Sample records for aged samp8 mice

  1. Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders.

    PubMed

    Poon, H Fai; Farr, Susan A; Thongboonkerd, Visith; Lynn, Bert C; Banks, William A; Morley, John E; Klein, Jon B; Butterfield, D Allan

    2005-01-01

    Free radical-mediated damage to neuronal membrane components has been implicated in the etiology of Alzheimer's disease (AD) and aging. The senescence accelerated prone mouse strain 8 (SAMP8) exhibits age-related deterioration in memory and learning along with increased oxidative markers. Therefore, SAMP8 is a suitable model to study brain aging and, since aging is the major risk factor for AD and SAMP8 exhibits many of the biochemical findings of AD, perhaps as a model for and the early phase of AD. Our previous studies reported higher oxidative stress markers in brains of 12-month-old SAMP8 mice when compared to that of 4-month-old SAMP8 mice. Further, we have previously shown that injecting the mice with alpha-lipoic acid (LA) reversed brain lipid peroxidation, protein oxidation, as well as the learning and memory impairments in SAMP8 mice. Recently, we reported the use of proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. In order to understand how LA reverses the learning and memory deficits of aged SAMP8 mice, in the current study, we used proteomics to compare the expression levels and specific carbonyl levels of proteins in brains from 12-month-old SAMP8 mice treated or not treated with LA. We found that the expressions of the three brain proteins (neurofilament triplet L protein, alpha-enolase, and ubiquitous mitochondrial creatine kinase) were increased significantly and that the specific carbonyl levels of the three brain proteins (lactate dehydrogenase B, dihydropyrimidinase-like protein 2, and alpha-enolase) were significantly decreased in the aged SAMP8 mice treated with LA. These findings suggest that the improved learning and memory observed in LA-injected SAMP8 mice may be related to the restoration of the normal condition of specific proteins in aged SAMP8 mouse brain. Moreover, our current study implicates neurofilament triplet L protein, alpha-enolase, ubiquitous mitochondrial

  2. Shortened estrous cycle length, increased FSH levels, FSH variance, oocyte spindle aberrations, and early declining fertility in aging senescence-accelerated mouse prone-8 (SAMP8) mice: concomitant characteristics of human midlife female reproductive aging.

    PubMed

    Bernstein, Lori R; Mackenzie, Amelia C L; Kraemer, Duane C; Morley, John E; Farr, Susan; Chaffin, Charles L; Merchenthaler, István

    2014-06-01

    Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.

  3. Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence.

    PubMed

    Derave, Wim; Eijnde, Bert O; Ramaekers, Monique; Hespel, Peter

    2005-07-01

    Animal models are valuable research tools towards effective prevention of sarcopenia and towards a better understanding of the mechanisms underlying skeletal muscle aging. We investigated whether senescence-accelerated mouse (SAM) strains provide valid models for skeletal muscle aging studies. Male senescence-prone mice SAMP6 and SAMP8 were studied at age 10, 25 and 60 weeks and compared with senescence-resistant strain, SAMR1. Soleus and EDL muscles were tested for in vitro contractile properties, phosphocreatine content, muscle mass and fiber-type distribution. Declined muscle mass and contractility were observed at 60 weeks, the differences being more pronounced in SAMP8 than SAMP6 and more pronounced in soleus than EDL. Likewise, age-related decreases in muscle phosphocreatine content and type-II fiber size were most pronounced in SAMP8 soleus. In conclusion, typical features of muscular senescence occur at relatively young age in SAMP8 and nearly twice as fast as compared with other models. We suggest that soleus muscles of SAMP8 mice provide a cost-effective model for muscular aging studies.

  4. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice.

    PubMed

    Zhan, Gaofeng; Yang, Ning; Li, Shan; Huang, Niannian; Fang, Xi; Zhang, Jie; Zhu, Bin; Yang, Ling; Yang, Chun; Luo, Ailin

    2018-06-10

    Alzheimer's disease is characterized by cognitive dysfunction and aging is an important predisposing factor; however, the pathological and therapeutic mechanisms are not fully understood. Recently, the role of gut microbiota in Alzheimer's disease has received increasing attention. The cognitive function in senescence-accelerated mouse prone 8 (SAMP8) mice was significantly decreased and the Chao 1 and Shannon indices, principal coordinates analysis, and principal component analysis results were notably abnormal compared with that of those in senescence-accelerated mouse resistant 1 (SAMR1) mice. Moreover, 27 gut bacteria at six phylogenetic levels differed between SAMP8 and SAMR1 mice. In a separate study, we transplanted fecal bacteria from SAMP8 or SAMR1 mice into pseudo germ-free mice. Interestingly, the pseudo germ-free mice had significantly lower cognitive function prior to transplant. Pseudo germ-free mice that received fecal bacteria transplants from SAMR1 mice but not from SAMP8 mice showed improvements in behavior and in α-diversity and β-diversity indices. In total, 14 bacteria at six phylogenetic levels were significantly altered by the gut microbiota transplant. These results suggest that cognitive dysfunction in SAMP8 mice is associated with abnormal composition of the gut microbiota. Thus, improving abnormal gut microbiota may provide an alternative treatment for cognitive dysfunction and Alzheimer's disease.

  5. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions.

    PubMed

    Akiguchi, Ichiro; Pallàs, Mercè; Budka, Herbert; Akiyama, Haruhiko; Ueno, Masaki; Han, Jingxian; Yagi, Hideo; Nishikawa, Tomohumi; Chiba, Yoichi; Sugiyama, Hiroshi; Takahashi, Ryoya; Unno, Keiko; Higuchi, Keiichi; Hosokawa, Masanori

    2017-08-01

    Senescence accelerated mice P8 (SAMP8) show significant age-related deteriorations in memory and learning ability in accordance with early onset and rapid advancement of senescence. Brains of SAMP8 mice reveal an age-associated increase of PAS-positive granular structures in the hippocampal formation and astrogliosis in the brain stem and hippocampus. A spongy degeneration in the brain stem appears at 1 month of age and reaches a maximum at 4-8 months. In addition, clusters of activated microglia also appear around the vacuoles in the brain stem. β/A4(Aβ) protein-like immunoreactive granular structures are observed in various regions and increase in number markedly with age. Other age-associated histological changes include cortical atrophy, neuronal cell loss in locus coeruleus and lateral tegmental nuclei, intraneuronal accumulation of lipopigments in Purkinje cells and eosinophilic inclusion bodies in thalamic neurons. A blood-brain barrier dysfunction and astrogliosis are also prominent with advancing age in the hippocampus. These changes are generally similar to the pathomorphology of aging human brains and characterized by their association with some specific glioneuronal reactions. As for the hallmarks of Alzheimer brains, tau morphology has not yet been confirmed regardless of the age-related increase in phosphorylated tau in SAMP8 mice brains, but early age-related Aβ deposition in the hippocampus has recently been published. SAMP8 mice are, therefore, not only a senescence-accelerated model but also a promising model for Alzheimer's disease and other cognitive disorders. © 2017 Japanese Society of Neuropathology.

  6. Duration-dependent effects of the bite-raised condition on hippocampal function in SAMP8 mice.

    PubMed

    Arakawa, Yoko; Ichihashi, Yukiko; Iinuma, Mitsuo; Tamura, Yasuo; Iwaku, Fumihiko; Kubo, Kin-Ya

    2007-11-01

    We evaluated the effect of the duration of occlusal disharmony induced chronic stress on hippocampal function by examining spatial memory in the Morris water maze and on the number of hippocampal neurons in aged senescence-accelerated prone (SAMP8) mice. The bite of SAMP8 mice was raised 0.1 mm using dental adhesive. Groups of mice were tested in the Morris water maze 8, 11, or 22 d after raising the bite. The results indicated that the longer the duration of the bite-raised condition, the greater the impairment in spatial learning ability and the greater the decrease in the number of neurons in the hippocampal CA3 subfield. Thus, behavioral and morphologic deficits induced by the bite-raised condition in aged SAMP8 mice are influenced by the duration of the occlusal disharmony.

  7. Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice.

    PubMed

    Tong, Jing-Jing; Chen, Gui-Hai; Wang, Fang; Li, Xue-Wei; Cao, Lei; Sui, Xu; Tao, Fei; Yan, Wen-Wen; Wei, Zhao-Jun

    2015-05-01

    The administration of maintaining the homeostasis of insulin/insulin-like growth factor 1 (IGF-1) signaling and/or glucose metabolism may reverse brain aging. In the present study, we investigated the effect of acarbose, an inhibitor of α-glucosidase, on age-related behavioral and biochemical changes. The SAMP8 mice were randomly divided into old control group and acarbose-treatment group. The mice in the acarbose group were administered acarbose (20 mg/kg/d, dissolved in drinking water) orally from 3 to 9 months of age when a new group of 3-month-old mice was added as young controls. The results showed that the aged controls exhibited declines in sensorimotor ability, open field anxiety, spatial and non-spatial memory abilities, decreased serum insulin levels, increased IGF-1 receptor and synaptotagmin 1 (Syt1) levels and decreased insulin receptor, brain-derived neurotrophic factor (BDNF) and syntaxin 1 (Stx1) levels in the hippocampal layers. The age-related behavioral deficits correlated with the serological and histochemical data. Chronic acarbose treatment relieved these age-related changes, especially with respect to learning and memory abilities. This protective effect of acarbose on age-related behavioral impairments might be related to changes in the insulin system and the levels of BDNF, IGF-1R, and the pre-synaptic proteins Syt1 and Stx1. In conclusion, long-term treatment with acarbose ameliorated the behavioral deficits and biochemical changes in old SAMP8 mice and promoted successful aging. This study provides insight into the potential of acarbose for the treatment of brain aging. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice.

    PubMed

    Farr, Susan A; Poon, H Fai; Dogrukol-Ak, Dilek; Drake, Jeniffer; Banks, William A; Eyerman, Edward; Butterfield, D Allan; Morley, John E

    2003-03-01

    Oxidative stress may play a crucial role in age-related neurodegenerative disorders. Here, we examined the ability of two antioxidants, alpha-lipoic acid (LA) and N-acetylcysteine (NAC), to reverse the cognitive deficits found in the SAMP8 mouse. By 12 months of age, this strain develops elevated levels of Abeta and severe deficits in learning and memory. We found that 12-month-old SAMP8 mice, in comparison with 4-month-old mice, had increased levels of protein carbonyls (an index of protein oxidation), increased TBARS (an index of lipid peroxidation) and a decrease in the weakly immobilized/strongly immobilized (W/S) ratio of the protein-specific spin label MAL-6 (an index of oxidation-induced conformational changes in synaptosomal membrane proteins). Chronic administration of either LA or NAC improved cognition of 12-month-old SAMP8 mice in both the T-maze footshock avoidance paradigm and the lever press appetitive task without inducing non-specific effects on motor activity, motivation to avoid shock, or body weight. These effects probably occurred directly within the brain, as NAC crossed the blood-brain barrier and accumulated in the brain. Furthermore, treatment of 12-month-old SAMP8 mice with LA reversed all three indexes of oxidative stress. These results support the hypothesis that oxidative stress can lead to cognitive dysfunction and provide evidence for a therapeutic role for antioxidants.

  9. Cognitive-enhancing effects of hydrolysate of polygalasaponin in SAMP8 mice*

    PubMed Central

    Xu, Pan; Xu, Shu-ping; Wang, Ke-zhu; Lu, Cong; Zhang, Hong-xia; Pan, Rui-le; Qi, Chang; Yang, Yan-yan; Li, Ying-hui; Liu, Xin-min

    2016-01-01

    Objectives: The aim of the study is to evaluate the cognitive-enhancing effects of hydrolysate of polygalasaponin (HPS) on senescence accelerate mouse P8 (SAMP8) mice, an effective Alzheimer’s disease (AD) model, and to research the relevant mechanisms. Methods: The cognitive-enhancing effects of HPS on SAMP8 mice were assessed using Morris water maze (MWM) and step-through passive avoidance tests. Then N-methyl-D-aspartate (NMDA) receptor subunit expression for both the cortex and hippocampus of mice was observed using Western blotting. Results: HPS (25 and 50 mg/kg) improved the escape rate and decreased the escape latency and time spent in the target quadrant for the SAMP8 mice in the MWM after oral administration of HPS for 10 d. Moreover, it decreased error times in the passive avoidance tests. Western blotting showed that HPS was able to reverse the levels of NMDAR1 and NMDAR2B expression in the cortex or hippocampus of model mice. Conclusions: The present study suggested that HPS can improve cognitive deficits in SAMP8 mice, and this mechanism might be associated with NMDA receptor (NMDAR)-related pathways. PMID:27381727

  10. Occlusal disharmony induces spatial memory impairment and hippocampal neuron degeneration via stress in SAMP8 mice.

    PubMed

    Kubo, Kin-ya; Yamada, Yukiko; Iinuma, Mitsuo; Iwaku, Fumihiko; Tamura, Yasuo; Watanabe, Kazuko; Nakamura, Hiroyuki; Onozuka, Minoru

    2007-03-06

    We examined the effect of occlusal disharmony in senescence-accelerated (SAMP8) mice on plasma corticosterone levels, hippocampal neuron number, and spatial performance in the water maze. The bite-raised condition was associated with an accelerated age-related decline in spatial memory, increased plasma corticosterone levels, and a decreased number of neurons in the hippocampal CA3 region. The findings suggest that the bite-raised condition in aged SAMP8 mice induces hippocampal neuron loss, thereby leading to senile memory deficits.

  11. Fisetin Reduces the Impact of Aging on Behavior and Physiology in the Rapidly Aging SAMP8 Mouse.

    PubMed

    Currais, Antonio; Farrokhi, Catherine; Dargusch, Richard; Armando, Aaron; Quehenberger, Oswald; Schubert, David; Maher, Pamela

    2018-03-02

    Alzheimer's disease (AD) is rarely addressed in the context of aging even though there is an overlap in pathology. We previously used a phenotypic screening platform based on old age-associated brain toxicities to identify the flavonol fisetin as a potential therapeutic for AD and other age-related neurodegenerative diseases. Based on earlier results with fisetin in transgenic AD mice, we hypothesized that fisetin would be effective against brain aging and cognitive dysfunction in rapidly aging senescence-accelerated prone 8 (SAMP8) mice, a model for sporadic AD and dementia. An integrative approach was used to correlate protein expression and metabolite levels in the brain with cognition. It was found that fisetin reduced cognitive deficits in old SAMP8 mice while restoring multiple markers associated with impaired synaptic function, stress, and inflammation. These results provide further evidence for the potential benefits of fisetin for the treatment of age-related neurodegenerative diseases.

  12. The senescence accelerated mouse prone 8 (SAMP8): A novel murine model for cardiac aging.

    PubMed

    Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Babu, Sahana Suresh; Palaniyandi, Suresh S; Watanabe, Kenichi; Cooke, John P; Thandavarayan, Rajarajan A

    2017-05-01

    Because cardiovascular disease remains the major cause of mortality and morbidity world-wide, there remains a compelling need for new insights and novel therapeutic avenues. In this regard, the senescence-accelerated mouse prone 8 (SAMP8) line is a particularly good model for studying the effects of aging on cardiovascular health. Accumulating evidence suggests that this model may shed light on age-associated cardiac and vascular dysfunction and disease. These animals manifest evidence of inflammation, oxidative stress and adverse cardiac remodeling that may recapitulate processes involved in human disease. Early alterations in oxidative damage promote endoplasmic reticulum stress to trigger apoptosis and cytokine production in this genetically susceptible mouse strain. Conversely, pharmacological treatments that reduce inflammation and oxidative stress improve cardiac function in these animals. Therefore, the SAMP8 mouse model provides an exciting opportunity to expand our knowledge of aging in cardiovascular disease and the potential identification of novel targets of treatment. Herein, we review the previous studies performed in SAMP8 mice that provide insight into age-related cardiovascular alterations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    PubMed

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.

  14. Extra virgin olive oil improves learning and memory in SAMP8 mice.

    PubMed

    Farr, Susan A; Price, Tulin O; Dominguez, Ligia J; Motisi, Antonio; Saiano, Filippo; Niehoff, Michael L; Morley, John E; Banks, William A; Ercal, Nuran; Barbagallo, Mario

    2012-01-01

    Polyphenols are potent antioxidants found in extra virgin olive oil (EVOO); antioxidants have been shown to reverse age- and disease-related learning and memory deficits. We examined the effects of EVOO on learning and memory in SAMP8 mice, an age-related learning/memory impairment model associated with increased amyloid-β protein and brain oxidative damage. We administered EVOO, coconut oil, or butter to 11 month old SAMP8 mice for 6 weeks. Mice were tested in T-maze foot shock avoidance and one-trial novel object recognition with a 24 h delay. Mice which received EVOO had improved acquisition in the T-maze and spent more time with the novel object in one-trial novel object recognition versus mice which received coconut oil or butter. Mice that received EVOO had improve T-maze retention compared to the mice that received butter. EVOO increased brain glutathione levels suggesting reduced oxidative stress as a possible mechanism. These effects plus increased glutathione reductase activity, superoxide dismutase activity, and decreased tissue levels of 4-hydroxynoneal and 3-nitrotyrosine were enhanced with enriched EVOO (3 × and 5 × polyphenols concentration). Our findings suggest that EVOO has beneficial effects on learning and memory deficits found in aging and diseases, such as those related to the overproduction of amyloid-β protein, by reversing oxidative damage in the brain, effects that are augmented with increasing concentrations of polyphenols in EVOO.

  15. Reduced mastication stimulates impairment of spatial memory and degeneration of hippocampal neurons in aged SAMP8 mice.

    PubMed

    Onozuka, M; Watanabe, K; Mirbod, S M; Ozono, S; Nishiyama, K; Karasawa, N; Nagatsu, I

    1999-04-24

    The involvement of reduced mastication in senile dementia was evaluated by examining the effect of cutting off the upper molars (molarless) on spatial memory and numbers of hippocampal neurons in aged SAMP8 mice. Molarless mice showed a decrease in both learning ability in a water maze and neuron density in the hippocampal CA1 region compared with control mice. These changes increased the longer the molarless condition persisted. The data suggest a possible link between reduced mastication and hippocampal neuron loss that may be one risk factor for senile impairment of spatial memory. Copyright 1999 Elsevier Science B.V.

  16. Effects of aging and dietary antler supplementation on the calcium-regulating hormones and bone status in ovariectomized SAMP8 mice.

    PubMed

    Chen, Chun-Chi; Liu, Mei-Hui; Wang, Ming-Fu; Chen, Cheng-Chin

    2007-12-31

    This study was conducted to investigate the effects of aging and long-term dietary antler supplementation on the calcium-regulating hormones and bone status in ovariectomized (Ovx) SAMP8 mice. The female SAMP8 mice were divided into four groups (in each group n = 6), Ovx or sham operated at the age of 2 months, and fed with 0.2% antler containing diet or control diet from the age of 2.5 months. The samples were collected at the age of 3, 6, 9, 12, and 15 months, respectively, for physicochemical analyses, biochemical analyses, and the determination of hormones by radioimmunoassay. The results showed that plasma calcium (Ca) concentrations were maintained in a narrow range in all groups throughout the whole experimental period. With aging and/or ovariectomy, plasma parathyroid hormone (PTH) and 1,25-dihydroxycholecalciferol (1,25-(OH)2-D3) levels increased, and plasma phosphorus (P) and calcitonin (CT) levels decreased, and the femoral bone densities and Ca contents increased during the earlier stage, and then decreased gradually in all groups. Plasma PTH and 1,25-(OH)2-D3 levels in the Ovx mice were significantly higher than those in the intact mice, and plasma P concentrations, plasma CT levels, femoral bone densities, and femoral Ca contents in the Ovx mice were significantly lower than those in the intact mice. In addition, the decreases of plasma P levels, plasma CT levels, femoral bone densities, and femoral Ca contents, and the increases of plasma PTH levels were moderated by antler administration in both Ovx and intact mice. However, there was no effect of the dietary antler supplementation on the plasma 1,25-(OH)2-D3 levels in the female mice. It is concluded that prolonged dietary antler supplementation has important positive effects on bone loss with age and/ or ovarian function deficiency.

  17. A(1)H NMR-based metabonomic study on the SAMP8 and SAMR1 mice and the effect of electro-acupuncture.

    PubMed

    Qiao-feng, Wu; Ling-ling, Guo; Shu-guang, Yu; Qi, Zhang; Sheng-feng, Lu; Fang, Zeng; Hai-yan, Yin; Yong, Tang; Xian-zhong, Yan

    2011-10-01

    A (1)H NMR-based metabonomic method was used to investigate the metabolic change of plasma in senescence-prone 8 (SAMP8) mice before and after electro-acupuncture (EA). Sixteen SAMP8 male mice (aged 8 months) were randomly divided into model group and acupuncture treatment group while the later group received EA treatment for 21 days. Eight senescence-resistant 1 (SAMR1) mice were used as the control group. Morris water maze was used to evaluate the effects of EA. All mice plasma samples obtained from different groups were analyzed by using 600 MHz (1)H nuclear magnetic resonances ((1)H NMR) spectroscopy. The data sets were analyzed by Principal Components Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) to discriminate the key plasma metabolites among different groups. Results indicated that both the escape and probe tasks of SAMP8 could be improved by EA treatment. Metabonomic study showed that SAMR1 and SAMP8 were separated clearly in both CPMG_OSC_PLS and LED _OSC_PLS score plots. Interestingly, samples obtained from EA group were distributed closely to SAMR1 group in CPMG_OSC_PLS score plot, but away from SAMP8 group in LED_OSC_PLS score plot. Corresponding loading plots showed that much less lactate was seen in SAMP8 mice plasma. Other changes including higher levels of dimethylamine (DMA) Choline and α-glucose but lower levels of leucine/isoleucine, HDL, LDL/VLDL, 3-Hydroxybutyrate (3-HB), and Trimethylamine N-oxide (TMAO) were observed in the SAMP8 mice plasma than in the SAMR1. After EA treatment, the levels of lactate, DMA, choline and TMAO were improved. Results of this work can provide valuable clues to the understanding of the metabolic changes in the senile impairment of mice. It is also hoped that the methodology can be used in evaluating the effects of EA and understanding the underlying acupuncture mechanism in treating neurodegenerative diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The senescence-accelerated mouse prone-8 (SAM-P8) oxidative stress is associated with upregulation of renal NADPH oxidase system.

    PubMed

    Baltanás, Ana; Solesio, Maria E; Zalba, Guillermo; Galindo, María F; Fortuño, Ana; Jordán, Joaquín

    2013-12-01

    Herein, we investigate whether the NADPH oxidase might be playing a key role in the degree of oxidative stress in the senescence-accelerated mouse prone-8 (SAM-P8). To this end, the activity and expression of the NADPH oxidase, the ratio of glutathione and glutathione disulfides (GSH/GSSG), and the levels of malonyl dialdehyde (MDA) and nitrotyrosine (NT) were determined in renal tissue from SAM-P8 mice at the age of 1 and 6 months. The senescence-accelerated-resistant mouse (SAM-R1) was used as control. At the age of 1 month, NADPH oxidase activity and Nox2 protein expression were higher in SAM-P8 than in SAM-R1 mice. However, we found no differences in the GSH/GSSG ratio, MDA, NT, and Nox4 levels between both groups of animals. At the age of 6 months, SAM-R1 mice in comparison to SAM-P8 mice showed an increase in NADPH oxidase activity, which is associated with higher levels of NT and increased Nox4 and Nox2 expression levels. Furthermore, we found oxidative stress hallmarks including depletion in GSH/GSSG ratio and increase in MDA levels in the kidney of SAM-P8 mice. Finally, NADPH oxidase activity positively correlated with Nox2 expression in all the animals (r = 0.382, P < 0.05). Taken together, our data allow us to suggest that an increase in NADPH oxidase activity might be an early hallmark to predict future oxidative stress in renal tissue during the aging process that takes place in SAM-P8 mice.

  19. Administration of melatonin in drinking water promotes the phase advance of light-dark cycle in senescence-accelerated mice, SAMR1 but not SAMP8.

    PubMed

    Asai, M; Ikeda, M; Akiyama, M; Oshima, I; Shibata, S

    2000-09-08

    We analyzed effects of aging on behavioral rhythms in the mouse showing senescence acceleration, SAMP8 strains. The free-running rhythms had longer free-running periods (tau) in SAMP8 than in the control strain (SAMR1). Drinking of melatonin promoted the adaptation to advanced LD in SAMR1 but not in SAMP8, although both strains exhibited melatonin MT1 and MT2 receptors. The present results suggest that melatonin promotes the adaptation to advanced LD cycles in normal aging mice.

  20. The Protective Effect of Antarctic Krill Oil on Cognitive Function by Inhibiting Oxidative Stress in the Brain of Senescence-Accelerated Prone Mouse Strain 8 (SAMP8) Mice.

    PubMed

    Li, Qian; Wu, Fengjuan; Wen, Min; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming

    2018-02-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder, and oxidative stress plays a vital role in its progression. Antarctic krill oil (AKO) is rich in polyunsaturated fatty acids, which has various biological activities, such as improving insulin sensitivity, alleviating inflammation and ameliorating oxidative stress. In this study, the protective effect of AKO against AD were investigated in senescence-accelerated prone mouse strain 8 (SAMP8) mice. Results showed that treatment with AKO could effectively ameliorate learning and memory deficits and ease the anxiety in SAMP8 mice by Morris water maze, Barnes maze test and open-field test. Further analysis indicated that AKO might reduce β-amyloid (Aβ) accumulation in hippocampus through decreasing the contents of malondialdehyde (MDA) and 7,8-dihydro-8-oxoguanine (8-oxo-G), increasing the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the brain of SAMP8 mice. The results of Morris water maze, Barnes maze test and open-field test indicated that Antarctic krill oil (AKO) improved the cognitive function and anxiety of SAMP8 mice. AKO reduced the Aβ 42 level in hippocampus of SAMP8 mice. AKO ameliorated oxidative stress in brain rather than in serum and liver of SAMP8 mice. © 2018 Institute of Food Technologists®.

  1. Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer's disease: an age-related selective uptake with reversal of learning impairment.

    PubMed

    Banks, William A; Farr, Susan A; Morley, John E; Wolf, Kathy M; Geylis, Valeria; Steinitz, Michael

    2007-08-01

    Amyloid beta protein (Abeta) levels are elevated in the brain of Alzheimer's disease patients. Anti-Abeta antibodies can reverse the histologic and cognitive impairments in mice which overexpress Abeta. Passive immunization appears safer than vaccination and treatment of patients will likely require human rather than xenogenic antibodies. Effective treatment will likely require antibody to cross the blood-brain barrier (BBB). Unfortunately, antibodies typically cross the BBB very poorly and accumulate less well in brain than even albumin, a substance nearly totally excluded from the brain. We compared the ability of two anti-Abeta human monoclonal IgM antibodies, L11.3 and HyL5, to cross the BBB of young CD-1 mice to that of young and aged SAMP8 mice. The SAMP8 mouse has a spontaneous mutation that induces an age-related, Abeta-dependent cognitive deficit. There was preferential uptake of intravenously administered L11.3 in comparison to HyL5, albumin, and a control human monoclonal IgM (RF), especially by hippocampus and olfactory bulb in aged SAMP8 mice. Injection of L11.3 into the brains of aged SAMP8 mice reversed both learning and memory impairments in aged SAMP8 mice, whereas IgG and IgM controls were ineffective. Pharmacokinetic analysis predicted that an intravenous dose 1000 times higher than the brain injection dose would reverse cognitive impairments. This predicted intravenous dose reversed the impairment in learning, but not memory, in aged SAMP8 mice. In conclusion, an IgM antibody was produced that crosses the BBB to reverse cognitive impairment in a murine model of Alzheimer's disease.

  2. Neuroendocrine immunomodulation network dysfunction in SAMP8 mice and PrP-hAβPPswe/PS1ΔE9 mice: potential mechanism underlying cognitive impairment

    PubMed Central

    Wang, Jian-hui; Cheng, Xiao-rui; Zhang, Xiao-rui; Wang, Tong-xing; Xu, Wen-jian; Li, Fei; Liu, Feng; Cheng, Jun-ping; Bo, Xiao-chen; Wang, Sheng-qi; Zhou, Wen-xia; Zhang, Yong-xiang

    2016-01-01

    Senescence-accelerated mouse prone 8 strain (SAMP8) and PrP-hAβPPswe/PS1ΔE9 (APP/PS1) mice are classic animal models of sporadic Alzheimer's disease and familial AD respectively. Our study showed that object recognition memory, spatial learning and memory, active and passive avoidance were deteriorated and neuroendocrine immunomodulation (NIM) network was imbalance in SAMP8 and APP/PS1 mice. SAMP8 and APP/PS1 mice had their own specific phenotype of cognition, neuroendocrine, immune and NIM molecular network. The endocrine hormone corticosterone, luteinizing hormone and follicle-stimulating hormone, chemotactic factor monocyte chemotactic protein-1, macrophage inflammatory protein-1β, regulated upon activation normal T cell expressed and secreted factor and eotaxin, pro-inflammatory factor interleukin-23, and the Th1 cell acting as cell immunity accounted for cognitive deficiencies in SAMP8 mice, while adrenocorticotropic hormone and gonadotropin-releasing hormone, colony stimulating factor granulocyte colony stimulating factor, and Th2 cell acting as humoral immunity in APP/PS1 mice. On the pathway level, chemokine signaling and T cell receptor signaling pathway played the key role in cognition impairments of two models, while cytokine-cytokine receptor interaction and natural killer cell mediated cytotoxicity were more important in cognitive deterioration of SAMP8 mice than APP/PS1 mice. This mechanisms of NIM network underlying cognitive impairment is significant for further understanding the pathogenesis of AD and can provide useful information for development of AD therapeutic drug. PMID:27049828

  3. Testosterone Deficiency Accelerates Neuronal and Vascular Aging of SAMP8 Mice: Protective Role of eNOS and SIRT1

    PubMed Central

    Ota, Hidetaka; Akishita, Masahiro; Akiyoshi, Takuyu; Kahyo, Tomoaki; Setou, Mitsutoshi; Ogawa, Sumito; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi

    2012-01-01

    Oxidative stress and atherosclerosis-related vascular disorders are risk factors for cognitive decline with aging. In a small clinical study in men, testosterone improved cognitive function; however, it is unknown how testosterone ameliorates the pathogenesis of cognitive decline with aging. Here, we investigated whether the cognitive decline in senescence-accelerated mouse prone 8 (SAMP8), which exhibits cognitive impairment and hypogonadism, could be reversed by testosterone, and the mechanism by which testosterone inhibits cognitive decline. We found that treatment with testosterone ameliorated cognitive function and inhibited senescence of hippocampal vascular endothelial cells of SAMP8. Notably, SAMP8 showed enhancement of oxidative stress in the hippocampus. We observed that an NAD+-dependent deacetylase, SIRT1, played an important role in the protective effect of testosterone against oxidative stress-induced endothelial senescence. Testosterone increased eNOS activity and subsequently induced SIRT1 expression. SIRT1 inhibited endothelial senescence via up-regulation of eNOS. Finally, we showed, using co-culture system, that senescent endothelial cells promoted neuronal senescence through humoral factors. Our results suggest a critical role of testosterone and SIRT1 in the prevention of vascular and neuronal aging. PMID:22238626

  4. Environmental Enrichment Improves Behavior, Cognition, and Brain Functional Markers in Young Senescence-Accelerated Prone Mice (SAMP8).

    PubMed

    Griñan-Ferré, Christian; Pérez-Cáceres, David; Gutiérrez-Zetina, Sofía Martínez; Camins, Antoni; Palomera-Avalos, Verónica; Ortuño-Sahagún, Daniel; Rodrigo, M Teresa; Pallàs, M

    2016-05-01

    The environment in which organisms live can greatly influence their development. Consequently, environmental enrichment (EE) is progressively recognized as an important component in the improvement of brain function and development. It has been demonstrated that rodents raised under EE conditions exhibit favorable neuroanatomical effects that improve their learning, spatial memory, and behavioral performance. Here, by using senescence-accelerated prone mice (SAMP8) and these as a model of adverse genetic conditions for brain development, we determined the effect of EE by raising these mice during early life under favorable conditions. We found a better generalized performance of SAMP8 under EE in the results of four behavioral and learning tests. In addition, we demonstrated broad molecular correlation in the hippocampus by an increase in NeuN and Ki67 expression, as well as an increase in the expression of neurotrophic factors, such as pleiotrophin (PTN) and brain-derived neurotrophic factor (BDNF), with a parallel decrease in neurodegenerative markers such as GSK3, amyloid-beta precursor protein, and phosphorylated beta-catenin, and a reduction of SBDP120, Bax, GFAP, and interleukin-6 (IL-6), resulting in a neuroprotective panorama. Globally, it can be concluded that EE applied to SAMP8 at young ages resulted in epigenetic regulatory mechanisms that give rise to significant beneficial effects at the molecular, cellular, and behavioral levels during brain development, particularly in the hippocampus.

  5. Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in the aged SAMP8 mouse brain.

    PubMed

    Erickson, Michelle A; Niehoff, Michael L; Farr, Susan A; Morley, John E; Dillman, Lucy A; Lynch, Kristin M; Banks, William A

    2012-01-01

    The senescence accelerated mouse-prone 8 (SAMP8) mouse model of Alzheimer's disease has a natural mutation leading to age-related increases in the amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) in the brain, memory impairment, and deficits in Aβ removal from the brain. Previous studies show that centrally administered antisense oligonucleotide directed against AβPP can decrease AβPP expression and Aβ production in the brains of aged SAMP8 mice, and improve memory. The same antisense crosses the blood-brain barrier and reverses memory deficits when injected intravenously. Here, we give 6 μg of AβPP or control antisense 3 times over 2 week intervals to 12 month old SAMP8 mice. Object recognition test was done 48 hours later, followed by removal of whole brains for immunoblot analysis of AβPP, low-density lipoprotein-related protein-1 (LRP-1), p-glycoprotein (Pgp), receptor for advanced glycation endproducts (RAGE), or ELISA of soluble Aβ(40). Our results show that AβPP antisense completely reverses a 30% age-associated increase in AβPP signal (p < 0.05 versus untreated 4 month old SAMP8). Soluble Aβ(40) increased with age, but was not reversed by antisense. LRP-1 large and small subunits increased significantly with age (147.7%, p < 0.01 and 123.7%, p < 0.05 respectively), and AβPP antisense completely reversed these increases (p < 0.05). Pgp and RAGE were not significantly altered with age or antisense. Antisense also caused improvements in memory (p < 0.001). Together, these data support the therapeutic potential of AβPP antisense and show a unique association between AβPP and LRP-1 expression in the SAMP8 mouse.

  6. Sildenafil Decreases BACE1 and Cathepsin B Levels and Reduces APP Amyloidogenic Processing in the SAMP8 Mouse.

    PubMed

    Orejana, Lourdes; Barros-Miñones, Lucía; Jordan, Joaquin; Cedazo-Minguez, Angel; Tordera, Rosa M; Aguirre, Norberto; Puerta, Elena

    2015-06-01

    The senescence-accelerated mouse-prone 8 (SAMP8), used as a model of aging, displays many established pathological features of Alzheimer's disease. Cognitive impairments and increased levels of hyperphosphorylated tau are found in the hippocampus of SAMP8 mice along with an increased β-secretase activity and amyloid-β (Aβ) depositions that increase in number and extent with age. Based on a previous study from our laboratory showing an amelioration of cognitive impairments and tau pathology by sildenafil, in this study we tested whether this drug could also modulate the amyloid precursor protein amyloidogenic processing in this mouse model. Our results show that the protein levels of the β-secretases β-site amyloid precursor protein cleaving enzyme 1 and cathepsin B are higher in the hippocampus of 9-month-old SAMP8 mice than those of age-matched senescence-resistant-1. Sildenafil (7.5mg/kg for 4 weeks) attenuated learning and memory impairments shown by SAMP8 mice in the passive avoidance test. The increased expression of β-site amyloid precursor protein cleaving enzyme 1 was also reduced by sildenafil, an effect paralleled to decreases in the activities of two β-site amyloid precursor protein cleaving enzyme 1 modulators, calpain and cyclin-dependent kinase 5 protein. Interestingly, sildenafil enhanced both Akt and glycogen synthase kinase-3β (ser9) phosphorylation, which could be mediating the reduction in cathepsin B levels found in the hippocampus of sildenafil-treated SAMP8 mice. Sildenafil-induced reduction in β-site amyloid precursor protein cleaving enzyme 1 and cathepsin B expression in SAMP8 mice was associated with a decrease in hippocampal Aβ42 levels which, in turn, could mediate the parallel decline in glial fibrillary acidic protein expression observed in these animals. These findings highlight the therapeutic potential of sildenafil in Alzheimer's disease pathogenesis. © The Author 2014. Published by Oxford University Press on behalf of

  7. Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8.

    PubMed

    Porquet, David; Casadesús, Gemma; Bayod, Sergi; Vicente, Alberto; Canudas, Anna M; Vilaplana, Jordi; Pelegrí, Carme; Sanfeliu, Coral; Camins, Antoni; Pallàs, Mercè; del Valle, Jaume

    2013-10-01

    Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation.

  8. Resveratrol Protects SAMP8 Brain Under Metabolic Stress: Focus on Mitochondrial Function and Wnt Pathway.

    PubMed

    Palomera-Avalos, V; Griñán-Ferré, C; Puigoriol-Ilamola, D; Camins, A; Sanfeliu, C; Canudas, A M; Pallàs, M

    2017-04-01

    Metabolic stress induced by high-fat (HF) diet leads to cognitive dysfunction and aging, but the physiological mechanisms are not fully understood. Senescence-accelerated prone mouse (SAMP8) models were conducted under metabolic stress conditions by feeding HF for 15 weeks, and the preventive effect of resveratrol was studied. This dietary strategy demonstrates cognitive impairment in SAMP8-HF and significant preventive effect by resveratrol-treated animals. Hippocampal changes in the proteins involved in mitochondrial dynamics optic atrophy-1 protein (OPA1) and mitofusin 2 (MFN2) comprised a differential feature found in SAMP8-HF that was prevented by resveratrol. Electronic microscopy showed a larger mitochondria in SAMP8-HF + resveratrol (SAMP8-HF + RV) than in SAMP8-HF, indicating increases in fusion processes in resveratrol-treated mice. According to the mitochondrial morphology, significant increases in the I-NDUFB8, II-SDNB, III-UQCRC2, and V-ATPase complexes, in addition to that of voltage-dependent anion channel 1 (VDAC1)/porin, were found in resveratrol-treated animals with regard to SAMP8-HF, reaching control-animal levels. Moreover, tumor necrosis factor alpha (TNF-α) and interleukin (IL-6) were increased after HF, and resveratrol prevents its increase. Moreover, we found that the HF diet affected the Wnt pathway, as demonstrated by β-catenin inactivation and modification in the expression of several components of this pathway. Resveratrol induced strong activation of β-catenin. The metabolic stress rendered in the cognitive and cellular pathways altered in SAMP8 focus on different targets in order to act on preventing cognitive impairment in neurodegeneration, and resveratrol can offer therapeutic possibilities for preventive strategies in aging or neurodegenerative conditions.

  9. In vitro caloric restriction induces protective genes and functional rejuvenation in senescent SAMP8 astrocytes

    PubMed Central

    García-Matas, Silvia; Paul, Rajib K; Molina-Martínez, Patricia; Palacios, Hector; Gutierrez, Vincent M; Corpas, Rubén; Pallas, Mercè; Cristòfol, Rosa; de Cabo, Rafael; Sanfeliu, Coral

    2015-01-01

    Astrocytes are key cells in brain aging, helping neurons to undertake healthy aging or otherwise letting them enter into a spiral of neurodegeneration. We aimed to characterize astrocytes cultured from senescence-accelerated prone 8 (SAMP8) mice, a mouse model of brain pathological aging, along with the effects of caloric restriction, the most effective rejuvenating treatment known so far. Analysis of the transcriptomic profiles of SAMP8 astrocytes cultured in control conditions and treated with caloric restriction serum was performed using mRNA microarrays. A decrease in mitochondrial and ribosome mRNA, which was restored by caloric restriction, confirmed the age-related profile of SAMP8 astrocytes and the benefits of caloric restriction. An amelioration of antioxidant and neurodegeneration-related pathways confirmed the brain benefits of caloric restriction. Studies of oxidative stress and mitochondrial function demonstrated a reduction of oxidative damage and partial improvement of mitochondria after caloric restriction. In summary, caloric restriction showed a significant tendency to normalize pathologically aged astrocytes through the activation of pathways that are protective against the age-related deterioration of brain physiology. PMID:25711920

  10. Adiposity-Related Biochemical Phenotype in Senescence-Accelerated Mouse Prone 6 (SAMP6)

    PubMed Central

    Niimi, Kimie; Takahashi, Eiki; Itakura, Chitoshi

    2009-01-01

    Senescence-accelerated mouse prone 6 (SAMP6) is a model of senile osteoporosis. From 10 to 22 wk of age, SAMP6 mice were heavier than age-matched AKR/J and SAMR1 mice. Body mass indices of 10- and 25-wk-old SAMP6 mice were higher than those of age-matched AKR/J and SAMR1 mice, indicating obesity in the SAMP6 animals. We compared the blood biochemical values among SAMP6, SAMR1, and AKR/J mice to assess whether the SAMP6 strain has abnormal obesity-related parameters. Plasma glucose, triglyceride, insulin, and leptin levels were higher in 10-wk-old SAMP6 mice than in age-matched SAMR1 and AKR/J mice, whereas plasma glucagon and adiponectin levels in 25-wk-old SAMP6 were lower compared with those in age-matched SAMR1 and AKR/J. Total cholesterol levels in SAMR1 and SAMP6 mice at 10 and 25 wk of age were higher than those in AKR/J mice. Hepatic lipid levels were higher in 10- and 25-wk-old SAMP6 mice compared with age-matched AKR/J and SAMR1 animals. These results indicate that SAMP6 mice exhibit obesity and hyperlipidemia, suggesting that the SAMP6 strain is a potential tool for the study of hyperlipidemia. PMID:19887026

  11. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.

  12. Chotosan (Diaoteng San)-induced improvement of cognitive deficits in senescence-accelerated mouse (SAMP8) involves the amelioration of angiogenic/neurotrophic factors and neuroplasticity systems in the brain

    PubMed Central

    2011-01-01

    Background Chotosan (CTS, Diaoteng San), a Kampo medicine (ie Chinese medicine) formula, is reportedly effective in the treatment of patients with cerebral ischemic insults. This study aims to evaluate the therapeutic potential of CTS in cognitive deficits and investigates the effects and molecular mechanism(s) of CTS on learning and memory deficits and emotional abnormality in an animal aging model, namely 20-week-old senescence-accelerated prone mice (SAMP8), with and without a transient ischemic insult (T2VO). Methods Age-matched senescence-resistant inbred strain mice (SAMR1) were used as control. SAMP8 received T2VO (T2VO-SAMP8) or sham operation (sham-SAMP8) at day 0. These SAMP8 groups were administered CTS (750 mg/kg, p.o.) or water daily for three weeks from day 3. Results Compared with the control group, both sham-SAMP8 and T2VO-SAMP8 groups exhibited cognitive deficits in the object discrimination and water maze tests and emotional abnormality in the elevated plus maze test. T2VO significantly exacerbated spatial cognitive deficits of SAMP8 elucidated by the water maze test. CTS administration ameliorated the cognitive deficits and emotional abnormality of sham- and T2VO-SAMP8 groups. Western blotting and immunohistochemical studies revealed a marked decrease in the levels of phosphorylated forms of neuroplasticity-related proteins, N-methyl-D-aspartate receptor 1 (NMDAR1), Ca2+/calmodulin-dependent protein kinase II (CaMKII), cyclic AMP responsive element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the frontal cortices of sham-SAMP8 and T2VO-SAMP8. Moreover, these animal groups showed significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF), VEGF receptor type 2 (VEGFR2), platelet-derived growth factor-A (PDGF-A) and PDGF receptor α (PDGFRα). CTS treatment reversed the expression levels of these factors down-regulated in the brains of sham- and T2VO-SAMP8. Conclusion

  13. Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8)

    PubMed Central

    Guo, An Yun; Leung, Kwok Sui; Siu, Parco Ming Fai; Qin, Jiang Hui; Chow, Simon Kwoon Ho; Qin, Ling; Li, Chi Yu; Cheung, Wing Hoi

    2015-01-01

    Sarcopenia is an age-related systemic syndrome with progressive deterioration in skeletal muscle functions and loss in mass. Although the senescence-accelerated mouse P8 (SAMP8) was reported valid for muscular ageing research, there was no report on the details such as sarcopenia onset time. Therefore, this study was to investigate the change of muscle mass, structure and functions during the development of sarcopenia. Besides the average life span, muscle mass, structural and functional measurements were also studied. Male SAMP8 animals were examined at month 6, 7, 8, 9, and 10, in which the right gastrocnemius was isolated and tested for ex vivo contractile properties and fatigability while the contralateral one was harvested for muscle fiber cross-sectional area (FCSA) and typing assessments. Results showed that the peak of muscle mass appeared at month 7 and the onset of contractility decline was observed from month 8. Compared with month 8, most of the functional parameters at month 10 decreased significantly. Structurally, muscle fiber type IIA made up the largest proportion of the gastrocnemius, and the fiber size was found to peak at month 8. Based on the altered muscle mass, structural and functional outcomes, it was concluded that the onset of sarcopenia in SAMP8 animals was at month 8. SAMP8 animals at month 8 should be at pre-sarcopenia stage while month 10 at sarcopenia stage. It is confirmed that SAMP8 mouse can be used in sarcopenia research with established time line in this study. PMID:26193895

  14. Effects of Bushen-Yizhi formula on age-related inflammation and oxidative stress in senescence-accelerated mice

    PubMed Central

    Hou, Xue-Qin; Song, Hou-Pan; Chen, Yun-Bo; Cheng, Shu-Yi; Fang, Shu-Huan; Zhang, Ji-Guo; Wang, Qi

    2018-01-01

    The present study aimed to investigate the possible effects and underlying molecular mechanism of Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine, on age-related degeneration of brain physiology in senescence-accelerated mouse prone 8 (SAMP8) mice. SAMP8 mice (age, 6 months) were administered BSYZ (1.46, 2.92 and 5.84 g/kg/day) for 30 days. Morris water maze and step-down tests demonstrated that BSYZ significantly improved memory impairments in SAMP8 mice. In addition, BSYZ significantly enhanced the expression levels of peroxisome proliferator-activated receptor-γ and B-cell lymphoma extra-large, and downregulated the expression levels of inflammatory mediators, glial fibrillary acidic protein, cyclooxygenase-2, nuclear factor-κB and interleukin-1β in the brain compared with untreated SAMP8 mice. Furthermore, BSYZ reversed disordered superoxide dismutase activity, malondialdehyde content and glutathione peroxidase activity, and ameliorated apoptosis and histological alterations. The present study indicated that BSYZ may attenuate cognitive impairment in SAMP8 mice, and modulate inflammation, oxidative stress and neuronal apoptosis. These results suggested that BSYZ may have the potential to be further developed into a therapeutic agent for protection against age-related neurodegenerative diseases. PMID:29568888

  15. Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain.

    PubMed

    Bayod, Sergi; Guzmán-Brambila, Carolina; Sanchez-Roige, Sandra; Lalanza, Jaume F; Kaliman, Perla; Ortuño-Sahagun, Daniel; Escorihuela, Rosa M; Pallàs, Mercè

    2015-02-01

    Regular physical exercise mediates health and longevity promotion involving Sirtuin 1 (SIRT1)-regulated pathways. The anti-aging activity of SIRT1 is achieved, at least in part, by means of fine-tuning the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway by preventing the transition of an originally pro-survival program into a pro-aging mechanism. Additionally, SIRT1 promotes mitochondrial function and reduces the production of reactive oxygen species (ROS) through regulating peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the master controller of mitochondrial biogenesis. Here, by using senescence-accelerated mice prone 8 (SAMP8) as a model for aging, we determined the effect of wheel-running as a paradigm for long-term voluntary exercise on SIRT1-AMPK pathway and mitochondrial functionality measured by oxidative phosphorylation (OXPHOS) complex content in the hippocampus and cortex. We found differential activation of SIRT1 in both tissues and hippocampal-specific activation of AMPK. These findings correlated well with significant changes in OXPHOS in the hippocampal, but not in the cerebral cortex, area. Collectively, the results revealed greater benefits of the exercise in the wheel-running intervention in a murine model of senescence, which was directly related with mitochondrial function and which was mediated through the modulation of SIRT1 and AMPK pathways.

  16. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage.

    PubMed

    He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen

    2014-11-15

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that

  17. Lentivirus-mediated klotho up-regulation improves aging-related memory deficits and oxidative stress in senescence-accelerated mouse prone-8 mice.

    PubMed

    Zhou, Hong-Jing; Zeng, Chen-Ye; Yang, Ting-Ting; Long, Fang-Yi; Kuang, Xi; Du, Jun-Rong

    2018-05-01

    Oxidative stress caused by aging aggravates neuropathological changes and cognitive deficits. Klotho, an anti-aging protein, shows an anti-oxidative effect. The aims of the present study were to determine the potential therapeutic effect of klotho in aging-related neuropathological changes and memory impairments in senescence-accelerated mouse prone-8 (SAMP8) mice, and identify the potential mechanism of these neuroprotective effects. A lentivirus was used to deliver and sustain the expression of klotho. The lentiviral vectors were injected into the bilateral lateral ventricles of 7-month-old SAMP8 mice or age-matched SAMR1 mice. Three months later, the Y-maze alternation task and passive avoidance task were used to assess the memory deficits of the mice. In situ hybridization, immunohistochemistry, immunofluorescence, Nissl staining, quantitative real-time PCR and Western blot assays were applied in the following research. Our results showed that 3 months after injection of the lentiviral vectors encoding the full-length klotho gene, the expression of klotho in the brain was significantly increased in 10-month-old SAMP8 mice. This treatment reduced memory deficits, neuronal loss, synaptic damage and 4-HNE levels but increased mitochondrial manganese-superoxide dismutase (Mn-SOD) and catalase (CAT) expression. Moreover, the up-regulation of klotho expression decreased Akt and Forkhead box class O1 (FoxO1) phosphorylation. The present study provides a novel approach for klotho gene therapy and demonstrates that direct up-regulation of klotho in the brain might improve aging-related memory impairments and decrease oxidative stress. The underlying mechanism of this effect likely involves the inhibition of the Akt/FoxO1 pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice.

    PubMed

    Bernstein, Lori R; Mackenzie, Amelia C L; Lee, Se-Jin; Chaffin, Charles L; Merchenthaler, István

    2016-03-01

    Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called "egg infertility." A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women.

  19. Comparative Study of Different Polar Groups of EPA-Enriched Phospholipids on Ameliorating Memory Loss and Cognitive Deficiency in Aged SAMP8 Mice.

    PubMed

    Zhou, Miao-Miao; Che, Hong-Xia; Huang, Jia-Qi; Zhang, Tian-Tian; Xu, Jie; Xue, Chang-Hu; Wang, Yu-Ming

    2018-04-01

    Recent studies have shown that omega-3 PUFAs enriched phospholipids (n-3 PUFA-PLs) have beneficial effects on memory and cognition. However, most reports only attribute the benefit to docosahexaenoic acid (DHA) and pay little attention to eicosapentaenoic acid (EPA). We investigate the effect of EPA-enriched phospholipids on cognitive deficiency in senescence-accelerated prone 8 (SAMP8) mouse. Ten-month-old SAMP8 mice are fed with 2% (w/w) EPA-enriched phosphatidylcholine/phosphatidyl ethanolamine (EPA-PC/PE; EPA:DHA = 46.8:3.01) or 2% EPA-enriched phosphatidylserine (EPA-PS; biosynthesized from EPA-PC/PE) for 8 weeks; we then test the behavioral performances in the Barnes maze test and Morris maze test; the changes of oxidative stress, apoptosis, neurotrophic factors, tau phosphorylation, and Aβ pathology are also measured. The results of behavior tests indicate that both EPA-PC/PE and EPA-PS significantly improve memory and cognitive deficiency. It is found that remarkable amelioration of oxidative stress and apoptosis occurs in both EPA-PC/PE and EPA-PS groups. EPA-PS shows more ameliorative effects than EPA-PC/PE on neurotrophic activity by decreasing hyper-phosphorylation of tau and depressing the generation and accumulation of β-amyloid peptide (Aβ). These data suggest that EPA-PS exhibits better effects than EPA-PC/PE on ameliorating memory and cognitive function, which might be attributed to the phospholipid polar groups. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease.

    PubMed

    Farr, Susan A; Ripley, Jessica L; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L; Platt, Thomas L; Murphy, M Paul; Morley, John E; Kumar, Vijaya; Butterfield, D Allan

    2014-02-01

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased

  1. Long-term acarbose administration alleviating the impairment of spatial learning and memory in the SAMP8 mice was associated with alleviated reduction of insulin system and acetylated H4K8.

    PubMed

    Yan, Wen-Wen; Chen, Gui-Hai; Wang, Fang; Tong, Jing-Jing; Tao, Fei

    2015-04-07

    Age-associated memory impairment (AAMI) not only reduces the quality of life for the elderly but also increases the costs of healthcare for society. Methods that can regulate glucose metabolism, insulin/insulin-like growth factor 1 (IGF-1) system and acetylated histone H4 lysine 8 (H4K8ac), one of the most well-researched facets of histone acetylation modification associating with cognition, tend to ameliorate the AAMI. Here, we used SAMP8 mice, the excellent animal model of aging and AAMI, to study the effect of long-term treatment with acarbose, an inhibitor of a-glucosidase, on AAMI and explore whether blood glucose, insulin/IGF-1 system and H4K8ac are associated with potential effects. The treatment group received acarbose (20mg/kg/d, dissolved in drinking water) at the age of 3-month until 9-month old before the behavioral test, and the controls only received water. Compared to the young controls (3-month-old, n=11), the old group (9-month-old, n=8) had declined abilities of spatial learning and memory and levels of serum insulin, hippocampal insulin receptors (InsRs) and H4K8ac. Interestingly, the acarbose group (9-month-old, n=9) showed better abilities of spatial learning and memory and higher levels of insulin, InsRs and H4K8ac relative to the old controls. Good performance of spatial learning and memory was positively correlated with the elevated insulin, InsRs and H4K8ac. All these results suggested that long-term administration of acarbose could alleviate the age-related impairment of spatial learning and memory in the SAMP8 mice, and the alleviated reduction of an insulin system and H4K8ac might be associated with the alleviation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Spontaneous autoimmune gastritis and hypochlorhydria are manifest in the ileitis-prone SAMP1/YitFcs mice.

    PubMed

    Ernst, P B; Erickson, L D; Loo, W M; Scott, K G; Wiznerowicz, E B; Brown, C C; Torres-Velez, F J; Alam, M S; Black, S G; McDuffie, M; Feldman, S H; Wallace, J L; McKnight, G W; Padol, I T; Hunt, R H; Tung, K S

    2012-01-01

    SAMP1/YitFcs mice serve as a model of Crohn's disease, and we have used them to assess gastritis. Gastritis was compared in SAMP1/YitFcs, AKR, and C57BL/6 mice by histology, immunohistochemistry, and flow cytometry. Gastric acid secretion was measured in ligated stomachs, while anti-parietal cell antibodies were assayed by immunofluorescence and enzyme-linked immunosorbent spot assay. SAMP1/YitFcs mice display a corpus-dominant, chronic gastritis with multifocal aggregates of mononuclear cells consisting of T and B lymphocytes. Relatively few aggregates were observed elsewhere in the stomach. The infiltrates in the oxyntic mucosa were associated with the loss of parietal cell mass. AKR mice, the founder strain of the SAMP1/YitFcs, also have gastritis, although they do not develop ileitis. Genetic studies using SAMP1/YitFcs-C57BL/6 congenic mice showed that the genetic regions regulating ileitis had comparable effects on gastritis. The majority of the cells in the aggregates expressed the T cell marker CD3 or the B cell marker B220. Adoptive transfer of SAMP1/YitFcs CD4(+) T helper cells, with or without B cells, into immunodeficient recipients induced a pangastritis and duodenitis. SAMP1/YitFcs and AKR mice manifest hypochlorhydria and anti-parietal cell antibodies. These data suggest that common genetic factors controlling gastroenteric disease in SAMP1/YitFcs mice regulate distinct pathogenic mechanisms causing inflammation in separate sites within the digestive tract.

  3. Spontaneous autoimmune gastritis and hypochlorhydria are manifest in the ileitis-prone SAMP1/YitFcs mice

    PubMed Central

    Erickson, L. D.; Loo, W. M.; Scott, K. G.; Wiznerowicz, E. B.; Brown, C. C.; Torres-Velez, F. J.; Alam, M. S.; Black, S. G.; McDuffie, M.; Feldman, S. H.; Wallace, J. L.; McKnight, G. W.; Padol, I. T.; Hunt, R. H.; Tung, K. S.

    2012-01-01

    SAMP1/YitFcs mice serve as a model of Crohn's disease, and we have used them to assess gastritis. Gastritis was compared in SAMP1/YitFcs, AKR, and C57BL/6 mice by histology, immunohistochemistry, and flow cytometry. Gastric acid secretion was measured in ligated stomachs, while anti-parietal cell antibodies were assayed by immunofluorescence and enzyme-linked immunosorbent spot assay. SAMP1/YitFcs mice display a corpus-dominant, chronic gastritis with multifocal aggregates of mononuclear cells consisting of T and B lymphocytes. Relatively few aggregates were observed elsewhere in the stomach. The infiltrates in the oxyntic mucosa were associated with the loss of parietal cell mass. AKR mice, the founder strain of the SAMP1/YitFcs, also have gastritis, although they do not develop ileitis. Genetic studies using SAMP1/YitFcs-C57BL/6 congenic mice showed that the genetic regions regulating ileitis had comparable effects on gastritis. The majority of the cells in the aggregates expressed the T cell marker CD3 or the B cell marker B220. Adoptive transfer of SAMP1/YitFcs CD4+ T helper cells, with or without B cells, into immunodeficient recipients induced a pangastritis and duodenitis. SAMP1/YitFcs and AKR mice manifest hypochlorhydria and anti-parietal cell antibodies. These data suggest that common genetic factors controlling gastroenteric disease in SAMP1/YitFcs mice regulate distinct pathogenic mechanisms causing inflammation in separate sites within the digestive tract. PMID:21921286

  4. Aging-related renal injury and inflammation are associated with downregulation of Klotho and induction of RIG-I/NF-κB signaling pathway in senescence-accelerated mice.

    PubMed

    Zeng, Yi; Wang, Ping-Han; Zhang, Mao; Du, Jun-Rong

    2016-02-01

    The predominant distribution of the antiaging Klotho protein in both the kidneys and brain may point to its essential role in protecting against dysfunction of the kidney-brain axis during the aging process. Our previous study showed that the downregulation of Klotho was involved in aging-related cognitive impairment in aged senescence-accelerated mouse prone-8 (SAMP8) mice. The present study investigated the potential role of Klotho in aging-associated inflammation and renal injury. Age- and gender-matched groups of SAMP8 mice and their corresponding normal control senescence-accelerated mouse resistant-1 (SAMR1) were used to investigate the potential role of Klotho in aging-associated inflammation and renal injury. Compared with aged SAMR1 controls, early-stage chronic kidney disease (CKD), which is associated with an increase in the urinary albumin-to-creatinine ratio, inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis, was observed in aged SAMP8 mice. Furthermore, the aging-related loss of Klotho-induced activation of the retinoic acid-inducible gene 1/nuclear factor-κB (RIG-I/NF-κB) signaling pathway and subsequent production of the proinflammatory mediators tumor necrosis factor α, interleukin-6, and inducible nitric oxide synthase in the kidneys of aged SAMP8 mice compared with SAMR1 controls. The present results suggest that aging-related inflammation and the development of early-stage CKD are likely associated with the downregulation of Klotho and induction of the RIG-I/NF-κB signaling pathway in 12-month-old SAMP8 mice. Moreover, aged SAMP8 mice with cognitive deficits and renal damage may be a potential mouse model for investigating the kidney-brain axis in the aging process.

  5. Comparative study of the effects of phosphatidylcholine rich in DHA and EPA on Alzheimer's disease and the possible mechanisms in CHO-APP/PS1 cells and SAMP8 mice.

    PubMed

    Che, Hongxia; Zhou, Miaomiao; Zhang, Tiantian; Zhang, Lingyu; Ding, Lin; Yanagita, Teruyoshi; Xu, Jie; Xue, Changhu; Wang, Yuming

    2018-01-24

    Metabolic stress induced by a high-fat (HF) diet leads to cognitive dysfunction and aging. In the present study, Chinese hamster ovary cells stably transfected with amyloid precursor protein (APP) and presenilin 1 (PS1) (CHO-APP/PS1 cells) and SAMP8 mice fed with an HF diet were used to study the effects of docosahexaenoic acid (DHA)-enriched phosphatidylcholine (DHA-PC) and eicosapentaenoic acid (EPA)-enriched phosphatidylcholine (EPA-PC) on Alzheimer's disease (AD) and the possible mechanisms involved in these effects. Behavior test results indicated that DHA-PC exerted better effects than EPA-PC on improving memory and cognitive deficiency. Further analysis showed that DHA-PC and EPA-PC could significantly decrease β-amyloid (Aβ) concentrations in CHO-APP/PS1 cells and SAMP8 mice by inhibiting APP, PS1, and BACE1 expression. Moreover, both DHA-PC and EPA-PC can increase the activities of the antioxidant index, including SOD, T-AOC, GSH, and GSH-PX, and inhibit levels of MDA, NO, and NOS. In addition, the expressions of inflammatory factors (TNF-α, IL-1β) and apoptosis were significantly suppressed via improving the ratio of Bcl-2/Bax and decreasing the expression of pro-apoptosis factors. Interestingly, only DHA-PC could improve the expression of neurotrophic factors, including BDNF, synaptophysin, and growth associated protein 43. DHA-PC and EPA-PC could ameliorate memory and cognitive function of HF diet-fed SAMP8 mice via inhibiting Aβ generation, suppressing oxidative stress and apoptosis, down-regulating inflammatory response, and improving neurotrophic activity. Therefore, DHA-PC and EPA-PC may be applied as food supplements and/or functional ingredients to relieve neurodegenerative disease.

  6. Spontaneous, Immune-Mediated Gastric Inflammation in SAMP1/YitFc Mice, a Model of Crohn’s-Like Gastritis

    PubMed Central

    Reuter, Brian K.; Pastorelli, Luca; Brogi, Marco; Garg, Rekha R.; McBride, James A.; Rowlett, Robert M.; Arrieta, Marie C.; Wang, Xiao-Ming; Keller, Erik J.; Feldman, Sanford H.; Mize, James R.; Cominelli, Fabio; Meddings, Jonathan B.; Pizarro, Theresa T.

    2011-01-01

    Background & Aims Crohn’s disease (CD) can develop in any region of the gastrointestinal tract, including the stomach. The etiology and pathogenesis of Crohn’s gastritis are poorly understood, treatment approaches are limited, and there are not many suitable animal models for study. We characterized the features and mechanisms of chronic gastritis in SAMP1/YitFc (SAMP) mice, a spontaneous model of CD-like ileitis, along with possible therapeutic approaches. Methods Stomachs from specific pathogen-free and germ-free SAMP and AKR mice (controls) were evaluated histologically; the presence of Helicobacter spp. was tested in fecal pellets by PCR analysis. In vivo gastric permeability was quantified by fractional excretion of sucrose and epithelial tight junction protein expression was measured by quantitative reverse transcription PCR analysis. The effects of a proton pump inhibitor (PPI) or corticosteroids were measured and the ability of pathogenic immune cells to mediate gastritis was assessed in adoptive transfer experiments. Results SAMP mice developed Helicobacter-negative gastritis, characterized by aggregates of mononuclear cells, diffuse accumulation of neutrophils, and disruption of epithelial architecture; SAMP mice also had increased in gastric permeability compared with controls, without alterations in expression of tight junction proteins. The gastritis and associated permeability defect observed in SAMP mice were independent of bacterial colonization and reduced by administration of corticosteroids but not a PPI. CD4+ T cells isolated from draining mesenteric lymph nodes of SAMP mice were sufficient to induce gastritis in recipient SCID mice. Conclusions In SAMP mice, gastritis develops spontaneously and has many features of CD-like ileitis. These mice are a useful model to study Helicobacter-negative, immune-mediated Crohn’s gastritis. PMID:21704001

  7. Cerebrosides from Sea Cucumber Protect Against Oxidative Stress in SAMP8 Mice and PC12 Cells.

    PubMed

    Che, Hongxia; Du, Lei; Cong, Peixu; Tao, Suyuan; Ding, Ning; Wu, Fengjuan; Xue, Changhu; Xu, Jie; Wang, Yuming

    2017-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder. Emerging evidence implicates β-amyloid (Aβ) plays a critical role in the progression of AD. In this study, we investigated the protective effect of cerebrosides obtained from sea cucumber against senescence-accelerated mouse prone 8 (SAMP8) mice in vivo. We also studied the effect of cerebrosides on Aβ-induced cytotoxicity on the rat pheochromocytoma cell (PC12) and the underlying molecular mechanisms. Cerebrosides ameliorated learning and memory deficits and the Aβ accumulation in demented mice, decreased the content of malondialdehyde (MDA), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG), 8-hydroxy-2'-deoxyguanosine (8-oxo-G), and nitric oxide (NO), and enhanced the superoxide dismutase (SOD) activity significantly. The neuroprotective effect of sea cucumber cerebrosides (SCC) was also verified in vitro: the cerebrosides increased the survival rate of PC12 cells, recovered the cellular morphology, downregulated the protein levels of Caspase-9, cleaved Caspase-3, total Caspase-3, and Bax, and upregulated the protein level of Bcl-2, revealing that cerebrosides could inhibit Aβ-induced cell apoptosis. The results showed the protective effect of SCC was regulated by the mitochondria-dependent apoptotic pathway. Our results provide a new approach to developing the marine organisms as functional foods for neuroprotection.

  8. [Morphological changes of neurons and neuroglial cells in the brain of senescence-accelerated prone 1 (SAMP1) mice].

    PubMed

    Khudoerkov, R M; Sal'kov, V N; Sal'nikova, O V; Sobolev, V B

    2014-01-01

    Computerized morphometry was used to examine the sizes of neuronal bodies and the compactness of arrangement of neurons and neuroglial cells in layers III and V of the sensorimotor cortex in senescence-accelerated prone 1 (SAMP1) mice (an experimental group) and senescence-accelerated-resistant strain 1 (SAMR1) ones (a control group). In the SAMP1 mice as compared to the SAMR1 ones, the neuronal body sizes were significantly unchanged; the compactness of their arrangement decreased by 17 and 20% in layers III and V, respectively; that of neuroglial cells significantly increased by 14% in layer III only. In the SAMP1 mice versus the SAMR1 ones, the glial index rose by 36% in layer III and by 24% in layer V. During simulation of physiological aging, the sizes of neuronal bodies were shown to be virtually unchanged in the cerebral cortex; the compactness of their arrangement (cell counts) moderately reduced and that of neuroglial cells increased, which caused a rise in the glioneuronal index that was indicative of the enhanced supporting function of neuroglial cells during the physiological aging of brain structures.

  9. Effect of long-term treatment with melatonin on vascular markers of oxidative stress/inflammation and on the anticontractile activity of perivascular fat in aging mice.

    PubMed

    Agabiti-Rosei, Claudia; Favero, Gaia; De Ciuceis, Carolina; Rossini, Claudia; Porteri, Enzo; Rodella, Luigi Fabrizio; Franceschetti, Lorenzo; Maria Sarkar, Anna; Agabiti-Rosei, Enrico; Rizzoni, Damiano; Rezzani, Rita

    2017-01-01

    Some reports have suggested that inflammation in perivascular adipose tissue (PVAT) may be implicated in vascular dysfunction by causing the disappearance of an anticontractile effect. The aim of this study was to investigate the effects of chronic melatonin treatment on the functional responses of the small mesenteric arteries and on the expression of markers of inflammation/oxidative stress in the aortas of senescence-accelerated prone mice (SAMP8), a model of age-related vascular dysfunction. We investigated seven SAMP8 and seven control senescence-accelerated resistant mice (SAMR1) treated for 10 months with melatonin, as well as equal numbers of age-matched untreated SAMP8 and SAMR1. The mesenteric small resistance arteries were dissected and mounted on a wire myograph, and the concentration-response to norepinephrine was evaluated in vessels with intact PVAT and after the removal of the PVAT. The expression of markers of oxidative stress, inflammation and aging in the aortas was evaluated by immunostaining. In addition, the adiponectin content and the expression of adiponectin receptor 1 were evaluated in the visceral adipose tissue. In untreated SAMP8 mice, we observed an overexpression of oxidative stress and inflammatory markers in the vasculature compared with the controls. No anticontractile effect of the PVAT was observed in untreated SAMP8 mice. Long-term treatment of SAMP8 mice with melatonin increased the expression of some markers of vasoprotection, decreased oxidative stress and inflammation and restored the anticontractile effect of the PVAT. Decreased expression of adiponectin and adiponectin receptor 1 was also observed in visceral fat of untreated SAMP8, whereas a significant increase was observed after melatonin treatment.

  10. Illumination with 630-nm red light reduces oxidative stress and restores memory by photo-activating catalase and formaldehyde dehydrogenase in SAMP8 mice.

    PubMed

    Zhang, Jingnan; Yue, Xiangpei; Luo, Hongjun; Jiang, Wenjing; Mei, Yufei; Ai, Li; Gao, Ge; Wu, Yan; Yang, Hui; An, Jieran; Ding, Shumao; Yang, Xu; Sun, Bingui; Luo, Wenhong; He, Rongqiao; Jia, Jianping; Lyu, Jihui; Tong, Zhiqian

    2018-06-05

    Pharmacological treatments for Alzheimer's disease (AD) have not resulted in desirable clinical efficacy over 100 years. Hydrogen peroxide (H2O2), a reactive and the most stable compound of reactive oxygen species (ROS), contributes to oxidative stress in AD patients. Here, we designed a medical device to emit red light at 630±15 nm from a light-emitting diode (LED-RL) and investigated whether the LED-RL reduces brain H2O2 levels and improves memory in senescence-accelerated prone 8 mouse (SAMP8) model of age-related dementia. We found that age-associated H2O2 directly inhibited formaldehyde dehydrogenase (FDH). FDH inactivity and semicarbazide-sensitive amine oxidase (SSAO) disorder resulted in endogenous formaldehyde (FA) accumulation. Unexpectedly, excess FA, in turn, caused acetylcholine (Ach) deficiency by inhibiting choline acetyltransferase (ChAT) activity in vitro and in vivo. Interestingly, the 630-nm red light can penetrate the skull and abdomen with light penetration rates: ~49% and ~43%, respectively. Illumination with LED-RL markedly activated both catalase and FDH in the brains, cultured cells and purified protein solutions, all reduced brain H2O2 and FA levels and restored brain Ach contents. Consequently, LED-RL not only prevented early-stage memory decline but also rescued late-stage memory deficits in SAMP8 mice. We developed a phototherapeutic device with 630-nm red light, and this LED-RL reduced brain H2O2 levels and reversed age-related memory disorders. The phototherapy of LED-RL has low photo toxicity and high rate of tissue penetration, and non-invasively reverses aging-associated cognitive decline. This finding opens a promising opportunity to translate LED-RL into clinical treatment for patients with dementia.

  11. An animal model of co-existing sarcopenia and osteoporotic fracture in senescence accelerated mouse prone 8 (SAMP8).

    PubMed

    Zhang, Ning; Chow, Simon Kwoon Ho; Leung, Kwok Sui; Lee, Ho Hin; Cheung, Wing Hoi

    2017-10-15

    Sarcopenia and osteoporotic fracture are common aging-related musculoskeletal problems. Recent evidences report that osteoporotic fracture patients showed high prevalence of sarcopenia; however, current clinical practice basically does not consider sarcopenia in the treatment or rehabilitation of osteoporotic fracture. There is almost no report studying the relationship of the co-existing of sarcopenia and osteoporotic fracture healing. In this study, we validated aged senescence accelerated mouse prone 8 (SAMP8) and senescence accelerated mouse resistant 1 (SAMR1) as animal models of senile osteoporosis with/without sarcopenia. Bone mineral density (BMD) at the 5th lumbar and muscle testing of the two animal strains were measured to confirm the status of osteoporosis and sarcopenia, respectively. Closed fracture was created on the right femur of 8-month-old animals. Radiographs were taken weekly post-fracture. MicroCT and histology of the fractured femur were performed at week 2, 4 and 6 post-fracture, while mechanical test of both femora at week 4 and 6 post-fracture. Results showed that the callus of SAMR1 was significantly larger at week 2 but smaller at week 6 post-fracture than SAMP8. Mechanical properties were significantly better at week 4 post-fracture in SAMR1 than SAMP8, indicating osteoporotic fracture healing was delayed in sarcopenic SAMP8. This study validated an animal model of co-existing sarcopenia and osteoporotic fracture, where a delayed fracture healing might be resulted in the presence of sarcopenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Occurrence of spontaneous periodontal disease in the SAMP1/YitFc murine model of Crohn disease.

    PubMed

    Pietropaoli, Davide; Del Pinto, Rita; Corridoni, Daniele; Rodriguez-Palacios, Alexander; Di Stefano, Gabriella; Monaco, Annalisa; Weinberg, Aaron; Cominelli, Fabio

    2014-12-01

    Oral involvement is often associated with inflammatory bowel disease (IBD). Recent evidence suggests a high incidence of periodontal disease in patients with Crohn disease (CD). To the best of the authors' knowledge, no animal model of IBD that displays associated periodontal disease was reported previously. The aim of this study is to investigate the occurrence and progression of periodontal disease in SAMP1/YitFc (SAMP) mice that spontaneously develop a CD-like ileitis. In addition, the temporal correlation between the onset and progression of periodontal disease and the onset of ileitis in SAMP mice was studied. At different time points, SAMP and parental AKR/J (AKR) control mice were sacrificed, and mandibles were prepared for stereomicroscopy and histology. Terminal ilea were collected for histologic assessment of inflammation score. Periodontal status, i.e., alveolar bone loss (ABL) and alveolar bone crest, was examined by stereomicroscopy and histomorphometry, respectively. ABL increased in both strains with age. SAMP mice showed greater ABL compared with AKR mice by 12 weeks of age, with maximal differences observed at 27 weeks of age. AKR control mice did not show the same severity of periodontal disease. Interestingly, a strong positive correlation was found between ileitis severity and ABL in SAMP mice, independent of age. The present results demonstrate the occurrence of periodontal disease in a mouse model of progressive CD-like ileitis. In addition, the severity of periodontitis strongly correlated with the severity of ileitis, independent of age, suggesting that common pathogenic mechanisms, such as abnormal immune response and dysbiosis, may be shared between these two phenotypes.

  13. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice.

    PubMed

    Shimizu, Akinori; Tani, Haruna; Takibuchi, Gaku; Ishikawa, Kaori; Sakurazawa, Ryota; Inoue, Takafumi; Hashimoto, Tetsuo; Nakada, Kazuto; Takenaga, Keizo; Hayashi, Jun-Ichi

    2017-11-04

    In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29 H (sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29 H (sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8.

    PubMed

    Eckert, Gunter P; Schiborr, Christina; Hagl, Stephanie; Abdel-Kader, Reham; Müller, Walter E; Rimbach, Gerald; Frank, Jan

    2013-04-01

    The aging brain suffers mitochondrial dysfunction and a reduced availability of energy in the form of ATP, which in turn may cause or promote the decline in cognitive, sensory, and motor function observed with advancing age. There is a need for animal models that display some of the pathological features of human brain aging in order to study their prevention by e.g. dietary factors. We thus investigated the suitability of the fast-aging senescence-accelerated mouse-prone 8 (SAMP8) strain and its normally aging control senescence-accelerated mouse-resistant 1 (SAMR1) as a model for the age-dependent changes in mitochondrial function in the brain. To this end, 2-months old male SAMR1 (n=10) and SAMP8 mice (n=7) were fed a Western type diet (control groups) for 5months and one group of SAMP8 mice (n=6) was fed an identical diet fortified with 500mg curcumin per kg. Dissociated brain cells and brain tissue homogenates were analyzed for malondialdehyde, heme oxygenase-1 mRNA, mitochondrial membrane potential (MMP), ATP concentrations, protein levels of mitochondrial marker proteins for mitochondrial membranes (TIMM, TOMM), the mitochondrial permeability transition pore (ANT1, VDAC1, TSPO), respiration complexes, and fission and fusion (Fis, Opa1, Mfn1, Drp1). Dissociated brain cells isolated from SAMP8 mice showed significantly reduced MMP and ATP levels, probably due to significantly diminished complex V protein expression, and increased expression of TSPO. Fission and fusion marker proteins indicate enhanced mitochondrial fission in brains of SAMP8 mice. Treatment of SAMP8 mice with curcumin improved MMP and ATP and restored mitochondrial fusion, probably by up-regulating nuclear factor PGC1α protein expression. In conclusion, SAMP8 compared to SAMR1 mice are a suitable model to study age-dependent changes in mitochondrial function and curcumin emerges as a promising nutraceutical for the prevention of neurodegenerative diseases that are accompanied or caused by

  15. Influence of aging and growth hormone on different members of the NFkB family and IkB expression in the heart from a murine model of senescence-accelerated aging.

    PubMed

    Forman, K; Vara, E; García, C; Kireev, R; Cuesta, S; Acuña-Castroviejo, D; Tresguerres, J A F

    2016-01-01

    Inflammation is related to several pathological processes. The aim of this study was to investigate the protein expression of the different subunits of the nuclear factor Kappa b (NFkBp65, p50, p105, p52, p100) and the protein expressions of IkB beta and alpha in the hearts from a murine model of accelerated aging (SAM model) by Western blot. In addition, the translocation of some isoforms of NFkB from cytosol to nuclei (NFkBp65, p50, p52) and ATP level content was studied. In addition we investigated the effect of the chronic administration of growth hormone (GH) on these age-related parameters. SAMP8 and SAMR1 mice of 2 and 10 months of age were used (n = 30). Animals were divided into five experimental groups: 2 old untreated (SAMP8/SAMR1), 2 young control (SAMP8/SAMR1) and one GH treated-old groups (SAMP8). Age-related changes were found in the studied parameters. We were able to see decreases of ATP level contents and the translocation of the nuclear factor kappa B p50, p52 and p65 from cytosol to nuclei in old SAMP8 mice together with a decrease of IKB proteins. However p100 and p105 did not show differences with aging. No significant changes were recorded in SAMR1 animals. GH treatment showed beneficial effects in old SAMP8 mice inducing an increase in ATP levels and inhibiting the translocation of some NFkB subunits such as p52. Our results supported the relation of NFkB activation with enhanced apoptosis and pro-inflammatory status in old SAMP8 mice and suggested a selective beneficial effect of the GH treatment, which was able to partially reduce the incidence of some deleterious changes in the heart of those mice.

  16. Expression of CGRP neurotransmitter and vascular genesis marker mRNA is age-dependent in superior cervical ganglia of senescence-accelerated prone mice.

    PubMed

    Mitsuoka, Kazuyuki; Kikutani, Takeshi; Miwa, Yoko; Sato, Iwao

    2018-01-18

    Calcitonin gene-related peptide (CGRP) is a neurotransmitter that is released from the superior cervical ganglion (SCG) and causes head and neck pain. The morphological properties of human SCG neurons, including neurotransmitter content, are altered during aging. However, morphological changes in CGRP in the SCG during aging are not known. Therefore, we investigated CGRP and other markers in the SCG during aging in an aging model of senescence-accelerated prone mouse (SAMP8) and senescence-accelerated resistant mice (SAMR1) using real-time RT-PCR mRNA analyses and in situ hybridization. The abundance of neurotransmitter (CGRP, NPY, TRPV1), vascular genesis marker (CD31, LYVE-1), and cytochrome C mRNA differed between 12-week-old and 24-week-old SAMP8 and SAMR1. Abundance of TRPV1, CD31 and cytochrome C mRNAs of SAMP8 decreased between 12- and 24-week-old. The ratio of CGRP mRNA positive cells and CGRP mRNA abundance levels of the SCG of aging mouse such as SAMP8 have already been also higher than that of SAMR1 at 12-week-old. The CGRP positive shrunken ganglion cells was increased from 12- to 24-weeks-old mouse in SAMR1 and SAMP8. The SCG primarily affected the internal and external carotid arteries, larynx thyroid gland, and pharyngeal muscle during aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier.

    PubMed

    Yanai, Shuichi; Toyohara, Jun; Ishiwata, Kiichi; Ito, Hideki; Endo, Shogo

    2017-04-01

    Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2- 18 F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A comprehensive multiomics approach toward understanding the relationship between aging and dementia.

    PubMed

    Currais, Antonio; Goldberg, Joshua; Farrokhi, Catherine; Chang, Max; Prior, Marguerite; Dargusch, Richard; Daugherty, Daniel; Armando, Aaron; Quehenberger, Oswald; Maher, Pamela; Schubert, David

    2015-11-01

    Because age is the greatest risk factor for sporadic Alzheimer's disease (AD), phenotypic screens based upon old age-associated brain toxicities were used to develop the potent neurotrophic drug J147. Since certain aspects of aging may be primary cause of AD, we hypothesized that J147 would be effective against AD-associated pathology in rapidly aging SAMP8 mice and could be used to identify some of the molecular contributions of aging to AD. An inclusive and integrative multiomics approach was used to investigate protein and gene expression, metabolite levels, and cognition in old and young SAMP8 mice. J147 reduced cognitive deficits in old SAMP8 mice, while restoring multiple molecular markers associated with human AD, vascular pathology, impaired synaptic function, and inflammation to those approaching the young phenotype. The extensive assays used in this study identified a subset of molecular changes associated with aging that may be necessary for the development of AD.

  19. Peripheral Administration of GSK-3β Antisense Oligonucleotide Improves Learning and Memory in SAMP8 and Tg2576 Mouse Models of Alzheimer's Disease.

    PubMed

    Farr, Susan A; Sandoval, Karin E; Niehoff, Michael L; Witt, Ken A; Kumar, Vijaya B; Morley, John E

    2016-10-18

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. We have previously shown that an antisense oligonucleotide directed at the Tyr 216 site on GSK-3β (GAO) when injected centrally can decrease GSK-3β levels, improve learning and memory, and decrease oxidative stress. In addition, we showed that GAO can cross the blood-brain barrier. Herein the impact of peripherally administered GAO in both the non-transgenic SAMP8 and transgenic Tg2576 (APPswe) models of AD were examined respective to learning and memory. Brain tissues were then evaluated for expression changes in the phosphorylated-Tyr 216 residue, which leads to GSK-3β activation, and the phosphorylated-Ser9 residue, which reduces GSK-3β activity. SAMP8 GAO-treated mice showed improved acquisition and retention using aversive T-maze, and improved declarative memory as measured by the novel object recognition (NOR) test. Expression of the phosphorylated-Tyr 216 was decreased and the phosphorylated-Ser9 was increased in GAO-treated SAMP8 mice. Tg2576 GAO-treated mice improved acquisition and retention in both the T-maze and NOR tests, with an increased phosphorylated-Ser9 GSK-3β expression. Results demonstrate that peripheral administration of GAO improves learning and memory, corresponding with alterations in GSK-3β phosphorylation state. This study supports peripherally administered GAO as a viable means to mediate GSK-3β activity within the brain and a possible treatment for AD.

  20. Age-Related Alterations in the Metabolic Profile in the Hippocampus of the Senescence-Accelerated Mouse Prone 8: A Spontaneous Alzheimer's Disease Mouse Model

    PubMed Central

    Wang, Hualong; Lian, Kaoqi; Han, Bing; Wang, Yanyong; Kuo, Sheng-Han; Geng, Yuan; Qiang, Jing; Sun, Meiyu; Wang, Mingwei

    2015-01-01

    Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD. PMID:24284365

  1. Secreted Klotho Attenuates Inflammation-Associated Aortic Valve Fibrosis in Senescence-Accelerated Mice P1.

    PubMed

    Chen, Jianglei; Fan, Jun; Wang, Shirley; Sun, Zhongjie

    2018-05-01

    Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho ( Skl ) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease. © 2018 American Heart Association, Inc.

  2. Green tea extracts ameliorate high-fat diet-induced muscle atrophy in senescence-accelerated mouse prone-8 mice.

    PubMed

    Onishi, Shintaro; Ishino, Mayu; Kitazawa, Hidefumi; Yoto, Ai; Shimba, Yuki; Mochizuki, Yusuke; Unno, Keiko; Meguro, Shinichi; Tokimitsu, Ichiro; Miura, Shinji

    2018-01-01

    Muscle atrophy (loss of skeletal muscle mass) causes progressive deterioration of skeletal function. Recently, excessive intake of fats was suggested to induce insulin resistance, followed by muscle atrophy. Green tea extracts (GTEs), which contain polyphenols such as epigallocatechin gallate, have beneficial effects on obesity, hyperglycemia, and insulin resistance, but their effects against muscle atrophy are still unclear. Here, we found that GTEs prevented high-fat (HF) diet-induced muscle weight loss in senescence-accelerated mouse prone-8 (SAMP8), a murine model of senescence. SAMP8 mice were fed a control diet, an HF diet, or HF with 0.5% GTEs (HFGT) diet for 4 months. The HF diet induced muscle weight loss with aging (measured as quadriceps muscle weight), whereas GTEs prevented this loss. In HF diet-fed mice, blood glucose and plasma insulin concentrations increased in comparison with the control group, and these mice had insulin resistance as determined by homeostasis model assessment of insulin resistance (HOMA-IR). In these mice, serum concentrations of leukocyte cell-derived chemotaxin 2 (LECT2), which is known to induce insulin resistance in skeletal muscle, were elevated, and insulin signaling in muscle, as determined by the phosphorylation levels of Akt and p70 S6 kinases, tended to be decreased. In HFGT diet-fed mice, these signs of insulin resistance and elevation of serum LECT2 were not observed. Although our study did not directly show the effect of serum LECT2 on muscle weight, insulin resistance examined using HOMA-IR indicated an intervention effect of serum LECT2 on muscle weight, as revealed by partial correlation analysis. Accordingly, GTEs might have beneficial effects on age-related and HF diet-induced muscle weight loss, which correlates with insulin resistance and is accompanied by a change in serum LECT2.

  3. Intermittent vibration protects aged muscle from mechanical and oxidative damage under prolonged compression.

    PubMed

    Wong, Sing Wan; Cheung, Brian Chun Ho; Pang, Bruce Tak Keung; Kwong, Ateline; Chung, Anna; Lee, Kenneth Ka Ho; Mak, Arthur Fut Tak

    2017-04-11

    Deep tissue pressure ulcers, a serious clinical challenge originating in the muscle layer, are hardly detectable at the beginning. The challenge apparently occurs in aged subjects more frequently. As the ulcer propagates to the skin surface, it becomes very difficult to manage and can lead to fatal complications. Preventive measures are thus highly desirable. Although the complex pathological mechanisms have not been fully understood, prolonged and excessive physical challenges and oxidative stress are believed to be involved in the ulcer development. Previous reports have demonstrated that oxidative stress could compromise the mechanical properties of muscle cells, making them easier to be damaged when physical challenges are introduced. In this study, we used senescence accelerated (SAMP8) mice and its control breed (SAMR1) to examine the protective effects of intermittent vibration on aged and control muscle tissues during prolonged epidermal compression under 100mmHg for 6h. Results showed that an application of 35Hz, 0.25g intermittent vibration during compression decreased the compression-induced muscle breakdown in SAMP8 mice, as indicated histologically in terms of number of interstitial nuclei. The fact that no significant difference in muscle damage could be established in the corresponding groups in SAMR1 mice suggests that SAMR1 mice could better accommodate the compression insult than SAMP8 mice. Compression-induced oxidative damage was successfully curbed using intermittent vibration in SAMP8 mice, as indicated by 8-OHdG. A possible explanation is that the anti-oxidative defense could be maintained with intermittent vibration during compression. This was supported by the expression level of PGC-1-alpha, catalase, Gpx-1 and SOD1. Our data suggested intermittent vibration could serve as a preventive measure for deep tissue ulcer, particularly in aged subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of epithalon on the incidence of chromosome aberrations in senescence-accelerated mice.

    PubMed

    Rosenfeld, S V; Togo, E F; Mikheev, V S; Popovich, I G; Khavinson, V Kh; Anisimov, V N

    2002-03-01

    The incidence of chromosome aberrations in bone marrow cells of 12-month-old SAMP-1 female mice characterized by accelerated aging was 1.8 times higher than in wild-type SAMR-1 females and 2.2 times higher than in SHR females of the same age. Treatment with Epithalon (Ala-Glu-Asp-Gly) starting from the age of 2 months decreased the incidence of chromosome aberrations in SAMP-1, SAMR-1, and SHR mice by 20%, 30.1%, and 17.9%, respectively, compared to age-matched controls (p<0.05). Treatment with melatonin (given with drinking water in a dose of 20 mg/liter in night hours) had no effect on the incidence of chromosome aberrations in SHR mice. These data indicate antimutagenic effect of Epithalon, which probably underlies the geroprotective effect of this peptide.

  5. Quantitative trait locus on chromosome X affects bone loss after maturation in mice.

    PubMed

    Okudaira, Shuzo; Shimizu, Motoyuki; Otsuki, Bungo; Nakanishi, Rika; Ohta, Akira; Higuchi, Keiichi; Hosokawa, Masanori; Tsuboyama, Tadao; Nakamura, Takashi

    2010-09-01

    Genetic programming is known to affect the peak bone mass and bone loss after maturation. However, little is known about how polymorphic genes on chromosome X (Chr X) modulate bone loss after maturation. We previously reported a quantitative trait locus (QTL) on Chr X, designated Pbd3, which had a suggestive linkage to bone mass, in male SAMP2 and SAMP6 mice. In this study, we aimed to clarify the effects of Pbd3 on the skeletal phenotype. We generated a congenic strain, P2.P6-X, carrying a 45.6-cM SAMP6-derived Chr X interval on a SAMP2 genetic background. The effects of Pbd3 on the bone phenotype were determined by microcomputed tomography (microCT), whole-body dual-energy X-ray absorptiometry (DXA), serum bone turnover markers, and histomorphometric parameters. Both the bone area fraction (BA/TA) on microCT and whole-body DXA revealed reduced bone loss in P2.P6-X compared with that in SAMP2. The serum concentrations of bone turnover markers at 4 months of age were significantly lower in P2.P6-X than in SAMP2, but did not differ at 8 months of age. These results were observed in female mice, but not in male mice. In conclusion, a QTL within a segregated 45.6-cM interval on Chr X is sex-specifically related to the rate of bone loss after maturation.

  6. Oral administration of Pantoea agglomerans-derived lipopolysaccharide prevents metabolic dysfunction and Alzheimer's disease-related memory loss in senescence-accelerated prone 8 (SAMP8) mice fed a high-fat diet.

    PubMed

    Kobayashi, Yutaro; Inagawa, Hiroyuki; Kohchi, Chie; Kazumura, Kimiko; Tsuchiya, Hiroshi; Miwa, Toshiyuki; Okazaki, Katsuichiro; Soma, Gen-Ichiro

    2018-01-01

    The pathogenesis of Alzheimer's disease (AD) remains unclear, but an imbalance between the production and clearance of amyloid-β (Aβ) peptides is known to play a critical role in AD progression. A promising preventative approach is to enhance the normal Aβ clearance activity of brain phagocytes such as microglia. In mice, the intraperitoneal injection of Toll-like receptor 4 agonist was shown to enhance Aβ clearance and exhibit a preventative effect on AD-related pathology. Our previous clinical study demonstrated that orally administered Pantoea agglomerans-derived lipopolysaccharide (LPSp) exhibited an LDL (low-density lipoprotein)-lowering effect in human volunteers with hyperlipidemia, a known risk factor for AD. In vitro studies have shown that LPSp treatment increases Aβ phagocytosis by microglial cells; however it is still unclear whether orally administered LPSp exhibits a preventive effect on AD progression. We show here that in senescence-accelerated prone 8 (SAMP8) mice fed a high-fat diet, oral administration of LPSp at 0.3 or 1 mg/kg body weight·day for 18 weeks significantly improved glucose metabolism and lipid profiles. The LPSp treatment also reduced pro-inflammatory cytokine expression and oxidative-burst activity in the peripheral blood. Moreover, LPSp significantly reduced brain Aβ burden and memory impairment as seen in the water maze test, although we could not confirm a significant enhancement of Aβ phagocytosis in microglia isolated from the brains after treatment. Taken together, our results show that LPSp holds promise as a preventative therapy for AD or AD-related diseases induced by impairment of metabolic functions.

  7. 1'-Acetoxychavicol acetate ameliorates age-related spatial memory deterioration by increasing serum ketone body production as a complementary energy source for neuronal cells.

    PubMed

    Kojima-Yuasa, Akiko; Yamamoto, Tomiya; Yaku, Keisuke; Hirota, Shiori; Takenaka, Shigeo; Kawabe, Kouichi; Matsui-Yuasa, Isao

    2016-09-25

    1'-Acetoxychavicol acetate (ACA) is naturally obtained from the rhizomes and seeds of Alpinia galangal. Here, we examined the effect of ACA on learning and memory in senescence-accelerated mice prone 8 (SAMP8). In mice that were fed a control diet containing 0.02% ACA for 25 weeks, the learning ability in the Morris water maze test was significantly enhanced in comparison with mice that were fed the control diet alone. In the Y-maze test, SAMP8 mice showed decreased spontaneous alterations in comparison with senescence-accelerated resistant/1 (SAMR1) mice, a homologous control, which was improved by ACA pretreatment. Serum metabolite profiles were obtained by GC-MS analysis, and each metabolic profile was plotted on a 3D score plot. Based upon the diagram, it can be seen that the distribution areas for the three groups were completely separate. Furthermore, the contents of β-hydroxybutyric acid and palmitic acid in the serum of SAMP8-ACA mice were higher than those of SAMP8-control mice and SAMR1-control mice. We also found that SAMR1 mice did not show histological abnormalities, whereas histological damage in the CA1 region of the hippocampus in SAMP8-control mice was observed. However, SAMP8-ACA mice were observed in a similar manner as SAMR1 mice. These findings confirm that ACA increases the serum concentrations of β-hydroxybutyric acid and palmitic acid levels and thus these fuels might contribute to the maintenance of the cognitive performance of SAMP8 mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice.

    PubMed

    Gu, Yeunhwa; Huang, Chien-Sheng; Inoue, Tota; Yamashita, Takenori; Ishida, Torao; Kang, Ki-Mun; Nakao, Atsunori

    2010-05-01

    Hydrogen has been reported to have neuron protective effects due to its antioxidant properties, but the effects of hydrogen on cognitive impairment due to senescence-related brain alterations and the underlying mechanisms have not been characterized. In this study, we investigated the efficacies of drinking hydrogen water for prevention of spatial memory decline and age-related brain alterations using senescence-accelerated prone mouse 8 (SAMP8), which exhibits early aging syndromes including declining learning ability and memory. However, treatment with hydrogen water for 30 days prevented age-related declines in cognitive ability seen in SAMP8 as assessed by a water maze test and was associated with increased brain serotonin levels and elevated serum antioxidant activity. In addition, drinking hydrogen water for 18 weeks inhibited neurodegeneration in hippocampus, while marked loss of neurons was noted in control, aged brains of mice receiving regular water. On the basis of our results, hydrogen water merits further investigation for possible therapeutic/preventative use for age-related cognitive disorders.

  9. Evodiamine improves congnitive abilities in SAMP8 and APPswe/PS1ΔE9 transgenic mouse models of Alzheimer's disease

    PubMed Central

    Yuan, Shu-min; Gao, Kai; Wang, Dong-mei; Quan, Xiong-zhi; Liu, Jiang-ning; Ma, Chun-mei; Qin, Chuan; Zhang, Lian-feng

    2011-01-01

    Aim: To investigate the effect of evodiamine (a quinolone alkaloid from the fruit of Evodia rutaecarpa) on the progression of Alzheimer's disease in SAMP8 and APPswe/PS1ΔE9 transgenic mouse models. Methods: The mice at age of 5 months were randomized into the model group, two evodiamine (50 mg·kg−1·d−1 and 100 mg·kg−1·d−1) groups and an Aricept (2 mg·kg−1·d−1) group. The littermates of no-transgenic mice and senescence accelerated mouse/resistance 1 mice (SAMR1) were used as controls. After 4 weeks of treatment, learning abilities and memory were assessed using Morris water-maze test, and glucose uptake by the brain was detected using positron emission tomography/computed tomography (PET/CT). Expression levels of IL-1β, IL-6, and TNF-α in brain tissues were detected using ELISA. Expression of COX-2 protein was determined using Western blot. Results: In Morris water-maze test, evodiamine (100 mg·kg−1·d−1) significantly alleviated the impairments of learning ability and memory. Evodiamine (100 mg·kg−1·d−1) also reversed the inhibition of glucose uptake due to development of Alzheimer's disease traits in mice. Furthermore, the dose of evodiamine significantly decreased the expression of IL-1β, IL-6, TNF-α, and COX-2 that were involved in the inflammation due to Alzheimer's disease. Conclusion: The results indicate that evodiamine (100 mg·kg−1·d−1) improves cognitive abilities in the transgenic models of Alzheimer's disease. PMID:21278785

  10. Silibinin rescues learning and memory deficits by attenuating microglia activation and preventing neuroinflammatory reactions in SAMP8 mice.

    PubMed

    Jin, Ge; Bai, Dafeng; Yin, Shiliang; Yang, Zhihang; Zou, Dan; Zhang, Zhong; Li, Xiaoxiu; Sun, Yan; Zhu, Qiwen

    2016-08-26

    Silibinin was reported to be effective in reversing the learning and memory deficits of several AD animal models. These improvements are thought to be regulated by various factors, including antioxidative stress, inhibition of acetylcholinesterase activity and Aβ aggregation. However, there are still no reports that demonstrate the effect of silibinin on microglia activation in vivo. Thus, in this study, we used the senescence-accelerated mouse (SAMP8) strain to test the effects of silibinin on behavioral impairments and microglia activation-induced neuroinflammation. Silibinin treatment significantly rescued memory deficits in novel object recognition test and Morris water maze test. Silibinin treatment significantly attenuated microglial activation; down-regulated the level of the proinflammatory cytokine IL-6, anti-inflammatory cytokine IL-4, and inflammation-associated proteins, iNOS and COX-2; and further modulated MAPK to protect neural cells. These results suggest that silibinin could be a potential candidate for the therapy of neurodegenerative disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Insufficient interleukin-2 production from splenic CD4+ T cells causes impaired cell proliferation and early apoptosis in SAMP1, a strain of senescence-accelerated mouse

    PubMed Central

    Nishimura, Yasumitsu; Hosokawa, Tomohide; Hosono, Masamichi; Baba, Mitsuo; Hosokawa, Masanori

    2002-01-01

    We examined the proliferative and cytokine-producing activities of CD4+ T cells from young mice of the senescence-accelerated mouse strain SAMP1, which had shown markedly low T-dependent antibody-producing responses. When splenic T cells were cultured with concanavalin A (Con A), the percentage of CD4+ cells decreased earlier in SAMP1 than in C3H/He mice. At 40 hr of culture, the percentage of BrdU-labelled proliferating CD4+ cells increased strongly in C3H/He, but only slightly in SAMP1. When purified CD4+ T cells were cultured with Con A, the percentage of 5-bromo-2′-deoxyuridine (BrdU)-labelled cells peaked at around 48 hr of culture in both strains, but decreased significantly at 64 hr in SAMP1. The production of interleukin (IL)-2 but not IL-4 or interferon-γ (IFN-γ) was significantly lower in SAMP1 than in C3H/He at 48 hr of culture. IL-2 production was also markedly low in SAMP1, even under the stimulation of anti-CD3 with anti-CD28 antibodies. The frequency of cells producing IL-2 was significantly lower in SAMP1 than in C3H/He at 6–24 hr of culture with Con A. The percentage of annexin-positive and propidium iodide (PI)-negative apoptotic cells was significantly higher in SAMP1 than in C3H/He at 96 hr of culture. Exogenous IL-2 prevented the decrease in BrdU-labelled cells and the increase in apoptotic cells in the SAMP1 cell culture. These results indicate that SAMP1 CD4+ T cells cannot produce IL-2 at levels sufficient to support cell proliferation and survival. This may account for the weak T-dependent antibody response in SAMP1 mice. PMID:12383198

  12. Dietary Animal Plasma Proteins Improve the Intestinal Immune Response in Senescent Mice.

    PubMed

    Miró, Lluïsa; Garcia-Just, Alba; Amat, Concepció; Polo, Javier; Moretó, Miquel; Pérez-Bosque, Anna

    2017-12-11

    Increased life expectancy has promoted research on healthy aging. Aging is accompanied by increased non-specific immune activation (inflammaging) which favors the appearance of several disorders. Here, we study whether dietary supplementation with spray-dried animal plasma (SDP), which has been shown to reduce the activation of gut-associated lymphoid tissue (GALT) in rodents challenged by S. aureus enterotoxin B (SEB), and can also prevent the effects of aging on immune system homeostasis. We first characterized GALT in a mouse model of accelerated senescence (SAMP8) at different ages (compared to mice resistant to accelerated senescence; SAMR1). Second, we analyzed the SDP effects on GALT response to an SEB challenge in SAMP8 mice. In GALT characterization, aging increased the cell number and the percentage of activated Th lymphocytes in mesenteric lymph nodes and Peyer's patches (all, p < 0.05), as well as the expression of IL-6 and TNF-α in intestinal mucosa (both, p < 0.05). With respect to GALT response to the SEB challenge, young mice showed increased expression of intestinal IL-6 and TNF-α, as well as lymphocyte recruitment and activation (all, p < 0.05). However, the immune response of senescent mice to the SEB challenge was weak, since SEB did not change cell recruitment or the percentage of activated Th lymphocytes. Mice supplemented with SDP showed improved capacity to respond to the SEB challenge, similar to the response of the young mice. These results indicate that senescent mice have an impaired mucosal immune response characterized by unspecific GALT activation and a weak specific immune response. SDP supplementation reduces non-specific basal immune activation, allowing for the generation of specific responses.

  13. Abnormal brain aging as a radical-related disease: A new target for nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujibayashi, Y.; Yamamoto, S.; Waki, A.

    DNA damages caused by endogenously produced radicals are closely correlated with aging. Among them, mitochondrial DNA (mtDNA) deletions have been reported as a memory of DNA damage by oxygen radicals. In fact, clinical as well as experimental studies indicated the accumulation of deleted mtDNA in the brain, myocardium and son on, in aged subjects. In our previous work, radioiodinated radical trapping agent, p-iodophenyl-N-t-butylnitrone, and hypoxia imaging agent, Cu-62 diacetyl-bis-N-4-methyl-thiosemicarbazone have been developed for the diagnosis of radical-related diseases, such as ischemic, inflammation, cancer or aging. The aim of the present work was to evaluate these agents for brain aging studies.more » In our university, an unique animal model, a senescence accelerated model mouse (SAM), has been established. Among the various substrains, SAMP8 showing memory deterioration in its young age ({approximately}3 month) was basically evaluated as an abnormal brain aging model with mtDNA deletion. As controls, SAMR1 showing normal aging and ddY mice were used. MtDNA deletion n the brain was analyzed with polymerase-chain reaction (PCR) method, and relationship between mtDNA deletion and brain uptake of IPBN or Cu-62-ATSM was studied. In 1-3 month old SAMP8 brain, multiple mtDNa deletions were already found and their content was significantly higher than that of SAMR1 or age-matched ddY control. Thus, it was cleared that SAMP8 brain has high tendency to be attacked by endogenously produced oxygen radicals, possibly from its birth. Both IPBN and Cu-ATSM showed significantly higher accumulation in the SAMP8 brain than in the SAMR1 brain, indicating that these agents have high possibility for the early detection of abnormal brain aging as a radical-related disease.« less

  14. Bio-Spectroscopic Imaging Provides Evidence of Hippocampal Zn Deficiency and Decreased Lipid Unsaturation in an Accelerated Ageing Mouse Model.

    PubMed

    Fimognari, Nicholas; Hollings, Ashley; Lam, Virginie; Tidy, Rebecca J; Kewish, Cameron M; Albrecht, Matthew A; Takechi, Ryu; Mamo, John C L; Hackett, Mark J

    2018-06-14

    Western society is facing a health epidemic due to the increasing incidence of dementia in ageing populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Ageing is the greatest risk factor for memory loss that occurs during the natural ageing process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Therefore, greater understanding of the biochemical pathways that drive a healthy ageing brain towards dementia (pathological ageing or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein over-expression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural ageing process. A promising animal model reported to model mechanisms of accelerated natural ageing and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain ageing. A limitation to traditional methods of biochemical characterisation is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or micro-spatial resolution. Therefore, in this investigation we report the first multi-modal biospectroscopic characterisation of the SAMP8 model, and have identified important biochemical and elemental alterations, and co-localisations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of altered metabolism and disturbed lipid homeostasis within corpus callosum white matter, in addition to localised hippocampal metal deficiencies, in the accelerated ageing phenotype. Such findings have important implication for future research aimed at

  15. Defects in subventricular zone pigmented epithelium-derived factor niche signaling in the senescence-accelerated mouse prone-8.

    PubMed

    Castro-Garcia, Paola; Díaz-Moreno, María; Gil-Gas, Carmen; Fernández-Gómez, Francisco J; Honrubia-Gómez, Paloma; Álvarez-Simón, Carmen Belén; Sánchez-Sánchez, Francisco; Cano, Juan Carlos Castillo; Almeida, Francisco; Blanco, Vicente; Jordán, Joaquín; Mira, Helena; Ramírez-Castillejo, Carmen

    2015-04-01

    We studied potential changes in the subventricular zone (SVZ) stem cell niche of the senescence-accelerated mouse prone-8 (SAM-P8) aging model. Bromodeoxyuridine (BrdU) assays with longtime survival revealed a lower number of label-retaining stem cells in the SAM-P8 SVZ compared with the SAM-Resistant 1 (SAM-R1) control strain. We also found that in SAM-P8 niche signaling is attenuated and the stem cell pool is less responsive to the self-renewal niche factor pigmented epithelium-derived factor (PEDF). Protein analysis demonstrated stable amounts of the PEDF ligand in the SAM-P8 SVZ niche; however, SAM-P8 stem cells present a significant expression decrease of patatin-like phospholipase domain containing 2, a receptor for PEDF (PNPLA2-PEDF) receptor, but not of laminin receptor (LR), a receptor for PEDF (LR-PEDF) receptor. We observed changes in self-renewal related genes (hairy and enhancer of split 1 (Hes1), hairy and enhancer of split 1 (Hes5), Sox2] and report that although these genes are down-regulated in SAM-P8, differentiation genes (Pax6) are up-regulated and neurogenesis is increased. Finally, sheltering mammalian telomere complexes might be also involved given a down-regulation of telomeric repeat binding factor 1 (Terf1) expression was observed in SAM-P8 at young age periods. Differences between these 2 models, SAM-P8 and SAM-R1 controls, have been previously detected at more advanced ages. We now describe alterations in the PEDF signaling pathway and stem cell self-renewal at a very young age, which could be involved in the premature senescence observed in the SAM-P8 model. © FASEB.

  16. Getting started with package sampSurf

    Treesearch

    Jeffrey H. Gove

    2014-01-01

    The sampSurf package is designed to facilitate the comparison of new and existing areal sampling methods through simulation. The package is thoroughly documented in several vignettes as mentioned below. This document is meant to point you in the right direction in finding the needed information to get started using sampSurf.

  17. 11β-HSD1 Inhibition by RL-118 Promotes Autophagy and Correlates with Reduced Oxidative Stress and Inflammation, Enhancing Cognitive Performance in SAMP8 Mouse Model.

    PubMed

    Puigoriol-Illamola, Dolors; Griñán-Ferré, Christian; Vasilopoulou, Foteini; Leiva, Rosana; Vázquez, Santiago; Pallàs, Mercè

    2018-04-02

    Elevated glucocorticoid (GC) exposure is widely accepted as a key factor in the age-related cognitive decline in rodents and humans. 11β-HSD1 is a key enzyme in the GCs pathway, catalyzing the conversion of 11β-dehydrocorticosterone to corticosterone in mice, with possible implications in neurodegenerative processes and cognitive impairment. Here, we determined the effect of a new 11β-HSD1 inhibitor, RL-118, administered to 12-month-old senescence-accelerated mouse-prone 8 (SAMP8) mice with neuropathological AD-like hallmarks and widely used as a rodent model of cognitive dysfunction. Behavioral tests (open field and object location) and neurodegeneration molecular markers were studied. After RL-118 treatment, increased locomotor activity and cognitive performance were found. Likewise, we found changes in hippocampal autophagy markers such as Beclin1, LC3B, AMPKα, and mTOR, indicating a progression in the autophagy process. In line with autophagy increase, a diminution in phosphorylated tau species (Ser 396 and Ser 404) jointly with an increase in ADAM10 and sAPPα indicated that an improvement in removing the abnormal proteins by autophagy might be implicated in the neuroprotective role of the 11β-HSD1 inhibitor. In addition, gene expression of oxidative stress (OS) and inflammatory markers, such as Hmox1, Aldh2, Il-1β, and Ccl3, were reduced in old treated mice in comparison to that of the control group. Consistent with this, we further demonstrate a significant correlation with autophagy markers and cognitive improvement and significant inverse correlation with autophagy, OS, and neuroinflammation markers. We concluded that inhibition of 11β-HSD1 by RL-118 prevented neurodegenerative processes and cognitive decline, acting on autophagy process, being an additional neuroprotective mechanism not described previously.

  18. L-Lysine suppresses myofibrillar protein degradation and autophagy in skeletal muscles of senescence-accelerated mouse prone 8.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2017-02-01

    Sarcopenia is a condition of the loss of muscle mass that is associated with aging and that increases the risk for bedridden state, thereby warranting studies of interventions that attenuate sarcopenia. Here the effects of 2-month dietary L-lysine (Lys) supplementation (1.5-3.0 %) on myofibrillar protein degradation and major proteolytic systems were investigated in senescence-accelerated mouse prone 8 (SAMP8). At 36 weeks of age, skeletal muscle and lean body mass was reduced in SAMP8 when compared with control senescence-accelerated mouse resistant 1 (SAMR1). The myofibrillar protein degradation, which was evaluated by the release of 3-methylhistidine, was stimulated in SAMP8, and the autophagy activity, which was evaluated by light chain 3-II, was stimulated in the skeletal muscle of SAMP8. The activation of ubiquitin-proteasome system was not observed in the muscles of SAMP8. However, myofibrillar protein degradation and autophagic activity in skeletal muscles of SAMP8 were suppressed by dietary intake of 3.0 % Lys. The present data indicate that myofibrillar protein degradation by bulk autophagy is stimulated in the skeletal muscles of SAMP8 and that dietary Lys supplementation attenuates sarcopenia in SAMP8 by suppressing autophagic proteolysis.

  19. Global gene profiling of aging lungs in Atp8b1 mutant mice.

    PubMed

    Soundararajan, Ramani; Stearns, Timothy M; Czachor, Alexander; Fukumoto, Jutaro; Turn, Christina; Westermann-Clark, Emma; Breitzig, Mason; Tan, Lee; Lockey, Richard F; King, Benjamin L; Kolliputi, Narasaiah

    2016-09-29

    Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases.

  20. Aging Selectively Modulates Vitamin C Transporter Expression Patterns in the Kidney.

    PubMed

    Forman, Katherine; Martínez, Fernando; Cifuentes, Manuel; Bertinat, Romina; Salazar, Katterine; Nualart, Francisco

    2017-09-01

    In the kidney, vitamin C is reabsorbed from the glomerular ultrafiltrate by sodium-vitamin C cotransporter isoform 1 (SVCT1) located in the brush border membrane of the proximal tubules. Although we know that vitamin C levels decrease with age, the adaptive physiological mechanisms used by the kidney for vitamin C reabsorption during aging remain unknown. In this study, we used an animal model of accelerated senescence (SAMP8 mice) to define the morphological alterations and aging-induced changes in the expression of vitamin C transporters in renal tissue. Aging induced significant morphological changes, such as periglomerular lymphocytic infiltrate and glomerular congestion, in the kidneys of SAMP8 mice, although no increase in collagen deposits was observed using 2-photon microscopy analysis and second harmonic generation. The most characteristic histological alteration was the dilation of intracellular spaces in the basolateral region of proximal tubule epithelial cells. Furthermore, a combination of laser microdissection, qRT-PCR, and immunohistochemical analyses allowed us to determine that SVCT1 expression specifically increased in the proximal tubules from the outer strip of the outer medulla (segment S3) and cortex (segment S2) during aging and that these tubules also express GLUT1. We conclude that aging modulates vitamin C transporter expression and that renal over-expression of SVCT1 enhances vitamin C reabsorption in aged animals that may synthesize less vitamin C. J. Cell. Physiol. 232: 2418-2426, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Mechanism of Isoflavone Aglycone's Effect on Cognitive Performance of Senescence-Accelerated Mice

    ERIC Educational Resources Information Center

    Yang, Hong; Jin, Guifang; Ren, Dongdong; Luo, Sijing; Zhou, Tianhong

    2011-01-01

    This study investigated the effect of isoflavone aglycone (IA) on the learning and memory performance of senescence-accelerated mice, and explored its neural protective mechanism. Results showed that SAM-P/8 senescence-accelerated mice treated with IA performed significantly better in the Y-maze cognitive test than the no treatment control (P less…

  2. Complexity quantification of cardiac variability time series using improved sample entropy (I-SampEn).

    PubMed

    Marwaha, Puneeta; Sunkaria, Ramesh Kumar

    2016-09-01

    The sample entropy (SampEn) has been widely used to quantify the complexity of RR-interval time series. It is a fact that higher complexity, and hence, entropy is associated with the RR-interval time series of healthy subjects. But, SampEn suffers from the disadvantage that it assigns higher entropy to the randomized surrogate time series as well as to certain pathological time series, which is a misleading observation. This wrong estimation of the complexity of a time series may be due to the fact that the existing SampEn technique updates the threshold value as a function of long-term standard deviation (SD) of a time series. However, time series of certain pathologies exhibits substantial variability in beat-to-beat fluctuations. So the SD of the first order difference (short term SD) of the time series should be considered while updating threshold value, to account for period-to-period variations inherited in a time series. In the present work, improved sample entropy (I-SampEn), a new methodology has been proposed in which threshold value is updated by considering the period-to-period variations of a time series. The I-SampEn technique results in assigning higher entropy value to age-matched healthy subjects than patients suffering atrial fibrillation (AF) and diabetes mellitus (DM). Our results are in agreement with the theory of reduction in complexity of RR-interval time series in patients suffering from chronic cardiovascular and non-cardiovascular diseases.

  3. RanGTPase regulates the interaction between the inner nuclear membrane proteins, Samp1 and Emerin.

    PubMed

    Vijayaraghavan, Balaje; Figueroa, Ricardo A; Bergqvist, Cecilia; Gupta, Amit J; Sousa, Paulo; Hallberg, Einar

    2018-06-01

    Samp1, spindle associated membrane protein 1, is a type II integral membrane protein localized in the inner nuclear membrane. Recent studies have shown that the inner nuclear membrane protein, Emerin and the small monomeric GTPase, Ran are direct binding partners of Samp1. Here we addressed the question whether Ran could regulate the interaction between Samp1 and Emerin in the inner nuclear membrane. To investigate the interaction between Samp1 and Emerin in live cells, we performed FRAP experiments in cells overexpressing YFP-Emerin. We compared the mobility of YFP-Emerin in Samp1 knock out cells and cells overexpressing Samp1. The results showed that the mobility of YFP-Emerin was higher in Samp1 knock out cells and lower in cells overexpressing Samp1, suggesting that Samp1 significantly attenuates the mobility of Emerin in the nuclear envelope. FRAP experiments using tsBN2 cells showed that the mobility of Emerin depends on RanGTP. Consistently, in vitro binding experiments showed that the affinity between Samp1 and Emerin is decreased in the presence of Ran, suggesting that Ran attenuates the interaction between Samp1 and Emerin. This is the first demonstration that Ran can regulate the interaction between two proteins in the nuclear envelope. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2.

    PubMed

    XiYang, Yan-Bin; Wang, You-Cui; Zhao, Ya; Ru, Jin; Lu, Bing-Tuan; Zhang, Yue-Ning; Wang, Nai-Chao; Hu, Wei-Yan; Liu, Jia; Yang, Jin-Wei; Wang, Zhao-Jun; Hao, Chun-Guang; Feng, Zhong-Tang; Xiao, Zhi-Cheng; Dong, Wei; Quan, Xiong-Zhi; Zhang, Lian-Feng; Wang, Ting-Hua

    2016-03-01

    The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68% resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging.

  5. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    PubMed

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (p<0.001) and the ALF 0.2μg/kg group (p<0.05) evaluated by 3-point bending test. The cortical area of the mid-femur in the ELD 0.05μg/kg group but not the ALF 0.2μg/kg group was significantly higher than those of the vehicle control group (p<0.001). Bone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (p<0.05, p<0.01, respectively), whereas ALF 0.2μg/kg did not alter these parameters. These results indicate that ELD improved the biomechanical properties of femoral cortical bone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [Total flavones derived from Lagotis brevituba maxim reduce the levels of inflammatory cytokines in cerebral cortex and hippocampus of Alzheimer's disease mice].

    PubMed

    Yang, Bailing; Hou, Qian; Hu, Feng; Zhang, Fan

    2016-07-01

    Objective To investigate the mechanism behind the treatment of Alzheimer's disease (AD) with total flavones derived from Lagotis brevituba maxim (TF-LBM). Methods Fifty SAMP8 mice (aged 8 months) were randomly divided into 5 groups, (150, 300, 600) mg/kg TF-LBM groups, 0.65 g/kg donepezil HCl group and AD model group; 10 SAMR1 mice (aged 8 months) were used as a control group of normal aging. The AD model group and the normal aging control group were given the same volume of distilled water as TF-LBM groups. Eight weeks after intragastric administration, Morris water maze experiment was conducted to calculate the latency of place navigation. After the behavioral experiment, the brain cortical tissue and hippocampus (CA1 region) of the mice from various groups were taken to observe the morphological changes of the cortical tissue and hippocampus and test IL-1β, IL-6, TNF-α content. Results Compared with the model group, the escape latency of the normal aging group, the high-dose TF-LBM group and the donepezil HCl group were evidently shortened; compared with the normal aging group, IL-1β, IL-6, TNF-αof the model group increased significantly; compared with the model group, IL-1β content of the low-dose TF-LBM group had no obvious difference, while IL-1β content of the median-dose and high-dose TF-LBM groups and the donepezil HCl group decreased significantly; IL-6 content decreased in all TF-LBM groups and the donepezil HCl group; TNF-α level in the low-dose and median-dose TF-LBM groups had no evident difference, while it was reduced significantly in the high-dose TF-LBM group and the donepezil HCl group. Compared with the normal aging group, IL-1β, IL-6 and TNF-α content of the model group increased significantly; compared with the model group, IL-1β, IL-6 and TNF-α content of all TF-LBM groups and the donepezil HCl group decreased. Conclusion TF-LBM can improve the behavior change of SAMP8 mice with AD. TF-LBM can reduce the content of IL-6, IL-1β and

  7. Abnormal structural luteolysis in ovaries of the senescence accelerated mouse (SAM): expression of Fas ligand/Fas-mediated apoptosis signaling molecules in luteal cells.

    PubMed

    Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime

    2003-12-01

    Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice.

  8. Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model

    PubMed Central

    Huang, Jin-Lan; Qin, Mei-Chun; Zhou, Yan; Xu, Zhe-Hao; Yang, Si-man; Zhang, Fan; Zhong, Jing; Liang, Ming-Kun; Chen, Ben; Zhang, Wen-Yan

    2018-01-01

    Circular RNAs (circRNAs), a novel kind of non-coding RNA, have received increasing attention for their involvement in pathogenesis of Alzheimer’s disease (AD); however, few studies have reported in the characterization and function of AD associated circRNAs. Here the expression profiles of circRNAs in 5- and 10-month-old SAMP8 mice were identified using circRNA microarray and found that 85 dysregulated circRNAs were observed in 10-month-old SAMP8 versus control mice and 231 circRNAs exhibited differential expression in 10-month-old SAMP8 versus 5-month-old SAMP8. One most significantly dysregulated circRNA, mmu_circRNA_017963, was select for Gene Oncology (GO) and pathway analysis. The results showed that mmu_circRNA_017963 was strongly related with autophagosome assembly, exocytosis, apoptotic process, transport and RNA splicing and highly associated with synaptic vesicle cycle, spliceosome, glycosaminoglycan and SNARE interactions in vesicular transport pathways. Collectively, this study was the first to describe circRNAs expression in different ages of SAMP8 and will contribute to the understanding of the regulatory roles of circRNAs in AD pathogenesis and provide a valuable resource for the diagnosis and therapy of AD. PMID:29448241

  9. Ionic strength-dependent conformations of a ubiquitin-like small archaeal modifier protein (SAMP1) from Haloferax volcanii

    PubMed Central

    Ye, Kaiqin; Liao, Shanhui; Zhang, Wen; Fan, Kai; Zhang, Xuecheng; Zhang, Jiahai; Xu, Chao; Tu, Xiaoming

    2013-01-01

    Eukaryotic ubiquitin and ubiquitin-like systems play crucial roles in various cellular biological processes. In this work, we determined the solution structure of SAMP1 from Haloferax volcanii by NMR spectroscopy. Under low ionic conditions, SAMP1 presented two distinct conformations, one folded β-grasp and the other disordered. Interestingly, SAMP1 underwent a conformational conversion from disorder to order with ion concentration increasing, indicating that the ordered conformation is the functional form of SAMP1 under the physiological condition of H. volcanii. Furthermore, SAMP1 could interact with proteasome-activating nucleotidase B, supposing a potential role of SAMP1 in the protein degradation pathway mediated by proteasome. PMID:23818097

  10. Systematic Analysis of Long Noncoding RNAs in the Senescence-accelerated Mouse Prone 8 Brain Using RNA Sequencing.

    PubMed

    Zhang, Shuai; Qin, Chunxia; Cao, Guoqiong; Xin, Wenfeng; Feng, Chengqiang; Zhang, Wensheng

    2016-08-02

    Long noncoding RNAs (lncRNAs) may play an important role in Alzheimer's disease (AD) pathogenesis. However, despite considerable research in this area, the comprehensive and systematic understanding of lncRNAs in AD is still limited. The emergence of RNA sequencing provides a predictor and has incomparable advantage compared with other methods, including microarray. In this study, we identified lncRNAs in a 7-month-old mouse brain through deep RNA sequencing using the senescence-accelerated mouse prone 8 (SAMP8) and senescence-accelerated mouse resistant 1 (SAMR1) models. A total of 599,985,802 clean reads and 23,334 lncRNA transcripts were obtained. Then, we identified 97 significantly upregulated and 114 significantly downregulated lncRNA transcripts from all cases in SAMP8 mice relative to SAMR1 mice. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these significantly dysregulated lncRNAs were involved in regulating the development of AD from various angles, such as nerve growth factor term (GO: 1990089), mitogen-activated protein kinase signaling pathway, and AD pathway. Furthermore, the most probable AD-associated lncRNAs were predicted and listed in detail. Our study provided the systematic dissection of lncRNA profiling in SAMP8 mouse brain and accelerated the development of lncRNA biomarkers in AD. These attracting biomarkers could provide significant insights into AD therapy in the future.

  11. Expression of VGLUTs contributes to degeneration and acquisition of learning and memory.

    PubMed

    Cheng, Xiao-Rui; Yang, Yong; Zhou, Wen-Xia; Zhang, Yong-Xiang

    2011-03-01

    Vesicular glutamate transporters (VGLUTs), which include VGLUT1, VGLUT2 and VGLUT3, are responsible for the uploading of L-glutamate into synaptic vesicles. The expression pattern of VGLUTs determines the level of synaptic vesicle filling (i.e., glutamate quantal size) and directly influences glutamate receptors and glutamatergic synaptic transmission; thus, VGLUTs may play a key role in learning and memory in the central nervous system. To determine whether VGLUTs contribute to the degeneration or acquisition of learning and memory, we used an animal model for the age-related impairment of learning and memory, senescence-accelerated mouse/prone 8 (SAMP8). KM mice were divided into groups based on their learning and memory performance in a shuttle-box test. The expression of VGLUTs and synaptophysin (Syp) mRNA and protein in the cerebral cortex and hippocampus were investigated with real-time fluorescence quantitative PCR and western blot, respectively. Our results demonstrate that, in the cerebral cortex, protein expression of VGLUT1, VGLUT2, VGLUT3 and Syp was decreased in SAMP8 with age and increased in KM mice, which displayed an enhanced capacity for learning and memory. The protein expression of VGLUT2 and Syp was decreased in the hippocampus of SAMP8 with aging. The expression level of VGLUT1 and VGLUT2 proteins were highest in KM mouse group with a 76-100% avoidance score in the shuttle-box test. These data demonstrate that protein expression of VGLUT1, VGLUT2 and Syp decreases age-dependently in SAMP8 and increases in a learning- and memory-dependent manner in KM mice. Correlation analysis indicated the protein expression of VGLUT1, VGLUT2 and Syp has a positive correlation with the capacity of learning and memory. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Blood brain barrier permeability of (-)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice.

    PubMed

    Pervin, Monira; Unno, Keiko; Nakagawa, Aimi; Takahashi, Yuu; Iguchi, Kazuaki; Yamamoto, Hiroyuki; Hoshino, Minoru; Hara, Aya; Takagaki, Akiko; Nanjo, Fumio; Minami, Akira; Imai, Shinjiro; Nakamura, Yoriyuki

    2017-03-01

    The consumption of green tea catechins (GTCs) suppresses age-related cognitive dysfunction in mice. GTCs are composed of several catechins, of which epigallocatechin gallate (EGCG) is the most abundant, followed by epigallocatechin (EGC). Orally ingested EGCG is hydrolyzed by intestinal biota to EGC and gallic acid (GA). To understand the mechanism of action of GTCs on the brain, their permeability of the blood brain barrier (BBB) as well as their effects on cognitive function in mice and on nerve cell proliferation in vitro were examined. The BBB permeability of EGCG, EGC and GA was examined using a BBB model kit. SAMP10, a mouse model of brain senescence, was used to test cognitive function in vivo . Human neuroblastoma SH-SY5Y cells were used to test nerve cell proliferation and differentiation. The in vitro BBB permeability (%, in 30 min) of EGCG, EGC and GA was 2.8±0.1, 3.4±0.3 and 6.5±0.6, respectively. The permeability of EGCG into the BBB indicates that EGCG reached the brain parenchyma even at a very low concentration. The learning ability of SAMP10 mice that ingested EGCG (20 mg/kg) was significantly higher than of mice that ingested EGC or GA. However, combined ingestion of EGC and GA showed a significant improvement comparable to EGCG. SH-SY5Y cell growth was significantly enhanced by 0.05 µM EGCG, but this effect was reduced at higher concentrations. The effect of EGC and GA was lower than that of EGCG at 0.05 µM. Co-administration of EGC and GA increased neurite length more than EGC or GA alone. Cognitive dysfunction in mice is suppressed after ingesting GTCs when a low concentration of EGCG is incorporated into the brain parenchyma via the BBB. Nerve cell proliferation/differentiation was enhanced by a low concentration of EGCG. Furthermore, the additive effect of EGC and GA suggests that EGCG sustains a preventive effect after the hydrolysis to EGC and GA.

  13. Cyanidin-3-O-galactoside and blueberry extracts supplementation improves spatial memory and regulates hippocampal ERK expression in senescence-accelerated mice.

    PubMed

    Tan, Long; Yang, Hong Peng; Pang, Wei; Lu, Hao; Hu, Yan Dan; Li, Jing; Lu, Shi Jun; Zhang, Wan Qi; Jiang, Yu Gang

    2014-03-01

    To investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous system. 30 Senescence-accelerated mice prone 8 (SAMP8) mice were divided into three groups and treated with normal diet, blueberry extracts (200 mg/kg•bw/day) and cyaniding-3-O-galactoside (Cy-3-GAL) (50 mg/kg•bw/day) from blueberry for 8 weeks. 10 SAMR1 mice were set as control group. The capacity of spatial memory was assessed by Passive avoidance task and Morris water maze. Histological analyses on hippocampus were completed. Malondialdehyde (MDA) levels, Superoxide Dismutase (SOD) activity and the expression of ERK were detected. Both Cy-3-GAL and blueberry extracts were shown effective functions to relieve cellular injury, improve hippocampal neurons survival and inhibit the pyramidal cell layer damage. Cy-3-GAL and blueberry extracts also increased SOD activity and reduced MDA content in brain tissues and plasma, and increased hippocampal phosphorylated ERK (p-ERK) expression in SAMP8 mice. Further more, the passive avoidance task test showed that both the latency time and the number of errors were improved by Cy-3-GAL treatment, and the Morris Water Maze test showed significant decreases of latency were detected by Cy-3-GAL and blueberry extracts treatment on day 4. Blueberry extracts may reverse the declines of cognitive and behavioral function in the ageing process through several pathways, including enhancing the capacity of antioxidation, altering stress signaling. Cy-3-GAL may be an important active ingredient for these biological effects. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  14. Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice.

    PubMed

    Fontán-Lozano, Angela; Romero-Granados, Rocío; Troncoso, Julieta; Múnera, Alejandro; Delgado-García, José María; Carrión, Angel M

    2008-10-01

    Histone deacetylases (HDAC) are enzymes that maintain chromatin in a condensate state, related with absence of transcription. We have studied the role of HDAC on learning and memory processes. Both eyeblink classical conditioning (EBCC) and object recognition memory (ORM) induced an increase in histone H3 acetylation (Ac-H3). Systemic treatment with HDAC inhibitors improved cognitive processes in EBCC and in ORM tests. Immunohistochemistry and gene expression analyses indicated that administration of HDAC inhibitors decreased the stimulation threshold for Ac-H3, and gene expression to reach the levels required for learning and memory. Finally, we evaluated the effect of systemic administration of HDAC inhibitors to mice models of neurodegeneration and aging. HDAC inhibitors reversed learning and consolidation deficits in ORM in these models. These results point out HDAC inhibitors as candidate agents for the palliative treatment of learning and memory impairments in aging and in neurodegenerative disorders.

  15. Sex steroids during bone growth: a comparative study between mouse models for hypogonadal and senile osteoporosis.

    PubMed

    Ophoff, J; Venken, K; Callewaert, F; Boonen, S; Bouillon, R; Vanderschueren, D

    2009-10-01

    In this study, the role of disturbed bone mineral acquisition during puberty in the pathogenesis of osteoporosis was studied. To this end, a mouse model for senile and hypogonadal osteoporosis was used. Longitudinal follow-up showed that bone fragility in both models results from deficient bone build-up during early puberty. Male osteoporosis may result from impaired bone growth. This study characterizes the mechanisms of deficient peak bone mass acquisition in models for senile (SAMP6) and hypogonadal (orchidectomized SAMR1) osteoporosis. Bone mineral acquisition was investigated longitudinally in SAMP6 and orchidectomized SAMR1 mice (eight to ten animals per group) using peripheral quantitative computed tomography and histomorphometry. Additionally, the effects of long-term 5alpha-dihydrotestosterone (DHT) and 17beta-estradiol (E2) replacement were studied. Statistical analysis was performed using ANOVA and Student's t test. SAMP6 mice showed an early (4 weeks) medullary expansion of the cortex due to impaired endocortical bone formation (-43%). Despite compensatory periosteal bone formation (+47%), cortical thickness was severely reduced in 20-week-old SAMP6 versus SAMR1. Orchidectomy reduced periosteal apposition between 4 and 8 weeks of age and resulted in high bone turnover and less trabecular bone gain in SAMP6 and SAMR1. DHT and E2 stimulated periosteal expansion and trabecular bone in orchidectomized SAMP6 and SAMR1. E2 stimulated endocortical apposition in SAMP6. Moreover, sex steroid action occurred between 4 and 8 weeks of age. Bone fragility in both models resulted from deficient bone build-up during early puberty. DHT and E2 improved bone mass acquisition in orchidectomized animals, suggesting a role for AR and ER in male skeletal development.

  16. Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma.

    PubMed

    Liu, Hen-Yu; Huang, Chiung-Fang; Lin, Tzu-Chieh; Tsai, Ching-Yu; Tina Chen, Szu-Yu; Liu, Alice; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Williams, David F; Deng, Win-Ping

    2014-12-01

    Aging is related to loss of functional stem cell accompanying loss of tissue and organ regeneration potentials. Previously, we demonstrated that the life span of ovariectomy-senescence accelerated mice (OVX-SAMP8) was significantly prolonged and similar to that of the congenic senescence-resistant strain of mice after platelet rich plasma (PRP)/embryonic fibroblast transplantation. The aim of this study is to investigate the potential of PRP for recovering cellular potential from senescence and then delaying animal aging. We first examined whether stem cells would be senescent in aged mice compared to young mice. Primary adipose derived stem cells (ADSCs) and bone marrow derived stem cells (BMSCs) were harvested from young and aged mice, and found that cell senescence was strongly correlated to animal aging. Subsequently, we demonstrated that PRP could recover cell potential from senescence, such as promote cell growth (cell proliferation and colony formation), increase osteogenesis, decrease adipogenesis, restore cell senescence related markers and resist the oxidative stress in stem cells from aged mice. The results also showed that PRP treatment in aged mice could delay mice aging as indicated by survival, body weight and aging phenotypes (behavior and gross morphology) in term of recovering the cellular potential of their stem cells compared to the results on aged control mice. In conclusion these findings showed that PRP has potential to delay aging through the recovery of stem cell senescence and could be used as an alternative medicine for tissue regeneration and future rejuvenation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Obesity-Induced Diabetes and Lower Urinary Tract Fibrosis Promote Urinary Voiding Dysfunction in a Mouse Model

    PubMed Central

    Gharaee-Kermani, Mehrnaz; Rodriguez-Nieves, Jose A.; Mehra, Rohit; Vezina, Chad A.; Sarma, Aruna V.; Macoska, Jill A.

    2017-01-01

    BACKGROUND Progressive aging- and inflammation-associated fibrosis effectively remodels the extracellular matrix (ECM) to increase prostate tissue stiffness and reduce urethral flexibility, resulting in urinary flow obstruction and lower urinary tract symptoms (LUTS). In the current study, we sought to test whether senescence-accelerated mouse prone (SAMP)6 mice, which were reported to develop prostatic fibrosis, would also develop LUTS, and whether these symptoms would be exacerbated by diet-induced obesity and concurrent Type 2 Diabetes Mellitus (T2DM). METHODS To accomplish this, SAMP6 and AKR/J background strain mice were fed regular mouse chow, low fat diet chow, or high fat diet chow for 8 months, then subjected to glucose tolerance tests, assessed for plasma insulin levels, evaluated for urinary voiding function, and assessed for lower urinary tract fibrosis. RESULTS The results of these studies show that SAMP6 mice and AKR/J background strain mice develop diet-induced obesity and T2DM concurrent with urinary voiding dysfunction. Moreover, urinary voiding dysfunction was more severe in SAMP6 than AKR/J mice and was associated with pronounced prostatic and urethral tissue fibrosis. CONCLUSIONS Taken together, these studies suggest that obesity, T2DM, lower urinary tract fibrosis, and urinary voiding dysfunction are inextricably and biologically linked. Prostate. PMID:23532836

  18. Testicular glucose and its transporter GLUT 8 as a marker of age-dependent variation and its role in steroidogenesis in mice.

    PubMed

    Banerjee, Arnab; Anuradha; Mukherjee, Kaustab; Krishna, Amitabh

    2014-11-01

    The present study evaluates the hypothesis, that glucose is essential for steroidogenesis and inadequate supply of glucose to the testis may be responsible for decline in steroidogenesis in mice during aging. Mice of different age groups (birth, weaning, puberty, reproductively active, and senescence) were utilized for this study. The changes in glucose, glucose transporter (GLUT), and insulin receptor (IR) level in the testis were evaluated and compared with the testicular steroidogenic parameters such as steroidogenic acute regulatory protein (StAR), 3β-hydroxy steroid dehydrogenase (3β-HSD) and circulating testosterone levels. The result showed significant correlation between changes in GLUT 8 and glucose levels with changes in StAR level in the testis and circulating testosterone level in the mice from birth to senescence. Immunohistochemical analysis showed intense immunostaining of GLUT 8 and IR in the interstitial cells, most likely Leydig cells, in testis of pubertal and reproductively active mice suggesting their relevance in steroidogenesis. The in vitro study showed a significant positive correlation between luteinizing hormone (LH)-induced increase in GLUT 8 and StAR (r = 0.82; P < 0.05) proteins level in the testes with increase in testosterone (r = 0.97; P < 0.05) synthesis of reproductively active mice. This study also showed increased release of lactate with increased uptake of glucose by the testis. Further, intra-testicular treatment of 2-deoxy glucose, to reproductively active mice caused a significant decrease in 3β-HSD enzyme activity in the testis. Based on these findings, it may be concluded that the changes in glucose level either directly or indirectly lead to changes in testicular steroidogenesis during aging. © 2014 Wiley Periodicals, Inc.

  19. Potential of mental disease diagnosis of photoplethysmographic signals using SampEn

    NASA Astrophysics Data System (ADS)

    Niwa, Tokihiko; Oyama-Higa, Mayumi; Pham, Tuan D.

    2013-10-01

    Sample Entropy is calculated by means of three parameters, i.e. N as the length of the time series, m as the length of sequences to be compared, and r as the tolerance for accepting matches, where r * SD is the standard deviation of the data set. The Sample Entropy (SampEn) value is an indicator that can reveal potential regularity and periodicity of data that otherwise cannot be recognized from a complicated random data set. The conventional method is to compare m and r as empirical value but this time, applying the new method we compared the r-SampEn value for each m =2 to10 with r = 0.1 to 0.5 with increments of 0.01. As a result, surprisingly, we found that the behavior of the SampEn (especially where m = 2, 3, 4) towards the photoplethysmographic value m of people with a mental disorder is slightly different according to the type of disease but similar for patients who are diagnosed with the same mental disease. This is a remarkable phenomenon that needs further research. Hence, we will try to clarify this outcome theoretically and hope to find ways to apply this indicator in order to diagnose and cure patients.

  20. Age-related Changes in the Hepatic Microcirculation in Mice

    PubMed Central

    Ito, Yoshiya; Sørensen, Karen K.; Bethea, Nancy W.; Svistounov, Dmitri; McCuskey, Margaret K.; Smedsrød, Bård H.; McCuskey, Robert S.

    2007-01-01

    Aging of the liver is associated with impaired metabolism of drugs, adverse drug interactions, and susceptibility to toxins. Since reduced hepatic blood flow is suspected to contribute this impairment, we examined age-related alterations in hepatic microcirculation.. Livers of C57Bl/6 mice were examined at 0.8 (pre-pubertal), 3 (young adult), 14 (middle-aged) and 27 (senescent) months of age using in vivo and electron microscopic methods. The results demonstrated a 14% reduction in the numbers of perfused sinusoids between 0.8 and 27 month mice associated with 35% reduction in sinusoidal blood flow. This was accompanied by an inflammatory response evidenced by a 5-fold increase in leukocyte adhesion in 27 month mice, up-regulated expression of ICAM-1, and increases in intrahepatic macrophages. Sinusoidal diameter decreased 6-10%. Liver sinusoidal endothelial cell (LSEC) dysfunction was seen as early as 14 months when there was a 3-fold increase in the numbers of swollen LSEC. The endocytotic capacity of LSEC also was found to be reduced in older animals. The sinusoidal endothelium in 27 month old mice exhibited pseudocapillarization. In conclusion, the results suggest that leukocyte accumulation in the sinusoids and narrowing of sinusoidal lumens due to pseudocapillarization and dysfunction of LSEC reduce sinusoidal blood flow in aged livers. PMID:17582718

  1. Oxidative stress in aging: advances in proteomic approaches.

    PubMed

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.

  2. Plasmacytoid DC from aged mice down-regulate CD8 T cell responses by inhibiting cDC maturation after Encephalitozoon cuniculi infection.

    PubMed

    Gigley, Jason P; Khan, Imtiaz A

    2011-01-01

    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.

  3. SAMP, the Simple Application Messaging Protocol: Letting applications talk to each other

    NASA Astrophysics Data System (ADS)

    Taylor, M. B.; Boch, T.; Taylor, J.

    2015-06-01

    SAMP, the Simple Application Messaging Protocol, is a hub-based communication standard for the exchange of data and control between participating client applications. It has been developed within the context of the Virtual Observatory with the aim of enabling specialised data analysis tools to cooperate as a loosely integrated suite, and is now in use by many and varied desktop and web-based applications dealing with astronomical data. This paper reviews the requirements and design principles that led to SAMP's specification, provides a high-level description of the protocol, and discusses some of its common and possible future usage patterns, with particular attention to those factors that have aided its success in practice.

  4. Plasmacytoid DC from Aged Mice Down-Regulate CD8 T Cell Responses by Inhibiting cDC Maturation after Encephalitozoon cuniculi Infection

    PubMed Central

    Gigley, Jason P.; Khan, Imtiaz A.

    2011-01-01

    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations. PMID:21695169

  5. Age-related T2 changes in hindlimb muscles of mdx mice.

    PubMed

    Vohra, Ravneet S; Mathur, Sunita; Bryant, Nathan D; Forbes, Sean C; Vandenborne, Krista; Walter, Glenn A

    2016-01-01

    Magnetic resonance imaging (MRI) was used to monitor changes in the transverse relaxation time constant (T2) in lower hindlimb muscles of mdx mice at different ages. Young (5 weeks), adult (44 weeks), and old mdx (96 weeks), and age-matched control mice were studied. Young mdx mice were imaged longitudinally, whereas adult and old mdx mice were imaged at a single time-point. Mean muscle T2 and percent of pixels with elevated T2 were significantly different between mdx and control mice at all ages. In young mdx mice, mean muscle T2 peaked at 7-8 weeks and declined at 9-11 weeks. In old mdx mice, mean muscle T2 was decreased compared with young and adult mice, which could be attributed to fibrosis. MRI captured longitudinal changes in skeletal muscle integrity of mdx mice. This information will be valuable for pre-clinical testing of potential therapeutic interventions for muscular dystrophy. © 2015 Wiley Periodicals, Inc.

  6. Effects of social isolation, re-socialization and age on cognitive and aggressive behaviors of Kunming mice and BALB/c mice.

    PubMed

    An, Dong; Chen, Wei; Yu, De-Qin; Wang, Shi-Wei; Yu, Wei-Zhi; Xu, Hong; Wang, Dong-Mei; Zhao, Dan; Sun, Yi-Ping; Wu, Jun-Cheng; Tang, Yi-Yuan; Yin, Sheng-Ming

    2017-05-01

    Both Kunming (KM) mice and BALB/c mice have been widely used as rodent models to investigate stress-associated mental diseases. However, little is known about the different behaviors of KM mice and BALB/c mice after social isolation, particularly cognitive and aggressive behaviors. In this study, the behaviors of KM and BALB/c mice isolated for 2, 4 and 8 weeks and age-matched controls were evaluated using object recognition, object location and resident-intruder tests. The recovery of behavioral deficits by re-socialization was also examined for the isolated mice in adolescence. Our study showed that isolation for 2, 4 and 8 weeks led to cognitive deficits and increased aggressiveness for both KM and BALB/c mice. An important finding is that re-socialization could completely recover spatial/non-spatial cognitive deficits resulted from social isolation for both KM and BALB/c mice. In addition, age only impacted aggressiveness of KM mice. Moreover, isolation duration showed different impacts on cognitive and aggressive behaviors for both KM and BALB/c mice. Furthermore, BALB/c mice showed weak spatial/non-spatial memory and low aggressiveness when they were at the same age and isolation duration, compared to KM mice. In conclusion, KM mice and BALB/c mice behaved characteristically under physiology and isolation conditions. © 2016 Japanese Society of Animal Science.

  7. Sphingosine rescues aged mice from pulmonary pseudomonas infection.

    PubMed

    Rice, Teresa C; Pugh, Amanda M; Seitz, Aaron P; Gulbins, Erich; Nomellini, Vanessa; Caldwell, Charles C

    2017-11-01

    Bacterial lung infection is a leading cause of death for those 65 y or older, often requiring intensive care unit admission and mechanical ventilation, which consumes considerable health care resources. Although administration of antibiotics is the standard of care for bacterial pneumonia, its overuse has led to the emergence of multidrug resistant organisms. Therefore, alternative strategies to help minimize the effects of bacterial pneumonia in the elderly are necessary. As studies have shown that sphingosine (SPH) has inherent bacterial killing properties, our goal was to assess whether it could act as a prophylactic treatment to protect aged mice from pulmonary infection by Pseudomonas aeruginosa. Aged (51 wk) and young (8 wk) C57Bl/6 mice were used in this study. Pulmonary SPH levels were determined by histology. SPH content of microparticles was quantified using a SPH kinase assay. Pneumonia was induced by intranasally treating mice with 10 6  Colony Forming Unit (CFU) P aeruginosa. Microparticles were isolated from young mice, whereas some were further incubated with SPH. We observed that SPH levels are reduced in the bronchial epithelial cells as well as the bronchoalveolar lavage microparticles isolated from aged mice, which correlates with a susceptibility to infection. We demonstrate that SPH or microparticle treatment can protect aged mice from pulmonary P aeruginosa infection. Finally, we observed that enriching microparticles with SPH before treatment eliminated the bacterial load in P aeruginosa-infected aged mice. These data suggest that prophylactic treatment with SPH could reduce lung bacterial infections for the at-risk elderly population. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effect of aged garlic extract on immune responses to experimental fibrosarcoma tumor in BALB/c mice.

    PubMed

    Tabari, M Abouhosseini; Ebrahimpour, S

    2014-01-01

    Aged garlic extract (AGE) has many biological activities including radical scavenging, antioxidative and immunomodulative effects. In this research work, the antitumor and immunomodulatory effects of AGE against fibrosarcoma implanted tumor were studied. WEHI-164 fibrosarcoma cells were implanted subcutaneously on day 0 into the right flank of 40 BALB/c mice at age of 8 weeks. Mice were randomly categorized in two separate groups: First received AGE (100 mg/kg, IP), second group as the control group received phosphate buffered saline. Treatments were carried out 3 times/week. Tumor growth was measured and morbidity was recorded. Subpopulations of CD4+/CD8+ T cells were determined using flow cytometry. WEHI-164 cell specific cytotoxicity of splenocytes and in vitro production of interferon gamma (IFN-γ) and interleukin-4 cytokines were measured. The mice received AGE had significantly longer survival time compared with the control mice. The inhibitory effect on tumor growth was seen in AGE treated mice. The CD4+/CD8+ ratio and in vitro IFN-γ production of splenocytes were significantly increased in AGE group. WEHI-164 specific cytotoxicity of splenocytes from AGE mice was also significantly increased at 25:1 E: T ratio. Administration of AGE resulted in improved immune responses against experimentally implanted fibrosarcoma tumors in BALB/c mice. AGE showed significant effects on inhibition of tumor growth and longevity of survival times.

  9. Effects of long-term resveratrol-induced SIRT1 activation on insulin and apoptotic signalling in aged skeletal muscle.

    PubMed

    Sin, Thomas K; Yu, Angus P; Yung, Benjamin Y; Yip, Shea P; Chan, Lawrence W; Wong, Cesar S; Rudd, John A; Siu, Parco M

    2015-12-01

    Activation of Foxo1 is known to promote apoptosis and disturbances to insulin signalling. However, their modulating roles in aged skeletal muscle are not clear. The present study tested the hypothesis that long-term (i.e. 8 month) resveratrol supplementation would improve physical traits including exercise capacity and basal voluntary activity of aged mice and modulate insulin/apoptotic signalling in aged skeletal muscle. This study also examined whether these resveratrol-associated alterations would involve orchestration of the SIRT1-Foxo1 signalling axis. Two-month-old SAMP8 mice were randomly assigned to young, aged and aged with resveratrol treatment (AR) groups. The AR mice were supplemented with 4.9 mg(-1) kg(-1) day(-1) resveratrol for 8 months. All animals were subject to endurance capacity test and voluntary motor behaviour assessment. The lateral gastrocnemius muscle tissues were harvested for further analyses. Long-term resveratrol treatment significantly alleviated the age-associated reductions in exercise capacity and voluntary motor behaviour. The protein content, but not the deacetylase activity of SIRT1 was increased with concomitant elevations of p300 acetylase and acetylation of Foxo1 in aged muscle. The aged muscle also manifested signs of impaired insulin signalling including attenuated phosphorylation of Akt, activity of pyruvate dehydrogenase and membrane trafficking of GLUT4 and elevated levels of phosphorylated IRS1 and iNOS and apoptotic activation measured as Bim, p53 and apoptotic DNA fragmentation. Intriguingly, all these age-related adverse changes were mitigated with the activation of SIRT1 deacetylase activity after long-term resveratrol treatment. These data suggest that modulation of the SIRT1-Foxo1 axis by long-term resveratrol treatment enhances physical traits and alleviates the unfavourable changes in insulin and apoptotic signalling in aged muscle.

  10. Hippocampus-dependent spatial memory impairment due to molar tooth loss is ameliorated by an enriched environment.

    PubMed

    Kondo, Hiroko; Kurahashi, Minori; Mori, Daisuke; Iinuma, Mitsuo; Tamura, Yasuo; Mizutani, Kenmei; Shimpo, Kan; Sonoda, Shigeru; Azuma, Kagaku; Kubo, Kin-ya

    2016-01-01

    Teeth are crucial, not only for mastication, but for overall nutrition and general health, including cognitive function. Aged mice with chronic stress due to tooth loss exhibit impaired hippocampus-dependent learning and memory. Exposure to an enriched environment restores the reduced hippocampal function. Here, we explored the effects of an enriched environment on learning deficits and hippocampal morphologic changes in aged senescence-accelerated mouse strain P8 (SAMP8) mice with tooth loss. Eight-month-old male aged SAMP8 mice with molar intact or with molars removed were housed in either a standard environment or enriched environment for 3 weeks. The Morris water maze was performed for spatial memory test. The newborn cell proliferation, survival, and differentiation in the hippocampus were analyzed using 5-Bromodeoxyuridine (BrdU) immunohistochemical method. The hippocampal brain-derived neurotrophic factor (BDNF) levels were also measured. Mice with upper molars removed (molarless) exhibited a significant decline in the proliferation and survival of newborn cells in the dentate gyrus (DG) as well as in hippocampal BDNF levels. In addition, neuronal differentiation of newly generated cells was suppressed and hippocampus-dependent spatial memory was impaired. Exposure of molarless mice to an enriched environment attenuated the reductions in the hippocampal BDNF levels and neuronal differentiation, and partially improved the proliferation and survival of newborn cells, as well as the spatial memory ability. These findings indicated that an enriched environment could ameliorate the hippocampus-dependent spatial memory impairment induced by molar tooth loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology.

    PubMed

    Grossi, Cristina; Rigacci, Stefania; Ambrosini, Stefano; Ed Dami, Teresa; Luccarini, Ilaria; Traini, Chiara; Failli, Paola; Berti, Andrea; Casamenti, Fiorella; Stefani, Massimo

    2013-01-01

    The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and "fluffy"; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet.

  12. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    PubMed

    Liang, Zhe; Xie, Yan; Dominguez, Jessica A; Breed, Elise R; Yoseph, Benyam P; Burd, Eileen M; Farris, Alton B; Davidson, Nicholas O; Coopersmith, Craig M

    2014-01-01

    Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. Aged (20-24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  13. Men and mice: Relating their ages.

    PubMed

    Dutta, Sulagna; Sengupta, Pallav

    2016-05-01

    Since the late 18th century, the murine model has been widely used in biomedical research (about 59% of total animals used) as it is compact, cost-effective, and easily available, conserving almost 99% of human genes and physiologically resembling humans. Despite the similarities, mice have a diminutive lifespan compared to humans. In this study, we found that one human year is equivalent to nine mice days, although this is not the case when comparing the lifespan of mice versus humans taking the entire life at the same time without considering each phase separately. Therefore, the precise correlation of age at every point in their lifespan must be determined. Determining the age relation between mice and humans is necessary for setting up experimental murine models more analogous in age to humans. Thus, more accuracy can be obtained in the research outcome for humans of a specific age group, although current outcomes are based on mice of an approximate age. To fill this gap between approximation and accuracy, this review article is the first to establish a precise relation between mice age and human age, following our previous article, which explained the relation in ages of laboratory rats with humans in detail. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Practical pathology of aging mice

    PubMed Central

    Pettan-Brewer, Christina; Treuting, Piper M.

    2011-01-01

    Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington. PMID:22953032

  15. AVE0991, a nonpeptide analogue of Ang-(1-7), attenuates aging-related neuroinflammation.

    PubMed

    Jiang, Teng; Xue, Liu-Jun; Yang, Yang; Wang, Qing-Guang; Xue, Xiao; Ou, Zhou; Gao, Qing; Shi, Jian-Quan; Wu, Liang; Zhang, Ying-Dong

    2018-04-17

    During the aging process, chronic neuroinflammation induced by microglia is detrimental for the brain and contributes to the etiology of several aging-related neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. As a newly identified axis of renin-angiotensin system, ACE2/Ang-(1-7)/MAS1 axis plays a crucial role in modulating inflammatory responses under various pathological conditions. However, its relationship with aging-related neuroinflammation is less studied so far. In this study, by using SAMP8 mice, an animal model of accelerated aging, we revealed that the neuroinflammation in the aged brain might be attributed to a decreased level of Ang-(1-7). More importantly, we provided evidence that AVE0991, a nonpeptide analogue of Ang-(1-7), attenuated the aging-related neuroinflammation via suppression of microglial-mediated inflammatory response through a MAS1 receptor-dependent manner. Meanwhile, this protective effect might be ascribed to the M2 activation of microglia induced by AVE0991. Taken together, these findings reveal the association of Ang-(1-7) with the inflammatory response in the aged brain and uncover the potential of its nonpeptide analogue AVE0991 in attenuation of aging-related neuroinflammation.

  16. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice.

    PubMed

    Tung, Victoria W K; Burton, Thomas J; Quail, Stephanie L; Mathews, Miranda A; Camp, Aaron J

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5-6, 8-9 and 27-28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2-3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27-28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27-28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27-28 months. this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed.

  17. Age-Related Decline in Primary CD8+ T Cell Responses Is Associated with the Development of Senescence in Virtual Memory CD8+ T Cells.

    PubMed

    Quinn, Kylie M; Fox, Annette; Harland, Kim L; Russ, Brendan E; Li, Jasmine; Nguyen, Thi H O; Loh, Liyen; Olshanksy, Moshe; Naeem, Haroon; Tsyganov, Kirill; Wiede, Florian; Webster, Rosela; Blyth, Chantelle; Sng, Xavier Y X; Tiganis, Tony; Powell, David; Doherty, Peter C; Turner, Stephen J; Kedzierska, Katherine; La Gruta, Nicole L

    2018-06-19

    Age-associated decreases in primary CD8 + T cell responses occur, in part, due to direct effects on naive CD8 + T cells to reduce intrinsic functionality, but the precise nature of this defect remains undefined. Aging also causes accumulation of antigen-naive but semi-differentiated "virtual memory" (T VM ) cells, but their contribution to age-related functional decline is unclear. Here, we show that T VM cells are poorly proliferative in aged mice and humans, despite being highly proliferative in young individuals, while conventional naive T cells (T N cells) retain proliferative capacity in both aged mice and humans. Adoptive transfer experiments in mice illustrated that naive CD8 T cells can acquire a proliferative defect imposed by the aged environment but age-related proliferative dysfunction could not be rescued by a young environment. Molecular analyses demonstrate that aged T VM cells exhibit a profile consistent with senescence, marking an observation of senescence in an antigenically naive T cell population. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Effect of Low-Magnitude, High-Frequency Vibration Treatment on Retardation of Sarcopenia: Senescence-Accelerated Mouse-P8 Model.

    PubMed

    Guo, An-Yun; Leung, Kwok-Sui; Qin, Jiang-Hui; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2016-08-01

    Sarcopenia-related falls and fall-related injuries in community-dwelling elderly people garnered more and more interest in recent years. Low-magnitude high-frequency vibration (LMHFV) was proven beneficial to musculoskeletal system and recommended for sarcopenia treatment. This study aimed to evaluate the effects of LMHFV on the sarcopenic animals and explore the mechanism of the stimulatory effects. Senescence-accelerated mouse P8 (SAMP8) mice at month 6 were randomized into control (Ctrl) and vibration (Vib) groups and the mice in the Vib group were given LMHFV (0.3 g, 20 min/day, 5 days/week) treatment. At months 0, 1, 2, 3, and 4 post-treatment, muscle mass, structure, and function were assessed. The potential proliferation capacity of the muscle was also evaluated by investigating satellite cells (SCs) pool and serum myostatin expression. At late stage, the mice in the Vib group showed higher muscle strength (month 4, p = 0.028). Generally, contractibility was significantly improved by LMHFV (contraction time [CT], p = 0.000; half-relaxation time [RT50], p = 0.000). Enlarged cross-sectional area of fiber type IIA was observed in the Vib group when compared with Ctrl group (p = 0.000). No significant difference of muscle mass was observed. The promotive effect of LMHFV on myoregeneration was reflected by suppressed SC pool reduction (month 3, p = 0.000; month 4, p = 0.000) and low myostatin expression (p = 0.052). LMHFV significantly improved the structural and functional outcomes of the skeletal muscle, hence retarding the progress of sarcopenia in SAMP8. It would be a good recommendation for prevention of the diseases related to skeletal muscle atrophy.

  19. Age-related decline in oligodendrogenesis retards white matter repair in mice.

    PubMed

    Miyamoto, Nobukazu; Pham, Loc-Duyen D; Hayakawa, Kazuhide; Matsuzaki, Toshinori; Seo, Ji Hae; Magnain, Caroline; Ayata, Cenk; Kim, Kyu-Won; Boas, David; Lo, Eng H; Arai, Ken

    2013-09-01

    Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask whether, compared with young brains, white matter regions in older brains may be more vulnerable in part because of decreased rates of compensatory oligodendrogenesis after injury. A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month-old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells to sublethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Baseline myelin density in the corpus callosum was similar in 2-month and 8-month-old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in cyclic AMP response element-binding protein signaling may be involved because activating cyclic AMP response element-binding protein with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of oligodendrocyte precursor cells, alleviated myelin loss, and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of oligodendrocyte precursor cells. An age-related decline in cyclic AMP response element-binding protein-mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate cyclic AMP response element-binding protein signaling provide a potential therapeutic approach for treating white matter injury in aging brains.

  20. The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase Reactivity in Crohn's Disease-Like Ileitis.

    PubMed

    Rodriguez-Palacios, Alexander; Harding, Andrew; Menghini, Paola; Himmelman, Catherine; Retuerto, Mauricio; Nickerson, Kourtney P; Lam, Minh; Croniger, Colleen M; McLean, Mairi H; Durum, Scott K; Pizarro, Theresa T; Ghannoum, Mahmoud A; Ilic, Sanja; McDonald, Christine; Cominelli, Fabio

    2018-04-23

    Epidemiological studies indicate that the use of artificial sweeteners doubles the risk for Crohn's disease (CD). Herein, we experimentally quantified the impact of 6-week supplementation with a commercial sweetener (Splenda; ingredients sucralose maltodextrin, 1:99, w/w) on both the severity of CD-like ileitis and the intestinal microbiome alterations using SAMP1/YitFc (SAMP) mice. Metagenomic shotgun DNA sequencing was first used to characterize the microbiome of ileitis-prone SAMP mice. Then, 16S rRNA microbiome sequencing, quantitative polymerase chain reaction, fluorescent in situ hybridization (FISH), bacterial culture, stereomicroscopy, histology, and myeloperoxidase (MPO) activity analyses were then implemented to compare the microbiome and ileitis phenotype in SAMP with that of control ileitis-free AKR/J mice after Splenda supplementation. Metagenomics indicated that SAMP mice have a gut microbial phenotype rich in Bacteroidetes, and experiments showed that Helicobacteraceae did not have an exacerbating effect on ileitis. Splenda did not increase the severity of (stereomicroscopic/histological) ileitis; however, biochemically, ileal MPO activity was increased in SAMP treated with Splenda compared with nonsupplemented mice (P < 0.022) and healthy AKR mice. Splenda promoted dysbiosis with expansion of Proteobacteria in all mice, and E. coli overgrowth with increased bacterial infiltration into the ileal lamina propria of SAMP mice. FISH showed increase malX gene-carrying bacterial clusters in the ilea of supplemented SAMP (but not AKR) mice. Splenda promoted gut Proteobacteria, dysbiosis, and biochemical MPO reactivity in a spontaneous model of (Bacteroidetes-rich) ileal CD. Our results indicate that although Splenda may promote parallel microbiome alterations in CD-prone and healthy hosts, this did not result in elevated MPO levels in healthy mice, only CD-prone mice. The consumption of sucralose/maltodextrin-containing foods might exacerbate MPO intestinal

  1. Cold hypersensitivity increases with age in mice with sickle cell disease.

    PubMed

    Zappia, Katherine J; Garrison, Sheldon R; Hillery, Cheryl A; Stucky, Cheryl L

    2014-12-01

    Sickle cell disease (SCD) is associated with acute vaso-occlusive crises that trigger painful episodes and frequently involves ongoing, chronic pain. In addition, both humans and mice with SCD experience heightened cold sensitivity. However, studies have not addressed the mechanism(s) underlying the cold sensitization or its progression with age. Here we measured thermotaxis behavior in young and aged mice with severe SCD. Sickle mice had a marked increase in cold sensitivity measured by a cold preference test. Furthermore, cold hypersensitivity worsened with advanced age. We assessed whether enhanced peripheral input contributes to the chronic cold pain behavior by recording from C fibers, many of which are cold sensitive, in skin-nerve preparations. We observed that C fibers from sickle mice displayed a shift to warmer (more sensitive) cold detection thresholds. To address mechanisms underlying the cold sensitization in primary afferent neurons, we quantified mRNA expression levels for ion channels thought to be involved in cold detection. These included the transient receptor potential melastatin 8 (Trpm8) and transient receptor potential ankyrin 1 (Trpa1) channels, as well as the 2-pore domain potassium channels, TREK-1 (Kcnk2), TREK-2 (Kcnk10), and TRAAK (Kcnk4). Surprisingly, transcript expression levels of all of these channels were comparable between sickle and control mice. We further examined transcript expression of 83 additional pain-related genes, and found increased mRNA levels for endothelin 1 and tachykinin receptor 1. These factors may contribute to hypersensitivity in sickle mice at both the afferent and behavioral levels. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    ERIC Educational Resources Information Center

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  3. Cuprizone-induced demyelination in mice: age-related vulnerability and exploratory behavior deficit.

    PubMed

    Wang, Hongkai; Li, Chengren; Wang, Hanzhi; Mei, Feng; Liu, Zhi; Shen, Hai-Ying; Xiao, Lan

    2013-04-01

    Schizophrenia is a mental disease that mainly affects young individuals (15 to 35 years old) but its etiology remains largely undefined. Recently, accumulating evidence indicated that demyelination and/or dysfunction of oligodendrocytes is an important feature of its pathogenesis. We hypothesized that the vulnerability of young individuals to demyelination may contribute to the onset of schizophrenia. In the present study, three different age cohorts of mice, i.e. juvenile (3 weeks), young-adult (6 weeks) and middle-aged (8 months), were subjected to a 6-week diet containing 0.2% cuprizone (CPZ) to create an animal model of acute demyelination. Then, age-related vulnerability to CPZ-induced demyelination, behavioral outcomes, and myelination-related molecular biological changes were assessed. We demonstrated: (1) CPZ treatment led to more severe demyelination in juvenile and young-adult mice than in middle-aged mice in the corpus callosum, a region closely associated with the pathophysiology of schizophrenia; (2) the higher levels of demyelination in juvenile and young-adult mice were correlated with a greater reduction of myelin basic protein, more loss of CC-1-positive mature oligodendrocytes, and higher levels of astrocyte activation; and (3) CPZ treatment resulted in a more prominent exploratory behavior deficit in juvenile and young-adult mice than in middle-aged mice. Together, our data demonstrate an age-related vulnerability to demyelination with a concurrent behavioral deficit, providing supporting evidence for better understanding the susceptibility of the young to the onset of schizophrenia.

  4. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice

    PubMed Central

    Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921

  5. Ultraviolet radiation-induced cataract in mice: the effect of age and the potential biochemical mechanism.

    PubMed

    Zhang, Jie; Yan, Hong; Löfgren, Stefan; Tian, Xiaoli; Lou, Marjorie F

    2012-10-19

    To study the effect of age on the morphologic and biochemical alterations induced by in vivo exposure of ultraviolet radiation (UV). Young and old C57BL/6 mice were exposed to broadband UVB+UVA and euthanized after 2 days. Another batch of UV-exposed young mice was monitored for changes after 1, 2, 4, and 8 days. Age-matched nonexposed mice served as controls. Lens changes were documented in vivo by slit-lamp biomicroscopy and dark field microscopy photographs ex vivo. Lens homogenates were analyzed for glutathione (GSH) level, and the activities of thioredoxin (Trx), thioltransferase (TTase), and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Glutathionylated lens proteins (PSSGs) were detected by immunoblotting using GSH antibody. Western blot analysis was also done for the expression levels of TTase and Trx. Both age groups developed epithelial and superficial anterior subcapsular cataract at 2 days postexposure. The lens GSH level and G3PD activity were decreased, and PSSGs were elevated in both age groups, but more prominent in the older mice. TTase and Trx activity and protein expression were elevated only in the young mice. Interestingly, lens TTase and Trx in the young mice showed a transient increase, peaking at 2 days after UV exposure and returning to baseline at day 8, corroborated by lens transparency. The lenses of old mice were more susceptible to UV radiation-induced cataract. The upregulated TTase and Trx likely provided oxidation damage repair in the young mice.

  6. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis.

    PubMed

    Antika, Lucia Dwi; Lee, Eun-Jung; Kim, Yun-Ho; Kang, Min-Kyung; Park, Sin-Hye; Kim, Dong Yeon; Oh, Hyeongjoo; Choi, Yean-Jung; Kang, Young-Hee

    2017-11-01

    Osteoporosis is one of the most prevalent forms of age-related bone diseases. Increased bone loss with advancing age has become a grave public health concern. This study examined whether phlorizin and phloretin, dihydrochalcones in apple peels, inhibited senile osteoporosis through enhancing osteoblastogenic bone formation in cell-based and aged mouse models. Submicromolar phloretin and phlorizin markedly stimulated osteoblast differentiation of MC3T3-E1 cells with increased transcription of Runx2 and osteocalcin. Senescence-accelerated resistant mouse strain prone-6 (SAMP6) mice were orally supplemented with 10 mg/kg phlorizin and phloretin daily for 12 weeks. Male senescence-accelerated resistant mouse strain R1 mice were employed as a nonosteoporotic age-matched control. Oral administration of ploretin and phorizin boosted bone mineralization in all the bones of femur, tibia and vertebra of SAMP6. In particular, phlorizin reduced serum RANKL/OPG ratio and diminished TRAP-positive osteoclasts in trabecular bones of SAMP6. Additionally, treating phlorizin to SAMP6 inhibited the osteoporotic resorption in distal femoral bones through up-regulating expression of BMP-2 and collagen-1 and decreasing production of matrix-degrading cathepsin K and MMP-9. Finally, phlorizin and phloretin antagonized GSK-3β induction and β-catenin phosphorylation in osteoblasts and aged mouse bones. Therefore, phlorizin and phloretin were potential therapeutic agents encumbering senile osteoporosis through promoting bone-forming osteoblastogenesis via modulation of GSK-3β/β-catenin-dependent signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Age-related arterial immune cell infiltration in mice is attenuated by caloric restriction or voluntary exercise.

    PubMed

    Trott, Daniel W; Henson, Grant D; Ho, Mi H T; Allison, Sheilah A; Lesniewski, Lisa A; Donato, Anthony J

    2016-12-22

    Age-related arterial inflammation is associated with dysfunction of the arteries and increased risk for cardiovascular disease. To determine if aging increases arterial immune cell infiltration as well as the populations of immune cells principally involved, we tested the hypothesis that large elastic and resistance arteries in old mice would exhibit increased immune cell infiltration compared to young controls. Additionally, we hypothesized that vasoprotective lifestyle interventions such as lifelong caloric restriction or 8weeks of voluntary wheel running would attenuate age-related arterial immune cell infiltration. The aorta and mesenteric vasculature with surrounding perivascular adipose was excised from young normal chow (YNC, 4-6months, n=10), old normal chow (ONC, 28-29months, n=11), old caloric restricted (OCR, 28-29months, n=9), and old voluntary running (OVR, 28-29months, n=5) mice and digested to a single cell suspension. The cells were then labeled with antibodies against CD45 (total leukocytes), CD3 (pan T cells), CD4 (T helper cells), CD8 (cytotoxic T cells), CD19 (B cells), CD11b, and F4/80 (macrophages) and analyzed by flow cytometry. Total leukocytes, T cells (both CD4 + and CD8 + subsets), B cells, and macrophages in both aorta and mesentery were all 5- to 6-fold greater in ONC compared to YNC. Age-related increases in T cell (both CD4 + and CD8 + ), B cell, and macrophage infiltration in aorta were abolished in OCR mice. OVR mice exhibited 50% lower aortic T cell and normalized macrophage infiltration. B cell infiltration was not affected by VR. Age-related mesenteric CD8 + T cell and macrophage infiltration was normalized in OCR and OVR mice compared to young mice, whereas B cell infiltration was normalized by CR but not VR. Splenic CD4 + T cells from ONC mice exhibited a 3-fold increase in gene expression for the T helper (Th) 1 transcription factor, Tbet, and a 4-fold increase in FoxP3, a T regulatory cell transcription factor, compared to

  8. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice.

    PubMed

    Selvaratnam, Johanna S; Robaire, Bernard

    2016-09-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat(-/-)) and SOD1-null (Sod(-/-)) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod(-/-) mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod(-/-) mice, while aged Cat(-/-) mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat(-/-) mice but was consistently low in young and aged Sod(-/-) mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod(-/-) and Cat(-/-) mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat(-/-) and in Sod(-/-) mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod(-/-) mice and with age in all mice. These studies show that aged Sod(-/-) mice display severe redox dysfunction, while wild-type and Cat(-/-) mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. © 2016 by the Society for the Study of Reproduction, Inc.

  9. Ultraviolet Radiation–Induced Cataract in Mice: The Effect of Age and the Potential Biochemical Mechanism

    PubMed Central

    Zhang, Jie; Yan, Hong; Löfgren, Stefan; Tian, Xiaoli; Lou, Marjorie F.

    2012-01-01

    Purpose. To study the effect of age on the morphologic and biochemical alterations induced by in vivo exposure of ultraviolet radiation (UV). Methods. Young and old C57BL/6 mice were exposed to broadband UVB+UVA and euthanized after 2 days. Another batch of UV-exposed young mice was monitored for changes after 1, 2, 4, and 8 days. Age-matched nonexposed mice served as controls. Lens changes were documented in vivo by slit-lamp biomicroscopy and dark field microscopy photographs ex vivo. Lens homogenates were analyzed for glutathione (GSH) level, and the activities of thioredoxin (Trx), thioltransferase (TTase), and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Glutathionylated lens proteins (PSSGs) were detected by immunoblotting using GSH antibody. Western blot analysis was also done for the expression levels of TTase and Trx. Results. Both age groups developed epithelial and superficial anterior subcapsular cataract at 2 days postexposure. The lens GSH level and G3PD activity were decreased, and PSSGs were elevated in both age groups, but more prominent in the older mice. TTase and Trx activity and protein expression were elevated only in the young mice. Interestingly, lens TTase and Trx in the young mice showed a transient increase, peaking at 2 days after UV exposure and returning to baseline at day 8, corroborated by lens transparency. Conclusions. The lenses of old mice were more susceptible to UV radiation–induced cataract. The upregulated TTase and Trx likely provided oxidation damage repair in the young mice. PMID:23010639

  10. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents.

    PubMed

    Ramesh, Suhas; Govender, Thavendran; Kruger, Hendrik G; de la Torre, Beatriz G; Albericio, Fernando

    2016-07-01

    The emergence of multidrug resistant bacteria has a direct impact on global public health because of the reduced potency of existing antibiotics against pathogens. Hence, there is a pressing need for new drugs with different modes of action that can kill microorganisms. Antimicrobial peptides (AMPs) can be regarded as an alternative tool for this purpose because they are proven to have therapeutic effects with broad-spectrum activities. There are some hurdles in using AMPs as clinical candidates such as toxicity, lack of stability and high budgets required for manufacturing. This can be overcome by developing shorter and more easily accessible AMPs, the so-called Short AntiMicrobial Peptides (SAMPs) that contain between two and ten amino acid residues. These are emerging as an attractive class of therapeutic agents with high potential for clinical use and possessing multifunctional activities. In this review we attempted to compile those SAMPs that have exhibited biological properties which are believed to hold promise for the future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  11. [Effects of aquaporin-4 gene knockout on behavior changes and cerebral morphology during aging in mice].

    PubMed

    Su, Shengan; Lu, Yunbi; Zhang, Weiping

    2013-05-01

    To investigate the effects of aquaporin-4 (AQP4) gene knockout on the behavior changes and cerebral morphology during aging in mice,and to compare that of young and aged mice between AQP4 knockout mice (AQP4(-/-)) and wild type mice (AQP4(+/+)). Fifty-eight CD-1 mice were divided into four groups: young (2-3 months old) AQP4(-/-), aged (17-19 months old) AQP4(-/-), young AQP4(+/+) and aged AQP4(+/+). The activity levels and exploring behavior of mice were tested in open field. The neurons were stained with toluidine blue and NeuN, the astrocytes and microglia were stained with GFAP and Iba-1, respectively. The morphological changes of neuron, astrocyte and microglia were then analyzed. Compared with young mice, the total walking distance in open field of aged AQP4(+/+) mice and aged AQP4(-/-) mice decreased 41.2% and 44.1%, respectively (P<0.05); while there was no difference in the ratio of distance and retention time in the central area of open field. The density of neuron in cortex of aged AQP4(+/+) mice and aged AQP4(-/-) mice decreased 19.6% and 15.8%, respectively (P<0.05), while there was no difference in the thickness of neuron cell body in hippocampus CA1 region. The density of astrocyte in hippocampus CA3 region of aged AQP4(+/+) mice and aged AQP4(-/-) mice increased 57.7% and 64.3%, respectively (P<0.001), while there was no difference in the area of astrocyte. The area of microglia in hippocampus CA3 region of aged AQP4(+/+) mice and aged AQP4(-/-) mice increased 46.9% and 52.0%, respectively (P<0.01), while there was no difference in the density of microglia. Compared with AQP4(+/+) mice, the young and aged AQP4(-/-) mice showed smaller area of astrocyte in hippocampus CA3 region, reduced 18.0% in young mice and 23.6% in aged mice. There was no difference between AQP4(+/+) mice and AQP4(-/-) mice for other observed indexes. AQP4 may be involved in change of astrocyte and astrocyte-related behaviors during aging. AQP4 gene knockout may have limited

  12. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice1

    PubMed Central

    Selvaratnam, Johanna S.; Robaire, Bernard

    2016-01-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat−/−) and SOD1-null (Sod−/−) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod−/− mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod−/− mice, while aged Cat−/− mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat−/− mice but was consistently low in young and aged Sod−/− mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod−/− and Cat−/− mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat−/− and in Sod−/− mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod−/− mice and with age in all mice. These studies show that aged Sod−/− mice display severe redox dysfunction, while wild-type and Cat−/− mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. PMID:27465136

  13. [Anti-aging action of the total lactones of ginkgo on aging mice].

    PubMed

    Dong, Liu-yi; Fan, Li; Li, Gui-fang; Guo, Yan; Pan, Jian; Chen, Zhi-wu

    2004-03-01

    To investigate the effects of total lactones of ginkgo on aging by using D-galactose induced aging mice and natural aging mice. By using D-galactose induced aging mice, to detect the LF content in heart and liver, the Hyp content in liver, the MAO, GSH-Px activities and the NO content in cerebrum. The apoptosis of cerebral cell was determined by terminal deoxy-nucleotidyl transforase-mediated dUTP-digoxigenin nick end-labeling (Tunel) in natural aging mice. TLG was shown to increase the GSH-Px activities, reduce the NO content and decrease the MAO activity in cerebrum. Meanwhile, TLG was found to reduce the LF content in liver and heart and raise the Hyp content in liver. TLG was shown to inhibit apoptosis of cerebral cell and decrease the number of apoptotic cells in the brain. TLG possesses effect on antiaging via attenuating lipid peroxidation and NO and apoptosis of cerebral cells.

  14. Age-related differences in pulmonary inflammatory responses to JP-8 jet fuel aerosol inhalation.

    PubMed

    Wang, S; Young, R S; Witten, M L

    2001-02-01

    Our previous studies have demonstrated that JP-8 jet fuel aerosol inhalation induced lung injury and dysfunction. To further examine JP-8 jet fuel-induced inflammatory mechanisms, a total of 40 male C57BL/6 mice (young, 3.5 months; adult, 12 months; half in each age group) were randomly assigned to the exposure or control groups. Mice were nose-only exposed to room air or atmospheres of 1000 mg/m3 JP-8 jet fuel for 1 h/day for 7 days. Lung injury was assessed by pulmonary mechanics, respiratory permeability, lavaged cell profile, and chemical mediators in bronchoalveolar lavage fluid (BALF). The young and adult mice exposed to JP-8 jet fuel had similar values with regards to increased lung dynamic compliance, lung permeability, BALF cell count, and decreased PGE2. However, there were several different responses between the young-versus-adult mice with respect to BALF cell differential, TNF-alpha, and 8-iso-PGF2,, levels after exposure to JP-8 jet fuel. These data suggest that JP-8 jet fuel may have different inflammatory mechanisms leading to lung injury and dysfunction in the younger-versus-adult mice.

  15. Peptide YY induces characteristic meal patterns of aged mice.

    PubMed

    Mogami, Sachiko; Yamada, Chihiro; Fujitsuka, Naoki; Hattori, Tomohisa

    2017-11-01

    Changes in eating behavior occur in the elderly due to oral and swallowing dysfunctions. We aimed to clarify the difference between basal meal patterns of young and aged mice in relation to appetite regulating hormones. Thirty two of young (7-week-old) and aged (23-25-month-old) C57BL/6 male mice were acclimated to a single housing and then transferred to a highly sensitive automated feeding monitoring device. Feeding behavior was monitored from the onset of the dark phase after habituation to the device. Plasma peptide YY (PYY) levels were assessed under the several feeding status or after treatment of PYY. PYY and its receptor (NPY Y2 receptor, Y2R) antagonist were intraperitoneally administered 30min before the monitoring. Although the basal 24-h meal amounts did not differ by age, the total meal time and frequency of minimum feeding activity (bout) were significantly increased and the average bout size and time per bout were significantly decreased in aged mice. PYY dynamics were abnormal and the temporal reduction in food intake by exogenous PYY was more prominent in aged mice than in young mice. PYY administration to young mice induced aged-like meal patterns, and Y2R antagonist administration to aged mice induced young-like meal patterns. Aged mice exhibited characteristic meal patterns probably due to PYY metabolism dysfunction and/or enhanced PYY-Y2R signaling, suggesting a novel method for assessing eating difficulties in aged animals and a potential target for the remedy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice.

    PubMed

    Yuan, Xidi; Klein, Dennis; Kerscher, Susanne; West, Brian L; Weis, Joachim; Katona, Istvan; Martini, Rudolf

    2018-05-09

    Aging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations. Specifically, nerve fibers showed demyelination, remyelination and axonal lesion. Moreover, in the aging mice, neuromuscular junctions showed features typical for dying-back neuropathies, as revealed by a decline of presynaptic markers, associated with α-bungarotoxin-positive postsynapses. In line with these observations were reduced muscle strengths. These alterations were accompanied by elevated numbers of endoneurial macrophages, partially comprising the features of phagocytosing macrophages. Comparable profiles of macrophages could be identified in peripheral nerve biopsies of aging persons. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by applying an orally administered CSF-1R specific kinase (c-FMS) inhibitor. The 6-month-lasting treatment started before development of degenerative changes at 18 months and reduced macrophage numbers in mice by ∼70%, without side effects. Strikingly, nerve structure was ameliorated and muscle strength preserved. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may pave the way for treating degeneration in the aging peripheral nervous system by targeting macrophages, leading to reduced weakness, improved mobility, and eventually increased quality of life in the elderly. SIGNIFICANCE STATEMENT Aging is a major risk factor for the structure and function of the nervous system. Here we show that peripheral nerves of 24-month-old aging mice show similar degenerative alterations as nerves from aging

  17. On-going electroencephalographic rhythms related to cortical arousal in wild-type mice: the effect of aging.

    PubMed

    Del Percio, Claudio; Drinkenburg, Wilhelmus; Lopez, Susanna; Infarinato, Francesco; Bastlund, Jesper Frank; Laursen, Bettina; Pedersen, Jan T; Christensen, Ditte Zerlang; Forloni, Gianluigi; Frasca, Angelisa; Noè, Francesco M; Bentivoglio, Marina; Fabene, Paolo Francesco; Bertini, Giuseppe; Colavito, Valeria; Kelley, Jonathan; Dix, Sophie; Richardson, Jill C; Babiloni, Claudio

    2017-01-01

    Resting state electroencephalographic (EEG) rhythms reflect the fluctuation of cortical arousal and vigilance in a typical clinical setting, namely the EEG recording for few minutes with eyes closed (i.e., passive condition) and eyes open (i.e., active condition). Can this procedure be back-translated to C57 (wild type) mice for aging studies? On-going EEG rhythms were recorded from a frontoparietal bipolar channel in 85 (19 females) C57 mice. Male mice were subdivided into 3 groups: 25 young (4.5-6 months), 18 middle-aged (12-15 months), and 23 old (20-24 months) mice to test the effect of aging. EEG power density was compared between short periods (about 5 minutes) of awake quiet behavior (passive) and dynamic exploration of the cage (active). Compared with the passive condition, the active condition induced decreased EEG power at 1-2 Hz and increased EEG power at 6-10 Hz in the group of 85 mice. Concerning the aging effects, the passive condition showed higher EEG power at 1-2 Hz in the old group than that in the others. Furthermore, the active condition exhibited a maximum EEG power at 6-8 Hz in the former group and 8-10 Hz in the latter. In the present conditions, delta and theta EEG rhythms reflected changes in cortical arousal and vigilance in freely behaving C57 mice across aging. These changes resemble the so-called slowing of resting state EEG rhythms observed in humans across physiological and pathological aging. The present EEG procedures may be used to enhance preclinical phases of drug discovery in mice for understanding the neurophysiological effects of new compounds against brain aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    PubMed Central

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  19. Morphological and functional changes in TRPM8-expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice.

    PubMed

    Alcalde, Ignacio; Íñigo-Portugués, Almudena; González-González, Omar; Almaraz, Laura; Artime, Enol; Morenilla-Palao, Cruz; Gallar, Juana; Viana, Félix; Merayo-Lloves, Jesús; Belmonte, Carlos

    2018-08-01

    Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8 BAC -EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 34°C and low-threshold, robust responses to cooling. The remaining TRPM8 + corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 34°C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM8 + corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear's basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people. © 2018 Wiley Periodicals, Inc.

  20. Long-term administration of pDC-Stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice.

    PubMed

    Sugimura, Tetsu; Jounai, Kenta; Ohshio, Konomi; Suzuki, Hiroaki; Kirisako, Takayoshi; Sugihara, Yoshihiko; Fujiwara, Daisuke

    2018-05-01

    The decline in immune function caused by aging increases the risk of infectious diseases, tumorigeneses and chronic inflammation, resulting in accelerating senescence. We previously reported a lactic acid bacteria, Lactococcus lactis strain Plasma (synonym of Lactococcus lactis subsp. lactis JCM 5805, Lc-Plasma), that stimulates plasmacytoid dendritic cells (pDCs), which play a crucial role in phylaxis from viral infection. In this study, we investigated the anti-aging effects of long-term oral administration of Lc-Plasma in a senescence-accelerated mouse strain, SAMP6. Mice given Lc-Plasma showed a significant improvement in survival rate at 82 weeks and a decreased senescence score as compared with control mice throughout this study. Anatomic analysis at 82 weeks revealed that the frequency of altered hepatocellular foci was significantly lower, and the incidence of other pathological findings in the liver and lungs tended to be lower in Lc-Plasma mice than in control mice. Transcription level of the IL-1β gene in lungs also tended to be lower in Lc-Plasma mice. Furthermore, the thinning of skin and age-related decrease in muscle mass were also significantly suppressed in the Lc-Plasma group as compared with the control group. Consistent with these phenotypic features, pDCs activity was significantly higher in Lc-Plasma mice than in control mice. In conclusion, long-term administration of Lc-Plasma can decelerate senescence and prolong lifespan via maintenance of the immune system due to activation of pDCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation

    PubMed Central

    Laskin, Debra L.; Gow, Andrew J.

    2017-01-01

    Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at

  2. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    PubMed

    Massa, Christopher B; Groves, Angela M; Jaggernauth, Smita U; Laskin, Debra L; Gow, Andrew J

    2017-08-01

    Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at

  3. Effect of Lactobacillus johnsonii La1 on immune function and serum albumin in aged and malnourished aged mice.

    PubMed

    Kaburagi, Tomoko; Yamano, Toshihiko; Fukushima, Yoichi; Yoshino, Haruka; Mito, Natsuko; Sato, Kazuto

    2007-04-01

    Protein-energy malnutrition (PEM) is a serious nutritional problem that causes immune dysfunction in elderly people. Probiotic lactic acid bacteria may potentially modify immunity; however, there is little evidence to elucidate the influence of these bacteria on PEM in the elderly. The immune modulation effects of lactic acid bacterium Lactobacillus johnsonii La1 (La1) were examined in aged mice and aged mice with PEM. Twenty-month-old male 57BL6/n mice (n = 28) were divided into four groups and received the following diet for 14 d: a complete diet (20% protein) without Lal (control) or with Lal or a low-protein diet (5% protein) to induce PEM, with or without La1. All mice were immunized with diphtheria toxin (DT) with alfacalciferol at 7 d and sacrificed 14 d after starting the experimental diets. Serum albumin concentrations and body weight, both of which were reduced by the low-protein diet, were ameliorated by La1 intake and were the same as in mice receiving the control diet. Anti-DT immunoglobulin (Ig) A in fecal extract was increased by La1 intake in mice receiving the complete and low-protein diets. Serum anti-DT IgA, IgG, splenocyte proliferation, and CD8(+) T cells were reduced by the low-protein diet and restored by La1 intake. La1 enhances intestinal IgA production and helps recover nutritional status and systemic immune responses in aged mice with PEM. It is possible that La1 may contribute to immune system recovery in immunocompromised hosts such as elderly humans with PEM.

  4. Exercise enhances cognitive function and neurotrophin expression in the hippocampus accompanied by changes in epigenetic programming in senescence-accelerated mice.

    PubMed

    Maejima, Hiroshi; Kanemura, Naohiko; Kokubun, Takanori; Murata, Kenji; Takayanagi, Kiyomi

    2018-02-05

    Aerobic exercise is known to increase expression of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), in the hippocampus and to improve cognitive function. Exercise exerts neuroprotective effects in the hippocampus by inducing epigenetic changes, which play crucial roles in aging and neurodegenerative diseases. Specifically, the activity levels of histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate histone acetylation and modulate gene transcription. The objective of the present study was to assess the interactive effects of exercise and aging on cognitive function, expression of neurotrophins (BDNF and neurotrophin-4) and their receptors (tyrosine receptor kinase B and p75), and epigenetic regulations, including the activity of HATs and HADCs in the hippocampus. We used the senescence-accelerated mouse (SAM) model, specifically 13-month-old SAM resistant 1(SAMR1) and SAM prone 1 (SAMP1) lines. Mice were distributed into four groups based on accelerated senescence and exercise status. Mice in the exercise groups exercised on a treadmill for approximately 60min a day, 5days a week. Aerobic exercise for 4 weeks improved cognitive function, accompanied by an increase in BDNF expression and a decrease in p75 transcription in both SAMR1 and SAMP1. In addition, the exercise regimen activated both HAT and HDAC in the hippocampus. Therefore, the present study reveals that despite accelerated senescence, long-term exercise improved cognitive function, upregulated the expression of BDNF, and downregulated p75, a receptor involved in apoptotic signaling. Furthermore, long-term exercise enhanced activity of both HAT and HDAC, which may contribute to the transcriptional regulation underlying the improvement of cognitive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of Saikokaryukotsuboreito on Spermatogenesis and Fertility in Aging Male Mice.

    PubMed

    Zang, Zhi-Jun; Ji, Su-Yun; Zhang, Ya-Nan; Gao, Yong; Zhang, Bin

    2016-04-05

    Aspermia caused by exogenous testosterone limit its usage in late-onset hypogonadism (LOH) patients desiring fertility. Saikokaryukotsuboreito (SKRBT) is reported to improve serum testosterone and relieve LOH-related symptoms. However, it is unclear whether SKRBT affects fertility. We aimed to examine the effects of SKRBT on spermatogenesis and fertility in aging male mice. Thirty aging male mice were randomly assigned to three groups. Mice were orally administered with phosphate-buffer solution or SKRBT (300 mg/kg, daily) or received testosterone by subcutaneous injections (10 mg/kg, every 3 days). Thirty days later, each male mouse was mated with two female mice. All animals were sacrificed at the end of 90 days. Intratesticular testosterone (ITT) levels, quality of sperm, expression of synaptonemal complex protein 3 (SYCP3), and fertility were assayed. In the SKRBT-treated group, ITT, quality of sperm, and expression of SYCP3 were all improved compared with the control group (ITT: 85.50 ± 12.31 ng/g vs. 74.10 ± 11.45 ng/g, P = 0.027; sperm number: [14.94 ± 4.63] × 106 cells/ml vs. [8.79 ± 4.38] × 106 cells/ml, P = 0.002; sperm motility: 43.16 ± 9.93% vs. 33.51 ± 6.98%, P = 0.015; the number of SYCP3-positive cells/tubule: 77.50 ± 11.01 ng/ml vs. 49.30 ± 8.73 ng/ml, P < 0.001; the expression of SYCP3 protein: 1.23 ± 0.09 vs. 0.84 ± 0.10, P < 0.001), but fertility was not significantly changed (P > 0.05, respectively). In the testosterone-treated group, ITT, quality of sperm, and expression of SYCP3 were markedly lower than the control group (ITT: 59.00 ± 8.67, P = 0.005; sperm number: [4.34 ± 2.45] × 106 cells/ml, P = 0.018; sperm motility: 19.53 ± 7.69%, P = 0.001; the number of SYCP3-positive cells/tubule: 30.00 ± 11.28, P < 0.001; the percentage of SYCP3-positive tubules/section 71.98 ± 8.88%, P = 0.001; the expression of SYCP3 protein: 0.71 ± 0.09, P < 0.001), and fertility was also suppressed (P < 0.05, respectively). SKRBT had no adverse

  6. Musical Electroacupuncture May Be a Better Choice than Electroacupuncture in a Mouse Model of Alzheimer's Disease.

    PubMed

    Jiang, Jing; Liu, Gang; Shi, Suhua; Li, Zhigang

    2016-01-01

    Objectives . To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods . In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer's disease (AD), and normal (N) groups were assessed. Results . The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and A β amyloid content in the frontal lobe, compared with the AD group ( P < 0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD. Conclusion . MEA therapy may be superior to EA in treating Alzheimer's disease as demonstrated in SAMP8 mice.

  7. Musical Electroacupuncture May Be a Better Choice than Electroacupuncture in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Jiang, Jing; Liu, Gang

    2016-01-01

    Objectives. To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer's disease (AD), and normal (N) groups were assessed. Results. The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and Aβ amyloid content in the frontal lobe, compared with the AD group (P < 0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD. Conclusion. MEA therapy may be superior to EA in treating Alzheimer's disease as demonstrated in SAMP8 mice. PMID:27974974

  8. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age.

    PubMed

    Vaidya, Amita; Mao, Zhiyong; Tian, Xiao; Spencer, Brianna; Seluanov, Andrei; Gorbunova, Vera

    2014-07-01

    Accumulation of genome rearrangements is a characteristic of aged tissues. Since genome rearrangements result from faulty repair of DNA double strand breaks (DSBs), we hypothesized that DNA DSB repair becomes less efficient with age. The Non-Homologous End Joining (NHEJ) pathway repairs a majority of DSBs in vertebrates. To examine age-associated changes in NHEJ, we have generated an R26NHEJ mouse model in which a GFP-based NHEJ reporter cassette is knocked-in to the ROSA26 locus. In this model, NHEJ repair of DSBs generated by the site-specific endonuclease, I-SceI, reconstitutes a functional GFP gene. In this system NHEJ efficiency can be compared across tissues of the same mouse and in mice of different age. Using R26NHEJ mice, we found that NHEJ efficiency was higher in the skin, lung, and kidney fibroblasts, and lower in the heart fibroblasts and brain astrocytes. Furthermore, we observed that NHEJ efficiency declined with age. In the 24-month old animals compared to the 5-month old animals, NHEJ efficiency declined 1.8 to 3.8-fold, depending on the tissue, with the strongest decline observed in the skin fibroblasts. The sequence analysis of 300 independent NHEJ repair events showed that, regardless of age, mice utilize microhomology sequences at a significantly higher frequency than expected by chance. Furthermore, the frequency of microhomology-mediated end joining (MMEJ) events increased in the heart and lung fibroblasts of old mice, suggesting that NHEJ becomes more mutagenic with age. In summary, our study provides a versatile mouse model for the analysis of NHEJ in a wide range of tissues and demonstrates that DNA repair by NHEJ declines with age in mice, which could provide a mechanism for age-related genomic instability and increased cancer incidence with age.

  9. Accelerated protein damage in brains of PIMT+/- mice; a possible model for the variability of cognitive decline in human aging.

    PubMed

    Qin, Zhenxia; Dimitrijevic, Aleksandra; Aswad, Dana W

    2015-02-01

    Isoaspartate formation is a common type of protein damage normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). Mice with a knockout of the gene (Pcmt1) for this enzyme (KO, -/-) exhibit a pronounced neuropathology with fatal epileptic seizures at 30-60 days. Heterozygous (HZ, +/-) mice have 50% of the PIMT activity found in wild-type (WT, +/+) mice, but appear normal. To see if HZ mice exhibit accelerated aging at the molecular level, we compared brain extracts from HZ and WT mice at 8 months and 2 years with regard to PIMT activity, isoaspartate levels, and activity of an endogenous PIMT substrate, creatine kinase B. PIMT activity declined modestly with age in both genotypes. Isoaspartate was significantly higher in HZ than WT mice at 8 months and more so at 2 years, rising 5× faster in HZ males and 3× faster in females. Creatine kinase activity decreased with age and was always lower in the HZ mice. These findings suggest the individual variation of human PIMT levels may significantly influence the course of age-related central nervous system dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The increase of anterior pituitary dopamine in aging C57BL/6J female mice is caused by ovarian steroids, not intrinsic pituitary aging.

    PubMed

    Telford, N; Mobbs, C V; Sinha, Y N; Finch, C E

    1986-01-01

    We describe how the increase of anterior pituitary dopamine (DA) during aging in female mice is related to altered secretion of ovarian steroids during reproductive senescence. A number of age-correlated neuroendocrine changes in female rodents result from cumulative exposure to ovarian steroids over a lifetime of estrous cycles, or from the altered pattern of ovarian steroid secretion concomitant with reproductive senescence. Pituitary DA has been shown to increase with age in female rats. To examine how the age-correlated increase of pituitary DA may depend on estradiol (E2), we measured pituitary DA and serum prolactin (PRL) in the following groups of female mice: young (7 months) cycling, middle-aged (14 months) cycling and non-cycling, old (17 months) non-cycling, old (17 months) ovariectomized (OVX) at 4 months, and young mice given 0.2 mg E2 valerate or E2 implants. Mice from some of these groups were OVX 1, 4 or 8 weeks before sacrifice. Compared with young controls, 14-month-old cycling or non-cycling mice had 3-fold higher pituitary DA, and 17-month-old non-cycling mice had 5-fold higher pituitary DA. OVX for 2 or 13 months before sacrifice abolished the effect of age; OVX of young mice had no effect on pituitary DA. Three weeks after implantation of E2 into OVX young mice or 7 weeks after injection of E2 valerate in intact young mice, pituitary DA was elevated. The E2-sensitive fraction of pituitary DA does not appear to decrease PRL secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice.

    PubMed

    Gioscia-Ryan, Rachel A; Battson, Micah L; Cuevas, Lauren M; Zigler, Melanie C; Sindler, Amy L; Seals, Douglas R

    2016-11-22

    Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12; -32.5±-10.5%) versus young (~7 mo., YC n=11; -5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running; -0.8±-2.1% and -8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise.

  12. Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice

    PubMed Central

    Gioscia-Ryan, Rachel A.; Battson, Micah L.; Cuevas, Lauren M.; Zigler, Melanie C.; Sindler, Amy L.; Seals, Douglas R.

    2016-01-01

    Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12;−32.5±-10.5%) versus young (~7 mo., YC n=11;−5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running;−0.8±-2.1% and −8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise. PMID:27875805

  13. Effect of age on susceptibility to Salmonella Typhimurium infection in C57BL/6 mice.

    PubMed

    Ren, Zhihong; Gay, Raina; Thomas, Adam; Pae, Munkyong; Wu, Dayong; Logsdon, Lauren; Mecsas, Joan; Meydani, Simin Nikbin

    2009-12-01

    Ageing is associated with a decline in immune function, which predisposes the elderly to a higher incidence of infections. Information on the mechanism of the age-related increase in susceptibility to Salmonella enterica serovar Typhimurium (S. Typhimurium) is limited. In particular, little is known regarding the involvement of the immune response in this age-related change. We employed streptomycin (Sm)-pretreated C57BL/6 mice to develop a mouse model that would demonstrate age-related differences in susceptibility and immune response to S. Typhimurium. In this model, old mice inoculated orally with doses of 3 x 10(8) or 1 x 10(6) c.f.u. S. Typhimurium had significantly greater S. Typhimurium colonization in the ileum, colon, Peyer's patches, spleen and liver than young mice. Old mice had significantly higher weight loss than young mice on days 1 and 2 post-infection. In response to S. Typhimurium infection, old mice failed to increase ex vivo production of IFN-gamma and TNF-alpha in the spleen and mesenteric lymph node cells to the same degree as observed in young mice; this was associated with their inability to maintain the presence of neutrophils and macrophages at a 'youthful' level. These results indicate that Sm-pretreated C57BL/6 old mice are more susceptible to S. Typhimurium infection than young mice, which might be due to impaired IFN-gamma and TNF-alpha production as well as a corresponding change in the number of neutrophils and macrophages in response to S. Typhimurium infection compared to young mice.

  14. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age.

    PubMed

    Shoji, Hirotaka; Takao, Keizo; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-28

    Aging is considered to be associated with progressive changes in the brain and its associated sensory, motor, and cognitive functions. A large number of studies comparing young and aged animals have reported differences in various behaviors between age-cohorts, indicating behavioral dysfunctions related to aging. However, relatively little is known about behavioral changes from young adulthood to middle age, and the effect of age on behavior during the early stages of life remains to be understood. In order to investigate age-related changes in the behaviors of mice from young adulthood to middle age, we performed a large-scale analysis of the behavioral data obtained from our behavioral test battery involving 1739 C57BL/6J wild-type mice at 2-12 months of age. Significant behavioral differences between age groups (2-3-, 4-5-, 6-7-, and 8-12-month-old groups) were found in all the behavioral tests, including the light/dark transition, open field, elevated plus maze, rotarod, social interaction, prepulse inhibition, Porsolt forced swim, tail suspension, Barnes maze, and fear conditioning tests, except for the hot plate test. Compared with the 2-3-month-old group, the 4-5- and 6-7-month-old groups exhibited decreased locomotor activity to novel environments, motor function, acoustic startle response, social behavior, and depression-related behavior, increased prepulse inhibition, and deficits in spatial and cued fear memory. For most behaviors, the 8-12-month-old group showed similar but more pronounced changes in most of these behaviors compared with the younger age groups. Older groups exhibited increased anxiety-like behavior in the light/dark transition test whereas those groups showed seemingly decreased anxiety-like behavior measured by the elevated plus maze test. The large-scale analysis of behavioral data from our battery of behavioral tests indicated age-related changes in a wide range of behaviors from young adulthood to middle age in C57BL/6J mice, though

  15. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice

    PubMed Central

    Castellano, Joseph M.; Mosher, Kira I.; Abbey, Rachelle J.; McBride, Alisha A.; James, Michelle L.; Berdnik, Daniela; Shen, Jadon C.; Zou, Bende; Xie, Xinmin S.; Tingle, Martha; Hinkson, Izumi V.; Angst, Martin S.; Wyss-Coray, Tony

    2017-01-01

    Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation1, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation2, 3, 4 and downregulated in the aged brain5, 6, 7, 8. In addition to revitalizing other aged tissues9, 10, 11, 12, 13, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters14, 15, 16, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown17. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high

  16. Resistance to age-dependent thymic atrophy in long-lived mice that are deficient in pregnancy-associated plasma protein A

    PubMed Central

    Vallejo, Abbe N.; Michel, Joshua J.; Bale, Laurie K.; Lemster, Bonnie H.; Borghesi, Lisa; Conover, Cheryl A.

    2009-01-01

    Pregnancy-associated plasma protein A (PAPPA) is a metalloproteinase that controls the tissue availability of insulin-like growth factor (IGF). Homozygous deletion of PAPPA in mice leads to lifespan extension. Since immune function is an important determinant of individual fitness, we examined the natural immune ecology of PAPPA−/− mice and their wild-type littermates reared under specific pathogen-free condition with aging. Whereas wild-type mice exhibit classic age-dependent thymic atrophy, 18-month-old PAPPA−/− mice maintain discrete thymic cortex and medulla densely populated by CD4+CD8+ thymocytes that are capable of differentiating into single-positive CD4 and CD8 T cells. Old PAPPA−/− mice have high levels of T cell receptor excision circles, and have bone marrows enriched for subsets of thymus-seeding progenitors. PAPPA−/− mice have an overall larger pool of naive T cells, and also exhibit an age-dependent accumulation of CD44+CD43+ memory T cells similar to wild-type mice. However, CD43+ T cell subsets of old PAPPA−/− mice have significantly lower prevalence of 1B11 and S7, glycosylation isoforms known to inhibit T cell activation with normal aging. In bioassays of cell activation, splenic T cells of old PAPPA−/− mice have high levels of activation antigens and cytokine production, and also elicit Ig production by autologous B cells at levels equivalent to young wild-type mice. These data suggest an IGF-immune axis of healthy longevity. Controlling the availability of IGF in the thymus by targeted manipulation of PAPPA could be a way to maintain immune homeostasis during postnatal development and aging. PMID:19549878

  17. Dynamics of Delayed p53 Mutations in Mice Given Whole-Body Irradiation at 8 Weeks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okazaki, Ryuji, E-mail: ryuji-o@med.uoeh-u.ac.j; Ootsuyama, Akira; Kakihara, Hiroyo

    2011-01-01

    Purpose: Ionizing irradiation might induce delayed genotoxic effects in a p53-dependent manner. However, a few reports have shown a p53 mutation as a delayed effect of radiation. In this study, we investigated the p53 gene mutation by the translocation frequency in chromosome 11, loss of p53 alleles, p53 gene methylation, p53 nucleotide sequence, and p53 protein expression/phosphorylation in p53{sup +/+} and p53{sup +/-} mice after irradiation at a young age. Methods and Materials: p53{sup +/+} and p53{sup +/-} mice were exposed to 3 Gy of whole-body irradiation at 8 weeks of age. Chromosome instability was evaluated by fluorescence in situmore » hybridization analysis. p53 allele loss was evaluated by polymerase chain reaction, and p53 methylation was evaluated by methylation-specific polymerase chain reaction. p53 sequence analysis was performed. p53 protein expression was evaluated by Western blotting. Results: The translocation frequency in chromosome 11 showed a delayed increase after irradiation. In old irradiated mice, the number of mice that showed p53 allele loss and p53 methylation increased compared to these numbers in old non-irradiated mice. In two old irradiated p53{sup +/-} mice, the p53 sequence showed heteromutation. In old irradiated mice, the p53 and phospho-p53 protein expressions decreased compared to old non-irradiated mice. Conclusion: We concluded that irradiation at a young age induced delayed p53 mutations and p53 protein suppression.« less

  18. Cryo-survival, fertilization and early embryonic development of vitrified oocytes derived from mice of different reproductive age

    PubMed Central

    Yan, Jie; Suzuki, Joao; Yu, Xiaomin; Kan, Frederick W. K.

    2010-01-01

    Purpose To evaluate the effect of female reproductive age on oocyte cryo-survival, fertilization and the subsequent embryonic development following vitrification using the mouse model in order to address the question of how maternal reproductive age is related to fertility preservation. Methods Oocytes were collected from mice of different reproductive age: (1) 8–10 weeks, (2) 16–20 weeks, (3) 32–36 weeks, and (4) 44–48 weeks. Following vitrification and warming, the oocytes in each group were assessed for cryo-survival, fertilization and embryonic development as well as for the quality of blastocysts. Fresh oocytes without undergoing vitrification were used in each age group as controls. Results The mean number of oocytes retrieved following superovulation was found to reduce significantly (P < 0.05) in mice from 32–36 weeks of age (18.1 ± 8.5) compared with 8–10 weeks of age (26.8 ± 9.8) and 16–20 weeks of age (23.9 ± 4.2) respectively. The cryo-survival rate of oocytes was reduced significantly (P < 0.05) in mice of 44–48 weeks of age (90.4% ± 7.9) compared with the other 3 groups (98.8% ± 2.1, 98.0% ± 3.3 and 98.5% ± 2.2, respectively). The cleavage rate of vitrified oocytes declined significantly following the increase in maternal age in mice of 32–36 weeks of age (69.7% ± 20.8) forward (63.6% ± 9.2). However, no significant difference in the cleavage rate was found among the control groups of different maternal ages. The rate of embryo development to the blastocyst stage in the vitrified oocytes also significantly declined following the increase in maternal age (71.8% ± 8.8, 66.4% ± 10.7, 64.2% ± 17.4 and 4.1% ± 8.3 respectively). There were no such differences in the rates of embryo development to the blastocyst stage among the control groups following the increase in maternal age (75.9% ± 12.2, 79.5% ± 28.9, 70.2% ± 17.4 and 69.3% ± 19

  19. The nigrostriatal dopamine system of aging GFRα-1 heterozygous mice: neurochemistry, morphology and behavior

    PubMed Central

    Zaman, Vandana; Boger, Heather A.; Granholm, Ann-Charlotte; Rohrer, Baerbel; Moore, Alfred; Buhusi, Mona; Gerhardt, Greg A.; Hoffer, Barry J.; Middaugh, Lawrence D.

    2009-01-01

    Given the established importance of glial cell line-derived neurotrophic factor (GDNF) in maintaining dopaminergic neurotransmitter systems, the nigrostriatal system and associated behaviors of mice with genetic reduction of its high-affinity receptor, GDNF receptor (GFR)α-1 (GFRα-1+/−), were compared with wild-type controls. Motor activity and the stimulatory effects of a dopamine (DA) D1 receptor agonist (SKF 82958) were assessed longitudinally at 8 and 18 months of age. Monoamine concentrations and dopaminergic nerve terminals in the striatum and the number of dopaminergic neurons in the substantia nigra (SN) were assessed. The results support the importance of GFRα-1 in maintaining normal function of the nigrostriatal dopaminergic system, with deficits being observed for GFRα-1+/− mice at both ages. Motor activity was lower and the stimulatory effects of the DA agonist were enhanced for the older GFRα-1+/− mice. DA in the striatum was reduced in the GFRα-1+/− mice at both ages, and tyrosine hydroxylase-positive cell numbers in the SN were reduced most substantially in the older GFRα-1+/− mice. The combined behavioral, pharmacological probe, neurochemical and morphological measures provide evidence of abnormalities in GFRα-1+/− mice that are indicative of an exacerbated aging-related decline in dopaminergic system function. The noted deficiencies, in turn, suggest that GFRα-1 is necessary for GDNF to maintain normal function of the nigrostriatal dopaminergic system. Although the precise mechanism(s) for the aging-related changes in the dopaminergic system remain to be established, the present study clearly establishes that genetic reductions in GFRα-1 can contribute to the degenerative changes observed in this system during the aging process. PMID:18973577

  20. Estrogen effects on cognition and hippocampal transcription in middle-aged mice.

    PubMed

    Aenlle, Kristina K; Kumar, Ashok; Cui, Li; Jackson, Travis C; Foster, Thomas C

    2009-06-01

    Young and middle-aged female mice were ovariectomized and given cyclic injections of either estradiol or vehicle treatments. During the fifth week after surgery the Morris water maze was used to assess cognitive function. Age and treatment effects emerged over the course of spatial training such that middle-aged vehicle treated mice exhibited deficits in acquiring a spatial search strategy compared to younger vehicle treated mice and middle-age estradiol treated mice. Following behavioral characterization, mice were maintained on their injection schedule until week seven and hippocampi were collected 24h after the last injection. Hippocampal RNA was extracted and genes responsive to age and estrogen were identified using cDNA microarrays. Estradiol treatment in middle-aged mice altered the expression of genes related to transcriptional regulation, biosynthesis, growth, neuroprotection, and elements of cell signaling pathways. Expression profiles for representative genes were confirmed in a separate set of animals using oligonucleotide arrays and RT-PCR. Our results indicate that estrogen treatment in middle-aged animals may promote hippocampal health during the aging process.

  1. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior.

    PubMed

    Townsend, Brigitte E; Chen, Yung-Ju; Jeffery, Elizabeth H; Johnson, Rodney W

    2014-11-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. Sulforaphane increases antioxidant enzymes including NAD(P)H quinone oxidoreductase and heme oxygenase I and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide (LPS)-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days before an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 hours after LPS, and mRNA was quantified in liver and brain at 24 hours. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin-1β (IL-1β) expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. In addition, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior

    PubMed Central

    Townsend, Brigitte E.; Chen, Yung-Ju; Jeffery, Elizabeth H.; Johnson, Rodney W.

    2015-01-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. SFN increases antioxidant enzymes including NAD(P)H quinone oxidoreductase (NQO1) and heme oxygenase I (HMOX1) and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days prior to an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 h following LPS, and mRNA quantified in liver and brain at 24 h. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin (IL)-1β expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. Additionally, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS. PMID:25439028

  3. Synergistic effect of aged garlic extract and naltrexone on improving immune responses to experimentally induced fibrosarcoma tumor in BALB/c mice

    PubMed Central

    Ebrahimpour, Soheil; Tabari, Mohaddeseh Abouhosseini; Youssefi, Mohammad Reza; Aghajanzadeh, Hamid; Behzadi, Manijeh Yousefi

    2013-01-01

    Background: Garlic, a medicinal plant, and Naltrexone (NTX), an opioid receptor antagonist, both have immunomodulatory and antitumor effects. Current study was designed to evaluate synergistic antitumor effects of aged garlic extract (AGE) and NTX. Materials and Methods: WEHI-164 fibrosarcoma cells were implanted subcutaneously on day 0 into right flank of 80 BALB/c mice at age of 8 weeks. Mice were randomly categorized in four separate groups: The first group received AGE (100 mg/kg, i.p.), the second group received NTX (0.5 mg/kg, i.p.), the third group received both of them, and the fourth group received phosphate buffered saline as control group. Treatments were administered three times per week. Tumor growth was measured and morbidity was recorded. Subpopulations of CD4+/CD8+ T cells were determined using flowcytometery. WEHI-164 cell specific cytotoxicity of splenocytes and in vitro production of interferon-gamma (IFN-γ) and interleukin-4 (IL-4) cytokines were measured. All statistical analyses were conducted with SPSS 16 software and P < 0.05 was considered to be statistically significant. Results: The mice who received AGE+NTX had significantly longer survival time compared with the mice treated with AGE or NTX alone. An enhanced inhibitory effect on tumor growth was seen in combination therapy group. The CD4+/CD8+ ratio and in vitro IFN-γ production of splenocytes were significantly increased in AGE+NTX and NTX groups. WEHI-164 specific cytotoxicity of splenocytes was also significantly increased at 25:1 E:T ratio in AGE+NTX treated mice. Coadministration of AGE with NTX resulted in improvement of immune responses against experimentally implanted fibrosarcoma tumors in BALB/c mice. Conclusions: AGE showed synergistic effects with NTX on inhibition of tumor growth and increment of survival times. PMID:23901215

  4. The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice.

    PubMed

    Le Couteur, David G; Tay, Szun S; Solon-Biet, Samantha; Bertolino, Patrick; McMahon, Aisling C; Cogger, Victoria C; Colakoglu, Feyza; Warren, Alessandra; Holmes, Andrew J; Pichaud, Nicolas; Horan, Martin; Correa, Carolina; Melvin, Richard G; Turner, Nigel; Ballard, J William O; Ruohonen, Kari; Raubenheimer, David; Simpson, Stephen J

    2015-12-01

    There is a strong association between aging, diet, and immunity. The effects of macronutrients and energy intake on splanchnic and hepatic lymphocytes were studied in 15 month old mice. The mice were ad-libitum fed 1 of 25 diets varying in the ratios and amounts of protein, carbohydrate, and fat over their lifetime. Lymphocytes in liver, spleen, Peyers patches, mesenteric lymph nodes, and inguinal lymph nodes were evaluated using flow cytometry. Low protein intake reversed aging changes in splenic CD4 and CD8 T cells, CD4:CD8 T cell ratio, memory/effector CD4 T cells and naïve CD4 T cells. A similar influence of total caloric intake in these ad-libitum fed mice was not apparent. Protein intake also influenced hepatic NK cells and B cells, while protein to carbohydrate ratio influenced hepatic NKT cells. Hepatosteatosis was associated with increased energy and fat intake and changes in hepatic Tregs, effector/memory T, and NK cells. Hepatic NK cells were also associated with body fat, glucose tolerance, and leptin levels while hepatic Tregs were associated with hydrogen peroxide production by hepatic mitochondria. Dietary macronutrients, particularly protein, influence splanchnic lymphocytes in old age, with downstream associations with mitochondrial function, liver pathology, and obesity-related phenotype. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The metabolic footprint of aging in mice.

    PubMed

    Houtkooper, Riekelt H; Argmann, Carmen; Houten, Sander M; Cantó, Carles; Jeninga, Ellen H; Andreux, Pénélope A; Thomas, Charles; Doenlen, Raphaël; Schoonjans, Kristina; Auwerx, Johan

    2011-01-01

    Aging is characterized by a general decline in cellular function, which ultimately will affect whole body homeostasis. Although DNA damage and oxidative stress all contribute to aging, metabolic dysfunction is a common hallmark of aging at least in invertebrates. Since a comprehensive overview of metabolic changes in otherwise healthy aging mammals is lacking, we here compared metabolic parameters of young and 2 year old mice. We systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging. Among the affected pathways in both liver and muscle we found glucose and fatty acid metabolism, and redox homeostasis. These alterations translated in decreased long chain acylcarnitines and increased free fatty acid levels and a marked reduction in various amino acids in the plasma of aged mice. As such, these metabolites serve as biomarkers for aging and healthspan.

  6. The metabolic footprint of aging in mice

    PubMed Central

    Houtkooper, Riekelt H.; Argmann, Carmen; Houten, Sander M.; Cantó, Carles; Jeninga, Ellen H.; Andreux, Pénélope A.; Thomas, Charles; Doenlen, Raphaël; Schoonjans, Kristina; Auwerx, Johan

    2011-01-01

    Aging is characterized by a general decline in cellular function, which ultimately will affect whole body homeostasis. Although DNA damage and oxidative stress all contribute to aging, metabolic dysfunction is a common hallmark of aging at least in invertebrates. Since a comprehensive overview of metabolic changes in otherwise healthy aging mammals is lacking, we here compared metabolic parameters of young and 2 year old mice. We systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging. Among the affected pathways in both liver and muscle we found glucose and fatty acid metabolism, and redox homeostasis. These alterations translated in decreased long chain acylcarnitines and increased free fatty acid levels and a marked reduction in various amino acids in the plasma of aged mice. As such, these metabolites serve as biomarkers for aging and healthspan. PMID:22355651

  7. Neuroinflammation and cognitive function in aged mice following minor surgery

    PubMed Central

    Rosczyk, H.A.; Sparkman, N. L.; Johnson, R.W.

    2009-01-01

    Following surgery, elderly patients often suffer from postoperative cognitive dysfunction (POCD) which can persist long after physical recovery. It is known that surgery-induced tissue damage activates the peripheral innate immune system resulting in the release of inflammatory mediators. Compared to adults, aged animals demonstrate increased neuroinflammation and microglial priming that leads to an exaggerated proinflammatory cytokine response following activation of the peripheral immune system. Therefore, we sought to determine if the immune response to surgical trauma results in increased neuroinflammation and cognitive impairment in aged mice. Adult and aged mice underwent minor abdominal surgery and 24 h later hippocampal cytokines were measured and working memory was assessed in a reversal learning version of the Morris water maze. While adult mice showed no signs of neuroinflammation following surgery, aged mice had significantly increased levels of IL-1β mRNA in the hippocampus. Minor surgery did not result in severe cognitive impairment although aged mice that underwent surgery did tend to perseverate in the old target during reversal testing suggesting reduced cognitive flexibility. Overall these results suggest that minor surgery leads to an exaggerated neuroinflammatory response in aged mice but does not result in significantly impaired performance in the Morris water maze. PMID:18602982

  8. Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress

    PubMed Central

    Dinh, Quynh Nhu; Drummond, Grant R.; Kemp-Harper, Barbara K.; Diep, Henry; Silva, T. Michael De; Kim, Hyun Ah; Vinh, Antony; Robertson, Avril A.B.; Cooper, Matthew A.; Mansell, Ashley

    2017-01-01

    Aging is commonly associated with chronic low-grade inflammation and hypertension but it is unknown whether a cause-effect relationship exists between them. We compared the sensitivity of young adult (8-12 w) and aged (23-31 mo) male C57Bl6J mice to develop hypertension in response to a slow-pressor dose of angiotensin II (Ang II; 0.28 mg/kg/d; 28 d). In young mice, the pressor response to Ang II was gradual and increased to 142±8 mmHg over 28 d. However, in aged mice, Ang II promptly increased SBP and reached 155±12 mmHg by 28 d. Aging increased renal but not brain expression of Ang II receptors (At1ar and At2r) and elevated AT1R:AT2R expression ratio in mesenteric artery. Maximal contractile responses of mesenteric arteries to Ang II were enhanced in aged mice and were not affected by L-NAME, indomethacin or tempol. Mesenteric arteries and thoracic aortae from aged mice exhibited higher Nox2-dependent superoxide production. Despite having higher renal expression of Nlrp3, Casp-1 and Il-1β, Ang II-induced hypertension (SBP: 139±7 mmHg) was unaffected by co-infusion of the NLRP3 inflammasome inhibitor, MCC950 (10 mg/kg/d; SBP: 145±10 mmHg). Thus, increased vascular AT1R:AT2R expression, rather than NLRP3 inflammasome activation, may contribute to enhanced responses to Ang II in aging. PMID:28659507

  9. Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress.

    PubMed

    Dinh, Quynh Nhu; Drummond, Grant R; Kemp-Harper, Barbara K; Diep, Henry; De Silva, T Michael; Kim, Hyun Ah; Vinh, Antony; Robertson, Avril A B; Cooper, Matthew A; Mansell, Ashley; Chrissobolis, Sophocles; Sobey, Christopher G

    2017-06-28

    Aging is commonly associated with chronic low-grade inflammation and hypertension but it is unknown whether a cause-effect relationship exists between them. We compared the sensitivity of young adult (8-12 w) and aged (23-31 mo) male C57Bl6J mice to develop hypertension in response to a slow-pressor dose of angiotensin II (Ang II; 0.28 mg/kg/d; 28 d). In young mice, the pressor response to Ang II was gradual and increased to 142±8 mmHg over 28 d. However, in aged mice, Ang II promptly increased SBP and reached 155±12 mmHg by 28 d. Aging increased renal but not brain expression of Ang II receptors ( At1ar and At2r ) and elevated AT1R:AT2R expression ratio in mesenteric artery. Maximal contractile responses of mesenteric arteries to Ang II were enhanced in aged mice and were not affected by L-NAME, indomethacin or tempol. Mesenteric arteries and thoracic aortae from aged mice exhibited higher Nox2-dependent superoxide production. Despite having higher renal expression of Nlrp3, Casp-1 and Il-1β , Ang II-induced hypertension (SBP: 139±7 mmHg) was unaffected by co-infusion of the NLRP3 inflammasome inhibitor, MCC950 (10 mg/kg/d; SBP: 145±10 mmHg). Thus, increased vascular AT1R:AT2R expression, rather than NLRP3 inflammasome activation, may contribute to enhanced responses to Ang II in aging.

  10. Corticostriatal circuit defects in Hoxb8 mutant mice

    PubMed Central

    Nagarajan, Naveen; Jones, Bryan W.; West, Peter J.; Marc, Robert; Capecchi, Mario R.

    2018-01-01

    Hoxb8 mutant mice exhibit compulsive grooming and hair removal dysfunction similar to humans with the OCD-spectrum disorder, trichotillomania. Since, in the mouse brain, the only detectable cells that label with Hoxb8 cell lineage appear to be microglia, we suggested that defective microglia cause the neuropsychiatric disorder. Does the Hoxb8 mutation in microglia lead to neural circuit dysfunctions? We demonstrate that Hoxb8 mutants contain corticostriatal circuit defects. Golgi staining, ultra-structural, and electrophysiological studies of mutants reveal excess dendritic spines, pre- and post-synaptic structural defects, long-term potentiation and miniature postsynaptic current defects. Hoxb8 mutants also exhibit hyperanxiety and social behavioral deficits similar to mice with neuronal mutations in Sapap3, Slitrk5 and Shank3, reported models of OCD and autism spectrum disorders (ASD’s). Long-term treatment of Hoxb8 mutants with fluoxetine, a serotonin reuptake inhibitor (SSRI), reduces excessive grooming, hyperanxiety and social behavioral impairments. These studies provide linkage between the neuronal defects induced by defective Hoxb8-microglia, and neuronal dysfunctions directly generated by mutations in synaptic components that result in mice that display similar pathological grooming, hyperanxiety and social impairment deficits. Our results shed light on Hoxb8 microglia driven circuit-specific defects and therapeutic approaches that will become essential to developing novel therapies for neuropsychiatric diseases such as OCD and ASD’s with Hoxb8-microglia being the central target. PMID:28948967

  11. Microglial K+ Channel Expression in Young Adult and Aged Mice

    PubMed Central

    Schilling, Tom; Eder, Claudia

    2015-01-01

    The K+ channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K+ channels and their regulation in vivo is limited. Here, we have investigated K+ currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K+ currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K+ currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K+ current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K+ currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca2+-activated K+ channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K+ channel pattern nor K+ channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca2+-activated, K+ channels. PMID:25472417

  12. Resilience in Aging Mice

    PubMed Central

    Kirkland, James L.; Stout, Michael B.

    2016-01-01

    Abstract Recently discovered interventions that target fundamental aging mechanisms have been shown to increase life span in mice and other species, and in some cases, these same manipulations have been shown to enhance health span and alleviate multiple age-related diseases and conditions. Aging is generally associated with decreases in resilience, the capacity to respond to or recover from clinically relevant stresses such as surgery, infections, or vascular events. We hypothesize that the age-related increase in susceptibility to those diseases and conditions is driven by or associated with the decrease in resilience. Thus, a test for resilience at middle age or even earlier could represent a surrogate approach to test the hypothesis that an intervention delays the process of aging itself. For this, animal models to test resilience accurately and predictably are needed. In addition, interventions that increase resilience might lead to treatments aimed at enhancing recovery following acute illnesses, or preventing poor outcomes from medical interventions in older, prefrail subjects. At a meeting of basic researchers and clinicians engaged in research on mechanisms of aging and care of the elderly, the merits and drawbacks of investigating effects of interventions on resilience in mice were considered. Available and potential stressors for assessing physiological resilience as well as the notion of developing a limited battery of such stressors and how to rank them were discussed. Relevant ranking parameters included value in assessing general health (as opposed to focusing on a single physiological system), ease of use, cost, reproducibility, clinical relevance, and feasibility of being repeated in the same animal longitudinally. During the discussions it became clear that, while this is an important area, very little is known or established. Much more research is needed in the near future to develop appropriate tests of resilience in animal models within an

  13. Deficiency in DGCR8-dependent canonical microRNAs causes infertility due to multiple abnormalities during uterine development in mice.

    PubMed

    Kim, Yeon Sun; Kim, Hye-Ryun; Kim, Hyongbum; Yang, Seung Chel; Park, Mira; Yoon, Jung Ah; Lim, Hyunjung J; Hong, Seok-Ho; DeMayo, Francesco J; Lydon, John P; Choi, Youngsok; Lee, Dong Ryul; Song, Haengseok

    2016-02-02

    DGCR8 is an RNA-binding protein that interacts with DROSHA to produce pre-microRNA in the nucleus, while DICER generates not only mature microRNA, but also endogenous small interfering RNAs in the cytoplasm. Here, we produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8(d/d)) and demonstrated that canonical microRNAs dependent on the DROSHA-DGCR8 complex are required for uterine development as well as female fertility in mice. Adult Dgcr8(d/d) females neither underwent regular reproductive cycles nor produced pups, whereas administration of exogenous gonadotropins induced normal ovulation in these mice. Interestingly, immune cells associated with acute inflammation aberrantly infiltrated into reproductive organs of pregnant Dgcr8(d/d) mice. Regarding uterine development, multiple uterine abnormalities were noticeable at 4 weeks of age when PR is significantly increased, and the severity of these deformities increased over time. Gland formation and myometrial layers were significantly reduced, and the stromal cell compartment did not expand and became atrophic during uterine development in these mice. These results were consistent with aberrantly reduced stromal cell proliferation and completely failed decidualization. Collectively, we suggest that DGCR8-dependent canonical microRNAs are essential for uterine development and physiological processes such as proper immune modulation, reproductive cycle, and steroid hormone responsiveness in mice.

  14. Astaxanthin affects oxidative stress and hyposalivation in aging mice

    PubMed Central

    Kuraji, Manatsu; Matsuno, Tomonori; Satoh, Tazuko

    2016-01-01

    Oral dryness, a serious problem for the aging Japanese society, is induced by aging-related hyposalivation and causes dysphagia, dysgeusia, inadaptation of dentures, and growth of oral Candida albicans. Oxidative stress clearly plays a role in decreasing saliva secretion and treatment with antioxidants such astaxanthin supplements may be beneficial. Therefore, we evaluated the effects of astaxanthin on the oral saliva secretory function of aging mice. The saliva flow increased in astaxanthin-treated mice 72 weeks after administration while that of the control decreased by half. The plasma d-ROMs values of the control but not astaxanthin-treated group measured before and 72 weeks after treatment increased. The diacron-reactive oxygen metabolites (d-ROMs) value of astaxanthin-treated mice 72 weeks after treatment was significantly lower than that of the control group was. The plasma biological antioxidative potential (BAP) values of the control but not astaxanthin-treated mice before and 72 weeks after treatment decreased. Moreover, the BAP value of the astaxanthin-treated group 72 weeks after treatment was significantly higher than that of the control was. Furthermore, the submandibular glands of astaxanthin-treated mice had fewer inflammatory cells than the control did. Specifically, immunofluorescence revealed a significantly large aquaporin-5 positive cells in astaxanthin-treated mice. Our results suggest that astaxanthin treatment may prevent age-related decreased saliva secretion. PMID:27698533

  15. Age-related morphological changes in the basement membrane in the stria vascularis of C57BL/6 mice.

    PubMed

    Suzuki, Mitsuya; Sakamoto, Takashi; Kashio, Akinori; Yamasoba, Tatsuya

    2016-01-01

    Basement membrane anionic sites (BMAS) are involved in the selective transport of electrically charged macromolecules in cochlear capillaries. Using cationic polyethyleneimine (PEI), we examined age-related changes in BMAS in the cochleae of C57BL/6 mice. The mice were grouped according to age as follows: 3 days, 4 weeks, 8 weeks, 6 months, and 12 months. In the right bony labyrinths, widths of the stria vascularis were measured in paraffin-embedded sections using light microscopy. The left bony labyrinths were immersed in a 0.5 % cationic PEI solution and embedded in epoxy resin. Ultrathin sections of the left cochlea were examined using transmission electron microscopy. A significant difference in stria vascularis width was observed between the 4-week-old and 12-month-old mice. The PEI distribution in the capillary and epithelial basement membranes (BMs) of the cochlea was observed. In all animals, PEI particles were evenly distributed in the capillary BM of the spiral ligament and in the subepithelial BM of Reissner's membrane. In the stria vascularis, PEI particles were evenly distributed in the capillary BM in 3-day-old mice. In 4- and 8-week-old mice, PEI particle sizes were markedly lower than those observed in 3-day-old mice. In 6- and 12-month-old mice, PEI particles were hardly detected in the strial capillary BM. In the strial capillary BM in these mice, the laminae rarae externa and interna disappeared, but the lamina densa became larger. We speculated that age-related changes of strial capillary BMAS may affect electrically charged macromolecule transport systems in the stria vascularis of C57BL/6 mice.

  16. Age-Dependent Changes of Monocarboxylate Transporter 8 Availability in the Postnatal Murine Retina

    PubMed Central

    Henning, Yoshiyuki; Szafranski, Karol

    2016-01-01

    The thyroid hormones (TH) triiodothyronine (T3) and its prohormone thyroxine (T4) are crucial for retinal development and function, and increasing evidence points at TH dysregulation as a cause for retinal degenerative diseases. Thus, precise regulation of retinal TH supply is required for proper retinal function, but knowledge on these mechanisms is still fragmentary. Several transmembrane transporters have been described as key regulators of TH availability in target tissues of which the monocarboxylate transporter 8 (MCT8), a high affinity transporter for T4 and T3, plays an essential role in the central nervous system. Moreover, in the embryonic chicken retina, MCT8 is highly expressed, but the postnatal availability of MCT8 in the mammalian retina was not reported to date. In the present study, spatiotemporal retinal MCT8 availability was examined in mice of different age. For this purpose, we quantified expression levels of Mct8 via Real-Time Reverse-Transcriptase PCR in mouse eyecups (C57BL/6) of juvenile and adult age groups. Additionally, age-dependent MCT8 protein levels were quantified via Western blotting and localized via immunofluorescence confocal microscopy. While no difference in Mct8 expression levels could be detected between age groups, MCT8 protein levels in juvenile animals were about two times higher than in adult animals based on Western blot analyses. Immunohistochemical analyses showed that MCT8 immunoreactivity in the eyecup was restricted to the retina and the retinal pigment epithelium. In juvenile mice, MCT8 was broadly observed along the apical membrane of the retinal pigment epithelium, tightly surrounding photoreceptor outer segments. Distinct immunopositive staining was also detected in the inner nuclear layer and the ganglion cell layer. However, in adult specimens, immunoreactivity visibly declined in all layers, which was in line with Western blot analyses. Since MCT8 was abundantly present in juvenile and about twofold lower in

  17. Joint dysfunction and functional decline in middle age myostatin null mice.

    PubMed

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. TRPM8 is a neuronal osmosensor that regulates eye blinking in mice

    PubMed Central

    Quallo, Talisia; Vastani, Nisha; Horridge, Elisabeth; Gentry, Clive; Parra, Andres; Moss, Sian; Viana, Felix; Belmonte, Carlos; Andersson, David A.; Bevan, Stuart

    2015-01-01

    Specific peripheral sensory neurons respond to increases in extracellular osmolality but the mechanism responsible for excitation is unknown. Here we show that small increases in osmolality excite isolated mouse dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons expressing the cold-sensitive TRPM8 channel (transient receptor potential channel, subfamily M, member 8). Hyperosmotic responses were abolished by TRPM8 antagonists, and were absent in DRG and TG neurons isolated from Trpm8−/− mice. Heterologously expressed TRPM8 was activated by increased osmolality around physiological levels and inhibited by reduced osmolality. Electrophysiological studies in a mouse corneal preparation demonstrated that osmolality regulated the electrical activity of TRPM8-expressing corneal afferent neurons. Finally, the frequency of eye blinks was reduced in Trpm8−/− compared with wild-type mice and topical administration of a TRPM8 antagonist reduced blinking in wild-type mice. Our findings identify TRPM8 as a peripheral osmosensor responsible for the regulation of normal eye-blinking in mice. PMID:25998021

  19. Iodine 125 Imaging in Mice Using NaI(Tl)/Flat Panel PMT Integral Assembly

    NASA Astrophysics Data System (ADS)

    Cinti, M. N.; Majewski, S.; Williams, M. B.; Bachmann, C.; Cominelli, F.; Kundu, B. K.; Stolin, A.; Popov, V.; Welch, B. L.; De Vincentis, G.; Bennati, P.; Betti, M.; Ridolfi, S.; Pani, R.

    2007-06-01

    Radiolabeled agents that bind to specific receptors have shown great promise in diagnosing and characterizing tumor cell biology. In vivo imaging of gene transcription and protein expression represents an other area of interest. The radioisotope I is commercially available as a label for molecular probes and utilized by researchers in small animal studies. We propose an advanced imaging detector based on planar NaI(T1) integral assembly with a Hamamatsu Flat Panel Photomultiplier (MA-PMT) representing one of the best trade-offs between spatial resolution and detection efficiency. We characterized the imaging performances of this planar detector, in comparison with a gamma camera based on a pixellated scintillator. We also tested the in-vivo image capability by acquiring images of mice as a part of a study of inflammatory bowel disease (IBD). In this study, four 25g mice with an IBD-like phenotype (SAMP1/YitFc) were injected with 375, 125, 60 and 30 muCi of I-labelled antibody against mucosal vascular addressin cell adhesion molecule (MAdCAM-1), which is up-regulated in the presence of inflammation. Two mice without bowel inflammation were injected with 150 and 60 muCi of the labeled anti-MAdCAM-1 antibody as controls. To better evaluate the performances of the integral assembly detector, we also acquired mice images with a dual modality (X and Gamma Ray) camera dedicated for small animal imaging. The results coming from this new detector are considerable: images of SAMP1/YitFc injected with 30 muCi activity show inflammation throughout the intestinal tract, with the disease very well defined at two hours post-injection.

  20. Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice

    PubMed Central

    Buchanan, J.B.; Sparkman, N.L.; Chen, J.; Johnson, R.W.

    2008-01-01

    Summary Peripheral immune stimulation as well as certain types of psychological stress increases brain levels of inflammatory cytokines such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNFα). We have demonstrated that aged mice show greater increases in central inflammatory cytokines, as well as greater cognitive deficits, compared to adults in response to peripheral lipopolysaccharide (LPS) administration. Because aged mice are typically more sensitive to systemic stressors such as LPS, and certain psychological stressors induce physiological responses similar to those that follow LPS, we hypothesized that aged mice would be more sensitive to the physiological and cognitive effects of mild stress than adult mice. Here, adult (3–5 mo) and aged (22–23 mo) male BALB/c mice were trained in the Morris water maze for 5 days. Mice were then exposed to a mild restraint stress of 30 minutes before being tested in a working memory version of the water maze over a 3 day period. On day 4 mice were stressed and then killed for collection of blood and brain. In a separate group of animals, mice were killed immediately after one, two or three 30 min restraint sessions and blood for peripheral corticosterone and cytokine protein measurement, and brains were dissected for central cytokine mRNA measurement. Stress disrupted spatial working memory in both adult and aged mice but to a much greater extent in the aged mice. In addition, aged mice showed an increase in stress-induced expression of hippocampal IL-1β mRNA and MHC class II protein compared to non-stressed controls while expression in adult mice was unaffected by stress. These data show that aged mice are more sensitive to both the cognitive and inflammatory effects of mild stress than are adult mice and suggest a possible a role for IL-1β. PMID:18407425

  1. Resilience in Aging Mice.

    PubMed

    Kirkland, James L; Stout, Michael B; Sierra, Felipe

    2016-11-01

    Recently discovered interventions that target fundamental aging mechanisms have been shown to increase life span in mice and other species, and in some cases, these same manipulations have been shown to enhance health span and alleviate multiple age-related diseases and conditions. Aging is generally associated with decreases in resilience, the capacity to respond to or recover from clinically relevant stresses such as surgery, infections, or vascular events. We hypothesize that the age-related increase in susceptibility to those diseases and conditions is driven by or associated with the decrease in resilience. Thus, a test for resilience at middle age or even earlier could represent a surrogate approach to test the hypothesis that an intervention delays the process of aging itself. For this, animal models to test resilience accurately and predictably are needed. In addition, interventions that increase resilience might lead to treatments aimed at enhancing recovery following acute illnesses, or preventing poor outcomes from medical interventions in older, prefrail subjects. At a meeting of basic researchers and clinicians engaged in research on mechanisms of aging and care of the elderly, the merits and drawbacks of investigating effects of interventions on resilience in mice were considered. Available and potential stressors for assessing physiological resilience as well as the notion of developing a limited battery of such stressors and how to rank them were discussed. Relevant ranking parameters included value in assessing general health (as opposed to focusing on a single physiological system), ease of use, cost, reproducibility, clinical relevance, and feasibility of being repeated in the same animal longitudinally. During the discussions it became clear that, while this is an important area, very little is known or established. Much more research is needed in the near future to develop appropriate tests of resilience in animal models within an aging context

  2. Live Attenuated Leishmania donovani Centrin Knock Out Parasites Generate Non-inferior Protective Immune Response in Aged Mice against Visceral Leishmaniasis.

    PubMed

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K; Joshi, Amritanshu B; Ismail, Nevien; Gannavaram, Sreenivas; Debrabant, Alain; Akue, Adovi D; KuKuruga, Mark A; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L

    2016-08-01

    Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells between aged and young

  3. Dihydrocapsiate improved age-associated impairments in mice by increasing energy expenditure.

    PubMed

    Ohyama, Kana; Suzuki, Katsuya

    2017-11-01

    Metabolic dysfunction is associated with aging and results in age-associated chronic diseases, including type 2 diabetes mellitus, cardiovascular disease, and stroke. Hence, there has been a focus on increasing energy expenditure in aged populations to protect them from age-associated diseases. Dihydrocapsiate (DCT) is a compound that belongs to the capsinoid family. Capsinoids are capsaicin analogs that are found in nonpungent peppers and increase whole body energy expenditure. However, their effect on energy expenditure has been reported only in young populations, and to date the effectiveness of DCT in increasing energy expenditure in aged populations has not been investigated. In this study, we investigated whether DCT supplementation in aged mice improves age-associated impairments. We obtained 5-wk-old and 1-yr-old male C57BL/6J mice and randomly assigned the aged mice to two groups, resulting in a total of three groups: 1 ) young mice, 2 ) old mice, and 3 ) old mice supplemented with 0.3% DCT. After 12 wk of supplementation, blood and tissue samples were collected and analyzed. DCT significantly suppressed age-associated fat accumulation, adipocyte hypertrophy, and liver steatosis. In addition, the DCT treatment dramatically suppressed age-associated increases in hepatic inflammation, immune cell infiltration, and oxidative stress. DCT exerted these suppression effects by increasing energy expenditure linked to upregulation of both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that DCT efficiently improves age-associated impairments, including liver steatosis and inflammation, in part by increasing energy expenditure via activation of the fat oxidation pathway in skeletal muscle. Copyright © 2017 the American Physiological Society.

  4. Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice.

    PubMed

    Guimaraes, Patricia; Zhu, Xiaoxia; Cannon, Trinitia; Kim, SungHee; Frisina, Robert D

    2004-06-01

    Age-related hearing loss--presbycusis--is the number one communication problem of the aged. A major contributor to presbycusis is the progressive degeneration of cochlear outer hair cells (OHCs). Distortion product otoacoustic emissions (DPOAEs) are effective in vivo, physiological measures of hearing, assessing the health and functioning of the OHCs in mammals. We and others have previously demonstrated that DPOAE amplitudes decline with age in humans and mice. The present study's objective was to measure age-related declines in the OHCs in CBA mice (slow, progressive age-related hearing loss) by comparing DPOAEs and auditory brainstem responses (ABRs) generated from females and males. Young adult (2.1-2.9 months) and middle-aged CBA (14.0-16.4 months) mice were tested, as well as old CBAs (24.3-29.0 months). DPOAE-grams were obtained with L1 = 65 and L2 = 50 dB SPL, f1/f2 = 1.25, using eight points per octave covering a frequency range from 5.6 to 44.8 kHz (geometric mean frequency). ABRs ranged from 3 to 48 kHz. Analyses revealed that DPOAE levels decreased with age for middle-aged and old male CBAs, but for female CBAs, declines did not occur until old age - after menopause. In contrast, ABR amplitudes for female and male young adult and middle-aged CBAs were the same. Female ABR thresholds were lower than males for old CBAs. In conclusion, we discovered that pre-menopausal CBA female mice have healthier OHCs relative to middle-aged males, but much of this relative advantage is lost post-menopause. Understanding sex differences in age-related sensory disorders will be quite helpful for the goals of preventing, slowing or curing sensory problems in old age for both women and men.

  5. Distorted leukocyte migration, angiogenesis, wound repair and metastasis in Tspan8 and Tspan8/CD151 double knockout mice indicate complementary activities of Tspan8 and CD51.

    PubMed

    Zhao, Kun; Erb, Ulrike; Hackert, Thilo; Zöller, Margot; Yue, Shijing

    2018-02-01

    The tetraspanin Tspan8 supports via associated integrins and proteases tumor progression and angiogenesis. To shed light on its activities in non-transformed cells, we generated a Tspan8 knockout (ko) mouse, comparing leukocyte migration, angiogenesis, wound healing and tumor growth with wild type, CD151ko and Tspan8/CD151ko (dbko) mice. CD151ko mice were included as CD151 activities resemble that of Tspan8, and dbko mice to exclude mutual substitution. Tspan8ko and dbko mice show no pathological phenotype. However, delayed type hypersensitivity reactions are mitigated in Tspan8ko mice, angiogenesis is severely impaired in Tspan8ko, CD151ko and dbko mice, with Tspan8 mostly affecting lymphangiogenesis. Distinct contributions of CD151 and Tspan8 to skin wound healing rely on preferentially CD151 anchoring basal keratinocytes and Tspan8 promoting motility. Proliferation of wounded skin keratinocytes is not affected. Metastasis formation of a melanoma and a Tspan8-expressing pancreatic cancer line was impaired in Tspan8ko and dbko mice, pointing towards a contribution of host Tspan8 to tumor progression. In line with the importance of tetraspanins in exosome-mediated intercellular communication, defects became mitigated by Tspan8/CD151-competent serum exosomes, which offers a most promising therapeutic option for chronic wounds and arteriosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Characterization of extrathymic CD8αβ T cells in the liver and intestine in TAP-1 deficient mice

    PubMed Central

    Tsukada, Chika; Miyaji, Chikako; Kawamura, Hiroki; Miyakawa, Ryoko; Yokoyama, Hisashi; Ishimoto, Yuiko; Miyazawa, Shinobu; Watanabe, Hisami; Abo, Toru

    2003-01-01

    TAP-1 deficient (−/−) mice cannot transport MHC class I antigens onto the cell surface, which results in failure of the generation of CD8+ T cells in the thymus. In a series of recent studies, it has been proposed that extrathymic T cells are generated in the liver and at other extrathymic sites (e.g. the intestine). It was therefore investigated whether CD8+ extrathymic T cells require an interaction with MHC class I antigens for their differentiation in TAP-1(−/−) mice. Although CD8+ thymically derived T cells were confirmed to be absent in the spleen as well as in the thymus, CD8αβ+ T cells were abundant in the livers and intestines of TAP-1(−/−) mice. These CD8+ T cells expanded in the liver as a function of age and were mainly confined to a NK1·1−CD3int population which is known to be truly of extrathymic origin. Hepatic lymphocytes, which contained CD8+ T cells and which were isolated from TAP-1(−/−) mice (H-2b), responded to neither mutated MHC class I antigens (bm1) nor allogeneic MHC class I antigens (H-2d) in in vitro mixed lymphocyte cultures. However, the results from repeated in vivo stimulations with alloantigens (H-2d) were interesting. Allogeneic cytotoxicity was induced in liver lymphocytes in TAP-1(−/−) mice, although the magnitude of cytotoxicity was lower than that of liver lymphocytes in immunized B6 mice. All allogeneic cytotoxicity disappeared with the elimination of CD8+ cells in TAP-1(−/−) mice. These results suggest that the generation and function of CD8+ extrathymic T cells are independent of the existence of the MHC class I antigens of the mouse but have a limited allorecognition ability. PMID:12807479

  7. Passive avoidance and complex maze learning in the senescence accelerated mouse (SAM): age and strain comparisons of SAM P8 and R1.

    PubMed

    Spangler, Edward L; Patel, Namisha; Speer, Dorey; Hyman, Michael; Hengemihle, John; Markowska, Alicja; Ingram, Donald K

    2002-02-01

    Two strains of the senescence accelerated mouse, P8 and R1,were tested in footshock-motivated passive avoidance (PA; P8, 3-21 months; R1, 3-24 months) and 14-unit T-maze (P8 and R1, 9, and 15 months) tasks. For PA, entry to a dark chamber from a lighted chamber was followed by a brief shock. Latency to enter the dark chamber 24 hours later served as a measure of retention. Two days of active avoidance training in a straight runway preceded 2 days (8 trials/day) of testing in the 14-unit T-maze. For PA retention, older P8 mice entered the dark chamber more quickly than older R1 mice, whereas no differences were observed between young P8 or R1 mice. In the 14-unit T-maze, age-related learning performance deficits were reflected in higher error scores for older mice. P8 mice were actually superior learners; that is, they had lower error scores compared with those of age-matched R1 counterparts. Although PA learning results were in agreement with other reports, results obtained in the 14-unit T-maze were not consistent with previous reports of learning impairments in the P8 senescence accelerated mouse.

  8. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice.

    PubMed

    Murach, Kevin A; Confides, Amy L; Ho, Angel; Jackson, Janna R; Ghazala, Lina S; Peterson, Charlotte A; Dupont-Versteegden, Esther E

    2017-10-01

    Satellite cell depletion does not affect diaphragm adaptations to voluntary wheel running in young or aged mice. Satellite cell depletion early in life (4 months of age) has minimal effect on diaphragm phenotype by old age (24 months). Prolonged satellite cell depletion in the diaphragm does not result in excessive extracellular matrix accumulation, in contrast to what has been reported in hind limb muscles. Up-regulation of Pax3 mRNA+ cells after satellite cell depletion in young and aged mice suggests that Pax3+ cells may compensate for a loss of Pax7+ satellite cells in the diaphragm. Future investigations should focus on the role of Pax3+ cells in the diaphragm during adaptation to exercise and ageing. Satellite cell contribution to unstressed diaphragm is higher compared to hind limb muscles, which is probably attributable to constant activation of this muscle to drive ventilation. Whether satellite cell depletion negatively impacts diaphragm quantitative and qualitative characteristics under stressed conditions in young and aged mice is unknown. We therefore challenged the diaphragm with prolonged running activity in the presence and absence of Pax7+ satellite cells in young and aged mice using an inducible Pax7 CreER -R26R DTA model. Mice were vehicle (Veh, satellite cell-replete) or tamoxifen (Tam, satellite cell-depleted) treated at 4 months of age and were then allowed to run voluntarily at 6 months (young) and 22 months (aged). Age-matched, cage-dwelling, Veh- and Tam-treated mice without wheel access served as activity controls. Diaphragm muscles were analysed from young (8 months) and aged (24 months) mice. Satellite cell depletion did not alter diaphragm mean fibre cross-sectional area, fibre type distribution or extracellular matrix content in young or aged mice, regardless of running activity. Resting in vivo diaphragm function was also unaffected by satellite cell depletion. Myonuclear density was maintained in young satellite cell

  9. An Essential Physiological Role for MCT8 in Bone in Male Mice

    PubMed Central

    Leitch, Victoria D.; Di Cosmo, Caterina; Liao, Xiao-Hui; O’Boy, Sam; Galliford, Thomas M.; Evans, Holly; Croucher, Peter I.; Boyde, Alan; Dumitrescu, Alexandra; Weiss, Roy E.; Refetoff, Samuel; Williams, Graham R.

    2017-01-01

    T3 is an important regulator of skeletal development and adult bone maintenance. Thyroid hormone action requires efficient transport of T4 and T3 into target cells. We hypothesized that monocarboxylate transporter (MCT) 8, encoded by Mct8 on the X-chromosome, is an essential thyroid hormone transporter in bone. To test this hypothesis, we determined the juvenile and adult skeletal phenotypes of male Mct8 knockout mice (Mct8KO) and Mct8D1D2KO compound mutants, which additionally lack the ability to convert the prohormone T4 to the active hormone T3. Prenatal skeletal development was normal in both Mct8KO and Mct8D1D2KO mice, whereas postnatal endochondral ossification and linear growth were delayed in both Mct8KO and Mct8D1D2KO mice. Furthermore, bone mass and mineralization were decreased in adult Mct8KO and Mct8D1D2KO mice, and compound mutants also had reduced bone strength. Delayed bone development and maturation in Mct8KO and Mct8D1D2KO mice is consistent with decreased thyroid hormone action in growth plate chondrocytes despite elevated serum T3 concentrations, whereas low bone mass and osteoporosis reflects increased thyroid hormone action in adult bone due to elevated systemic T3 levels. These studies identify an essential physiological requirement for MCT8 in chondrocytes, and demonstrate a role for additional transporters in other skeletal cells during adult bone maintenance. PMID:28637283

  10. Voluntary exercise confers protection against age-related deficits in brain oxygenation in awake mice model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Sakadžić, Sava; Lesage, Frédéric

    2018-02-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by short-term memory loss and cognitive inabilities. This work seeks to study the effects of voluntary exercise on the change in oxygen delivery in awake mice models of Alzheimer's disease by monitoring brain tissue oxygenation. Experiments were performed on Young (AD_Y, 3-4 months, n=8), Old (AD_O, 6-7 months, n=8), and Old with exercise (AD_OEX, 6-7 months, n=8) transgenic APPPS1 mice and their controls. Brain tissue oxygenation was measured by two photon phosphorescence lifetime microscopy on the left sensory motor cortex. We found that the average tissue PO2 decreased with age but were regulated by exercise. The results suggest a potential for exercise to improve brain function with age and AD.

  11. Aging-associated renal disease in mice is fructokinase dependent.

    PubMed

    Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Milagres, Tamara; Hernando, Ana Andres; Jensen, Thomas; Miyazaki, Makoto; Doke, Tomohito; Hayasaki, Takahiro; Nakagawa, Takahiko; Marumaya, Shoichi; Long, David A; Garcia, Gabriela E; Kuwabara, Masanari; Sánchez-Lozada, Laura G; Kang, Duk-Hee; Johnson, Richard J

    2016-10-01

    Aging-associated kidney disease is usually considered a degenerative process associated with aging. Recently, it has been shown that animals can produce fructose endogenously, and that this can be a mechanism for causing kidney damage in diabetic nephropathy and in association with recurrent dehydration. We therefore hypothesized that low-level metabolism of endogenous fructose might play a role in aging-associated kidney disease. Wild-type and fructokinase knockout mice were fed a normal diet for 2 yr that had minimal (<5%) fructose content. At the end of 2 yr, wild-type mice showed elevations in systolic blood pressure, mild albuminuria, and glomerular changes with mesangial matrix expansion, variable mesangiolysis, and segmental thrombi. The renal injury was amplified by provision of high-salt diet for 3 wk, as noted by the presence of glomerular hypertrophy, mesangial matrix expansion, and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase knockout mice were protected from renal injury both at baseline and after high salt intake (3 wk) compared with wild-type mice. This was associated with higher levels of active (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies suggest that aging-associated renal disease might be due to activation of specific metabolic pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-associated renal injury may represent a disease process as opposed to normal age-related degeneration.

  12. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice

    PubMed Central

    Wang, Bei; Zhou, Hong; Dang, Shipeng; Shi, Yufang; Hao, Li; Luo, Qingquan; Jin, Min; Zhou, Qianjun; Zhang, Yanyun

    2017-01-01

    Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging. PMID:28458256

  13. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice.

    PubMed

    Cheng, Yiji; Wang, Xue; Wang, Bei; Zhou, Hong; Dang, Shipeng; Shi, Yufang; Hao, Li; Luo, Qingquan; Jin, Min; Zhou, Qianjun; Zhang, Yanyun

    2017-04-29

    Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging.

  14. Live Attenuated Leishmania donovani Centrin Knock Out Parasites Generate Non-inferior Protective Immune Response in Aged Mice against Visceral Leishmaniasis

    PubMed Central

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Joshi, Amritanshu B.; Ismail, Nevien; Gannavaram, Sreenivas; Debrabant, Alain; Akue, Adovi D.; KuKuruga, Mark A.; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L.

    2016-01-01

    Background Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Methodology Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells

  15. Induction of oxidative stress causes functional alterations in mouse urothelium via a TRPM8-mediated mechanism: implications for aging

    PubMed Central

    Nocchi, Linda; Daly, Donna M; Chapple, Christopher; Grundy, David

    2014-01-01

    The incidence of bladder conditions such as overactive bladder syndrome and its associated urinary incontinence is highly prevalent in the elderly. However, the mechanisms underlying these disorders are unclear. Studies suggest that the urothelium forms a ‘sensory network’ with the underlying innervation, alterations in which, could compromise bladder function. As the accumulation of reactive oxygen species can cause functional alterations with age, the aim of this study was to investigate whether oxidative stress alters urothelial sensory signalling and whether the mechanism underlying the effect of oxidative stress on the urothelium plays a role in aging. Five-month-old(young) and 24-month-old (aged) mice were used. H2O2, used to induce oxidative stress, resulted in an increase in bladder afferent nerve activity and urothelial intracellular calcium in preparations from young mice. These functional changes were concurrent with upregulation of TRPM8 in the urothelium. Moreover, application of a TRPM8 antagonist significantly attenuated the H2O2-induced calcium responses. Interestingly, an upregulation of TRPM8 was also found in the urothelium from aged mice, where high oxidative stress levels were observed, together with a greater calcium response to the TRPM8 agonist WS12. Furthermore, these calcium responses were attenuated by pretreatment with the antioxidant N-acetyl-cysteine. This study shows that oxidative stress affects urothelial function involving a TRPM8-mediated mechanism and these effects may have important implications for aging. These data provide an insight into the possible mechanisms by which oxidative stress causes physiological alterations in the bladder, which may also occur in other organs susceptible to aging. PMID:24593692

  16. Use of Nerve Conduction Velocity to Assess Peripheral Nerve Health in Aging Mice

    PubMed Central

    Walsh, Michael E.; Sloane, Lauren B.; Fischer, Kathleen E.; Austad, Steven N.; Richardson, Arlan

    2015-01-01

    Nerve conduction velocity (NCV), the speed at which electrical signals propagate along peripheral nerves, is used in the clinic to evaluate nerve function in humans. A decline in peripheral nerve function is associated with a number of age-related pathologies. While several studies have shown that NCV declines with age in humans, there is little information on the effect of age on NCV in peripheral nerves in mice. In this study, we evaluated NCV in male and female C57Bl/6 mice ranging from 4 to 32 months of age. We observed a decline in NCV in both male and female mice after 20 months of age. Sex differences were detected in sensory NCV as well as the rate of decline during aging in motor nerves; female mice had slower sensory NCV and a slower age-related decline in motor nerves compared with male mice. We also tested the effect of dietary restriction on NCV in 30-month-old female mice. Dietary restriction prevented the age-related decline in sciatic NCV but not other nerves. Because NCV is clinically relevant to the assessment of nerve function, we recommend that NCV be used to evaluate healthspan in assessing genetic and pharmacological interventions that increase the life span of mice. PMID:25477428

  17. Biochemical alterations during the obese-aging process in female and male monosodium glutamate (MSG)-treated mice.

    PubMed

    Hernández-Bautista, René J; Alarcón-Aguilar, Francisco J; Del C Escobar-Villanueva, María; Almanza-Pérez, Julio C; Merino-Aguilar, Héctor; Fainstein, Mina Konigsberg; López-Diazguerrero, Norma E

    2014-06-27

    Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual's health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline.

  18. Biochemical Alterations during the Obese-Aging Process in Female and Male Monosodium Glutamate (MSG)-Treated Mice

    PubMed Central

    Hernández-Bautista, René J.; Alarcón-Aguilar, Francisco J.; Escobar-Villanueva, María Del C.; Almanza-Pérez, Julio C.; Merino-Aguilar, Héctor; Konigsberg Fainstein, Mina; López-Diazguerrero, Norma E.

    2014-01-01

    Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual’s health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline. PMID:24979131

  19. Sex-specific phenotypes of hyperthyroidism and hypothyroidism in aged mice.

    PubMed

    Rakov, Helena; Engels, Kathrin; Hönes, Georg Sebastian; Brix, Klaudia; Köhrle, Josef; Moeller, Lars Christian; Zwanziger, Denise; Führer, Dagmar

    2017-12-22

    Sex and age play a role in the prevalence of thyroid dysfunction (TD), but their interrelationship for manifestation of hyper- and hypothyroidism is still not well understood. Using a murine model, we asked whether sex impacts the phenotypes of hyper- and hypothyroidism at two life stages. Hyper- and hypothyroidism were induced by i.p. T4 or MMI/ClO 4 -/LoI treatment over 7 weeks in 12- and 20-months-old female and male C57BL/6N mice. Control animals underwent PBS treatment (n = 7-11 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination and strength) and serum thyroid hormone (TH) status. Distinct sex impact was found in eu- and hyperthyroid mice, while phenotypic traits of hypothyroidism were similar in male and female mice. No sex difference was found in TH status of euthyroid mice; however, T4 treatment resulted in twofold higher TT4, FT4 and FT3 serum concentrations in adult and old females compared to male animals. Hyperthyroid females consistently showed higher locomotor activity and better coordination but more impairment of muscle function by TH excess at adult age. Importantly and in contrast to male mice, adult and old hyperthyroid female mice showed increased body weight. Higher body temperature in female mice was confirmed in all age groups. No sex impact was found on heart rate irrespective of TH status in adult and old mice. By comparison of male and female mice with TD at two life stages, we found that sex modulates TH action in an organ- and function-specific manner. Sex differences were more pronounced under hyperthyroid conditions. Importantly, sex-specific differences in features of TD in adult and old mice were not conclusively explained by serum TH status in mice.

  20. Induction of oxidative stress causes functional alterations in mouse urothelium via a TRPM8-mediated mechanism: implications for aging.

    PubMed

    Nocchi, Linda; Daly, Donna M; Chapple, Christopher; Grundy, David

    2014-06-01

    The incidence of bladder conditions such as overactive bladder syndrome and its associated urinary incontinence is highly prevalent in the elderly. However, the mechanisms underlying these disorders are unclear. Studies suggest that the urothelium forms a 'sensory network' with the underlying innervation, alterations in which, could compromise bladder function. As the accumulation of reactive oxygen species can cause functional alterations with age, the aim of this study was to investigate whether oxidative stress alters urothelial sensory signalling and whether the mechanism underlying the effect of oxidative stress on the urothelium plays a role in aging. Five-month-old(young) and 24-month-old (aged) mice were used. H2O2 , used to induce oxidative stress, resulted in an increase in bladder afferent nerve activity and urothelial intracellular calcium in preparations from young mice. These functional changes were concurrent with upregulation of TRPM8 in the urothelium. Moreover, application of a TRPM8 antagonist significantly attenuated the H2O2 -induced calcium responses. Interestingly, an upregulation of TRPM8 was also found in the urothelium from aged mice, where high oxidative stress levels were observed, together with a greater calcium response to the TRPM8 agonist WS12. Furthermore, these calcium responses were attenuated by pretreatment with the antioxidant N-acetyl-cysteine. This study shows that oxidative stress affects urothelial function involving a TRPM8-mediated mechanism and these effects may have important implications for aging. These data provide an insight into the possible mechanisms by which oxidative stress causes physiological alterations in the bladder, which may also occur in other organs susceptible to aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Age, experience and genetic background influence treadmill walking in mice

    PubMed Central

    Wooley, Christine M.; Xing, Shuqin; Burgess, Robert W.; Cox, Gregory A.; Seburn, Kevin L.

    2009-01-01

    WOOLEY, C.M., S. XING, R.W. BURGESS, G.A. COX, AND K.L. SEBURN. Age, experience and genetic background influence treadmill walking in mice. PHYSIOL. BEHAV. XX(X), XXX-XXX, 2008 – The use of a treadmill to gather data for gait analysis in mice is a convenient, sensitive method to evaluate motor performance. However, evidence from several species, including mice, shows that treadmill locomotion is a novel task that is not equivalent to over ground locomotion and that may be particularly sensitive to the test environment and protocol. We investigated the effects of age, genetic background and repeated trials on treadmill walking in mice and show that these factors are important considerations in the interpretation of gait data. Specifically we report that as C57BL/6J (B6) mice age, the animals use progressively longer, less frequent strides to maintain the same walking speed. The increase is most rapid between 1 and 6 months of age and is explained, in part, by changes in size and weight. We also extended previous findings showing that repeat trials cause mice to modify their treadmill gait pattern. In general, B6 mice tend to take shorter, more frequent steps and adopt a wider dynamic stance with repeated walking trials. The nature and extent of the response changes with both the number and timing of the trials and was observed with inter-trial intervals as long as 3 months. Finally, we compared the gait pattern of an additional seven inbred strains of mice and found significant variation in the length and frequency of strides used to maintain the same walking speed. The combined results offer the bases for further mechanistic studies and can be used to guide optimal experimental design. PMID:19027767

  2. Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet.

    PubMed

    Duncan, M J; Smith, J T; Narbaiza, J; Mueez, F; Bustle, L B; Qureshi, S; Fieseler, C; Legan, S J

    2016-12-01

    Time-restricted feeding ameliorates the deleterious effects of a high-fat diet on body weight and metabolism in young adult mice. Because obesity is highly prevalent in the middle-aged population, this study tested the hypothesis that time-restricted feeding alleviates the adverse effects of a high-fat diet in male middle-aged (12months) mice. C57BL6/J mice were fed one of three diets for 21-25weeks: 1) high-fat diet (60% total calories from fat) ad-libitum (HFD-AL), 2) HFD, time-restricted feeding (HFD-TRF), and 3) low-fat diet (10% total calories from fat) ad-libitum (LFD-AL) (n=15 each). HFD-TRF mice only had food access for 8h/day during their active period. HFD-TRF mice gained significantly less weight than HFD-AL mice (~20% vs 55% of initial weight, respectively). Caloric intake differed between these groups only during the first 8weeks and accounted for most but not all of their body weight difference during this time. TRF of a HFD lowered glucose tolerance in terms of incremental area under the curve (iAUC) (p<0.02) to that of LFD-AL mice. TRF of a HFD lowered liver weight (p<0.0001), but not retroperitoneal or epididymal fat pad weight, to that of LFD-AL mice. Neither HFD-AL nor HFD-TRF had any effect on performance in the novel object recognition or object location memory tests. Circulating corticosterone levels either before or after restraint stress were not affected by diet. In conclusion, TRF without caloric restriction is an effective strategy in middle-aged mice for alleviating the negative effects of a HFD on body weight, liver weight, and glucose tolerance. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Age-Dependent Ocular Dominance Plasticity in Adult Mice

    PubMed Central

    Lehmann, Konrad; Löwel, Siegrid

    2008-01-01

    Background Short monocular deprivation (4 days) induces a shift in the ocular dominance of binocular neurons in the juvenile mouse visual cortex but is ineffective in adults. Recently, it has been shown that an ocular dominance shift can still be elicited in young adults (around 90 days of age) by longer periods of deprivation (7 days). Whether the same is true also for fully mature animals is not yet known. Methodology/Principal Findings We therefore studied the effects of different periods of monocular deprivation (4, 7, 14 days) on ocular dominance in C57Bl/6 mice of different ages (25 days, 90–100 days, 109–158 days, 208–230 days) using optical imaging of intrinsic signals. In addition, we used a virtual optomotor system to monitor visual acuity of the open eye in the same animals during deprivation. We observed that ocular dominance plasticity after 7 days of monocular deprivation was pronounced in young adult mice (90–100 days) but significantly weaker already in the next age group (109–158 days). In animals older than 208 days, ocular dominance plasticity was absent even after 14 days of monocular deprivation. Visual acuity of the open eye increased in all age groups, but this interocular plasticity also declined with age, although to a much lesser degree than the optically detected ocular dominance shift. Conclusions/Significance These data indicate that there is an age-dependence of both ocular dominance plasticity and the enhancement of vision after monocular deprivation in mice: ocular dominance plasticity in binocular visual cortex is most pronounced in young animals, reduced but present in adolescence and absent in fully mature animals older than 110 days of age. Mice are thus not basically different in ocular dominance plasticity from cats and monkeys which is an absolutely essential prerequisite for their use as valid model systems of human visual disorders. PMID:18769674

  4. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice.

    PubMed

    Peferoen, Laura A N; Breur, Marjolein; van de Berg, Sarah; Peferoen-Baert, Regina; Boddeke, Erik H W G M; van der Valk, Paul; Pryce, Gareth; van Noort, Johannes M; Baker, David; Amor, Sandra

    2016-10-01

    Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical features of MS including relapsing-remitting episodes and secondary-progressive disability. To address the contribution of recurrent inflammatory events and ageing as factors that amplify progressive neurological disease, we examined EAE in 8- to 12-week-old and 12-month-old ABH mice. Compared with the relapsing-remitting (RREAE) and secondary progressive (SPEAE) EAE observed in young mice, old mice developed progressive disease from onset (PEAE) associated with pronounced axonal damage and increased numbers of CD3(+) T cells and microglia/macrophages, but not B cells. Whereas the clinical neurological features of PEAE and SPEAE were comparable, the pathology was distinct. SPEAE was associated with significantly reduced perivascular infiltrates and T-cell numbers in the central nervous system (CNS) compared with PEAE and the acute phase of RREAE. In contrast to perivascular infiltrates that declined during progression from RREAE into SPEAE, the numbers of microglia clusters remained constant. Similar to what is observed during MS, the microglia clusters emerging during EAE were associated with axonal damage and oligodendrocytes expressing heat-shock protein B5, but not lymphocytes. Taken together, our data reveal that the course of EAE is dependent on the age of the mice. Younger mice show a relapsing-remitting phase followed by progressive disease, whereas old mice immediately show progression. This indicates that recurrent episodes of inflammation in the CNS, as well as age, contribute to progressive neurological disease. © 2016 John Wiley & Sons Ltd.

  5. 8-oxoguanine causes spontaneous de novo germline mutations in mice.

    PubMed

    Ohno, Mizuki; Sakumi, Kunihiko; Fukumura, Ryutaro; Furuichi, Masato; Iwasaki, Yuki; Hokama, Masaaki; Ikemura, Toshimichi; Tsuzuki, Teruhisa; Gondo, Yoichi; Nakabeppu, Yusaku

    2014-04-15

    Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10(-7) mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.

  6. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice.

    PubMed

    Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R

    2014-06-15

    Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological

  7. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice

    PubMed Central

    Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R

    2014-01-01

    Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. PMID:24665093

  8. Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice.

    PubMed

    Tian, Geng; Sawashita, Jinko; Kubo, Hiroshi; Nishio, Shin-ya; Hashimoto, Shigenari; Suzuki, Nobuyoshi; Yoshimura, Hidekane; Tsuruoka, Mineko; Wang, Yaoyong; Liu, Yingye; Luo, Hongming; Xu, Zhe; Mori, Masayuki; Kitano, Mitsuaki; Hosoe, Kazunori; Takeda, Toshio; Usami, Shin-ichi; Higuchi, Keiichi

    2014-06-01

    The present study was conducted to define the relationship between the anti-aging effect of ubiquinol-10 supplementation and mitochondrial activation in senescence-accelerated mouse prone 1 (SAMP1) mice. Here, we report that dietary supplementation with ubiquinol-10 prevents age-related decreases in the expression of sirtuin gene family members, which results in the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a major factor that controls mitochondrial biogenesis and respiration, as well as superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2), which are major mitochondrial antioxidant enzymes. Ubiquinol-10 supplementation can also increase mitochondrial complex I activity and decrease levels of oxidative stress markers, including protein carbonyls, apurinic/apyrimidinic sites, malondialdehydes, and increase the reduced glutathione/oxidized glutathione ratio. Furthermore, ubiquinol-10 may activate Sirt1 and PGC-1α by increasing cyclic adenosine monophosphate (cAMP) levels that, in turn, activate cAMP response element-binding protein (CREB) and AMP-activated protein kinase (AMPK). These results show that ubiquinol-10 may enhance mitochondrial activity by increasing levels of SIRT1, PGC-1α, and SIRT3 that slow the rate of age-related hearing loss and protect against the progression of aging and symptoms of age-related diseases.

  9. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice.

    PubMed

    Song, Jia; Chu, Shuaishuai; Cui, Yin; Qian, Yue; Li, Xiuxiu; Xu, Fangxia; Shao, Xueming; Ma, Zhengliang; Xia, Tianjiao; Gu, Xiaoping

    2018-04-13

    Postoperative cognitive dysfunction (POCD) is a common clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery. Advanced age is a significant independent risk factor for POCD. We previously reported that in young mice, sleep-wake rhythm is involved in the isoflurane-induced memory impairment. In present study, we sought to determine whether advanced age increased the risk of POCD through aggravated and prolonged post-anesthetic circadian disruption in the elderly. We constructed POCD model by submitting the mice to 5-h 1.3% isoflurane anesthesia from Zeitgeber Time (ZT) 14 to ZT19. Under novel object recognition assay (NOR) and Morris water maze (MWM) test, We found 5-h isoflurane anesthesia impaired the cognition of young mice for early 3 days after anesthesia but damaged the aged for at least 1 week. With Mini-Mitter continuously monitoring, a 3.22 ± 0.75 h gross motor activity acrophase delay was manifested in young mice on D1, while in the aged mice, the gross motor activity phase shift lasted for 3 days, consistent with the body temperature rhythm trends of change. Melatonin has been considered as an effective remedy for circadian rhythm shift. In aged mice, melatonin was pretreated intragastrically at the dose of 10 mg/kg daily for 7 consecutive days before anesthesia. We found that melatonin prevented isoflurane-induced cognitive impairments by restoring the locomotor activity and temperature circadian rhythm via clock gene resynchronization. Overall, these results indicated that Long-term isoflurane anesthesia induced more aggravated and prolonged memory deficits and circadian rhythms disruption in aged mice. Melatonin could prevent isoflurane-induced cognitive impairments by circadian rhythm resynchronization. Copyright © 2018. Published by Elsevier Inc.

  10. Hematopoiesis and aging. V. A decline in hematocrit occurs in all aging female B6D2F1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, D.R.; Patrene, K.

    Longitudinal studies of hematocrits were done in aging B6D2F1 female mice at 54, 64, 91, 105 and 115 weeks of age. A modest decline in hematocrit was observed in 41/42 mice; we have previously shown that the decreased hematocrit of aged as compared to young mice is due to an expansion of plasma volume. Mice which died spontaneously after 91 weeks had lower hematocrits at 91 weeks and 105 weeks than did those which survived to 115 weeks. At each time interval, a sub-group of mice was killed and uptake of /sup 59/Fe into blood, foreleg, spleen and liver wasmore » studied and total nucleated cells per humerus was determined. The results were generally compatible with the thesis that aging mice maintain normal rates of erythropoiesis under basal conditions. Thus, it would appear that a decrease in hematocrit can be considered an expected part of the aging process in this mouse.« less

  11. The effect of aging on efferent nerve fibers regeneration in mice.

    PubMed

    Verdú, E; Butí, M; Navarro, X

    1995-10-23

    This study evaluates the influence of aging on nerve regeneration and reinnervation of target organs in mice aged 2, 6, 9, 12, 18 and 24 months. In animals of each age group the sciatic nerve was subjected to crush, section or section and suture. Reinnervation of plantar muscles and sweat glands (SG) was evaluated over three months after operation by functional methods. Reappearance of SG secretion and motor responses occurred slightly earlier in young than older mice. The degree of motor and sudomotor reinnervation, with respect to preoperative control values, was also significantly higher in young than old animals. The differences were more pronounced after 12 months of age. The degree of recovery progressively decreased with the severity of the lesion, differences being more marked in older mice. Neurorraphy improved recovery, comparatively more in older than in young mice. These results indicate that, after injuries of peripheral nerves, axonal regeneration and reinnervation are maintained throughout life, but tend to be more delayed and slightly less effective with aging.

  12. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease.

    PubMed

    Chang, Jaewon; Rimando, Agnes; Pallas, Merce; Camins, Antoni; Porquet, David; Reeves, Jennifer; Shukitt-Hale, Barbara; Smith, Mark A; Joseph, James A; Casadesus, Gemma

    2012-09-01

    Recent studies have implicated resveratrol and pterostilbene, a resveratrol derivative, in the protection against age-related diseases including Alzheimer's disease (AD). However, the mechanism for the favorable effects of resveratrol in the brain remains unclear and information about direct cross-comparisons between these analogs is rare. As such, the purpose of this study was to compare the effectiveness of diet-achievable supplementation of resveratrol to that of pterostilbene at improving functional deficits and AD pathology in the SAMP8 mouse, a model of accelerated aging that is increasingly being validated as a model of sporadic and age-related AD. Furthermore we sought to determine the mechanism of action responsible for functional improvements observed by studying cellular stress, inflammation, and pathology markers known to be altered in AD. Two months of pterostilbene diet but not resveratrol significantly improved radial arm water maze function in SAMP8 compared with control-fed animals. Neither resveratrol nor pterostilbene increased sirtuin 1 (SIRT1) expression or downstream markers of sirtuin 1 activation. Importantly, markers of cellular stress, inflammation, and AD pathology were positively modulated by pterostilbene but not resveratrol and were associated with upregulation of peroxisome proliferator-activated receptor (PPAR) alpha expression. Taken together our findings indicate that at equivalent and diet-achievable doses pterostilbene is a more potent modulator of cognition and cellular stress than resveratrol, likely driven by increased peroxisome proliferator-activated receptor alpha expression and increased lipophilicity due to substitution of hydroxy with methoxy group in pterostilbene. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Psychological stress exposure to aged mice causes abnormal feeding patterns with changes in the bout number.

    PubMed

    Yamada, Chihiro; Mogami, Sachiko; Hattori, Tomohisa

    2017-11-09

    Stress responses are affected by aging. However, studies on stress-related changes in feeding patterns with aging subject are minimal. We investigated feeding patterns induced by two psychological stress models, revealing characteristics of stress-induced feeding patterns as "meal" and "bout" (defined as the minimum feeding behavior parameters) in aged mice. Feeding behaviors of C57BL/6J mice were monitored for 24 h by an automatic monitoring device. Novelty stress reduced the meal amount over the 24 h in both young and aged mice, but as a result of a time course study it was persistent in aged mice. In addition, the decreased bout number was more pronounced in aged mice than in young mice. The 24-h meal and bout parameters did not change in either the young or aged mice following water avoidance stress (WAS). However, the meal amount and bout number increased in aged mice for 0-6 h after WAS exposure but remained unchanged in young mice. Our findings suggest that changes in bout number may lead to abnormal stress-related feeding patterns and may be one tool for evaluating eating abnormality in aged mice.

  15. Suppression of Oxidative Stress by Resveratrol After Isometric Contractions in Gastrocnemius Muscles of Aged Mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Williamson, Courtney L.; Dabkowski, Erinne R.; Hollander, John M.

    2010-01-01

    This study tested the hypothesis that resveratrol supplementation would lower oxidative stress in exercised muscles of aged mice. Young (3 months) and aged (27 months) C57BL/6 mice received a control or a 0.05% trans-resveratrol-supplemented diet for 10 days. After 7 days of dietary intervention, 20 maximal electrically evoked isometric contractions were obtained from the plantar flexors of one limb in anesthetized mice. Exercise was conducted for three consecutive days. Resveratrol supplementation blunted the exercise-induced increase in xanthine oxidase activity in muscles from young (25%) and aged (53%) mice. Resveratrol lowered H2O2 levels in control (13%) and exercised (38%) muscles from aged animals, reduced Nox4 protein in both control and exercised muscles of young (30%) and aged mice (40%), and increased the ratio of reduced glutathione to oxidized glutathione in exercised muscles from young (38%) and aged (135%) mice. Resveratrol prevented the increase in lipid oxidation, increased catalase activity, and increased MnSOD activity in exercised muscles from aged mice. These data show that dietary resveratrol suppresses muscle indicators of oxidative stress in response to isometric contractions in aged mice. PMID:20507922

  16. Sod2 haploinsufficiency does not accelerate aging of telomere dysfunctional mice

    PubMed Central

    Guachalla, Luis Miguel; Ju, Zhenyu; Koziel, Rafal; von Figura, Guido; Song, Zhangfa; Fusser, Markus; Epe, Bernd; Jansen-Dűrr, Pidder; Rudolph, K. Lenhard

    2009-01-01

    Telomere shortening represents a causal factor of cellular senescence. At the same time, several lines of evidence indicate a pivotal role of oxidative DNA damage for the aging process in vivo. A causal connection between the two observations was suggested by experiments showing accelerated telomere shorting under conditions of oxidative stress in cultured cells, but has never been studied in vivo. We therefore have analysed whether an increase in mitochondrial derived oxidative stress in response to heterozygous deletion of superoxide dismutase (Sod2+/-) would exacerbate aging phenotypes in telomere dysfunctional (mTerc-/-) mice. Heterozygous deletion of Sod2 resulted in reduced SOD2 protein levels and increased oxidative stress in aging telomere dysfunctional mice, but this did not lead to an increase in basal levels of oxidative nuclear DNA damage, an accumulation of nuclear DNA breaks, or an increased rate of telomere shortening in the mice. Moreover, heterozygous deletion of Sod2 did not accelerate the depletion of stem cells and the impairment in organ maintenance in aging mTerc-/- mice. In agreement with these observations, Sod2 haploinsufficiency did not lead to a further reduction in lifespan of mTerc-/- mice. Together, these results indicate that a decrease in SOD2-dependent antioxidant defence does not exacerbate aging in the context of telomere dysfunction. PMID:20195488

  17. Free-hand ultrasound guidance permits safe and efficient minimally invasive intrathymic injections in both young and aged mice

    PubMed Central

    Tuckett, Andrea Z.; Zakrzewski, Johannes L.; Li, Duan; van den Brink, Marcel R.M.; Thornton, Raymond H.

    2014-01-01

    The goal of this study was to evaluate whether using an aseptic free-hand approach for ultrasound-guided injection facilitates injection into the thymic gland in mice. We used this interventional radiology technique in young, aged, and immunodeficient mice and found that the thymus was visible in all cases. The mean injection period was 8 s in young mice and 19 s in aged or immunodeficient mice. Injection accuracy was confirmed by intrathymic location of an injected dye, or by in vivo bioluminescence imaging of injected luciferase-expressing cells. Accurate intrathymic injection was confirmed in 97% of cases. No major complications were observed. We conclude that an aseptic free-hand technique for ultrasound-guided intrathymic injection is safe, accurate, and reduces the time required for intrathymic injections. This method facilitates large-scale experiments, injection of individual thymic lobes, and is clinically relevant. PMID:25701534

  18. Aging-related changes in respiratory system mechanics and morphometry in mice.

    PubMed

    Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C

    2016-07-01

    Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice. Copyright © 2016 the American Physiological Society.

  19. Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.

    PubMed

    Chen, Gui-Hai; Wang, Yue-Ju; Zhang, Li-Qun; Zhou, Jiang-Ning

    2004-12-15

    A battery of tasks, i.e. beam walking, open field, tightrope, radial six-arm water maze (RAWM), novel-object recognition and olfactory discrimination, was used to determine whether there was age- and sex-related memory deterioration in Kunming (KM) mice, and whether these tasks are independent or correlated with each other. Two age groups of KM mice were used: a younger group (7-8 months old, 12 males and 11 females) and an older group (17-18 months old, 12 males and 12 females). The results showed that the spatial learning ability and memory in the RAWM were lower in older female KM mice relative to younger female mice and older male mice. Consistent with this, in the novel-object recognition task, a non-spatial cognitive task, older female mice but not older male mice had impairment of short-term memory. In olfactory discrimination, another non-spatial task, the older mice retained this ability. Interestingly, female mice performed better than males, especially in the younger group. The older females exhibited sensorimotor impairment in the tightrope task and low locomotor activity in the open-field task. Moreover, older mice spent a longer time in the peripheral squares of the open-field than younger ones. The non-spatial cognitive performance in the novel-object recognition and olfactory discrimination tasks was related to performance in the open-field, whereas the spatial cognitive performance in the RAWM was not related to performance in any of the three sensorimotor tasks. These results suggest that disturbance of spatial learning and memory, as well as selective impairment of non-spatial learning and memory, existed in older female KM mice.

  20. Sex differences in neurochemical markers that correlate with behavior in aging mice.

    PubMed

    Frick, K M; Burlingame, L A; Delaney, S S; Berger-Sweeney, J

    2002-01-01

    Sex differences in neurochemical markers that correlate with behavior in aging mice NEUROBIOL AGING. We examined whether the enzymatic activities of choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) were altered similarly with age in male and female mice, and whether these changes were correlated with age-related alterations in memory and anxiety. ChAT and GAD activities were measured in neocortex, hippocampus, and striatum of behaviorally characterized male and female C57BL/6 mice (5, 17, and 25 months). Generally, ChAT activity was increased, and GAD activity decreased, with age. However, disparate changes were revealed between the sexes; activities of both enzymes were decreased in 17-month males, whereas alterations in females were not observed until 25-months. Furthermore, enzyme-behavior correlations differed between the sexes; in males, ChAT activity was related to one behavioral task, whereas in females, activities of both enzymes were correlated with multiple tasks. Significant enzyme-behavior correlations were most evident at 17 months of age, likely the result of behavioral and enzymatic sex differences at this age. These data represent the first comprehensive report illustrating differential alterations of ChAT and GAD activities in aging male and female mice.

  1. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice

    PubMed Central

    García, Mayra; Misplon, Julia A.; Price, Graeme E.; Lo, Chia-Yun; Epstein, Suzanne L.

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234

  2. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice.

    PubMed

    García, Mayra; Misplon, Julia A; Price, Graeme E; Lo, Chia-Yun; Epstein, Suzanne L

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11-17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life.

  3. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice.

    PubMed

    Salehpour, Farzad; Ahmadian, Nahid; Rasta, Seyed Hossein; Farhoudi, Mehdi; Karimi, Pouran; Sadigh-Eteghad, Saeed

    2017-10-01

    Mitochondrial function plays a key role in the aging-related cognitive impairment, and photoneuromodulation of mitochondria by transcranial low-level laser therapy (LLLT) may contribute to its improvement. This study focused on the transcranial LLLT effects on the D-galactose (DG)-induced mitochondrial dysfunction, apoptosis, and cognitive impairment in mice. For this purpose, red and near-infrared (NIR) laser wavelengths (660 and 810 nm) at 2 different fluencies (4 and 8 J/cm 2 ) at 10-Hz pulsed wave mode were administrated transcranially 3 d/wk in DG-received (500 mg/kg/subcutaneous) mice model of aging for 6 weeks. Spatial and episodic-like memories were assessed by the Barnes maze and What-Where-Which (WWWhich) tasks. Brain tissues were analyzed for mitochondrial function including active mitochondria, adenosine triphosphate, and reactive oxygen species levels, as well as membrane potential and cytochrome c oxidase activity. Apoptosis-related biomarkers, namely, Bax, Bcl-2, and caspase-3 were evaluated by Western blotting method. Laser treatments at wavelengths of 660 and 810 nm at 8 J/cm 2 attenuated DG-impaired spatial and episodic-like memories. Also, results showed an obvious improvement in the mitochondrial function aspects and modulatory effects on apoptotic markers in aged mice. However, same wavelengths at the fluency of 4 J/cm 2 had poor effect on the behavioral and molecular indexes in aging model. This data indicates that transcranial LLLT at both of red and NIR wavelengths at the fluency of 8 J/cm 2 has a potential to ameliorate aging-induced mitochondrial dysfunction, apoptosis, and cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Altered left ventricular performance in aging physically active mice with an ankle sprain injury.

    PubMed

    Turner, Michael J; Guderian, Sophie; Wikstrom, Erik A; Huot, Joshua R; Peck, Bailey D; Arthur, Susan T; Marino, Joseph S; Hubbard-Turner, Tricia

    2016-02-01

    We assessed the impact of differing physical activity levels throughout the lifespan, using a musculoskeletal injury model, on the age-related changes in left ventricular (LV) parameters in active mice. Forty male mice (CBA/J) were randomly placed into one of three running wheel groups (transected CFL group, transected ATFL/CFL group, SHAM group) or a SHAM Sedentary group (SHAMSED). Before surgery and every 6 weeks after surgery, LV parameters were measured under 2.5 % isoflurane inhalation. Group effects for daily distance run was significantly greater for the SHAM and lesser for the ATLF/CFL mice (p = 0.013) with distance run decreasing with age for all mice (p < 0.0001). Beginning at 6 months of age, interaction (group × age) was noted with LV posterior wall thickness-to-radius ratios (h/r) where h/r increased with age in the ATFL/CFL and SHAMSED mice while the SHAM and CFL mice exhibited decreased h/r with age (p = 0.0002). Passive filling velocity (E wave) was significantly greater in the SHAM mice and lowest for the ATFL/CFL and SHAMSED mice (p < 0.0001) beginning at 9 months of age. Active filling velocity (A wave) was not different between groups (p = 0.10). Passive-to-active filling velocity ratio (E/A ratio) was different between groups (p < 0.0001), with higher ratios for the SHAM mice and lower ratios for the ATFL/CFL and SHAMSED mice in response to physical activity beginning at 9 months of age. Passive-to-active filling velocity ratio decreased with age (p < 0.0001). Regular physical activity throughout the lifespan improved LV structure, passive filling velocity, and E/A ratio by 6 to 9 months of age and attenuated any negative alterations throughout the second half of life. The diastolic filling differences were found to be significantly related to the amount of activity performed by 9 months and at the end of the lifespan.

  5. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice

    PubMed Central

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato (Lycopersicon esculentum) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders. PMID:27792185

  6. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice.

    PubMed

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho

    2016-10-26

    A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato ( Lycopersicon esculentum ) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders.

  7. Sex-related differences in the wheel-running activity of mice decline with increasing age.

    PubMed

    Bartling, Babett; Al-Robaiy, Samiya; Lehnich, Holger; Binder, Leonore; Hiebl, Bernhard; Simm, Andreas

    2017-01-01

    Laboratory mice of both sexes having free access to running wheels are commonly used to study mechanisms underlying the beneficial effects of physical exercise on health and aging in human. However, comparative wheel-running activity profiles of male and female mice for a long period of time in which increasing age plays an additional role are unknown. Therefore, we permanently recorded the wheel-running activity (i.e., total distance, median velocity, time of breaks) of female and male mice until 9months of age. Our records indicated higher wheel-running distances for females than males which were highest in 2-month-old mice. This was mainly reached by higher running velocities of the females and not by longer running times. However, the sex-related differences declined in parallel to the age-associated reduction in wheel-running activities. Female mice also showed more variances between the weekly running distances than males, which were recorded most often for females being 4-6months old but not older. Additional records of 24-month-old mice of both sexes indicated highly reduced wheel-running activities at old age. Surprisingly, this reduction at old age resulted mainly from lower running velocities and not from shorter running times. Old mice also differed in their course of night activity which peaked later compared to younger mice. In summary, we demonstrated the influence of sex on the age-dependent activity profile of mice which is somewhat contrasting to humans, and this has to be considered when transferring exercise-mediated mechanism from mouse to human. Copyright © 2016. Published by Elsevier Inc.

  8. Free-hand ultrasound guidance permits safe and efficient minimally invasive intrathymic injections in both young and aged mice.

    PubMed

    Tuckett, Andrea Z; Zakrzewski, Johannes L; Li, Duan; van den Brink, Marcel R M; Thornton, Raymond H

    2015-04-01

    The goal of this study was to evaluate whether use of an aseptic free-hand approach to ultrasound-guided injection facilitates injection into the thymic gland in mice. We used this interventional radiology technique in young, aged and immunodeficient mice and found that the thymus was visible in all cases. The mean injection period was 8 seconds in young mice and 19 seconds in aged or immunodeficient mice. Injection accuracy was confirmed by intrathymic location of an injected dye or by in vivo bioluminescence imaging of injected luciferase-expressing cells. Accurate intrathymic injection was confirmed in 97% of cases. No major complications were observed. We conclude that an aseptic freehand technique for ultrasound-guided intrathymic injection is safe and accurate and reduces the time required for intrathymic injections. This method facilitates large-scale experiments and injection of individual thymic lobes and is clinically relevant. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. RADIATION INDUCED AGING IN MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, H.J.; Gebhard, K.L.

    1958-10-31

    . Experiments were undertaken in an effort to determine the degree of similarity between natural and radiation induced aging, and to determine the causes for the latter. Several severe non-specific stresses were applied to mice either as single massive doses or as smaller doses administered over a large fraction of the life span of the animals. Stresses used included typhoid vaccine, tetanus toxin and tetanus toxoid and turpentine. None of these produced any premature aging comparable to that produced by radiation. The somatic mutation theory of aging and expecially radiationinduced aging has been tested by applying the chemical mutatgen, nitrogenmore » mustard, either as a massive single dose or as smaller single doses repeated over long periods of time. No shortening of the life span has been observed and it is concluded that the somatic mutation theory is untenable. Experiments designed to determine the organ system responsible for radiation induced aging have demonstrated that the hematopoietic system is not primarily involved in this phenomenon. (auth)« less

  10. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment.

    PubMed

    Wang, Tina; Tsui, Brian; Kreisberg, Jason F; Robertson, Neil A; Gross, Andrew M; Yu, Michael Ku; Carter, Hannah; Brown-Borg, Holly M; Adams, Peter D; Ideker, Trey

    2017-03-28

    Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of mammalian aging; however, epigenetic clocks have thus far been formulated only in humans. We first examined whether mice and humans experience similar patterns of change in the methylome with age. We found moderate conservation of CpG sites for which methylation is altered with age, with both species showing an increase in methylome disorder during aging. Based on this analysis, we formulated an epigenetic-aging model in mice using the liver methylomes of 107 mice from 0.2 to 26.0 months old. To examine whether epigenetic aging signatures are slowed by longevity-promoting interventions, we analyzed 28 additional methylomes from mice subjected to lifespan-extending conditions, including Prop1 df/df dwarfism, calorie restriction or dietary rapamycin. We found that mice treated with these lifespan-extending interventions were significantly younger in epigenetic age than their untreated, wild-type age-matched controls. This study shows that lifespan-extending conditions can slow molecular changes associated with an epigenetic clock in mice livers.

  11. Idh2 deficiency accelerates renal dysfunction in aged mice.

    PubMed

    Lee, Su Jeong; Cha, Hanvit; Lee, Seoyoon; Kim, Hyunjin; Ku, Hyeong Jun; Kim, Sung Hwan; Park, Jung Hyun; Lee, Jin Hyup; Park, Kwon Moo; Park, Jeen-Woo

    2017-11-04

    The free radical or oxidative stress theory of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species (ROS) that are produced as by-products of normal metabolic processes in mitochondria. The oxidative stress may arise as a result of either increased ROS production or decreased ability to detoxify ROS. The availability of the mitochondrial NADPH pool is critical for the maintenance of the mitochondrial antioxidant system. The major enzyme responsible for generating mitochondrial NADPH is mitochondrial NADP + -dependent isocitrate dehydrogenase (IDH2). Depletion of IDH2 in mice (idh2 -/- ) shortens life span and accelerates the degeneration of multiple age-sensitive traits, such as hair grayness, skin pathology, and eye pathology. Among the various internal organs tested in this study, IDH2 depletion-induced acceleration of senescence was uniquely observed in the kidney. Renal function and structure were greatly deteriorated in 24-month-old idh2 -/- mice compared with wild-type. In addition, disruption of redox status, which promotes oxidative damage and apoptosis, was more pronounced in idh2 -/- mice. These data support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice, and thus support the oxidative stress theory of aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. 8-Oxoguanine DNA glycosylase1-driven DNA repair-A paradoxical role in lung aging.

    PubMed

    German, Peter; Saenz, David; Szaniszlo, Peter; Aguilera-Aguirre, Leopoldo; Pan, Lang; Hegde, Muralidhar L; Bacsi, Attila; Hajas, Gyorgy; Radak, Zsolt; Ba, Xueqing; Mitra, Sankar; Papaconstantinou, John; Boldogh, Istvan

    2017-01-01

    Age-associated changes in lung structure and function are some of the most important predictors of overall health, cognitive activities and longevity. Common to all aging cells is an increase in oxidatively modified DNA bases, primarily 8-oxo-7,8-dihydroguanine (8-oxoG). It is repaired via DNA base excision repair pathway driven by 8-oxoguanine DNA glycosylase-1 (OGG1-BER), whose role in aging has been the focus of many studies. This study hypothesizes that signaling and consequent gene expression during cellular response to OGG1-BER "wires" senescence/aging processes. To test OGG1-BER was mimicked by repeatedly exposing diploid lung fibroblasts cells and airways of mice to 8-oxoG base. Results showed that repeated exposures led to G1 cell cycle arrest and pre-matured senescence of cultured cells in which over 1000 genes were differentially expressed -86% of them been identical to those in naturally senesced cells. Gene ontology analysis of gene expression displayed biological processes driven by small GTPases, phosphoinositide 3-kinase and mitogen activated kinase cascades both in cultured cells and lungs. These results together, points to a new paradigm about the role of DNA damage and repair by OGG1 in aging and age-associated disease processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Matrix Metalloproteinase-8 Inactivates Macrophage Inflammatory Protein-1α to Reduce Acute Lung Inflammation and Injury in Mice

    PubMed Central

    Quintero, Pablo A.; Knolle, Martin D.; Cala, Luisa F.; Zhuang, Yuehong; Owen, Caroline A.

    2010-01-01

    To determine the role of matrix metalloproteinase-8 (MMP-8) in acute lung injury (ALI), we delivered LPS or bleomycin by the intratracheal route to MMP-8−/− mice versus WT mice or subjected the mice to hyperoxia (95% O2) and measured lung inflammation and injury at intervals. MMP-8−/− mice with ALI had greater increases in lung PMN and macrophage counts, measures of alveolar capillary barrier injury, lung elastance, and mortality than WT mice with ALI. Bronchoalveolar lavage fluid (BALF) from LPS-treated MMP-8−/− mice had more macrophage inflammatory protein-1α (MIP-1α) than BALF from LPS-treated WT mice, but similar levels of other pro- and anti-inflammatory mediators. MIP-1α−/− mice with ALI had less acute lung inflammation and injury than WT mice with ALI, confirming that MIP-1α promotes acute lung inflammation and injury in mice. Genetically deleting MIP-1α in MMP-8−/− mice abrogated the increased lung inflammation and injury and mortality in MMP-8−/− mice with ALI. Soluble MMP-8 cleaved and inactivated MIP-1α in vitro, but membrane-bound MMP-8 on activated PMNs had greater MIP-1α-degrading activity than soluble MMP-8. High levels of membrane-bound MMP-8 were detected on lung PMNs from LPS-treated WT mice, but soluble, active MMP-8 was not detected in BALF samples. Thus, MMP-8 has novel roles in restraining lung inflammation and in limiting alveolar capillary barrier injury during ALI in mice by inactivating MIP-1α. In addition, membrane-bound MMP-8 on activated lung PMNs is likely to be the key bioactive form of the enzyme that limits lung inflammation and alveolar capillary barrier injury during ALI. PMID:20042585

  14. Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice

    ERIC Educational Resources Information Center

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…

  15. Locomotor activity and gait in aged mice deficient for type IX collagen

    PubMed Central

    Costello, Kerry E.; Guilak, Farshid; Griffin, Timothy M.

    2010-01-01

    Osteoarthritis (OA) is a risk factor for physical inactivity and impaired mobility, but it is not well understood how these locomotor behaviors are affected by the age of onset of OA and disease severity. Male mice homozygous for a Col9a1 gene inactivation (Col9a1−/−) develop early onset knee OA, increased tactile pain sensitivity, and gait alterations by 9 mo of age. We hypothesized that aged Col9a1−/− mice would reduce joint pain by adopting locomotor behaviors that reduce both the magnitude and daily frequency of joint loading. We tested this hypothesis by evaluating gait and spontaneous locomotor activity in 15- to 17-mo-old male Col9a1−/− (n = 5) and Col9a1+/+(WT) (n = 5) mice using well-controlled measures of voluntary activity in overground and running wheel conditions, as well as studies of gait in a velocity-controlled treadmill. We found no difference due to genotype in freely chosen locomotor velocity, stride frequency, hindfoot duty factor, dark phase activity time, or dark-phase travel distance during overground, running wheel, or speed-matched treadmill locomotion. Interpretation of these findings is potentially confounded by the observation that WT mice have greater knee OA than Col9a1−/− mice in the lateral tibial plateau by 17 mo of age. When accounting for individual differences in knee OA, functional locomotor impairments in aged Col9a1−/− and WT mice are manifested as reductions in total locomotor activity levels (e.g., both distance traveled and time active), particularly for wheel running. These results support the concept that current disease status, rather than age of disease onset, is the primary determinant of impaired locomotor activity with aging. PMID:20360435

  16. Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling.

    PubMed

    Delire, Bénédicte; Lebrun, Valérie; Selvais, Charlotte; Henriet, Patrick; Bertrand, Amélie; Horsmans, Yves; Leclercq, Isabelle A

    2016-12-09

    Clinical data identify age as a factor for severe liver fibrosis. We evaluate whether and how aging modulates the fibrotic response in a mouse model. Liver fibrosis was induced by CCl 4 injections (thrice weekly for 2 weeks) in 7 weeks- and 15 months-old mice (young and old, respectively). Livers were analyzed for fibrosis, inflammation and remodeling 48 and 96 hours after the last injection. Old mice developed more severe fibrosis compared to young ones as evaluated by sirius red morphometry. Expression of pro-fibrogenic genes was equally induced in the two age-groups but enhanced fibrolysis in young mice was demonstrated by a significantly higher Mmp13 induction and collagenase activity. While fibrosis resolution occurred in young mice within 96 hours, no significant fibrosis attenuation was observed in old mice. Although recruitment of monocytes-derived macrophages was similar in young and old livers, young macrophages had globally a remodeling phenotype while old ones, a pro-fibrogenic phenotype. Moreover, we observed a higher proportion of thick fibers and enhanced expression of enzymes involved in collagen maturation in old mice. Impaired fibrolysis of a matrix less prone to remodeling associated with a pro-inflammatory phenotype of infiltrated macrophages contribute to a more severe fibrosis in old mice.

  17. B cells regulate thymic CD8+T cell differentiation in lupus-prone mice.

    PubMed

    Xing, Chen; Zhu, Gaizhi; Xiao, He; Fang, Ying; Liu, Xiaoling; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Shen, Beifen; Li, Yan; Ma, Ning; Wang, Renxi

    2017-10-27

    Previous studies have shown that under normal physiological conditions thymic B cells play a critical function in T cell negative selection. We tested the effect of thymic B cells on thymic T-cell differentiation in autoimmune diseases including systemic lupus erythematosus (SLE). We found that thymic B cells and CD8 - CD4 + and CD4 - CD8 + T cells increased, whereas CD4 + CD8 + T cells decreased in lupus-prone mice. Once B cells were reduced, the change was reversed. Furthermore, we found that B cells blocked thymic immature single positive (ISP) CD4 - CD8 + CD3 lo/- RORγt - T cells progression into CD4 + CD8 + T cells. Interestingly, we found a novel population of thymic immature T cells (CD4 - CD8 + CD3 lo RORγt + ) that were induced into mature CD4 - CD8 + CD3 + RORγt + T cells by B cells in lupus-prone mice. Importantly, we found that IgG, produced by thymic B cells, played a critical role in the differentiation of thymic CD8 + ISP and mature RORγt + CD8 + T cells in lupus-prone mice. In conclusion, B cells blocked the differentiation from thymic CD8 + ISP and induced the differentiation of a novel immature CD4 - CD8 + CD3 lo RORγt + T cells into mature RORγt + CD8 + T cells by secreting IgG antibody in lupus-prone mice.

  18. Ubiquinol-10 Supplementation Activates Mitochondria Functions to Decelerate Senescence in Senescence-Accelerated Mice

    PubMed Central

    Tian, Geng; Sawashita, Jinko; Kubo, Hiroshi; Nishio, Shin-ya; Hashimoto, Shigenari; Suzuki, Nobuyoshi; Yoshimura, Hidekane; Tsuruoka, Mineko; Wang, Yaoyong; Liu, Yingye; Luo, Hongming; Xu, Zhe; Mori, Masayuki; Kitano, Mitsuaki; Hosoe, Kazunori; Takeda, Toshio; Usami, Shin-ichi

    2014-01-01

    Abstract Aim: The present study was conducted to define the relationship between the anti-aging effect of ubiquinol-10 supplementation and mitochondrial activation in senescence-accelerated mouse prone 1 (SAMP1) mice. Results: Here, we report that dietary supplementation with ubiquinol-10 prevents age-related decreases in the expression of sirtuin gene family members, which results in the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a major factor that controls mitochondrial biogenesis and respiration, as well as superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2), which are major mitochondrial antioxidant enzymes. Ubiquinol-10 supplementation can also increase mitochondrial complex I activity and decrease levels of oxidative stress markers, including protein carbonyls, apurinic/apyrimidinic sites, malondialdehydes, and increase the reduced glutathione/oxidized glutathione ratio. Furthermore, ubiquinol-10 may activate Sirt1 and PGC-1α by increasing cyclic adenosine monophosphate (cAMP) levels that, in turn, activate cAMP response element-binding protein (CREB) and AMP-activated protein kinase (AMPK). Innovation and Conclusion: These results show that ubiquinol-10 may enhance mitochondrial activity by increasing levels of SIRT1, PGC-1α, and SIRT3 that slow the rate of age-related hearing loss and protect against the progression of aging and symptoms of age-related diseases. Antioxid. Redox Signal. 20, 2606–2620 PMID:24124769

  19. Nose-to-Brain Delivery of Peptide Drugs Enhanced by Coadministration of Cell-penetrating Peptides: Therapeutic Potential for Dementia.

    PubMed

    Kamei, Noriyasu

    2017-01-01

    Recent reports suggest that peptide drugs such as insulin have the potential to serve as therapeutics in neurodegenerative diseases such as Alzheimer's disease. However, the transport of these drugs to the therapeutic target, the brain, is significantly hindered by the blood-brain barrier (BBB). Intranasal administration appears to be an ideal solution for drug delivery to the brain, bypassing the BBB, however the entry of peptide drugs into neuronal and epithelial cells in the olfactory mucosa remains low. In this study, we therefore examined whether intranasal coadministration of cell-penetrating peptides (CPPs) could improve nose-to-brain drug transport. In both mice and rats, we found that direct transport of insulin into the brain was significantly facilitated when coadministered with amphipathic CPP penetratin, and eventually insulin reached the deeper regions of the brain such as the hippocampus. In the mouse line senescence-accelerated mouse prone-8 (SAMP8), spatial learning tests demonstrated that long-term intranasal coadministration of insulin with penetratin improved mild memory loss in the early stages of dementia. In contrast, the severe cognitive dysfunction in the aged SAMP8 mice was preserved despite intranasal coadministration of insulin with penetratin. The immunohistological examination of the hippocampus suggested that enhanced nose-to-brain delivery of insulin had a partial neuroprotective effect but unexpectedly increased amyloid β plaque deposition. In conclusion, intranasal coadministration of insulin with CPPs has the potential to serve as a therapeutic for mild cognitive dysfunction. To identify suitable pharmacotherapy for dementia with severe pathology, further studies of nose-to-brain delivery of molecularly appropriate biopharmaceuticals are necessary.

  20. Aged mice display an altered pulmonary host response to Francisella tularensis live vaccine strain (LVS) infections

    PubMed Central

    CA, Mares; SS, Ojeda; Q, Li; EG, Morris; JJ, Coalson; JM, Teale

    2012-01-01

    Aging is a complex phenomenon that has been shown to affect many organ systems including the innate and adaptive immune systems. The current study was designed to examine the potential effect of immunosenescence on the pulmonary immune response using a Francisella tularensis live vaccine strain (LVS) inhalation infection model. F. tularensis is a gram-negative intracellular pathogen that can cause a severe pneumonia.In this study both young (8-12 week old) and aged (20-24 month old) mice were infected intranasally with LVS. Lung tissues from young and aged mice were used to assess pathology, recruitment of immune cell types and cytokine expression levels at various times post infection. Bacterial burdens were also assessed. Interestingly, the lungs of aged animals harbored fewer organisms at early time points of infection (day 1, day 3) compared with their younger counterparts. In addition, only aged animals displayed small perivascular aggregates at these early time points that appeared mostly mononuclear in nature. However, the kinetics of infiltrating polymorphonuclear neutrophils (PMNs) and increased cytokine levels measured in the bronchial alveolar lavage fluid (BALF) were delayed in infected aged animals relative to young infected animals with neutrophils appearing at day 5 post infection (PI) in the aged animals as opposed to day 3 PI in the young infected animals. Also evident were alterations in the ratios of mononuclear to PMNs at distinct post infection times. The above evidence indicates that aged mice elicit an altered immune response in the lung to respiratory Francisella tularensis LVS infections compared to their younger counterparts. PMID:19825409

  1. Mid-aged and aged wild-type and progestin receptor knockout (PRKO) mice demonstrate rapid progesterone and 3alpha,5alpha-THP-facilitated lordosis.

    PubMed

    Frye, C A; Sumida, K; Lydon, J P; O'Malley, B W; Pfaff, D W

    2006-05-01

    Progesterone (P) and its 5alpha-reduced metabolite, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP), facilitate sexual behavior of rodents via agonist-like actions at intracellular progestin receptors (PRs) and membrane GABA(A)/benzodiazepine receptor complexes (GBRs), respectively. Given that ovarian secretion of progestins declines with aging, whether or not senescent mice are responsive to progestins was of interest. Homozygous PR knockout (PRKO) or wild-type mice that were between 10-12 (mid-aged) or 20-24 (aged) months of age were administered P or 3alpha,5alpha-THP, and the effect on lordosis were examined. Effects of a progestin-priming regimen that enhances PR-mediated (experiment 1) or more rapid, PR-independent effects of progestins (experiments 2 and 3) on sexual behavior were examined. Levels of P, 3alpha,5alpha-THP, and muscimol binding were examined in tissues from aged mice (experiment 4). Wild-type, but not PRKO, mice were responsive when primed with 17beta-estradiol (E(2); 0.5 microg) and administered P (500 microg, subcutaneously). Mid-aged wild-type mice demonstrated greater increases in lordosis 6 h later compared to their pre-P, baseline test than did aged wild-type mice (experiment 1). Lordosis of younger and older wild-type, but not PRKO, mice was significantly increased within 5 min of intravenous (IV) administration of P (100 ng), compared with E(2)-priming alone (experiment 2). However, wild-type and PRKO mice demonstrated significant increases in lordosis 5 min after IV administration of 3alpha,5alpha-THP, an effect which was more pronounced in mid-aged than in aged animals (100 ng-experiment 3). In tissues from aged wild-type and PRKO mice, levels of P, 3alpha,5alpha-THP, and muscimol binding were increased by P administration (experiment 4). PR binding was lower in the cortex of PRKO than that of wild-type mice. Mid-aged and aged PRKO and wild-type mice demonstrated rapid P or 3alpha,5alpha-THP-facilitated lordosis that may be

  2. The effect of methylmercury exposure on behavior and cerebellar granule cell physiology in aged mice.

    PubMed

    Bellum, Sairam; Thuett, Kerry A; Bawa, Bhupinder; Abbott, Louise C

    2013-09-01

    Epidemiology studies have clearly documented that the central nervous system is highly susceptible to methylmercury toxicity, and exposure to this neurotoxicant in humans primarily results from consumption of contaminated fish. While the effects of methylmercury exposure have been studied in great detail, comparatively little is known about the effects of moderate to low dose methylmercury toxicity in the aging central nervous system. We examined the toxic effects of a moderate dose of methylmercury on the aging mouse cerebellum. Male and female C57BL/6 mice at 16-20 months of age were exposed to methylmercury by feeding a total dose of 5.0 mg kg(-1) body weight and assessed using four behavioral tests. Methylmercury-treated aged mice performed significantly worse in open field, footprint analysis and the vertical pole test compared with age-matched control mice. Isolated cerebellar granule cells from methylmercury-treated aged mice exhibited higher levels of reactive oxygen species and reduced mitochondrial membrane potentials, but no differences in basal intracellular calcium ion levels compared with age-matched control mice. When aged mice were exposed to a moderate dose of methylmercury, they exhibited a similar degree of impairment when compared with young adult mice exposed to the same moderate dose of methylmercury, as reported in earlier studies from this laboratory. Thus, at least in mice, exposure of the aged brain to moderate concentrations methylmercury does not pose greater risk compared with the young adult brain exposed to similar concentrations of methylmercury. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Reduced COX-2 expression in aged mice is associated with impaired fracture healing.

    PubMed

    Naik, Amish A; Xie, Chao; Zuscik, Michael J; Kingsley, Paul; Schwarz, Edward M; Awad, Hani; Guldberg, Robert; Drissi, Hicham; Puzas, J Edward; Boyce, Brendan; Zhang, Xinping; O'Keefe, Regis J

    2009-02-01

    The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.

  4. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging.

    PubMed

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null ( Col6a1 -/- ) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1 -/- mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1 -/- mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1 -/- mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1 -/- mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1 -/- diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1 -/- gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased microtubule

  5. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  6. Oligosyndactylism Mice Have an Inversion of Chromosome 8

    PubMed Central

    Wise, Thomas L.; Pravtcheva, Dimitrina D.

    2004-01-01

    The radiation-induced mutation Oligosyndactylism (Os) is associated with limb and kidney defects in heterozygotes and with mitotic arrest and embryonic lethality in homozygotes. We reported that the cell cycle block in Os and in the 94-A/K transgene-induced mutations is due to disruption of the Anapc10 (Apc10/Doc1) gene. To understand the genetic basis of the limb and kidney abnormalities in Os mice we characterized the structural changes of chromosome 8 associated with this mutation. We demonstrate that the Os chromosome 8 has suffered two breaks that are 5 cM (∼10 Mb) apart and the internal fragment delineated by the breaks is in an inverted orientation on the mutant chromosome. While sequences in proximity to the distal break are present in an abnormal Os-specific Anapc10 hybrid transcript, transcription of these sequences in normal mice is low and difficult to detect. Transfer of the Os mutation onto an FVB/N background indicated that the absence of dominant effects in 94-A/K mice is not due to strain background effects on the mutation. Further analysis of this mutation will determine if a gene interrupted by the break or a long-range effect of the rearrangement on neighboring genes is responsible for the dominant effects of Os. PMID:15611179

  7. Age-dependent effects on sensory axonal excitability in normal mice.

    PubMed

    Banzrai, Chimeglkham; Nodera, Hiroyuki; Higashi, Saki; Okada, Ryo; Osaki, Yusuke; Mori, Atsuko; Kaji, Ryuji

    2016-01-12

    Serial recordings were performed to measure sensory excitability in peripheral nerves and elucidate age-dependent changes in neuronal ion currents in the peripheral sensory nervous system. The threshold tracking technique was used to measure multiple excitability indices in the tail sensory nerves of five normal male mice at four time points (6, 10, 14, and 19 weeks of age). A separate group of four mice was also measured at 43 weeks and at 60 weeks of age. Maturation was accompanied by an increase in early hyperpolarization and superexcitability at 10 weeks. At 60 weeks, the hyperpolarizing electrotonus shifted downward, while superexcitability became greater and subexcitability (double stimuli) decreased. Computer modeling showed that the most notable age-related interval changes in excitability parameters were Barrett-Barrett, H, and slow K(+) conductances. Understanding age-related changes in the excitability of sensory axons may provide a platform for understanding age-dependent sensory symptoms and developing age-specific channel-targeting therapies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age.

    PubMed

    Weidner, Kate L; Buenaventura, Diego F; Chadman, Kathryn K

    2014-07-15

    Evidence from clinical studies suggests that abnormal activity of brain derived neurotrophic factor (BDNF) contributes to the pathogenesis of autism spectrum disorders (ASDs). A genetically modified line of mice over-expressing a BDNF transgene in forebrain neurons was used to investigate if this mutation leads to changes in behavior consistent with ASD. The mice used in these experiments were behaviorally tested past 5 months of age when spontaneous seizures were evident. These seizures were not observed in age-matched wildtype (WT) mice or younger mice from this transgenic line. The BDNF mice in these experiments weighed less than their WT littermates. The BDNF transgenic (BDNF-tg) mice demonstrated similar levels of sociability in the social approach test. Conversely, the BDNF-tg mice demonstrated less obsessive compulsive-like behavior in the marble burying test, less anxiety-like behavior in the elevated plus maze test, and less depressive-like behavior in the forced swim test. Changes in behavior were found in these older mice that have not been observed in younger mice from this transgenic line, which may be due to the development of seizures as the mice age. These mice do not have an ASD phenotype but may be useful to study adult onset epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The Cardioprotective Effect of Vitamin E (Alpha-Tocopherol) Is Strongly Related to Age and Gender in Mice

    PubMed Central

    Li, Yan; Lin, Ze-Bang; Liu, Xiang; Wang, Jing-Feng; Chen, Yang-Xin; Wang, Zhi-Ping; Zhang, Xi; Ou, Zhi-Jun; Ou, Jing-Song

    2015-01-01

    Vitamin E (VitE) only prevented cardiovascular diseases in some patients and the mechanisms remain unknown. VitE levels can be affected by aging and gender. We hypothesize that age and gender can influence VitE’s cardioprotective effect. Mice were divided into 4 groups according to age and gender, and each group of mice were divided into a control group and a VitE group. The mice were administered water or VitE for 21 days; Afterward, the cardiac function and myocardial infarct size and cardiomyocyte apoptosis were measured after myocardial ischemia reperfusion(MI/R). VitE may significantly improved cardiac function in young male mice and aged female mice by enhancing ERK1/2 activity and reducing JNK activity. Enhanced expression of HSP90 and Bcl-2 were also seen in young male mice. No changes in cardiac function and cardiac proteins were detected in aged male mice and VitE was even liked to exert a reverse effect in cardiac function in young mice by enhancing JNK activity and reducing Bcl-2 expression. Those effects were in accordance with the changes of myocardial infarction size and cardiomyocyte apoptosis in each group of mice. VitE may reduce MI/R injury by inhibiting cardiomyocyte apoptosis in young male mice and aged female mice but not in aged male mice. VitE was possibly harmful for young female mice, shown as increased cardiomyocyte apoptosis after MI/R. Thus, we speculated that the efficacy of VitE in cardiac protection was associated with age and gender. PMID:26331272

  10. Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice.

    PubMed

    Von Linstow, C U; Severino, M; Metaxas, A; Waider, J; Babcock, A A; Lesch, K P; Gramsbergen, J B; Finsen, B

    2017-09-01

    Aging is the greatest single risk factor of the neurodegenerative disorder Alzheimer's disease (AD). The monoaminergic system, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) modulates cognition, which is affected in AD. Changes in monoamine levels have been observed in AD, but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APP SWE /PS1 ΔE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice. In combination, these findings indicate that aging alone is not sufficient to affect brain monoamine levels, unlike the APP SWE /PS1 ΔE9 genotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Phf8 loss confers resistance to depression-like and anxiety-like behaviors in mice.

    PubMed

    Walsh, Ryan M; Shen, Erica Y; Bagot, Rosemary C; Anselmo, Anthony; Jiang, Yan; Javidfar, Behnam; Wojtkiewicz, Gregory J; Cloutier, Jennifer; Chen, John W; Sadreyev, Ruslan; Nestler, Eric J; Akbarian, Schahram; Hochedlinger, Konrad

    2017-05-09

    PHF8 is a histone demethylase with specificity for repressive modifications. While mutations of PHF8 have been associated with cognitive defects and cleft lip/palate, its role in mammalian development and physiology remains unexplored. Here, we have generated a Phf8 knockout allele in mice to examine the consequences of Phf8 loss for development and behaviour. Phf8 deficient mice neither display obvious developmental defects nor signs of cognitive impairment. However, we report a striking resiliency to stress-induced anxiety- and depression-like behaviour on loss of Phf8. We further observe misregulation of serotonin signalling within the prefrontal cortex of Phf8 deficient mice and identify the serotonin receptors Htr1a and Htr2a as direct targets of PHF8. Our results clarify the functional role of Phf8 in mammalian development and behaviour and establish a direct link between Phf8 expression and serotonin signalling, identifying this histone demethylase as a potential target for the treatment of anxiety and depression.

  12. Flow cytometry and immunomorphological characteristics of apoptosis in hepatocytes of white mice during aging.

    PubMed

    Gujabidze, N; Rukhadze, R

    2006-08-01

    Apoptosis, sometimes called "programmed cell death", the process that goes on continuously throughout life has received phenomenal attention in the past few years. In the process of aging of organism, most of organs undergo morphological and functional changes at various frequencies. Initially, the role of apoptosis regarding aging was evaluated negatively, however, at present the issue is in the process of reconsideration. The experiments were performed on 74 white mice, distributed in three age groups (juveniles, adults, and senescents). Apoptotic nuclei were detected by immunomorphological and flow cytometry assay. So, the analysis of the data obtained that apoptosis in hepatocytes of white mice decreases with age and afterwards increases in a credible way. The maximum value is reached in the senescent mice. It has been considered, that aging increases the susceptibility of hepatocytes to apoptosis in white mice.

  13. Subacute ibuprofen treatment rescues the synaptic and cognitive deficits in advanced-aged mice

    PubMed Central

    Rogers, Justin T.; Liu, Chia-Chen; Zhao, Na; Wang, Jian; Putzke, Travis; Yang, Longyu; Shinohara, Mitsuru; Fryer, John D.; Kanekiyo, Takahisa; Bu, Guojun

    2017-01-01

    Aging is accompanied by increased neuroinflammation, synaptic dysfunction and cognitive deficits both in rodents and humans, yet the onset and progression of these deficits throughout the life span remain unknown. These aging-related deficits affect the quality of life and present challenges to our aging society. Here, we defined age-dependent and progressive impairments of synaptic and cognitive functions and showed that reducing astrocyte-related neuroinflammation through anti-inflammatory drug treatment in aged mice reverses these events. By comparing young (3 months), middle-aged (18 months), aged (24 months) and advanced-aged wild-type mice (30 months), we found that the levels of an astrocytic marker, GFAP, progressively increased after 18 months of age, which preceded the decreases of the synaptic marker PSD-95. Hippocampal long-term potentiation (LTP) was also suppressed in an age-dependent manner, where significant deficits were observed after 24 months of age. Fear conditioning tests demonstrated that associative memory in the context and cued conditions was decreased starting at the ages of 18 and 30 months, respectively. When the mice were tested on hidden platform water maze, spatial learning memory was significantly impaired after 24 months of age. Importantly, subacute treatment with the anti-inflammatory drug ibuprofen suppressed astrocyte activation, and restored synaptic plasticity and memory function in advanced-aged mice. These results support the critical contribution of aging-related inflammatory responses to hippocampal-dependent cognitive function and synaptic plasticity, in particular during advanced aging. Our findings provide strong evidence that suppression of neuroinflammation could be a promising treatment strategy to preserve cognition during aging. PMID:28254590

  14. Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice.

    PubMed

    Zhao, Shou-Cai; Wang, Chun; Xu, Heng; Wu, Wen-Qian; Chu, Zhao-Hu; Ma, Ling-Song; Zhang, Ying-Dong; Liu, Fudong

    2017-11-01

    Stroke is a disease that mainly affects the elderly. Since the age-related differences in stroke have not been well studied, modeling stroke in aged animals is clinically more relevant. The inflammatory responses to stroke are a fundamental pathological procedure, in which microglial activation plays an important role. Interferon regulatory factor-5 (IRF5) and IRF4 regulate M1 and M2 activation of macrophages, respectively, in peripheral inflammation; but it is unknown whether IRF5/IRF4 are also involved in cerebral inflammatory responses to stroke and whether age-related differences of the IRF5/IRF4 signaling exist in ischemic brain. Here, we investigated the influences of aging on IRF5/IRF4 signaling and post-stroke inflammation in mice. Both young (9-12 weeks) and aged (18 months) male mice were subjected to middle cerebral artery occlusion (MCAO). Morphological and biochemical changes in the ischemic brains and behavior deficits were assessed on 1, 3, and 7 d post-stroke. After MCAO, the aged mice showed smaller infarct sizes but higher neurological deficits and corner test scores than young mice. Young mice had higher levels of IRF4 and CD206 microglia in the ischemic brains, whereas the aged mice expressed more IRF5 and MHCII microglia. After MCAO, serum pro-inflammatory cytokines (TNF-α, iNOS, IL-6) were more prominently up-regulated in aged mice, whereas serum anti-inflammatory cytokines (TGF-β, IL-4, IL-10) were more prominently up-regulated in young mice. Our results demonstrate that aging has a significant influence on stroke outcomes in mice, which is probably mediated by age-specific inflammatory responses.

  15. Histone deacetylase inhibitors reverse age-related increases in side effects of haloperidol in mice.

    PubMed

    Montalvo-Ortiz, Janitza L; Fisher, Daniel W; Rodríguez, Guadalupe; Fang, Deyu; Csernansky, John G; Dong, Hongxin

    2017-08-01

    Older patients can be especially susceptible to antipsychotic-induced side effects, and the pharmacodynamic mechanism underlying this phenomenon remains unclear. We hypothesized that age-related epigenetic alterations lead to decreased expression and functionality of the dopamine D2 receptor (D2R), contributing to this susceptibility. In this study, we treated young (2-3 months old) and aged (22-24 months old) C57BL/6 mice with the D2R antagonist haloperidol (HAL) once a day for 14 days to evaluate HAL-induced motor side effects. In addition, we pretreated separate groups of young and aged mice with histone deacetylase (HDAC) inhibitors valproic acid (VPA) or entinostat (MS-275) and then administered HAL. Our results show that the motor side effects of HAL are exaggerated in aged mice as compared to young mice and that HDAC inhibitors are able to reverse the severity of these deficits. HAL-induced motor deficits in aged mice are associated with an age- and drug-dependent decrease in striatal D2R protein levels and functionality. Further, histone acetylation was reduced while histone tri-methylation was increased at specific lysine residues of H3 and H4 within the Drd2 promoter in the striatum of aged mice. HDAC inhibitors, particularly VPA, restored striatal D2R protein levels and functionality and reversed age- and drug-related histone modifications at the Drd2 promoter. These results suggest that epigenetic changes at the striatal Drd2 promoter drive age-related increases in antipsychotic side effect susceptibility, and HDAC inhibitors may be an effective adjunct treatment strategy to reduce side effects in aged populations.

  16. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  17. Acetaminophen hepatotoxicity in mice: Effect of age, frailty and exposure type

    PubMed Central

    Kane, Alice E.; Mitchell, Sarah J.; Mach, John; Huizer-Pajkos, Aniko; McKenzie, Catriona; Jones, Brett; Cogger, Victoria; Le Couteur, David G.; de Cabo, Rafael; Hilmer, Sarah N.

    2018-01-01

    Acetaminophen is a commonly used analgesic that can cause severe hepatotoxicity in overdose. Despite old age and frailty being associated with extensive and long-term utilization of acetaminophen and a high prevalence of adverse drug reactions, there is limited information on the risks of toxicity from acetaminophen in old age and frailty. This study aimed to assess changes in the risk and mechanisms of hepatotoxicity from acute, chronic and sub-acute acetaminophen exposure with old age and frailty in mice. Young and old male C57BL/6 mice were exposed to either acute (300 mg/kg via oral gavage), chronic (100 mg/kg/day in diet for six weeks) or sub-acute (250 mg/kg, t.i.d., for three days) acetaminophen, or saline control. Pre-dosing mice were scored for the mouse clinical frailty index, and after dosing serum and liver tissue were collected for assessment of toxicity and mechanisms. There were no differences with old age or frailty in the degree of hepatotoxicity induced by acute, chronic or subacute acetaminophen exposure as assessed by serum liver enzymes and histology. Age-related changes in the acetaminophen toxicity pathways included increased liver GSH concentrations, increased NQO1 activity and an increased pro- and anti-inflammatory response to acetaminophen in old age. Frailty-related changes included a negative correlation between frailty index and serum protein, albumin and ALP concentrations for some mouse groups. In conclusion, although there were changes in some pathways that would be expected to influence susceptibility to acetaminophen toxicity, there was no overall increase in acetaminophen hepatotoxicity with old age or frailty in mice. PMID:26615879

  18. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging

    PubMed Central

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null (Col6a1−/−) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1−/− mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1−/− mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1−/− mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1−/− mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1−/− diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1−/− gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased

  19. Impact of β-hydroxy β-methylbutyrate (HMB) on age-related functional deficits in mice.

    PubMed

    Munroe, Michael; Pincu, Yair; Merritt, Jennifer; Cobert, Adam; Brander, Ryan; Jensen, Tor; Rhodes, Justin; Boppart, Marni D

    2017-01-01

    β-Hydroxy β-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine. Recent studies demonstrate a decline in plasma HMB concentrations in humans across the lifespan, and HMB supplementation may be able to preserve muscle mass and strength in older adults. However, the impact of HMB supplementation on hippocampal neurogenesis and cognition remains largely unexplored. The purpose of this study was to simultaneously evaluate the impact of HMB on muscle strength, neurogenesis and cognition in young and aged mice. In addition, we evaluated the influence of HMB on muscle-resident mesenchymal stem/stromal cell (Sca-1 + CD45 - ; mMSC) function to address these cells potential to regulate physiological outcomes. Three month-old (n=20) and 24 month-old (n=18) female C57BL/6 mice were provided with either Ca-HMB or Ca-Lactate in a sucrose solution twice per day for 5.5weeks at a dose of 450mg/kg body weight. Significant decreases in relative peak and mean force, balance, and neurogenesis were observed in aged mice compared to young (age main effects, p≤0.05). Short-term HMB supplementation did not alter activity, balance, neurogenesis, or cognitive function in young or aged mice, yet HMB preserved relative peak force in aged mice. mMSC gene expression was significantly reduced with age, but HMB supplementation was able to recover expression of select growth factors known to stimulate muscle repair (HGF, LIF). Overall, our findings demonstrate that while short-term HMB supplementation does not appear to affect neurogenesis or cognitive function in young or aged mice, HMB may maintain muscle strength in aged mice in a manner dependent on mMSC function. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Innate Immune Dysfunctions in Aged Mice Facilitate the Systemic Dissemination of Methicillin-Resistant S. aureus

    PubMed Central

    Tseng, Ching Wen; Kyme, Pierre A.; Arruda, Andrea; Ramanujan, V. Krishnan; Tawackoli, Wafa; Liu, George Y.

    2012-01-01

    Elderly humans show increased susceptibility to invasive staphylococcal disease after skin and soft tissue infection. However, it is not understood how host immunity changes with aging, and how that predisposes to invasive disease. In a model of severe skin infection, we showed that aged mice (16- to 20-month-old) exhibit dramatic bacterial dissemination compared with young adult mice (2-month-old). Bacterial dissemination was associated with significant reductions of CXCL1 (KC), polymorphonuclear cells (PMNs), and extracellular DNA traps (NETs) at the infection site. PMNs and primary skin fibroblasts isolated from aged mice showed decreased secretion of CXCL2 (MIP-2) and KC in response to MRSA, and in vitro analyses of mitochondrial functions revealed that the mitochondrial electron transport chain complex I plays a significant role in induction of chemokines in the cells isolated from young but not old mice. Additionally, PMNs isolated from aged mice have reduced ability to form NETs and to kill MRSA. Expression of nuclease by S. aureus led to increased bacterial systemic dissemination in young but not old mice, suggesting that defective NETs formation in elderly mice permitted nuclease and non-nuclease expressing S. aureus to disseminate equally well. Overall, these findings suggest that gross impairment of both skin barrier function and innate immunity contributes to the propensity for MRSA to disseminate in aged mice. Furthermore, the study indicates that contribution of bacterial factors to pathogenicity may vary with host age. PMID:22844481

  1. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    PubMed

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  2. OSTEOCLAST-INDUCED FOXP3+ CD8 T-CELLS LIMIT BONE LOSS IN MICE

    PubMed Central

    Buchwald, Zachary S.; Kiesel, Jennifer R.; Yang, Chang; DiPaolo, Richard; Novack, Deborah V.; Aurora, Rajeev

    2014-01-01

    Osteoimmunology is the crosstalk between the skeletal and immune system. We have previously shown in vitro that osteoclasts (OC) crosspresent antigens to induce FoxP3 in CD8 T-cells (OCiTcREG), which then suppress osteoclast activity. Here we assessed the ability of OC-iTcREG to limit bone resorption in vivo. Mice lacking CD8 T-cells lose more bone in response to RANKL (Tnfsf11) administration. Using adoptive transfer experiments we demonstrate that FoxP3+ CD8 T-cells limit bone loss by RANKL administration. In ovariectomized mice, a murine model of postmenopausal osteoporosis, OC-iTcREG limited bone loss and increased bone density as assessed by serum markers, micro computed tomography (μCT) and histomorphometry. Indeed, OC-iTcREG—treated ovariectomized mice had decreased levels of effector T-cells in the bone marrow compared to untreated mice, and increased bone formation rates relative to bisphosphonate-treated mice. Our results provide the first in vivo evidence that OC-iTcREG have anti-resorptive activity and repress the immune system, thus extending the purview of osteoimmunology. PMID:23756229

  3. Map3k8 Modulates Monocyte State and Atherogenesis in ApoE-/- Mice.

    PubMed

    Sanz-Garcia, Carlos; Sánchez, Ángela; Contreras-Jurado, Constanza; Cales, Carmela; Barranquero, Cristina; Muñoz, Marta; Merino, Ramón; Escudero, Paula; Sanz, Maria-Jesús; Osada, Jesús; Aranda, Ana; Alemany, Susana

    2017-02-01

    Map3k8 (Cot/Tpl2) activates the MKK1/2-ERK1/2, MAPK pathway downstream from interleukin-1R, tumor necrosis factor-αR, NOD-2R (nucleotide-binding oligomerization domain-like 2R), adiponectinR, and Toll-like receptors. Map3k8 plays a key role in innate and adaptive immunity and influences inflammatory processes by modulating the functions of different cell types. However, its role in atherogenesis remains unknown. In this study, we analyzed the role of this kinase in this pathology. We show here that Map3k8 deficiency results in smaller numbers of Ly6C high CD11c low and Ly6C low CD11c high monocytes in ApoE - /- mice fed a high-fat diet (HFD). Map3k8 -/- ApoE -/- monocytes displayed high rates of apoptosis and reduced amounts of Nr4a1, a transcription factor known to modulate apoptosis in Ly6C low CD11c high monocytes. Map3k8 -/- ApoE -/- splenocytes and macrophages showed irregular patterns of cytokine and chemokine expression. Map3k8 deficiency altered cell adhesion and migration in vivo and decreased CCR2 expression, a determinant chemokine receptor for monocyte mobilization, on circulating Ly6C high CD11c low monocytes. Map3k8 -/- ApoE -/- mice fed an HFD showed decreased cellular infiltration in the atherosclerotic plaque, with low lipid content. Lesions had similar size after Map3k8 +/+ ApoE -/- bone marrow transplant into Map3k8 -/- ApoE -/- and Map3k8 +/+ ApoE -/- mice fed an HFD, whereas smaller plaques were observed after the transplantation of bone marrow lacking both ApoE and Map3k8. Map3k8 decreases apoptosis of monocytes and enhances CCR2 expression on Ly6C high CD11c low monocytes of ApoE -/- mice fed an HFD. These findings explain the smaller aortic lesions in ApoE -/- mice with Map3k8 -/- ApoE -/- bone marrow cells fed an HFD, supporting further studies of Map3k8 as an antiatherosclerotic target. © 2016 American Heart Association, Inc.

  4. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Petry, Franck; Papon, Marie-Amélie; Julien, Carl; Marcouiller, François; Morin, Françoise; Nicholls, Samantha B; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-04-01

    Accumulating evidence from epidemiological studies suggest that type 2 diabetes is linked to an increased risk of Alzheimer's disease (AD). However, the consequences of type 2 diabetes on AD pathologies, such as tau hyperphosphorylation, are not well understood. Here, we evaluated the impact of type 2 diabetes on tau phosphorylation in db/db diabetic mice aged 4 and 26weeks. We found increased tau phosphorylation at the CP13 epitope correlating with a deregulation of c-Jun. N-terminal kinase (JNK) and Protein Phosphatase 2A (PP2A) in 4-week-old db/db mice. 26-week-old db/db mice displayed tau hyperphosphorylation at multiple epitopes (CP13, AT8, PHF-1), but no obvious change in kinases or phosphatases, no cleavage of tau, and no deregulation of central insulin signaling pathways. In contrast to younger animals, 26-week-old db/db mice were hypothermic and restoration of normothermia rescued phosphorylation at most epitopes. Our results suggest that, at early stages of type 2 diabetes, changes in tau phosphorylation may be due to deregulation of JNK and PP2A, while at later stages hyperphosphorylation is mostly a consequence of hypothermia. These results provide a novel link between diabetes and tau pathology, and underlie the importance of recording body temperature to better understand the relationship between diabetes and AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Characterizing age-related decline of recognition memory and brain activation profile in mice.

    PubMed

    Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale

    2018-06-01

    Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    PubMed

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  7. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

    PubMed Central

    Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-01-01

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202

  8. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice.

    PubMed

    Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart

    2015-12-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.

  9. Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants

    PubMed Central

    Nicolson, Tamara J.; Bellomo, Elisa A.; Wijesekara, Nadeeja; Loder, Merewyn K.; Baldwin, Jocelyn M.; Gyulkhandanyan, Armen V.; Koshkin, Vasilij; Tarasov, Andrei I.; Carzaniga, Raffaella; Kronenberger, Katrin; Taneja, Tarvinder K.; da Silva Xavier, Gabriela; Libert, Sarah; Froguel, Philippe; Scharfmann, Raphael; Stetsyuk, Volodymir; Ravassard, Philippe; Parker, Helen; Gribble, Fiona M.; Reimann, Frank; Sladek, Robert; Hughes, Stephen J.; Johnson, Paul R.V.; Masseboeuf, Myriam; Burcelin, Remy; Baldwin, Stephen A.; Liu, Ming; Lara-Lemus, Roberto; Arvan, Peter; Schuit, Frans C.; Wheeler, Michael B.; Chimienti, Fabrice; Rutter, Guy A.

    2009-01-01

    OBJECTIVE Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. RESEARCH DESIGN AND METHODS Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. RESULTS ZnT8−/− mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8−/− islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn2+ transport activity than W325 ZnT8 by fluorescence-based assay. CONCLUSIONS ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks. PMID:19542200

  10. Age and exposure to arsenic alter base excision repair transcript levels in mice.

    PubMed

    Osmond, Megan J; Kunz, Bernard A; Snow, Elizabeth T

    2010-09-01

    Arsenic (As) induces DNA-damaging reactive oxygen species. Most oxidative DNA damage is countered by base excision repair (BER), the capacity for which may be reduced in older animals. We examined whether age and consumption of As in lactational milk or drinking water influences BER gene transcript levels in mice. Lactating mothers and 24-week-old mice were exposed (24 h or 2 weeks) to As (2 or 50 p.p.m.) in drinking water. Lung tissue was harvested from adults, neonates (initially 1 week old) feeding from lactating mothers and untreated animals 1-26 weeks old. Transcripts encoding BER proteins were quantified. BER transcript levels decreased precipitously with age in untreated mice but increased in neonates whose mothers were exposed to 50 p.p.m. As for 24 h or 2 weeks. Treatment of 24-week-old mice with 2 or 50 p.p.m. As for 2 weeks decreased all transcript levels measured. Exposure to As attenuated the age-related transcript level decline for only one BER gene. We conclude that aging is associated with a rapid reduction of BER transcript levels in mice, which may contribute to decreased BER activity in older animals. Levels of As that can alter gene expression are transmitted to neonatal mice in lactational milk produced by mothers drinking water containing As, raising concerns about breastfeeding in countries having As-contaminated groundwater. Reduction of BER transcript levels in 24-week-old mice exposed to As for 2 weeks suggests As may potentiate sensitivity to itself in older animals.

  11. Effect of whole-body vibration training on body composition, exercise performance and biochemical responses in middle-aged mice.

    PubMed

    Lin, Ching-I; Huang, Wen-Ching; Chen, Wen-Chyuan; Kan, Nai-Wen; Wei, Li; Chiu, Yen-Shuo; Huang, Chi-Chang

    2015-09-01

    Whole-body vibration (WBV) is a well-known light-resistance exercise by automatic adaptations to rapid and repeated oscillations from a vibrating platform, which is also a simple and convenient exercise for older adults. However, the potential benefits of WBV on aging-associated changes in body composition, exercise performance, and fatigue are currently unclear. The objective of the study is to investigate the beneficial effects of WBV training on body composition, exercise performance, and physical fatigue-related and biochemical responses in middle-aged mice. In total, 24 male C57BL/6 mice aged 15 months old were randomly divided into 3 groups (n=8 per group): sedentary control (SC), relatively low-frequency WBV (5.6 Hz, 2 mm, 0.13 g) (LV), and relatively high-frequency WBV (13 Hz, 2 mm, 0.68 g) (HV). Mice in the LV and HV groups were placed inside a vibration platform and vibrated at different frequencies and fixed amplitude (2 mm) for 15 min, 5 days/week for 4 weeks. Exercise performance, core temperature and anti-fatigue function were evaluated by forelimb grip strength and levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after a 15-min swimming exercise, as were changes in body composition and biochemical variables at the end of the experiment. Relative muscle and brown adipose tissue weight (%) was significantly higher for the HV than SC mice, but relative liver weight (%) was lower. On trend analysis, WBV increased grip strength, aerobic endurance and core temperature in mice. As well, serum lactate, ammonia and CK levels were dose-dependently decreased with vibration frequency after the swimming test. Fasting serum levels of albumin and total protein were increased and serum levels of alkaline phosphatase and creatinine decreased dose-dependently with vibration frequency. Moreover, WBV training improved the age-related abnormal morphology of skeletal muscle, liver and kidney tissues. Therefore, it could improve exercise performance and

  12. Inactivation of Pde8b enhances memory, motor performance, and protects against age-induced motor coordination decay

    PubMed Central

    Tsai, Li-Chun Lisa; Chan, Guy Chiu-Kai; Nangle, Shannon N.; Shimizu-Albergine, Masami; Jones, Graham; Storm, Daniel R.; Beavo, Joseph A.; Zweifel, Larry S.

    2012-01-01

    Phosphodiesterases (PDEs) are critical regulatory enzymes in cyclic nucleotide signaling. PDEs have diverse expression patterns within the central nervous system (CNS), show differing affinities for cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), and regulate a vast array of behaviors. Here, we investigated the expression profile of the PDE8 gene family members Pde8a and Pde8b in the mouse brain. We find that Pde8a expression is largely absent in the CNS; by contrast, Pde8b is expressed in select regions of the hippocampus, ventral striatum, and cerebellum. Behavioral analysis of mice with Pde8b gene inactivation (PDE8B KO) demonstrate an enhancement in contextual fear, spatial memory, performance in an appetitive instrumental conditioning task, motor-coordination, and have an attenuation of age-induced motor coordination decline. In addition to improvements observed in select behaviors, we find basal anxiety levels to be increased in PDE8B KO mice. These findings indicate that selective antagonism of PDE8B may be an attractive target for enhancement of cognitive and motor functions; however, possible alterations in affective state will need to be weighed against potential therapeutic value. PMID:22925203

  13. Memory Deficits Are Associated with Impaired Ability to Modulate Neuronal Excitability in Middle-Aged Mice

    ERIC Educational Resources Information Center

    Kaczorowski, Catherine C.; Disterhoft, John F.

    2009-01-01

    Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…

  14. Oxidative Stress Induced Age Dependent Meibomian Gland Dysfunction in Cu, Zn-Superoxide Dismutase-1 (Sod1) Knockout Mice

    PubMed Central

    Ibrahim, Osama M. A.; Dogru, Murat; Matsumoto, Yukihiro; Igarashi, Ayako; Kojima, Takashi; Wakamatsu, Tais Hitomi; Inaba, Takaaki; Shimizu, Takahiko; Shimazaki, Jun; Tsubota, Kazuo

    2014-01-01

    Purpose The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse. Methods Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed. Results Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice. Conclusions Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations. PMID:25036096

  15. Haploinsufficiency of the Myc regulator Mtbp extends survival and delays tumor development in aging mice.

    PubMed

    Grieb, Brian C; Boyd, Kelli; Mitra, Ramkrishna; Eischen, Christine M

    2016-10-30

    Alterations of specific genes can modulate aging. Myc, a transcription factor that regulates the expression of many genes involved in critical cellular functions was shown to have a role in controlling longevity. Decreased expression of Myc inhibited many of the deleterious effects of aging and increased lifespan in mice. Without altering Myc expression, reduced levels of Mtbp, a recently identified regulator of Myc, limit Myc transcriptional activity and proliferation, while increased levels promote Myc-mediated effects. To determine the contribution of Mtbp to the effects of Myc on aging, we studied a large cohort of Mtbp heterozygous mice and littermate matched wild-type controls. Mtbp haploinsufficiency significantly increased longevity and maximal survival in mice. Reduced levels of Mtbp did not alter locomotor activity, litter size, or body size, but Mtbp heterozygous mice did exhibit elevated markers of metabolism, particularly in the liver. Mtbp +/- mice also had a significant delay in spontaneous cancer development, which was most prominent in the hematopoietic system, and an altered tumor spectrum compared to Mtbp +/+ mice. Therefore, the data suggest Mtbp is a regulator of longevity in mice that mimics some, but not all, of the properties of Myc in aging.

  16. The development of lower respiratory tract microbiome in mice.

    PubMed

    Singh, Nisha; Vats, Asheema; Sharma, Aditi; Arora, Amit; Kumar, Ashwani

    2017-06-21

    Although culture-independent methods have paved the way for characterization of the lung microbiome, the dynamic changes in the lung microbiome from neonatal stage to adult age have not been investigated. In this study, we tracked changes in composition and diversity of the lung microbiome in C57BL/6N mice, starting from 1-week-old neonates to 8-week-old mice. Towards this, the lungs were sterilely excised from mice of different ages from 1 to 8 weeks. High-throughput DNA sequencing of the 16S rRNA gene followed by composition and diversity analysis was utilized to decipher the microbiome in these samples. Microbiome analysis suggests that the changes in the lung microbiome correlated with age. The lung microbiome was primarily dominated by phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in all the stages from week 1 to week 8 after birth. Although Defluvibacter was the predominant genus in 1-week-old neonatal mice, Streptococcus became the dominant genus at the age of 2 weeks. Lactobacillus, Defluvibacter, Streptococcus, and Achromobacter were the dominant genera in 3-week-old mice, while Lactobacillus and Achromobacter were the most abundant genera in 4-week-old mice. Interestingly, relatively greater diversity (at the genus level) during the age of 5 to 6 weeks was observed as compared to the earlier weeks. The diversity of the lung microbiome remained stable between 6 and 8 weeks of age. In summary, we have tracked the development of the lung microbiome in mice from an early age of 1 week to adulthood. The lung microbiome is dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. However, dynamic changes were observed at the genus level. Relatively higher richness in the microbial diversity was achieved by age of 6 weeks and then maintained at later ages. We believe that this study improves our understanding of the development of the mice lung microbiome and will facilitate further analyses of the role of

  17. Intrascrotal CGRP 8-37 causes a delay in testicular descent in mice.

    PubMed

    Samarakkody, U K; Hutson, J M

    1992-07-01

    The genitofemoral nerve is a key factor in the inguinoscrotal descent of the testis. The effect of androgens may be mediated via the central nervous system, which in turn secretes the neurotransmitter calcitonin gene-related peptide (CGRP) at the genitofemoral nerve endings, to cause testicular descent. The effect of endogenous CGRP was examined by weekly injections of a vehicle with or without synthetic antagonist (CGRP 8-37) into the developing scrotum of neonatal mice. The descent of the testis was delayed in the experimental group compared with the control group. At 2 weeks of age 43% of controls had descended testes compared with 0% of experimental animals. At 3 weeks of age 17% of experimentals still had undescended testes, whereas all testes were descended in controls. At 4 weeks 3 testes remained undescended in the experimental group. It is concluded that the CGRP antagonist can retard testicular descent. This result is consistent with the hypothesis that CGRP is an important intermediary in testicular descent.

  18. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    PubMed

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Age-Related Decrease in Stress Responsiveness and Proactive Coping in Male Mice.

    PubMed

    Oh, Hee-Jin; Song, Minah; Kim, Young Ki; Bae, Jae Ryong; Cha, Seung-Yun; Bae, Ji Young; Kim, Yeongmin; You, Minsu; Lee, Younpyo; Shim, Jieun; Maeng, Sungho

    2018-01-01

    Coping is a strategic approach to dealing with stressful situations. Those who use proactive coping strategies tend to accept changes and act before changes are expected. In contrast, those who use reactive coping are less flexible and more likely to act in response to changes. However, little research has assessed how coping style changes with age. This study investigated age-related changes in coping strategies and stress responsiveness and the influence of age on the processing of conditioned fear memory in 2-, 12- and 23-month-old male mice. Coping strategy was measured by comparing the escape latency in an active avoidance test and by comparing responses to a shock prod. The results showed that proactivity in coping response gradually decreased with age. Stress responsiveness, measured by stress-induced concentration of corticosterone, was also highest in 2-month-old mice and decreased with age. Consolidation of fear memory was highest in 12-month-old mice and was negatively correlated with the degree of stress responsiveness and proactivity in coping. Fear extinction did not differ among age groups and was not correlated with stress responsiveness or the proactivity of coping. However, the maintenance of extinct fear memory, which was best in 2-month-old mice and worst in 12-month-old mice, was negatively correlated with stress responsiveness but not with coping style. Age-dependent changes in the expression of glucocorticoid receptor (GR) and its regulatory co-chaperones, which are accepted mechanisms for stress hormone stimulation, were measured in the hippocampus. The expression of GR was increased at 12 months compared to other age groups. There were no differences in Hsp70 and BAG1 expression by age. These results can be summarized as follows: (1) stress responsiveness and proactivity in coping decreased with age class; (2) consolidation of fear memory was negatively correlated with both stress responsiveness and proactivity; however, maintenance of

  20. Age-Related Decrease in Stress Responsiveness and Proactive Coping in Male Mice

    PubMed Central

    Oh, Hee-Jin; Song, Minah; Kim, Young Ki; Bae, Jae Ryong; Cha, Seung-Yun; Bae, Ji Young; Kim, Yeongmin; You, Minsu; Lee, Younpyo; Shim, Jieun; Maeng, Sungho

    2018-01-01

    Coping is a strategic approach to dealing with stressful situations. Those who use proactive coping strategies tend to accept changes and act before changes are expected. In contrast, those who use reactive coping are less flexible and more likely to act in response to changes. However, little research has assessed how coping style changes with age. This study investigated age-related changes in coping strategies and stress responsiveness and the influence of age on the processing of conditioned fear memory in 2-, 12- and 23-month-old male mice. Coping strategy was measured by comparing the escape latency in an active avoidance test and by comparing responses to a shock prod. The results showed that proactivity in coping response gradually decreased with age. Stress responsiveness, measured by stress-induced concentration of corticosterone, was also highest in 2-month-old mice and decreased with age. Consolidation of fear memory was highest in 12-month-old mice and was negatively correlated with the degree of stress responsiveness and proactivity in coping. Fear extinction did not differ among age groups and was not correlated with stress responsiveness or the proactivity of coping. However, the maintenance of extinct fear memory, which was best in 2-month-old mice and worst in 12-month-old mice, was negatively correlated with stress responsiveness but not with coping style. Age-dependent changes in the expression of glucocorticoid receptor (GR) and its regulatory co-chaperones, which are accepted mechanisms for stress hormone stimulation, were measured in the hippocampus. The expression of GR was increased at 12 months compared to other age groups. There were no differences in Hsp70 and BAG1 expression by age. These results can be summarized as follows: (1) stress responsiveness and proactivity in coping decreased with age class; (2) consolidation of fear memory was negatively correlated with both stress responsiveness and proactivity; however, maintenance of

  1. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice.

    PubMed

    Vaughan, Sydney K; Stanley, Olivia L; Valdez, Gregorio

    2017-06-01

    The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers

    PubMed Central

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A.; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-01-01

    B-cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL+ MHC class-IHi CD86Hi B cells of unknown origin. Here we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. The 4BL cells induce expression of 4-1BBL and IFNγR1 on B1a cells resulting in subsequent up regulation of membrane TNFα (mTNFα) and CD86. As a result, B1a cells induce expression of granzyme B in CD8+T cells by targeting TNFR2 via mTNFα while providing co-stimulation with CD86. Thus, for the first time, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8+T cells. PMID:26983789

  3. CYTOGENETIC STUDIES IN MICE TREATED WITH THE JET FUELS, JET-A AND JP-8

    EPA Science Inventory

    Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8
    Abstract
    The genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 ug/mouse. Peripheral blood smears were prepared at the start of the ...

  4. Age-related differential sensitivity to MK-801-induced locomotion and stereotypy in C57BL/6 mice

    PubMed Central

    Qi, Chunting; Zou, Hong; Zhang, Ruizhong; Zhao, Guoping; Jin, Meilei; Yu, Lei

    2009-01-01

    Psychomotor effects elicited by systemic administration of the noncompetitive NMDA (N-methyl-D-aspartate) receptor antagonist MK-801 (dizocilpine maleate) represent perturbation of glutamatergic pathways, providing an animal model for psychotic symptoms of schizophrenia. Hyperlocomotion and stereotypy are the two main psychomotor behaviors induced by MK-801. This study compared MK-801-induced hyperlocomotion and stereotypy in young (1-month old) and aged mice (12-month old), in order to determine how the aging process may influence these behaviors. The tested MK-801 doses ranged from 0.015 to 1 mg/kg. The data indicated that MK-801 impacted the aged mice more pronouncedly than the young mice, as both hyperlocomotion and stereotypy were increased significantly more in the aged mice relative to the young mice. These results suggest an age-related increase in MK-801 sensitivity in mice. PMID:18053981

  5. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    PubMed

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. © 2013 The Anatomical Society and John Wiley & Sons Ltd.

  6. Short-term exercise worsens cardiac oxidative stress and fibrosis in 8-month-old db/db mice by depleting cardiac glutathione.

    PubMed

    Laher, Ismail; Beam, Julianne; Botta, Amy; Barendregt, Rebekah; Sulistyoningrum, Dian; Devlin, Angela; Rheault, Mark; Ghosh, Sanjoy

    2013-01-01

    Moderate exercise improves cardiac antioxidant status in young humans and animals with Type-2 diabetes (T2D). Given that both diabetes and advancing age synergistically decrease antioxidant expression in most tissues, it is unclear whether exercise can upregulate cardiac antioxidants in chronic animal models of T2D. To this end, 8-month-old T2D and normoglycemic mice were exercised for 3 weeks, and cardiac redox status was evaluated. As expected, moderate exercise increased cardiac antioxidants and attenuated oxidative damage in normoglycemic mice. In contrast, similar exercise protocol in 8-month-old db/db mice worsened cardiac oxidative damage, which was associated with a specific dysregulation of glutathione (GSH) homeostasis. Expression of enzymes for GSH biosynthesis [γ-glutamylcysteine synthase, glutathione reductase] as well as for GSH-mediated detoxification (glutathione peroxidase, glutathione-S-transferase) was lower, while toxic metabolites dependent on GSH for clearance (4-hydroxynonenal) were increased in exercised diabetic mice hearts. To validate GSH loss as an important factor for such aggravated damage, daily administration of GSH restored cardiac GSH levels in exercised diabetic mice. Such supplementation attenuated both oxidative damage and fibrotic changes in the myocardium. Expression of transforming growth factor beta (TGF-β) and its regulated genes which are responsible for such profibrotic changes were also attenuated with GSH supplementation. These novel findings in a long-term T2D animal model demonstrate that short-term exercise by itself can deplete cardiac GSH and aggravate cardiac oxidative stress. As GSH administration conferred protection in 8-month-old diabetic mice undergoing exercise, supplementation with GSH-enhancing agents may be beneficial in elderly diabetic patients undergoing exercise.

  7. Whey peptides prevent chronic ultraviolet B radiation-induced skin aging in melanin-possessing male hairless mice.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho; Kobayashi, Toshiya

    2014-01-01

    Whey proteins or peptides exhibit various actions, including an antioxidant action, an anticancer action, and a protective action against childhood asthma and atopic syndrome. The effects of orally administered whey peptides (WPs) on chronic ultraviolet B (UVB) radiation-induced cutaneous changes, including changes in cutaneous thickness, elasticity, wrinkle formation, etc., have not been examined. In this study, we studied the preventive effects of WPs on cutaneous aging induced by chronic UVB irradiation in melanin-possessing male hairless mice (HRM). UVB (36-180 mJ/cm(2)) was irradiated to the dorsal area for 17 wk in HRM, and the measurements of cutaneous thickness and elasticity in UVB irradiated mice were performed every week. WPs (200 and 400 mg/kg, twice daily) were administered orally for 17 wk. WPs inhibited the increase in cutaneous thickness, wrinkle formation, and melanin granules and the reduction in cutaneous elasticity associated with photoaging. Furthermore, it has been reported that UVB irradiation-induced skin aging is closely associated with the increase in expression of matrix metalloproteinase (MMP), vascular endothelial growth factor (VEGF), Ki-67-, and 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells. WPs also prevented increases in the expression of MMP-2 and pro-MMP-9, VEGF, and Ki-67- and 8-OHdG-positive cells induced by chronic UVB irradiation. It was found that WPs prevent type IV collagen degradation, angiogenesis, proliferation, and DNA damage caused by UVB irradiation. Overall, these results demonstrate the considerable benefit of WPs for protection against solar UV-irradiated skin aging as a supplemental nutrient.

  8. The prolyl isomerase Pin1 modulates development of CD8+ cDC in mice.

    PubMed

    Barberi, Theresa J; Dunkle, Alexis; He, You-Wen; Racioppi, Luigi; Means, Anthony R

    2012-01-01

    Pin1 has previously been described to regulate cells that participate in both innate and adaptive immunity. Thus far, however, no role for Pin1 has been described in modulating conventional dendritic cells, innate antigen presenting cells that potently activate naïve T cells, thereby bridging innate and adaptive immune responses. When challenged with LPS, Pin1-null mice failed to accumulate spleen conventional dendritic cells (cDC). Analysis of steady-state spleen DC populations revealed that Pin1-null mice had fewer CD8+ cDC. This defect was recapitulated by culturing Pin1-null bone marrow with the DC-instructive cytokine Flt3 Ligand. Additionally, injection of Flt3 Ligand for 9 days failed to induce robust expansion of CD8+ cDC in Pin1-null mice. Upon infection with Listeria monocytogenes, Pin1-null mice were defective in stimulating proliferation of adoptively transferred WT CD8+ T cells, suggesting that decreases in Pin1 null CD8+ cDC may affect T cell responses to infection in vivo. Finally, upon analyzing expression of proteins involved in DC development, elevated expression of PU.1 was detected in Pin1-null cells, which resulted from an increase in PU.1 protein half-life. We have identified a novel role for Pin1 as a modulator of CD8+ cDC development. Consistent with reduced numbers of CD8+ cDC in Pin1-null mice, we find that the absence of Pin1 impairs CD8+ T cell proliferation in response to infection with Listeria monocytogenes. These data suggest that, via regulation of CD8+ cDC production, Pin1 may serve as an important modulator of adaptive immunity.

  9. Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice.

    PubMed

    Razzaque, Mohammed S; Lanske, Beate

    2006-07-01

    The essential role of low levels of vitamin D during aging is well documented. However, possible effects of high levels of vitamin D on the aging process are not yet clear. Recent in vivo genetic-manipulation studies have shown increased serum level of vitamin D and altered mineral-ion homeostasis in mice that lack either fibroblast growth factor 23 (Fgf23) or klotho (Kl) genes. These mice develop identical phenotypes consistent with premature aging. Elimination or reduction of vitamin-D activity from Fgf23 and Kl mutant mice, either by dietary restriction or genetic manipulation could rescue premature aging-like features and ectopic calcifications, resulting in prolonged survival of both mutants. Such in vivo experimental studies indicated that excessive vitamin-D activity and altered mineral-ion homeostasis could accelerate the aging process.

  10. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice.

    PubMed

    Smith, Bryon M; Yao, Xinyue; Chen, Kelly S; Kirby, Elizabeth D

    2018-01-01

    The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function.

  11. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice

    PubMed Central

    Smith, Bryon M.; Yao, Xinyue; Chen, Kelly S.; Kirby, Elizabeth D.

    2018-01-01

    The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function. PMID:29904345

  12. Inquiries into the Biological Significance of Transmembrane AMPA Receptor Regulatory Protein (TARP) γ-8 Through Investigations of TARP γ-8 Null Mice§.

    PubMed

    Gleason, Scott D; Kato, Akihiko; Bui, Hai H; Thompson, Linda K; Valli, Sabrina N; Stutz, Patrick V; Kuo, Ming-Shang; Falcone, Julie F; Anderson, Wesley H; Li, Xia; Witkin, Jeffrey M

    2015-01-01

    Transmembrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor regulatory protein (TARP) γ-8 is an auxiliary protein associated with some AMPA receptors. Most strikingly, AMPA receptors associated with this TARP have a relatively high localization in the hippocampus. TARP γ-8 also modifies the pharmacology and trafficking of AMPA receptors. However, to date there is little understanding of the biological significance of this auxiliary protein. In the present set of studies we provide a characterization of the differential pharmacology and behavioral consequences of deletion of TARP γ-8 by comparing the wild type (WT) and γ-8 -/- (knock-out, KO) mouse. KO mice were mildly hyperactive in a locomotor arena but not in other environments compared to WT mice. Additionally, the KO mice demonstrated enhanced locomotor stimulatory effects of both d-amphetamine and phencyclidine. Marble-burying and digging behaviors were dramatically reduced in KO mice. In another assay that can detect anxiety-like phenotypes, the elevated plus maze, no differences were observed in overall movement or open arm entries. In the forced-swim assay, KO mice displayed decreases in immobility time like the antidepressant imipramine and the AMPA receptor potentiator, LY392098. In KO mice, the antidepressant-like effects of LY392098 were prevented whereas the effects of imipramine were unaffected. Convulsions were induced by pentylenetetrazole, N-methyl-D-aspartate, and by kainic acid. However, in KO mice, kainic acid produced less tonic convulsions and lethality. KO mice had reduced levels of norepinephrine in hippocampus and cerebellum but not in hypothalamus or prefrontal cortex, decreased levels of cAMP in hippocampus, and increased levels of acetylcholine in the hypothalamus and prefrontal cortex. KO mice displayed decreased turnover of dopamine and increased histamine turnover in multiple brain areas In contrast, serotonin and its metabolites were not significantly

  13. Age- and gender-dependent impairments of neurobehaviors in mice whose mothers were exposed to lipopolysaccharide during pregnancy.

    PubMed

    Wang, Hua; Meng, Xiu-Hong; Ning, Huan; Zhao, Xian-Feng; Wang, Qun; Liu, Ping; Zhang, Heng; Zhang, Cheng; Chen, Gui-Hai; Xu, De-Xiang

    2010-02-01

    Lipopolysaccharide (LPS)-induced intrauterine infection has been associated with neurodevelopmental injury in rodents. The purpose of the present study was to analyze the dynamic changes of neurobehaviors in mice whose mothers were exposed to LPS during pregnancy. The pregnant mice were intraperitoneally (i.p.) injected with LPS (8 microg/kg) daily from gestational day (gd) 8 to gd 15. A battery of neurobehavioral tasks was performed in mice at postnatal day (PND) 70, 200, 400 and 600. Results showed that the spatial learning and memory ability, determined by radial six-arm water maze (RAWM), were obviously impaired in two hundred-day-old female mice and four hundred-day-old male mice whose mothers were exposed to LPS during pregnancy. Open field test showed that the number of squares crossed and peripheral time, a marker of anxiety and exploration activity, were markedly increased in two hundred-day-old female mice following prenatal LPS exposure. In addition, prenatal LPS exposure significantly shortened the latency to the first grid crossing in six hundred-day-old female offspring. Moreover, sensorimotor impairment in the beam walking was observed in two hundred-day-old female mice whose mothers were exposed to LPS during pregnancy. Species-typical behavior examination showed that prenatal LPS exposure markedly increased weight burrowed in seventy-day-old male offspring and six hundred-day-old female offspring. Correspondingly, prenatal LPS exposure significantly reduced weight hoarded in two hundred-day-old female offspring. Taken together, these results suggest that prenatal LPS exposure induces neurobehavioral impairments at adulthood in an age- and gender-dependent manner. 2009 Elsevier Ireland Ltd. All rights reserved.

  14. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice

    NASA Astrophysics Data System (ADS)

    Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD.

  15. Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice.

    PubMed

    Bedrosian, Tracy A; Herring, Kamillya L; Weil, Zachary M; Nelson, Randy J

    2011-07-12

    Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is "sundowning syndrome," which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomotor activity relative to adult mice near the end of the dark phase, and with time-dependent changes in basal forebrain acetylcholinesterase expression. Transgenic APP mice show a similar behavioral phenomenon that is not observed among age-matched wild-type mice. These results may have useful applications to the study and treatment of age- and dementia-related circadian behavioral disturbances, namely, sundowning syndrome.

  16. Fish oil changes the lifespan of Caenorhabditis elegans via lipid peroxidation

    PubMed Central

    Sugawara, Soko; Honma, Taro; Ito, Junya; Kijima, Ryo; Tsuduki, Tsuyoshi

    2013-01-01

    Recently, we administered fish oil containing eicosapentaenoic acid and docosahexaenoic acid (DHA) to senescence-accelerated mice P8 (SAMP8), in order to investigate the effects on lifespan. Surprisingly, the lifespan of SAMP8 that were fed fish oil was shortened significantly, through a mechanism that likely involved lipid peroxidation. In this study, we investigated this phenomenon in further detail. To examine whether this phenomenon occurs only in SAMP8, we investigated the effect of fish oil on the lifespan of another organism species, Caenorhabditis elegans (C. elegans). C. elegans fed fish oil were cultured and the lifespan monitored. As a consequence of the provision of large amounts of fish oil the lifespan of C. elegans was shortened significantly, whereas an appropriate amount of fish oil extended their lifespan significantly. Lipid peroxide levels in C. elegans that were fed fish oil increased significantly in a dose-dependent manner. However, lipid peroxide levels in C. elegans were inhibited by the addition of fish oil and an antioxidant, α-tocopherol, and completely abrogated the changes in the lifespan. To further confirm whether the oxidation of n-3 polyunsaturated fatty acid in fish oil would change the lifespan of C. elegans, the effect of oxidized DHA was examined. Large amounts of oxidized DHA were found to shorten their lifespan significantly. Thus, fish oil changes the lifespan of C. elegans through lipid peroxidation. PMID:23526170

  17. Aged mice receiving caffeine since adulthood show distinct patterns of anxiety-related behavior.

    PubMed

    Botton, Paulo Henrique S; Pochmann, Daniela; Rocha, Andreia S; Nunes, Fernanda; Almeida, Amanda S; Marques, Daniela M; Porciúncula, Lisiane O

    2017-03-01

    Caffeine is the psychostimulant most consumed worldwide. Anxiogenic effects of caffeine have been described in adult animals with controversial findings about its anxiogenic potential. Besides, the effects of caffeine on anxiety with aging are still poorly known. In this study, adult mice (6months old) started to receive caffeine (0.3 and 1.0mg/mL, drinking water) during 12-14months only in the light cycle and at weekdays. The open field (OF) and elevated plus maze (EPM) testing were used to determine the effects of caffeine on anxiety-related behavior in adult and aged mice (18-20months old). Because aging alters synaptic proteins, we also evaluated SNAP-25 (as a nerve terminals marker), GFAP (as an astrocyte marker) and adenosine A 1 and A 2A receptors levels in the cortex. According to the OF analysis, caffeine did not change both hypolocomotion and anxiety with aging. However, aged mice showed less anxiety behavior in the EPM, but after receiving caffeine (0.3mg/mL) during adulthood they were anxious as adult mice. While SNAP-25 and adenosine A 2A receptors increased with aging, both GFAP and adenosine A 1 receptors were not affected. Caffeine at moderate dose prevented the age-related increase of the SNAP-25, with no effect on adenosine A 2A receptors. The absence of effect for the highest dose suggests that tolerance to caffeine may have developed over time. Aged mice showed high responsiveness to the OF, being difficult to achieve any effect of caffeine. On the other hand this substance sustained the adult anxious behavior over time in a less stressful paradigm, and this effect was coincident with changes in the SNAP-25, suggesting the involvement of this synaptic protein in the ability of caffeine to preserve changes related to emotionality with aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    PubMed

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1 ∆/- ) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg -/- (also known as Ercc5 -/- ) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1 ∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1 ∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1 ∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  19. Characterization of AD-like phenotype in aged APPSwe/PS1dE9 mice.

    PubMed

    Huang, Huang; Nie, Sipei; Cao, Min; Marshall, Charles; Gao, Junying; Xiao, Na; Hu, Gang; Xiao, Ming

    2016-08-01

    Transgenic APPSwe/PS1dE9 (APP/PS1) mice that overproduce amyloid beta (Aβ) are extensively used in the studies of pathogenesis and experimental therapeutics and new drug screening for Alzheimer's disease (AD). However, most of the current literature uses young or adult APP/PS1 mice. In order to provide a broader view of AD-like phenotype of this animal model, in this study, we systematically analyzed behavioral and pathological profiles of 24-month-old male APP/PS1 mice. Aged APP/PS1 mice had reference memory deficits as well as anxiety, hyperactivity, and social interaction impairment. Consistently, there was obvious deposition of amyloid plaques in the dorsal hippocampus with decreased expression of insulin-degrading enzyme, a proteolytic enzyme responsible for degradation of intracellular Aβ. Furthermore, decreases in hippocampal volume, neuronal number and synaptophysin expression, and astrocyte atrophy were also observed in aged APP/PS1 mice. This finding suggests that aged APP/PS1 mice can well replicate cognitive and noncognitive behavioral abnormalities, hippocampal atrophy, and neuronal and astrocyte degeneration in AD patients, to enable more objective and refined preclinical evaluation of therapeutic drugs and strategies for AD treatment.

  20. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    PubMed

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  1. A Longitudinal Study of Cognition, Proton MR Spectroscopy and Synaptic and Neuronal Pathology in Aging Wild-type and AβPPswe-PS1dE9 Mice

    PubMed Central

    Jansen, Diane; Zerbi, Valerio; Janssen, Carola I. F.; Dederen, Pieter J. W. C.; Mutsaers, Martina P. C.; Hafkemeijer, Anne; Janssen, Anna-Lena; Nobelen, Cindy L. M.; Veltien, Andor; Asten, Jack J.; Heerschap, Arend; Kiliaan, Amanda J.

    2013-01-01

    Proton magnetic resonance spectroscopy (1H MRS) is a valuable tool in Alzheimer’s disease research, investigating the functional integrity of the brain. The present longitudinal study set out to characterize the neurochemical profile of the hippocampus, measured by single voxel 1H MRS at 7 Tesla, in the brains of AβPPSswe-PS1dE9 and wild-type mice at 8 and 12 months of age. Furthermore, we wanted to determine whether alterations in hippocampal metabolite levels coincided with behavioral changes, cognitive decline and neuropathological features, to gain a better understanding of the underlying neurodegenerative processes. Moreover, correlation analyses were performed in the 12-month-old AβPP-PS1 animals with the hippocampal amyloid-β deposition, TBS-T soluble Aβ levels and high-molecular weight Aβ aggregate levels to gain a better understanding of the possible involvement of Aβ in neurochemical and behavioral changes, cognitive decline and neuropathological features in AβPP-PS1 transgenic mice. Our results show that at 8 months of age AβPPswe-PS1dE9 mice display behavioral and cognitive changes compared to age-matched wild-type mice, as determined in the open field and the (reverse) Morris water maze. However, there were no variations in hippocampal metabolite levels at this age. AβPP-PS1 mice at 12 months of age display more severe behavioral and cognitive impairment, which coincided with alterations in hippocampal metabolite levels that suggest reduced neuronal integrity. Furthermore, correlation analyses suggest a possible role of Aβ in inflammatory processes, synaptic dysfunction and impaired neurogenesis. PMID:23717459

  2. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses

    PubMed Central

    Clark, Erica S.; Flannery, Brenna M.; Gardner, Elizabeth M.; Pestka, James J.

    2015-01-01

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes. PMID:26492270

  3. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses.

    PubMed

    Clark, Erica S; Flannery, Brenna M; Gardner, Elizabeth M; Pestka, James J

    2015-10-19

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  4. Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice.

    PubMed

    Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice ( n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD.

  5. Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice

    PubMed Central

    Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice (n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD. PMID:28217289

  6. High Intensity Interval Training Improves Physical Performance and Frailty in Aged Mice.

    PubMed

    Seldeen, Kenneth Ladd; Lasky, Ginger; Leiker, Merced Marie; Pang, Manhui; Personius, Kirkwood Ely; Troen, Bruce Robert

    2018-03-14

    Sarcopenia and frailty are highly prevalent in older individuals, increasing the risk of disability and loss of independence. High intensity interval training (HIIT) may provide a robust intervention for both sarcopenia and frailty by achieving both strength and endurance benefits with lower time commitments than other exercise regimens. To better understand the impacts of HIIT during aging, we compared 24-month-old C57BL/6J sedentary mice with those that were administered 10-minute uphill treadmill HIIT sessions three times per week over 16 weeks. Baseline and end point assessments included body composition, physical performance, and frailty based on criteria from the Fried physical frailty scale. HIIT-trained mice demonstrated dramatic improvement in grip strength (HIIT 10.9% vs -3.9% in sedentary mice), treadmill endurance (32.6% vs -2.0%), and gait speed (107.0% vs 39.0%). Muscles from HIIT mice also exhibited greater mass, larger fiber size, and an increase in mitochondrial biomass. Furthermore, HIIT exercise led to a dramatic reduction in frailty scores in five of six mice that were frail or prefrail at baseline, with four ultimately becoming nonfrail. The uphill treadmill HIIT exercise sessions were well tolerated by aged mice and led to performance gains, improvement in underlying muscle physiology, and reduction in frailty.

  7. NF-κB inhibition delays DNA damage–induced senescence and aging in mice

    PubMed Central

    Tilstra, Jeremy S.; Robinson, Andria R.; Wang, Jin; Gregg, Siobhán Q.; Clauson, Cheryl L.; Reay, Daniel P.; Nasto, Luigi A.; St Croix, Claudette M.; Usas, Arvydas; Vo, Nam; Huard, Johnny; Clemens, Paula R.; Stolz, Donna B.; Guttridge, Denis C.; Watkins, Simon C.; Garinis, George A.; Wang, Yinsheng; Niedernhofer, Laura J.; Robbins, Paul D.

    2012-01-01

    The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB–activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging. PMID:22706308

  8. Restoration of the immune functions in aged mice by supplementation with a new herbal composition, HemoHIM.

    PubMed

    Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee; Yee, Sung-Tae

    2008-01-01

    The effect of a new herbal composition, HemoHIM, on immune functions was examined in aged mice, in which various immune responses had been impaired. The composition HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Supplementation to the aged mice with HemoHIM restored the proliferative response and cytokine production of splenocytes with a response to ConA. Also, HemoHIM recovered the NK cell activity which had been impaired in the aged mice. Meanwhile aging is known to reduce the Th1-like function, but not the Th2-like function, resulting in a Th1/Th2 imbalance. HemoHIM restored the Th1/Th2 balance in the aged mice through enhanced IFN-gamma and IgG2a production, and conversely a reduced IL-4 and IgG1 production. It was found that one factor for the Th1/Th2 imbalance in the aged mice was a lower production of IL-12p70. However, HemoHIM restored the IL-12p70 production in the aged mice. These results suggested that HemoHIM was effective for the restoration of impaired immune functions of the aged mice and therefore could be a good recommendation for immune restoration in elderly humans. Copyright (c) 2007 John Wiley & Sons, Ltd.

  9. Aged Tg2576 mice are impaired on social memory and open field habituation tests.

    PubMed

    Deacon, R M J; Koros, E; Bornemann, K D; Rawlins, J N P

    2009-02-11

    In a previous publication [Deacon RMJ, Cholerton LL, Talbot K, Nair-Roberts RG, Sanderson DJ, Romberg C, et al. Age-dependent and -independent behavioral deficits in Tg2576 mice. Behav Brain Res 2008;189:126-38] we found that very few cognitive tests were suitable for demonstrating deficits in Tg2576 mice, an amyloid over-expression model of Alzheimer's disease, even at 23 months of age. However, in a retrospective analysis of a separate project on these mice, tests of social memory and open field habituation revealed large cognitive impairments. Controls showed good open field habituation, but Tg2576 mice were hyperactive and failed to habituate. In the test of social memory for a juvenile mouse, controls showed considerably less social investigation on the second meeting, indicating memory of the juvenile, whereas Tg2576 mice did not show this decrement.As a control for olfactory sensitivity, on which social memory relies, the ability to find a food pellet hidden under wood chip bedding was assessed. Tg2576 mice found the pellet as quickly as controls. As this test requires digging ability, this was independently assessed in tests of burrowing and directly observed digging. In line with previous results and the hippocampal dysfunction characteristic of aged Tg2576 mice, they both burrowed and dug less than controls.

  10. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance.

  11. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  12. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers.

    PubMed

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-04-15

    B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Reference memory, anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex.

    PubMed

    Frick, K M; Burlingame, L A; Arters, J A; Berger-Sweeney, J

    2000-01-01

    Age-related changes in learning and memory are common in rodents. However, direct comparisons of the effects of aging on learning and memory in both males and females are lacking. The present study examined whether memory deteriorates with increasing age in C57BL/6NIA mice, and whether age-related changes in learning and memory are similar in both sexes. Male and female mice (five, 17 and 25 months of age) were tested in a battery of behavioral tasks including the Morris water maze (spatial and non-spatial reference memory), simple odor discrimination (olfactory reference memory), plus maze (anxiety/exploration), locomotor activity, and basic reflexes. Five-month-old mice learned the water maze and odor discrimination tasks rapidly. Relative to five-month-old mice, 25-month-old mice exhibited impaired spatial and olfactory reference memory, but intact non-spatial reference memory. The spatial reference memory of 17-month-old mice was also impaired, but less so than 25-month mice. Seventeen-month-old mice exhibited intact non-spatial (visual and olfactory) reference memory. Five and 25-month-old mice had similar levels of plus maze exploration and locomotor activity, whereas 17-month-old mice were more active than both groups and were slightly less exploratory than five-month-old mice. Although sex differences were not observed in the five- and 25-month groups, 17-month-old females exhibited more impaired spatial reference memory and increased anxiety relative to 17-month-old males. Estrous cycling in females deteriorated significantly with increased age; all 25-month-old females had ceased cycling and 80% of 17-month-old females displayed either irregular or absent estrous cycling. This study is the first to directly compare age-related mnemonic decline in male and female mice. The results suggest that: (i) aged mice exhibit significant deficits in spatial and olfactory reference memory relative to young mice, whereas middle-aged mice exhibit only a moderate

  14. Influence of Sex and Age on Natural Resistance to St. Louis Encephalitis Virus Infection in Mice

    PubMed Central

    Andersen, Arthur A.; Hanson, Robert P.

    1974-01-01

    A difference was observed in susceptibility of adult male and female mice to St. Louis encephalitis (SLE) virus as measured by the death rate after intravenous challenge. Female mice that had susceptibility similar to that of males at 2 months of age had increased resistance to SLE virus at 3 and 4 months of age. The increased resistance occurred after sexual maturity, indicating that the resistance factor possibly was related to an aging process in the female. The susceptibility of male mice remained unchanged over the 2- to 4-month period. Neither pregnancy nor castration had any effect on resistance of adult mice to St. Louis encephalitis virus. PMID:4857422

  15. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice.

    PubMed

    Xie, Kan; Neff, Frauke; Markert, Astrid; Rozman, Jan; Aguilar-Pimentel, Juan Antonio; Amarie, Oana Veronica; Becker, Lore; Brommage, Robert; Garrett, Lillian; Henzel, Kristin S; Hölter, Sabine M; Janik, Dirk; Lehmann, Isabelle; Moreth, Kristin; Pearson, Brandon L; Racz, Ildiko; Rathkolb, Birgit; Ryan, Devon P; Schröder, Susanne; Treise, Irina; Bekeredjian, Raffi; Busch, Dirk H; Graw, Jochen; Ehninger, Gerhard; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Sandholzer, Michael; Schmidt-Weber, Carsten; Weiergräber, Marco; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Ehninger, Dan

    2017-07-24

    Dietary restriction regimes extend lifespan in various animal models. Here we show that longevity in male C57BL/6J mice subjected to every-other-day feeding is associated with a delayed onset of neoplastic disease that naturally limits lifespan in these animals. We compare more than 200 phenotypes in over 20 tissues in aged animals fed with a lifelong every-other-day feeding or ad libitum access to food diet to determine whether molecular, cellular, physiological and histopathological aging features develop more slowly in every-other-day feeding mice than in controls. We also analyze the effects of every-other-day feeding on young mice on shorter-term every-other-day feeding or ad libitum to account for possible aging-independent restriction effects. Our large-scale analysis reveals overall only limited evidence for a retardation of the aging rate in every-other-day feeding mice. The data indicate that every-other-day feeding-induced longevity is sufficiently explained by delays in life-limiting neoplastic disorders and is not associated with a more general slowing of the aging process in mice.Dietary restriction can extend the life of various model organisms. Here, Xie et al. show that intermittent periods of fasting achieved through every-other-day feeding protect mice against neoplastic disease but do not broadly delay organismal aging in animals.

  16. HSP27 Alleviates Cardiac Aging in Mice via a Mechanism Involving Antioxidation and Mitophagy Activation.

    PubMed

    Lin, Shenglan; Wang, Yana; Zhang, Xiaojin; Kong, Qiuyue; Li, Chuanfu; Li, Yuehua; Ding, Zhengnian; Liu, Li

    2016-01-01

    Aging-induced cardiac dysfunction is a prominent feature of cardiac aging. Heat shock protein 27 (HSP27) protects cardiac function against ischemia or chemical challenge. We hypothesized that HSP27 attenuates cardiac aging. Transgenic (Tg) mice with cardiac-specific expression of the HSP27 gene and wild-type (WT) littermates were employed in the experiments. Echocardiography revealed a significant decline in the cardiac function of old WT mice compared with young WT mice. In striking contrast, the aging-induced impairment of cardiac function was attenuated in old Tg mice compared with old WT mice. Levels of cardiac aging markers were lower in old Tg mouse hearts than in old WT mouse hearts. Less interstitial fibrosis and lower contents of reactive oxygen species and ubiquitin-conjugated proteins were detected in old Tg hearts than in old WT hearts. Furthermore, old Tg hearts demonstrated lower accumulation of LC3-II and p62 than old WT hearts. Levels of Atg13, Vps34, and Rab7 were also higher in old Tg hearts than in old WT hearts. Additionally, old Tg hearts had higher levels of PINK1 and Parkin than old WT hearts, suggesting that mitophagy was activated in old Tg hearts. Taken together, HSP27 alleviated cardiac aging and this action involved antioxidation and mitophagy activation.

  17. Aging impairs dendrite morphogenesis of newborn neurons and is rescued by 7, 8-dihydroxyflavone.

    PubMed

    Wang, Xiaoting; Romine, Jennifer Lynn; Gao, Xiang; Chen, Jinhui

    2017-04-01

    All aging individuals will develop some degree of decline in cognitive capacity as time progresses. The molecular and cellular mechanisms leading to age-related cognitive decline are still not fully understood. Through our previous research, we discovered that active neural progenitor cells selectively become more quiescent in response to aging, thus leading to the decline of neurogenesis in the aged hippocampus. Here, we further find that aging impaired dendrite development of newborn neurons. Currently, no effective approach is available to increase neurogenesis or promote dendrite development of newborn neurons in the aging brain. We found that systemically administration of 7, 8-dihydroxyflavone (DHF), a small molecule imitating brain-derived neurotrophic factor (BDNF), significantly enhanced dendrite length in the newborn neurons, while it did not promote survival of immature neurons, in the hippocampus of 12-month-old mice. DHF-promoted dendrite development of newborn neurons in the hippocampus may enhance their function in the aging animal leading to a possible improvement in cognition. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. [Study on effect of Jiangtang decoction on AGEs-RAGE and oxidative stress in KK-Ay mice].

    PubMed

    Hong, Jin-Ni; Li, Wei-Wei; Fu, Hong; Wang, Xue-Mei

    2017-07-01

    To elucidate the efficacy of Jiangtang decoction(JTD) on AGEs-RAGE and oxidative stress in type 2 diabetic model KK-Ay mice. Fifty KK-Ay mice were randomly divided into 5 groups as follows: model group, metformin group, low-dose, medium-dose and high-dose of JTD group, with 10 C57BL/6J as normal group. All groups are orally administrated with equal distilled water, 250 mg•kg⁻¹ metformin hydrochloride, 2, 4,8 g•kg⁻¹ JTD, equal distilled water respectively, once per day for 12 weeks. Alanine aminotransferase(ALT), creatinine(CREA), urea nitrogen(BUN),advanced glycation end products(AGEs) and receptor of glycation end products(RAGE) in blood or urine were measured during the experiments. Furthermore, on the day of the sacrifice, kidney was collected, and electronic microscopy and immunohistochemistry were performed to evaluate the protective renal effect of JTD. In addition, the levels of AGEs, RAGE, Cata-lase(CAT) and superoxide dismutase(SOD) were assessed by Western blot, Real-time PCR or ELISA to analyze the efficacy of JTD. This study demonstrated that JTD might protect kidney of KK-Ay by down-regulating the expression of AGEs, RAGE and oxidative stress. Copyright© by the Chinese Pharmaceutical Association.

  19. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice

    PubMed Central

    Roos, Carolyn M.; Hagler, Michael; Zhang, Bin; Oehler, Elise A.; Arghami, Arman

    2013-01-01

    The purpose of this study was to characterize changes in antioxidant and age-related gene expression in aorta and aortic valve with aging, and test the hypothesis that increased mitochondrial oxidative stress accelerates age-related endothelial and aortic valve dysfunction. Wild-type (MnSOD+/+) and manganese SOD heterozygous haploinsufficient (MnSOD+/−) mice were studied at 3 and 18 mo of age. In aorta from wild-type mice, antioxidant expression was preserved, although there were age-associated increases in Nox2 expression. Haploinsufficiency of MnSOD did not alter antioxidant expression in aorta, but increased expression of Nox2. When compared with that of aorta, age-associated reductions in antioxidant expression were larger in aortic valves from wild-type and MnSOD haploinsufficient mice, although Nox2 expression was unchanged. Similarly, sirtuin expression was relatively well-preserved in aorta from both genotypes, whereas expression of SIRT1, SIRT2, SIRT3, SIRT4, and SIRT6 were significantly reduced in the aortic valve. Expression of p16ink4a, a marker of cellular senescence, was profoundly increased in both aorta and aortic valve from MnSOD+/+ and MnSOD+/− mice. Functionally, we observed comparable age-associated reductions in endothelial function in aorta from both MnSOD+/+ and MnSOD+/− mice. Interestingly, inhibition of NAD(P)H oxidase with apocynin or gp91ds-tat improved endothelial function in MnSOD+/+ mice but significantly impaired endothelial function in MnSOD+/− mice at both ages. Aortic valve function was not impaired by aging or MnSOD haploinsufficiency. Changes in antioxidant and sirtuin gene expression with aging differ dramatically between aorta and aortic valve. Furthermore, although MnSOD does not result in overt cardiovascular dysfunction with aging, compensatory transcriptional responses to MnSOD deficiency appear to be tissue specific. PMID:23997094

  20. Impaired CXCR4 Expression and Cell Engraftment of Bone Marrow-derived Cells from Aged Atherogenic Mice

    PubMed Central

    Xu, Qiyuan; Wang, Jian’An; He, Jinlin; Zhou, Mingsheng; Adi, Jennipher; Webster, Keith A; Yu, Hong

    2011-01-01

    Objectives Reduced numbers and activity of circulating progenitor cells are associated with aging and have been linked with coronary artery disease. To determine the impact of aging and atherosclerotic disease on the chemotaxic activity of bone marrow derived cells (BMCs), we examined CXCR4 surface expression on BMCs from aged and atherosclerotic mice. Methods CXCR4 expression and cellular mobility were compared between BMCs of young (6-week old) ApoE null mice (ApoE−/−) and aged ApoE−/− mice that had been fed with a high-fat, high-cholesterol diet for 6-months. Results Age and atherosclerosis correlated with significantly lower surface expression of CXCR4 that was less inducible by calcium. The impaired calcium response was associated with defective calcium influx and was partially recovered by treatment with the calcium ionophore ionomycin. ApoE−/− mice fed high fat diet for 6-months had defective CXCR4 expression and SDF-1 regulation that is equivalent to that of 24-month old wild type mice. BMCs from aged, atherogenic ApoE−/− mice also displayed defective homing to SDF-1, and the animals had lower serum and bone marrow levels of SDF-1. Conclusion Evolution of atherosclerosis in ApoE−/− mice is paralleled by progressive loss of mobility of BMCs with reductions of CXCR4 expression, and reduced levels of SDF-1 in both serum and bone marrow. These changes mute the homing capability of BMCs and may contribute to the progression of atherosclerosis in this model. PMID:21855069

  1. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age.

    PubMed

    Hwee, Darren T; Baehr, Leslie M; Philp, Andrew; Baar, Keith; Bodine, Sue C

    2014-02-01

    Age-related loss of muscle mass occurs to varying degrees in all individuals and has a detrimental effect on morbidity and mortality. Muscle RING Finger 1 (MuRF1), a muscle-specific E3 ubiquitin ligase, is believed to mediate muscle atrophy through the ubiquitin proteasome system (UPS). Deletion of MuRF1 (KO) in mice attenuates the loss of muscle mass following denervation, disuse, and glucocorticoid treatment; however, its role in age-related muscle loss is unknown. In this study, skeletal muscle from male wild-type (WT) and MuRF1 KO mice was studied up to the age of 24 months. Muscle mass and fiber cross-sectional area decreased significantly with age in WT, but not in KO mice. In aged WT muscle, significant decreases in proteasome activities, especially 20S and 26S β5 (20-40% decrease), were measured and were associated with significant increases in the maladaptive endoplasmic reticulum (ER) stress marker, CHOP. Conversely, in aged MuRF1 KO mice, 20S or 26S β5 proteasome activity was maintained or decreased to a lesser extent than in WT mice, and no increase in CHOP expression was measured. Examination of the growth response of older (18 months) mice to functional overload revealed that old WT mice had significantly less growth relative to young mice (1.37- vs. 1.83-fold), whereas old MuRF1 KO mice had a normal growth response (1.74- vs. 1.90-fold). These data collectively suggest that with age, MuRF1 plays an important role in the control of skeletal muscle mass and growth capacity through the regulation of cellular stress. © 2013 the Anatomical Society and John Wiley & Sons Ltd.

  2. 38 CFR 8.21 - Misstatement of age.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Misstatement of age. 8.21... INSURANCE Age § 8.21 Misstatement of age. If the age of the insured under a National Service life insurance... amount as the premium paid would have purchased at the correct age; if overstated, the excess of premiums...

  3. 38 CFR 8.21 - Misstatement of age.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Misstatement of age. 8.21... INSURANCE Age § 8.21 Misstatement of age. If the age of the insured under a National Service life insurance... amount as the premium paid would have purchased at the correct age; if overstated, the excess of premiums...

  4. 38 CFR 8.21 - Misstatement of age.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Misstatement of age. 8.21... INSURANCE Age § 8.21 Misstatement of age. If the age of the insured under a National Service life insurance... amount as the premium paid would have purchased at the correct age; if overstated, the excess of premiums...

  5. 38 CFR 8.21 - Misstatement of age.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Misstatement of age. 8.21... INSURANCE Age § 8.21 Misstatement of age. If the age of the insured under a National Service life insurance... amount as the premium paid would have purchased at the correct age; if overstated, the excess of premiums...

  6. 38 CFR 8.21 - Misstatement of age.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Misstatement of age. 8.21... INSURANCE Age § 8.21 Misstatement of age. If the age of the insured under a National Service life insurance... amount as the premium paid would have purchased at the correct age; if overstated, the excess of premiums...

  7. Effects of bioactive factors of the pineal gland on thymus function and cell composition of the bone marrow and spleen in mice of different age.

    PubMed

    Labunets, I F; Butenko, G M; Khavinson, V Kh

    2004-05-01

    The effects of factors from the pineal gland on the titer of thymic serum factor in the supernatant of 3-h thymus stroma cultures, number of stromal precursor fibroblasts and CD4+ cells in the bone marrow, and CD8+ cells in the spleens of adult and old CBA mice were studied in vitro. Epithalamin, Epithalon, and melatonin appreciably increased the titer of thymic serum factor in the supernatant of thymus stroma cultures from mice of different age and increased the percentage of CD4+ cells in the bone marrow suspension from old animals in vitro. The percentage of CD8+ lymphocytes decreased after incubation of splenic cells from old mice with melatonin. The percentage of bone marrow fibroblast precursor cells from adult and old mice did not appreciably change after incubation with the preparations.

  8. Characterization of age-associated changes in peripheral organ and brain region weights in C57BL/6 mice.

    PubMed

    Lessard-Beaudoin, Mélissa; Laroche, Mélissa; Demers, Marie-Josée; Grenier, Guillaume; Graham, Rona K

    2015-03-01

    In order to further understand age-related physiological changes and to have in depth reference values for C57BL/6 mice, we undertook a study to assess the effects of aging on peripheral organ weights, and brain region weights in wild type C57BL/6 male mice. Peripheral organs, body and brain region weights were collected from young (3-4 months), mid (12 months), old (23-28 months) and very old (>30 months) mice. Significant increases are observed with aging in body, liver, heart, kidney and spleen organ weights. A decrease in organ weight is observed with aging in liver and kidney only in the very old mice. In contrast, testes weight decreases with age. Within the brain, hippocampi, striata and olfactory bulbs weight decreases with age. These data further our knowledge of the anatomical and biological changes that occur with aging and provide reference values for physiological-based pharmacokinetic studies in C57BL/6 mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Retaining Residual Ovarian Tissue following Ovarian Failure Has Limited Influence on Bone Loss in Aged Mice

    PubMed Central

    Craig, Zelieann R.; Marion, Samuel L.; Funk, Janet L.; Bouxsein, Mary L.; Hoyer, Patricia B.

    2010-01-01

    Previous work showed that retaining residual ovarian tissue protects young mice from accelerated bone loss following ovarian failure. The present study was designed to determine whether this protection is also present in aged animals. Aged (9–12 months) C57BL/6Hsd female mice were divided into: CON (vehicle), VCD (160 mg/kg; 15d), or OVX (ovariectomized). Lumbar BMD was monitored by DXA and μCT used to assess vertebral microarchitecture. BMD was not different between VCD and CON at any time point but was lower (P < .05) than baseline, starting 1 month after ovarian failure in VCD and OVX mice. Following μCT analysis there were no differences between CON and VCD, but OVX mice had lower bone volume fraction, trabecular thickness, and a trend for decreased connectivity density. These findings provide evidence that retention of residual ovarian tissue may protect aged follicle-depleted mice from accelerated bone loss to a lesser extent than that observed in young mice. PMID:20948577

  10. Disuse osteopenia induced by botulinum toxin is similar in skeletally mature young and aged female C57BL/6J mice.

    PubMed

    Vegger, Jens Bay; Brüel, Annemarie; Brent, Mikkel Bo; Thomsen, Jesper Skovhus

    2018-03-01

    Osteopenia and osteoporosis predominately occur in the fully grown skeleton. However, it is unknown whether disuse osteopenia in skeletally mature, but growing, mice resembles that of fully grown mice. Twenty-four 16-week-old (young) and eighteen 44-week-old (aged) female C57BL/6J mice were investigated. Twelve young and nine aged mice were injected with botulinum toxin in one hind limb; the remaining mice served as controls. The mice were euthanized after 3 weeks of disuse. The femora were scanned by micro-computed tomography (µCT) and bone strength was determined by mechanically testing the femoral mid-diaphysis and neck. At the distal femoral metaphysis, the loss of trabecular bone volume fraction (BV/TV) differed between the young and aged mice. However, at the distal femoral epiphysis, no age-dependent differences were observed. Thinning of the trabeculae was not affected by the age of the mice at either the distal femoral metaphysis or the epiphysis. Furthermore, the aged mice lost more bone strength at the femoral mid-diaphysis, but not at the femoral neck, compared to the young mice. In general, the bone loss induced by botulinum toxin did not differ substantially between young and aged mice. Therefore, the loss of bone in young mice resembles that of aged mice, even though they are not fully grown.

  11. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer's Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET.

    PubMed

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-10-18

    Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18 F-labed fluorodeoxyglucose ( 18 F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.

  12. Effects of voluntary wheel running on LPS-induced sickness behavior in aged mice.

    PubMed

    Martin, Stephen A; Pence, Brandt D; Greene, Ryan M; Johnson, Stephanie J; Dantzer, Robert; Kelley, Keith W; Woods, Jeffrey A

    2013-03-01

    Peripheral stimulation of the innate immune system with LPS causes exaggerated neuroinflammation and prolonged sickness behavior in aged mice. Regular moderate intensity exercise has been shown to exert anti-inflammatory effects that may protect against inappropriate neuroinflammation and sickness in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced sickness behavior and proinflammatory cytokine gene expression in ~22-month-old C57BL/6J mice. Mice were housed with a running wheel (VWR), locked-wheel (Locked), or no wheel (Standard) for 10 weeks, after which they were intraperitoneally injected with LPS across a range of doses (0.02, 0.08, 0.16, 0.33 mg/kg). VWR mice ran on average 3.5 km/day and lost significantly more body weight and body fat, and increased their forced exercise tolerance compared to Locked and Shoebox mice. VWR had no effect on LPS-induced anorexia, adipsia, weight-loss, or reductions in locomotor activity at any LPS dose when compared to Locked and Shoebox groups. LPS induced sickness behavior in a dose-dependent fashion (0.33>0.02 mg/kg). Twenty-four hours post-injection (0.33 mg/kg LPS or Saline) we found a LPS-induced upregulation of whole brain TNFα, IL-1β, and IL-10 mRNA, and increased IL-1β and IL-6 in the spleen and liver; these effects were not attenuated by VWR. We conclude that VWR does not reduce LPS-induced exaggerated or prolonged sickness behavior in aged animals, or 24h post-injection (0.33 mg/kg LPS or Saline) brain and peripheral proinflammatory cytokine gene expression. The necessity of the sickness response is critical for survival and may outweigh the subtle benefits of exercise training in aged animals. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia

    PubMed Central

    Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399

  14. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia.

    PubMed

    Ma, Lijie; Liu, Yan; Landry, Nichole K; El-Achkar, Tarek M; Lieske, John C; Wu, Xue-Ru

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.

  15. HDAC Inhibitors Restore the Capacity of Aged Mice to Respond to Haloperidol through Modulation of Histone Acetylation

    PubMed Central

    Montalvo-Ortiz, Janitza L; Keegan, Jack; Gallardo, Christopher; Gerst, Nicolas; Tetsuka, Kazuhiro; Tucker, Chris; Matsumoto, Mitsuyuki; Fang, Deyu; Csernansky, John G; Dong, Hongxin

    2014-01-01

    Antipsychotic drugs are widely prescribed to elderly patients for the treatment of a variety of psychopathological conditions, including psychosis and the behavioral disturbances associated with dementia. However, clinical experience suggests that these drugs may be less efficacious in the elderly individuals than in the young. Recent studies suggest that aging may be associated with epigenetic changes and that valproic acid (VPA), a histone deacetylase inhibitor, may reverse such changes. However, it is not yet known whether HDAC inhibitors can modulate age-related epigenetic changes that may impact antipsychotic drug action. In this study, we analyzed conditioned avoidance response (CAR) and c-Fos expression patterns to elucidate the effect of HDAC inhibitors VPA and entinostat (MS-275) on behavioral and molecular markers of the effects of haloperidol (HAL) in aged mice. Our results showed that HAL administration failed to suppress the avoidance response during the CAR test, suggesting an age-related decrease in drug efficacy. In addition, HAL-induced c-Fos expression in the nucleus accumbens shell and prefrontal cortex was significantly lower in aged mice as compared with young mice. Pretreatment with VPA and MS-275 significantly improved HAL effects on the CAR test in aged mice. Also, VPA and MS-275 pretreatment restored HAL-induced increases in c-Fos expression in the nucleus accumbens shell and prefrontal cortex of aged mice to levels comparable with those observed in young mice. Lastly, but most importantly, increases in c-Fos expression and HAL efficacy in the CAR test of the HAL+VPA and HAL+MS-275 groups were correlated with elevated histone acetylation at the c-fos promoter region in aged mice. These findings suggest that pretreatment with VPA or MS-275 increases the behavioral and molecular effects of HAL in aged mice and that these effects occur via modulation of age-related histone hypoacetylation in the nucleus accumbens shell and prefrontal cortex

  16. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canada, A.T.; Calabrese, E.J.; Leonard, D.

    1986-09-01

    The effect of age on the metabolism of pentobarbital in mice and rats was investigated following exposure to 0.3 ppm of ozone for 3.75 hr. Young animals were 2.5 months of age and the mature were 18 months. The pentobarbital sleeping time was significantly prolonged following the ozone exposure in both the mice and rats when compared with an air control. No ozone effect on sleeping time was found in the young animals. The results indicate that there may be an age-related sensitivity to the occurrence of ozone-related inhibition of pentobarbital metabolism.

  17. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined.more » CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.« less

  18. Differential Effects of Leucine Supplementation in Young and Aged Mice at the Onset of Skeletal Muscle Regeneration

    PubMed Central

    Perry, Richard A.; Brown, Lemuel A.; Lee, David E.; Brown, Jacob L.; Baum, Jamie I.; Greene, Nicholas P.; Washington, Tyrone A.

    2016-01-01

    Aging decreases the ability of skeletal muscle to respond to injury. Leucine has been demonstrated to target protein synthetic pathways in skeletal muscle thereby enhancing this response. However, the effect of aging on leucine-induced alterations in protein synthesis at the onset of skeletal muscle regeneration has not been fully elucidated. The purpose of this study was to determine if aging alters skeletal muscle regeneration and leucine-induced alterations in markers of protein synthesis. The tibialis anterior of young (3 months) and aged (24 months) female C57BL/6J mice were injected with either bupivacaine or PBS, and the mice were given ad libitum access to leucine-supplemented or normal drinking water. Protein and gene expression of markers of protein synthesis and degradation, respectively, were analyzed at three days post-injection. Following injury in young mice, leucine supplementation was observed to elevate only p-p70S6K. In aged mice, leucine was shown to elicit higher p-mTOR content with and without injury, and p-4EBP-1 content post-injury. Additionally in aged mice, leucine was shown to elicit higher content of relative p70S6K post-injury. Our study shows that leucine supplementation affects markers of protein synthesis at the onset of skeletal muscle regeneration differentially in young and aged mice. PMID:27327351

  19. Effect of ageing on pulmonary inflammation, airway hyperresponsiveness and T and B cell responses in antigen-sensitized and -challenged mice.

    PubMed

    Busse, Paula J; Zhang, Teng Fei; Srivastava, Kamal; Schofield, Brian; Li, Xiu-Min

    2007-09-01

    The effect of ageing on several pathologic features of allergic asthma (pulmonary inflammation, eosinophilia, mucus hypersecretion), and their relationship with airway hyperresponsiveness (AHR) is not well characterized. To evaluate lung inflammation, mucus metaplasia and AHR in relationship with age in murine models of allergic asthma comparing young and older mice. Young (6 weeks) and older (6, 12, 18 months) BALB/c mice were sensitized and challenged with ovalbumin (OVA). AHR and bronchoalveolar fluid (BALF), total inflammatory cell count and differential were measured. To evaluate mucus metaplasia, quantitative PCR for the major airway mucin-associated gene, MUC-5AC, from lung tissue was measured, and lung tissue sections stained with periodic acid-Schiff (PAS) for goblet-cell enumeration. Lung tissue cytokine gene expression was determined by quantitative PCR, and systemic cytokine protein levels by ELISA from spleen-cell cultures. Antigen-specific serum IgE was determined by ELISA. AHR developed in both aged and young OVA-sensitized/challenged mice (OVA mice), and was more significantly increased in young OVA mice than in aged OVA mice. However, BALF eosinophil numbers were significantly higher, and lung histology showed greater inflammation in aged OVA mice than in young OVA mice. MUC-5AC expression and numbers of PAS+ staining bronchial epithelial cells were significantly increased in the aged OVA mice. All aged OVA mice had increased IL-5 and IFN-gamma mRNA expression in the lung and IL-5 and IFN-gamma protein levels from spleen cell cultures compared with young OVA mice. OVA-IgE was elevated to a greater extent in aged OVA mice. Although pulmonary inflammation and mucus metaplasia after antigen sensitization/challenge occurred to a greater degree in older mice, the increase in AHR was significantly less compared with younger OVA mice. Antigen treatment produced a unique cytokine profile in older mice (elevated IFN-gamma and IL-5) compared with young mice

  20. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum alleviates age-inflicted oxidative stress and improves expression of biomarkers of ageing in mice.

    PubMed

    Kaushal, Deepti; Kansal, Vinod K

    2012-02-01

    The potential benefiting effects of probiotic Dahi on age-inflicted accumulation of oxidation products, antioxidant enzymes and expression of biomarkers of ageing were evaluated in mice. Probiotic Dahi were prepared by co-culturing in buffalo milk (3% fat) Dahi bacteria (Lactococcus lactis ssp. cremoris NCDC-86 and Lactococcus lactis ssp. lactis biovar diacetylactis NCDC-60) along with selected strain of Lactobacillus acidophilus LaVK2 (La-Dahi) or combined L. acidophilus and Bifidobacterium bifidum BbVK3 (LaBb-Dahi). Four groups of 12 months old mice (6 each) were fed for 4 months supplements (5 g/day) of buffalo milk (3% fat), Dahi, La-Dahi and LaBb-Dahi, respectively, with basal diet. The activities of catalase (CAT) and glutathione peroxidase (GPx) declined and the contents of oxidation products, thiobarbituric acid reactive substances (TBARS) and protein carbonyls, increased in red blood corpuscles (RBCs), liver, kidney and heart tissues and superoxide dismutase (SOD) activity increased in RBCs and hepatic tissues during ageing of mice. Feeding ageing mice with La-Dahi or LaBb-Dahi increased CAT activity in all the four tissues, and GPx activity in RBCs and hepatic tissue, and a significant decline in TBARS in plasma, kidney and hepatic tissues and protein carbonyls in plasma. Feeding mice with probiotic Dahi also reversed age related decline in expression of biomarkers of ageing, peroxisome proliferators activated receptor-α, senescence marker protein-30 (SMP-30) and klotho in hepatic and kidney tissues. The present study suggests that probiotic Dahi containing selected strains of bacteria can be used as a potential nutraceutical intervention to combat oxidative stress and molecular alterations associated with ageing.

  1. Advanced age-related denervation and fiber-type grouping in skeletal muscle of SOD1 knockout mice.

    PubMed

    Kostrominova, Tatiana Y

    2010-11-30

    In this study skeletal muscles from 1.5- and 10-month-old Cu/Zn superoxide dismutase (SOD1) homozygous knockout (JLSod1(-/-)) mice obtained from The Jackson Laboratory (C57Bl6/129SvEv background) were compared with muscles from age- and sex-matched heterozygous (JLSod1(+/-)) littermates. The results of this study were compared with previously published data on two different strains of Sod1(-/-) mice: one from Dr. Epstein's laboratory (ELSod1(-/-); C57Bl6 background) and the other from Cephalon, Inc. (CSod1(-/-); 129/CD-1 background). Grouping of succinate dehydrogenase-positive fibers characterized muscles of Sod1(-/-) mice from all three strains. The 10-month-old Sod1(-/-)C and JL mice displayed pronounced denervation of the gastrocnemius muscle, whereas the ELSod1(-/-) mice displayed a small degree of denervation at this age, but developed accelerated age-related denervation later on. Denervation markers were up-regulated in skeletal muscle of 10-month-old JLSod1(-/-) mice. This study is the first to show that metallothionein mRNA and protein expression was up-regulated in the skeletal muscle of 10-month-old JLSod1(-/-) mice and was mostly localized to the small atrophic muscle fibers. In conclusion, all three strains of Sod1(-/-) mice develop accelerated age-related muscle denervation, but the genetic background has significant influence on the progress of denervation. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Alterations in Skeletal Muscle Fatty Acid Handling Predisposes Middle-Aged Mice to Diet-Induced Insulin Resistance

    PubMed Central

    Koonen, Debby P.Y.; Sung, Miranda M.Y.; Kao, Cindy K.C.; Dolinsky, Vernon W.; Koves, Timothy R.; Ilkayeva, Olga; Jacobs, René L.; Vance, Dennis E.; Light, Peter E.; Muoio, Deborah M.; Febbraio, Maria; Dyck, Jason R.B.

    2010-01-01

    OBJECTIVE Although advanced age is a risk factor for type 2 diabetes, a clear understanding of the changes that occur during middle age that contribute to the development of skeletal muscle insulin resistance is currently lacking. Therefore, we sought to investigate how middle age impacts skeletal muscle fatty acid handling and to determine how this contributes to the development of diet-induced insulin resistance. RESEARCH DESIGN AND METHODS Whole-body and skeletal muscle insulin resistance were studied in young and middle-aged wild-type and CD36 knockout (KO) mice fed either a standard or a high-fat diet for 12 weeks. Molecular signaling pathways, intramuscular triglycerides accumulation, and targeted metabolomics of in vivo mitochondrial substrate flux were also analyzed in the skeletal muscle of mice of all ages. RESULTS Middle-aged mice fed a standard diet demonstrated an increase in intramuscular triglycerides without a concomitant increase in insulin resistance. However, middle-aged mice fed a high-fat diet were more susceptible to the development of insulin resistance—a condition that could be prevented by limiting skeletal muscle fatty acid transport and excessive lipid accumulation in middle-aged CD36 KO mice. CONCLUSION Our data provide insight into the mechanisms by which aging becomes a risk factor for the development of insulin resistance. Our data also demonstrate that limiting skeletal muscle fatty acid transport is an effective approach for delaying the development of age-associated insulin resistance and metabolic disease during exposure to a high-fat diet. PMID:20299464

  3. Sample entropy and regularity dimension in complexity analysis of cortical surface structure in early Alzheimer's disease and aging.

    PubMed

    Chen, Ying; Pham, Tuan D

    2013-05-15

    We apply for the first time the sample entropy (SampEn) and regularity dimension model for measuring signal complexity to quantify the structural complexity of the brain on MRI. The concept of the regularity dimension is based on the theory of chaos for studying nonlinear dynamical systems, where power laws and entropy measure are adopted to develop the regularity dimension for modeling a mathematical relationship between the frequencies with which information about signal regularity changes in various scales. The sample entropy and regularity dimension of MRI-based brain structural complexity are computed for early Alzheimer's disease (AD) elder adults and age and gender-matched non-demented controls, as well as for a wide range of ages from young people to elder adults. A significantly higher global cortical structure complexity is detected in AD individuals (p<0.001). The increase of SampEn and the regularity dimension are also found to be accompanied with aging which might indicate an age-related exacerbation of cortical structural irregularity. The provided model can be potentially used as an imaging bio-marker for early prediction of AD and age-related cognitive decline. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    PubMed

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  5. Mangiferin induces islet regeneration in aged mice through regulating p16INK4a.

    PubMed

    Wang, Hailian; He, Xia; Lei, Tiantian; Liu, Yilong; Huai, Guoli; Sun, Minghan; Deng, Shaoping; Yang, Hongji; Tong, Rongsheng; Wang, Yi

    2018-06-01

    Previous studies by our group on mangiferin demonstrated that it exerts an anti‑hyperglycemic effect through the regulation of cell cycle proteins in 3‑month‑old, partially pancreatectomized (PPx) mice. However, β‑cell proliferation is known to become severely restricted with advanced age. Therefore, it is unknown whether mangiferin is able to reverse the diabetic condition and retain β‑cell regeneration capability in aged mice. In the present study, 12‑month‑old C57BL/6J mice that had undergone PPx were subjected to mangiferin treatment (90 mg/kg) for 28 days. Mangiferin‑treated aged mice exhibited decreased blood glucose levels and increased glucose tolerance, which was accompanied with higher serum insulin levels when compared with those in untreated PPx control mice. In addition, islet hyperplasia, elevated β‑cell proliferation and reduced β‑cell apoptosis were also identified in the mice that received mangiferin treatment. Further studies on the mRNA transcript and protein expression levels indicated comparatively increased levels of cyclins D1 and D2 and cyclin‑dependent kinase 4 in mangiferin‑treated mice, while the levels of p27Kip1 and p16INK4a were decreased relative to those in the untreated PPx controls. Of note, mangiferin treatment improved the proliferation rate of islet β‑cells in adult mice overexpressing p16INK4a, suggesting that mangiferin induced β‑cell proliferation via the regulation of p16INK4a. In addition, the mRNA transcription levels of critical genes associated with insulin secretion, including pancreatic and duodenal homeobox 1, glucose transporter 2 and glucokinase, were observed to be upregulated after mangiferin treatment. Taken together, it was indicated that mangiferin treatment significantly induced β‑cell proliferation and inhibited β‑cell apoptosis by regulating cell cycle checkpoint proteins. Furthermore, mangiferin was also demonstrated to regulate genes associated with insulin

  6. Mangiferin induces islet regeneration in aged mice through regulating p16INK4a

    PubMed Central

    Liu, Yilong; Huai, Guoli; Sun, Minghan; Deng, Shaoping; Yang, Hongji; Tong, Rongsheng; Wang, Yi

    2018-01-01

    Previous studies by our group on mangiferin demonstrated that it exerts an antihyperglycemic effect through the regulation of cell cycle proteins in 3-month-old, partially pancreatectomized (PPx) mice. However, β-cell proliferation is known to become severely restricted with advanced age. Therefore, it is unknown whether mangiferin is able to reverse the diabetic condition and retain β-cell regeneration capability in aged mice. In the present study, 12-month-old C57BL/6J mice that had undergone PPx were subjected to mangiferin treatment (90 mg/kg) for 28 days. Mangiferin-treated aged mice exhibited decreased blood glucose levels and increased glucose tolerance, which was accompanied with higher serum insulin levels when compared with those in untreated PPx control mice. In addition, islet hyperplasia, elevated β-cell proliferation and reduced β-cell apoptosis were also identified in the mice that received mangiferin treatment. Further studies on the mRNA transcript and protein expression levels indicated comparatively increased levels of cyclins D1 and D2 and cyclin-dependent kinase 4 in mangiferin-treated mice, while the levels of p27Kip1 and p16INK4a were decreased relative to those in the untreated PPx controls. Of note, mangiferin treatment improved the proliferation rate of islet β-cells in adult mice overexpressing p16INK4a, suggesting that mangiferin induced β-cell proliferation via the regulation of p16INK4a. In addition, the mRNA transcription levels of critical genes associated with insulin secretion, including pancreatic and duodenal homeobox 1, glucose transporter 2 and glucokinase, were observed to be upregulated after mangiferin treatment. Taken together, it was indicated that mangiferin treatment significantly induced β-cell proliferation and inhibited β-cell apoptosis by regulating cell cycle checkpoint proteins. Furthermore, mangiferin was also demonstrated to regulate genes associated with insulin secretion. Collectively these, results

  7. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    PubMed

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  8. Effects of ethanol on immune response in the brain: region-specific changes in aged mice.

    PubMed

    Kane, Cynthia J M; Phelan, Kevin D; Douglas, James C; Wagoner, Gail; Johnson, Jennifer Walker; Xu, Jihong; Drew, Paul D

    2013-05-23

    Alcohol abuse has dramatic effects on the health of the elderly. Recent studies indicate that ethanol increases immune activity in younger animals and that some of these proinflammatory molecules alter alcohol consumption and addiction. However, the effects of alcohol on immune activation in aged animals have not been thoroughly investigated. We compared the effects of ethanol on chemokine and cytokine expression in the hippocampus, cerebellum, and cerebral cortex of aged C57BL/6 mice. Mice were treated via gavage with 6 g/kg ethanol for 10 days and tissue was harvested 1 day post-treatment. Ethanol selectively increased mRNA levels of the chemokine (C-C motif) ligand 2/monocyte chemotactic protein-1 in the hippocampus and cerebellum, but not in the cortex of aged mice relative to control animals. In this paradigm, ethanol did not affect mRNA levels of the cytokines IL-6 or TNF-α in any of these brain regions in aged animals. Collectively, these data indicate a region-specific susceptibility to ethanol regulation of neuroinflammatory and addiction-related molecules in aged mice. These studies could have important implications concerning alcohol-induced neuropathology and alcohol addiction in the elderly.

  9. Higher mortality and impaired elimination of bacteria in aged mice after intracerebral infection with E. coli are associated with an age-related decline of microglia and macrophage functions.

    PubMed

    Schütze, Sandra; Ribes, Sandra; Kaufmann, Annika; Manig, Anja; Scheffel, Jörg; Redlich, Sandra; Bunkowski, Stephanie; Hanisch, Uwe-Karsten; Brück, Wolfgang; Nau, Roland

    2014-12-30

    Incidence and mortality of bacterial meningitis are strongly increased in aged compared to younger adults demanding new strategies to improve prevention and therapy of bacterial central nervous system (CNS) infections the elderly. Here, we established a geriatric mouse model for an intracerebral E. coli infection which reflects the clinical situation in aged patients: After intracerebral challenge with E. coli K1, aged mice showed a higher mortality, a faster development of clinical symptoms, and a more pronounced weight loss. Elimination of bacteria and systemic inflammatory response were impaired in aged mice, however, the number of infiltrating leukocytes and microglial cells in the CNS of aged and young mice did not differ substantially. In vitro, primary microglial cells and peritoneal macrophages from aged mice phagocytosed less E. coli and released less NO and cyto-/chemokines compared to cells from young mice both without activation and after stimulation by agonists of TLR 2, 4, and 9. Our results suggest that the age-related decline of microglia and macrophage functions plays an essential role for the higher susceptibility of aged mice to intracerebral infections. Strategies to improve the phagocytic potential of aged microglial cells and macrophages appear promising for prevention and treatment of CNS infections in elderly patients.

  10. Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice.

    PubMed

    Mendias, Christopher L; Bakhurin, Konstantin I; Gumucio, Jonathan P; Shallal-Ayzin, Mark V; Davis, Carol S; Faulkner, John A

    2015-08-01

    The molecular mechanisms behind aging-related declines in muscle function are not well understood, but the growth factor myostatin (MSTN) appears to play an important role in this process. Additionally, epidemiological studies have identified a positive correlation between skeletal muscle mass and longevity. Given the role of myostatin in regulating muscle size, and the correlation between muscle mass and longevity, we tested the hypotheses that the deficiency of myostatin would protect oldest-old mice (28-30 months old) from an aging-related loss in muscle size and contractility, and would extend the maximum lifespan of mice. We found that MSTN(+/-) and MSTN(-/-) mice were protected from aging-related declines in muscle mass and contractility. While no differences were detected between MSTN(+/+) and MSTN(-/-) mice, MSTN(+/-) mice had an approximately 15% increase in maximal lifespan. These results suggest that targeting myostatin may protect against aging-related changes in skeletal muscle and contribute to enhanced longevity. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system.

    PubMed

    Godbout, Jonathan P; Moreau, Maïté; Lestage, Jacques; Chen, Jing; Sparkman, Nathan L; O'Connor, Jason; Castanon, Nathalie; Kelley, Keith W; Dantzer, Robert; Johnson, Rodney W

    2008-09-01

    Exposure to peripheral infections may be permissive to cognitive and behavioral complications in the elderly. We have reported that peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes an exaggerated neuroinflammatory response and prolonged sickness behavior in aged BALB/c mice. Because LPS also causes depressive behavior, the purpose of this study was to determine whether aging is associated with an exacerbated depressive-like response. We confirmed that LPS (0.33 mg/kg intraperitoneal) induced a protracted sickness response in aged mice with reductions in locomotor and feeding activities 24 and 48 h postinjection, when young adults had fully recovered. When submitted to the forced swim test 24 h post-LPS, both young adult and aged mice exhibited an increased duration of immobility. However, when submitted to either the forced swim test or the tail suspension test 72 h post-LPS, an increased duration of immobility was evident only in aged mice. This prolonged depressive-like behavior in aged LPS-treated mice was associated with a more pronounced induction of peripheral and brain indoleamine 2,3-dioxygenase and a markedly higher turnover rate of brain serotonin (as measured by the ratio of 5-hydroxy-indoleacetic acid over 5-hydroxy-tryptamine) compared to young adult mice at 24 post-LPS injection. These results provide the first evidence that age-associated reactivity of the brain cytokine system could play a pathophysiological role in the increased prevalence of depression observed in the elderly.

  12. Consuming a Diet Supplemented with Resveratrol Reduced Infection-Related Neuroinflammation and Deficits in Working Memory in Aged Mice

    PubMed Central

    Abraham, Jayne

    2009-01-01

    Abstract Aged mice treated peripherally with lipopolysaccharide (LPS) show an exaggerated neuroinflammatory response and cognitive deficits compared to adults. Considerable evidence suggests resveratrol, a polyphenol found in red grapes, has potent antiinflammatory effects in the periphery, but its effects on the central inflammatory response and cognitive behavior are unknown. Therefore, the current study investigated if resveratrol dietary supplementation would inhibit neuroinflammation as well as behavioral and cognitive deficits in aged mice given LPS to mimic a peripheral infection. In initial studies, adult (3–6 months) and aged (22–24 months) mice were provided control or resveratrol-supplemented diet for 4 weeks and then injected intraperitoneally (i.p.) with saline or LPS, and locomotor activity and spatial working memory were assessed. As anticipated, deficits in locomotor activity and spatial working memory indicated aged mice are more sensitive to LPS compared to adults. More importantly, the LPS-induced deficits in aged animals were mitigated by dietary supplementation of resveratrol. In addition, resveratrol consumption reduced LPS-induced interleukin-1β (IL-1β) in plasma and the IL-1β mRNA in the hippocampus of aged mice. Finally, pretreatment of BV-2 microglial cells with resveratrol potently inhibited LPS-induced IL-1β production. These data show that aged mice are more sensitive than adult mice to both the inflammatory and cognitive effects of peripheral immune stimulation and suggest that resveratrol may be useful for attenuating acute cognitive disorders in elderly individuals with an infection. PMID:20041738

  13. Role of kinin B1 and B2 receptors in memory consolidation during the aging process of mice.

    PubMed

    Lemos, Mayra Tolentino Resk; Amaral, Fabio Agostini; Dong, Karis Ester; Bittencourt, Maria Fernanda Queiroz Prado; Caetano, Ariadiny Lima; Pesquero, João Bosco; Viel, Tania Araujo; Buck, Hudson Sousa

    2010-04-01

    Under physiological conditions, elderly people present memory deficit associated with neuronal loss. This pattern is also associated with Alzheimer's disease but, in this case, in a dramatically intensified level. Kinin receptors have been involved in neurodegeneration and increase of amyloid-beta concentration, associated with Alzheimer's disease (AD). Considering these findings, this work evaluated the role of kinin receptors in memory consolidation during the aging process. Male C57Bl/6 (wt), knock-out B1 (koB1) or B2 (koB2) mice (3, 6, 12 and 18-month-old - mo; n=10 per group) were submitted to an acquisition session, reinforcement to learning (24h later: test 1) and final test (7days later: test 2), in an active avoidance apparatus, to evaluate memory. Conditioned avoidance responses (CAR, % of 50 trials) were registered. In acquisition sessions, similar CAR were obtained among age matched animals from all strains. However, a significant decrease in CAR was observed throughout the aging process (3mo: 8.8+/-2.3%; 6mo: 4.1+/-0.6%; 12mo: 2.2+/-0.6%, 18mo: 3.6+/-0.6%, P<0.01), indicating a reduction in the learning process. In test 1, as expected, memory retention increased significantly (P<0.05) in all 3- and 6-month-old animals as well as in 12-month-old-wt and 12-month-old-koB1 (P<0.01), compared to the training session. However, 12-month-old-koB2 and all 18-month-old animals did not show an increase in memory retention. In test 2, 3- and 6-month-old wt and koB1 mice of all ages showed a significant improvement in memory (P<0.05) compared to test 1. However, 12-month-old wt and koB2 mice of all ages showed no difference in memory retention. We suggest that, during the aging process, the B1 receptor could be involved in neurodegeneration and memory loss. Nevertheless, the B2 receptor is apparently acting as a neuroprotective factor. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Effects of 1.8 GHz radiofrequency field on microstructure and bone metabolism of femur in mice.

    PubMed

    Guo, Ling; Zhang, Jun-Ping; Zhang, Ke-Ying; Wang, Huan-Bo; Wang, Huan; An, Guang-Zhou; Zhou, Yan; Meng, Guo-Lin; Ding, Gui-Rong

    2018-04-30

    To investigate the effects of 1.8 GHz radiofrequency (RF) field on bone microstructure and metabolism of femur in mice, C57BL/6 mice (male, age 4 weeks) were whole-body exposed or sham exposed to 1.8 GHz RF field. Specific absorption rates of whole body and bone were approximately 2.70 and 1.14 W/kg (6 h/day for 28 days). After exposure, microstructure and morphology of femur were observed by microcomputed tomography (micro-CT), Hematoxylin and Eosin (HE) and Masson staining. Subsequently, bone parameters were calculated directly from the reconstructed images, including structure model index, bone mineral density, trabecular bone volume/total volume, connectivity density, trabecular number, trabecular thickness, and trabecular separation. Biomarkers that reflect bone metabolism, such as serum total alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), and tartrate-resistant acid phosphatase 5b (TRACP-5b), were determined by biochemical assay methods. Micro-CT and histology results showed that there was no significant change in bone microstructure and the above parameters in RF group, compared with sham group. The activity of serum ALP and BALP increased 29.47% and 16.82%, respectively, in RF group, compared with sham group (P < 0.05). In addition, there were no significant differences in the activity of serum TRACP-5b between RF group and sham group. In brief, under present experimental conditions, we did not find support for an effect of 1.8 GHz RF field on bone microstructure; however, it might promote metabolic function of osteoblasts in mice. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice

    PubMed Central

    Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.

    2015-01-01

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793

  16. Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice.

    PubMed

    Brandon, Amanda E; Stuart, Ella; Leslie, Simon J; Hoehn, Kyle L; James, David E; Kraegen, Edward W; Turner, Nigel; Cooney, Gregory J

    2016-03-01

    An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12-16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42-54 weeks of age, male WT and Acc2(-/-) mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2(-/-) mice, aged Acc2(-/-) mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2(-/-) mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic-euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2(-/-) mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action. © 2016 Society for Endocrinology.

  17. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    PubMed Central

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  18. Transcriptional profiling reveals progeroid Ercc1-/Δ mice as a model system for glomerular aging

    PubMed Central

    2013-01-01

    Background Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1-/Δ progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. Results In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1-/Δ mice showed cluster formation between young WT and Ercc1-/Δ as well as old WT and Ercc1-/Δ samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1-/Δ mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. Conclusion Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1-/Δ mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies. PMID:23947592

  19. Transcriptional profiling reveals progeroid Ercc1(-/Δ) mice as a model system for glomerular aging.

    PubMed

    Schermer, Bernhard; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Braun, Fabian; Schultze, Joachim L; Roodbergen, Marianne; Hoeijmakers, Jan Hj; Schumacher, Björn; Nürnberg, Peter; Dollé, Martijn Et; Benzing, Thomas; Müller, Roman-Ulrich; Kurschat, Christine E

    2013-08-16

    Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1(-/Δ) progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1(-/Δ) mice showed cluster formation between young WT and Ercc1(-/Δ) as well as old WT and Ercc1(-/Δ) samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1(-/Δ) mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1(-/Δ) mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies.

  20. Chronic exercise reduces hypothalamic transforming growth factor-β1 in middle-aged obese mice.

    PubMed

    Silva, Vagner R R; Katashima, Carlos K; Lenhare, Luciene; Silva, Carla G B; Morari, Joseane; Camargo, Rafael L; Velloso, Licio A; Saad, Mario A; da Silva, Adelino S R; Pauli, Jose Rodrigo; Ropelle, Eduardo Rochete

    2017-08-28

    Obesity and aging are associated with hypothalamic inflammation, hyperphagia and abnormalities in the thermogenesis control. It has been demonstrated that the association between aging and obesity induces hypothalamic inflammation and metabolic disorders, at least in part, through the atypical hypothalamic transforming growth factor-β (TGF-β1). Physical exercise has been used to modulate several metabolic parameters. Thus, the aim of this study was to evaluate the impact of chronic exercise on TGF-β1 expression in the hypothalamus of Middle-Aged mice submitted to a one year of high-fat diet (HFD) treatment. We observed that long-term of HFD-feeding induced hypothalamic TGF-β1 accumulation, potentiated the hypothalamic inflammation, body weight gain and defective thermogenesis of Middle-Aged mice when compared to Middle-Aged animals fed on chow diet. As expected, chronic exercise induced negative energy balance, reduced food consumption and increasing the energy expenditure, which promotes body weight loss. Interestingly, exercise training reduced the TGF-β1 expression and IkB-α ser32 phosphorylation in the hypothalamus of Middle-Aged obese mice. Taken together our study demonstrated that chronic exercise suppressed the TGF-β1/IkB-α axis in the hypothalamus and improved the energy homeostasis in an animal model of obesity-associated to aging.

  1. Chronic exercise reduces hypothalamic transforming growth factor-β1 in middle-aged obese mice

    PubMed Central

    Silva, Vagner R. R.; Katashima, Carlos K.; Lenhare, Luciene; Silva, Carla G. B.; Morari, Joseane; Camargo, Rafael L.; Velloso, Licio A.; Saad, Mario A.; da Silva, Adelino S. R.; Pauli, Jose Rodrigo; Ropelle, Eduardo Rochete

    2017-01-01

    Obesity and aging are associated with hypothalamic inflammation, hyperphagia and abnormalities in the thermogenesis control. It has been demonstrated that the association between aging and obesity induces hypothalamic inflammation and metabolic disorders, at least in part, through the atypical hypothalamic transforming growth factor-β (TGF-β1). Physical exercise has been used to modulate several metabolic parameters. Thus, the aim of this study was to evaluate the impact of chronic exercise on TGF-β1 expression in the hypothalamus of Middle-Aged mice submitted to a one year of high-fat diet (HFD) treatment. We observed that long-term of HFD-feeding induced hypothalamic TGF-β1 accumulation, potentiated the hypothalamic inflammation, body weight gain and defective thermogenesis of Middle-Aged mice when compared to Middle-Aged animals fed on chow diet. As expected, chronic exercise induced negative energy balance, reduced food consumption and increasing the energy expenditure, which promotes body weight loss. Interestingly, exercise training reduced the TGF-β1 expression and IkB-α ser32 phosphorylation in the hypothalamus of Middle-Aged obese mice. Taken together our study demonstrated that chronic exercise suppressed the TGF-β1/IkB-α axis in the hypothalamus and improved the energy homeostasis in an animal model of obesity-associated to aging. PMID:28854149

  2. Experimental febrile seizures induce age-dependent structural plasticity and improve memory in mice.

    PubMed

    Tao, K; Ichikawa, J; Matsuki, N; Ikegaya, Y; Koyama, R

    2016-03-24

    Population-based studies have demonstrated that children with a history of febrile seizure (FS) perform better than age-matched controls at hippocampus-dependent memory tasks. Here, we report that FSs induce two distinct structural reorganizations in the hippocampus and bidirectionally modify future learning abilities in an age-dependent manner. Compared with age-matched controls, adult mice that had experienced experimental FSs induced by hyperthermia (HT) on postnatal day 14 (P14-HT) performed better in a cognitive task that requires dentate granule cells (DGCs). The enhanced memory performance correlated with an FS-induced persistent increase in the density of large mossy fiber terminals (LMTs) of the DGCs. The memory enhancement was not observed in mice that had experienced HT-induced seizures at P11 which exhibited abnormally located DGCs in addition to the increased LMT density. The ectopic DGCs of the P11-HT mice were abolished by the diuretic bumetanide, and this pharmacological treatment unveiled the masked memory enhancement. Thus, this work provides a novel basis for age-dependent structural plasticity in which FSs influence future brain function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. A Lack of Ovarian Function Increases Neuroinflammation in Aged Mice

    PubMed Central

    Benedusi, Valeria; Meda, Clara; Della Torre, Sara; Monteleone, Giuseppina; Vegeto, Elisabetta

    2012-01-01

    Although several lines of evidence have indicated that menopause is associated with increased susceptibility to neurological disorders, the mechanisms involved in this phenomenon remain to be elucidated. Because neuroinflammation is a common feature of a number of brain diseases, we hypothesized that the cessation of ovarian functions and the consequent decrease in estrogen receptor (ER)-mediated antiinflammatory activity may represent a trigger for postmenopausal brain dysfunctions. The aim of the present study was to investigate the effects of aging and surgical menopause on the activity of ER in neuroinflammation. The present study shows that ER genes are expressed in the hippocampus, but ER transcriptional activity decreases significantly beginning at 12 months of age in intact and ovariectomized mice. With ovariectomy, we observe an age-dependent accumulation of mRNA encoding inflammatory mediators (e.g. TNFα, IL1β, and macrophage inflammatory protein-2) and changes in the morphology of astroglia and microglia. In addition, we show that aging itself is coupled with an exaggerated response to acute inflammatory stimuli with a major accumulation of TNFα, IL1β, macrophage inflammatory protein-2, and macrophage chemoattractant protein-1 mRNA in response to lipopolysaccharide administration. The response to acute inflammatory stimuli appears to be differentially modulated by the duration of hormone deprivation in 12-month-old mice. Taken together, the present results show that aging is associated with decreased ER activity, despite continuous ER synthesis, and that age-dependent neuroinflammation is strongly influenced by hormone deprivation. PMID:22492304

  4. Protective effect of atorvastatin on d-galactose-induced aging model in mice.

    PubMed

    Kaviani, Elham; Rahmani, Mohammadreza; Kaeidi, Ayat; Shamsizadeh, Ali; Allahtavakoli, Mohamad; Mozafari, Nazanin; Fatemi, Iman

    2017-09-15

    Atorvastatin (Ator), competitive inhibitors of 3-hydroxymethyl-3-glutaryl-coenzyme-A reductase, is a cholesterol lowering drug. Ator has been shown to have neuroprotective, antioxidant and anti-inflammatory properties making that a potential candidate for the treatment of central nervous system (CNS) disorders. Here we assessed the effect of Ator on the d-galactose (d-gal)-induced aging in mice. For this purpose, Ator (0.1 and 1mg/kg/p.o.), was administrated daily in d-gal-received (500mg/kg/p.o.) mice model of aging for six weeks. Anxiety-like behaviors and cognitive functions were evaluated by the elevated plus-maze and novel object recognition tasks, respectively. Physical power was assessed by forced swimming capacity test. Animals brains were analyzed for the superoxide dismutase (SOD) and brain-derived neurotrophic factor (BDNF). We found that Ator decreases the anxiety-like behaviors in d-gal-treated mice. Also, our behavioral tests showed that Ator reverses the d-gal induced learning and memory impairment. Furthermore, we found that Ator increases the physical power of d-gal-treated mice. Our results indicated that the neuroprotective effect of Ator on d-gal induced neurotoxicity is mediated, at least in part, by an increase in the SOD and BDNF levels. The results of present study suggest that Ator could be used as a novel therapeutic strategy for the treatment of age-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice.

    PubMed

    Newman, John C; Covarrubias, Anthony J; Zhao, Minghao; Yu, Xinxing; Gut, Philipp; Ng, Che-Ping; Huang, Yu; Haldar, Saptarsi; Verdin, Eric

    2017-09-05

    Ketogenic diets recapitulate certain metabolic aspects of dietary restriction such as reliance on fatty acid metabolism and production of ketone bodies. We investigated whether an isoprotein ketogenic diet (KD) might, like dietary restriction, affect longevity and healthspan in C57BL/6 male mice. We find that Cyclic KD, KD alternated weekly with the Control diet to prevent obesity, reduces midlife mortality but does not affect maximum lifespan. A non-ketogenic high-fat diet (HF) fed similarly may have an intermediate effect on mortality. Cyclic KD improves memory performance in old age, while modestly improving composite healthspan measures. Gene expression analysis identifies downregulation of insulin, protein synthesis, and fatty acid synthesis pathways as mechanisms common to KD and HF. However, upregulation of PPARα target genes is unique to KD, consistent across tissues, and preserved in old age. In all, we show that a non-obesogenic ketogenic diet improves survival, memory, and healthspan in aging mice. Published by Elsevier Inc.

  6. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels.

    PubMed

    Takahashi, Keita; Yanai, Shuichi; Shimokado, Kentaro; Ishigami, Akihito

    2017-06-01

    Coffee, one of the world's most consumed beverages, has many benefits. Some studies have reported the effects of coffee on aging. The aim of this study was to investigate the locomotor activity, energy metabolism, and lipid metabolism of aged (20-mo-old) mice given coffee. Aged C57 BL/6 NCr mice were divided into three groups: controls that were not given coffee (n = 9), a group that received 0.1% caffeinated coffee (n = 9), and a group that received 0.1% decaffeinated coffee (n = 9). This regimen continued for 17 wk until mice reached the age of 24 mo. Regular and decaffeinated coffee consumption decreased plasma-free fatty acid levels, increased hepatic adenosine triphosphate content, and decreased total mammalian target of rapamycin (mTOR) and phosphorylated mTOR (p-mTOR) protein content in the liver. However, no differences were found in the protein or activity levels of Akt, adenosine monophosphate-activated protein kinase (AMPK), p70 S6 kinase, or sterol regulatory element-binding protein 1, proteins that are upstream or downstream of the mTOR complex 1 (mTORC1)-related pathways. Regular coffee consumption increased food and water intake, locomotor activity, the volume of carbon dioxide production, and the respiration exchange ratio. Regular and decaffeinated coffee consumption decreased hepatic total mTOR and p-mTOR levels independently of Akt and AMPK pathways in aged mice. Because decreased mTORC1 activity is known to have antiaging effects, coffee consumption during old age may retard aging. Moreover, coffee consumption by the aged population had a positive effect on behavioral energy and lipid metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Induction of neuronal axon outgrowth by Shati/Nat8l by energy metabolism in mice cultured neurons.

    PubMed

    Sumi, Kazuyuki; Uno, Kyosuke; Matsumura, Shohei; Miyamoto, Yoshiaki; Furukawa-Hibi, Yoko; Muramatsu, Shin-Ichi; Nabeshima, Toshitaka; Nitta, Atsumi

    2015-09-09

    A novel N-acetyltransferase, Shati/Nat8l, was identified in the nucleus accumbens of mice repeatedly treated with methamphetamine (METH). Shati/Nat8l has been reported to inhibit the pharmacological action induced by METH. Shati/Nat8l produces N-acetylaspartate from aspartate and acetyl-CoA. Previously, we reported that overexpression of Shati/Nat8l in nucleus accumbens attenuates the response to METH by N-acetylaspartylglutamate (which is derived from N-acetylaspartate)-mGluR3 signaling in the mice brain. In the present study, to clarify the type of cells that produce Shati/Nat8l, we carried out in-situ hybridization for the detection of Shati/Nat8l mRNA along with immunohistochemical studies using serial sections of mice brain. Shati/Nat8l mRNA was detected in neuronal cells, but not in astrocytes or microglia cells. Next, we investigated the function of Shati/Nat8l in the neuronal cells in mice brain; then, we used an adeno-associated virus vector containing Shati/Nat8l for transfection and overexpression of Shati/Nat8l protein into the primary cultured neurons to investigate the contribution toward the neuronal activity of Shati/Nat8l. Overexpression of Shati/Nat8l in the mice primary cultured neurons induced axonal growth, but not dendrite elongation at day 1.5 (DIV). This finding indicated that Shati/Nat8l contributes toward neuronal development. LY341495, a selective group II mGluRs antagonist, did not abolish this axonal growth, and N-acetylaspartylglutamate itself did not abolish axon outgrowth in the same cultured system. The cultured neurons overexpressing Shati/Nat8l contained high ATP, suggesting that axon outgrowth is dependent on energy metabolism. This study shows that Shati/Nat8l in the neuron may induce axon outgrowth by ATP synthesis and not through mGluR3 signaling.

  8. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice

    PubMed Central

    Bitto, Alessandro; Ito, Takashi K; Pineda, Victor V; LeTexier, Nicolas J; Huang, Heather Z; Sutlief, Elissa; Tung, Herman; Vizzini, Nicholas; Chen, Belle; Smith, Kaleb; Meza, Daniel; Yajima, Masanao; Beyer, Richard P; Kerr, Kathleen F; Davis, Daniel J; Gillespie, Catherine H; Snyder, Jessica M; Treuting, Piper M; Kaeberlein, Matt

    2016-01-01

    The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome. DOI: http://dx.doi.org/10.7554/eLife.16351.001 PMID:27549339

  9. N-Acetylmannosamine improves sleep-wake quality in middle-aged mice: relevance to autonomic nervous function.

    PubMed

    Kuwahara, Masayoshi; Ito, Koichi; Hayakawa, Koji; Yagi, Shintaro; Shiota, Kunio

    2015-01-01

    Aging is associated with a variety of physiological changes originating peripherally and centrally, including within the autonomic nervous system. Sleep-wake disturbances constitute reliable hallmarks of aging in several animal species and humans. Recent studies have been interested in N-acetylmannosamine (ManNAc) a potential therapeutic agent for improving quality of life, as well as preventing age-related cognitive decline. In this study, ManNAc (5.0 mg/ml) was administered in the drinking water of middle-aged male C57BL/6J mice (55 weeks old) for 7 days. Mice were housed under a 12:12 h light:dark cycle at 23-24 °C. We evaluated bio-behavioral activity using electrocardiogram, body temperature and locomotor activity recorded by an implanted telemetry transmitter. To estimate sleep-wake profile, surface electroencephalogram and electromyogram leads connected to a telemetry transmitter were also implanted in mice. Autonomic nervous activity was evaluated using power spectral analysis of heart rate variability. ManNAc-treated mice spent more time in a wakeful state and less time in slow wave sleep during the dark phase. Parasympathetic nervous activity was increased following ManNAc treatment, then the sympatho-vagal balance was shifted predominance of parasympathetic nervous system. Furthermore, improvement in sleep-wake pattern was associated with increased parasympathetic nervous activity. These results suggest that ManNAc treatment can improve bio-behavioral activity and sleep-wake quality in middle-aged mice. This may have implications for improving sleep patterns in elderly humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Influence of aging on the activity of mice Sca-1+CD31- cardiac stem cells.

    PubMed

    Wu, Qiong; Zhan, Jinxi; Pu, Shiming; Qin, Liu; Li, Yun; Zhou, Zuping

    2017-01-03

    Therapeutic application of cardiac resident stem/progenitor cells (CSC/CPCs) is limited due to decline of their regenerative potential with donor age. A variety of studies have shown that the cardiac aging was the problem of the stem cells, but little is known about the impact of age on the subgroups CSC/CPCs, the relationship between subgroups CSC/CPCs ageing and age-related dysfunction. Here, we studied Sca-1+CD31- subgroups of CSCs from younger(2~3months) and older(22~24months) age mice, biological differentiation was realized using specific mediums for 14 days to induce cardiomyocyte, smooth muscle cells or endothelial cells and immunostain analysis of differentiated cell resulting were done. Proliferation and cell cycle were measured by flow cytometry assay, then used microarray to dissect variability from younger and older mice. Although the number of CSCs was higher in older mice, the advanced age significantly reduced the differentiation ability into cardiac cell lineages and the proliferation ability. Transcriptional changes in Sca-1+CD31- subgroups of CSCs during aging are related to Vitamin B6 metabolism, circadian rhythm, Tyrosine metabolism, Complement and coagulation cascades. Taking together these results indicate that Cardiac resident stem/progenitor cells have significant differences in their proliferative, pluripotency and gene profiles and those differences are age depending.

  11. [Effect of pineal peptide on parameters of the biological age and life span in mice].

    PubMed

    Anisimov, V N; Khavinson, V Kh; Zavarzina, N Iu; Zabezhinskiĭ, M A; Zimina, O A; Popovich, I G; Shtylik, A V; Arutiunian, A V; Oparina, T I; Prokopenko, V M

    2001-01-01

    Female CBA mice were injected with s.c. synthetic tetrapeptide Epithalon from a 6-month age until death. The drug failed to affect the body weight or food consumption, physical activity or behavioural parameters. However, it slowed down the age-related switching off of the estrus function, decreased body temperature, decelerated free redical processes, prolonged the mice life span with an accompanying drop in spontaneous tumour incidence.

  12. Recombinant growth differentiation factor 11 influences short-term memory and enhances Sox2 expression in middle-aged mice.

    PubMed

    Zhang, Min; Jadavji, Nafisa M; Yoo, Hyung-Suk; Smith, Patrice D

    2018-04-02

    Previous evidence suggests that a significant decline in cognitive ability begins during middle-age and continues to deteriorate with increase in age. Recent work has demonstrated the potential rejuvenation impact of growth differentiation factor-11 (GDF-11) in aged mice. We carried out experiments to evaluate the impact of a single dose of recombinant (rGDF-11) on short-term visual and spatial memory in middle-aged male mice. On the novel object recognition task, we observed middle-aged mice treated rGDF-11 showed improved performance on the novel object recognition task. However, middle-aged mice did not show increased expression of phosphorylated-Smad2/3, a downstream effector of GDF-11. We noted however that the expression of the transcription factor, Sox2 was increased within the dentate gyrus. Our data suggest that a single injection of rGDF-11 contributes to improvements in cognitive function of middle-aged animals, which may be critical in the preservation of short-term memory capacity in old age. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function

    PubMed Central

    Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Medigeshi, Guruprasad R.

    2017-01-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β–T cells (TCRβ–null) are highly susceptible and die over 10–18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage. PMID:28151989

  14. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.

    PubMed

    Jain, Nidhi; Oswal, Neelam; Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Bal, Vineeta; Medigeshi, Guruprasad R

    2017-02-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null) are highly susceptible and die over 10-18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.

  15. A Ser75-to-Asp phospho-mimicking mutation in Src accelerates ageing-related loss of retinal ganglion cells in mice.

    PubMed

    Kashiwagi, Kenji; Ito, Sadahiro; Maeda, Shuichiro; Kato, Goro

    2017-12-01

    Src knockout mice show no detectable abnormalities in central nervous system (CNS) post-mitotic neurons, likely reflecting functional compensation by other Src family kinases. Cdk1- or Cdk5-dependent Ser75 phosphorylation in the amino-terminal Unique domain of Src, which shares no homology with other Src family kinases, regulates the stability of active Src. To clarify the roles of Src Ser75 phosphorylation in CNS neurons, we established two types of mutant mice with mutations in Src: phospho-mimicking Ser75Asp (SD) and non-phosphorylatable Ser75Ala (SA). In ageing SD/SD mice, retinal ganglion cell (RGC) number in whole retinas was significantly lower than that in young SD/SD mice in the absence of inflammation and elevated intraocular pressure, resembling the pathogenesis of progressive optic neuropathy. By contrast, SA/SA mice and wild-type (WT) mice exhibited no age-related RGC loss. The age-related retinal RGC number reduction was greater in the peripheral rather than the mid-peripheral region of the retina in SD/SD mice. Furthermore, Rho-associated kinase activity in whole retinas of ageing SD/SD mice was significantly higher than that in young SD/SD mice. These results suggest that Src regulates RGC survival during ageing in a manner that depends on Ser75 phosphorylation.

  16. Chronic intermittent exposure to ayahuasca during aging does not affect memory in mice.

    PubMed

    Correa-Netto, N F; Coelho, L S; Galfano, G S; Nishide, F; Tamura, F; Shimizu, M K; Santos, J G; Linardi, A

    2017-06-05

    The Quechua term ayahuasca refers to a beverage obtained from decoctions of the liana Banisteriopsis caapi with leaves of Psychotria viridis. The ritualistic use of ayahuasca is becoming a global phenomenon, with some individuals using this beverage throughout life, including in old age. Cognitive impairment is a common manifestation during aging. There are conflicting reports on the ability of some ayahuasca compounds to exert neuroprotective or neurotoxic effects that could improve or impair learning and memory. Animal models provide a relevant and accessible means of investigating the behavioral effects of ayahuasca without the environmental conditions associated with the ritualistic use of the beverage. In this study, we investigated the influence of chronic ayahuasca exposure throughout aging on the spatial reference and habituation memories of mice. Twenty-eight male c57bl/6 mice (6 months old) received ayahuasca or water (1.5 mL/kg, orally) twice a week for 12 months and were tested in the Morris water maze (MWM), open field and elevated plus maze (EPM) tasks before and after treatment. During aging, there was significant impairment in the evocation (but not acquisition) of spatial reference memory and in habituation to the open field. There was also a decrease in locomotor activity in the open field and EPM tests, whereas the anxiety parameters were unaltered. Ayahuasca treatment did not alter any of these parameters associated with aging. These findings indicate that chronic exposure to ayahuasca during aging did not affect memory in mice.

  17. Chronic intermittent exposure to ayahuasca during aging does not affect memory in mice

    PubMed Central

    Correa-Netto, N.F.; Coelho, L.S.; Galfano, G.S.; Nishide, F.; Tamura, F.; Shimizu, M.K.; Santos, J.G.; Linardi, A.

    2017-01-01

    The Quechua term ayahuasca refers to a beverage obtained from decoctions of the liana Banisteriopsis caapi with leaves of Psychotria viridis. The ritualistic use of ayahuasca is becoming a global phenomenon, with some individuals using this beverage throughout life, including in old age. Cognitive impairment is a common manifestation during aging. There are conflicting reports on the ability of some ayahuasca compounds to exert neuroprotective or neurotoxic effects that could improve or impair learning and memory. Animal models provide a relevant and accessible means of investigating the behavioral effects of ayahuasca without the environmental conditions associated with the ritualistic use of the beverage. In this study, we investigated the influence of chronic ayahuasca exposure throughout aging on the spatial reference and habituation memories of mice. Twenty-eight male c57bl/6 mice (6 months old) received ayahuasca or water (1.5 mL/kg, orally) twice a week for 12 months and were tested in the Morris water maze (MWM), open field and elevated plus maze (EPM) tasks before and after treatment. During aging, there was significant impairment in the evocation (but not acquisition) of spatial reference memory and in habituation to the open field. There was also a decrease in locomotor activity in the open field and EPM tests, whereas the anxiety parameters were unaltered. Ayahuasca treatment did not alter any of these parameters associated with aging. These findings indicate that chronic exposure to ayahuasca during aging did not affect memory in mice. PMID:28591380

  18. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders.

    PubMed

    Yoshizaki, Kaichi; Furuse, Tamio; Kimura, Ryuichi; Tucci, Valter; Kaneda, Hideki; Wakana, Shigeharu; Osumi, Noriko

    2016-01-01

    Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.

  19. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice.

    PubMed

    Filice, Federica; Celio, Marco R; Babalian, Alexandre; Blum, Walter; Szabolcsi, Viktoria

    2017-10-15

    Aging-associated ependymal-cell pathologies can manifest as ventricular gliosis, ventricle enlargement, or ventricle stenosis. Ventricle stenosis and fusion of the lateral ventricle (LV) walls is associated with a massive decline of the proliferative capacities of the stem cell niche in the affected subventricular zone (SVZ) in aging mice. We examined the brains of adult C57BL/6 mice and found that ependymal cells located in the adhesions of the medial and lateral walls of the rostral LVs upregulated parvalbumin (PV) and displayed reactive phenotype, similarly to injury-reactive ependymal cells. However, PV+ ependymal cells in the LV-wall adhesions, unlike injury-reactive ones, did not express glial fibrillary acidic protein. S100B+/PV+ ependymal cells found in younger mice diminished in the LV-wall adhesions throughout aging. We found that periventricular PV-immunofluorescence showed positive correlation to the grade of LV stenosis in nonaged mice (<10-month-old), and that the extent of LV-wall adhesions and LV stenosis was significantly lower in mid-aged (>10-month-old) PV-knock out (PV-KO) mice. This suggests an involvement of PV+ ependymal cells in aging-associated ventricle stenosis. Additionally, we observed a time-shift in microglial activation in the LV-wall adhesions between age-grouped PV-KO and wild-type mice, suggesting a delay in microglial activation when PV is absent from ependymal cells. Our findings implicate that compromised ependymal cells of the adhering ependymal layers upregulate PV and display phenotype shift to "reactive" ependymal cells in aging-related ventricle stenosis; moreover, they also contribute to the progression of LV-wall fusion associated with a decline of the affected SVZ-stem cell niche in aged mice. © 2017 Wiley Periodicals, Inc.

  20. Spatial and temporal analysis center of pressure displacement during adolescence: Clinical implications of developmental changes.

    PubMed

    Quatman-Yates, Catherine; Bonnette, Scott; Gupta, Resmi; Hugentobler, Jason A; Wade, Shari L; Glauser, Tracy A; Ittenbach, Richard F; Paterno, Mark V; Riley, Michael A

    2018-04-01

    This study aimed to provide insight into the development of postural control abilities in youth. A total of 276 typically developing adolescents (155 males, 121 females) with a mean age of 13.23 years (range of 7.11-18.80) were recruited for participation. Subjects performed two-minute quiet standing trials in bipedal stance on a force plate. Center of pressure (COP) trajectories were quantified using Sample Entropy (SampEn) in the anterior-posterior direction (SampEn-AP), SampEn in the medial-lateral direction (SampEn-ML), and Path Length (PL) measures. Three separate linear regression analyses were conducted to predict the relationship between age and each of the response variables after adjusting for individuals' physical characteristics. Linear regression models showed an inverse relationship between age and entropy measures after adjusting for body mass index. Results indicated that chronological age was predictive of entropy and path length patterns. Specifically, older adolescents exhibited center of pressure displacement (smaller path length) and less complex, more regular center of pressure displacement patterns (lower SampEn-AP and SampEn-ML values) compared to the younger children. These findings support prior studies suggesting that developmental changes in postural control abilities may continue throughout adolescence and into adulthood. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. St8sia2 deficiency plus juvenile cannabis exposure in mice synergistically affect higher cognition in adulthood.

    PubMed

    Tantra, Martesa; Kröcher, Tim; Papiol, Sergi; Winkler, Daniela; Röckle, Iris; Jatho, Jasmin; Burkhardt, Hannelore; Ronnenberg, Anja; Gerardy-Schahn, Rita; Ehrenreich, Hannelore; Hildebrandt, Herbert

    2014-12-15

    The neural cell adhesion molecule (NCAM) and its functionally linked polysialyltransferases, ST8SIA2 and ST8SIA4, are crucial for synaptic plasticity. Variations in encoding genes have been associated with mental illness. Since cannabinoids can alter NCAM polysialylation, we hypothesized that delta-9-tetrahydrocannabinol (Δ9-THC) might act as environmental 'second hit' regarding cognition of St8sia2(-/-) mice. These mice show per se minor behavioral abnormalities, consisting of reduced anxiety and mild cognitive deficits. Chronic Δ9-THC treatment of juvenile male wildtype mice (St8sia2(+/+)) (7mg/kg every other day over 3 weeks) did not appreciably affect cognition. St8sia2(-/-) mice, however, displayed a synergistic negative consequence of Δ9-THC on learning/memory, accompanied by polysialic acid-free NCAM-180 reduction in hippocampus and polysialic acid increase in dentate outer molecular layer. These synergistic effects became obvious only months after the last Δ9-THC. We conclude that juvenile cannabis exposure may cause delayed but lasting damage on cognition in subjects genetically predisposed to altered NCAM polysialylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Intake of Wild Blueberry Powder Improves Episodic-Like and Working Memory during Normal Aging in Mice.

    PubMed

    Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie

    2016-08-01

    The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity. Georg Thieme Verlag KG Stuttgart · New York.

  3. Parity History Determines a Systemic Inflammatory Response to Spread of Ovarian Cancer in Naturally Aged Mice.

    PubMed

    Urzua, Ulises; Chacon, Carlos; Lizama, Luis; Sarmiento, Sebastián; Villalobos, Pía; Kroxato, Belén; Marcelain, Katherine; Gonzalez, María-Julieta

    2017-10-01

    Aging intersects with reproductive senescence in women by promoting a systemic low-grade chronic inflammation that predisposes women to several diseases including ovarian cancer (OC). OC risk at menopause is significantly modified by parity records during prior fertile life. To date, the combined effects of age and parity on the systemic inflammation markers that are particularly relevant to OC initiation and progression at menopause remain largely unknown. Herein, we profiled a panel of circulating cytokines in multiparous versus virgin C57BL/6 female mice at peri-estropausal age and investigated how cytokine levels were modulated by intraperitoneal tumor induction in a syngeneic immunocompetent OC mouse model. Serum FSH, LH and TSH levels increased with age in both groups while prolactin (PRL) was lower in multiparous respect to virgin mice, a finding previously observed in parous women. Serum CCL2, IL-10, IL-5, IL-4, TNF-α, IL1-β and IL-12p70 levels increased with age irrespective of parity status, but were specifically reduced following OC tumor induction only in multiparous mice. Animals developed hemorrhagic ascites and tumor implants in the omental fat band and other intraperitoneal organs by 12 weeks after induction, with multiparous mice showing a significantly extended survival. We conclude that previous parity history counteracts aging-associated systemic inflammation possibly by reducing the immunosuppression that typically allows tumor spread. Results suggest a partial impairment of the M2 shift in tumor-associated macrophages as well as decreased stimulation of regulatory B-cells in aged mice. This long term, tumor-concurrent effect of parity on inflammation markers at menopause would be a contributing factor leading to decreased OC risk.

  4. Parity History Determines a Systemic Inflammatory Response to Spread of Ovarian Cancer in Naturally Aged Mice

    PubMed Central

    Urzua, Ulises; Chacon, Carlos; Lizama, Luis; Sarmiento, Sebastián; Villalobos, Pía; Kroxato, Belén; Marcelain, Katherine; Gonzalez, María-Julieta

    2017-01-01

    Aging intersects with reproductive senescence in women by promoting a systemic low-grade chronic inflammation that predisposes women to several diseases including ovarian cancer (OC). OC risk at menopause is significantly modified by parity records during prior fertile life. To date, the combined effects of age and parity on the systemic inflammation markers that are particularly relevant to OC initiation and progression at menopause remain largely unknown. Herein, we profiled a panel of circulating cytokines in multiparous versus virgin C57BL/6 female mice at peri-estropausal age and investigated how cytokine levels were modulated by intraperitoneal tumor induction in a syngeneic immunocompetent OC mouse model. Serum FSH, LH and TSH levels increased with age in both groups while prolactin (PRL) was lower in multiparous respect to virgin mice, a finding previously observed in parous women. Serum CCL2, IL-10, IL-5, IL-4, TNF-α, IL1-β and IL-12p70 levels increased with age irrespective of parity status, but were specifically reduced following OC tumor induction only in multiparous mice. Animals developed hemorrhagic ascites and tumor implants in the omental fat band and other intraperitoneal organs by 12 weeks after induction, with multiparous mice showing a significantly extended survival. We conclude that previous parity history counteracts aging-associated systemic inflammation possibly by reducing the immunosuppression that typically allows tumor spread. Results suggest a partial impairment of the M2 shift in tumor-associated macrophages as well as decreased stimulation of regulatory B-cells in aged mice. This long term, tumor-concurrent effect of parity on inflammation markers at menopause would be a contributing factor leading to decreased OC risk. PMID:28966800

  5. Protein catabolism in cultures of hepatocytes derived from mice of various ages.

    PubMed

    Burrows, R B; Davison, P F

    1982-05-01

    The degradation of pulse-labeled protein was measured in cultures of hepatocytes derived from mice of 3--4, 15--16, and 28 months of age. The rates of protein degradation were determined in culture media with varying amino acid, insulin, and glucagon concentrations. No differences with age were seen. Also no difference with age was detected in the lysosomal degradation of 125I-labeled asialofetuin.

  6. Age-dependent pattern of cerebellar susceptibility to bilirubin neurotoxicity in vivo in mice

    PubMed Central

    Bortolussi, Giulia; Baj, Gabriele; Vodret, Simone; Viviani, Giulia; Bittolo, Tamara; Muro, Andrés F.

    2014-01-01

    Neonatal jaundice is caused by high levels of unconjugated bilirubin. It is usually a temporary condition caused by delayed induction of UGT1A1, which conjugates bilirubin in the liver. To reduce bilirubin levels, affected babies are exposed to phototherapy (PT), which converts toxic bilirubin into water-soluble photoisomers that are readily excreted out. However, in some cases uncontrolled hyperbilirubinemia leads to neurotoxicity. To study the mechanisms of bilirubin-induced neurological damage (BIND) in vivo, we generated a mouse model lacking the Ugt1a1 protein and, consequently, mutant mice developed jaundice as early as 36 hours after birth. The mutation was transferred into two genetic backgrounds (C57BL/6 and FVB/NJ). We exposed mutant mice to PT for different periods and analyzed the resulting phenotypes from the molecular, histological and behavioral points of view. Severity of BIND was associated with genetic background, with 50% survival of C57BL/6‑Ugt1−/− mutant mice at postnatal day 5 (P5), and of FVB/NJ-Ugt1−/− mice at P11. Life-long exposure to PT prevented cerebellar architecture alterations and rescued neuronal damage in FVB/NJ-Ugt1−/− but not in C57BL/6-Ugt1−/− mice. Survival of FVB/NJ-Ugt1−/− mice was directly related to the extent of PT treatment. PT treatment of FVB/NJ-Ugt1−/− mice from P0 to P8 did not prevent bilirubin-induced reduction in dendritic arborization and spine density of Purkinje cells. Moreover, PT treatment from P8 to P20 did not rescue BIND accumulated up to P8. However, PT treatment administered in the time-window P0–P15 was sufficient to obtain full rescue of cerebellar damage and motor impairment in FVB/NJ-Ugt1−/− mice. The possibility to modulate the severity of the phenotype by PT makes FVB/NJ-Ugt1−/− mice an excellent and versatile model to study bilirubin neurotoxicity, the role of modifier genes, alternative therapies and cerebellar development during high bilirubin conditions. PMID

  7. A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice

    PubMed Central

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Haast, Roy; Lütjohann, Dieter; Broersen, Laus M.; Heerschap, Arend

    2016-01-01

    APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10–12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16–18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging. PMID:27034849

  8. [Effects of chrysalis oil on learning, memory and oxidative stress in D-galactose-induced ageing model of mice].

    PubMed

    Chen, Weiping; Yang, Qiongjie; Wei, Xing

    2013-11-01

    To investigate the effects of chrysalis oil on learning, memory and oxidative stress in D-galactose-induced ageing model of mice. Mice were injected intraperitoneally with D-galactose daily and received chrysalis oil intragastrically simultaneously for 30 d. Then mice underwent space navigation test and spatial probe test, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) activity and malondialdehyde (MDA) contents in mouse brain were measured. Compared to model group, escape latency in mice treated with 6 ml/kg*d chrysalis oil was significantly shorter (P<0.05), crossing times in 12 ml/kg*d group and 6 ml/kg*d group treated with chrysalis oil were significantly increased (P<0.05). Chrysalis oil treatment (12ml/kg*d) significantly increased SOD and GSH-PX activity and reduced MDA contents in brain of D-galactose-induced aging mice. Chrysalis oil can improve the ability of learning and memory in D-galactose-induced aging mice, and inhibit peroxidation in brain tissue.

  9. Protective Effects of Flax Seed (Linum Usitatissimum) Hydroalcoholic Extract on Fetus Brain in Aged and Young Mice.

    PubMed

    Kamali, Mahsa; Bahmanpour, Soghra

    2016-05-01

    One of the major problems of the aged women or older than 35 is getting pregnant in the late fertility life. Fertility rates begin to decline gradually at the age of 30, more so at 35, and markedly at 40. Even with fertility treatments such as in vitro fertilization, women have more difficulty in getting pregnant or may deliver abnormal fetus. The purpose of this study was to assess the effects of flax seed hydroalcoholic extract on the fetal brain of aged mice and its comparison with young mice. In this experimental study, 32 aged and 32 young mice were divided into 4 groups. Controls received no special treatment. The experimental mice groups, 3 weeks before mating, were fed with flax seed hydroalcoholic extract by oral gavages. After giving birth, the brains of the fetus were removed. Data analysis was performed by statistical test ANOVA using SPSS version 18 (P<0.05). The mean fetus brain weight of aged mother groups compared to the control group was increased significantly (P<0.05). This study showed that flax seed hydroalcoholic extract could improve fetal brain weights in the aged groups.

  10. The potent free radical scavenger alpha-lipoic acid improves memory in aged mice: putative relationship to NMDA receptor deficits.

    PubMed

    Stoll, S; Hartmann, H; Cohen, S A; Müller, W E

    1993-12-01

    alpha-Lipoic acid (alpha-LA) improved longer-term memory of aged female NMRI mice in the habituation in the open field test at a dose of 100 mg/kg body weight for 15 days. In a separate experiment, no such effect could be found for young mice. alpha-LA alleviated age-related NMDA receptor deficits (Bmax) without changing muscarinic, benzodiazepine, and alpha 2-adrenergic receptor deficits in aged mice. The carbachol-stimulated accumulation of inositol monophosphates was not changed by the treatment with alpha-LA. These results give tentative support to the hypothesis that alpha-LA improves memory in aged mice, probably by a partial compensation of NMDA receptor deficits. Possible modes of action of alpha-LA based on its free radical scavenger properties are discussed in relation to the membrane hypothesis of aging.

  11. Lack of P4H-TM in mice results in age-related retinal and renal alterations.

    PubMed

    Leinonen, Henri; Rossi, Maarit; Salo, Antti M; Tiainen, Päivi; Hyvärinen, Jaana; Pitkänen, Marja; Sormunen, Raija; Miinalainen, Ilkka; Zhang, Chi; Soininen, Raija; Kivirikko, Kari I; Koskelainen, Ari; Tanila, Heikki; Myllyharju, Johanna; Koivunen, Peppi

    2016-09-01

    Age-related macular degeneration (AMD), affecting the retinal pigment epithelium (RPE), is the leading cause of blindness in middle-aged and older people in developed countries. Genetic and environmental risk factors have been identified, but no effective cure exists. Using a mouse model we show that a transmembrane prolyl 4-hydroxylase (P4H-TM), which participates in the oxygen-dependent regulation of the hypoxia-inducible factor (HIF), is a potential novel candidate gene for AMD. We show that P4h-tm had its highest expression levels in the mouse RPE and brain, heart, lung, skeletal muscle and kidney. P4h-tm -/- mice were fertile and had a normal life span. Lack of P4h-tm stabilized HIF-1α in cortical neurons under normoxia, while in hypoxia it increased the expression of certain HIF target genes in tissues with high endogenous P4h-tm expression levels more than in wild-type mice. Renal erythropoietin levels increased in P4h-tm -/- mice with aging, but the resulting ∼2-fold increase in erythropoietin serum levels did not lead to erythrocytosis. Instead, accumulation of lipid-containing lamellar bodies in renal tubuli was detected in P4h-tm -/- mice with aging, resulting in inflammation and fibrosis, and later glomerular sclerosis and albuminuria. Lack of P4h-tm was associated with retinal thinning, rosette-like infoldings and drusen-like structure accumulation in RPE with aging, as is characteristic of AMD. Photoreceptor recycling was compromised, and electroretinograms revealed functional impairment of the cone pathway in adult P4h-tm -/- mice and cone and rod deficiency in middle-aged mice. P4H-TM is therefore imperative for normal vision, and potentially a novel candidate for age-induced diseases, such as AMD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Pax6 interacts with Iba1 and shows age-associated alterations in brain of aging mice.

    PubMed

    Maurya, Shashank Kumar; Mishra, Rajnikant

    2017-07-01

    The Pax6, a transcriptional regulator and multifunctional protein, has been found critical for neurogenesis, neuro-degeneration, mental retardation, neuroendocrine tumors, glioblastoma and astrocytomas. The age-associated alteration in the expression of Pax6 in neuron and glia has also been observed in the immunologically privileged brain. Therefore, it is presumed that Pax6 may modulate brain immunity by activation of microglia either directly interacting with genes or proteins of microglia or indirectly though inflammation associated with neurodegeneration. This report describes evaluation of expression, co-localization and interactions of Pax6 with Ionized binding protein1 (Iba1) in brain of aging mice by Immunohistochemistry, Chromatin Immuno-precipitation (ChIP) and Co-immunoprecipitation (Co-IP), respectively. The co-localization of Pax6 with Iba1 was observed in the cerebellum, cerebral cortex, hippocampus, midbrain and olfactory lobe. The Pax6 and Iba1 also interact physically. The age-dependent alteration in their expression and co-localization were also observed in mice. Results indicate Pax6-dependent activities of Iba1 in the remodelling of microglia during immunological surveillance of the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice

    PubMed Central

    Fisher, Simon P.; Cui, Nanyi; Peirson, Stuart N.; Foster, Russell G.

    2018-01-01

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  14. Relationship between hyposalivation and oxidative stress in aging mice.

    PubMed

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  15. Age-related cognitive decline coincides with accelerated volume loss of the dorsal but not ventral hippocampus in mice.

    PubMed

    Reichel, J M; Bedenk, B T; Czisch, M; Wotjak, C T

    2017-01-01

    Even in the absence of neurodegenerative diseases, progressing age often coincides with cognitive decline and morphological changes. However, longitudinal studies that directly link these two processes are missing. In this proof-of-concept study we therefore performed repeated within-subject testing of healthy male R26R mice in a spatial learning task in combination with manganese-enhanced volumetric MRI analyses at the ages of 8, 16, and 24 months. We grouped the mice into good and poor performers (n = 6, each), based on their spatial learning abilities at the age of 24 months. Using this stratification, we failed to detect a priori volume differences, but observed a significant decrease in total hippocampal volume over time for both groups. Interestingly, this volume decrease was specific for the dorsal hippocampus and significantly accelerated in poor performers between 16 and 24 months of age. This is the first time that individual changes in hippocampal volume were traced alongside cognitive performance within the same subjects over 1½ years. Our study points to a causal link between volume loss of the dorsal hippocampus and cognitive impairments. In addition, it suggests accelerated degenerative processes rather than a priori volume differences as determining trajectories of age-related cognitive decline. Despite the relatively small sample sizes, the strong behavioral and moderate morphological alterations demonstrate the general feasibility of longitudinal studies of age-related decline in cognition and hippocampus integrity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. [Preparation of the cDNA microarray on the differential expressed cDNA of senescence-accelerated mouse's hippocampus].

    PubMed

    Cheng, Xiao-Rui; Zhou, Wen-Xia; Zhang, Yong-Xiang

    2006-05-01

    Alzheimer' s disease (AD) is the most common form of dementia in the elderly. AD is an invariably fatal neurodegenerative disorder with no effective treatment. Senescence-accelerated mouse prone 8 (SAMP8) is a model for studying age-related cognitive impairments and also is a good model to study brain aging and one of mouse model of AD. The technique of cDNA microarray can monitor the expression levels of thousands of genes simultaneously and can be used to study AD with the character of multi-mechanism, multi-targets and multi-pathway. In order to disclose the mechanism of AD and find the drug targets of AD, cDNA microarray containing 3136 cDNAs amplified from the suppression subtracted cDNA library of hippocampus of SAMP8 and SAMR1 was prepared with 16 blocks and 14 x 14 pins, the housekeeping gene beta-actin and G3PDH as inner conference. The background of this microarray was low and unanimous, and dots divided evenly. The conditions of hybridization and washing were optimized during the hybridization of probe and target molecule. After the data of hybridization analysis, the differential expressed cDNAs were sequenced and analyzed by the bioinformatics, and some of genes were quantified by the real time RT-PCR and the reliability of this cDNA microarray were validated. This cDNA microarray may be the good means to select the differential expressed genes and disclose the molecular mechanism of SAMP8's brain aging and AD.

  17. C57BL/6J mice as a polygenic developmental model of diet-induced obesity.

    PubMed

    Chu, Dinh-Toi; Malinowska, Elzbieta; Jura, Magdalena; Kozak, Leslie P

    2017-04-01

    Susceptibility to obesity changes during the course of life. We utilized the C57BL/6J (B6) and 129S mouse as a genetic model for variation in diet-induced obesity to define the adiposity phenotypes from birth to maturity at 8 weeks-of-age. From birth to 8 weeks-of-age, both male and female 129S mice had significantly higher fat mass and adiposity index than B6 mice, although they were not obese. After 8 weeks-of-age, B6 had greater adiposity/obesity than 129S mice in response to a high fat (HF). We sought to determine the mechanism activating the fat accumulation in B6 mice at 8-weeks-of-age. We used microarray analysis of gene expression during development of inguinal fat to show that molecular networks of lipogenesis were maximally expressed at 8 weeks-of-age. In addition, the DNA methylation analysis of the Sfrp5 promoter and binding of acetylated histones to Sfrp5 and Acly promoter regions showed that major differences in the expression of genes of lipogenesis and chromatin structure occur during development. Differences in lipogenesis networks could account for the strain-dependent differences in adiposity up to 8 weeks-of-age; however, changes in the expression of genes in these networks were not associated with the susceptibility to DIO in B6 male mice beyond 8 weeks-of-age. © 2017 Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Increasing seroprevalence of human herpesvirus 8 (HHV-8) with age confirms HHV-8 endemicity in Amazon Amerindians from Brazil.

    PubMed

    Cunha, A M G; Caterino-de-Araujo, A; Costa, S C B; Santos-Fortuna, E; Boa-Sorte, N C A; Gonçalves, M S; Costa, F F; Galvão-Castro, B

    2005-09-01

    Human herpesvirus 8 (HHV-8) seroprevalences were determined in two isolated Amazon Amerindian tribes, according to age, gender and familial aggregation. Plasma and serum samples obtained from 982 Amazon Amerindians (664 Tiriyó and 318 Waiampi) were tested for antibodies against lytic and latent HHV-8 antigens by using 'in-house' immunofluorescence assays. Overall, HHV-8 seroprevalence was 56.8 % (57.4 % in the Tiriyó tribe and 55.7 % in the Waiampi tribe). Seroprevalence was independent of gender and increased linearly with age: it was 35.0 % among children aged 2-9 years, 51.4 % in adolescents (10-19 years), 72.9 % in adults and 82.3 % in adults aged >50 years. Interestingly, 44.4 % of children under 2 years of age were HHV-8-seropositive. No significant differences in seroprevalence between tribes and age groups were detected. It is concluded that HHV-8 is hyperendemic in Brazilian Amazon Amerindians, with vertical and horizontal transmission during childhood, familial transmission and sexual contact in adulthood contributing to this high prevalence in these isolated populations.

  19. Altered postural control variability in older-aged individuals with a history of lateral ankle sprain.

    PubMed

    Terada, Masafumi; Kosik, Kyle; Johnson, Nathan; Gribble, Phillip

    2018-02-01

    The current study aimed to examine postural control performance during a single-leg balance task in elderly individuals with and without a previous history of lateral ankle sprain (LAS). Eighteen adults with a previous history of LAS (mean age = 66 years old) and 12 healthy controls (mean age = 65 years old) were included in the study. Participants performed three trials of a single-leg balance task during an eyes-opened condition for 20-s. Center of pressure (COP) trajectories in the anteroposterior (AP) and mediolateral (ML) directions were collected with a force plate. The following postural control measures were calculated in the AP and ML directions: 1) Sample Entropy (SampEn); 2) Approximate Entropy (ApEn); 3) mean of Time-to-Boundary minima (mean TTB); and 4) COP velocity (COPV). Older-age participants with a history LAS exhibited lower ApEn-AP, SampEn-AP, and SampEn-ML values compared to healthy controls (p < 0.05). The information gained from this investigation indicates more rigid postural control patterns, less adaptability, and more difficulty maintaining COP during a single-leg balance task in adults with a previous history of LAS. Our data suggest that there is a need to consider history of musculoskeletal injury when evaluating factors for postural control and fall risk in the elderly. Future investigations are needed to assess the effect of LAS on age-related declines in postural control and discern associations between potential risk factors of fall-related injuries and LAS in an elderly population. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Serial Histopathological Examination of the Lungs of Mice Infected with Influenza A Virus PR8 Strain

    PubMed Central

    Fukushi, Masaya; Ito, Tateki; Oka, Teruaki; Kitazawa, Toshio; Miyoshi-Akiyama, Tohru; Kirikae, Teruo; Yamashita, Makoto; Kudo, Koichiro

    2011-01-01

    Avian influenza H5N1 and pandemic (H1N1) 2009 viruses are known to induce viral pneumonia and subsequent acute respiratory distress syndrome (ARDS) with diffuse alveolar damage (DAD). The mortality rate of ARDS/DAD is extremely high, at approximately 60%, and no effective treatment for ARDS/DAD has been established. We examined serial pathological changes in the lungs of mice infected with influenza virus to determine the progress from viral pneumonia to ARDS/DAD. Mice were intranasally infected with influenza A/Puerto Rico/8/34 (PR8) virus, and their lungs were examined both macro- and micro-pathologically every 2 days. We also evaluated general condition, survival rate, body weight, viral loads in lung, and surfactant proteins in serum. As a result, all infected mice died within 9 days postinfection. At 2 days postinfection, inflammation in alveolar septa, i.e., interstitial pneumonia, was observed around bronchioles. From 4 to 6 days postinfection, interstitial pneumonia with alveolar collapse expanded throughout the lungs. From 6 to 9 days postinfection, DAD with severe alveolar collapse was observed in the lungs of all of dying and dead mice. In contrast, DAD was not observed in the live infected-mice from 2 to 6 days postinfection, despite their poor general condition. In addition, histopathological analysis was performed in mice infected with a dose of PR8 virus which was 50% of the lethal dose for mice in the 20-day observation period. DAD with alveolar collapse was observed in all dead mice. However, in the surviving mice, instead of DAD, glandular metaplasia was broadly observed in their lungs. The present study indicates that DAD with severe alveolar collapse is associated with death in this mouse infection model of influenza virus. Inhibition of the development of DAD with alveolar collapse may decrease the mortality rate in severe viral pneumonia caused by influenza virus infection. PMID:21701593

  1. C-phycocyanin protects against low fertility by inhibiting reactive oxygen species in aging mice

    PubMed Central

    Li, Yan-Jiao; Han, Zhe; Ge, Lei; Zhou, Cheng-Jie; Zhao, Yue-Fang; Wang, Dong-Hui; Ren, Jing; Niu, Xin-Xin; Liang, Cheng-Guang

    2016-01-01

    Women over 35 have higher rates of infertility, largely due to deterioration of oocyte quality characterized by fragmentation, abnormal meiotic spindle-chromosome complexes, and oxidative stress. C-phycocyanin (PC) is a biliprotein enriched in Spirulina platensis that is known to possess antioxidant, anti-inflammatory, and radical-scavenging properties. D-galactose-induced aging acceleration in mice has been extensively used to study aging mechanisms and for pharmaceutical screening. In this study, adult female B6D2F/1 mice injected with D-galactose were used as a model to test the age-reversing effects of PC on degenerated reproductive ability. Our results show that PC can prevent oocyte fragmentation and aneuploidy by maintaining cytoskeletal integrity. Moreover, PC can reverse the expression of antioxidant genes, increase superoxide dismutase (SOD) activity and decrease methane dicarboxylic aldehyde (MDA) content, and normalize mitochondria distribution. PC exerts its benefit by inhibiting reactive oxygen species (ROS) production, which decreases apoptosis. Finally, we observe a significant increase in litter size after PC administration to D-galactose-induced aging mice. Our study demonstrates for the first time that D-galactose-induced impaired female reproductive capability can be partially rescued by the antioxidant effects of PC. PMID:27008700

  2. Failed heart rate recovery at a critical age in 5-HT-deficient mice exposed to episodic anoxia: implications for SIDS

    PubMed Central

    Commons, Kathryn G.; Hewitt, Julie C.; Daubenspeck, John A.; Li, Aihua; Kinney, Hannah C.; Nattie, Eugene E.

    2011-01-01

    Mice deficient in the transcription factor Pet-1−/− have a ∼70% deficiency of brainstem serotonin [5-hydroxytryptamine (5-HT)] neurons and exhibit spontaneous bradycardias in room air at postnatal day (P)5 and P12 and delayed gasping in response to a single episode of anoxia at P4.5 and P9.5 (Cummings KJ, Li A, Deneris ES, Nattie EE. Am J Physiol Regul Integr Comp Physiol 298: R1333–R1342, 2010; and Erickson JT, Sposato BC. J Appl Physiol 106: 1785–1792, 2009). We hypothesized that at a critical age Pet-1−/− mice will fail to autoresuscitate during episodic anoxia, ultimately dying from a failure of gasping to restore heart rate (HR). We exposed P5, P8, and P12 Pet-1−/− mice and wild-type littermates (WT) to four 30-s episodes of anoxia (97% N2-3% CO2), separated by 5 min of room air. We observed excess mortality in Pet-1−/− only at P8: 43% of Pet-1−/− animals survived past the third episode of anoxia while ∼95% of WT survived all four episodes (P = 0.004). No deaths occurred at P5 and at P12, and one of six Pet-1−/− mice died after the fourth episode, while all WT animals survived. At P8, dying Pet-1−/− animals had delayed gasping, recovery of HR, and eupnea after the first two episodes of anoxia (P < 0.001 for each); death ultimately occurred when gasping failed to restore HR. Both high- and low-frequency components of HR variability were abnormally elevated in dying Pet-1−/− animals following the first episode of anoxia. Dying P8 Pet-1−/− animals had significantly fewer 5-HT neurons in the raphe magnus than surviving animals (P < 0.001). Our data indicate a critical developmental window at which a brainstem 5-HT deficiency increases the risk of death during episodes of anoxia. They may apply to the sudden infant death syndrome, which occurs at a critical age and is associated with 5-HT deficiency. PMID:21680874

  3. Iron regulation of hepcidin despite attenuated Smad1,5,8 signaling in mice without transferrin receptor 2 or Hfe

    PubMed Central

    Corradini, Elena; Rozier, Molly; Meynard, Delphine; Odhiambo, Adam; Lin, Herbert Y.; Feng, Qi; Migas, Mary C.; Britton, Robert S.; Babitt, Jodie L.; Fleming, Robert E.

    2011-01-01

    Background & Aims HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. Methods Hepatic iron concentrations and mRNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 mRNA levels were measured as markers of Bmp/Smad signaling. Results While Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also demonstrated attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. Conclusions These observations demonstrate that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver BMP6 mRNA or steady-state P-Smad1,5,8 levels. PMID:21745449

  4. Sensitization to Gliadin Induces Moderate Enteropathy and Insulitis in Nonobese Diabetic-DQ8 Mice

    PubMed Central

    Galipeau, Heather J.; Rulli, Nestor E.; Jury, Jennifer; Huang, Xianxi; Araya, Romina; Murray, Joseph A.; David, Chella S.; Chirdo, Fernando G.; McCoy, Kathy D.; Verdu, Elena F.

    2012-01-01

    Celiac disease (CD) is frequently diagnosed in patients with type 1 diabetes (T1D), and T1D patients can exhibit Abs against tissue transglutaminase, the auto-antigen in CD. Thus, gliadin, the trigger in CD, has been suggested to have a role in T1D pathogenesis. The objective of this study was to investigate whether gliadin contributes to enteropathy and insulitis in NOD-DQ8 mice, an animal model that does not spontaneously develop T1D. Gliadin-sensitized NOD-DQ8 mice developed moderate enteropathy, intraepithelial lymphocytosis, and barrier dysfunction, but not insulitis. Administration of anti-CD25 mAbs before gliadin-sensitization induced partial depletion of CD25+Foxp3+ T cells and led to severe insulitis, but did not exacerbate mucosal dysfunction. CD4+ T cells isolated from pancreatic lymph nodes of mice that developed insulitis showed increased proliferation and proinflammatory cytokines after incubation with gliadin but not with BSA. CD4+ T cells isolated from nonsensitized controls did not response to gliadin or BSA. In conclusion, gliadin sensitization induced moderate enteropathy in NOD-DQ8 mice. However, insulitis development required gliadin-sensitization and partial systemic depletion of CD25+Foxp3+ T cells. This humanized murine model provides a mechanistic link to explain how the mucosal intolerance to a dietary protein can lead to insulitis in the presence of partial regulatory T cell deficiency. PMID:21911598

  5. A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength.

    PubMed

    Arounleut, Phonepasong; Bialek, Peter; Liang, Li-Fang; Upadhyay, Sunil; Fulzele, Sadanand; Johnson, Maribeth; Elsalanty, Mohammed; Isales, Carlos M; Hamrick, Mark W

    2013-09-01

    Loss of muscle and bone mass with age are significant contributors to falls and fractures among the elderly. Myostatin deficiency is associated with increased muscle mass in mice, dogs, cows, sheep and humans, and mice lacking myostatin have been observed to show increased bone density in the limb, spine, and jaw. Transgenic overexpression of myostatin propeptide, which binds to and inhibits the active myostatin ligand, also increases muscle mass and bone density in mice. We therefore sought to test the hypothesis that in vivo inhibition of myostatin using an injectable myostatin propeptide (GDF8 propeptide-Fc) would increase both muscle mass and bone density in aged (24 mo) mice. Male mice were injected weekly (20 mg/kg body weight) with recombinant myostatin propeptide-Fc (PRO) or vehicle (VEH; saline) for four weeks. There was no difference in body weight between the two groups at the end of the treatment period, but PRO treatment significantly increased mass of the tibialis anterior muscle (+ 7%) and increased muscle fiber diameter of the extensor digitorum longus (+ 16%) and soleus (+ 6%) muscles compared to VEH treatment. Bone volume relative to total volume (BV/TV) of the femur calculated by microCT did not differ significantly between PRO- and VEH-treated mice, and ultimate force (Fu), stiffness (S), toughness (U) measured from three-point bending tests also did not differ significantly between groups. Histomorphometric assays also revealed no differences in bone formation or resorption in response to PRO treatment. These data suggest that while developmental perturbation of myostatin signaling through either gene knockout or transgenic inhibition may alter both muscle and bone mass in mice, pharmacological inhibition of myostatin in aged mice has a more pronounced effect on skeletal muscle than on bone. © 2013. Published by Elsevier Inc. All rights reserved.

  6. Menthol decreases oral nicotine aversion in C57BL/6 mice through a TRPM8-dependent mechanism.

    PubMed

    Fan, Lu; Balakrishna, Shrilatha; Jabba, Sairam V; Bonner, Pamela E; Taylor, Seth R; Picciotto, Marina R; Jordt, Sven-Eric

    2016-11-01

    Nicotine is a major oral irritant in smokeless tobacco products and has an aversive taste. Mentholated smokeless tobacco products are highly popular, suggesting that menthol increases their palatability and may facilitate initiation of product use. While menthol is known to reduce respiratory irritation by tobacco smoke irritants, it is not known whether this activity extends to oral nicotine and its aversive effects. The two-bottle choice drinking assay was used to characterise aversion and preference in C57BL/6 mice to a range of menthol concentrations (10-200 µg/mL). Then, effects of menthol on oral nicotine aversion were determined. Responses were compared with those in mice deficient in the cold/menthol receptor, TRPM8, expressed in trigeminal sensory neurons innervating the oral cavity. Mice showed aversion to menthol concentrations of 100 µg/mL and above. When presented with a highly aversive concentration of nicotine (200 µg/mL), mice preferred solutions with 50 or 100 µg/mL menthol added over nicotine alone. In contrast to wild-type mice, Trpm8-/- showed a strong aversion to mentholated (100 µg/mL) nicotine (200 µg/mL) and preferred nicotine alone. Trpm8-/- mice show aversion to lower concentrations of menthol than wild-type mice. Oral menthol can reduce the aversive effects of oral nicotine and, at higher concentrations, acts as an irritant by itself. Menthol's effects in relation to nicotine require TRPM8, the cool temperature sensing ion channel that activates analgesic and counterirritant mechanisms. These mechanisms may underlie preference for menthol-containing smokeless tobacco products and may facilitate initiation of product use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Responsiveness of senescent mice to the antitumor properties of Corynebacterium parvum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhas, J.M.; Ullrich, R.L.

    1976-01-01

    The antitumor properties of Corynebacterium parvum have been studied in young (3- to 8-month-old) and aged (18 or more months old) BALB/c mice given s.c., i.m., i.p., or i.v. transplants of the highly malignant, weakly immunogenic line 1 lung carcinoma, and aged (25- to 33-month-old) BALB/c mice bearing primary mammary tumors. These aged BALB/c mice were shown to be less immunoresponsive than their younger counterparts, and this, in combination with nonimmunological factors, made them more sensitive to the lethal effects of the line 1 carcinoma. Correspondingly, C. parvum proved to have less antitumor activity in aged mice than it didmore » in young mice. In spite of this relatively weaker, antitumor activity for C. parvum in aged mice, repeated injections of this agent were able to induce temporary regressions of the primary mammary tumors studied and thereby prolong survival time.« less

  8. Prevention of Neuromusculoskeletal Frailty in Slow-Aging Ames Dwarf Mice: Longitudinal Investigation of Interaction of Longevity Genes and Caloric Restriction

    PubMed Central

    Arum, Oge; Rasche, Zachary Andrew; Rickman, Dustin John; Bartke, Andrzej

    2013-01-01

    Ames dwarf (Prop1 df/df) mice are remarkably long-lived and exhibit many characteristics of delayed aging and extended healthspan. Caloric restriction (CR) has similar effects on healthspan and lifespan, and causes an extension of longevity in Ames dwarf mice. Our study objective was to determine whether Ames dwarfism or CR influence neuromusculoskeletal function in middle-aged (82 ± 12 weeks old) or old (128 ± 14 w.o.) mice. At the examined ages, strength was improved by dwarfism, CR, and dwarfism plus CR in male mice; balance/ motor coordination was improved by CR in old animals and in middle-aged females; and agility/ motor coordination was improved by a combination of dwarfism and CR in both genders of middle-aged mice and in old females. Therefore, extension of longevity by congenital hypopituitarism is associated with improved maintenance of the examined measures of strength, agility, and motor coordination, key elements of frailty during human aging, into advanced age. This study serves as a particularly important example of knowledge related to addressing aging-associated diseases and disorders that results from studies in long-lived mammals. PMID:24155868

  9. Prevention of neuromusculoskeletal frailty in slow-aging ames dwarf mice: longitudinal investigation of interaction of longevity genes and caloric restriction.

    PubMed

    Arum, Oge; Rasche, Zachary Andrew; Rickman, Dustin John; Bartke, Andrzej

    2013-01-01

    Ames dwarf (Prop1 (df/df) ) mice are remarkably long-lived and exhibit many characteristics of delayed aging and extended healthspan. Caloric restriction (CR) has similar effects on healthspan and lifespan, and causes an extension of longevity in Ames dwarf mice. Our study objective was to determine whether Ames dwarfism or CR influence neuromusculoskeletal function in middle-aged (82 ± 12 weeks old) or old (128 ± 14 w.o.) mice. At the examined ages, strength was improved by dwarfism, CR, and dwarfism plus CR in male mice; balance/ motor coordination was improved by CR in old animals and in middle-aged females; and agility/ motor coordination was improved by a combination of dwarfism and CR in both genders of middle-aged mice and in old females. Therefore, extension of longevity by congenital hypopituitarism is associated with improved maintenance of the examined measures of strength, agility, and motor coordination, key elements of frailty during human aging, into advanced age. This study serves as a particularly important example of knowledge related to addressing aging-associated diseases and disorders that results from studies in long-lived mammals.

  10. Age and isolation influence steroids release and chemical signaling in male mice.

    PubMed

    Mucignat-Caretta, Carla; Cavaggioni, Andrea; Redaelli, Marco; Da Dalt, Laura; Zagotto, Giuseppe; Gabai, Gianfranco

    2014-05-01

    Social interactions in mice involve olfactory signals, which convey information about the emitter. In turn, the mouse social and physiological status may modify the release of chemical cues. In this study, the influences of age and social isolation on the endocrine response and the release of chemical signals were investigated in male CD1 mice, allocated into four groups: Young Isolated (from weaning till 60days; N=6), Adult Isolated (till 180days; N=6), Young Grouped (6 mice/cage; till 60days; N=18), Adult Grouped (6 mice/cage; till 180days; N=18). Mice were transferred in a clean cage to observe the micturition pattern and then sacrificed. Body and organs weights, serum testosterone, dehydroepiandrosterone, corticosterone and the ratio Major Urinary Protein/creatinine were measured. Urinary volatile molecules potentially involved in pheromonal communication were identified. Androgen secretion was greater in isolated mice (P<0.05), suggesting a greater reactivity of the Hypothalamic-Pituitary-Gonadal axis. Grouped mice presented a higher degree of adrenal activity, and young mice showed a higher serum corticosterone (P<0.05) suggesting a greater stimulation of the Hypothalamic-Pituitary-Adrenal axis. The micturition pattern typical of dominant male, consisting in voiding numerous droplets, was observed in Young Isolated mice only, which showed a higher protein/creatinine ratio (P<0.05). Urinary 2-s-butyl-thiazoline was higher in both Young and Adult Isolated mice (P<0.005). Young Isolated mice showed the most prominent difference in both micturition pattern and potentially active substance emission, while long term isolation resulted in a less extreme phenotype; therefore social isolation had a higher impact on young mice hormone and pheromone release. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice.

    PubMed

    Knight, Elysse M; Brown, Timothy M; Gümüsgöz, Sarah; Smith, Jennifer C M; Waters, Elizabeth J; Allan, Stuart M; Lawrence, Catherine B

    2013-01-01

    Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  12. Aggregation of the Inflammatory S100A8 Precedes Aβ Plaque Formation in Transgenic APP Mice: Positive Feedback for S100A8 and Aβ Productions.

    PubMed

    Lodeiro, Maria; Puerta, Elena; Ismail, Muhammad-Al-Mustafa; Rodriguez-Rodriguez, Patricia; Rönnbäck, Annica; Codita, Alina; Parrado-Fernandez, Cristina; Maioli, Silvia; Gil-Bea, Francisco; Merino-Serrais, Paula; Cedazo-Minguez, Angel

    2017-03-01

    Inflammation plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. Although chronic inflammation in later stages of AD is well described, little is known about the inflammatory processes in preclinical or early stages of the disease prior to plaque deposition. In this study, we report that the inflammatory mediator S100A8 is increased with aging in the mouse brain. It is observed as extracellular aggregates, which do not correspond to corpora amylacea. S100A8 aggregation is enhanced in the hippocampi of two different mouse models for amyloid-β (Aβ) overproduction (Tg2576 and TgAPParctic mice). S100A8 aggregates are seen prior the formation of Aβ plaques and do not colocalize. In vitro treatment of glial cells from primary cultures with Aβ42 resulted in an increased production of S100A8. In parallel, treatment of a neuronal cell line with recombinant S100A8 protein resulted in enhanced Aβ42 and decreased Aβ40 production. Our results suggest that important inflammatory processes are occurring prior to Aβ deposition and the existence of a positive feedback between S100A8 and Aβ productions. The possible relevance of aging- or AD-dependent formation of S100A8 aggregates in the hippocampus thus affecting learning and memory processes is discussed. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Ursodeoxycholic acid decreases age-related adiposity and inflammation in mice

    PubMed Central

    Oh, Ah-Reum; Bae, Jin-Sik; Lee, Junghoon; Shin, Eunji; Oh, Byung-Chul; Park, Sang-Chul; Cha, Ji-Young

    2016-01-01

    Ursodeoxycholic acid (UDCA), a natural, hydrophilic nontoxic bile acid, is clinically effective for treating cholestatic and chronic liver diseases. We investigated the chronic effects of UDCA on age-related lipid homeostasis and underlying molecular mechanisms. Twenty-week-old C57BL/6 male and female mice were fed a diet with or without 0.3% UDCA supplementation for 25 weeks. UDCA significantly reduced weight gain, adiposity, hepatic triglyceride, and hepatic cholesterol without incidental hepatic injury. UDCA-mediated hepatic triglyceride reduction was associated with downregulated hepatic expression of peroxisome proliferator-activated receptor-γ, and of other genes involved in lipogenesis (Chrebp, Acaca, Fasn, Scd1, and Me1) and fatty acid uptake (Ldlr, Cd36). The inflammatory cytokines Tnfa, Ccl2, and Il6 were significantly decreased in liver and/or white adipose tissues of UDCA-fed mice. These data suggest that UDCA exerts beneficial effects on age-related metabolic disorders by lowering the hepatic lipid accumulation, while concurrently reducing hepatocyte and adipocyte susceptibility to inflammatory stimuli. [BMB Reports 2016; 49(2): 105-110] PMID:26350747

  14. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice.

    PubMed

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K; Garvey, Sean M; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.

  15. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice

    PubMed Central

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer’s disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD. PMID:27834780

  16. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice.

    PubMed

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.

  17. Impaired Self-Renewal and Increased Colitis and Dysplastic Lesions in Colonic Mucosa of AKR1B8 Deficient Mice

    PubMed Central

    Shen, Yi; Ma, Jun; Yan, Ruilan; Ling, Hongyan; Li, Xiaoning; Yang, Wancai; Gao, John; Huang, Chenfei; Bu, Yiwen; Cao, Yu; He, Yingchun; Wan, Laxiang; Zu, Xuyu; Liu, Jianghua; Huang, Mei Chris; Stenson, William F; Liao, Duan-Fang; Cao, Deliang

    2015-01-01

    Purpose Ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC) is a serious health issue, but etiopathological factors remain unclear. Aldo-keto reductase 1B10 (AKR1B10) is specifically expressed in the colonic epithelium, but down-regulated in colorectal cancer. This study was aimed to investigate the etiopathogenic role of AKR1B10 in UC and CAC. Experimental design UC and CAC biopsies (paraffin-embedded sections) and frozen tissues were collected to examine AKR1B10 expression. Aldo-keto reductase 1B8 (the ortholog of human AKR1B10) knockout (AKR1B8 −/−) mice were produced to estimate its role in the susceptibility and severity of chronic colitis and associated dysplastic lesions, induced by dextran sulfate sodium (DSS) at a low dose (2%). Genome-wide Exome sequencing was used to profile DNA damage in DSS-induced colitis and tumors. Results AKR1B10 expression was markedly diminished in over 90% of UC and CAC tissues. AKR1B8 deficiency led to reduced lipid synthesis from butyrate and diminished proliferation of colonic epithelial cells. The DSS-treated AKR1B8 −/− mice demonstrated impaired injury repair of colonic epithelium and more severe bleeding, inflammation, and ulceration. These AKR1B8 −/− mice had more severe oxidative stress and DNA damage, and dysplasias were more frequent and at a higher grade in the AKR1B8 −/− mice than in wild type mice. Palpable masses were seen in the AKR1B8 −/− mice only, not in wild type. Conclusion AKR1B8 is a critical protein in the proliferation and injury repair of the colonic epithelium and in the pathogenesis of UC and CAC, being a new etiopathogenic factor of these diseases. PMID:25538260

  18. Aging and cardiovascular complexity: effect of the length of RR tachograms

    PubMed Central

    Nagaraj, Nithin

    2016-01-01

    As we age, our hearts undergo changes that result in a reduction in complexity of physiological interactions between different control mechanisms. This results in a potential risk of cardiovascular diseases which are the number one cause of death globally. Since cardiac signals are nonstationary and nonlinear in nature, complexity measures are better suited to handle such data. In this study, three complexity measures are used, namely Lempel–Ziv complexity (LZ), Sample Entropy (SampEn) and Effort-To-Compress (ETC). We determined the minimum length of RR tachogram required for characterizing complexity of healthy young and healthy old hearts. All the three measures indicated significantly lower complexity values for older subjects than younger ones. However, the minimum length of heart-beat interval data needed differs for the three measures, with LZ and ETC needing as low as 10 samples, whereas SampEn requires at least 80 samples. Our study indicates that complexity measures such as LZ and ETC are good candidates for the analysis of cardiovascular dynamics since they are able to work with very short RR tachograms. PMID:27957395

  19. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration.

    PubMed

    Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L

    2017-08-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Analysis of immune response in young and aged mice vaccinated with corn-derived antigen against Escherichia coli heat-labile enterotoxin.

    PubMed

    Karaman, Sule; Cunnick, Joan; Wang, Kan

    2006-01-01

    Enterotoxigenic strains of Escherichia coli produce a heat-labile holotoxin (LT), which causes diarrhea. We engineered corn seeds to produce LT-B, the nontoxic subunit of LT, to serve as a plant-derived vaccine to traveler's diarrhea and as an adjuvant for co-administered proteins. We previously demonstrated that a strong mucosal and systemic antibody response is elicited in young mice with oral administration of corn-derived LT-B. The present study examined systemic and mucosal antibody responses to LT-B in young and aged mice, and recall responses to oral administration and injection of LT-B in aged mice. Specific IgA and IgG antibodies were detectable during an 11-mo period, although the concentration of antigen-specific antibodies declined gradually. Booster by feeding or injection dramatically increased the concentration of specific IgA from that seen in young mice. Specific IgG levels were boosted to concentrations similar to those in young mice. This effect may be age-dependent and related to prior immunization exposure. Analysis of the antibody response of naïve aged mice against corn-derived LT-B demonstrated an age-related suppression in specific IgG production, but not specific IgA. These results may provide important information for edible vaccine strategies for young and aged individuals.

  1. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4.

    PubMed

    Chen, Chih-Chiang; Murray, Philip J; Jiang, Ting Xin; Plikus, Maksim V; Chang, Yun-Ting; Lee, Oscar K; Widelitz, Randall B; Chuong, Cheng-Ming

    2014-08-01

    Hair cycling is modulated by factors both intrinsic and extrinsic to hair follicles. Cycling defects lead to conditions such as aging-associated alopecia. Recently, we demonstrated that mouse skin exhibits regenerative hair waves, reflecting a coordinated regenerative behavior in follicle populations. Here, we use this model to explore the regenerative behavior of aging mouse skin. Old mice (>18 months) tracked over several months show that with progressing age, hair waves slow down, wave propagation becomes restricted, and hair cycle domains fragment into smaller domains. Transplanting aged donor mouse skin to a young host can restore donor cycling within a 3 mm range of the interface, suggesting that changes are due to extracellular factors. Therefore, hair stem cells in aged skin can be reactivated. Molecular studies show that extra-follicular modulators Bmp2, Dkk1, and Sfrp4 increase in early anagen. Further, we identify follistatin as an extra-follicular modulator, which is highly expressed in late telogen and early anagen. Indeed, follistatin induces hair wave propagation and its level decreases in aging mice. We present an excitable medium model to simulate the cycling behavior in aging mice and illustrate how the interorgan macroenvironment can regulate the aging process by integrating both "activator" and "inhibitor" signals.

  2. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    PubMed

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  3. Nuclear envelope alterations generate an aging-like epigenetic pattern in mice deficient in Zmpste24 metalloprotease.

    PubMed

    Osorio, Fernando G; Varela, Ignacio; Lara, Ester; Puente, Xose S; Espada, Jesús; Santoro, Raffaella; Freije, José M P; Fraga, Mario F; López-Otín, Carlos

    2010-12-01

    Mutations in the nuclear envelope protein lamin A or in its processing protease ZMPSTE24 cause human accelerated aging syndromes, including Hutchinson-Gilford progeria syndrome. Similarly, Zmpste24-deficient mice accumulate unprocessed prelamin A and develop multiple progeroid symptoms, thus representing a valuable animal model for the study of these syndromes. Zmpste24-deficient mice also show marked transcriptional alterations associated with chromatin disorganization, but the molecular links between both processes are unknown. We report herein that Zmpste24-deficient mice show a hypermethylation of rDNA that reduces the transcription of ribosomal genes, being this reduction reversible upon treatment with DNA methyltransferase inhibitors. This alteration has been previously described during physiological aging in rodents, suggesting its potential role in the development of the progeroid phenotypes. We also show that Zmpste24-deficient mice present global hypoacetylation of histones H2B and H4. By using a combination of RNA sequencing and chromatin immunoprecipitation assays, we demonstrate that these histone modifications are associated with changes in the expression of several genes involved in the control of cell proliferation and metabolic processes, which may contribute to the plethora of progeroid symptoms exhibited by Zmpste24-deficient mice. The identification of these altered genes may help to clarify the molecular mechanisms underlying aging and progeroid syndromes as well as to define new targets for the treatment of these dramatic diseases. © 2010 The Authors. Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  4. [Regulating effect of pineal gland peptides on development of T-lymphocytes in CBA aging mice: role of microenvironment of immune system organs and neuroendocrine factors].

    PubMed

    Labunets, I F; Butenko, G M; Khavinson, V Kh; Magdich, L V; Dragunova, V A; Pishel', I N; Azarskova, M V

    2003-01-01

    Studies were undertaken on the development of T-lymphocytes in adult and old CBA mice and its changes at aging after injections of pineal gland peptides. It was shown that in old mice the disturbances of T-cells differentiation are registered in bone marrow, thymus, spleen and characterized by the changes of lymphocyte markers expression, migration and proliferation of cells. In old mice FTS titer, melatonin and testosterone levels decreased, the balance of noradrenalin and serotonin in hypothalamus and the cell composition of microenvironment immune systems organs impaired. After chronic (18 mo) administration of the pineal gland preparation epithalamin the amount of stromal cells-precursors, CD4+ and Mac-1(+)-cells in old bone marrow increased, improved the migration of T-cell precursors from bone marrow to thymus and their proliferative potential. The proportion of CD3+, CD4+CD8-, CD4-CD8+, Mac-1(+)-cells in old thymus increased, while that of CD44(+)-cells decreased. The proportion of CD4-CD8(+)-cells in spleen increased. The most number of indices and their balance showed a pattern of adult mice. In old mice after epithalamin the balance of amines in hypothalamus improved, concentration of melatonin in pineal gland, testosterone and FTS titer in blood increased. Epithalon has also the possibility to increase of thymic endocrine function.

  5. TLR8 Couples SOCS-1 and Restrains TLR7-Mediated Antiviral Immunity, Exacerbating West Nile Virus Infection in Mice.

    PubMed

    Paul, Amber M; Acharya, Dhiraj; Le, Linda; Wang, Penghua; Stokic, Dobrivoje S; Leis, A Arturo; Alexopoulou, Lena; Town, Terrence; Flavell, Richard A; Fikrig, Erol; Bai, Fengwei

    2016-12-01

    West Nile virus (WNV) is a neurotropic ssRNA flavivirus that can cause encephalitis, meningitis, and death in humans and mice. Human TLR7 and TLR8 and mouse TLR7 recognize viral ssRNA motifs and induce antiviral immunity. However, the role of mouse TLR8 in antiviral immunity is poorly understood. In this article, we report that TLR8-deficient (Tlr8 -/- ) mice were resistant to WNV infection compared with wild-type controls. Efficient WNV clearance and moderate susceptibility to WNV-mediated neuronal death in Tlr8 -/- mice were attributed to overexpression of Tlr7 and IFN-stimulated gene-56 expression, whereas reduced expression of the proapoptotic gene coding Bcl2-associated X protein was observed. Interestingly, suppressor of cytokine signaling (SOCS)-1 directly associated with TLR8, but not with TLR7, indicating a novel role for TLR8 regulation of SOCS-1 function, whereas selective small interfering RNA knockdown of Socs-1 resulted in induced IFN-stimulated gene-56 and Tlr7 expression following WNV infection. Collectively, we report that TLR8 coupling with SOCS-1 inhibits TLR7-mediated antiviral immunity during WNV infection in mice. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. RHEB1 insufficiency in aged male mice is associated with stress-induced seizures.

    PubMed

    Tian, Qi; Gromov, Pavel; Clement, Joachim H; Wang, Yingming; Riemann, Marc; Weih, Falk; Sun, Xiao-Xin; Dai, Mu-Shui; Fedorov, Lev M

    2017-12-01

    The mechanistic target of rapamycin (mTOR), a protein kinase, is a central regulator of mammalian metabolism and physiology. Protein mTOR complex 1 (mTORC1) functions as a major sensor for the nutrient, energy, and redox state of a cell and is activated by ras homolog enriched in brain (RHEB1), a GTP-binding protein. Increased activation of mTORC1 pathway has been associated with developmental abnormalities, certain form of epilepsy (tuberous sclerosis), and cancer. Clinically, those mTOR-related disorders are treated with the mTOR inhibitor rapamycin and its rapalogs. Because the effects of chronic interference with mTOR signaling in the aged brain are yet unknown, we used a genetic strategy to interfere with mTORC1 signaling selectively by introducing mutations of Rheb1 into the mouse. We created conventional knockout (Rheb1 +/- ) and gene trap (Rheb1 Δ/+ ) mutant mouse lines. Rheb1-insufficient mice with different combinations of mutant alleles were monitored over a time span of 2 years. The mice did not show any behavioral/neurological changes during the first 18 months of age. However, after aging (> 18 months of age), both the Rheb1 +/- and Rheb1 Δ /- hybrid males developed rare stress-induced seizures, whereas Rheb1 +/- and Rheb1 Δ /- females and Rheb1 Δ/+ and Rheb1 Δ/Δ mice of both genders did not show any abnormality. Our findings suggest that chronic intervention with mTORC1 signaling in the aged brain might be associated with major adverse events.

  7. XBP1 (X-Box-Binding Protein-1)-Dependent O-GlcNAcylation Is Neuroprotective in Ischemic Stroke in Young Mice and Its Impairment in Aged Mice Is Rescued by Thiamet-G.

    PubMed

    Jiang, Meng; Yu, Shu; Yu, Zhui; Sheng, Huaxin; Li, Ying; Liu, Shuai; Warner, David S; Paschen, Wulf; Yang, Wei

    2017-06-01

    Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. Deletion of Xbp1 worsened outcome after transient and permanent middle cerebral artery occlusion. After stroke, O-GlcNAcylation was activated in neurons of the stroke penumbra in young mice, which was largely Xbp1 dependent. This activation of O-GlcNAcylation was impaired in aged mice. Pharmacological increase of O-GlcNAcylation before or after stroke improved outcome in both young and aged mice. Our study indicates a critical role for the IRE1/XBP1 unfolded protein response branch in stroke outcome. O-GlcNAcylation is a prosurvival pathway that is activated in the stroke penumbra in young mice but impaired in aged mice. Boosting prosurvival pathways to counterbalance the age-related decline in the brain's self-healing capacity could be a promising strategy to improve ischemic stroke outcome in aged brains. © 2017 American Heart Association, Inc.

  8. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice.

    PubMed

    McKillop, Laura E; Fisher, Simon P; Cui, Nanyi; Peirson, Stuart N; Foster, Russell G; Wafford, Keith A; Vyazovskiy, Vladyslav V

    2018-04-18

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  9. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice.

    PubMed

    Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B

    2015-06-15

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.

  10. GPR30 activation improves memory and facilitates DHPG-induced LTD in the hippocampal CA3 of middle-aged mice.

    PubMed

    Xu, Wen; Cao, Jian; Zhou, Yan; Wang, Lina; Zhu, Guoqi

    2018-03-01

    Reduced estrogen levels and decreased expression of related receptors are typical cerebral features of aging. The G protein-coupled estrogen receptor 1 (GPER1, also known as GPR30) is considered a novel therapeutic target for neurodegenerative diseases. In this study, we demonstrated that hippocampal GPR30 expression was reduced in middle-aged mice compared with young adult mice. GPR30 agonist G1 improved both fear and spatial memory in both male and female middle-aged mice, but not in young adult mice, which were blocked by the GPR30 antagonist G15. Interestingly, a group I metabotropic glutamate receptor (mGluR) agonist, 3,5-dihydroxyphenylglycine (DHPG)-induced long-term depression (LTD) in mossy fiber-cornu ammonis 3 (MF-CA3) synapses but not Schaffer collateral-CA1 (SC-CA1) synapses was facilitated in brain slices from G1-treated middle-aged mice. Long-term potentiation (LTP) in SC-CA1 synapses was not affected in slices from G1-treated mice. The effects of GPR30 activation on memory and DHPG-LTD in MF-CA3 synapses were further confirmed by viral expression of GPR30 in the CA3. The regulation of hippocampal synaptic plasticity by G1 treatment might be related to brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling, as G15 also blocked G1-induced activation of the BDNF-TrkB pathway. Moreover, we found that DHPG triggered GluA internalization in slices from G1-treated mice but not control mice. Pharmacological experiments showed that G1-mediated facilitation of DHPG-induced LTD in MF-CA3 synapses was dependent on protein kinase B (Akt), mammalian target of rapamycin (mTor), and TrkB signaling. In conclusion, our results indicate that GPR30 activation improves memory in middle-aged mice, likely through facilitating synaptic plasticity in the CA3. This study provides novel evidence that GPR30 activation can improve memory in middle-aged animals. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice

    PubMed Central

    Ozkosem, Burak; Feinstein, Sheldon I.; Fisher, Aron B.; O’Flaherty, Cristian

    2015-01-01

    Due to socioeconomic factors, more couples are choosing to delay conception than ever. Increasing average maternal and paternal age in developed countries over the past 40 years has raised the question of how aging affects reproductive success of males and females. Since oxidative stress in the male reproductive tract increases with age, we investigated the impact of advanced paternal age on the integrity of sperm nucleus and reproductive success of males by using a Prdx6−/− mouse model. We compared sperm motility, cytoplasmic droplet retention sperm chromatin quality and reproductive outcomes of young (2-month-old), adult (8-month-old), and old (20-month-old) Prdx6−/− males with their age-matched wild type (WT) controls. Absence of PRDX6 caused age-dependent impairment of sperm motility and sperm maturation and increased sperm DNA fragmentation and oxidation as well as decreased sperm DNA compaction and protamination. Litter size, total number of litters and total number of pups per male were significantly lower in Prdx6−/− males compared to WT controls. These abnormal reproductive outcomes were severely affected by age in Prdx6−/− males. In conclusion, the advanced paternal age affects sperm chromatin integrity and fertility more severely in the absence of PRDX6, suggesting a protective role of PRDX6 in age-associated decline in the sperm quality and fertility in mice. PMID:25796034

  12. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice.

    PubMed

    Ozkosem, Burak; Feinstein, Sheldon I; Fisher, Aron B; O'Flaherty, Cristian

    2015-08-01

    Due to socioeconomic factors, more couples are choosing to delay conception than ever. Increasing average maternal and paternal age in developed countries over the past 40 years has raised the question of how aging affects reproductive success of males and females. Since oxidative stress in the male reproductive tract increases with age, we investigated the impact of advanced paternal age on the integrity of sperm nucleus and reproductive success of males by using a Prdx6(-/-) mouse model. We compared sperm motility, cytoplasmic droplet retention sperm chromatin quality and reproductive outcomes of young (2-month-old), adult (8-month-old), and old (20-month-old) Prdx6(-/-) males with their age-matched wild type (WT) controls. Absence of PRDX6 caused age-dependent impairment of sperm motility and sperm maturation and increased sperm DNA fragmentation and oxidation as well as decreased sperm DNA compaction and protamination. Litter size, total number of litters and total number of pups per male were significantly lower in Prdx6(-/-) males compared to WT controls. These abnormal reproductive outcomes were severely affected by age in Prdx6(-/-) males. In conclusion, the advanced paternal age affects sperm chromatin integrity and fertility more severely in the absence of PRDX6, suggesting a protective role of PRDX6 in age-associated decline in the sperm quality and fertility in mice. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Progression of multiple behavioral deficits with various ages of onset in a murine model of Hurler syndrome.

    PubMed

    Pan, Dao; Sciascia, Anthony; Vorhees, Charles V; Williams, Michael T

    2008-01-10

    Mucopolysaccharidosis type I (MPS I) is one of the most common lysosomal storage diseases with progressive neurological dysfunction. To characterize the chronological behavioral profiles and identify the onset of functional deficits in a MPS I mouse model (IDUA(-/-)), we evaluated anxiety, locomotor behavior, startle, spatial learning and memory with mice at 2, 4, 6 and 8 months of age. In automated open-field test, IDUA(-/-) mice showed hypoactivity as early as 2 months of age and altered anxiety starting from 6 months of age during the initial exploratory phase, even though normal habituation was observed at all ages. In the marble-burying task, the anxiety-like compulsive behavior was normal in IDUA(-/-) mice at almost all tested ages, but significantly reduced in 8-month old male IDUA(-/-) mice which coincided with the rapid death of IDUA(-/-) males starting from 7 months of age. In the Morris water maze, IDUA(-/-) mice exhibited impaired proficient learning only at 4 months of age during the acquisition phase. Spatial memory deficits were observed in IDUA(-/-) mice during both 1 and 7 days probe trials at 4 and 8 months of age. The IDUA(-/-) mice performed normally in a novel object recognition task at younger ages until 8 months old when reduced visual cognitive memory retention was noted in the IDUA(-/-) mice. In addition, 8-month-old IDUA(-/-) mice failed to habituate to repeated open-field exposure, suggesting deficits in non-aversive and non-associative memory. In acoustic startle assessment, significantly more non-responders were found in IDUA(-/-) mice, but normal performance was seen in those that did show a response. These results presented a temporal evaluation of phenotypic behavioral dysfunctions in IDUA(-/-) mice from adolescence to maturity, indicating the impairments, with different ages of onset, in locomotor and anxiety-like compulsive behaviors, spatial learning and memory, visual recognition and short-term non-associative memory retention

  14. Specific anti-EL4-lymphoma immunity in mice cured 2 years earlier with doxorubicin and interleukin-2.

    PubMed

    Ehrke, M J; Verstovsek, S; Zaleskis, G; Ho, R L; Ujházy, P; Maccubbin, D L; Mihich, E

    1996-05-01

    This laboratory has reported the conditions for an effective, non-toxic, chemoimmunotherapy utilizing doxorubicin in combination with prolonged administration of interleukin-2 and the identification of the critical role of activated CD8+ T cells in the therapeutic effect. Mice (C57BL/6) cured in those studies have been followed for the remainder of their life spans. These mice, approximately 2 months of age when initially inoculated with syngeneic EL4 lymphoma, survived for more than 2 years, the normal life span of C57BL/6 mice. Mice 4 months old reinoculated with the EL4 cells all survived. At about 1 year of age mice were sacrificed and the ability of their thymocytes and splenocytes to develop specific CD8+ anti-EL4 activity was as high as it had been at the time of tumor rejection. At about 2 years of age EL4 was reimplanted into mice; all of them survived. These surviving mice, at 2 years 2 months of age, as well as a group of 2-year-old mice not rechallenged, were killed and functional antitumor activity and phenotype characteristics of various lymphocyte populations were determined in comparison to those of young and age-matched control mice. The phenotyping of the lymphocytes from the cured mice indicated very notable differences in subset distribution and increased CD44 expression. Functionally they developed high levels of anti-EL4 activity, which was ablated by combined treatment with monoclonal antibodies against CD8 and CD44, indicating the role of memory cells. Consistent with cells from aged mice, these same cell populations had a very reduced allogeneic responsiveness. It appears that cured mice have developed an immune memory specific for EL4.

  15. Self-motivated and stress-response performance assays in mice are age-dependent.

    PubMed

    Ge, Xuan; Ciol, Marcia A; Pettan-Brewer, Christina; Goh, Jorming; Rabinovitch, Peter; Ladiges, Warren

    2017-05-01

    Chronic health conditions of the elderly lead to limitations in physical activity with disability, anxiety, and increased need for medical care and assisted living conditions. Physical performance tests are used to screen for pending loss of mobility and can serve as endpoints to monitor the effectiveness of intervention measures. Since limited mobility is associated with the physical and mental health of a person, evaluation of this in preclinical aging studies in mice will provide a translational approach for testing new intervention strategies. We assessed physiological parameters in 4, 12, 20 and 28month old C57BL/6 and CB6F1 male mice using a rotating rod, a free running wheel, and a photo beam activity field, designed to determine changes in coordinated walking ability, self-motivated running distance, and anxiety response to a novel environment, respectively. Older mice showed decreased coordinated walking times and decreased running distances, predictive of physical performance ability and motivation in the elderly. Changes in both lateral and vertical movements were observed in a novel cage environment suggesting different levels of anxiety. Because the genetic background of the two mouse strains influenced test results in an age-dependent manner, it is imperative to recognize that diverse genetic backgrounds in mice may yield different data in preclinical studies and would need to be interpreted individually for translational applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The expression of Fc and complement receptors in young, adult and aged mice.

    PubMed Central

    Vĕtvicka, V; Fornůsek, L; Zídková, J

    1985-01-01

    Age-dependent changes in the expression of Fc receptors (FcR) for different isotypes of immunoglobulins and receptors for C3b, C5b and C3bi fragments of complement on the membranes of peritoneal macrophages were studied with mice of different ages. An age-related increase in expression of Fc receptors for IgM, IgE, IgA, IgG2b and IgG3, and a decrease in the expression of Fc receptors for IgG1 was observed. The expression of FcR on macrophages of donors of different ages corresponded with Fc-receptor mediated phagocytosis. The highest number of C3b-binding macrophages was found in aged mice, in contrast to low numbers of C3bi-binding macrophages at this age. The percentage of C5b-binding macrophages was lowest in adult animals. We also observed effective inhibition of binding of the C3b component of complement by preincubation of macrophages with aggregated IgG and vice versa. These observations suggest that fluctuation in expression of Fc but not C receptors may be important to the generalized changes that occur in macrophage function during development and ageing. PMID:2931351

  17. Oral exposure to Listeria monocytogenes in aged IL-17RKO mice: A possible murine model to study listeriosis in susceptible populations.

    PubMed

    Alam, Mohammad S; Costales, Matthew; Cavanaugh, Christopher; Pereira, Marion; Gaines, Dennis; Williams, Kristina

    2016-10-01

    Foodborne Listeria monocytogenes (LM) is a cause of serious illness and death in the US. The case-fatality rate of invasive LM infection in the elderly population is >50%. The goal of this study is to establish a murine model of oral LM infection that can be used as a surrogate for human foodborne listeriosis in the geriatric population. Adult C57BL/6 (wild-type, WT) and adult or old IL17R-KO (knock-out) mice were gavaged with a murinized LM strain (Lmo-InlA m ) and monitored for body-weight loss and survivability. Tissues were collected and assayed for bacterial burden, histology, and cytokine responses. When compared to WT mice, adult IL17R-KO mice are more susceptible to LM infection and showed increased LM burden and tissue pathology and a higher mortality rate. Older LM-infected KO-mice lost significantly (p < 0.02, ANOVA) more body-weight and had a higher bacterial burden in the liver (p = 0.03) and spleen as compared to adult mice. Uninfected, aged KO-mice showed a higher baseline pro-inflammatory response when compared to uninfected adult-KO mice. After infection, the pro-inflammatory cytokine, IFN-γ, mRNA in the liver was higher in the adult mice as compared to the old mice. The anti-inflammatory cytokine, IL-10, mRNA and regulatory T-cells (CD4 + CD25 +h or CD4 + Foxp3 + ) cells in the aged mice increased significantly after infection as compared to adult mice. Expression of the T-cell activation marker, CD25 (IL-2Rα) in the aged mice did not increase significantly over baseline. These data suggest that aged IL17R-KO mice can be used as an in vivo model to study oral listeriosis and that aged mice are more susceptible to LM infection due to dysregulation of pro- and anti-inflammatory responses compared to adult mice, resulting in a protracted clearance of the infection. Published by Elsevier Ltd.

  18. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice

    PubMed Central

    Knight, Elysse M.; Brown, Timothy M.; Gümüsgöz, Sarah; Smith, Jennifer C. M.; Waters, Elizabeth J.; Allan, Stuart M.; Lawrence, Catherine B.

    2013-01-01

    SUMMARY Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD. PMID:22864021

  19. Effect of reproductive ageing on pregnant mouse uterus and cervix

    PubMed Central

    Patel, Rima; Moffatt, James D.; Mourmoura, Evangelia; Demaison, Luc; Seed, Paul T.; Poston, Lucilla

    2017-01-01

    Key points Older pregnant women have a greater risk of operative delivery, still birth and post‐term induction.This suggests that maternal age can influence the timing of birth and processes of parturition.We have found that increasing maternal age in C57BL/6J mice is associated with prolongation of gestation and length of labour.Older pregnant mice also had delayed progesterone withdrawal and impaired myometrial function.Uterine ageing and labour dysfunction should be investigated further in older primigravid women. Abstract Advanced maternal age (≥35 years) is associated with increased rates of operative delivery, stillbirth and post‐term labour induction. The physiological causes remain uncertain, although impaired myometrial function has been implicated. To investigate the hypothesis that maternal age directly influences successful parturition, we assessed the timing of birth and fetal outcome in pregnant C57BL/6J mice at 3 months (young) and 5 months (intermediate) vs. 8 months (older) of age using infrared video recording. Serum progesterone profiles, myometrium and cervix function, and mitochondrial electron transport chain complex enzymatic activities were also examined. Older pregnant mice had a longer mean gestation and labour duration (P < 0.001), as well as reduced litter size (P < 0.01) vs. 3‐month‐old mice. Older mice did not exhibit the same decline in serum progesterone concentrations as younger mice. Cervical tissues from older mice were more distensible than younger mice (P < 0.05). Oxytocin receptor and connexin‐43 mRNA expression were reduced in the myometrium from 8‐month‐old vs. 3‐month‐old mice (P < 0.05 and P < 0.01 respectively) in tandem with more frequent but shorter duration spontaneous myometrial contractions (P < 0.05) and an attenuated contractile response to oxytocin. Myometrial mitochondrial copy number was reduced in older mice, although there were no age‐induced changes to the enzymatic

  20. Longitudinal Attentional Engagement Rescues Mice from Age-Related Cognitive Declines and Cognitive Inflexibility

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm…

  1. Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice.

    PubMed

    Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-10-01

    The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. GSK-3α is a central regulator of age-related pathologies in mice

    PubMed Central

    Zhou, Jibin; Freeman, Theresa A.; Ahmad, Firdos; Shang, Xiying; Mangano, Emily; Gao, Erhe; Farber, John; Wang, Yajing; Ma, Xin-Liang; Woodgett, James; Vagnozzi, Ronald J.; Lal, Hind; Force, Thomas

    2013-01-01

    Aging is regulated by conserved signaling pathways. The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases regulates several of these pathways, but the role of GSK-3 in aging is unknown. Herein, we demonstrate premature death and acceleration of age-related pathologies in the Gsk3a global KO mouse. KO mice developed cardiac hypertrophy and contractile dysfunction as well as sarcomere disruption and striking sarcopenia in cardiac and skeletal muscle, a classical finding in aging. We also observed severe vacuolar degeneration of myofibers and large tubular aggregates in skeletal muscle, consistent with impaired clearance of insoluble cellular debris. Other organ systems, including gut, liver, and the skeletal system, also demonstrated age-related pathologies. Mechanistically, we found marked activation of mTORC1 and associated suppression of autophagy markers in KO mice. Loss of GSK-3α, either by pharmacologic inhibition or Gsk3a gene deletion, suppressed autophagy in fibroblasts. mTOR inhibition rescued this effect and reversed the established pathologies in the striated muscle of the KO mouse. Thus, GSK-3α is a critical regulator of mTORC1, autophagy, and aging. In its absence, aging/senescence is accelerated in multiple tissues. Strategies to maintain GSK-3α activity and/or inhibit mTOR in the elderly could retard the appearance of age-related pathologies. PMID:23549082

  3. 17 CFR 210.8-08 - Age of financial statements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Age of financial statements. 210.8-08 Section 210.8-08 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION FORM... CONSERVATION ACT OF 1975 Article 8 Financial Statements of Smaller Reporting Companies § 210.8-08 Age of...

  4. 17 CFR 210.8-08 - Age of financial statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Age of financial statements. 210.8-08 Section 210.8-08 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION FORM... CONSERVATION ACT OF 1975 Article 8 Financial Statements of Smaller Reporting Companies § 210.8-08 Age of...

  5. 17 CFR 210.8-08 - Age of financial statements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false Age of financial statements. 210.8-08 Section 210.8-08 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION FORM... CONSERVATION ACT OF 1975 Article 8 Financial Statements of Smaller Reporting Companies § 210.8-08 Age of...

  6. Cerebral Cortex Hyperthyroidism of Newborn Mct8-Deficient Mice Transiently Suppressed by Lat2 Inactivation

    PubMed Central

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M.; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2 -/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3′-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3′-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development. PMID:24819605

  7. Cerebral cortex hyperthyroidism of newborn mct8-deficient mice transiently suppressed by lat2 inactivation.

    PubMed

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3'-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3'-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.

  8. [Effect of Huanglian Jiedu Decoction on Monocyte Development in apoE Gene Knockout Mice].

    PubMed

    Chen, Bing; Kong, Ya-xian; Ll, Yu-mei; Xue, Xin; Zhang, Jian-ping; Zeng, Hui; Hu, Jing- qing; Ma, Ya-luan

    2016-01-01

    To observe monocyte (Mo) development in wild type C57BL/6 mice and apoE gene knockout (apoE(-/-)) mice, and to evaluate the immuno-regulatory effect of Huanglian Jiedu Decoction (HJD) on peripheral Mo development in apoE(-/-) mice. Four, 8, 12, and 16 weeks old female C57BL/6 mice were set up as control groups of different ages, while 4, 8, 12, and 16 weeks old female apoE(-/-) mice were set up as hyperlipidemia groups of different ages. Four-week old female C57BL/6 mice were recruited as a blank group. Four-week old female apoE(-/-) mice were randomly divided into the control group, the Western medicine group, and the Chinese medicine group by paired comparison, 5 in each group. Equivalent clinical dose was administered to mice according to body weight. Mice in the Western medicine group were administered with Atrovastatin at the daily dose of 10 mg/kg by gastrogavage, while those in the Chinese medicine group were administered with HJD at the daily dose of 5 g/kg by gastrogavage. Body weight was detected each week. After 4 weeks blood lipids levels (such as TG, TC, LDL-C, and HDL-C), and the proportions of Mo and Ly6c(hi) were detected. Compared with 4-week-old homogenic mice, the proportion of Mo decreased in 16-week-old C57BL/6 mice (P < 0.05). Levels of TC and TG, and the proportion of Ly6c(hi) subtype increased, but the proportion of Mo de- creased in 8-week-old apoE(-/-) mice (P <0. 05). Levels of TC, TG, and LDL-C increased in 12-week-old apoE(-/-) mice (P < 0.05). Levels of TC, TG, LDL-C, and HDL-C increased in 16-week-old apoE(-/-) mice (P < 0.05, P < 0.01). Compared with 8-week-old homogenic mice, the proportion of Mo decreased in 16-week-old C57BL/6 mice (P < 0.05); levels of TC and LDL-C increased in 12-week-old apoE(-/-) mice (P < 0.05); levels of TC and HDL-C increased in 16-week-old apoE(-/-) mice (P < 0.05, P < 0.01). Compared with C57BL/6 mice of the same age, TC and TG increased, HDL-C decreased (P < 0.01) in 4-and 8-week-old apoE(-/-) mice (P

  9. A study of axonal degeneration in the optic nerves of aging mice

    NASA Technical Reports Server (NTRS)

    Johnson, J. E., Jr.; Philpott, D. E.; Miquel, J.

    1978-01-01

    The optic nerves of C57BL/6J mice ranging from 3 to 30 months were examined by electron microscopy. At all ages investigated, optic nerve axons contained enlarged mitochondria with abnormal cristae. With increasing age, a large number of necrotic axons were observed and were in the process of being phagocytized. The abnormal mitochondria may represent preliminary changes that eventually lead to necrosis of the axon.

  10. Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1

    PubMed Central

    Hinton, David J.; McGee-Lawrence, Meghan E.; Lee, Moonnoh R.; Kwong, Hoi K.; Westendorf, Jennifer J.; Choi, Doo-Sup

    2014-01-01

    Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density. PMID:24586402

  11. Ablation of the Sam68 RNA Binding Protein Protects Mice from Age-Related Bone Loss

    PubMed Central

    Richard, Stéphane; Torabi, Nazi; Franco, Gladys Valverde; Tremblay, Guy A; Chen, Taiping; Vogel, Gillian; Morel, Mélanie; Cléroux, Patrick; Forget-Richard, Alexandre; Komarova, Svetlana; Tremblay, Michel L; Li, Wei; Li, Ailian; Gao, Yun Jing; Henderson, Janet E

    2005-01-01

    The Src substrate associated in mitosis of 68 kDa (Sam68) is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68−/− mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68−/− mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68−/− mice. Sam68−/− bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68+/+ and Sam68−/− littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68−/− mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68−/− mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice. PMID:16362077

  12. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    PubMed Central

    2010-01-01

    Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family. PMID:20637089

  13. Retinoic acid modulates intrahippocampal levels of corticosterone in middle-aged mice: consequences on hippocampal plasticity and contextual memory

    PubMed Central

    Bonhomme, Damien; Pallet, Véronique; Dominguez, Gaelle; Servant, Laure; Henkous, Nadia; Lafenêtre, Pauline; Higueret, Paul; Béracochéa, Daniel; Touyarot, Katia

    2014-01-01

    It is now established that vitamin A and its derivatives, retinoic acid (RA), are required for cognitive functions in adulthood. RA hyposignaling and hyperactivity of glucocorticoid (GC) pathway appear concomitantly during aging and would contribute to the deterioration of hippocampal synaptic plasticity and functions. Furthermore, recent data have evidenced counteracting effects of retinoids on GC signaling pathway. In the present study, we addressed the following issue: whether the stimulation of RA pathway could modulate intrahippocampal corticosterone (CORT) levels in middle-aged mice and thereby impact on hippocampal plasticity and cognitive functions. We firstly investigated the effects of vitamin A supplementation and RA treatment in middle-aged mice, on contextual serial discrimination task, a paradigm which allows the detection of early signs of age-related hippocampal-dependent memory dysfunction. We then measured intrahippocampal CORT concentrations by microdialysis before and after a novelty-induced stress. Our results show that both RA treatment and vitamin A supplementation improve “episodic-like” memory in middle-aged mice but RA treatment appears to be more efficient. Moreover, we show that the beneficial effect of RA on memory is associated to an increase in hippocampal PSD-95 expression. In addition, intrahippocampal CORT levels are reduced after novelty-induced stress in RA-treated animals. This effect cannot be related to a modulation of hippocampal 11β-HSD1 expression. Interestingly, RA treatment induces a modulation of RA receptors RARα and RARβ expression in middle-aged mice, a finding which has been correlated with the amplitude of intrahippocampal CORT levels after novelty-induced stress. Taken together, our results suggest that the preventive action of RA treatment on age-related memory deficits in middle-aged mice could be, at least in part, due to an inhibitory effect of retinoids on GC activity. PMID:24570662

  14. Adipose stem cells’ antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function

    PubMed Central

    Wang, Haiying; Wei, Shuyue; Xue, Xinxin; You, Yuntian; Ma, Qiang

    2016-01-01

    This study aims to discuss adipose stem cells’ (ASCs) antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function; the study also aims to explore a new mechanism of anti-aging to provide clinical anti-aging therapy with new thoughts and methods. We selected 40 healthy specific pathogen-free (SPF) nude mice and divided them randomly into four groups which were: blank control group; D-galactose + phosphate buffer saline (PBS) group; D-galactose + ASCs treatment group; and D-galactose + aminoguanidine (AG) group. Results showed that the superoxide dismutase (SOD) level of mice in the D-galactose-induced model group (87.15 ± 4.95 U/g) decreased significantly compared with that of control group (146.21 ± 4.76 U/g), while malonaldehyde (MDA) level of mice in D-galactose induced model group (11.12 ± 2.08 nmol/mg) increased significantly compared with that of control group (5.46 ± 2.05 nmol/mg) (P <0.05); thus D-galactose induced sub-acutely aging mice models were duplicated successfully. Results also indicated that transplantation of ASCs could reverse expression of aging-related biomarkers such as MDA, SOD, and advanced glycosylation end products (AGEs); hematoxylin and eosin (HE) staining showed that thickness of the dermis layer as well as the collagen content of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In addition, immunohistochemical assay showed that expression quantity of CD31 and vascular endothelial growth factor (VEGF) of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In conclusion, ASCs can trace cell distribution successfully through bioluminescence, and they survive for a short time in the skin after transplantation, which provides a basis for the application of ASC transplantation in clinical practices. Moreover, ASCs can control

  15. Long-term Dietary Macronutrients and Hepatic Gene Expression in Aging Mice.

    PubMed

    Gokarn, Rahul; Solon-Biet, Samantha M; Cogger, Victoria C; Cooney, Gregory J; Wahl, Devin; McMahon, Aisling C; Mitchell, James R; Mitchell, Sarah J; Hine, Christopher; de Cabo, Rafael; Raubenheimer, David; Simpson, Stephen J; Le Couteur, David G

    2018-04-23

    Nutrition influences both hepatic function and aging, but mechanisms are poorly understood. Here, the effects of lifelong, ad libitum-fed diets varying in macronutrients and energy on hepatic gene expression were studied. Gene expression was measured using Affymetrix mouse arrays in livers of 46 mice aged 15 months fed one of 25 diets varying in protein, carbohydrates, fat, and energy density from 3 weeks of age. Gene expression was almost entirely influenced by protein intake. Carbohydrate and fat intake had few effects on gene expression compared with protein. Pathways and processes associated with protein intake included those involved with mitochondrial function, metabolic signaling (PI3K-Akt, AMPK, mTOR) and metabolism of protein and amino acids. Protein intake had variable effects on genes associated with regulation of longevity and influenced by caloric restriction. Among the genes of interest with expression that were significantly associated with protein intake are Cth, Gls2, Igf1, and Nnmt, which were increased with higher protein intake, and Igf2bp2, Fgf21, Prkab2, and Mtor, which were increased with lower protein intake. Dietary protein has a powerful impact on hepatic gene expression in older mice, with some overlap with genes previously reported to be involved with regulation of longevity or caloric restriction.

  16. Aging Exacerbates Obesity-induced Cerebromicrovascular Rarefaction, Neurovascular Uncoupling, and Cognitive Decline in Mice

    PubMed Central

    Tucsek, Zsuzsanna; Toth, Peter; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Warrington, Junie P.; Giles, Cory B.; Wren, Jonathan D.; Koller, Akos; Ballabh, Praveen; Sonntag, William E.; Csiszar, Anna

    2014-01-01

    Epidemiological studies show that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular impairment, we compared young (7 months) and aged (24 months) high-fat diet–fed obese C57BL/6 mice. We found that aging exacerbates the obesity-induced decline in microvascular density both in the hippocampus and in the cortex. The extent of hippocampal microvascular rarefaction and the extent of impairment of hippocampal-dependent cognitive function positively correlate. Aging exacerbates obesity-induced loss of pericyte coverage on cerebral microvessels and alters hippocampal angiogenic gene expression signature, which likely contributes to microvascular rarefaction. Aging also exacerbates obesity-induced oxidative stress and induction of NADPH oxidase and impairs cerebral blood flow responses to whisker stimulation. Collectively, obesity exerts deleterious cerebrovascular effects in aged mice, promoting cerebromicrovascular rarefaction and neurovascular uncoupling. The morphological and functional impairment of the cerebral microvasculature in association with increased blood–brain barrier disruption and neuroinflammation (Tucsek Z, Toth P, Sosnowsk D, et al. Obesity in aging exacerbates blood–brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol Biol Med Sci. 2013. In press, PMID: 24269929) likely contribute to obesity-induced cognitive decline in aging. PMID:24895269

  17. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism.

    PubMed

    Flores, Rafael R; Clauson, Cheryl L; Cho, Joonseok; Lee, Byeong-Chel; McGowan, Sara J; Baker, Darren J; Niedernhofer, Laura J; Robbins, Paul D

    2017-06-01

    With aging, there is progressive loss of tissue homeostasis and functional reserve, leading to an impaired response to stress and an increased risk of morbidity and mortality. A key mediator of the cellular response to damage and stress is the transcription factor NF-κB. We demonstrated previously that NF-κB transcriptional activity is upregulated in tissues from both natural aged mice and in a mouse model of a human progeroid syndrome caused by defective repair of DNA damage (ERCC1-deficient mice). We also demonstrated that genetic reduction in the level of the NF-κB subunit p65(RelA) in the Ercc1 -/∆ progeroid mouse model of accelerated aging delayed the onset of age-related pathology including muscle wasting, osteoporosis, and intervertebral disk degeneration. Here, we report that the largest fraction of NF-κB -expressing cells in the bone marrow (BM) of aged (>2 year old) mice (C57BL/6-NF-κB EGFP reporter mice) are Gr-1 + CD11b + myeloid-derived suppressor cells (MDSCs). There was a significant increase in the overall percentage of MDSC present in the BM of aged animals compared with young, a trend also observed in the spleen. However, the function of these cells appears not to be compromised in aged mice. A similar increase of MDSC was observed in BM of progeroid Ercc1 -/∆ and BubR1 H/H mice. The increase in MDSC in Ercc1 -/∆ mice was abrogated by heterozygosity in the p65/RelA subunit of NF-κB. These results suggest that NF-κB activation with aging, at least in part, drives an increase in the percentage of MDSCs, a cell type able to suppress immune cell responses. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Urtica dioica agglutinin, a V beta 8.3-specific superantigen, prevents the development of the systemic lupus erythematosus-like pathology of MRL lpr/lpr mice.

    PubMed

    Musette, P; Galelli, A; Chabre, H; Callard, P; Peumans, W; Truffa-Bachi, P; Kourilsky, P; Gachelin, G

    1996-08-01

    The V beta 8.3-specific superantigenic lectin Urtica dioica agglutinin (UDA) was used to delete the V beta 8.3+ T cells in MRL lpr/lpr mice. In contrast to the systemic lupus erythematosus-like pathology which progresses with age in the phosphate-buffered saline-injected MRL lpr/lpr controls, UDA-treated animals did not develop overt clinical signs of lupus and nephritis. The pathogenic T cell clones thus reside within the V beta 8.3+ T cell population, which includes an expanded T cell clone described previously. Finally, UDA alters the production of autoantibodies in a sex-dependent manner.

  19. Markers of Alzheimer's Disease in Primary Visual Cortex in Normal Aging in Mice

    PubMed Central

    Perez-Hernández, Montserrat; Torres-Romero, Abigail; Gorostieta-Salas, Elisa; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo

    2017-01-01

    Aging is the principal risk factor for the development of Alzheimer's disease (AD). The hallmarks of AD are accumulation of the amyloid-β peptide 1–42 (Aβ42) and abnormal hyperphosphorylation of Tau (p-Tau) protein in different areas of the brain and, more recently reported, in the visual cortex. Recently, Aβ42 peptide overproduction has been involved in visual loss. Similar to AD, in normal aging, there is a significant amyloid deposition related to the overactivation of the aforementioned mechanisms. However, the mechanisms associated with visual loss secondary to age-induced visual cortex affectation are not completely understood. Young and aged mice were used as model to analyze the presence of Aβ42, p-Tau, glial-acidic fibrillary protein (GFAP), and presenilin-2, one of the main enzymes involved in Aβ42 production. Our results show a significant increase of Aβ42 deposition in aged mice in the following cells and/or tissues: endothelial cells and blood vessels and neurons of the visual cortex; they also show an increase of the expression of GFAP and presenilin-2 in this region. These results provide a comprehensive framework for the role of Aβ42 in visual loss due to inflammation present with aging and offer some clues for fruitful avenues for the study of healthy aging. PMID:29138750

  20. Markers of Alzheimer's Disease in Primary Visual Cortex in Normal Aging in Mice.

    PubMed

    Hernández-Zimbrón, Luis Fernando; Perez-Hernández, Montserrat; Torres-Romero, Abigail; Gorostieta-Salas, Elisa; Gonzalez-Salinas, Roberto; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo; Zenteno, Edgar

    2017-01-01

    Aging is the principal risk factor for the development of Alzheimer's disease (AD). The hallmarks of AD are accumulation of the amyloid- β peptide 1-42 (A β 42) and abnormal hyperphosphorylation of Tau (p-Tau) protein in different areas of the brain and, more recently reported, in the visual cortex. Recently, A β 42 peptide overproduction has been involved in visual loss. Similar to AD, in normal aging, there is a significant amyloid deposition related to the overactivation of the aforementioned mechanisms. However, the mechanisms associated with visual loss secondary to age-induced visual cortex affectation are not completely understood. Young and aged mice were used as model to analyze the presence of A β 42, p-Tau, glial-acidic fibrillary protein (GFAP), and presenilin-2, one of the main enzymes involved in A β 42 production. Our results show a significant increase of A β 42 deposition in aged mice in the following cells and/or tissues: endothelial cells and blood vessels and neurons of the visual cortex; they also show an increase of the expression of GFAP and presenilin-2 in this region. These results provide a comprehensive framework for the role of A β 42 in visual loss due to inflammation present with aging and offer some clues for fruitful avenues for the study of healthy aging.

  1. Apolipoprotein E4 Causes Age- and Sex-Dependent Impairments of Hilar GABAergic Interneurons and Learning and Memory Deficits in Mice

    PubMed Central

    Leung, Laura; Andrews-Zwilling, Yaisa; Yoon, Seo Yeon; Jain, Sachi; Ring, Karen; Dai, Jessica; Wang, Max Mu; Tong, Leslie; Walker, David; Huang, Yadong

    2012-01-01

    Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD). ApoE4 has sex-dependent effects, whereby the risk of developing AD is higher in apoE4-expressing females than males. However, the mechanism underlying the sex difference, in relation to apoE4, is unknown. Previous findings indicate that apoE4 causes age-dependent impairments of hilar GABAergic interneurons in female mice, leading to learning and memory deficits. Here, we investigate whether the detrimental effects of apoE4 on hilar GABAergic interneurons are sex-dependent using apoE knock-in (KI) mice across different ages. We found that in female apoE-KI mice, there was an age-dependent depletion of hilar GABAergic interneurons, whereby GAD67- or somatostatin-positive–but not NPY- or parvalbumin-positive–interneuron loss was exacerbated by apoE4. Loss of these neuronal populations was correlated with the severity of spatial learning deficits at 16 months of age in female apoE4-KI mice; however, this effect was not observed in female apoE3-KI mice. In contrast, we found an increase in the numbers of hilar GABAergic interneurons with advancing age in male apoE-KI mice, regardless of apoE genotype. Moreover, male apoE-KI mice showed a consistent ratio of hilar inhibitory GABAergic interneurons to excitatory mossy cells approximating 1.5 that is independent of apoE genotype and age, whereas female apoE-KI mice exhibited an age-dependent decrease in this ratio, which was exacerbated by apoE4. Interestingly, there are no apoE genotype effects on GABAergic interneurons in the CA1 and CA3 subregions of the hippocampus as well as the entorhinal and auditory cortexes. These findings suggest that the sex-dependent effects of apoE4 on developing AD is in part attributable to inherent sex-based differences in the numbers of hilar GABAergic interneurons, which is further modulated by apoE genotype. PMID:23300939

  2. Ischemic postconditioning confers cardioprotection and prevents reduction of Trx-1 in young mice, but not in middle-aged and old mice.

    PubMed

    Perez, Virginia; D Annunzio, Verónica; Mazo, Tamara; Marchini, Timoteo; Caceres, Lourdes; Evelson, Pablo; Gelpi, Ricardo J

    2016-04-01

    Thioredoxin-1 (Trx-1) is part of an antioxidant system that maintains the cell redox homeostasis but their role on ischemic postconditioning (PostC) is unknown. The aim of this work was to determine whether Trx-1 participates in the cardioprotective mechanism of PostC in young, middle-aged, and old mice. Male FVB young (Y: 3 month-old), middle-aged (MA: 12 month-old), and old (O: 20 month-old) mice were used. Langendorff-perfused hearts were subjected to 30 min of ischemia and 120 min of reperfusion (I/R group). After ischemia, we performed 6 cycles of R/I (10 s each) followed by 120 min of reperfusion (PostC group). We measured the infarct size (triphenyltetrazolium); Trx-1, total and phosphorylated Akt, and GSK3β expression (Western blot); and the GSH/GSSG ratio (HPLC). PostC reduced the infarct size in young mice (I/R-Y: 52.3 ± 2.4 vs. PostC-Y: 40.0 ± 1.9, p < 0.05), but this protection was abolished in the middle-aged and old mice groups. Trx-1 expression decreased after I/R, and the PostC prevented the protein degradation in young animals (I/R-Y: 1.05 ± 0.1 vs. PostC-Y: 0.52 ± .0.07, p < 0.05). These changes were accompanied by an improvement in the GSH/GSSG ratio (I/R-Y: 1.25 ± 0.30 vs. PostC-Y: 7.10 ± 2.10, p < 0.05). However, no changes were observed in the middle-aged and old groups. Cytosolic Akt and GSK3β phosphorylation increased in the PostC compared with the I/R group only in young animals. Our results suggest that PostC prevents Trx-1 degradation, decreasing oxidative stress and allowing the activation of Akt and GSK3β to exert its cardioprotective effect. This protection mechanism is not activated in middle-aged and old animals.

  3. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice.

    PubMed

    Park, Su-Jin; Kumar, Mukesh; Kwon, Hyeok-il; Seong, Rak-Kyun; Han, Kyudong; Song, Jae-min; Kim, Chul-Joong; Choi, Young-Ki; Shin, Ok Sarah

    2015-11-18

    Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses.

  4. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice

    PubMed Central

    Park, Su-Jin; Kumar, Mukesh; Kwon, Hyeok-il; Seong, Rak-Kyun; Han, Kyudong; Song, Jae-min; Kim, Chul-Joong; Choi, Young-Ki; Shin, Ok Sarah

    2015-01-01

    Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses. PMID:26576844

  5. Loss of the Na+/H+ exchanger NHE8 causes male infertility in mice by disrupting acrosome formation.

    PubMed

    Oberheide, Karina; Puchkov, Dmytro; Jentsch, Thomas J

    2017-06-30

    Mammalian sperm feature a specialized secretory organelle on the anterior part of the sperm nucleus, the acrosome, which is essential for male fertility. It is formed by a fusion of Golgi-derived vesicles. We show here that the predominantly Golgi-resident Na + /H + exchanger NHE8 localizes to the developing acrosome of spermatids. Similar to wild-type mice, Nhe8 -/- mice generated Golgi-derived vesicles positive for acrosomal markers and attached to nuclei, but these vesicles failed to form large acrosomal granules and the acrosomal cap. Spermatozoa from Nhe8 -/- mice completely lacked acrosomes, were round-headed, exhibited abnormal mitochondrial distribution, and displayed decreased motility, resulting in selective male infertility. Of note, similar features are also found in globozoospermia, one of the causes of male infertility in humans. Germ cell-specific, but not Sertoli cell-specific Nhe8 disruption recapitulated the globozoospermia phenotype, demonstrating that NHE8's role in spermiogenesis is germ cell-intrinsic. Our work has uncovered a crucial role of NHE8 in acrosome biogenesis and suggests that some forms of human globozoospermia might be caused by a loss of function of this Na + /H + exchanger. It points to NHE8 as a candidate gene for human globozoospermia and a possible drug target for male contraception. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Effect of dental pulp stem cells in MPTP-induced old-aged mice model.

    PubMed

    Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Simon, Christopher; Gan, Quan Fu; Vincent-Chong, Vui King; Mani, Vasudevan; Krishnan Selvarajan, Kesavanarayanan; Subramaniam, Vellayan; Musa, Sabri; Abu Kasim, Noor Hayaty

    2017-06-01

    Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic (DA-ergic) neurons in the substantia nigra (SN) and represented as a huge threat to the geriatric population. Cell replacement therapies (CRTs) have been proposed as a promising strategy to slow down or replace neuronal loss. Among the widely available cell sources, dental pulp stem cells (DPSCs) portray as an attractive source primarily due to their neural crest origin, ease of tissue procurement and less ethical hurdles. We first demonstrated the in vitro differentiation ability of DPSCs towards DA-ergic-like cells before evaluating their neuro-protection/neuro-restoration capacities in MPTP-induced mice. Transplantation via intrathecal was performed with behavioural assessments being evaluated every fortnight. Subsequent analysis investigating their immuno-modulatory behaviour was conducted using neuronal and microglial cell lines. It was apparent that the behavioural parameters began to improve corresponding to tyrosine hydroxylase (TH), dopamine transporter (DAT) and dopamine decarboxylase (AADC) immunostaining in SN and striatum as early as 8-week post-transplantation (P < 0·05). About 60% restoration of DA-ergic neurons was observed at SN in MPTP-treated mice after 12-week post-transplantation. Similarly, their ability to reduce toxic effects of MPTP (DNA damages, reactive oxygen species and nitric oxide release) and regulate cytokine levels was distinctly noted (P < 0·05) upon exposure in in vitro model. Our results suggest that DPSCs may provide a therapeutic benefit in the old-aged PD mice model and may be explored in stem cell-based CRTs especially in geriatric population as an attempt towards 'personalized medicine'. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  7. Caspase-8 inactivation in T cells increases necroptosis and suppresses autoimmunity in Bim−/− mice

    PubMed Central

    Bohgaki, Toshiyuki; Mozo, Julien; Salmena, Leonardo; Matysiak-Zablocki, Elzbieta; Bohgaki, Miyuki; Sanchez, Otto; Strasser, Andreas

    2011-01-01

    Dysregulation of either the extrinsic or intrinsic apoptotic pathway can lead to various diseases including immune disorders and cancer. In addition to its role in the extrinsic apoptotic pathway, caspase-8 plays nonapoptotic functions and is essential for T cell homeostasis. The pro-apoptotic BH3-only Bcl-2 family member Bim is important for the intrinsic apoptotic pathway and its inactivation leads to autoimmunity that is further exacerbated by loss of function of the death receptor Fas. We report that inactivation of caspase-8 in T cells of Bim−/− mice restrained their autoimmunity and extended their life span. We show that, similar to caspase-8−/− T cells, Bim−/− T cells that also lack caspase-8 displayed elevated levels of necroptosis and that inhibition of this cell death process fully rescued the survival and proliferation of these cells. Collectively, our data demonstrate that inactivation of caspase-8 suppresses the survival and proliferative capacity of Bim−/− T cells and restrains autoimmunity in Bim−/− mice. PMID:22006951

  8. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model.

    PubMed

    McClanahan, Fabienne; Riches, John C; Miller, Shaun; Day, William P; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M; Capasso, Melania; Gribben, John G

    2015-07-09

    T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3(+)CD8(+) T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1(+) T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8(+) T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity. © 2015 by The American Society of Hematology.

  9. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice

    PubMed Central

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K.; Garvey, Sean M.; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice. PMID

  10. Merotelic kinetochore attachment in oocyte meiosis II causes sister chromatids segregation errors in aged mice.

    PubMed

    Cheng, Jin-Mei; Li, Jian; Tang, Ji-Xin; Hao, Xiao-Xia; Wang, Zhi-Peng; Sun, Tie-Cheng; Wang, Xiu-Xia; Zhang, Yan; Chen, Su-Ren; Liu, Yi-Xun

    2017-08-03

    Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.

  11. Inflammatory and age-related pathologies in mice with ectopic expression of human PARP-1.

    PubMed

    Mangerich, Aswin; Herbach, Nadja; Hanf, Benjamin; Fischbach, Arthur; Popp, Oliver; Moreno-Villanueva, María; Bruns, Oliver T; Bürkle, Alexander

    2010-06-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a sensor for DNA strand breaks and some unusual DNA structures and catalyzes poly(ADP-ribosyl)ation of nuclear proteins with NAD(+) serving as substrate. PARP-1 is involved in the regulation of genomic integrity, transcription, inflammation, and cell death. Due to its versatile role, PARP-1 is discussed both as a longevity factor and as an aging-promoting factor. Recently, we generated a mouse model with ectopic integration of full-length hPARP-1 [Mangerich, A., Scherthan, H., Diefenbach, J., Kloz, U., van der Hoeven, F., Beneke, S. and Bürkle, A., 2009. A caveat in mouse genetic engineering: ectopic gene targeting in ES cells by bidirectional extension of the homology arms of a gene replacement vector carrying human PARP-1. Transgenic Res. 18, 261-279]. Here, we show that hPARP-1 mice exhibit impaired survival rates accompanied by reduced hair growth and premature development of several inflammation and age-associated pathologies, such as adiposity, kyphosis, nephropathy, dermatitis, pneumonitis, cardiomyopathy, hepatitis, and anemia. Moreover, mutant male mice showed impaired glucose tolerance, yet without developing manifest diabetes. Overall tumor burden was comparable in wild-type and hPARP-1 mice, but tumor spectrum was shifted in mutant mice, showing lower incidence of sarcomas, but increased incidence of carcinomas. Furthermore, DNA repair was delayed in splenocytes of hPARP-1 mice, and gene expression of pro-inflammatory cytokines was dysregulated. Our results suggest that in hPARP-1 mice impaired DNA repair, accompanied by a continuous low-level increase in pro-inflammatory stimuli, causes development of chronic diseases leading to impaired survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Oral treatment with herbal formula B401 alleviates penile toxicity in aging mice with manganism.

    PubMed

    Hsu, Chih-Hsiang; Lin, Ching-Lung; Wang, Sheue-Er; Sheu, Shuenn-Jyi; Chien, Chiang-Ting; Wu, Chung-Hsin

    2015-01-01

    The present study aims to elucidate the roles of nitric oxide synthase activity, oxidative stress, inflammation, and apoptosis in penile toxicity of aging mice associated with excess manganese (Mn) treatment and to investigate the effect of oral treatment with the herbal formula B401 in this respect. ICR strain mice were divided into two groups: the vehicle (sham group) and the B401 (50 mg/kg) group. The mice were orally treated for 5 days; then a high single dose of MnCl2 (100 mg/kg) was given by intraperitoneal injection to the mice. One day after MnCl2 treatment, corpora cavernosal tissues of both Mn-treated mice and their controls were simultaneously sampled to examine their immunohistochemical staining and Western blot analysis. Nitric oxide (NO) production, levels of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS), expression levels of factors governing angiogenesis (vascular endothelial growth factor), oxidative stress (catalase, superoxide dismutase 2,4-hydroxynonenal), inflammation (tumor necrosis factor alpha), apoptosis (B-cell lymphoma 2 [Bcl-2], Bcl-2-associated X protein [Bax], cleaved poly(adenosine diphosphate-ribose) polymerase [c-PARP], cytochrome C, caspase-12, and caspase-3) were evaluated in penile corpus cavernosum of the mice. We found that penile toxicity in the mice was enhanced under excess Mn treatment through reduction of NOS activity and increase in oxidative stress, inflammation, and apoptosis in the penile cavernous tissue. Furthermore, the penile toxicity in mice with manganism was alleviated by oral B401 treatment through enhancement of both nitric oxide synthesis and angiogenesis, with simultaneous reduction of oxidative stress, inflammation, and apoptosis in penile corpus cavernosum. We suggest that the herbal formula B401 may serve as a potential dietotherapeutic supplement for penile toxicity or dysfunction in aging males.

  13. β-Secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice

    PubMed Central

    Chang, Wan-Pin; Huang, Xiangping; Downs, Deborah; Cirrito, John R.; Koelsch, Gerald; Holtzman, David M.; Ghosh, Arun K.; Tang, Jordan

    2011-01-01

    Alzheimer disease is intimately linked to an excess amount of amyloid-β (Aβ) in the brain. Thus, therapeutic inhibition of Aβ production is an attractive clinical approach to treat this disease. Here we provide the first direct experimental evidence that the treatment of Tg2576 transgenic mice with an inhibitor of β-secretase, GRL-8234, rescues the age-related cognitive decline. We demonstrated that the injected GRL-8234 effectively enters the brain and rapidly decreases soluble Aβ in the brain of Tg2576 mice. The rescue of cognition, which was observed only after long-term inhibitor treatment ranging from 5 to 7.5 mo, was associated with a decrease of brain amyloid-β plaque load. We also found no accumulation of amyloid-β precursor protein after several months of inhibitor treatment. These observations substantiate the idea that Aβ accumulation plays a major role in the cognitive decline of Tg2576 mice and support the concept of Aβ reduction therapy as a treatment of AD.—Chang, W.-P., Huang, X., Downs, D., Cirrito, J. R., Koelsch, G., Holtzman, D. M. Ghosh, A. K., Tang, J. β-Secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. PMID:21059748

  14. TRPV1 deletion exacerbates hyperthermic seizures in an age-dependent manner in mice.

    PubMed

    Barrett, Karlene T; Wilson, Richard J A; Scantlebury, Morris H

    2016-12-01

    Febrile seizures (FS) are the most common seizure disorder to affect children. Although there is mounting evidence to support that FS occur when children have fever-induced hyperventilation leading to respiratory alkalosis, the underlying mechanisms of hyperthermia-induced hyperventilation and links to FS remain poorly understood. As transient receptor potential vanilloid-1 (TRPV1) receptors are heat-sensitive, play an important role in adult thermoregulation and modulate respiratory chemoreceptors, we hypothesize that TRPV1 activation is important for hyperthermia-induced hyperventilation leading to respiratory alkalosis and decreased FS thresholds, and consequently, TRPV1 KO mice will be relatively protected from hyperthermic seizures. To test our hypothesis we subjected postnatal (P) day 8-20 TRPV1 KO and C57BL/6 control mice to heated dry air. Seizure threshold temperature, latency and the rate of rise of body temperature during hyperthermia were assessed. At ages where differences in seizure thresholds were identified, head-out plethysmography was used to assess breathing and the rate of expired CO 2 in response to hyperthermia, to determine if the changes in seizure thresholds were related to respiratory alkalosis. Paradoxically, we observed a pro-convulsant effect of TRPV1 deletion (∼4min decrease in seizure latency), and increased ventilation in response to hyperthermia in TRPV1 KO compared to control mice at P20. This pro-convulsant effect of TRPV1 absence was not associated with an increased rate of expired CO 2 , however, these mice had a more rapid rise in body temperature following exposure to hyperthermia than controls, and the expected linear relationship between body weight and seizure latency was absent. Based on these findings, we conclude that deletion of the TRPV1 receptor prevents reduction in hyperthermic seizure susceptibility in older mouse pups, via a mechanism that is independent of hyperthermia-induced respiratory alkalosis, but

  15. 17 CFR 210.8-08 - Age of financial statements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Age of financial statements. 210.8-08 Section 210.8-08 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION FORM... Smaller Reporting Companies § 210.8-08 Age of financial statements. At the date of filing, financial...

  16. DNA aptamer raised against AGEs blocks the progression of experimental diabetic nephropathy.

    PubMed

    Kaida, Yusuke; Fukami, Kei; Matsui, Takanori; Higashimoto, Yuichiro; Nishino, Yuri; Obara, Nana; Nakayama, Yosuke; Ando, Ryotaro; Toyonaga, Maki; Ueda, Seiji; Takeuchi, Masayoshi; Inoue, Hiroyoshi; Okuda, Seiya; Yamagishi, Sho-ichi

    2013-09-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of AGEs- or control-aptamer for 8 weeks. AGEs-aptamer was detected and its level was increased in the kidney for at least 7 days. The elimination half-lives of AGEs-aptamer in the kidney were about 7 days. Compared with those in C57BL/6J mice, glomerular AGEs levels were significantly increased in KKAy/Ta mice, which were blocked by AGEs-aptamer. Urinary albumin and 8-hydroxy-2'-deoxy-guanosine levels were increased, and glomerular hypertrophy and enhanced extracellular matrix accumulation were observed in KKAy/Ta mice, all of which were prevented by AGEs-aptamer. Moreover, AGEs-aptamer significantly reduced gene expression of RAGE, monocyte chemoattractant protein-1, connective tissue growth factor, and type IV collagen both in the kidney of KKAy/Ta mice and in AGE-exposed human cultured mesangial cells. Our present data suggest that continuous administration of AGEs-aptamer could protect against experimental diabetic nephropathy by blocking the AGEs-RAGE axis and may be a feasible and promising therapeutic strategy for the treatment of diabetic nephropathy.

  17. DNA Aptamer Raised Against AGEs Blocks the Progression of Experimental Diabetic Nephropathy

    PubMed Central

    Kaida, Yusuke; Fukami, Kei; Matsui, Takanori; Higashimoto, Yuichiro; Nishino, Yuri; Obara, Nana; Nakayama, Yosuke; Ando, Ryotaro; Toyonaga, Maki; Ueda, Seiji; Takeuchi, Masayoshi; Inoue, Hiroyoshi; Okuda, Seiya

    2013-01-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of AGEs- or control-aptamer for 8 weeks. AGEs-aptamer was detected and its level was increased in the kidney for at least 7 days. The elimination half-lives of AGEs-aptamer in the kidney were about 7 days. Compared with those in C57BL/6J mice, glomerular AGEs levels were significantly increased in KKAy/Ta mice, which were blocked by AGEs-aptamer. Urinary albumin and 8-hydroxy-2′-deoxy-guanosine levels were increased, and glomerular hypertrophy and enhanced extracellular matrix accumulation were observed in KKAy/Ta mice, all of which were prevented by AGEs-aptamer. Moreover, AGEs-aptamer significantly reduced gene expression of RAGE, monocyte chemoattractant protein-1, connective tissue growth factor, and type IV collagen both in the kidney of KKAy/Ta mice and in AGE-exposed human cultured mesangial cells. Our present data suggest that continuous administration of AGEs-aptamer could protect against experimental diabetic nephropathy by blocking the AGEs-RAGE axis and may be a feasible and promising therapeutic strategy for the treatment of diabetic nephropathy. PMID:23630304

  18. Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor

    PubMed Central

    Brim, B. L.; Haskell, R.; Awedikian, R.; Ellinwood, N.M.; Jin, L.; Kumar, A.; Foster, T.C.; Magnusson, K.

    2012-01-01

    The GluN2B subunit of the N-methyl-D-aspartate (NMDA) receptor shows age-related declines in expression across the frontal cortex and hippocampus. This decline is strongly correlated to age-related memory declines. This study was designed to determine if increasing GluN2B subunit expression in the frontal lobe or hippocampus would improve memory in aged mice. Mice were injected bilaterally with either the GluN2B vector, containing cDNA specific for the GluN2B subunit and enhanced Green Fluorescent Protein (eGFP); a control vector or vehicle. Spatial memory, cognitive flexibility, and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression, exhibited improved long-term spatial memory, comparable to young mice. However, memory was rescued on different days in the Morris water maze; early for hippocampal GluN2B subunit enrichment and later for the frontal lobe. A higher concentration of the GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B expression, as compared to aged controls, suggesting there was an increase in the number of GluN2B-containing NMDA receptors. In addition, hippocampal slices from aged mice with increased GluN2B subunit expression exhibited enhanced NMDA receptor-mediated excitatory post-synaptic potentials (EPSP). Treatment with Ro 25-6981 showed that a greater proportion of the NMDA receptor-mediated EPSP was due to the GluN2B subunit in these animals, as compared to aged controls. These results suggest that increasing the production of the GluN2B subunit in aged animals enhances memory and synaptic transmission. Therapies that enhance GluN2B subunit expression within the aged brain may be useful for ameliorating age-related memory declines. PMID:23103326

  19. Age-dependent synapse withdrawal at axotomised neuromuscular junctions in Wlds mutant and Ube4b/Nmnat transgenic mice

    PubMed Central

    Gillingwater, Thomas H; Thomson, Derek; Mack, Till G A; Soffin, Ellen M; Mattison, Richard J; Coleman, Michael P; Ribchester, Richard R

    2002-01-01

    Axons in WldS mutant mice are protected from Wallerian degeneration by overexpression of a chimeric Ube4b/Nmnat (Wld) gene. Expression of Wld protein was independent of age in these mice. However we identified two distinct neuromuscular synaptic responses to axotomy. In young adult Wlds mice, axotomy induced progressive, asynchronous synapse withdrawal from motor endplates, strongly resembling neonatal synapse elimination. Thus, five days after axotomy, 50–90 % of endplates were still partially or fully occupied and expressed endplate potentials (EPPs). By 10 days, fewer than 20 % of endplates still showed evidence of synaptic activity. Recordings from partially occupied junctions indicated a progressive decrease in quantal content in inverse proportion to endplate occupancy. In Wlds mice aged > 7 months, axons were still protected from axotomy but synapses degenerated rapidly, in wild-type fashion: within three days less than 5 % of endplates contained vestiges of nerve terminals. The axotomy-induced synaptic withdrawal phenotype decayed with a time constant of ∼30 days. Regenerated synapses in mature Wlds mice recapitulated the juvenile phenotype. Within 4–6 days of axotomy 30–50 % of regenerated nerve terminals still occupied motor endplates. Age-dependent synapse withdrawal was also seen in transgenic mice expressing the Wld gene. Co-expression of Wld protein and cyan fluorescent protein (CFP) in axons and neuromuscular synapses did not interfere with the protection from axotomy conferred by the Wld gene. Thus, Wld expression unmasks age-dependent, compartmentally organised programmes of synapse withdrawal and degeneration. PMID:12231635

  20. 41 CFR 101-8.704 - Rules against age discrimination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Rules against age... FEDERAL FINANCIAL ASSISTANCE 8.7-Discrimination Prohibited on the Basis of Age § 101-8.704 Rules against age discrimination. The rules stated in this section are limited by the exceptions contained in § 101...

  1. 41 CFR 101-8.704 - Rules against age discrimination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Rules against age... FEDERAL FINANCIAL ASSISTANCE 8.7-Discrimination Prohibited on the Basis of Age § 101-8.704 Rules against age discrimination. The rules stated in this section are limited by the exceptions contained in § 101...

  2. 41 CFR 101-8.704 - Rules against age discrimination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Rules against age... FEDERAL FINANCIAL ASSISTANCE 8.7-Discrimination Prohibited on the Basis of Age § 101-8.704 Rules against age discrimination. The rules stated in this section are limited by the exceptions contained in § 101...

  3. 41 CFR 101-8.704 - Rules against age discrimination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Rules against age... FEDERAL FINANCIAL ASSISTANCE 8.7-Discrimination Prohibited on the Basis of Age § 101-8.704 Rules against age discrimination. The rules stated in this section are limited by the exceptions contained in § 101...

  4. 41 CFR 101-8.704 - Rules against age discrimination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Rules against age... FEDERAL FINANCIAL ASSISTANCE 8.7-Discrimination Prohibited on the Basis of Age § 101-8.704 Rules against age discrimination. The rules stated in this section are limited by the exceptions contained in § 101...

  5. IL-8 signaling is up regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present

    PubMed Central

    Liu, Hui; French, Barbara A.; Nelson, Tyler J.; Li, Jun; Tillman, Brittany; French, Samuel W.

    2015-01-01

    Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up regulation in AH livers and a 26-fold up regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Over expression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. PMID:26260904

  6. IL-8 signaling is up-regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present.

    PubMed

    Liu, Hui; French, Barbara A; Nelson, Tyler J; Li, Jun; Tillman, Brittany; French, Samuel W

    2015-10-01

    Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up-regulation in AH livers and a 26-fold up-regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up-regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Overexpression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effects of in utero JP-8 jet fuel exposure on the immune systems of pregnant and newborn mice.

    PubMed

    Harris, D T; Sakiestewa, D; He, X; Titone, D; Witten, M

    2007-10-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. In the present study, the effects of in-utero JP-8 jet fuel exposure in mice were examined to ascertain any potential effects of jet fuel exposure on female personnel and their offspring. Exposure by the aerosol route (at 1000 mg/m3 for 1 h/day; similar to exposures incurred by flight line personnel) commencing during the first (d7 to birth) or last (d15 to birth) trimester of pregnancy was analyzed. It was observed that even 6-8 weeks after the last jet fuel exposure that the immune system of the dams (mother of newborn mice) was affected (in accordance with previous reports on normal mice). That is, thymus organ weights and viable cell numbers were decreased, and immune function was depressed. A decrease in viable male offspring was found, notably more pronounced when exposure started during the first trimester of pregnancy. Regardless of when jet fuel exposure started, all newborn mice (at 6-8 weeks after birth) reported significant immunosuppression. That is, newborn pups displayed decreased immune organ weights, decreased viable immune cell numbers and suppressed immune function. When the data were analyzed in relation to the respective mothers of the pups the data were more pronounced. Although all jet fuel-exposed pups were immunosuppressed as compared with control pups, male offspring were more affected by jet fuel exposure than female pups. Furthermore, the immune function of the newborn mice was directly correlated to the immune function of their respective mothers. That is, mothers showing the lowest immune function after JP-8 exposure gave birth to pups displaying the greatest effects of jet fuel exposure on immune function. Mothers who showed the highest levels of immune function after in-utero JP-8

  8. Relationship between the effect of dietary fat on swimming endurance and energy metabolism in aged mice.

    PubMed

    Zhang, Guihua; Shirai, Nobuya; Suzuki, Hiramitsu

    2011-10-01

    The aim of this study was to investigate the effect of different dietary fats on alterations in endurance, energy metabolism, and plasma levels of interleukin-6 (IL-6) and minerals in mice. Male mice (aged 58 weeks) were fed diets containing 6% safflower oil, fish oil, or lard for 12 weeks. Swimming time to exhaustion, energy metabolism, and plasma IL-6 levels were subsequently determined. Mice fed safflower oil exhibited a marked increase in swimming time compared to the baseline level. Mice fed lard exhibited a significant decrease in swimming time, while mice on a fish oil diet exhibited a small decrease in swimming time. The final swimming time of mice fed safflower oil was significantly longer than that of animals fed lard. This improvement in endurance with dietary safflower oil was accompanied by decreased accumulation of lactate and less glycogen depletion during swimming. In the safflower oil group, muscle carnitine palmitoyltransferase activity increased significantly after swimming, while the plasma non-esterified fatty acid concentration decreased significantly. A trend to increased plasma IL-6 levels was observed in sedentary animals on a safflower oil diet compared to those on a lard diet. These results suggest that dietary safflower oil improves the swimming endurance of aged mice to a greater extent than lard, and that this effect appears to involve glycogen sparing through increased fatty acid utilization. Copyright © 2011 S. Karger AG, Basel.

  9. Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice.

    PubMed

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Lütjohann, Dieter; Veltien, Andor; Heerschap, Arend; Kiliaan, Amanda J

    2017-01-01

    Cardiovascular risk factors, especially hypertension, are also major risk factors for Alzheimer's disease (AD). To elucidate the underlying vascular origin of neurodegenerative processes in AD, we investigated the relation between systolic blood pressure (SBP) cerebral blood flow (CBF) and vasoreactivity with brain structure and function in a 16-18 months old double transgenic AβPP swe /PS1 dE9 (AβPP/PS1) mouse model for AD. These aging AβPP/PS1 mice showed an increased SBP linked to a declined regional CBF. Furthermore, using advanced MRI techniques, decline of functional and structural connectivity was revealed in the AD-like mice coupled to impaired cognition, increased locomotor activity, and anxiety-related behavior. Post mortem analyses demonstrated also increased neuroinflammation, and both decreased synaptogenesis and neurogenesis in the AβPP/PS1 mice. Additionally, deviant levels of fatty acids and sterols were present in the brain tissue of the AβPP/PS1 mice indicating maladapted brain fatty acid metabolism. Our findings suggest a link between increased SBP, decreased cerebral hemodynamics and connectivity in an AD mouse model during aging, leading to behavioral and cognitive impairments. As these results mirror the complex clinical symptomatology in the prodromal phase of AD, we suggest that this AD-like murine model could be used to investigate prevention and treatment strategies for early AD patients. Moreover, this study helps to develop more efficient therapies and diagnostics for this very early stage of AD.

  10. Adipose stem cells' antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function.

    PubMed

    Wang, Haiying; Wei, Shuyue; Xue, Xinxin; You, Yuntian; Ma, Qiang

    2016-09-01

    This study aims to discuss adipose stem cells' (ASCs) antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function; the study also aims to explore a new mechanism of anti-aging to provide clinical anti-aging therapy with new thoughts and methods. We selected 40 healthy specific pathogen-free (SPF) nude mice and divided them randomly into four groups which were: blank control group; D-galactose + phosphate buffer saline (PBS) group; D-galactose + ASCs treatment group; and D-galactose + aminoguanidine (AG) group. Results showed that the superoxide dismutase (SOD) level of mice in the D-galactose-induced model group (87.15 ± 4.95 U/g) decreased significantly compared with that of control group (146.21 ± 4.76 U/g), while malonaldehyde (MDA) level of mice in D-galactose induced model group (11.12 ± 2.08 nmol/mg) increased significantly compared with that of control group (5.46 ± 2.05 nmol/mg) (P <0.05); thus D-galactose induced sub-acutely aging mice models were duplicated successfully. Results also indicated that transplantation of ASCs could reverse expression of aging-related biomarkers such as MDA, SOD, and advanced glycosylation end products (AGEs); hematoxylin and eosin (HE) staining showed that thickness of the dermis layer as well as the collagen content of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In addition, immunohistochemical assay showed that expression quantity of CD31 and vascular endothelial growth factor (VEGF) of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In conclusion, ASCs can trace cell distribution successfully through bioluminescence, and they survive for a short time in the skin after transplantation, which provides a basis for the application of ASC transplantation in clinical practices. Moreover, ASCs can control

  11. AGED DOMINANT NEGATIVE p38α MAPK MICE ARE RESISTANT TO AGE-DEPENDENT DECLINE IN ADULT-NEUROGENESIS AND CONTEXT DISCRIMINATION FEAR CONDITIONING

    PubMed Central

    Cortez, IbDanelo; Bulavin, Dmitry V.; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T

    2018-01-01

    A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38αAF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38αAF/+) and kinase activity. As a result, aged DN-p38αAF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer’s disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual’s relative risk. In the present study, we evaluated aged DN-p38αAF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38αAF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38αAF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38αAF/+, we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38αAF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. PMID:27765672

  12. Aged dominant negative p38α MAPK mice are resistant to age-dependent decline in adult-neurogenesis and context discrimination fear conditioning.

    PubMed

    Cortez, IbDanelo; Bulavin, Dmitry V; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T

    2017-03-30

    A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38α AF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38α AF/+ ) and kinase activity. As a result, aged DN-p38α AF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer's disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual's relative risk. In the present study, we evaluated aged DN-p38α AF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38α AF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38α AF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38α AF/+ , we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38α AF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mechanisms of PD-L1/PD-1–mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model

    PubMed Central

    McClanahan, Fabienne; Riches, John C.; Miller, Shaun; Day, William P.; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M.; Capasso, Melania

    2015-01-01

    T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3+CD8+ T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1+ T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8+ T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity. PMID:25979947

  14. Protective effect of mango (Mangifera indica L.) against UVB-induced skin aging in hairless mice.

    PubMed

    Song, Jae Hyoung; Bae, Eun Young; Choi, Goya; Hyun, Jin Won; Lee, Mi Young; Lee, Hye Won; Chae, Sungwook

    2013-04-01

    Mangifera indica L. (Anacardiaceae) is a medicinal plant whose extracts have been described as an antioxidant with anti-inflammatory and immunomodulatory activities. Skin aging is a consequence of chronic sun exposure to the sun and therefore ultraviolet (UV) radiation. Naturally occurring antioxidants are known to reduce skin aging. Therefore, the aim of the present study was to evaluate the protective role of mango extract against UVB-induced skin aging in hairless mice. HR-1 hairless male mice (6 weeks old) were divided into three groups: control (n = 5), UVB-treated vehicle (n = 5), and UVB-treated mango extract (n = 5) groups. UVB-irradiated mice from the mango extract group were orally administered 0.1 ml of water containing 100 mg of mango extract/kg body weight per day. The inhibitory activity of mango extract on wrinkle formation was determined by the analysis of the skin replica, epidermal thickness based on histological examination, and damage to collagen fiber. The mean length of wrinkles in UVB-treated vehicle group significantly improved after the oral administration of mango extract, which significantly inhibited the increase in epidermal thickness and epidermal hypertrophy (P < 0.05). Furthermore, a marked increase in collagen bundles was observed in the UVB-treated group after the administration of mango extract by Masson's trichrome staining. These results indicate that mango extract showed anti-photoaging activity in UVB-irradiated hairless mice. © 2013 John Wiley & Sons A/S.

  15. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions.

    PubMed

    Parikh, Ishita; Guo, Janet; Chuang, Kai-Hsiang; Zhong, Yu; Rempe, Ralf G; Hoffman, Jared D; Armstrong, Rachel; Bauer, Björn; Hartz, Anika M S; Lin, Ai-Ling

    2016-11-08

    Neurovascular integrity plays an important role in protecting cognitive and mental health in aging. Lifestyle interventions that sustain neurovascular integrity may thus be critical on preserving brain functions in aging and reducing the risk for age-related neurodegenerative disorders. Here we show that caloric restriction (CR) had an early effect on neurovascular enhancements, and played a critical role in preserving vascular, cognitive and mental health in aging. In particular, we found that CR significantly enhanced cerebral blood flow (CBF) and blood-brain barrier function in young mice at 5-6 months of age. The neurovascular enhancements were associated with reduced mammalian target of rapamycin expression, elevated endothelial nitric oxide synthase signaling, and increased ketone bodies utilization. With age, CR decelerated the rate of decline in CBF. The preserved CBF in hippocampus and frontal cortex were highly correlated with preserved memory and learning, and reduced anxiety, of the aging mice treated with CR (18-20 months of age). Our results suggest that dietary intervention started in the early stage (e.g., young adults) may benefit cognitive and mental reserve in aging. Understanding nutritional effects on neurovascular functions may have profound implications in human brain aging and age-related neurodegenerative disorders.

  16. Age-dependent differences in nicotine reward and withdrawal in female mice.

    PubMed

    Kota, D; Martin, B R; Damaj, M I

    2008-06-01

    Adolescent smoking is an increasing epidemic in the US. Research has shown that the commencement of smoking at a young age increases addiction and decreases the probability of successful cessation; however, limited work has focused on nicotine dependence in the female. The goal of the present study was to identify the biological and behavioral factors that may contribute to nicotine's increased abuse liability in female adolescents using animal models of nicotine dependence. Early adolescent (PND 28) and adult (PND 70) female mice were compared in various aspects of nicotine dependence using reward and withdrawal models following sub-chronic nicotine exposure. Furthermore, in vivo acute sensitivity and tolerance to nicotine were examined. In the conditioned place preference model, adolescents demonstrated a significant preference at 0.5 mg/kg nicotine, an inactive dose in adults. Adults found higher doses (0.7 and 1.0 mg/kg) of nicotine to elicit rewarding effects. Furthermore, adolescents displayed increased physical, but not affective, withdrawal signs in three models. Upon acute exposure to nicotine, adolescent mice showed increased sensitivity in an analgesic measure as well as hypothermia. After chronic nicotine exposure, both adults and adolescents displayed tolerance to nicotine with adolescents having a lower degree of tolerance to changes in body temperature. These data indicate that differences in nicotine's rewarding and aversive effects may contribute to variations in certain components of nicotine dependence between adult and adolescent female mice. Furthermore, this implies that smoking cessation therapies may not be equally effective across all ages.

  17. Aging rather than stress strongly influences amino acid metabolisms in the brain and genital organs of female mice.

    PubMed

    Kodaira, Momoko; Nagasawa, Mao; Yamaguchi, Takeshi; Ikeda, Hiromi; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-03-01

    Aging and stress affect quality of life, and proper nourishment is one of means of preventing this effect. Today, there is a focus on the amount of protein consumed by elderly people; however, changes in the amino acid metabolism of individuals have not been fully considered. In addition, the difference between average life span and healthy life years is larger in females than it is in males. To prolong the healthy life years of females, in the present study we evaluated the influence of stress and aging on metabolism and emotional behavior by comparing young and middle-aged female mice. After 28 consecutive days of immobilization stress, behavioral tests were conducted and tissue sampling was performed. The results showed that the body weight of middle-aged mice was severely lowered by stress, but emotional behaviors were hardly influenced by either aging or stress. Aging influenced changes in amino acid metabolism in the brain and increased various amino acid levels in the uterus and ovary. In conclusion, we found that aged mice were more susceptible to stress in terms of body-weight reduction, and that amino acid metabolisms in the brain and genital organs were largely influenced by aging rather than by stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Activity of antioxidant enzymes and concentration of lipid peroxidation products in selected tissues of mice of different ages, both healthy and melanoma-bearing.

    PubMed

    Woźniak, A; Drewa, G; Woźniak, B; Schachtschabel, D O

    2004-06-01

    The activity of antioxidant enzymes and the concentration of the lipid peroxidation product malondialdehyde (MDA) as indicator of oxidative damage were determined in selected tissues of healthy mice and transplanted B16 melanoma-bearing mice with increasing age. A total of 60 male mice were divided into 6 groups. Groups 1, 2 and 3 consisted of tumor-free, healthy mice aged 1, 9 and 16 months, respectively (average life span: 2 years). Groups 4, 5 and 6 consisted of mice of the same age as the healthy mice, but given intraperitoneally 10(6) cells of B16 melanoma for 2 weeks. An increase in the concentration of MDA was found in all the studied tissues (brain, liver, lungs, erythrocytes) and blood plasma of 16-month old healthy mice compared with the younger ones. The activity of superoxide dismutase (SOD) and catalase (CAT) was elevated in the brain and the activity of CAT and glutathione peroxidase (GPx) in the liver of aged healthy mice. The transplantation of melanoma caused an increase of the concentration of MDA and of the activity of all studied enzymes in all tissues. This elevation was most pronounced in the youngest mice group 4 and was higher than in the oldest healthy group 3. Thus, these early changes of the "(anti-)oxidative status" in the investigated tissues caused by the tumor development have similarities with age-associated alterations of healthy mice, especially in regard to MDA in all tissues or SOD and CAT in brain.

  19. A Phenotyping Regimen for Genetically Modified Mice Used to Study Genes Implicated in Human Diseases of Aging.

    PubMed

    Patterson, Victoria L; Thompson, Brian S; Cherry, Catherine; Wang, Shao-Bin; Chen, Bo; Hoh, Josephine

    2016-07-14

    Age-related diseases are becoming increasingly prevalent and the burden continues to grow as our population ages. Effective treatments are necessary to lessen the impact of debilitating conditions but remain elusive in many cases. Only by understanding the causes and pathology of diseases associated with aging, can scientists begin to identify potential therapeutic targets and develop strategies for intervention. The most common age-related conditions are neurodegenerative disorders such as Parkinson's disease and blindness. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Genome wide association studies have previously identified loci that are associated with increased susceptibility to this disease and identified two regions of interest: complement factor H (CFH) and the 10q26 locus, where the age-related maculopathy susceptibility 2 (ARMS2) and high-temperature requirement factor A1 (HtrA1) genes are located. CFH acts as a negative regulator of the alternative pathway (AP) of the complement system while HtrA1 is an extracellular serine protease. ARMS2 is located upstream of HtrA1 in the primate genome, although the gene is absent in mice. To study the effects of these genes, humanized knock-in mouse lines of Cfh and ARMS2, knockouts of Cfh, HtrA1, HtrA2, HtrA3 and HtrA4 as well as a conditional neural deletion of HtrA2 were generated. Of all the genetically engineered mice produced only mice lacking HtrA2, either systemically or in neural tissues, displayed clear phenotypes. In order to examine these mice thoroughly and systematically, an initial phenotyping schedule was established, consisting of a series of tests related to two main diseases of interest: AMD and Parkinson's. Genetically modified mice can be subjected to appropriate experiments to identify phenotypes that may be related to the associated diseases in humans. A phenotyping regimen with a mitochondrial focus is presented here alongside representative results

  20. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age.

    PubMed

    Agudo, J; Martin, M; Roca, C; Molas, M; Bura, A S; Zimmer, A; Bosch, F; Maldonado, R

    2010-12-01

    The endocannabinoid system has a key role in energy storage and metabolic disorders. The endocannabinoid receptor 2 (CB2R), which was first detected in immune cells, is present in the main peripheral organs responsible for metabolic control. During obesity, CB2R is involved in the development of adipose tissue inflammation and fatty liver. We examined the long-term effects of CB2R deficiency in glucose metabolism. Mice deficient in CB2R (Cb2 ( -/- ) [also known as Cnr2]) were studied at different ages (2-12 months). Two-month-old Cb2 (-/-) and wild-type mice were treated with a selective CB2R antagonist or fed a high-fat diet. The lack of CB2R in Cb2 (-/-) mice led to greater increases in food intake and body weight with age than in Cb2 (+/+) mice. However, 12-month-old obese Cb2 (-/-) mice did not develop insulin resistance and showed enhanced insulin-stimulated glucose uptake in skeletal muscle. In agreement, adipose tissue hypertrophy was not associated with inflammation. Similarly, treatment of wild-type mice with CB2R antagonist resulted in improved insulin sensitivity. Moreover, when 2-month-old Cb2 (-/-) mice were fed a high-fat diet, reduced body weight gain and normal insulin sensitivity were observed. These results indicate that the lack of CB2R-mediated responses protected mice from both age-related and diet-induced insulin resistance, suggesting that these receptors may be a potential therapeutic target in obesity and insulin resistance.