vaccines available in the United States: an inactivated vaccine (TIV) and an attenuated vaccine; however, only TIV is approved for immunization of the elderly population. While the aged population has the highest rate of influenza vaccination, the protective efficacy is low as evidenced by elderly individuals having the highest mortality associated with influenza. Recently, we reported that an adjuvant derived from the helminth parasite Onchocerca volvulus, named O. volvulus activation-associated secreted protein-1 (Ov-ASP-1), can significantly enhance the protective efficacy of an inactivated vaccine (TIV) in young adult mice. In the current study, we examined whether this recombinant Ov-ASP-1 (rOv-ASP-1) can enhance the efficacy of TIV in aged mice as well. While primary immunization with TIV alone produced only a low level of influenza-specific antibodies (total IgG, IgG1, and IgG2c) in aged mice, the antibody levels were significantly increased after immunization with TIV+rOv-ASP-1. More importantly, the level of the total IgG in aged mice administered TIV+rOv-ASP-1 was comparable to that of young adult mice immunized with TIV alone. Co-administration of rOv-ASP-1 induced a low level of cross-reactive antibody and enhanced the protective efficacy of TIV in aged mice, reflected by significantly increased survival after challenge with a heterologous influenza virus. rOv-ASP-1 was also superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice, and in conferring protection after challenge. These results demonstrate that rOv-ASP-1 may serve as a potential adjuvant for influenza vaccine to improve the efficacy of protection in the elderly.

  5. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age.

    PubMed

    Vaidya, Amita; Mao, Zhiyong; Tian, Xiao; Spencer, Brianna; Seluanov, Andrei; Gorbunova, Vera

    2014-07-01

    Accumulation of genome rearrangements is a characteristic of aged tissues. Since genome rearrangements result from faulty repair of DNA double strand breaks (DSBs), we hypothesized that DNA DSB repair becomes less efficient with age. The Non-Homologous End Joining (NHEJ) pathway repairs a majority of DSBs in vertebrates. To examine age-associated changes in NHEJ, we have generated an R26NHEJ mouse model in which a GFP-based NHEJ reporter cassette is knocked-in to the ROSA26 locus. In this model, NHEJ repair of DSBs generated by the site-specific endonuclease, I-SceI, reconstitutes a functional GFP gene. In this system NHEJ efficiency can be compared across tissues of the same mouse and in mice of different age. Using R26NHEJ mice, we found that NHEJ efficiency was higher in the skin, lung, and kidney fibroblasts, and lower in the heart fibroblasts and brain astrocytes. Furthermore, we observed that NHEJ efficiency declined with age. In the 24-month old animals compared to the 5-month old animals, NHEJ efficiency declined 1.8 to 3.8-fold, depending on the tissue, with the strongest decline observed in the skin fibroblasts. The sequence analysis of 300 independent NHEJ repair events showed that, regardless of age, mice utilize microhomology sequences at a significantly higher frequency than expected by chance. Furthermore, the frequency of microhomology-mediated end joining (MMEJ) events increased in the heart and lung fibroblasts of old mice, suggesting that NHEJ becomes more mutagenic with age. In summary, our study provides a versatile mouse model for the analysis of NHEJ in a wide range of tissues and demonstrates that DNA repair by NHEJ declines with age in mice, which could provide a mechanism for age-related genomic instability and increased cancer incidence with age.

  6. In vivo HMRS and lipidomic profiling reveals comprehensive changes of hippocampal metabolism during aging in mice.

    PubMed

    Lin, Lejun; Cao, Bofeng; Xu, Zhiying; Sui, Yanbin; Chen, Jiao; Luan, Qiang; Yang, Ruifang; Li, Shanchun; Li, Ke Feng

    2016-01-29

    Aging is characterized by various cellular changes in the brain. Hippocampus is important for systemic aging and lifespan control. There is still a lack of comprehensive overview of metabolic changes in hippocampus during aging. In this study, we first created an accelerated brain aging mice model through the chronic administration of d-galactose. We then performed a multiplatform metabolomic profiling of mice hippocampus using the combination of in vivo 9.4 T HMRS and in vitro LC-MS/MS based lipidomics. We found N-acetylaspartic acid (NAA), gama-aminobutyric acid (GABA), glutamate/glutamine, taurine, choline, sphingolipids (SMs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs) and phosphatidylserines (PSs), all of them decreasing with the aging process in mice hippocampus. The changes of sphingolipids and phospholipids were not limited to one single class or molecular species. In contrast, we found the significant accumulation of lactate, myoinositol and phosphatidylcholines (PCs) along with aging in hippocampus. SM (d18:1/20:2), PE (36:2), PG (34:1), PI (36:4), PS (18:0/20:4) and PC (36:0) have the most significant changes along with aging. Network analysis revealed the striking loss of biochemical connectivity and interactions between hippocampal metabolites with aging. The correlation pattern between metabolites in hippocampus could function as biomarkers for aging or diagnosis of aging-related diseases.

  7. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder.

    PubMed

    Tu, Shu-Ju; Huang, Hong-Wen; Chang, Wei-Jeng

    2015-04-01

    Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders.

  8. Short-Term Long Chain Omega3 Diet Protects from Neuroinflammatory Processes and Memory Impairment in Aged Mice

    PubMed Central

    Joffre, Corinne; Costes, Laurence; Aubert, Agnès; Grégoire, Stéphane; Bretillon, Lionel; Layé, Sophie

    2012-01-01

    Regular consumption of food enriched in omega3 polyunsaturated fatty acids (ω3 PUFAs) has been shown to reduce risk of cognitive decline in elderly, and possibly development of Alzheimer's disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most likely active components of ω3-rich PUFAs diets in the brain. We therefore hypothesized that exposing mice to a DHA and EPA enriched diet may reduce neuroinflammation and protect against memory impairment in aged mice. For this purpose, mice were exposed to a control diet throughout life and were further submitted to a diet enriched in EPA and DHA during 2 additional months. Cytokine expression together with a thorough analysis of astrocytes morphology assessed by a 3D reconstruction was measured in the hippocampus of young (3-month-old) and aged (22-month-old) mice. In addition, the effects of EPA and DHA on spatial memory and associated Fos activation in the hippocampus were assessed. We showed that a 2-month EPA/DHA treatment increased these long-chain ω3 PUFAs in the brain, prevented cytokines expression and astrocytes morphology changes in the hippocampus and restored spatial memory deficits and Fos-associated activation in the hippocampus of aged mice. Collectively, these data indicated that diet-induced accumulation of EPA and DHA in the brain protects against neuroinflammation and cognitive impairment linked to aging, further reinforcing the idea that increased EPA and DHA intake may provide protection to the brain of aged subjects. PMID:22662127

  9. Age-related skeletal dynamics and decrease in bone strength in DNA repair deficient male trichothiodystrophy mice.

    PubMed

    Nicolaije, Claudia; Diderich, Karin E M; Botter, S M; Priemel, Matthias; Waarsing, Jan H; Day, Judd S; Brandt, Renata M C; Schilling, Arndt F; Weinans, Harrie; Van der Eerden, Bram C; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J; van Leeuwen, Johannes P T M

    2012-01-01

    Accumulation of DNA damage caused by oxidative stress is thought to be one of the main contributors of human tissue aging. Trichothiodystrophy (TTD) mice have a mutation in the Ercc2 DNA repair gene, resulting in accumulation of DNA damage and several features of segmental accelerated aging. We used male TTD mice to study the impact of DNA repair on bone metabolism with age. Analysis of bone parameters, measured by micro-computed tomography, displayed an earlier decrease in trabecular and cortical bone as well as a loss of periosteal apposition and a reduction in bone strength in TTD mice with age compared to wild type mice. Ex vivo analysis of bone marrow differentiation potential showed an accelerated reduction in the number of osteogenic and osteoprogenitor cells with unaltered differentiation capacity. Adipocyte differentiation was normal. Early in life, osteoclast number tended to be increased while at 78 weeks it was significantly lower in TTD mice. Our findings reveal the importance of genome stability and proper DNA repair for skeletal homeostasis with age and support the idea that accumulation of damage interferes with normal skeletal maintenance, causing reduction in the number of osteoblast precursors that are required for normal bone remodeling leading to a loss of bone structure and strength.

  10. [The aging particularities of bone marrow composition, pineal gland and thymus functions in mice of different lines].

    PubMed

    Labunets, I F

    2013-01-01

    We investigated the amount of stromal precursor cells for colonies of fibroblasts (CFC-F) and progenitor cells for granulocyte-macrophage colonies (CFC-GM cells), blood content of thymulin and melatonin in bone marrow of young and old mice CBA/Ca and FVB/N lines. The CBA/Ca mice demonstrated only weak increasing amount of CFC-F and CFC-GM in bone marrow, but these indices in FVB/N mice are increased more significantly. Linear difference of age-related changes in the biological features of the cells of bone marrow are significantly associated with the characteristics and relationships of the function of epiphysis and the thymus in mice of different lines during aging.

  11. Motor neuron targeting of IGF-1 attenuates age-related external Ca2+-dependent skeletal muscle contraction in senescent mice.

    PubMed

    Payne, Anthony M; Messi, María Laura; Zheng, Zhenlin; Delbono, Osvaldo

    2007-04-01

    A population of fast muscle fibers from aging mice is dependent on external Ca(2+) to maintain tetanic force during repeated contractions. We hypothesized that age-related denervation in muscle fibers plays a role in initiating this contractile deficit, and that prevention of denervation by IGF-1 overexpression would prevent external Ca(2+)-dependent contraction in aging mice. IGF-1 overexpression in skeletal muscle prevents age-related denervation, and prevented external Ca(2+)-dependent contraction in this work. To determine if the effects of IGF-1 overexpression are on muscle or nerve, aging mice were injected with a tetanus toxin fragment-C (TTC) fusion protein that targets IGF-1 to spinal cord motor neurons. This treatment prevented external Ca(2+)-dependent contraction. We also show evidence that injections of the IGF-1-TTC fusion protein prevent age-related alterations to the nerve terminals at the neuromuscular junctions. We conclude that the slow age-related denervation of fast muscle fibers underlies dependence on external Ca(2+) to maintain tetanic force in a population of muscle fibers from senescent mice.

  12. Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice

    PubMed Central

    Cho, Si-Young; Kim, Juewon; Lee, Ji Hae; Sim, Ji Hyun; Cho, Dong-Hyun; Bae, Il-Hong; Lee, Hyunbok; Seol, Min A.; Shin, Hyun Mu; Kim, Tae-Joo; Kim, Dae-Yong; Lee, Su-Hyung; Shin, Song Seok; lm, Sin-Hyeog; Kim, Hang-Rae

    2016-01-01

    Age-associated immunological dysfunction (immunosenescence) is closely linked to perturbation of the gut microbiota. Here, we investigated whether syringaresinol (SYR), a polyphenolic lignan, modulates immune aging and the gut microbiota associated with this effect in middle-aged mice. Compared with age-matched control mice, SYR treatment delayed immunosenescence by enhancing the numbers of total CD3+ T cells and naïve T cells. SYR treatment induced the expression of Bim as well as activation of FOXO3 in Foxp3+ regulatory T cells (Tregs). Furthermore, SYR treatment significantly enhanced the Firmicutes/Bacteroidetes ratio compared with that in age-matched controls by increasing beneficial bacteria, Lactobacillus and Bifidobacterium, while reducing the opportunistic pathogenic genus, Akkermansia. In addition, SYR treatment reduced the serum level of lipopolysaccharide-binding protein, an inflammatory marker, and enhanced humoral immunity against influenza vaccination to the level of young control mice. Taken together, these findings suggest that SYR may rejuvenate the immune system through modulation of gut integrity and microbiota diversity as well as composition in middle-aged mice, which may delay the immunosenescence associated with aging. PMID:27976725

  13. Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice.

    PubMed

    Cho, Si-Young; Kim, Juewon; Lee, Ji Hae; Sim, Ji Hyun; Cho, Dong-Hyun; Bae, Il-Hong; Lee, Hyunbok; Seol, Min A; Shin, Hyun Mu; Kim, Tae-Joo; Kim, Dae-Yong; Lee, Su-Hyung; Shin, Song Seok; Lm, Sin-Hyeog; Kim, Hang-Rae

    2016-12-15

    Age-associated immunological dysfunction (immunosenescence) is closely linked to perturbation of the gut microbiota. Here, we investigated whether syringaresinol (SYR), a polyphenolic lignan, modulates immune aging and the gut microbiota associated with this effect in middle-aged mice. Compared with age-matched control mice, SYR treatment delayed immunosenescence by enhancing the numbers of total CD3(+) T cells and naïve T cells. SYR treatment induced the expression of Bim as well as activation of FOXO3 in Foxp3(+) regulatory T cells (Tregs). Furthermore, SYR treatment significantly enhanced the Firmicutes/Bacteroidetes ratio compared with that in age-matched controls by increasing beneficial bacteria, Lactobacillus and Bifidobacterium, while reducing the opportunistic pathogenic genus, Akkermansia. In addition, SYR treatment reduced the serum level of lipopolysaccharide-binding protein, an inflammatory marker, and enhanced humoral immunity against influenza vaccination to the level of young control mice. Taken together, these findings suggest that SYR may rejuvenate the immune system through modulation of gut integrity and microbiota diversity as well as composition in middle-aged mice, which may delay the immunosenescence associated with aging.

  14. Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice

    PubMed Central

    Dawar, Swati; Shahrin, Nur Hezrin; Sladojevic, Nikolina; D'Andrea, Richard J; Dorstyn, Loretta; Hiwase, Devendra K; Kumar, Sharad

    2016-01-01

    The apoptotic cysteine protease caspase-2 has been shown to suppress tumourigenesis in mice and its reduced expression correlates with poor prognosis in some human malignancies. Caspase-2-deficient mice develop normally but show ageing-related traits and, when challenged by oncogenic stimuli or certain stress, show enhanced tumour development, often accompanied by extensive aneuploidy. As stem cells are susceptible to acquiring age-related functional defects because of their self-renewal and proliferative capacity, we examined whether loss of caspase-2 promotes such defects with age. Using young and aged Casp2−/− mice, we demonstrate that deficiency of caspase-2 results in enhanced aneuploidy and DNA damage in bone marrow (BM) cells with ageing. Furthermore, we demonstrate for the first time that caspase-2 loss results in significant increase in immunophenotypically defined short-term haematopoietic stem cells (HSCs) and multipotent progenitors fractions in BM with a skewed differentiation towards myeloid progenitors with ageing. Caspase-2 deficiency leads to enhanced granulocyte macrophage and erythroid progenitors in aged mice. Colony-forming assays and long-term culture-initiating assay further recapitulated these results. Our results provide the first evidence of caspase-2 in regulating HSC and progenitor differentiation, as well as aneuploidy, in vivo. PMID:27906175

  15. Haemophilus influenzae LicB contributes to lung damage in an aged mice co-infection model.

    PubMed

    Bondy, Jessica; Osharovich, Sofya; Storm, Julie; Durning, Graham; McAuliffe, Timothy; Fan, Xin

    2016-01-01

    Phosphorylcholine (ChoP) decoration of lipopolysaccharides is an important virulence strategy adopted by Haemophilus influenzae to establish a niche on the mucosal surface and to promote adherence to the host cells. The incorporation of ChoP on the LPS surface involves the lic1 operon, which consists of the licA, licB, licC, and licD genes. Among which, licB is a choline transporter gene required for acquisition of choline from environmental sources. In this study, we investigated the pathogenesis of the licB gene in an aged mice infection model. Due to immediate clearance of H. influenzae upon infection in mice, we employed influenza A virus and H. influenzae co-infection model. Our data showed that in the co-infection model, the secondary bacterial infection with a very low H. influenzae concentration of 100 colony forming unit is lethal to the aged mice. Although we did not observe any differences in weight loss between parent and licB mutant strains during the course of infection, a significant reduction of lung tissue damage was observed in the licB mutant infected aged mice. These results suggest that the licB gene is a virulence factor during H. influenzae infection in the lung in aged mice, possibly due to the increased binding to the host cell receptor via ChoP expression on the bacterial surface. In addition, when aged mice and mature mice were compared in the challenge experiments, we did not observe any protective immunity in the co-infection model suggesting the detrimental effects of the secondary bacterial infection on the aged mice in contrast to obvious immune-protections observed in the mature mice. The results of our experiments also implied that the co-infection model with influenza A virus and H. influenzae may be employed as a model system to study H. influenzae pathogenesis in vivo in aged mice.

  16. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    SciTech Connect

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.; and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  17. p47phox-Nox2-dependent ROS Signaling Inhibits Early Bone Development in Mice but Protects against Skeletal Aging.

    PubMed

    Chen, Jin-Ran; Lazarenko, Oxana P; Blackburn, Michael L; Mercer, Kelly E; Badger, Thomas M; Ronis, Martin J J

    2015-06-05

    Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Progressive accumulation of reactive oxygen species (ROS) has been suspected to be the leading cause of many inflammatory and degenerative diseases, as well as an important factor underlying many effects of aging. In contrast, how reduced ROS signaling regulates inflammation and remodeling in bone remains unknown. Here, we utilized a p47(phox) knock-out mouse model, in which an essential cytosolic co-activator of Nox2 is lost, to characterize bone metabolism at 6 weeks and 2 years of age. Compared with their age-matched wild type controls, loss of Nox2 function in p47(phox-/-) mice resulted in age-related switch of bone mass and strength. Differences in bone mass were associated with increased bone formation in 6-week-old p47(phox-/-) mice but decreased in 2-year-old p47(phox-/-) mice. Despite decreases in ROS generation in bone marrow cells and p47(phox)-Nox2 signaling in osteoblastic cells, 2-year-old p47(phox-/-) mice showed increased senescence-associated secretory phenotype in bone compared with their wild type controls. These in vivo findings were mechanistically recapitulated in ex vivo cell culture of primary fetal calvarial cells from p47(phox-/-) mice. These cells showed accelerated cell senescence pathway accompanied by increased inflammation. These data indicate that the observed age-related switch of bone mass in p47(phox)-deficient mice occurs through an increased inflammatory milieu in bone and that p47(phox)-Nox2-dependent physiological ROS signaling suppresses inflammation in aging.

  18. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus.

  19. Chronic ingestion of advanced glycation end products induces degenerative spinal changes and hypertrophy in aging pre-diabetic mice.

    PubMed

    Illien-Jünger, Svenja; Lu, Young; Qureshi, Sheeraz A; Hecht, Andrew C; Cai, Weijing; Vlassara, Helen; Striker, Gary E; Iatridis, James C

    2015-01-01

    Intervertebral disc (IVD) degeneration and pathological spinal changes are major causes of back pain, which is the top cause of global disability. Obese and diabetic individuals are at increased risk for back pain and musculoskeletal complications. Modern diets contain high levels of advanced glycation end products (AGEs), cyto-toxic components which are known contributors to obesity, diabetes and accelerated aging pathologies. There is little information about potential effects of AGE rich diet on spinal pathology, which may be a contributing cause for back pain which is common in obese and diabetic individuals. This study investigated the role of specific AGE precursors (e.g. methylglyoxal-derivatives (MG)) on IVD and vertebral pathologies in aging C57BL6 mice that were fed isocaloric diets with standard (dMG+) or reduced amounts of MG derivatives (dMG-; containing 60-70% less dMG). dMG+ mice exhibited a pre-diabetic phenotype, as they were insulin resistant but not hyperglycemic. Vertebrae of dMG+ mice displayed increased cortical-thickness and cortical-area, greater MG-AGE accumulation and ectopic calcification in vertebral endplates. IVD morphology of dMG+ mice exhibited ectopic calcification, hypertrophic differentiation and glycosaminoglycan loss relative to dMG- mice. Overall, chronic exposure to dietary AGEs promoted age-accelerated IVD degeneration and vertebral alterations involving ectopic calcification which occurred in parallel with insulin resistance, and which were prevented with dMG- diet. This study described a new mouse model for diet-induced spinal degeneration, and results were in support of the hypothesis that chronic AGE ingestion could be a factor contributing to a pre-diabetic state, ectopic calcifications in spinal tissues, and musculoskeletal complications that are more generally known to occur with chronic diabetic conditions.

  20. Chronic Ingestion of Advanced Glycation End Products Induces Degenerative Spinal Changes and Hypertrophy in Aging Pre-Diabetic Mice

    PubMed Central

    Illien-Jünger, Svenja; Lu, Young; Qureshi, Sheeraz A.; Hecht, Andrew C.; Cai, Weijing; Vlassara, Helen; Striker, Gary E.; Iatridis, James C.

    2015-01-01

    Intervertebral disc (IVD) degeneration and pathological spinal changes are major causes of back pain, which is the top cause of global disability. Obese and diabetic individuals are at increased risk for back pain and musculoskeletal complications. Modern diets contain high levels of advanced glycation end products (AGEs), cyto-toxic components which are known contributors to obesity, diabetes and accelerated aging pathologies. There is little information about potential effects of AGE rich diet on spinal pathology, which may be a contributing cause for back pain which is common in obese and diabetic individuals. This study investigated the role of specific AGE precursors (e.g. methylglyoxal-derivatives (MG)) on IVD and vertebral pathologies in aging C57BL6 mice that were fed isocaloric diets with standard (dMG+) or reduced amounts of MG derivatives (dMG-; containing 60-70% less dMG). dMG+ mice exhibited a pre-diabetic phenotype, as they were insulin resistant but not hyperglycemic. Vertebrae of dMG+ mice displayed increased cortical-thickness and cortical-area, greater MG-AGE accumulation and ectopic calcification in vertebral endplates. IVD morphology of dMG+ mice exhibited ectopic calcification, hypertrophic differentiation and glycosaminoglycan loss relative to dMG- mice. Overall, chronic exposure to dietary AGEs promoted age-accelerated IVD degeneration and vertebral alterations involving ectopic calcification which occurred in parallel with insulin resistance, and which were prevented with dMG- diet. This study described a new mouse model for diet-induced spinal degeneration, and results were in support of the hypothesis that chronic AGE ingestion could be a factor contributing to a pre-diabetic state, ectopic calcifications in spinal tissues, and musculoskeletal complications that are more generally known to occur with chronic diabetic conditions. PMID:25668621

  1. AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice.

    PubMed

    Zhou, Sheng; Lu, Wanli; Chen, Liang; Ge, Qiting; Chen, Dongyang; Xu, Zhihong; Shi, Dongquan; Dai, Jin; Li, Jianxin; Ju, Huangxian; Cao, Yi; Qin, Jinzhong; Chen, Shuai; Teng, Huajian; Jiang, Qing

    2017-02-22

    Osteoarthritis (OA) is a progressive degenerative disease of the joints that is associated with both joint injury and ageing. Here, we investigated the role of the energy sensor AMP-activated protein kinase (AMPK) in maintaining a healthy state of articular cartilage and in OA development. Using cartilage-specific, tamoxifen-inducible AMPKα1 conditional knockout (AMPKα1 cKO), AMPKα2 conditional knockout (AMPKα2 cKO) and AMPKα1α2 conditional double knockout (AMPKα cDKO) mice, we found that compared with wild-type (WT) littermates, mutant mice displayed accelerated severity of surgically induced OA, especially AMPKα cDKO mice. Furthermore, male but not female AMPKα cDKO mice exhibited severely spontaneous ageing-associated OA lesions at 12 months of age. The chondrocytes isolated from AMPKα cDKO mice resulted in an enhanced interleukin-1β (IL-1β)-stimulated catabolic response. In addition, upregulated expression of matrix metalloproteinase-3 (MMP-3), MMP-13 and phospho-nuclear factor-κB (phospho-NF-κB) p65 and increased levels of apoptotic markers were detected in the cartilage of AMPKα cDKO mice compared with their WT littermates in vivo. Thus, our findings suggest that AMPK activity in chondrocytes is important in maintaining joint homeostasis and OA development.

  2. A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice

    PubMed Central

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Haast, Roy; Lütjohann, Dieter; Broersen, Laus M.; Heerschap, Arend

    2016-01-01

    APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10–12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16–18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging. PMID:27034849

  3. Chronic Porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE– / – mice brains

    PubMed Central

    Singhrao, Sim K.; Chukkapalli, Sasanka; Poole, Sophie; Velsko, Irina; Crean, St John; Kesavalu, Lakshmyya

    2017-01-01

    ABSTRACT This study explored the origin of age-related granules in the apolipoprotein E gene knockout (ApoE−/−) B6 background mice brains following chronic gingival infection with Porphyromonas gingivalis for 24 weeks. Intracerebral localization of P. gingivalis was detected by fluorescence in situ hybridization (FISH) and its protease by immunohistochemistry. The age-related granules were observed by periodic acid–Schiff (PAS), silver impregnation, and immunostaining. FISH showed intracerebral dissemination of P. gingivalis cells (p = 0.001). PAS and silver impregnation demonstrated the presence of larger inclusions restricted to the CA1, CA2, and dentate gyrus sectors of the hippocampus. A specific monoclonal antibody to bacterial peptidoglycan detected clusters of granules with variable sizes in mice brains infected with P. gingivalis (p = 0.004), and also highlighted areas of diffuse punctate staining equating to physical tissue damage. Mouse immunoglobulin G was observed in the capillaries of the cerebral parenchyma of all P. gingivalis–infected brains (p = 0.001), and on pyramidal neurons in some severely affected mice, compared with the sham-infected mice. Gingipains was also observed in microvessels of the hippocampus in the infected mice. This study supports the possibility of early appearance of age-related granules in ApoE−/− mice following inflammation-mediated tissue injury, accompanied by loss of cerebral blood-brain barrier integrity. PMID:28326151

  4. AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice

    PubMed Central

    Zhou, Sheng; Lu, Wanli; Chen, Liang; Ge, Qiting; Chen, Dongyang; Xu, Zhihong; Shi, Dongquan; Dai, Jin; Li, Jianxin; Ju, Huangxian; Cao, Yi; Qin, Jinzhong; Chen, Shuai; Teng, Huajian; Jiang, Qing

    2017-01-01

    Osteoarthritis (OA) is a progressive degenerative disease of the joints that is associated with both joint injury and ageing. Here, we investigated the role of the energy sensor AMP-activated protein kinase (AMPK) in maintaining a healthy state of articular cartilage and in OA development. Using cartilage-specific, tamoxifen-inducible AMPKα1 conditional knockout (AMPKα1 cKO), AMPKα2 conditional knockout (AMPKα2 cKO) and AMPKα1α2 conditional double knockout (AMPKα cDKO) mice, we found that compared with wild-type (WT) littermates, mutant mice displayed accelerated severity of surgically induced OA, especially AMPKα cDKO mice. Furthermore, male but not female AMPKα cDKO mice exhibited severely spontaneous ageing-associated OA lesions at 12 months of age. The chondrocytes isolated from AMPKα cDKO mice resulted in an enhanced interleukin-1β (IL-1β)-stimulated catabolic response. In addition, upregulated expression of matrix metalloproteinase-3 (MMP-3), MMP-13 and phospho-nuclear factor-κB (phospho-NF-κB) p65 and increased levels of apoptotic markers were detected in the cartilage of AMPKα cDKO mice compared with their WT littermates in vivo. Thus, our findings suggest that AMPK activity in chondrocytes is important in maintaining joint homeostasis and OA development. PMID:28225087

  5. Effect of whole-body vibration on bone properties in aging mice.

    PubMed

    Wenger, Karl H; Freeman, James D; Fulzele, Sadanand; Immel, David M; Powell, Brian D; Molitor, Patrick; Chao, Yuh J; Gao, Hong-Sheng; Elsalanty, Mohammed; Hamrick, Mark W; Isales, Carlos M; Yu, Jack C

    2010-10-01

    Recent studies suggest that whole-body vibration (WBV) can improve measures of bone health for certain clinical conditions and ages. In the elderly, there also is particular interest in assessing the ability of physical interventions such as WBV to improve coordination, strength, and movement speed, which help prevent falls and fractures and maintain ambulation for independent living. The current study evaluated the efficacy of WBV in an aging mouse model. Two levels of vibration--0.5 and 1.5g--were applied at 32Hz to CB57BL/6 male mice (n=9 each) beginning at age 18 months and continuing for 12 weeks, 30 min/day, in a novel pivoting vibration device. Previous reports indicate that bone parameters in these mice begin to decrease substantially at 18 months, equivalent to mid-fifties for humans. Micro-computed tomography (micro-CT) and biomechanical assessments were made in the femur, radius, and lumbar vertebra to determine the effect of these WBV magnitudes and durations in the aging model. Sera also were collected for analysis of bone formation and breakdown markers. Mineralizing surface and cell counts were determined histologically. Bone volume in four regions of the femur did not change significantly, but there was a consistent shift toward higher mean density in the bone density spectrum (BDS), with the two vibration levels producing similar results. This new parameter represents an integral of the conventional density histogram. The amount of high density bone statistically improved in the head, neck, and diaphysis. Biomechanically, there was a trend toward greater stiffness in the 1.5 g group (p=0.139 vs. controls in the radius), and no change in strength. In the lumbar spine, no differences were seen due to vibration. Both vibration groups significantly reduced pyridinoline crosslinks, a collagen breakdown marker. They also significantly increased dynamic mineralization, MS/BS. Furthermore, osteoclasts were most numerous in the 1.5 g group (p≤ 0

  6. Age-Dependent Retinal Iron Accumulation and Degeneration in Hepcidin Knockout Mice

    PubMed Central

    Hadziahmetovic, Majda; Song, Ying; Ponnuru, Padmavathi; Iacovelli, Jared; Hunter, Allan; Haddad, Nadine; Beard, John; Connor, James R.; Vaulont, Sophie

    2011-01-01

    Purpose. Iron dysregulation can cause retinal disease, yet retinal iron regulatory mechanisms are incompletely understood. The peptide hormone hepcidin (Hepc) limits iron uptake from the intestine by triggering degradation of the iron transporter ferroportin (Fpn). Given that Hepc is expressed in the retina and Fpn is expressed in cells constituting the blood-retinal barrier, the authors tested whether the retina may produce Hepc to limit retinal iron import. Methods. Retinas of Hepc−/− mice were analyzed by histology, autofluorescence spectral analysis, atomic absorption spectrophotometry, Perls' iron stain, and immunofluorescence to assess iron-handling proteins. Retinal Hepc mRNA was evaluated through qPCR after intravitreal iron injection. Mechanisms of retinal Hepc upregulation were tested by Western blot analysis. A retinal capillary endothelial cell culture system was used to assess the effect of exogenous Hepc on Fpn. Results. Hepc−/− mice experienced age-dependent increases in retinal iron followed by retinal degeneration with autofluorescent RPE, photoreceptor death, and subretinal neovascularization. Hepc−/− mice had increased Fpn immunoreactivity in vascular endothelial cells. Conversely, in cultured retinal capillary endothelial cells, exogenous Hepc decreased both Fpn levels and iron transport. The retina can sense increased iron levels, upregulating Hepc after phosphorylation of extracellular signal regulated kinases. Conclusions. These findings indicate that Hepc is essential for retinal iron regulation. In the absence of Hepc, retinal degeneration occurs. Increases in Hepc mRNA levels after intravitreal iron injection combined with Hepc-mediated decreases in iron export from cultured retinal capillary endothelial cells suggest that the retina may use Hepc for its tissue-specific iron regulation. PMID:20811044

  7. Effects of Saikokaryukotsuboreito on Spermatogenesis and Fertility in Aging Male Mice

    PubMed Central

    Zang, Zhi-Jun; Ji, Su-Yun; Zhang, Ya-Nan; Gao, Yong; Zhang, Bin

    2016-01-01

    Background: Aspermia caused by exogenous testosterone limit its usage in late-onset hypogonadism (LOH) patients desiring fertility. Saikokaryukotsuboreito (SKRBT) is reported to improve serum testosterone and relieve LOH-related symptoms. However, it is unclear whether SKRBT affects fertility. We aimed to examine the effects of SKRBT on spermatogenesis and fertility in aging male mice. Methods: Thirty aging male mice were randomly assigned to three groups. Mice were orally administered with phosphate-buffer solution or SKRBT (300 mg/kg, daily) or received testosterone by subcutaneous injections (10 mg/kg, every 3 days). Thirty days later, each male mouse was mated with two female mice. All animals were sacrificed at the end of 90 days. Intratesticular testosterone (ITT) levels, quality of sperm, expression of synaptonemal complex protein 3 (SYCP3), and fertility were assayed. Results: In the SKRBT-treated group, ITT, quality of sperm, and expression of SYCP3 were all improved compared with the control group (ITT: 85.50 ± 12.31 ng/g vs. 74.10 ± 11.45 ng/g, P = 0.027; sperm number: [14.94 ± 4.63] × 106 cells/ml vs. [8.79 ± 4.38] × 106 cells/ml, P = 0.002; sperm motility: 43.16 ± 9.93% vs. 33.51 ± 6.98%, P = 0.015; the number of SYCP3-positive cells/tubule: 77.50 ± 11.01 ng/ml vs. 49.30 ± 8.73 ng/ml, P < 0.001; the expression of SYCP3 protein: 1.23 ± 0.09 vs. 0.84 ± 0.10, P < 0.001), but fertility was not significantly changed (P > 0.05, respectively). In the testosterone-treated group, ITT, quality of sperm, and expression of SYCP3 were markedly lower than the control group (ITT: 59.00 ± 8.67, P = 0.005; sperm number: [4.34 ± 2.45] × 106 cells/ml, P = 0.018; sperm motility: 19.53 ± 7.69%, P = 0.001; the number of SYCP3-positive cells/tubule: 30.00 ± 11.28, P < 0.001; the percentage of SYCP3-positive tubules/section 71.98 ± 8.88%, P = 0.001; the expression of SYCP3 protein: 0.71 ± 0.09, P < 0.001), and fertility was also suppressed (P < 0

  8. Intracellular activities related to in vitro hippocampal sharp waves are altered in CA3 pyramidal neurons of aged mice.

    PubMed

    Moradi-Chameh, H; Peng, J; Wu, C; Zhang, L

    2014-09-26

    Pyramidal neurons in the hippocampal CA3 area interconnect intensively via recurrent axonal collaterals, and such CA3-to-CA3 recurrent circuitry plays important roles in the generation of hippocampal network activities. In particular, the CA3 circuitry is able to generate spontaneous sharp waves (SPWs) when examined in vitro. These in vitro SPWs are thought to result from the network activity of GABAergic inhibitory interneurons as SPW-correlating intracellular activities are featured with strong IPSPs in pyramidal neurons and EPSPs or spikes in GABAergic interneurons. In view of accumulating evidence indicating a decrease in subgroups of hippocampal GABAergic interneurons in aged animals, we test the hypothesis that the intracellular activities related to in vitro SPWs are altered in CA3 pyramidal neurons of aged mice. Hippocampal slices were prepared from adult and aged C57 black mice (ages 3-6 and 24-28months respectively). Population and single-cell activities were examined via extracellular and whole-cell patch-clamp recordings. CA3 SPW frequencies were not significantly different between the slices of adult and aged mice but SPW-correlating intracellular activities featured weaker IPSC components in aged CA3 pyramidal neurons compared to adult neurons. It was unlikely that this latter phenomenon was due to general impairments of GABAergic synapses in the aged CA3 circuitry as evoked IPSC responses and pharmacologically isolated IPSCs were observed in aged CA3 pyramidal neurons. In addition, aged CA3 pyramidal neurons displayed more positive resting potentials and had a higher propensity of burst firing than adult neurons. We postulate that alterations of GABAergic network activity may explain the reduced IPCS contributions to in vitro SPWs in aged CA3 pyramidal neurons. Overall, our present observations are supportive of the notion that excitability of hippocampal CA3 circuitry is increased in aged mice.

  9. Reduced thermal sensitivity and Nav1.8 and TRPV1 channel expression in sensory neurons of aged mice

    PubMed Central

    Wang, Shuying; Davis, Brian M.; Zwick, Melissa; Waxman, Stephen G.; Albers, Kathryn M.

    2010-01-01

    Sensory neurons in aging mammals undergo changes in anatomy, physiology and gene expression that correlate with reduced sensory perception. In this study we compared young and aged mice to identify proteins that might contribute to this loss of sensation. We first show using behavioral testing that thermal sensitivity in aged male and female mice is reduced. Expression of sodium channel (Nav1.8 and Nav1.9) and transient receptor potential vanilloid (TRPV) channels in DRG and peripheral nerves of young and old male mice was then examined. Immunoblotting and RT-PCR assays showed reduced Nav1.8 levels in aged mice. No change was measured in TRPV1 mRNA levels in DRG though TRPV1 protein appeared reduced in the DRG and peripheral nerves. The GFRα3 receptor, which binds the growth factor artemin and is expressed by TRPV1-positive neurons, was also decreased in the DRG of aged animals. These findings indicate that loss of thermal sensitivity in aging animals may result from a decreased level of TRPV1 and Nav1.8 and decreased trophic support that inhibits efficient transport of channel proteins to peripheral afferents. PMID:15979214

  10. Targeting β1-Integrin Signaling Enhances Regeneration in Aged and Dystrophic Muscle in Mice

    PubMed Central

    Rozo, Michelle; Li, Liangji; Fan, Chen-Ming

    2016-01-01

    Interactions between stem cells and their microenvironment, or niche, are essential for stem cell maintenance and function. Our knowledge of the niche for the skeletal muscle stem cell, i.e. the satellite cell (SC), is incomplete. Here we show that β1-integrin is an essential niche molecule that maintains SC homeostasis, and sustains the expansion and self-renewal of this stem cell pool during regeneration. We further show that β1-integrin cooperates with FGF-2, a potent growth factor for SCs, to synergistically activate their common downstream effectors Erk and Akt. Importantly, SCs in aged mice display altered β1-integrin activity and insensitivity to FGF-2. Augmenting β1-integrin activity with a monoclonal antibody restores FGF-2 sensitivity and improves regeneration after experimentally-induced muscle injury. The same treatment also enhances regeneration and function of dystrophic muscles in mdx mice. Therefore, β1-integrin senses the SC niche to maintain responsiveness to FGF-2, and this integrin represents a potential therapeutic target for pathological conditions of the muscle in which the stem cell niche is compromised. PMID:27376575

  11. Increased Aβ pathology in aged Tg2576 mice born to mothers fed a high fat diet.

    PubMed

    Nizari, Shereen; Carare, Roxana O; Hawkes, Cheryl A

    2016-02-25

    Maternal obesity is associated with increased risk of developing diabetes, obesity and premature death in adult offspring. Mid-life diabetes, hypertension and hypercholesterolaemia are risk factors for the development of sporadic Alzheimer's disease (AD). A key pathogenic feature of AD is the accumulation of β-amyloid (Aβ) in the brain. The purpose of this study was to investigate the effect of high fat diet feeding during early life on Aβ pathology in the Tg2576 mouse model of AD. Female mice were fed a standard (C) or high fat (HF) diet before mating and during gestation and lactation. At weaning, male offspring were fed a C diet. Significantly higher levels of guanidine-soluble Aβ and plaque loads were observed in the hippocampi of 11-month old Tg2576 mice born to mothers fed a HF diet. Changes in the extracellular matrix led to increased retention of Aβ within the parenchyma. These data support a role for maternal and gestational health on the health of the aged brain and pathologies associated with AD and may provide a novel target for both the prevention and treatment of AD.

  12. Very slow turnover of beta-cells in aged adult mice.

    PubMed

    Teta, Monica; Long, Simon Y; Wartschow, Lynn M; Rankin, Matthew M; Kushner, Jake A

    2005-09-01

    Although many signaling pathways have been shown to promote beta-cell growth, surprisingly little is known about the normal life cycle of preexisting beta-cells or the signaling pathways required for beta-cell survival. Adult beta-cells have been speculated to have a finite life span, with ongoing adult beta-cell replication throughout life to replace lost cells. However, little solid evidence supports this idea. To more accurately measure adult beta-cell turnover, we performed continuous long-term labeling of proliferating cells with the DNA precursor analog 5-bromo-2-deoxyuridine (BrdU) in 1-year-old mice. We show that beta-cells of aged adult mice have extremely low rates of replication, with minimal evidence of turnover. Although some pancreatic components acquired BrdU label in a linear fashion, only 1 in approximately 1,400 adult beta-cells were found to undergo replication per day. We conclude that adult beta-cells are very long lived.

  13. Age-Dependent Susceptibility to Enteropathogenic Escherichia coli (EPEC) Infection in Mice

    PubMed Central

    Dupont, Aline; Sommer, Felix; Zhang, Kaiyi; Repnik, Urska; Basic, Marijana; Bleich, André; Kühnel, Mark; Bäckhed, Fredrik; Litvak, Yael; Fulde, Marcus; Rosenshine, Ilan; Hornef, Mathias W.

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) represents a major causative agent of infant diarrhea associated with significant morbidity and mortality in developing countries. Although studied extensively in vitro, the investigation of the host-pathogen interaction in vivo has been hampered by the lack of a suitable small animal model. Using RT-PCR and global transcriptome analysis, high throughput 16S rDNA sequencing as well as immunofluorescence and electron microscopy, we characterize the EPEC-host interaction following oral challenge of newborn mice. Spontaneous colonization of the small intestine and colon of neonate mice that lasted until weaning was observed. Intimate attachment to the epithelial plasma membrane and microcolony formation were visualized only in the presence of a functional bundle forming pili (BFP) and type III secretion system (T3SS). Similarly, a T3SS-dependent EPEC-induced innate immune response, mediated via MyD88, TLR5 and TLR9 led to the induction of a distinct set of genes in infected intestinal epithelial cells. Infection-induced alterations of the microbiota composition remained restricted to the postnatal period. Although EPEC colonized the adult intestine in the absence of a competing microbiota, no microcolonies were observed at the small intestinal epithelium. Here, we introduce the first suitable mouse infection model and describe an age-dependent, virulence factor-dependent attachment of EPEC to enterocytes in vivo. PMID:27159323

  14. Increased Aβ pathology in aged Tg2576 mice born to mothers fed a high fat diet

    PubMed Central

    Nizari, Shereen; Carare, Roxana O.; Hawkes, Cheryl A.

    2016-01-01

    Maternal obesity is associated with increased risk of developing diabetes, obesity and premature death in adult offspring. Mid-life diabetes, hypertension and hypercholesterolaemia are risk factors for the development of sporadic Alzheimer’s disease (AD). A key pathogenic feature of AD is the accumulation of β-amyloid (Aβ) in the brain. The purpose of this study was to investigate the effect of high fat diet feeding during early life on Aβ pathology in the Tg2576 mouse model of AD. Female mice were fed a standard (C) or high fat (HF) diet before mating and during gestation and lactation. At weaning, male offspring were fed a C diet. Significantly higher levels of guanidine-soluble Aβ and plaque loads were observed in the hippocampi of 11-month old Tg2576 mice born to mothers fed a HF diet. Changes in the extracellular matrix led to increased retention of Aβ within the parenchyma. These data support a role for maternal and gestational health on the health of the aged brain and pathologies associated with AD and may provide a novel target for both the prevention and treatment of AD. PMID:26911528

  15. Age-related changes in bone structure and strength in female and male BALB/c mice.

    PubMed

    Willinghamm, Mark D; Brodt, Michael D; Lee, Kristen L; Stephens, Abby L; Ye, Jiaxin; Silva, Matthew J

    2010-06-01

    Mice may be useful for studies of skeletal aging, but there are limited data on changes in bone structure and strength over their life span. We obtained bones from female and male BALB/c mice at ages 2, 4, 7, 12, and 20 months and evaluated their structural, densitometric, and mechanical properties. MicroCT of the mid-diaphysis of the femur and radius indicated that during skeletal growth (2-7 months) bone cross-sectional size (area, moment of inertia) increased rapidly; during aging (7-20 months) cortical area was maintained, while moment of inertia continued to increase. Bones from females were smaller than those from males at young ages but not at later ages. Changes in whole-bone stiffness and strength reflected the changes in bone size, with a rapid increase from 2 to 7 months, followed by little or no change. In contrast, energy-to-fracture declined with aging. Cortical tissue mineral density increased during growth and was maintained with aging. MicroCT of trabecular bone revealed age-related changes that were site-dependent. The proximal tibia showed a clear pattern of age-related decline in trabecular BV/TV, with progressive decreases after 4 months in both sexes; lumbar vertebra L5 had more modest age-related declines; in contrast, caudal vertebra Ca7 had increasing BV/TV with aging. Overall, we found no evidence that females had more pronounced age-related deterioration than males. We conclude that bones from aging female and male BALB/c mice exhibit many of the changes seen in humans and are therefore a clinically relevant model for studies of skeletal aging.

  16. Methylene blue improves sensorimotor phenotype and decreases anxiety in parallel with activating brain mitochondria biogenesis in mid-age mice.

    PubMed

    Gureev, Artem P; Syromyatnikov, Mikhail Yu; Gorbacheva, Tatyana M; Starkov, Anatoly A; Popov, Vasily N

    2016-12-01

    Age-related brain dysfunctions are associated with mitochondria malfunctions and increased risk of developing neurodegenerative diseases (ND). Recently, a mitochondria-targeting drug methylene blue has been drawing considerable interest as a potential treatment for ND. We found that aged mice manifested a decrease in physical endurance, spontaneous locomotor activity, and exploration concomitant with an increase in anxiety-related behavior, as compared to adult mice. Treating mice for 60 days with MB slowed down these changes. There were no significant changes in the animals' body weight, oxygen consumption rates, or respiratory quotient index, in adult or aged MB-treated mice. However, MB treatment significantly increased the generation of reactive oxygen species in brain mitochondria. The expression of several genes relevant to mitochondria biogenesis, bioenergetics, and antioxidant defense (NRF1, MTCOX1, TFAM, and SOD2) was greatly suppressed in aged mice; it was restored by MB treatment. It seems plausible that the effects of MB could be mediated by its ability to increase H2O2 production in brain mitochondria, thereby activating Nrf2/ARE signaling pathway and mitochondria biogenesis. Our data and earlier findings support the idea that MB can be an attractive prototype drug for developing safe and efficient gerontoprotective compounds.

  17. Amelioration of age-dependent increase in protein carbonyls of cerebral hemispheres of mice by melatonin and ascorbic acid.

    PubMed

    Dkhar, Preeticia; Sharma, Ramesh

    2011-12-01

    Melatonin secreted by the pineal gland acts as a free radical scavenger besides its role as a hormonal signaling agent. It detoxifies a variety of free radicals and reactive oxygen intermediates including hydroxyl radical, peroxynitrite anion and singlet oxygen. Ascorbic acid (Vitamin C), a water soluble vitamin, is a naturally occurring antioxidant and cofactor in various enzymes. Protein carbonyls are formed as a consequence of the oxidative modification of proteins by reactive oxygen species. Oxidative modification alters the function of protein and is thought to play an important role in the decline of cellular functions during aging. In the present study, the effect of melatonin and ascorbic acid on age-related carbonyl content of cerebral hemispheres in mice was investigated. Protein carbonyls of cerebral hemispheres have been found to be significantly higher in 18-month-old mice as compared to 1-month old mice. Administration of a single dose of melatonin (10 mg/kg body weight) and ascorbic acid (10 mg/kg body weight) intraperitoneally for three consecutive days decreases the carbonyl content in 1- and 18-month-old mice significantly. The present study thus suggests that the formation of protein carbonyls in the cerebral hemispheres of the aging mice can be prevented by the antioxidative effects of melatonin and ascorbic acid that could in turn be beneficial in having health benefits from age-related neurodegenerative diseases.

  18. Telomere shortening leads to earlier age of onset in ALS mice

    PubMed Central

    Linkus, Birgit; Wiesner, Diana; MeΔner, Martina; Karabatsiakis, Alexander; Scheffold, Annika; Rudolph, K. Lenhard; Thal, Dietmar R.; Weishaupt, Jochen H.; Ludolph, Albert C.; Danzer, Karin M.

    2016-01-01

    Telomere shortening has been linked to a variety of neurodegenerative diseases. Recent evidence suggests that reduced telomerase expression results in shorter telomeres in leukocytes from sporadic patients with amyotrophic lateral sclerosis (ALS) compared with healthy controls. Here, we have characterized telomere length in microglia, astroglia and neurons in human post mortem brain tissue from ALS patients and healthy controls. Moreover, we studied the consequences of telomerase deletion in a genetic mouse model for ALS. We found a trend towards longer telomeres in microglia in the brains of ALS patients compared to non-neurologic controls. Knockout of telomerase leading to telomere shortening accelerated the ALS phenotype in SOD1G93A–transgenic mice. Our results suggest that telomerase dysfunction might contribute to the age-related risk for ALS. PMID:26978042

  19. Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice

    PubMed Central

    Stranahan, Alexis M.; Lee, Kim; Becker, Kevin G.; Zhang, Yonqing; Maudsley, Stuart; Martin, Bronwen; Cutler, Roy G.; Mattson, Mark P.

    2009-01-01

    Physical activity preserves cognition in the aging brain, but the mechanisms remain obscure. In order to identify candidate genes and pathways responsible for the preservation of cognitive function by exercise, we trained mice that had been exposed to lifelong running or sedentary lifestyle for 16 months in the hippocampus-dependent water maze. After water maze training, we analyzed the expression of 24,000 genes in the hippocampus using Illumina bead microarray. Runners show greater activation of genes associated with synaptic plasticity and mitochondrial function, and also exhibit significant downregulation of genes associated with oxidative stress and lipid metabolism. Running also modified the effects of learning on the expression of genes involved in cell excitability, energy metabolism, and insulin, MAP kinase and Wnt signaling. These results suggest that the enhancement of cognitive function by lifelong exercise is associated with an altered transcriptional profile following learning. PMID:19070401

  20. Age-Related Instability in Spermatogenic Cell Nuclear and Mitochondrial DNA Obtained from Apex1 Heterozygous Mice

    PubMed Central

    Vogel, Kristine S.; Perez, Marissa; Momand, Jamila R.; Acevedo-Torres, Karina; Hildreth, Kim; Garcia, Rebecca A.; Torres-Ramos, Carlos A.; Ayala-Torres, Sylvette; Prihoda, Thomas J.; McMahan, C. Alex; Walter, Christi A.

    2011-01-01

    The prevalence of spontaneous mutations increases with age in the male germline; consequently, older men have an increased risk of siring children with genetic disease due to de novo mutations. The lacI transgenic mouse can be used to study paternal age effects, and in this system, the prevalence of de novo mutations increases in the male germline at old ages. Mutagenesis is linked with DNA repair capacity, and base excision repair, which can ameliorate spontaneous DNA damage, decreases in nuclear extracts of spermatogenic cells from old mice. Mice heterozygous for a null allele of the Apex1 gene, which encodes apurinic/apyrimidinic endonuclease I (APEN), an essential base excision repair enzyme, display an accelerated increase in spontaneous germline mutagenesis early in life. Here, the consequences of lifelong reduction of APEN on genetic instability in the male germline were examined, for the first time, at middle and old ages. Mutation frequency increased earlier in spermatogenic cells from Apex1+/− mice (by 6 months of age). Nuclear DNA damage increased with age in the spermatogenic lineage for both wild-type and Apex1+/− mice. By old age, mutation frequencies were similar for wild-type and APEN-deficient mice. Mitochondrial genome repair also depends on APEN, and novel analysis of mitochondrial DNA damage revealed an increase in the Apex1+/− spermatogenic cells by middle age. Thus, Apex1 heterozygosity results in accelerated damage to mitochondrial DNA and spontaneous mutagenesis, consistent with an essential role for APEN in maintaining nuclear and mitochondrial DNA integrity in spermatogenic cells throughout life. PMID:21919107

  1. Decreased vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) function in knockout mice affects aging of dopaminergic systems

    PubMed Central

    Hall, F. S.; Itokawa, K.; Schmitt, A.; Moessner, R.; Sora, I.; Lesch, K. P.; Uhl, G. R.

    2013-01-01

    Dopamine (DA) is accumulated and compartmentalized by the dopamine transporter (DAT; SLC3A6) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2). These transporters work at the plasma and vesicular membranes of dopaminergic neurons, respectively, and thus regulate levels of DA in neuronal compartments that include the extravesicular cytoplasmic compartment. DA in this compartment has been hypothesized to contribute to oxidative damage that can reduce the function of dopaminergic neurons in aging brains and may contribute to reductions in dopaminergic neurochemical markers, locomotor behavior and responses to dopaminergic drugs that are found in aged animals. The studies reported here examined aged mice with heterozygous deletions of VMAT2 or of DAT, which each reduce transporter expression to about 50% of levels found in wild-type (WT) mice. Aged mice displayed reduced locomotor responses under a variety of circumstances, including in response to locomotor stimulants, as well as changes in monoamine levels and metabolites in a regionally dependent manner. Several effects of aging were more pronounced in heterozygous VMAT2 knockout (KO) mice, including aging induced reductions in locomotion and reduced locomotor responses to cocaine. By contrast, some effects of aging were reduced or not observed in heterozygous DAT KO mice. These findings support the idea that altered DAT and VMAT2 expression affect age-related changes in dopaminergic function. These effects are most likely mediated by alterations in DA compartmentalization, and might be hypothesized to be more exacerbated by other factors that affect the metabolism of cytosolic DA. PMID:23978383

  2. Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice.

    PubMed

    Jorba, Ignasi; Menal, Maria José; Torres, Marta; Gozal, David; Piñol-Ripoll, Gerard; Colell, Anna; Montserrat, Josep M; Navajas, Daniel; Farré, Ramon; Almendros, Isaac

    2017-03-06

    Recent evidence suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer´s disease (AD), with the latter promoting alterations in brain tissue stiffness, a feature of ageing. Here, we assessed the effects of age and intermittent hypoxia (IH) on brain tissue stiffness in a mouse model of OSA. Two-month-old and 18-month-old mice (N=10 each) were subjected to IH (20% O2 40s - 6% O2 20s) for 8 weeks (6h/day). Corresponding control groups for each age were kept under normoxic conditions in room air (RA). After sacrifice, the brain was excised and 200-micron coronal slices were cut with a vibratome. Local stiffness of the cortex and hippocampus were assessed in brain slices placed in an Atomic Force Microscope. For both brain regions, the Young's modulus (E) in each animal was computed as the average values from 9 force-indentation curves. Cortex E mean (±SE) values were 442±122Pa (RA) and 455±120 (IH) for young mice and 433±44 (RA) and 405±101 (IH) for old mice. Hippocampal E values were 376±62 (RA) and 474±94 (IH) for young mice and 486±93 (RA) and 521±210 (IH) for old mice. For both cortex and hippocampus, 2-way ANOVA indicated no statistically significant effects of age or challenge (IH vs. RA) on E values. Thus, neither chronic IH mimicking OSA nor ageing up to late middle age appear to modify local brain tissue stiffness in otherwise healthy mice.

  3. Natural History of Age-Related Retinal Lesions That Precede AMD in Mice Fed High or Low Glycemic Index Diets

    PubMed Central

    Weikel, Karen A.; FitzGerald, Paul; Shang, Fu; Caceres, M. Andrea; Bian, Qingning; Handa, James T.; Stitt, Alan W.

    2012-01-01

    Purpose. Epidemiologic data indicate that people who consume low glycemic index (GI) diets are at reduced risk for the onset and progression of age-related macular degeneration (AMD). The authors sought corroboration of this observation in an animal model. Methods. Five- and 16-month-old C57BL/6 mice were fed high or low GI diets until they were 17 and 23.5 months of age, respectively. Retinal lesions were evaluated by transmission electron microscopy, and advanced glycation end products (AGEs) were evaluated by immunohistochemistry. Results. Retinal lesions including basal laminar deposits, loss of basal infoldings, and vacuoles in the retinal pigment epithelium were more prevalent in the 23.5- than in the 17-month-old mice. Within each age group, consumption of a high GI diet increased the risk for lesions and the risk for photoreceptor abnormalities and accumulation of AGEs. Conclusions. Consuming high GI diets accelerates the appearance of age-related retinal lesions that precede AMD in mice, perhaps by increasing the deposition of toxic AGEs in the retina. The data support the hypothesis that consuming lower GI diets, or simulation of their effects with nutraceuticals or drugs, may protect against AMD. The high GI-fed C57BL/6 mouse is a new model of age-related retinal lesions that precede AMD and mimic the early stages of disease and may be useful for drug discovery. PMID:22205601

  4. Parallel declines in cognition, motivation, and locomotion in aging mice: association with immune gene upregulation in the medial prefrontal cortex

    PubMed Central

    Bordner, Kelly A.; Kitchen, Robert R.; Carlyle, Becky; George, Elizabeth D.; Mahajan, Milind C.; Mane, Shrikant M.; Taylor, Jane R.; Simen, Arthur A.

    2013-01-01

    Aging in humans is associated with parallel changes in cognition, motivation, and motoric performance. Based on the human aging literature, we hypothesized that this constellation of age-related changes is mediated by the medial prefrontal cortex and that it would be observed in aging mice. Toward this end, we performed detailed assessments of cognition, motivation, and motoric behavior in aging mice. We assessed behavioral and cognitive performance in C57Bl/6 mice aged 6, 18, and 24 months, and followed this with microarray analysis of tissue from the medial prefrontal cortex and analysis of serum cytokine levels. Multivariate modeling of these data suggested that the age-related changes in cognition, motivation, motor performance, and prefrontal immune gene expression were highly correlated. Peripheral cytokine levels were also correlated with these variables, but less strongly than measures of prefrontal immune gene upregulation. To determine whether the observed immune gene expression changes were due to prefrontal microglial cells, we isolated CD11b-positive cells from the prefrontal cortex and subject them to next-generation RNA sequencing. Many of the immune changes present in whole medial prefrontal cortex were enriched in this cell population. These data suggest that, as in humans, cognition, motivation, and motoric performance in the mouse change together with age and are strongly associated with CNS immune gene upregulation. PMID:21453768

  5. Regenerative hair waves in aging mice and extra-follicular modulators Follistatin, Dkk1 and Sfrp4

    PubMed Central

    Chen, Chih-Chiang; Murray, Philip J.; Jiang, Ting Xin; Plikus, Maksim V; Chang, Yun-Ting; Lee, Oscar K.; Widelitz, Randall B.; Chuong, Cheng Ming

    2014-01-01

    Hair cycling is modulated by factors both intrinsic and extrinsic to hair follicles. Cycling defects lead to conditions such as aging associated alopecia. Recently we demonstrated that mouse skin exhibits regenerative hair waves, reflecting a coordinated regenerative behavior in follicle populations. Here, we use this model to explore the regenerative behavior of aging mouse skin. Old mice (>18 months) tracked over several months show that with progressing age hair waves slow down, wave propagation becomes restricted, and hair cycle domains fragment into smaller domains. Transplanting aged donor mouse skin to a young host can restore donor cycling within a 3mm range of the interface, suggesting that changes are due to extra-cellular factors. Therefore, hair stem cells in aged skin can be re-activated. Molecular studies show that extra-follicular modulators Bmp2, Dkk1, and Sfrp4 increase in early anagen. Further, we identify follistatin as an extra-follicular modulator which is highly expressed in late telogen and early anagen. Indeed follistatin induces hair wave propagation and its level decreases in aging mice. We present an excitable medium model to simulate the cycling behavior in aging mice and illustrate how the inter-organ macro-environment can regulate the aging process by integrating both “activator” and “inhibitor” signals. PMID:24618599

  6. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice.

    PubMed

    Stout, Michael B; Tchkonia, Tamara; Pirtskhalava, Tamar; Palmer, Allyson K; List, Edward O; Berryman, Darlene E; Lubbers, Ellen R; Escande, Carlos; Spong, Adam; Masternak, Michal M; Oberg, Ann L; LeBrasseur, Nathan K; Miller, Richard A; Kopchick, John J; Bartke, Andrzej; Kirkland, James L

    2014-07-01

    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when