Science.gov

Sample records for ageing human fibroblasts

  1. Stiffening of Human Skin Fibroblasts with Age

    PubMed Central

    Schulze, Christian; Wetzel, Franziska; Kueper, Thomas; Malsen, Anke; Muhr, Gesa; Jaspers, Soeren; Blatt, Thomas; Wittern, Klaus-Peter; Wenck, Horst; Käs, Josef A.

    2010-01-01

    Changes in mechanical properties are an essential characteristic of the aging process of human skin. Previous studies attribute these changes predominantly to the altered collagen and elastin organization and density of the extracellular matrix. Here, we show that individual dermal fibroblasts also exhibit a significant increase in stiffness during aging in vivo. With the laser-based optical cell stretcher we examined the viscoelastic biomechanics of dermal fibroblasts isolated from 14 human donors aged 27 to 80. Increasing age was clearly accompanied by a stiffening of the investigated cells. We found that fibroblasts from old donors exhibited an increase in rigidity of ∼60% with respect to cells of the youngest donors. A FACS analysis of the content of the cytoskeletal polymers shows a shift from monomeric G-actin to polymerized, filamentous F-actin, but no significant changes in the vimentin and microtubule content. The rheological analysis of fibroblast-populated collagen gels demonstrates that cell stiffening directly results in altered viscoelastic properties of the collagen matrix. These results identify a new mechanism that may contribute to the age-related impairment of elastic properties in human skin. The altered mechanical behavior might influence cell functions involving the cytoskeleton, such as contractility, motility, and proliferation, which are essential for reorganization of the extracellular matrix. PMID:20959083

  2. Replicative senescence: the human fibroblast comes of age.

    PubMed

    Goldstein, S

    1990-09-01

    Human diploid fibroblasts undergo replicative senescence predominantly because of arrest at the G1/S boundary of the cell cycle. Senescent arrest resembles a process of terminal differentiation that appears to involve repression of proliferation-promoting genes with reciprocal new expression of antiproliferative genes, although post-transcriptional factors may also be involved. Identification of participating genes and clarification of their mechanisms of action will help to elucidate the universal cellular decline of biological aging and an important obverse manifestation, the rare escape of cells from senescence leading to immortalization and oncogenesis.

  3. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  4. CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts.

    PubMed

    Quan, Taihao; Qin, Zhaoping; Robichaud, Patrick; Voorhees, John J; Fisher, Gary J

    2011-08-01

    Dermal connective tissue collagen is the major structural protein in skin. Fibroblasts within the dermis are largely responsible for collagen production and turnover. We have previously reported that dermal fibroblasts, in aged human skin in vivo, express elevated levels of CCN1, and that CCN1 negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation (Quan et al. Am J Pathol 169:482-90, 2006, J Invest Dermatol 130:1697-706, 2010). In further investigations of CCN1 actions, we find that CCN1 alters collagen homeostasis by promoting expression of specific secreted proteins, which include matrix metalloproteinases and proinflammatory cytokines. We also find that CCN1-induced secretory proteins are elevated in aged human skin in vivo. We propose that CCN1 induces an "Age-Associated Secretory Phenotype", in dermal fibroblasts, which mediates collagen reduction and fragmentation in aged human skin.

  5. Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts

    PubMed Central

    Waldera-Lupa, Daniel M.; Kalfalah, Faiza; Florea, Ana-Maria; Sass, Steffen; Kruse, Fabian; Rieder, Vera; Tigges, Julia; Fritsche, Ellen; Krutmann, Jean; Busch, Hauke; Boerries, Melanie; Meyer, Helmut E.; Boege, Fritz; Theis, Fabian

    2014-01-01

    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts’ aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77% of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging. PMID:25411231

  6. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts

    PubMed Central

    Huh, Christine J; Zhang, Bo; Victor, Matheus B; Dahiya, Sonika; Batista, Luis FZ; Horvath, Steve; Yoo, Andrew S

    2016-01-01

    Aging is a major risk factor in many forms of late-onset neurodegenerative disorders. The ability to recapitulate age-related characteristics of human neurons in culture will offer unprecedented opportunities to study the biological processes underlying neuronal aging. Here, we show that using a recently demonstrated microRNA-based cellular reprogramming approach, human fibroblasts from postnatal to near centenarian donors can be efficiently converted into neurons that maintain multiple age-associated signatures. Application of an epigenetic biomarker of aging (referred to as epigenetic clock) to DNA methylation data revealed that the epigenetic ages of fibroblasts were highly correlated with corresponding age estimates of reprogrammed neurons. Transcriptome and microRNA profiles reveal genes differentially expressed between young and old neurons. Further analyses of oxidative stress, DNA damage and telomere length exhibit the retention of age-associated cellular properties in converted neurons from corresponding fibroblasts. Our results collectively demonstrate the maintenance of age after neuronal conversion. DOI: http://dx.doi.org/10.7554/eLife.18648.001 PMID:27644593

  7. Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo.

    PubMed

    Quan, Taihao; Wang, Frank; Shao, Yuan; Rittié, Laure; Xia, Wei; Orringer, Jeffrey S; Voorhees, John J; Fisher, Gary J

    2013-03-01

    The dermal extracellular matrix (ECM) provides strength and resiliency to skin. The ECM consists mostly of type I collagen fibrils, which are produced by fibroblasts. Binding of fibroblasts to collagen fibrils generates mechanical forces, which regulate cellular morphology and function. With aging, collagen fragmentation reduces fibroblast-ECM binding and mechanical forces, resulting in fibroblast shrinkage and reduced function, including collagen production. Here, we report that these age-related alterations are largely reversed by enhancing the structural support of the ECM. Injection of dermal filler, cross-linked hyaluronic acid, into the skin of individuals over 70 years of age stimulates fibroblasts to produce type I collagen. This stimulation is associated with localized increase in mechanical forces, indicated by fibroblast elongation/spreading, and mediated by upregulation of type II TGF-β receptor and connective tissue growth factor. Interestingly, enhanced mechanical support of the ECM also stimulates fibroblast proliferation, expands vasculature, and increases epidermal thickness. Consistent with our observations in human skin, injection of filler into dermal equivalent cultures causes elongation of fibroblasts, coupled with type I collagen synthesis, which is dependent on the TGF-β signaling pathway. Thus, fibroblasts in aged human skin retain their capacity for functional activation, which is restored by enhancing structural support of the ECM.

  8. Donor's age and replicative senescence favour the in-vitro mineralization potential of human fibroblasts.

    PubMed

    Boraldi, Federica; Bartolomeo, Angelica; Di Bari, Caterina; Cocconi, Andrea; Quaglino, Daniela

    2015-12-01

    Aberrant mineralization of soft connective tissues (ectopic calcification) may occur as a frequent age-related complication. Still, it remains unclear the role of mesenchymal cell donor's age and of replicative senescence on ectopic calcification. Therefore, the ability of cells to deposit in-vitro hydroxyapatite crystals and the expression of progressive ankylosis protein homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), tissue non specific alkaline phosphatase (TNAP) and osteopontin (OPN) have been evaluated in human dermal fibroblasts derived from neonatal (nHDF) and adult (aHDF) donors (ex-vivo ageing model) or at low and high cumulative population doublings (CPD) up to replicative senescence (in-vitro ageing model). This study demonstrates that: 1) replicative senescence favours hydroxyapatite formation in cultured fibroblasts; 2) donor's age acts as a major modulator of the mineralizing potential of HDF, since nHDF are less prone than aHDF to induce calcification; 3) donor's age and replicative senescence play in concert synergistically increasing the calcification process; 4) the ANKH+ENPP1/TNAP ratio, being crucial for pyrophosphate/inorganic phosphate balance, is greatly influenced by donor's age, as well as by replicative senescence, and regulates mineral deposition; 5) OPN is only modulated by replicative senescence.

  9. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin.

    PubMed

    Waldera Lupa, Daniel M; Kalfalah, Faiza; Safferling, Kai; Boukamp, Petra; Poschmann, Gereon; Volpi, Elena; Götz-Rösch, Christine; Bernerd, Francoise; Haag, Laura; Huebenthal, Ulrike; Fritsche, Ellen; Boege, Fritz; Grabe, Niels; Tigges, Julia; Stühler, Kai; Krutmann, Jean

    2015-08-01

    Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging

  10. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin.

    PubMed

    Waldera Lupa, Daniel M; Kalfalah, Faiza; Safferling, Kai; Boukamp, Petra; Poschmann, Gereon; Volpi, Elena; Götz-Rösch, Christine; Bernerd, Francoise; Haag, Laura; Huebenthal, Ulrike; Fritsche, Ellen; Boege, Fritz; Grabe, Niels; Tigges, Julia; Stühler, Kai; Krutmann, Jean

    2015-08-01

    Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging.

  11. Dicarbonyl-induced accelerated aging in vitro in human skin fibroblasts.

    PubMed

    Sejersen, Henrik; Rattan, Suresh I S

    2009-04-01

    Dicarbonyls glyoxal (GO) and methylglyoxal (MGO) produced during the autoxidation of reducing sugars are a source of macromolecular damage in cells. Since an accumulation of damaged macromolecules is a universal characteristic of aging, we have tested whether GO and MGO which cause oxidative damage to proteins and other macromolecules can bring about accelerated aging in normal human skin fibroblasts in vitro. A treatment of cells with 1.0 mM GO or 400 microM MGO leads to the appearance of senescent phenotype within 3 days, as judged by the following criteria: morphological phenotype, irreversible growth arrest and G2 arrest, increased senescence-associated beta-galactosidase (SABG) activity, increased H2O2 level, increased Nxi-(carboxymethyl)-lysine (CML) protein level, and altered activities of superoxide dismutase and catalase antioxidant enzymes. This experimental model of accelerated cellular aging in vitro can be useful for studies on testing the effects of various physical, chemical and biological conditions, including natural and synthetic molecules, for the modulation of aging.

  12. Quantification of age-related changes of α-tocopherol in lysosomal membranes in murine tissues and human fibroblasts.

    PubMed

    König, Jeannette; Besoke, Fabian; Stuetz, Wolfgang; Malarski, Angelika; Jahreis, Gerhard; Grune, Tilman; Höhn, Annika

    2016-05-01

    Considering the biological function of α-tocopherol (α-Toc) as a potent protective factor against oxidative stress, this antioxidant is in the focus of aging research. To understand the role of α-Toc during aging we investigated α-Toc concentrations in young and aged primary human fibroblasts after supplementation with RRR-α-Toc. Additionally, α-Toc contents were determined in brain, kidney, and liver tissue of 10 week-, 18 month-, and 24 month-old mice, which were fed a standard diet containing 100 mg/kg dl-α-tocopheryl acetate. α-Toc concentrations in isolated lysosomes and the expression of the α-Toc transport proteins Niemann Pick C1 (NPC1), Niemann Pick C2 (NPC2), and lipoprotein lipase were also analyzed. Obtained data show a significant age-related increase of α-Toc in murine liver, kidney, and brain tissue as well as in human dermal fibroblasts. Also liver and kidney lysosomes are marked by elevated α-Toc contents with aging. NPC1 and NPC2 protein amounts are significantly decreased in adult and aged murine kidney tissue. Also aged human dermal fibroblasts show decreased NPC1 amounts. Supplementation of young and aged fibroblasts led also to decreased NPC1 amounts, suggesting a direct role of this protein in α-Toc distribution. Our results indicate an age-dependent increase of α-Toc in different murine tissues as well as in human fibroblasts. Furthermore saturation and intracellular distribution of α-Toc seem to be strongly dependent on the availability of this vitamin as well as on the presence of the lysosomal protein NPC1. © 2016 BioFactors, 42(3):307-315, 2016.

  13. Free radical scavenging systems and the effect of peroxide damage in aged human skin fibroblasts.

    PubMed

    Gutman, R L; Cohen, M R; McAmis, W; Ramchand, C N; Sailer, V

    1987-01-01

    One prominent theory of aging postulates an accumulation of cell damage resulting from nonenzymatic chemical reactions between important cellular components and free radicals. Fibroblast lines derived from skin biopsies of psychiatric patients ranging in age from 22 to 70 were evaluated soon after adaptation to culture. No significant correlation was found between donor age and the detoxification enzyme activities of superoxide dismutase (SOD) or aryl hydrocarbon hydroxylase (AHH) or susceptibility to damage by oxygen metabolites as measured by cell viability or lactate dehydrogenase (LDH) leakage.

  14. Heat shock protein 47 expression in aged normal human fibroblasts: modulation by Salix alba extract.

    PubMed

    Nizard, Carine; Noblesse, Emmanuelle; Boisdé, Cécille; Moreau, Marielle; Faussat, Anne-Marie; Schnebert, Sylvianne; Mahé, Christian

    2004-06-01

    Heat shock protein (HSP) 47 is a specific chaperone of procollagen. This heat shock protein is responsible for the correct three-dimensional organization of procollagen and its control-quality prior secretion. The aim of the study is to evaluate the level of HSP 47 in aged, photoaged, and senescent fibroblasts and its modulation by a plant extract (Salix alba). The level of HSP 47 and/or procollagen expression in fibroblasts was measured by real-time RT-PCR (mRNA transcripts) and by flow cytometry (immunochemistry technique for measurement of arbitrary fluorescence intensity). Immunochemistry techniques and confocal microscopy were used to visualize the cellular localization of HSP 47 and procollagen. These parameters were compared with different age donors, nonsenescent, and senescent fibroblasts. Fibroblasts were irradiated by a noncytotoxic dose of UVA (6 J/cm(2)), and HSP 47 level was evaluated. S. alba extract was tested for its capacity to modulate HSP 47 expression. Colocalization of HSP 47 and procollagen was shown by confocal microscopy, indicating that HSP 47 could play a role of procollagen molecular chaperone in the cellular model. It was also shown that the HSP 47 level is decreased in old-donor cells, senescent, and irradiated cells. This decrease can be modulated by a S. alba extract (polyphenols rich) in a dose-dependent manner. The evaluation of HSP 47 expression in the experimental conditions can lead to a new approach of aging and photoaging, pointing out the implication of this chaperone in these pathophysiologic phenomena. Modulation of HSP 47 expression by this family of molecules could be of cosmetic and/or dermatologic interest.

  15. Basal level of autophagy is increased in aging human skin fibroblasts in vitro, but not in old skin.

    PubMed

    Demirovic, Dino; Nizard, Carine; Rattan, Suresh I S

    2015-01-01

    Intracellular autophagy (AP) is a stress response that is enhanced under conditions of limitation of amino acids, growth factors and other nutrients, and also when macromolecules become damaged, aggregated and fibrillated. Aging is generally accompanied by an increase in intracellular stress due to all the above factors. Therefore, we have compared the basal levels of AP in serially passaged human facial skin fibroblasts undergoing aging and replicative senescence in vitro, and ex vivo in the skin biopsies from the photo-protected and photo-exposed area of the arms of 20 healthy persons of young and old ages. Immunofluorescence microscopy, employing antibodies against a specific intracellular microtubule-associated protein-1 light chain-3 (LC3) as a well established marker of AP, showed a 5-fold increase in the basal level of LC3 in near senescent human skin fibroblasts. However, no such age-related increase in LC3 fluorescence and AP could be detected in full thickness skin sections from the biopsies obtained from 10 healthy young (age 25 to 30 yr) and 10 old (age 60 to 65 yr) donors. Furthermore, there was no difference in the basal level of LC3 in the skin sections from photo-protected and photo-exposed areas of the arm. Thus, in normal conditions, the aging phenotype of the skin cells in culture and in the body appears to be different in the case of AP.

  16. Basal Level of Autophagy Is Increased in Aging Human Skin Fibroblasts In Vitro, but Not in Old Skin

    PubMed Central

    Demirovic, Dino; Nizard, Carine; Rattan, Suresh I. S.

    2015-01-01

    Intracellular autophagy (AP) is a stress response that is enhanced under conditions of limitation of amino acids, growth factors and other nutrients, and also when macromolecules become damaged, aggregated and fibrillated. Aging is generally accompanied by an increase in intracellular stress due to all the above factors. Therefore, we have compared the basal levels of AP in serially passaged human facial skin fibroblasts undergoing aging and replicative senescence in vitro, and ex vivo in the skin biopsies from the photo-protected and photo-exposed area of the arms of 20 healthy persons of young and old ages. Immunofluorescence microscopy, employing antibodies against a specific intracellular microtubule-associated protein-1 light chain-3 (LC3) as a well established marker of AP, showed a 5-fold increase in the basal level of LC3 in near senescent human skin fibroblasts. However, no such age-related increase in LC3 fluorescence and AP could be detected in full thickness skin sections from the biopsies obtained from 10 healthy young (age 25 to 30 yr) and 10 old (age 60 to 65 yr) donors. Furthermore, there was no difference in the basal level of LC3 in the skin sections from photo-protected and photo-exposed areas of the arm. Thus, in normal conditions, the aging phenotype of the skin cells in culture and in the body appears to be different in the case of AP. PMID:25950597

  17. Age-Dependent Decrease of Mitochondrial Complex II Activity in Human Skin Fibroblasts.

    PubMed

    Bowman, Amy; Birch-Machin, Mark A

    2016-05-01

    The mitochondrial theory of aging remains one of the most widely accepted aging theories and implicates mitochondrial electron transport chain dysfunction with subsequent increasing free radical generation. Recently, complex II of the electron transport chain appears to be more important than previously thought in this process, suggested predominantly by nonhuman studies. We investigated the relationship between complex II and aging using human skin as a model tissue. The rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes cultured from skin covering a wide age range. Complex II activity significantly decreased with age in fibroblasts (P = 0.015) but not in keratinocytes. This was associated with a significant decline in transcript expression (P = 0.008 and P = 0.001) and protein levels (P = 0.0006 and P = 0.005) of the succinate dehydrogenase complex subunit A and subunit B catalytic subunits of complex II, respectively. In addition, there was a significant decrease in complex II activity with age (P = 0.029) that was specific to senescent skin cells. There was no decrease in complex IV activity with increasing age, suggesting possible locality to complex II. PMID:26829036

  18. Lipid peroxidation-derived 4-hydroxynonenal-modified proteins accumulate in human facial skin fibroblasts during ageing in vitro.

    PubMed

    Jørgensen, Peter; Milkovic, Lidija; Zarkovic, Neven; Waeg, Georg; Rattan, Suresh I S

    2014-02-01

    The reactive aldehyde, 4-hydroxynonenal (HNE), is recognized as a product of lipid peroxidation, which binds to macromolecules, in particular proteins. HNE-modified proteins (HNE-MP) have been shown to accumulate during ageing, generally by using polyclonal antibodies, which increase the possibility of detecting false positives. Therefore, we have used a genuine monoclonal antibody specific for HNE-His adducts of proteins/peptides, which were revealed by immunoblotting method for whole-cell HNE-MP measurements in serially passaged human facial skin fibroblasts undergoing ageing in vitro. There was a significant increase in the levels of HNE-MP in serially passaged cells approaching a near senescent state at high passage level (P-61), as compared with low passage level (P-11) young and middle-aged (P-27) cells. However, if the cells were analyzed soon after re-initiation from the frozen samples with little further passaging, the amount of HNE-MP was low even in relatively high passage level (P-37) cells, which is an indication of selective elimination of cells with high molecular damage during the process of thawing and re-initiation in culture. This pilot study on normal human facial skin fibroblasts shows that HNE-MP detection by monoclonal antibody-based dot blot method can be used as a marker for age-related accumulation of lipid peroxidative molecular damage, and could be useful for testing and monitoring the effects of potential skin care products on ageing parameters.

  19. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice

    PubMed Central

    Godin, Lindsay M.; Sandri, Brian J.; Wagner, Darcy E.; Meyer, Carolyn M.; Price, Andrew P.; Akinnola, Ifeolu; Weiss, Daniel J.; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases. PMID:26954258

  20. Hormetic mechanisms of anti-aging and rejuvenating effects of repeated mild heat stress on human fibroblasts in vitro.

    PubMed

    Rattan, Suresh I S

    2004-01-01

    The phenomenon of hormesis is represented by mild stress-induced stimulation of maintenance and repair pathways, resulting in beneficial effects for cells and organisms. We have reported that repeated mild heat stress (RMHS) has anti-aging hormetic effects on growth and various cellular and biochemical characteristics of human skin fibroblasts undergoing aging in vitro. These effects of RMHS include the maintenance of the stress protein profile, reduction in the accumulation of oxidatively and glycoxidatively damaged proteins, stimulation of the activities of the proteasome and its 11S activator, improvement in cellular resistance to ethanol, hydrogen peroxide, and ultraviolet rays, and increased antioxidative activity of the cells. We have also reported that RMHS prolongs the lifespan of Drosophila. Others have reported anti-aging and life prolonging effects of a wide variety of so-called stressors, such as pro-oxidants, aldehydes, calorie restriction, irradiation, heat shock, and hypergravity. Although molecular mechanisms of hormesis are yet to be elucidated, there are indications that relatively small hormetic effects become biologically amplified, resulting in significant improvement of cellular and organic functions and survival. Hormesis, therefore, can be an effective approach for modulating aging, for preventing or delaying the onset of age-related diseases, and for improving the quality of life in old age.

  1. Age-Associated Increase in Skin Fibroblast-Derived Prostaglandin E2 Contributes to Reduced Collagen Levels in Elderly Human Skin.

    PubMed

    Li, Yong; Lei, Dan; Swindell, William R; Xia, Wei; Weng, Shinuo; Fu, Jianping; Worthen, Christal A; Okubo, Toru; Johnston, Andrew; Gudjonsson, Johann E; Voorhees, John J; Fisher, Gary J

    2015-09-01

    Production of type I collagen declines during aging, leading to skin thinning and impaired function. Prostaglandin E2 (PGE2) is a pleiotropic lipid mediator that is synthesized from arachidonic acid by the sequential actions of cyclooxygenases (COX) and PGE synthases (PTGES). PGE2 inhibits collagen production by fibroblasts in vitro. We report that PTGES1 and COX2 progressively increase with aging in sun-protected human skin. PTGES1 and COX2 mRNA were increased 3.4-fold and 2.7-fold, respectively, in the dermis of elderly (>80 years) versus young (21-30 years) individuals. Fibroblasts were the major cell source of both enzymes. PGE2 levels were increased 70% in elderly skin. Fibroblasts in aged skin display reduced spreading due to collagen fibril fragmentation. To investigate the relationship between spreading and PGE2 synthesis, fibroblasts were cultured on micropost arrays or hydrogels of varying mechanical compliance. Reduced spreading/mechanical force resulted in increased expression of both PTGES1 and COX2 and elevated levels of PGE2. Inhibition of PGE2 synthesis by diclofenac enhanced collagen production in skin organ cultures. These data suggest that reduced spreading/mechanical force of fibroblasts in aged skin elevates PGE2 production, contributing to reduced collagen production. Inhibition of PGE2 production may be therapeutically beneficial for combating age-associated collagen deficit in human skin.

  2. Strong Components of Epigenetic Memory in Cultured Human Fibroblasts Related to Site of Origin and Donor Age

    PubMed Central

    Ivanov, Nikolay A.; Tao, Ran; Chenoweth, Joshua G.; Brandtjen, Anna; Mighdoll, Michelle I.; Genova, John D.; McKay, Ronald D.; Jia, Yankai; Weinberger, Daniel R.; Kleinman, Joel E.; Hyde, Thomas M.; Jaffe, Andrew E.

    2016-01-01

    Differentiating pluripotent cells from fibroblast progenitors is a potentially transformative tool in personalized medicine. We previously identified relatively greater success culturing dura-derived fibroblasts than scalp-derived fibroblasts from postmortem tissue. We hypothesized that these differences in culture success were related to epigenetic differences between the cultured fibroblasts by sampling location, and therefore generated genome-wide DNA methylation and transcriptome data on 11 intrinsically matched pairs of dural and scalp fibroblasts from donors across the lifespan (infant to 85 years). While these cultured fibroblasts were several generations removed from the primary tissue and morphologically indistinguishable, we found widespread epigenetic differences by sampling location at the single CpG (N = 101,989), region (N = 697), “block” (N = 243), and global spatial scales suggesting a strong epigenetic memory of original fibroblast location. Furthermore, many of these epigenetic differences manifested in the transcriptome, particularly at the region-level. We further identified 7,265 CpGs and 11 regions showing significant epigenetic memory related to the age of the donor, as well as an overall increased epigenetic variability, preferentially in scalp-derived fibroblasts—83% of loci were more variable in scalp, hypothesized to result from cumulative exposure to environmental stimuli in the primary tissue. By integrating publicly available DNA methylation datasets on individual cell populations in blood and brain, we identified significantly increased inter-individual variability in our scalp- and other skin-derived fibroblasts on a similar scale as epigenetic differences between different lineages of blood cells. Lastly, these epigenetic differences did not appear to be driven by somatic mutation—while we identified 64 probable de-novo variants across the 11 subjects, there was no association between mutation burden and age of the donor (p

  3. Differential translocation of heat shock factor-1 after mild and severe stress to human skin fibroblasts undergoing aging in vitro.

    PubMed

    Demirovic, Dino; de Toda, Irene Martinez; Nizard, Carine; Rattan, Suresh I S

    2014-12-01

    Repeated exposure to mild heat shock (HS) has been shown to induce a wide range of health promoting hormetic effects in various biological systems, including human cells undergoing aging in vitro. In order to understand how cells distinguish between mild and severe stress, we have investigated the extent of early and immediate HS response by analyzing the nuclear translocation of the transcription factor heat shock factor-1 (HSF1), in serially passaged normal adult human facial skin fibroblasts exposed to mild (41 °C) or severe (43 °C) HS. Cells respond differently when exposed to mild and severe HS at different passage levels in terms of the extent of HSF1 translocation. In early passage young cells there was a 5-fold difference between mild and severe HS in the extent of HSF1 translocation. However, in near senescent late passage cells, the difference between mild and severe stress in terms of the extent of HSF1 translocation was reduced to less than 2-fold. One of the reasons for this age-related attenuation of heat shock response is due to the fact there was a higher basal level of HSF1 in the nuclei of late passage cells, which is indicative of increased intrinsic stress during cellular aging. These observations are consistent with previously reported data that whereas repeated mild stress given at younger ages can slow down aging and increase the lifespan, the same level of stress given at older ages may not provide the same benefits. Therefore, elucidating the early and immediate steps in the induction of stress response can be useful in deciding whether a particular level of stress is potentially hormetically beneficial or not.

  4. Alpha-tocopherol modulates hydrogen peroxide-induced DNA damage and telomere shortening of human skin fibroblasts derived from differently aged individuals.

    PubMed

    Makpol, Suzana; Zainuddin, Azalina; Rahim, Norhazira Abdul; Yusof, Yasmin Anum; Ngah, Wan Zurinah

    2010-06-01

    Antioxidants such as vitamin E may act differently on skin cells depending on the age of the skin and the level of oxidative damage induced. The effects of alpha-tocopherol (ATF) on H(2)O(2)-induced DNA damage and telomere shortening of normal human skin fibroblast cells derived from young and old individual donors were determined. Fibroblasts were divided into five groups; untreated control, H(2)O(2)-induced oxidative stress, alpha-tocopherol treatment, and pre- and post-treatment with alpha-tocopherol for H(2)O(2)-induced oxidative stress. Our results showed that H(2)O(2)-induced oxidative stress increased DNA damage, shortened the telomere length and reduced the telomerase activity (p < 0.05) in fibroblasts obtained from young and old donors. Pre- and post-treatment with alpha-tocopherol protected against H(2)O(2)-induced DNA damage in fibroblasts obtained from young individuals (p = 0.005; p = 0.01, respectively). However, in fibroblasts obtained from old individuals, similar protective effects were only seen in cells pretreated with alpha-tocopherol (p = 0.05) but not in the post-treated cells. Protection against H(2)O(2)-induced telomere shortening was observed in fibroblasts obtained from both young and old donors which were pre-treated with alpha-tocopherol (p = 0.009; p = 0.008, respectively). However, similar protective effects against telomere shortening in fibroblasts obtained from both young and old donors were not observed in the post-treated fibroblasts. Protection against H(2)O(2)-induced telomerase activity loss was observed only in fibroblasts obtained from old donors which were pretreated with alpha-tocopherol (p = 0.04) but not in fibroblasts obtained from young donors. Similar protective effects against telomerase activity loss in fibroblasts obtained from both young and old donors were not observed in the post-treated fibroblasts. In conclusion, alpha-tocopherol protected against H(2)O(2)-induced telomere shortening by restoring the telomerase

  5. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts

    PubMed Central

    Marthandan, Shiva; Priebe, Steffen; Baumgart, Mario; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin. PMID:26339636

  6. Autophagy in human skin fibroblasts: Comparison between young and aged cells and evaluation of its cellular rhythm and response to Ultraviolet A radiation.

    PubMed

    Pernodet, Nadine; Dong, Kelly; Pelle, Edward

    2016-01-01

    Autophagic mechanisms play critical roles in cell maintenance. Damaged organelles that are not removed by autophagosomes, which act by engulfing and degrading these cellular components, have been linked to various pathologies. Recently, the progression of aging has also been correlated to a compromised autophagic response. Here, we report for the first time a significant reduction in autophagic levels in synchronized aged normal human skin fibroblasts as compared to young fibroblasts. We measured a 77.9% reduction in autophagy as determined by reverse transcription-polymerase chain reaction for LC3B expression, a microtubule-associated protein correlated to late stage autophagosome formation. In addition, we visualized these same changes by immunocytofluorescence with antibodies directed against LC3B. By harvesting synchronized, as well as unsynchronized cells over time, we were also able to measure for the first time a nighttime peak in autophagy that was present in young but absent in aged fibroblasts. Finally, since human skin is constantly subjected to environmentally induced oxidative stress from sunlight, we exposed fibroblasts to 10 J/cm2 ultraviolet A and found, in good agreement with current literature, not only that irradiation could partially reactivate autophagy in the aged cells, but also that this increase was phase shifted earlier from its endogenous temporal pattern because of its loss of synchronization with circadian rhythm.

  7. Age dependency of the metabolic conversion of polyamines into amino acids in IMR-90 human embryonic lung diploid fibroblasts

    SciTech Connect

    Chen, K.Y.; Chang, Z.

    1986-07-01

    When radioactive polyamines (putrescine or spermidine) were incubated with mammalian cells in tissue culture, the radioactivity was incorporated into cellular proteins via two different metabolic pathways; one is metabolic labeling of an 18,000-dalton protein via hypusine formation, and the other is general protein synthesis employing radioactive amino acids derived from biodegradation of polyamines via GABA shunt and Krebs cycle. Aminoguanidine, a potent inhibitor of diamine oxidase, blocked the metabolic conversion of polyamines to amino acids but had no effect on the metabolic labeling of the 18,000-dalton protein. The authors have investigated these two polyamine-associated biochemical events in IMR-90 human diploid fibroblasts as a function of their population doubling level (PDL). They found that (1) the metabolic labeling of the 18,000-dalton protein was about two-fold greater in young cells (PDL = 22) than that in old cells (PDL = 48), and (2) the metabolic labeling of other cellular proteins, employing amino acids derived from putrescine via polyamine catabolic pathway, was more than six-fold greater in the old cells (PDL = 48) than in the young cells (PDL = 22). Since the rate of protein synthesis was about 1.4-fold higher in the young cells as compared to the old cells, their data indicated that the activity of catabolic conversion of putrescine (or spermidine) to amino acids in old IMR-90 cells was about eight-fold greater than that in young cells. This remarkable increase of polyamine catabolism and the slight decrease of metabolic labeling of the 18,000-dalton protein were also observed in cell strains derived from patients with premature aging disease.

  8. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056

  9. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    SciTech Connect

    Tashiro, Kanae; Shishido, Mayumi; Fujimoto, Keiko; Hirota, Yuko; Yo, Kazuyuki; Gomi, Takamasa; Tanaka, Yoshitaka

    2014-01-03

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.

  10. Age related changes in steroid receptors on cultured lung fibroblasts

    SciTech Connect

    Barile, F.A.; Bienkowski, R.S.

    1986-03-05

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with (/sup 3/H)-dexamethasone ((/sup 3/H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol (/sup 3/H)Dex/10/sup 6/ cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms.

  11. Interactions of human cytomegalovirus with human fibroblasts.

    PubMed

    Vonka, V; Benyesh-Melnick, M

    1966-01-01

    Vonka, Vladimir (Baylor University College of Medicine, Houston, Tex.), and Matilda Benyesh-Melnick. Interactions of human cytomegalovirus with human fibroblasts. J. Bacteriol. 91:213-220. 1966.-Virus attachment of human cytomegalovirus to human embryo lung fibroblasts was found to be temperature-independent, from 4 to 37 C. Prolonged incubation at 4 C, however, resulted in inactivation of a high proportion of attached virus. Virus penetration seemed to be temperature-dependent, occurring at 37 C but not at 4 C. Detailed studies of the growth curve of the virus were made. Cell-associated virus preceded the appearance of virus in the fluid phase by 2 to 5 days. Complement-fixing antigen could be detected, but only when the cytopathic effect was advanced, and it was demonstrable only in the cell-associated fraction. Under methyl cellulose, decreasing the bicarbonate concentration in the overlay from 0.225 to 0.15% resulted in marked increase in plating efficiency with all strains tested. However, varying the concentration of bicarbonate from 0.3 to 0.15% in fluid medium did not influence the growth of virus.

  12. Altered mitogen-activated protein kinase signal transduction in human skin fibroblasts during in vitro aging: differential expression of low-density lipoprotein receptor.

    PubMed

    Bose, Chhanda; Bhuvaneswaran, Chidambaram; Udupa, Kodetthoor B

    2004-02-01

    The purpose of the study was to investigate the correlation of low-density lipoprotein receptor (LDLr) and mitogen-activated protein kinases (MAPK) in fibroblasts after serial passage in vitro. We used early-passage ( approximately 20 mean population division, MPD) and late-passage ( approximately 60 MPD) human skin fibroblasts to study the LDLr expression and MAPK at basal and after interleukin-1beta (IL-1beta) stimulation. We found a reduced LDLr expression in late-passage fibroblasts in comparison with early-passage fibroblasts, and late-passage fibroblasts showed a delayed induction of MAPK after IL-1beta stimulation, confirmed by the delay in translocation of MAPK from cytoplasmic to nuclear fraction. Using two specific inhibitors of MAPK, we could show a reduced LDLr expression in early-passage fibroblasts, indicating a direct relationship between MAPK signaling and LDLr expression. We conclude that one of the reasons for reduced LDLr gene expression in late passage fibroblast is related to MAPK signaling.

  13. Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes.

    PubMed Central

    Imokawa, G; Yada, Y; Morisaki, N; Kimura, M

    1998-01-01

    To clarify the paracrine linkage between human fibroblasts and melanocytes in cutaneous pigmentation, we studied the effects of human fibroblast-derived factors on the proliferation of human melanocytes. In medium conditioned for 4 days with human fibroblast culture, factors were produced that markedly stimulated DNA synthesis of human melanocytes. The stimulatory effect was higher in medium conditioned with fibroblasts from aged skin than in medium conditioned with fibroblasts from young skin, and was interrupted by inhibitors of tyrosine kinase, such as tyrphostin, genistein and herbimycin, but not by inhibitors of protein kinases C and A, such as H-7 and phloretin. The conditioned medium was also capable of activating mitogen-activated protein kinase of human melanocytes, with old fibroblasts being more effective than young ones. Analysis of factors released into the conditioned medium revealed that levels of hepatocyte growth factor (HGF) and stem cell factor (SCF) were increased in old-fibroblast-conditioned medium compared with young-fibroblast-conditioned medium. In contrast, levels of basic fibroblast growth factor (bFGF) were similar in both media. When the conditioned medium was treated with HGF antibody with or without SCF antibody, the increase in DNA synthesis by human melanocytes was decreased to 20% of the elevated level, whereas antibodies to bFGF had no effect. Analysis of the medium conditioned for 4 days after cytokine application demonstrated that, of the cytokines tested, interleukin 1alpha and tumour necrosis factor alpha are highly effective in stimulating HGF secretion by old fibroblasts. HGF and SCF, but not bFGF, were markedly increased in culture medium in the presence of IL-1alpha, and this stimulatory effect was confined to young human fibroblasts. These findings suggest that SCF and HGF derived from human fibroblasts may play a part in regulating cutaneous pigmentation during inflammation and aging. PMID:9494091

  14. Age-associated reduction of cellular spreading/mechanical force up-regulates matrix metalloproteinase-1 expression and collagen fibril fragmentation via c-Jun/AP-1 in human dermal fibroblasts.

    PubMed

    Qin, Zhaoping; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-12-01

    The dermal compartment of human skin is largely composed of dense collagen-rich fibrils, which provide structural and mechanical support. Skin dermal fibroblasts, the major collagen-producing cells, are interact with collagen fibrils to maintain cell spreading and mechanical force for function. A characteristic feature of aged human skin is fragmentation of collagen fibrils, which is initiated by matrix metalloproteinase 1 (MMP-1). Fragmentation impairs fibroblast attachment and thereby reduces spreading. Here, we investigated the relationship among fibroblast spreading, mechanical force, MMP-1 expression, and collagen fibril fragmentation. Reduced fibroblast spreading due to cytoskeletal disruption was associated with reduced cellular mechanical force, as determined by atomic force microscopy. These reductions substantially induced MMP-1 expression, which led to collagen fibril fragmentation and disorganization in three-dimensional collagen lattices. Constraining fibroblast size by culturing on slides coated with collagen micropatterns also significantly induced MMP-1 expression. Reduced spreading/mechanical force induced transcription factor c-Jun and its binding to a canonical AP-1 binding site in the MMP-1 proximal promoter. Blocking c-Jun function with dominant negative mutant c-Jun significantly reduced induction of MMP-1 expression in response to reduced spreading/mechanical force. Furthermore, restoration of fibroblast spreading/mechanical force led to decline of c-Jun and MMP-1 levels and eliminated collagen fibril fragmentation and disorganization. These data reveal a novel mechanism by which alteration of fibroblast shape/mechanical force regulates c-Jun/AP-1-dependent expression of MMP-1 and consequent collagen fibril fragmentation. This mechanism provides a foundation for understanding the cellular and molecular basis of age-related collagen fragmentation in human skin.

  15. Cell culture condition-dependent impact of AGE-rich food extracts on kinase activation and cell survival on human fibroblasts.

    PubMed

    Nass, Norbert; Weissenberg, Kristian; Somoza, Veronika; Ruhs, Stefanie; Silber, Rolf-Edgar; Simm, Andreas

    2014-03-01

    Advanced glycation end products (AGEs) are stable end products of the Maillard reaction. Effects of food extracts are often initially analysed in cellular test systems and it is not clear how different cell culture conditions might influence the results. Therefore, we compared the effects of two models for AGE-rich food, bread crust and coffee extract (CE) on WI-38 human lung fibroblasts under different cell culture conditions (sub-confluent versus confluent cells, with and without serum). WI-38 cells responded to coffee and bread crust extract (BCE) with a rapid phosphorylation of PKB (AKT), p42/44 MAPK (ERK 1/2) and p38 MAPK, strongly depending on culture conditions. BCE resulted in increased cell numbers, whereas CE appeared to be cytotoxic. When cell numbers under all culture conditions and treatments were correlated with kinase phosphorylation, the relation between phospho-p38 MAPK and phospho-AKT represented a good, cell culture condition-independent predictor of cell survival. PMID:24111510

  16. Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice

    PubMed Central

    Lee, Hyunji; Hong, Youngeun; Kwon, So Hee; Park, Jongsun; Park, Jisoo

    2016-01-01

    Background Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair. Objective Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF), a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo. Methods PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student’s unpaired t-test; *P<0.05 and **P<0.01 were considered to indicate significant and highly significant values, respectively, compared with corresponding controls. Results PPF treatment demonstrated in vitro and in vivo anti-aging activity. Western blot analysis of PPF-treated normal human dermal fibroblast cells showed a dose-dependent increase in the expression of extracellular matrix genes such as collagen and elastin, but decreased expression of the aging gene matrix metalloproteinase-3. Quantitative polymerase chain reaction showed that PPF-treated cells displayed dose-dependent increase in messenger RNA expression levels of collagen, elastin, and hyaluronan synthase-2 and decreased expression levels of matrix metalloproteinase-1 aging gene. PPF treatment led to decreased production of reactive oxygen species in cells subjected to ultraviolet irradiation. Furthermore, PPF extract showed positive wound-healing effects in mice. Conclusion This study

  17. NF-κB accumulation associated with COL1A1 transactivators defects during chronological aging represses type I collagen expression through a -112/-61-bp region of the COL1A1 promoter in human skin fibroblasts.

    PubMed

    Bigot, Nicolas; Beauchef, Gallic; Hervieu, Magalie; Oddos, Thierry; Demoor, Magali; Boumediene, Karim; Galéra, Philippe

    2012-10-01

    The aging process, especially of the skin, is governed by changes in the epidermal, dermo-epidermal, and dermal compartments. Type I collagen, which is the major component of dermis extracellular matrix (ECM), constitutes a prime target for intrinsic and extrinsic aging-related alterations. In addition, under the aging process, pro-inflammatory signals are involved and collagens are fragmented owing to enhanced matrix metalloproteinase activities, and fibroblasts are no longer able to properly synthesize collagen fibrils. Here, we demonstrated that low levels of type I collagen detected in aged skin fibroblasts are attributable to an inhibition of COL1A1 transcription. Indeed, on one hand, we observed decreased binding activities of specific proteins 1 and 3, CCAAT-binding factor, and human collagen-Krüppel box, which are well-known COL1A1 transactivators acting through the -112/-61-bp promoter sequence. On the other hand, the aging process was accompanied by elevated amounts and binding activities of NF-κB (p65 and p50 subunits), together with an increased number of senescent cells. The forced expression of NF-κB performed in young fibroblasts was able to establish an old-like phenotype by repressing COL1A1 expression through the short -112/-61-bp COL1A1 promoter and by elevating the senescent cell distribution. The concomitant decrease of transactivator functions and increase of transinhibitor activity is responsible for ECM dysfunction, leading to aging/senescence in dermal fibroblasts.

  18. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  19. Effect of Phenytoin and Age on Gingival Fibroblast Enzymes

    PubMed Central

    Vahabi, Surena; Nazemisalman, Bahareh; Vahid Golpaigani, Mojtaba; Ahmadi, Anahid

    2014-01-01

    Objective: The alteration of cytokine balance is stated to exert greater influence on gingival overgrowth compared to the direct effect of the drug on the regulation of extracellular matrix metabolism. The current study evaluated the effect of phenytoin on the regulation of collagen, lysyl oxidase and elastin in gingival fibroblasts. Materials and Methods: Normal human gingival fibroblasts (HGFs) were obtained from 4 healthy children and 4 adults. Samples were cultured with phenytoin. MTT test was used to evaluate the proliferation and ELISA was performed to determine the level of IL1β and PGE2 production by HGFs. Total RNA of gingival fibroblasts was extracted and RT-PCR was performed on samples. Mann-Whitney U test was used to analyze the data with an alpha error level less than 0.05. Results: There was a significant difference in the expression of elastin between the controls and treated samples in both adult and pediatric groups and also in the lysyl oxidase expression of adult controls and treated adults. No significant difference was found between collagen expression in adults. Conclusion: The significant difference in elastin and lysyl oxidase expression between adult and pediatric samples indicates the significant effect of age on their production. PMID:25628662

  20. Age-dependent alterations of c-fos and growth regulation in human fibroblasts expressing the HPV16 E6 protein.

    PubMed Central

    Yan, Y; Ouellette, M M; Shay, J W; Wright, W E

    1996-01-01

    Normal human cells in culture become senescent after a limited number of population doublings. Senescent cells display characteristic changes in gene expression, among which is a repression of the ability to induce the c-fos gene. We have proposed a two-stage model for cellular senescence in which the mortality stage 1 (M1) mechanism can be overcome by agents that bind both the product of the retinoblastoma susceptibility gene (pRB)-like pocket proteins and p53. In this study we determined whether the repression of c-fos at M1 was downstream of the p53 or pRB-like "arms" of the M1 mechanism. We examined c-fos expression during the entire lifespan of normal human fibroblasts carrying E6 (which binds p53), E7 (which binds pRB), or both E6 and E7 of human papilloma virus type 16. The results indicate a dramatic change in cellular physiology at M1. Before M1, c-fos inducibility is controlled by an E6-independent mechanism that is blocked by E7. After M1, c-fos inducibility becomes dependent on E6 whereas E7 has no effect. In addition, a novel oscillation of c-fos expression with an approximately 2-h periodicity appears in E6-expressing fibroblasts post-M1. Accompanying this shift at M1 is a dramatic change in the ability to divide in low serum. Before M1, E6-expressing fibroblasts growth arrest in 0.3% serum, although they continue dividing under those conditions post-M1. These results demonstrate the unique physiology of fibroblasts during the extended lifespan between M1 and M2 and suggest that p53 might participate in the process that represses the c-fos gene at the onset of cellular senescence. Images PMID:8817002

  1. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells.

    PubMed

    Miyoshi, Keiko; Horiguchi, Taigo; Tanimura, Ayako; Hagita, Hiroko; Noma, Takafumi

    2015-01-01

    Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.

  2. Cytotoxic effects of amitriptyline in human fibroblasts.

    PubMed

    Moreno-Fernández, A M; Cordero, M D; de Miguel, M; Delgado-Rufino, M D; Sánchez-Alcázar, J A; Navas, P

    2008-01-14

    Amitriptyline is a tricyclic antidepressant widely used in the treatment of chronic pain. The objective of the present study was to investigate the potential cytotoxic effects of amitriptyline in human fibroblasts primary culture. Human fibroblast cells were cultured from healthy subjects and incubated with 50 microM and 100 microM amitriptyline. Cell counting was performed to study dose-dependency of toxicity. Lipid peroxidation analysis and western blotting for antioxidants catalase and mitochondrial superoxide dismutase (MnSOD) were carried out in order to evaluate oxidative stress. To investigate mitochondria damage the following determinations were made: cytochrome c, citrate synthase, and mitochondrial membrane potential (DeltaPsi(m)). Amitriptyline reduced significantly the number of cultured cells, resulting in a decrease of 45.2%, 65.0% and 94.9% when treated with 20 microM, 50 microM and 100 microM amitriptyline, respectively. This drug enhanced the production of oxidized products during lipid peroxidation, inverting the reduced/oxidized ratio to 25% reduction and 75% oxidation after 24h of amitriptyline administration. A decreased in catalase protein levels has been also observed. Moreover, amitriptyline treatment induced a significant decrease of cytochrome c, DeltaPsi(m), and citrate synthase activity; revealing mitochondrial damage. These findings suggest that amitriptyline has a strong cytotoxic effect in human fibroblasts, decreasing growth rate and mitochondrial activity, and increasing oxidative stress.

  3. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts

    PubMed Central

    Li, D.X.; Deng, T.Z.; Lv, J.; Ke, J.

    2014-01-01

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction. PMID:25387669

  4. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts.

    PubMed

    Li, D X; Deng, T Z; Lv, J; Ke, J

    2014-12-01

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80 ± 5.50%, P<0.01) and increased apoptosis (11.31 ± 1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction.

  5. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts.

    PubMed

    Li, D X; Deng, T Z; Lv, J; Ke, J

    2014-09-19

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction.

  6. Scaffold fiber diameter regulates human tendon fibroblast growth and differentiation.

    PubMed

    Erisken, Cevat; Zhang, Xin; Moffat, Kristen L; Levine, William N; Lu, Helen H

    2013-02-01

    The diameter of collagen fibrils in connective tissues, such as tendons and ligaments is known to decrease upon injury or with age, leading to inferior biomechanical properties and poor healing capacity. This study tests the hypotheses that scaffold fiber diameter modulates the response of human tendon fibroblasts, and that diameter-dependent cell responses are analogous to those seen in healthy versus healing tissues. Particularly, the effect of the fiber diameter (320 nm, 680 nm, and 1.80 μm) on scaffold properties and the response of human tendon fibroblasts were determined over 4 weeks of culture. It was observed that scaffold mechanical properties, cell proliferation, matrix production, and differentiation were regulated by changes in the fiber diameter. More specifically, a higher cell number, total collagen, and proteoglycan production were found on the nanofiber scaffolds, while microfibers promoted the expression of phenotypic markers of tendon fibroblasts, such as collagen I, III, V, and tenomodulin. It is possible that the nanofiber scaffolds of this study resemble the matrix in a state of injury, stimulating the cells for matrix deposition as part of the repair process, while microfibers represent the healthy matrix with micron-sized collagen bundles, thereby inducing cells to maintain the fibroblastic phenotype. The results of this study demonstrate that controlling the scaffold fiber diameter is critical in the design of scaffolds for functional and guided connective tissue repair, and provide new insights into the role of matrix parameters in guiding soft tissue healing.

  7. Division of mitochondria in cultured human fibroblasts.

    PubMed

    Fujioka, Hisashi; Tandler, Bernard; Consolo, Mary C; Karnik, Pratima

    2013-12-01

    Ovate mitochondria in cultured human fibroblasts divide by pinching. In the process, as observed by transmission electron microscopy, a deep incisure of the surface membranes separates the organelle into two lobes connected by a slender isthmus. A single element of smooth endoplasmic reticulum (SER) invariably accompanies each incisure, extending deep into the cleft. When the ingrowing membranes meet and fuse with the antipodal membranes, fission occurs. Elongated mitochondria that give no indication of division often are cloaked by a single, continuous cistern of SER.

  8. Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis.

    PubMed

    Huang, Wen-Tan; Akhter, Hasina; Jiang, Chunsun; MacEwen, Mark; Ding, Qiang; Antony, Veena; Thannickal, Victor John; Liu, Rui-Ming

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal lung disorder with unknown cause and no effective treatment. The incidence of and mortality from IPF increase with age, suggesting that advanced age is a major risk factor for IPF. The mechanism underlying the increased susceptibility of the elderly to IPF, however, is unknown. In this study, we show for the first time that the protein level of plasminogen activator inhibitor 1 (PAI-1), a protease inhibitor which plays an essential role in the control of fibrinolysis, was significantly increased with age in mouse lung homogenate and lung fibroblasts. Upon bleomycin challenge, old mice experienced augmented PAI-1 induction and lung fibrosis as compared to young mice. Most interestingly, we show that fewer (myo)fibroblasts underwent apoptosis and more (myo)fibroblasts with increased level of PAI-1 accumulated in the lung of old than in young mice after bleomycin challenge. In vitro studies further demonstrate that fibroblasts isolated from lungs of old mice were resistant to H2O2 and tumor necrosis factor alpha-induced apoptosis and had augmented fibrotic responses to TGF-β1, compared to fibroblasts isolated from young mice. Inhibition of PAI-1 activity with a PAI-1 inhibitor, on the other hand, eliminated the aging-related apoptosis resistance and TGF-β1 sensitivity in isolated fibroblasts. Moreover, we show that knocking down PAI-1 in human lung fibroblasts with PAI-1 siRNA significantly increased their sensitivity to apoptosis and inhibited their responses to TGF-β1. Together, the results suggest that increased PAI-1 expression may underlie the aging-related sensitivity to lung fibrosis in part by protecting fibroblasts from apoptosis.

  9. Nucleus transfer efficiency of ear fibroblast cells isolated from Bama miniature pigs at various ages.

    PubMed

    Wang, Qing-Hua; Peng, Yun; Cai, Xin-Yong; Wan, Meng; Liu, Yu; Wei, Hong

    2015-08-01

    Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically stable and share similar biological features to humans. These pigs have been used to establish animal models for human diseases, and for many other applications. However, there is a paucity of studies on the effect of ear fibroblasts derived from different age of adult Bama miniature pigs on nucleus transfer (NT). The present study examined the NT efficiency of ear fibroblasts from fetal, newborn, 1-, 2-, 4-, 6-, 12-month-old miniature pigs by using trypan blue staining, flow cytometry and NT technique, etc., and the cell biological function and SCNT efficiency were compared between groups. The results showed that ear fibroblasts grew well after passage in each group. Spindle-shaped cells initially predominated, and gradually declined with increase of culture time and replaced by polygonal cells. Irregular cell growth occurred in the 2-month-old group and the elder groups. The growth curves of the ear fibroblasts were "S-shaped" in different age groups. The cell proliferation of postnatal ear fibroblasts, especially those from 2-, 4-, 6-, 12-month-old miniature pigs was significantly different from that of fetus ear fibroblasts (P<0.05 or P<0.01). Two-month- and 4-month-old ear fibroblasts had a significantly higher proportion of G1 stage cells (85% to 91%) than those at 6 and 12 months (66% to 74%, P<0.01). The blastocyst rate of reconstructed embryos originating from newborn, 1-, 2-, 4-month-old donor pigs was 6.06% to 7.69% with no significant difference from that in fetus fibroblast group (8.06%). It was concluded that <4-month-old adult Bama miniature pigs represent a better donor cell resource than elder pigs.

  10. [Lysosomal glycosidase activity in cultured human fibroblasts].

    PubMed

    Beliaeva, I D; Ivleva, T S; Vidershaĭn, G Ia

    1984-11-01

    A study was made of the activity of 3 lysosomal glycosidases -beta-D-galactosidase (K. P. 3.2.1.23), alpha-L-fucosidase (K. P. 3.2.1.51), N-acetyl-beta-D-hexosoaminidase (K. P. 3.2.1.52) depending on the time after subcultivation and duration of the passage of human skin embryonal and postembryonal fibroblasts. It was established that changes in the specific activity of the enzymes should be calculated with reference to the cell rather than to protein whose amount might vary considerably. It was also found that for measuring the specific activity of enzymes, of great importance are the procedures of cell removal from the base layer (by mechanical scraping off or by trypsin solution) and the regimen of the homogenization of cell preparations.

  11. Respiratory activity and growth of human skin derma fibroblasts.

    PubMed

    Papa, F; Scacco, S; Vergari, R; Bucaria, V; Dioguardi, D; Papa, S

    1998-09-01

    A study has been made on the speed of growth and respiratory activity of fibroblast cultures from control derma, cheloid (hypertrophic) scar and stabilized scar taken from human skin. The speed of growth and the efficiency of plaque formation of fibroblasts from cheloid scar were greater in comparison with those of fibroblasts from stabilized scar and were stimulated by the addition to the culture medium of the exudate from post-traumatic ulcer. Measurement of the contents of cytochromes showed a decrease in the content of cytochromes b562 and c + c1 in the fibroblast culture from both cheloid and stabilized scar as compared to the fibroblast culture from control derma. Cytochrome aa3 content did not show significant difference among the three types of fibroblast cultures. The respiratory activities supported by pyruvate plus malate, succinate or ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine did not show, however, significant difference among the three fibroblast cultures. These observations show that the speed of growth of skin fibroblasts does not depend on the overall respiratory capacity. The exudate stimulated the activity of cytochrome c oxidase in fibroblasts from control derma, and cheloid scar. This effect and the accompanying stimulation of fibroblast growth might be correlated with the balance of oxygen free radicals.

  12. Chromosomal analysis in young vs. senescent human fibroblasts by FISH

    SciTech Connect

    Mukheriee, A.B.; Thomas, S.

    1994-09-01

    Almost all previous studies on chromosomal analysis related to in vitro aging of human fibroblasts were done using only metaphase chromosomes. However, this procedure might provide only partial information since the aneuploidy presumably hidden in interphase cells would remain undetected. We, therefore, have analyzed aneuploidy both at interphase and at metaphase. Female (IMR-90) and male (IMR-91) cells were grown from the lowest to the highest population doubling levels and aneuploidy analysis was done by FISH with {alpha}-satellite DNA probes of 15 autosomes and 2 sex chromosomes. Our data on total aneuploidy in young cells indicate that significantly higher proportions of cells with aneuploidy are detected at interphase as opposed to metaphase. This presumably indicates that during active division of young cells, a greater proportion of cells with aneuploidy than diploidy is selected against entry to mitosis. In contrast, both cell strains at senescence exhibit significantly lower proportions of nuclei with aneuploidy at interphase as compared to that of young cells. This probably indicates that during senescense, a greater proportion of cells with aneuploidy than diploidy is selected against prolonged survival in culture. Our study shows that cellular dynamics with respect to aneuploidy involving various chromosomes differs significantly at interphase and at mitosis during in vitro aging of human fibroblasts.

  13. Human Dermal Stem/Progenitor Cell-Derived Conditioned Medium Improves Senescent Human Dermal Fibroblasts.

    PubMed

    Jung, Ji-Yong; Shim, Joong Hyun; Choi, Hyun; Lee, Tae Ryong; Shin, Dong Wook

    2015-08-13

    Adult skin stem cells are recognized as potential therapeutics to rejuvenate aged skin. We previously demonstrated that human dermal stem/progenitor cells (hDSPCs) with multipotent capacity could be enriched from human dermal fibroblasts using collagen type IV. However, the effects of hDSPCs on cellular senescence remain to be elucidated. In the present study, we investigated whether conditioned medium (CM) collected from hDSPC cultures (hDSPC-CM) exhibits beneficial effects on senescent fibroblasts. We found that hDSPC-CM promoted proliferation and decreased the expression level of senescence-associated β-galactosidase in senescent fibroblasts. In addition, p53 phosphorylation and p21 expression were significantly reduced in senescent fibroblasts treated with hDSPC-CM. hDSPC-CM restored the expression levels of collagen type I, collagen type III, and tissue inhibitor of metalloproteinase, and antagonized the increase of matrix metalloproteinase 1 expression. Finally, we demonstrated that hDSPC-CM significantly reduced reactive oxygen species levels by specifically up-regulating the expression level of superoxide dismutase 2. Taken together, these data suggest that hDSPC-CM can be applied as a potential therapeutic agent for improving human aged skin.

  14. Influence of three laser wavelengths on human fibroblasts cell culture.

    PubMed

    Crisan, Bogdan; Soritau, Olga; Baciut, Mihaela; Campian, Radu; Crisan, Liana; Baciut, Grigore

    2013-02-01

    Although experimental studies in vitro and vivo have been numerous, the effect of laser wavelength irradiation on human fibroblast cell culture is poorly understood. This emphasizes the need of additional cellular and molecular research into laser influence with low energy and power. The aim of this study was to assess the influence of three different laser wavelengths on the human skin fibroblasts cell culture. We wanted to evaluate if near infrared lasers had any influence in healing of wounds by stimulating mitochondrial activity of fibroblasts. The cells were irradiated using 830-, 980- and 2,940-nm laser wavelengths. The irradiated cells were incubated and their mitochondrial activity was assessed by the MTT assay at 24, 48 and 72 h. Simultaneously, an apoptosis assay was assessed on the irradiated fibroblasts. It can be concluded that laser light of the near-infrared region (830 and 980 nm) influences fibroblasts mitochondrial activity compared to the 2,940-nm wavelength which produces apoptosis.

  15. Differential effects of planktonic and biofilm MRSA on human fibroblasts.

    PubMed

    Kirker, Kelly R; James, Garth A; Fleckman, Philip; Olerud, John E; Stewart, Philip S

    2012-01-01

    Bacteria colonizing chronic wounds often exist as biofilms, yet their role in chronic wound pathogenesis remains unclear. Staphylococcus aureus biofilms induce apoptosis in dermal keratinocytes, and given that chronic wound biofilms also colonize dermal tissue, it is important to investigate the effects of bacterial biofilms on dermal fibroblasts. The effects of a predominant wound pathogen, methicillin-resistant S. aureus, on normal, human, dermal fibroblasts were examined in vitro. Cell-culture medium was conditioned with equivalent numbers of either planktonic or biofilm methicillin-resistant S. aureus and then fed to fibroblast cultures. Fibroblast response was evaluated using scratch, viability, and apoptosis assays. The results suggested that fibroblasts experience the same fate when exposed to the soluble products of either planktonic or biofilm methicillin-resistant S. aureus, namely limited migration followed by death. Enzyme-linked immunosorbent assays demonstrated that fibroblast production of cytokines, growth factors, and proteases were differentially affected by planktonic and biofilm-conditioned medium. Planktonic-conditioned medium induced more interleukin-6, interleukin-8, vascular endothelial growth factor, transforming growth factor-β1, heparin-bound epidermal growth factor, matrix metalloproteinase-1, and metalloproteinase-3 production in fibroblasts than the biofilm-conditioned medium. Biofilm-conditioned medium induced more tumor necrosis factor-α production in fibroblasts compared with planktonic-conditioned medium, and suppressed metalloproteinase-3 production compared with controls.

  16. Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney

    PubMed Central

    Sato, Yuki; Mii, Akiko; Hamazaki, Yoko; Fujita, Harumi; Nakata, Hirosuke; Masuda, Kyoko; Nishiyama, Shingo; Shibuya, Shinsuke; Haga, Hironori; Ogawa, Osamu; Shimizu, Akira; Narumiya, Shuh; Kaisho, Tsuneyasu; Arita, Makoto; Yanagisawa, Masashi; Sharma, Kumar; Minato, Nagahiro; Kawamoto, Hiroshi

    2016-01-01

    Acute kidney injury (AKI) is a common clinical condition defined as a rapid decline in kidney function. AKI is a global health burden, estimated to cause 2 million deaths annually worldwide. Unlike AKI in the young, which is reversible, AKI in the elderly often leads to end-stage renal disease, and the mechanism that prevents kidney repair in the elderly is unclear. Here we demonstrate that aged but not young mice developed multiple tertiary lymphoid tissues (TLTs) in the kidney after AKI. TLT size was associated with impaired renal function and increased expression of proinflammatory cytokines and homeostatic chemokines, indicating a possible contribution of TLTs to sustained inflammation after injury. Notably, resident fibroblasts from a single lineage diversified into p75 neurotrophin receptor+ (p75NTR+) fibroblasts and homeostatic chemokine–producing fibroblasts inside TLTs, and retinoic acid–producing fibroblasts around TLTs. Deletion of CD4+ cells as well as late administration of dexamethasone abolished TLTs and improved renal outcomes. Importantly, aged but not young human kidneys also formed TLTs that had cellular and molecular components similar to those of mouse TLTs. Therefore, the inhibition of TLT formation may offer a novel therapeutic strategy for AKI in the elderly.

  17. Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney

    PubMed Central

    Sato, Yuki; Mii, Akiko; Hamazaki, Yoko; Fujita, Harumi; Nakata, Hirosuke; Masuda, Kyoko; Nishiyama, Shingo; Shibuya, Shinsuke; Haga, Hironori; Ogawa, Osamu; Shimizu, Akira; Narumiya, Shuh; Kaisho, Tsuneyasu; Arita, Makoto; Yanagisawa, Masashi; Sharma, Kumar; Minato, Nagahiro; Kawamoto, Hiroshi

    2016-01-01

    Acute kidney injury (AKI) is a common clinical condition defined as a rapid decline in kidney function. AKI is a global health burden, estimated to cause 2 million deaths annually worldwide. Unlike AKI in the young, which is reversible, AKI in the elderly often leads to end-stage renal disease, and the mechanism that prevents kidney repair in the elderly is unclear. Here we demonstrate that aged but not young mice developed multiple tertiary lymphoid tissues (TLTs) in the kidney after AKI. TLT size was associated with impaired renal function and increased expression of proinflammatory cytokines and homeostatic chemokines, indicating a possible contribution of TLTs to sustained inflammation after injury. Notably, resident fibroblasts from a single lineage diversified into p75 neurotrophin receptor+ (p75NTR+) fibroblasts and homeostatic chemokine–producing fibroblasts inside TLTs, and retinoic acid–producing fibroblasts around TLTs. Deletion of CD4+ cells as well as late administration of dexamethasone abolished TLTs and improved renal outcomes. Importantly, aged but not young human kidneys also formed TLTs that had cellular and molecular components similar to those of mouse TLTs. Therefore, the inhibition of TLT formation may offer a novel therapeutic strategy for AKI in the elderly. PMID:27699223

  18. Cytokine-mediated PGE2 expression in human colonic fibroblasts.

    PubMed

    Kim, E C; Zhu, Y; Andersen, V; Sciaky, D; Cao, H J; Meekins, H; Smith, T J; Lance, P

    1998-10-01

    We investigated prostanoid biogenesis in human colonic fibroblasts (CCD-18Co and 5 primary fibroblast cultures) and epithelial cell lines (NCM460, T84, HT-29, and LS 174T) and the effect of PGE2 on fibroblast morphology. Cytokine-stimulated PGE2 production was measured. PGH synthase-1 and -2 (PGHS-1 and -2) protein and mRNA expression were evaluated. Basal PGE2 levels were low in all cell types (0.15-6.47 ng/mg protein). Treatment for 24 h with interleukin-1beta (IL-1beta; 10 ng/ml) or tumor necrosis factor-alpha (50 ng/ml), respectively, elicited maximal 25- and 6-fold inductions of PGE2 synthesis in CCD-18Co cultures and similar results in primary fibroblast cultures; maximal inductions with IL-1beta in colonic epithelial cell lines were from zero to fivefold. Treatment of CCD-18Co fibroblasts with IL-1beta caused maximal 21- and 53-fold increases, respectively, in PGHS-2 protein and mRNA levels without altering PGHS-1 expression. PGE2 (0.1 micromol/l) elicited a dramatic shape change in selected fibroblasts. Colonic fibroblasts are potentially important as cytokine targets and a source of and target for colonic prostanoids in vivo. PMID:9755052

  19. Fibroblast-mediated contraction in actinically exposed and actinically protected aging skin

    SciTech Connect

    Marks, M.W.; Morykwas, M.J.; Wheatley, M.J. )

    1990-08-01

    The changes in skin morphology over time are a consequence of both chronologic aging and the accumulation of environmental exposure. Through observation, we know that actinic radiation intensifies the apparent aging of skin. We have investigated the effects of aging and actinic radiation on the ability of fibroblasts to contract collagen-fibroblast lattices. Preauricular and postauricular skin samples were obtained from eight patients aged 49 to 74 undergoing rhytidectomy. The samples were kept separate, and the fibroblasts were grown in culture. Lattices constructed with preauricular fibroblasts consistently contracted more than lattices containing postauricular fibroblasts. The difference in amount of contraction in 7 days between sites was greatest for the younger patients and decreased linearly as donor age increased (r = -0.96). This difference may be due to preauricular fibroblasts losing their ability to contract a lattice as aging skin is exposed to more actinic radiation.

  20. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    PubMed

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.

  1. Dipeptides Increase Functional Activity of Human Skin Fibroblasts.

    PubMed

    Malinin, V V; Durnova, A O; Polyakova, V O; Kvetnoi, I M

    2015-05-01

    We analyzed the effect of dipeptide Glu-Trp and isovaleroyl-Glu-Trp in concentrations of 0.2, 2 and 20 μg/ml and Actovegin preparation on functional activity of human skin fibroblasts. Dipeptides, especially Glu-Trp, produce a stimulating effect on human skin fibroblasts and their effect is equivalent to that of Actovegin. Dipeptides stimulate cell renewal processes by activating synthesis of Ki-67 and reducing expression of caspase-9 and enhance antioxidant function of the cells by stimulating the expression of Hsp-90 and inducible NO-synthase. These findings suggest that dipeptides are promising candidates for preparations stimulating reparative processes.

  2. Human epidermal growth factor and the proliferation of human fibroblasts.

    PubMed

    Carpenter, G; Cohen, S

    1976-06-01

    The effect of human epidermal growth factor (hEGF), a 5,400 molecular weight polypeptide isolated from human urine, on the growth of human foreskin fibroblasts (HF cells) was studied by measuring cell numbers and the incorporation of labeled thymidine. The addition of hEGF to HF cells growing in a medium containing 10% calf serum resulted in a 4-fold increase in the final density. The presence of hEGF also promoted the growth of HF cells in media containing either 1% calf serum or 10% gamma globulin-free serum. The addition of hEGF to quiescent confluent monolayers of HF cells, maintained in a medium with 1% calf serum for 48 hours, resulted in a 10- to 20-fold increase in the amount of 3H-thymidine incorporation after 20-24 hours. The stimulation of thymidine incorporation was maximal at an hEGF concentration of 2 ng/ml, was dependent on the presence of serum, and was enhanced by the addition of ascorbic acid. In confluent cultures of HF cells, subject to density dependent inhibition of growth, hEGF was able to stimulate DNA synthesis more effectively than fresh calf serum. Human EGF stimulated DNA synthesis in quiescent cultures, however, regardless of cell density. The addition of rabbit anti-hEGF inhibited all effects of this growth factor on HF cells.

  3. Human Cytomegalovirus Induces JC Virus DNA Replication in Human Fibroblasts

    NASA Astrophysics Data System (ADS)

    Heilbronn, Regine; Albrecht, Ingrid; Stephan, Sonja; Burkle, Alexander; Zur Hausen, Harald

    1993-12-01

    JC virus, a human papovavirus, is the causative agent of the demyelinating brain disease progressive multifocal leucoencephalopathy (PML). PML is a rare but fatal disease which develops as a complication of severe immunosuppression. Latent JC virus is harbored by many asymptomatic carriers and is transiently reactivated from the latent state upon immunosuppression. JC virus has a very restricted host range, with human glial cells being the only tissue in which it can replicate at reasonable efficiency. Evidence that latent human cytomegalovirus is harbored in the kidney similar to latent JC virus led to the speculation that during episodes of impaired immunocompetence, cytomegalovirus might serve as helper virus for JC virus replication in otherwise nonpermissive cells. We show here that cytomegalovirus infection indeed leads to considerable JC virus DNA replication in cultured human fibroblasts that are nonpermissive for the replication of JC virus alone. Cytomegalovirus-mediated JC virus replication is dependent on the JC virus origin of replication and T antigen. Ganciclovir-induced inhibition of cytomegalovirus replication is associated with a concomitant inhibition of JC virus replication. These results suggest that reactivation of cytomegalovirus during episodes of immunosuppression might lead to activation of latent JC virus, which would enhance the probability of subsequent PML development. Ganciclovir-induced repression of both cytomegalovirus and JC virus replication may form the rational basis for the development of an approach toward treatment or prevention of PML.

  4. CD44 and hyaluronan expression in human cutaneous scar fibroblasts.

    PubMed Central

    Messadi, D. V.; Bertolami, C. N.

    1993-01-01

    Fibrotic disorders of skin and other organs are typically associated with an abnormal accumulation of extracellular matrix. This study focuses on a matrix constituent, hyaluronan-which is known to be altered in fibrotic disorders of skin- and on CD44, a cell adhesion molecule and putative receptor for hyaluronan. Tissue samples were obtained from biopsies of human normal skin, normal cutaneous scar; and hypertrophic cutaneous scar. After culturing, cells were studied by single- and double-labeling immunohistochemistry using the two anti-CD44 monoclonal antibodies, BU-52 and J173, and a biotinylated hyaluronan binding complex probe, b-HABR. Certain cultures were pretreated with Streptomyces hyaluronidase to assess the dependency of CD44 expression on the presence of endogenous hyaluronan. CD44 expression, both in the presence and the absence of exogenous hyaluronan, was quantitated by radioimmunobinding assay. Overall glycosaminoglycan synthesis and identification of hyaluronan were accomplished by precursor incorporation assays and by quantitative cellulose acetate electrophoresis. CD44 was found to be a normal human adult fibroblastic antigen whose expression is markedly increased for hypertrophic scar fibroblasts compared with normal skin fibroblasts. Although hyaluronan was found to be the predominant glycosaminoglycan constituent of the pericellular matrix for these fibroblasts, CD44 attachment to the cell surface is neither mediated by hyaluronan nor is the presence of hyaluronan a prerequisite for CD44 expression. Exogenous hyaluronan induced a decline in measurable CD44 expression for normal skin fibroblasts but not for hypertrophic scar fibroblasts. These observations are compatible with current understanding of the way cells manage the hyaluronan economy of the extracellular matrix and emphasize phenotypic heterogeneities between fibroblasts derived from normal versus scar tissues. Images Figure 1 Figure 4 PMID:8475990

  5. Iron Accumulation During Cellular Senescence in Human Fibroblasts In Vitro

    PubMed Central

    KILLILEA, DAVID W.; ATAMNA, HANI; LIAO, CHARLES; AMES, BRUCE N.

    2015-01-01

    Iron accumulates as a function of age in several tissues in vivo and is associated with the pathology of numerous age-related diseases. The molecular basis of this change may be due to a loss of iron homeostasis at the cellular level. Therefore, changes in iron content in primary human fibroblast cells (IMR-90) were studied in vitro as a model of cellular senescence. Total iron content increased exponentially during cellular senescence, resulting in 10-fold higher levels of iron compared with young cells. Low-dose hydrogen peroxide (H2O2) induced early senescence in IMR-90s and concomitantly accelerated iron accumulation. Furthermore, senescence-related and H2O2-stimulated iron accumulation was attenuated by N-tert-butylhydroxylamine (NtBHA), a mitochondrial antioxidant that delays senescence in vitro. However, SV40-transformed, immortalized IMR-90s showed no time-dependent changes in metal content in culture or when treated with H2O2 and/or NtBHA. These data indicate that iron accumulation occurs during normal cellular senescence in vitro. This accumulation of iron may contribute to the increased oxidative stress and cellular dysfunction seen in senescent cells. PMID:14580305

  6. Cytotoxicity of orthodontic bonding adhesive resins on human oral fibroblasts.

    PubMed

    Ahrari, Farzaneh; Tavakkol Afshari, Jalil; Poosti, Maryam; Brook, Azam

    2010-12-01

    There is little information concerning the cytotoxic effects of no-mix and flowable adhesives used in orthodontics. The aim of the present study was to evaluate the cytotoxic effects of a no-mix (Unite), a light-cured (Tranbond XT), and a flowable (Denfil Flow) adhesives on human oral fibroblasts. Twelve discs of each adhesive were prepared and aged for 1, 3, 5, and 7 days in Dulbecco's Modified Eagle's Medium (DMEM). Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the difference between the groups was tested by analysis of variance and Tukey tests (α = 0.05). After 1 day of storage, the no-mix adhesive showed moderate cytotoxic effects (P < 0.05), while the light-cured and flowable adhesives were essentially non-cytotoxic. Ageing considerably reduced the cytotoxicity of the no-mix adhesive. On days 5 and 7 of the experiment, the cell viability of three adhesives did not differ significantly (P > 0.05), but cell viability was slightly reduced on day 7. Moderate cytotoxic effects of no-mix adhesive on the first day of the experiment suggest that care should be taken to protect dentists and patients when these adhesives are being handled. Despite higher resin components, the flowable adhesive showed excellent biocompatibility.

  7. Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    PubMed Central

    Lu, Rong; Bian, Fang; Lin, Jing; Su, Zhitao; Qu, Yangluowa; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction. PMID:22723892

  8. Altered pattern of replication of human chromosomes in a human fibroblast-mouse cell hybrid.

    PubMed Central

    Farber, R A; Davidson, R L

    1978-01-01

    The pattern of terminal replication of the human chromosomes in a clone of hybrids between diploid human fibroblasts and mouse cells was analyzed by autoradiography. An average of 10 human chromosomes was present in the hybrid cells. Several of these chromosomes were found to terminate replication in a different order from the same chromosomes in the parental human fibroblasts. Chromosomes 4 and 5 completed replication later in the hybrid than in the fibroblasts (relative to the other human chromosomes). In contrast, chromosomes 7, 12, and 15 completed replication earlier in the hybrid than in the fibroblasts. These results suggest that the sequence of terminal chromosome replication in human fibroblasts is not irreversibly programmed into each chromosome. Images PMID:274734

  9. Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells.

    PubMed

    Aliper, Alexander M; Csoka, Antonei Benjamin; Buzdin, Anton; Jetka, Tomasz; Roumiantsev, Sergey; Moskalev, Alexy; Zhavoronkov, Alex

    2015-01-01

    For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging. PMID:25587796

  10. Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells.

    PubMed

    Aliper, Alexander M; Csoka, Antonei Benjamin; Buzdin, Anton; Jetka, Tomasz; Roumiantsev, Sergey; Moskalev, Alexy; Zhavoronkov, Alex

    2015-01-01

    For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging.

  11. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain.

    PubMed

    Deng, Dan; Liu, Wei; Xu, Feng; Yang, Yang; Zhou, Guangdong; Zhang, Wen Jie; Cui, Lei; Cao, Yilin

    2009-12-01

    Proper cell source is one of the key issues for tendon engineering. Our previous study showed that dermal fibroblasts could be used to successfully engineer tendon in vivo and tenocytes could engineer neo-tendon in vitro with static strain. This study further investigated the possibility of engineering human neo-tendon tissue in vitro using dermal fibroblasts. Human dermal fibroblasts were seeded on polyglycolic acid (PGA) fibers pre-fixed on a U-shape as a mechanical loading group, or simply cultured in a dish as a tension-free group. In addition, human tenocytes were also seeded on PGA fibers with tension as a comparison to human dermal fibroblasts. The results showed that human neo-tendon tissue could be generated using dermal fibroblasts during in vitro culture under static strain and the tissue structure became more mature with the increase of culture time. Longitudinally aligned collagen fibers and spindle shape cells were observed histologically and collagen fibril diameter and tensile strength increased with time and reached a peak at 14 weeks. In contrast, the dermal fibroblast-PGA constructs failed to form neo-tendon, but formed disorganized fibrous tissue in tension-free condition with significantly weaker strength and poor collagen fiber formation. Interestingly, neo-tendon tissues generated with human dermal fibroblasts were indistinguishable from the counterpart engineered with human tenocytes, which supports the viewpoint that human dermal fibroblasts is likely to replace tenocytes for future tendon graft development in vitro with dynamic mechanical loading in a bioreactor system.

  12. Pharmacological modulation of human subconjunctival fibroblast behavior in vitro.

    PubMed

    Damji, K F; Rootman, J; Palcic, B; Thurston, G

    1990-01-01

    The response of human subconjunctival fibroblasts to a variety of pharmacological agents was evaluated utilizing a novel in vitro wound assay and a separate proliferation assay. Both colchicine and cytochalasin B dramatically arrested wound closure at concentrations greater than or equal to 0.01 micrograms/ml and 2 micrograms/ml, respectively (p less than 0.05). At lower doses these drugs altered fibroblast morphology and inhibited directed cell migration. Dexamethasone and 6-MP delayed wound closure at concentrations greater than or equal to 100 micrograms/ml and 1000 micrograms/ml, respectively (p less than 0.05). Effective antiproliferative agents, in order of decreasing potency (based on unit weight), were Cytarabine (cytosine arabinoside), doxorubicin (Adriamycin), colchicine, 5-fluorouracil, cytochalasin B, cyclosporin (Sandimmune), 6-mercaptopurine, and dexamethasone. The antiprotease agents and methotrexate were ineffective as determined by both assays. We conclude that the wound assay is well suited for rapid screening of drugs for their effect on fibroblast morphology, motility, and proliferation, and that colchicine and cytochalasin B, in doses well below those documented to produce ocular toxicity, are effective in inhibiting directed migration and proliferation of subconjunctival fibroblasts in vitro. Differences in mechanism, onset of action, therapeutic range, and cytotoxicity of drugs could be exploited in controlling ocular fibroblast behavior in vivo. PMID:2325993

  13. Calcium pantothenate modulates gene expression in proliferating human dermal fibroblasts.

    PubMed

    Wiederholt, Tonio; Heise, Ruth; Skazik, Claudia; Marquardt, Yvonne; Joussen, Sylvia; Erdmann, Kati; Schröder, Henning; Merk, Hans F; Baron, Jens Malte

    2009-11-01

    Topical application of pantothenate is widely used in clinical practice for wound healing. Previous studies identified a positive effect of pantothenate on migration and proliferation of cultured fibroblasts. However, these studies were mainly descriptive with no molecular data supporting a possible model of its action. In this study, we first established conditions for an in vitro model of pantothenate wound healing and then analysed the molecular effects of pantothenate. To test the functional effect of pantothenate on dermal fibroblasts, cells were cultured and in vitro proliferation tests were performed using a standardized scratch test procedure. For all three donors analysed, a strong stimulatory effect of pantothenate at a concentration of 20 microg/ml on the proliferation of cultivated dermal fibroblasts was observed. To study the molecular mechanisms resulting in the proliferative effect of pantothenate, gene expression was analysed in dermal fibroblasts cultivated with 20 microg/ml of pantothenate compared with untreated cells using the GeneChip Human Exon 1.0 ST Array. A number of significantly regulated genes were identified including genes coding for interleukin (IL)-6, IL-8, Id1, HMOX-1, HspB7, CYP1B1 and MARCH-II. Regulation of these genes was subsequently verified by quantitative real-time polymerase chain reaction analysis. Induction of HMOX-1 expression by pantothenol and pantothenic acid in dermal cells was confirmed on the protein level using immunoblots. Functional studies revealed the enhanced suppression of free radical formation in skin fibroblasts cultured with panthenol. In conclusion, these studies provided new insight in the molecular mechanisms linked to the stimulatory effect of pantothenate and panthenol on the proliferation of dermal fibroblasts. PMID:19397697

  14. Comparison of polypeptides from cultured human fibroblasts and sarcoma cells.

    PubMed

    Vartio, T; Kaelin, H; Vaheri, A

    1978-10-23

    The proteins in cell layers of cultured normal diploid human skin (ES, ER) and lung (WI-38) fibroblasts were compared to those of SV40-transformed human fibroblasts (WI-38/VA-13), human rhabdomyosarcoma (RD) and fibrosarcoma (HT-1080) cells using metabolic amino acid and sugar labeling and surface labeling with tritiated sodium borohydride after oxidation with galactose oxidase. The labeled proteins were analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography (fluorography). A transformation-associated decrease in the pericellular glycoprotein fibronectin (subunit molecular weight, 220 000) and in the synthesis of a set of polypeptides in the 130 000--180 000 dalton region was seen. Synthesis of a glycosylated 160 000 dalton polypeptide was markedly reduced. In transformed cells distinct increases of several specific polypeptides was detected in both [35S]methionine and [3H] mannose incorporation experiments but not using the surface labeling method.

  15. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast

    PubMed Central

    Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin’s elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity. PMID:27194933

  16. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast.

    PubMed

    Seol, Ja Young; Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami; Choi, Soon Young

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin's elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity. PMID:27194933

  17. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast.

    PubMed

    Seol, Ja Young; Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami; Choi, Soon Young

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin's elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity.

  18. Degradation of type IV collagen by neoplastic human skin fibroblasts

    SciTech Connect

    Sheela, S.; Barrett, J.C.

    1985-02-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion.

  19. Involvement of the mitochondrial compartment in human NCL fibroblasts

    SciTech Connect

    Pezzini, Francesco; Gismondi, Floriana; Tessa, Alessandra; Tonin, Paola; Carrozzo, Rosalba; Mole, Sara E.; Santorelli, Filippo M.; Simonati, Alessandro

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. Black-Right-Pointing-Pointer Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. Black-Right-Pointing-Pointer Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  20. Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients.

    PubMed

    Allen, Scott P; Duffy, Lynn M; Shaw, Pamela J; Grierson, Andrew J

    2015-10-01

    Mitochondria play a key role in aging, which is a well-established risk factor in amyotrophic lateral sclerosis (ALS). We have previously modeled metabolic dysregulation in ALS using fibroblasts isolated from sporadic ALS (SALS) and familial ALS patients. In the present study, we show that fibroblasts from SALS patients have an altered metabolic response to aging. Control fibroblasts demonstrated increased mitochondrial network complexity and spare respiratory capacity with age which was not seen in the SALS cases. SALS cases displayed an increase in uncoupled mitochondrial respiration, which was not evident in control cases. Unlike SALS cases, controls showed a decrease in glycolysis and an increase in the oxygen consumption rate/extracellular acidification rate ratio, indicating an increased reliance on mitochondrial function. Switching to a more oxidative state by removing glucose with in the culture media resulted in a loss of the mitochondrial interconnectivity and spare respiratory capacity increases observed in controls grown in glucose. Glucose removal also led to an age-independent increase in glycolysis in the SALS cases. This study is, to the best our knowledge, the first to assess the effect of aging on both mitochondrial and glycolytic function simultaneously in intact human fibroblasts and demonstrates that the SALS disease state shifts the cellular metabolic response to aging to a more glycolytic state compared with age-matched control fibroblasts. This work highlights that ALS alters the metabolic equilibrium even in peripheral tissues outside the central nervous system. Elucidating at a molecular level how this occurs and at what stage in the disease process is crucial to understanding why ALS affects cellular energy metabolism and how the disease alters the natural cellular response to aging. PMID:26344876

  1. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    SciTech Connect

    Story, M.T. )

    1989-05-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue.

  2. Highly Aligned Nanofibrous Scaffold Derived from Decellularized Human Fibroblasts

    PubMed Central

    Xing, Qi; Vogt, Caleb; Leong, Kam W.; Zhao, Feng

    2014-01-01

    Native tissues are endowed with a highly organized nanofibrous extracellular matrix (ECM) that directs cellular distribution and function. The objective of this study is to create a purely natural, uniform, and highly aligned nanofibrous ECM scaffold for potential tissue engineering applications. Synthetic nanogratings (130 nm in depth) were used to direct the growth of human dermal fibroblasts for up to 8 weeks, resulting in a uniform 70 μm–thick fibroblast cell sheet with highly aligned cells and ECM nanofibers. A natural ECM scaffold with uniformly aligned nanofibers of 78 ± 9 nm in diameter was generated after removing the cellular components from the detached fibroblast sheet. The elastic modulus of the scaffold was well maintained after the decellularization process because of the preservation of elastin fibers. Reseeding human mesenchymal stem cells (hMSCs) showed the excellent capacity of the scaffold in directing and supporting cell alignment and proliferation along the underlying fibers. The scaffold’s biocompatibility was further examined by an in vitro inflammation assay with seeded macrophages. The aligned ECM scaffold induced a significantly lower immune response compared to its unaligned counterpart, as detected by the pro-inflammatory cytokines secreted from macrophages. The aligned nanofibrous ECM scaffold holds great potential in engineering organized tissues. PMID:25484849

  3. Altered MCM protein levels and autophagic flux in aged and systemic sclerosis dermal fibroblasts.

    PubMed

    Dumit, Verónica I; Küttner, Victoria; Käppler, Jakob; Piera-Velazquez, Sonsoles; Jimenez, Sergio A; Bruckner-Tuderman, Leena; Uitto, Jouni; Dengjel, Jörn

    2014-09-01

    Aging is a common risk factor of many disorders. With age, the level of insoluble extracellular matrix increases leading to increased stiffness of a number of tissues. Matrix accumulation can also be observed in fibrotic disorders, such as systemic sclerosis (SSc). Although the intrinsic aging process in skin is phenotypically distinct from SSc, here we demonstrate similar behavior of aged and SSc skin fibroblasts in culture. We have used quantitative proteomics to characterize the phenotype of dermal fibroblasts from healthy subjects of various ages and from patients with SSc. Our results demonstrate that proteins involved in DNA and RNA processing decrease with age and in SSc, whereas those involved in mitochondrial and other metabolic processes behave the opposite. Specifically, minichromosome maintenance (MCM) helicase proteins are less abundant with age and SSc, and they exhibit an altered subcellular distribution. We observed that lower levels of MCM7 correlate with reduced cell proliferation, lower autophagic capacity, and higher intracellular protein abundance phenotypes of aged and SSc cells. In addition, we show that SSc fibroblasts exhibit higher levels of senescence compared with their healthy counterparts, suggesting further similarities between the fibrotic disorder and the aging process. Hence, at the molecular level, SSc fibroblasts exhibit intrinsic characteristics of fibroblasts from aged skin.

  4. A voltage-activated proton current in human cardiac fibroblasts

    SciTech Connect

    El Chemaly, Antoun; Guinamard, Romain; Demion, Marie; Fares, Nassim; Jebara, Victor; Faivre, Jean-Francois; Bois, Patrick . E-mail: patrick.bois@univ-poitiers.fr

    2006-02-10

    A voltage-activated proton current in human cardiac fibroblasts, measured using the whole-cell recording configuration of the patch-clamp technique, is reported. Increasing the pH of the bathing solution shifted the current activation threshold to more negative potentials and increased both the current amplitude and its rate of activation. Changing the pH gradient by one unit caused a 51 mV shift in the reversal potential of the current, demonstrating a high selectivity for protons of the channel carrying the current. Extracellularly applied Zn{sup 2+} reversibly inhibited the current. Activation of the current contributes to the resting membrane conductance under conditions of intracellular acidosis. It is proposed that this current in cardiac fibroblasts is involved in the regulation of the intracellular pH and the membrane potential under physiological conditions as well as in response to pathological conditions such as ischemia.

  5. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts.

    PubMed

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G

    2012-11-23

    The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  6. Peptide Regulation of Skin Fibroblast Functions during Their Aging In Vitro.

    PubMed

    Lin'kova, N S; Drobintseva, A O; Orlova, O A; Kuznetsova, E P; Polyakova, V O; Kvetnoy, I M; Khavinson, V Kh

    2016-05-01

    The effect peptides KE, KED, AED and AEDG on proliferation (Ki-67), regeneration and aging (CD98hc), apoptosis (caspase-3), and extracellular matrix remodeling (MMP-9) in skin fibroblasts during their aging in culture were studied by immunofluorescent confocal microscopy. All studied peptides inhibited MMP-9 synthesis that increases during aging of skin fibroblasts and enhanced the expression of Ki-67 and CD98hc that are less intensively synthesized during cell aging. Peptides AED and AEDG suppressed caspase-dependent apoptosis that increases during aging of cell cultures. PMID:27259496

  7. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq

    PubMed Central

    Marthandan, S.; Baumgart, M.; Priebe, S.; Groth, M.; Schaer, J.; Kaether, C.; Guthke, R.; Cellerino, A.; Platzer, M.; Diekmann, S.; Hemmerich, P.

    2016-01-01

    Cellular senescence correlates with changes in the transcriptome. To obtain a complete view on senescence-associated transcription networks and pathways, we assessed by deep RNA sequencing the transcriptomes of five of the most commonly used laboratory strains of human fibroblasts during their transition into senescence. In a number of cases, we verified the RNA-seq data by real-time PCR. By determining cellular protein levels we observed that the age-related expression of most but not all genes is regulated at the transcriptional level. We found that 78% of the age-affected differentially expressed genes were commonly regulated in the same direction (either up- or down-regulated) in all five fibroblast strains, indicating a strong conservation of age-associated changes in the transcriptome. KEGG pathway analyses confirmed up-regulation of the senescence-associated secretory phenotype and down-regulation of DNA synthesis/repair and most cell cycle pathways common in all five cell strains. Newly identified senescence-induced pathways include up-regulation of endocytotic/phagocytic pathways and down-regulation of the mRNA metabolism and the mRNA splicing pathways. Our results provide an unprecedented comprehensive and deep view into the individual and common transcriptome and pathway changes during the transition into of senescence of five human fibroblast cell strains. PMID:27140416

  8. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes

    PubMed Central

    Varma, Sandeep R.; Sivaprakasam, Thiyagarajan O.; Mishra, Abheepsa; Kumar, L. M. Sharath; Prakash, N. S.; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body’s vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  9. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes.

    PubMed

    Varma, Sandeep R; Sivaprakasam, Thiyagarajan O; Mishra, Abheepsa; Kumar, L M Sharath; Prakash, N S; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body's vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  10. Genomic instability of gold nanoparticle treated human lung fibroblast cells.

    PubMed

    Li, Jasmine J; Lo, Soo-Ling; Ng, Cheng-Teng; Gurung, Resham Lal; Hartono, Deny; Hande, Manoor Prakash; Ong, Choon-Nam; Bay, Boon-Huat; Yung, Lin-Yue Lanry

    2011-08-01

    Gold nanoparticles (AuNPs) are one of the most versatile and widely researched materials for novel biomedical applications. However, the current knowledge in their toxicological profile is still incomplete and many on-going investigations aim to understand the potential adverse effects in human body. Here, we employed two dimensional gel electrophoresis to perform a comparative proteomic analysis of AuNP treated MRC-5 lung fibroblast cells. In our findings, we identified 16 proteins that were differentially expressed in MRC-5 lung fibroblasts following exposure to AuNPs. Their expression levels were also verified by western blotting and real time RT-PCR analysis. Of interest was the difference in the oxidative stress related proteins (NADH ubiquinone oxidoreductase (NDUFS1), protein disulfide isomerase associate 3 (PDIA3), heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and thioredoxin-like protein 1 (TXNL1)) as well as proteins associated with cell cycle regulation, cytoskeleton and DNA repair (heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and Secernin-1 (SCN1)). This finding is consistent with the genotoxicity observed in the AuNP treated lung fibroblasts. These results suggest that AuNP treatment can induce oxidative stress-mediated genomic instability.

  11. Transcriptome Alterations In X-Irradiated Human Gingiva Fibroblasts

    PubMed Central

    Weissmann, Robert; Kacprowski, Tim; Peper, Michel; Esche, Jennifer; Jensen, Lars R.; van Diepen, Laura; Port, Matthias; Kuss, Andreas W.; Scherthan, Harry

    2016-01-01

    Abstract Ionizing radiation is known to induce genomic lesions, such as DNA double strand breaks, whose repair can lead to mutations that can modulate cellular and organismal fate. Soon after radiation exposure, cells induce transcriptional changes and alterations of cell cycle programs to respond to the received DNA damage. Radiation-induced mutations occur through misrepair in a stochastic manner and increase the risk of developing cancers years after the incident, especially after high dose radiation exposures. Here, the authors analyzed the transcriptomic response of primary human gingival fibroblasts exposed to increasing doses of acute high dose-rate x rays. In the dataset obtained after 0.5 and 5 Gy x-ray exposures and two different repair intervals (0.5 h and 16 h), the authors discovered several radiation-induced fusion transcripts in conjunction with dose-dependent gene expression changes involving a total of 3,383 genes. Principal component analysis of repeated experiments revealed that the duration of the post-exposure repair intervals had a stronger impact than irradiation dose. Subsequent overrepresentation analyses showed a number of KEGG gene sets and WikiPathways, including pathways known to relate to radioresistance in fibroblasts (Wnt, integrin signaling). Moreover, a significant radiation-induced modulation of microRNA targets was detected. The data sets on IR-induced transcriptomic alterations in primary gingival fibroblasts will facilitate genomic comparisons in various genotoxic exposure scenarios. PMID:27356049

  12. Transcriptome Alterations In X-Irradiated Human Gingiva Fibroblasts.

    PubMed

    Weissmann, Robert; Kacprowski, Tim; Peper, Michel; Esche, Jennifer; Jensen, Lars R; van Diepen, Laura; Port, Matthias; Kuss, Andreas W; Scherthan, Harry

    2016-08-01

    Ionizing radiation is known to induce genomic lesions, such as DNA double strand breaks, whose repair can lead to mutations that can modulate cellular and organismal fate. Soon after radiation exposure, cells induce transcriptional changes and alterations of cell cycle programs to respond to the received DNA damage. Radiation-induced mutations occur through misrepair in a stochastic manner and increase the risk of developing cancers years after the incident, especially after high dose radiation exposures. Here, the authors analyzed the transcriptomic response of primary human gingival fibroblasts exposed to increasing doses of acute high dose-rate x rays. In the dataset obtained after 0.5 and 5 Gy x-ray exposures and two different repair intervals (0.5 h and 16 h), the authors discovered several radiation-induced fusion transcripts in conjunction with dose-dependent gene expression changes involving a total of 3,383 genes. Principal component analysis of repeated experiments revealed that the duration of the post-exposure repair intervals had a stronger impact than irradiation dose. Subsequent overrepresentation analyses showed a number of KEGG gene sets and WikiPathways, including pathways known to relate to radioresistance in fibroblasts (Wnt, integrin signaling). Moreover, a significant radiation-induced modulation of microRNA targets was detected. The data sets on IR-induced transcriptomic alterations in primary gingival fibroblasts will facilitate genomic comparisons in various genotoxic exposure scenarios.

  13. Biodemography of human ageing

    PubMed Central

    Vaupel, James W.

    2014-01-01

    Human senescence has been delayed by a decade. This finding, documented in 1994 and bolstered since, is a fundamental discovery about the biology of human ageing, and one with profound implications for individuals, society and the economy. Remarkably, the rate of deterioration with age seems to be constant across individuals and over time: it seems that death is being delayed because people are reaching old age in better health. Research by demographers, epidemiologists and other biomedical researchers suggests that further progress is likely to be made in advancing the frontier of survival — and healthy survival — to even greater ages. PMID:20336136

  14. Effect of microemulsions on cell viability of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  15. Chitosan Treatment Delays the Induction of Senescence in Human Foreskin Fibroblast Strains.

    PubMed

    Tsai, Ching-Wen; Kao, Yu-Ting; Chiang, I-Ni; Wang, Jyh-Horng; Young, Tai-Horng

    2015-01-01

    Fibroblasts have been extensively used as a model to study cellular senescence. The purpose of this study was to investigate whether the human foreskin fibroblast aging process could be regulated by using the biomaterial chitosan. Fibroblasts cultured on commercial tissue culture polystyrene (TCPS) entered senescence after 55-60 population doublings (PDs), and were accompanied by larger cell shape, higher senescence-associated β-galactosidase (SA β-gal) activity, lower proliferation capacity, and upregulation of senescence-associated molecular markers p21, p53, retinoblastoma (pRB), and p16. Before senescence was reached, PD48 cells were collected from TCPS and seeded on chitosan for three days (PD48-Cd3) to form multicellular spheroids. The protein expression of senescence-associated secretory phenotypes (SASPs) and senescence-associated molecular markers of these cells in PD48-Cd3 spheroids were downregulated significantly. Following chitosan treatment, fibroblasts reseeded on TCPS showed lower SA β-gal activity, increased cellular motility, and a higher proliferation ability of 70-75 PDs. These phenotypic changes were not accompanied by colonies forming in soft agar and a continuous decrease in the senescence-associated proteins p53 and pRB which act as a barrier to tumorigenesis. These results demonstrate that chitosan treatment could delay the induction of senescence which may be useful and safe for future tissue engineering applications.

  16. CEMP1 Induces Transformation in Human Gingival Fibroblasts

    PubMed Central

    Bermúdez, Mercedes; Imaz-Rosshandler, Ivan; Rangel-Escareño, Claudia; Zeichner-David, Margarita; Arzate, Higinio; Mercado-Celis, Gabriela E.

    2015-01-01

    Cementum Protein 1 (CEMP1) is a key regulator of cementogenesis. CEMP1 promotes cell attachment, differentiation, deposition rate, composition, and morphology of hydroxyapatite crystals formed by human cementoblastic cells. Its expression is restricted to cementoblasts and progenitor cell subpopulations present in the periodontal ligament. CEMP1 transfection into non-osteogenic cells such as adult human gingival fibroblasts results in differentiation of these cells into a “mineralizing” cell phenotype. Other studies have shown evidence that CEMP1 could have a therapeutic potential for the treatment of bone defects and regeneration of other mineralized tissues. To better understand CEMP1’s biological effects in vitro we investigated the consequences of its expression in human gingival fibroblasts (HGF) growing in non-mineralizing media by comparing gene expression profiles. We identified several mRNAs whose expression is modified by CEMP1 induction in HGF cells. Enrichment analysis showed that several of these newly expressed genes are involved in oncogenesis. Our results suggest that CEMP1 causes the transformation of HGF and NIH3T3 cells. CEMP1 is overexpressed in cancer cell lines. We also determined that the region spanning the CEMP1 locus is commonly amplified in a variety of cancers, and finally we found significant overexpression of CEMP1 in leukemia, cervix, breast, prostate and lung cancer. Our findings suggest that CEMP1 exerts modulation of a number of cellular genes, cellular development, cellular growth, cell death, and cell cycle, and molecules associated with cancer. PMID:26011628

  17. Mouse liver repopulation with hepatocytes generated from human fibroblasts

    PubMed Central

    Zhu, Saiyong; Rezvani, Milad; Harbell, Jack; Mattis, Aras N.; Wolfe, Alan R.; Benet, Leslie Z.; Willenbring, Holger; Ding, Sheng

    2014-01-01

    Human induced pluripotent stem cells (iPSCs) promise to revolutionize research and therapy of liver diseases by providing a source of hepatocytes for autologous cell therapy and disease modeling. However, despite progress in advancing the differentiation of iPSCs into hepatocytes (iPSC-Heps) in vitro1–3, cells that replicate the ability of human primary adult hepatocytes (aHeps) to proliferate extensively in vivo have not been reported. This deficiency has hampered efforts to recreate human liver diseases in mice, and has cast doubt on the potential of iPSC-Heps for liver cell therapy. The reason is that extensive post-transplant expansion is needed to establish and sustain a therapeutically effective liver cell mass in patients, a lesson learned from clinical trials of aHep transplantation4. As a solution to this problem, we report generation of human fibroblast-derived hepatocytes that can repopulate mouse livers. Unlike current protocols for deriving hepatocytes from human fibroblasts, ours did not generate iPSCs, but shortcut reprogramming to pluripotency to generate an induced multipotent progenitor cell (iMPC) state from which endoderm progenitor cells (iMPC-EPCs) and subsequently hepatocytes (iMPC-Heps) could be efficiently differentiated. For this, we identified small molecules that aided endoderm and hepatocyte differentiation without compromising proliferation. After transplantation into an immune-deficient mouse model of human liver failure, iMPC-Heps proliferated extensively and acquired levels of hepatocyte function similar to aHeps. Unfractionated iMPC-Heps did not form tumors, most likely because they never entered a pluripotent state. To our knowledge, this is the first demonstration of significant liver repopulation of mice with human hepatocytes generated in vitro, which removes a long-standing roadblock on the path to autologous liver cell therapy. PMID:24572354

  18. Characterization of Mesenchymal Stem Cells from Human Vocal Fold Fibroblasts

    PubMed Central

    Hanson, Summer; Kim, Jaehyup; Quinchia Johnson, Beatriz H.; Bradley, Bridget; Breunig, Melissa; Hematti, Peiman; Thibeault, Susan L.

    2009-01-01

    Objective/Hypothesis Mesenchymal stem cells (MSCs) originally isolated from bone marrow, are fibroblast-looking cells that are now assumed to be present in the stromal component of many tissues. MSCs are characterized by a certain set of criteria including their growth culture characteristics, a combination of cell surface markers, and the ability to differentiate along multiple mesenchymal tissue lineages. We hypothesized that human vocal fold fibroblasts (hVFF) isolated from the lamina propria meet the criteria established to define MSCs and are functionally similar to MSCs derived from BM and adipose tissue. Study Design In vitro study Methods HVFF were previously derived from human vocal fold tissues. MSCs were derived from adipose tissue (AT), and BM of healthy donors, based on their attachment to culture dishes and their morphology, and expanded in culture. Cells were analyzed for standard cell surface markers identified on BM-derived MSCs as well as the ability to differentiate into cells of mesenchymal lineage, i.e. fat, bone and cartilage. We investigated the immunophenotype of these cells before and after interferon-γ (INF- γ) stimulation. Results HVFF displayed cell surface markers and multipotent differentiation capacity characteristic of MSCs. Furthermore, these cells exhibited similar patterns of expression of HLA and co-stimulatory molecules, after stimulation with INF- γ compared to MSCs derived from BM and AT. Conclusions Based on our findings hVFF derived from lamina propria have the same cell surface markers, immunophenotypic characteristics, and differentiation potential as BM- and AT-derived MSCs. We propose VF fibroblasts are MSCs resident in the vocal fold lamina propria. PMID:20131365

  19. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts

    PubMed Central

    Saini, Natalie; Chan, Kin; Grimm, Sara A.; Dai, Shuangshuang; Fargo, David C.; Kaufmann, William K.; Taylor, Jack A.; Lee, Eunjung; Cortes-Ciriano, Isidro; Park, Peter J.; Schurman, Shepherd H.; Malc, Ewa P.; Mieczkowski, Piotr A.

    2016-01-01

    Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration ClinicalTrials.gov NCT01087307 PMID:27788131

  20. Effect of saccharin on metabolic cooperation between human fibroblasts

    SciTech Connect

    Mosser, D.D.; Bols, N.C.

    1983-01-01

    Autoradiography was used to study the effect of saccharin on metabolic cooperation between human diploid fibroblasts. When the donors, HGPRT+ cells, and recipients, HGPRT- cells, were plated together in the presence of saccharin, all the interactions that developed in 4 and 24 h were positive for metabolic cooperation. When saccharin was added after donor cells and recipient cells had made contact, the proportion of interactions that were positive for metabolic cooperation was unchanged but the number of grains over primary recipients was reduced. However, in donor cells saccharin caused a reduction in (/sup 3/H)hypoxanthine incorporation into both acid-soluble and acid-insoluble fractions, although the relative distribution of radioactivity between these two fractions and between the phosphorylated and non-phosphorylated derivatives of (/sup 3/H)hypoxanthine was unchanged. Metabolic cooperation was studied under conditions in which the number of grains over the nuclei of both the primary recipient and the primary recipient's donor could be counted. The change in the number of grains over these two cell types in response to saccharin was compared and found to be the same. Thus in normal human fibroblasts saccharin does not appear to affect metabolic cooperation, which is a measure of cell-to-cell communication.

  1. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-01-01

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. PMID:26840224

  2. Direct conversion of human fibroblasts to induced serotonergic neurons.

    PubMed

    Xu, Z; Jiang, H; Zhong, P; Yan, Z; Chen, S; Feng, J

    2016-01-01

    Serotonergic (5HT) neurons exert diverse and widespread functions in the brain. Dysfunction of the serotonergic system gives rise to a variety of mental illnesses including depression, anxiety, obsessive compulsive disorder, autism and eating disorders. Here we show that human primary fibroblasts were directly converted to induced serotonergic (i5HT) neurons by the expression of Ascl1, Foxa2, Lmx1b and FEV. The transdifferentiation was enhanced by p53 knockdown and appropriate culture conditions including hypoxia. The i5HT neurons expressed markers for mature serotonergic neurons, had Ca(2+)-dependent 5HT release and selective 5HT uptake, exhibited spontaneous action potentials and spontaneous excitatory postsynaptic currents. Application of serotonin significantly increased the firing rate of spontaneous action potentials, demonstrating the functional utility of i5HT neurons for studying serotonergic neurotransmission. The availability of human i5HT neurons will be very useful for research and drug discovery on many serotonin-related mental disorders. PMID:26216300

  3. IMPACT OF AGE AND AUTOANTIBODY STATUS ON THE GENE EXPRESSION OF SCLERODERMA FIBROBLASTS IN RESPONSE TO SILICA STIMULATION.

    PubMed

    Yang, Y; Wei, P; Guo, X J; Zhou, D; Zhang, W Z; Assassi, S; Zhou, X D

    2013-09-01

    Environmental factors are believed to play an important role in the pathogenesis of systemic sclerosis (SSc). Silica exposure has been implicated as potentially hazardous in epidemiological studies of SSc. It can activate fibroblasts to express profibrotic genes at certain conditions. The aim of this study is to examine whether the fibroblasts of SSc patients respond to silica particles with specific gene expressions differentially from normal control fibroblasts. The fibroblasts obtained from skin biopsies of 96 SSc patients and 104 controls were examined. Silica particles were used to perturb the cultures of the fibroblasts in time-course and dose-response assays. The transcript levels of COL1A2, COL3A1, MIVIP1, MMP3, TIMP3 and CTGF genes of the fibroblasts were measured with quantitative RT-PCR. The results showed that the expressions of all six genes in SSc fibroblasts under silica perturbation appeared significantly different from normal control fibroblasts. In age stratified analysis, compared to control fibroblasts, SSc fibroblasts from patients at age 30-40 years and 50-60 years displayed significantly decreased expressions of MMP1 gene in all dosage assays and increased expression of COL3A1 genes started at low dosages perturbation of silica particles, respectively. In autoantibody stratified analysis, specific gene expression patterns were significantly associated with autoantibody-subgroups of fibroblasts. A common feature of SSc fibroblasts was unstable and a wide range of gene expression changes in response to silica perturbation. Our studies may suggest an altered intrinsic dynamic control in SSc fibroblasts. In addition, sensitivity and specificity of SSc fibroblasts to potentially hazardous environmental trigger is age and autoantibody-subgroup-dependent. The fibroblasts of SSc patients at age 30-60 years may be more sensitive to silica perturbation toward a profibrotic gene expression. PMID:25435887

  4. Respiratory-deficient human fibroblasts exhibiting defective mitochondrial DNA replication.

    PubMed Central

    Bodnar, A G; Cooper, J M; Leonard, J V; Schapira, A H

    1995-01-01

    We have characterized cultured skin fibroblasts from two siblings affected with a fatal mitochondrial disease caused by a nuclear genetic defect. Mitochondrial respiratory-chain function was severely decreased in these cells. Southern-blot analysis showed that the fibroblasts had reduced levels of mitochondrial DNA (mtDNA). The mtDNA was unstable and was eliminated from the cultured cells over many generations, generating the rho0 genotype. As the mtDNA level decreased, the cells became more dependent upon pyruvate and uridine for growth. Nuclear-encoded subunits of respiratory-chain complexes were synthesized and imported into the mitochondria of the mtDNA-depleted cells, albeit at reduced levels compared with the controls. Mitochondrial protein synthesis directed by the residual mtDNA indicated that the mtDNA was expressed and that the defect specifically involves the replication or maintenance of mtDNA. This is a unique example of a respiratory-deficient human cell line exhibiting defective mtDNA replication. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:7848281

  5. Significant roles of anti-aging protein klotho and fibroblast growth factor23 in cardiovascular disease

    PubMed Central

    Ding, Hong-Ying; Ma, Hou-Xun

    2015-01-01

    The klotho gene has been identified as an aging suppressor that encodes a protein involved in cardiovascular disease (CVD). The inactivation of the klotho gene causes serious systemic disorders resembling human aging, such as atherosclerosis, diffuse vascular calcification and shortened life span. Klotho has been demonstrated to ameliorate vascular endothelial dysfunction and delay vascular calcification. Furthermore, klotho gene polymorphisms in the human are associated with various cardiovascular events. Recent experiments show that klotho may reduce transient receptor potential canonical6 (TRPC6) channels, resulting in protecting the heart from hypertrophy and systolic dysfunction. Fibroblast growth factor23 (FGF23) is a bone-derived hormone that plays an important role in the regulation of phosphate and vitamin D metabolism. FGF23 accelerates urinary phosphate excretion and suppresses 1,25-dihydroxy vitaminD3 (1,25(OH)2D3) synthesis in the presence of FGF receptor1 (FGFR1) and its co-receptor klotho, principally in the kidney. The hormonal affects of circulating klotho protein and FGF23 on vascular and heart have contributed to an understanding of their roles in the pathophysiology of arterial stiffness and left ventricular hypertrophy. Klotho and FGF23 appear to play a critical role in the pathogenesis of vascular disease, and may represent a novel potential therapeutic strategy for clinical intervention. PMID:26347327

  6. Chamber-specific differences in human cardiac fibroblast proliferation and responsiveness toward simvastatin.

    PubMed

    Rizvi, Farhan; DeFranco, Alessandra; Siddiqui, Ramail; Negmadjanov, Ulugbek; Emelyanova, Larisa; Holmuhamedov, Alisher; Ross, Gracious; Shi, Yang; Holmuhamedov, Ekhson; Kress, David; Tajik, A Jamil; Jahangir, Arshad

    2016-08-01

    Fibroblasts, the most abundant cells in the heart, contribute to cardiac fibrosis, the substrate for the development of arrythmogenesis, and therefore are potential targets for preventing arrhythmic cardiac remodeling. A chamber-specific difference in the responsiveness of fibroblasts from the atria and ventricles toward cytokine and growth factors has been described in animal models, but it is unclear whether similar differences exist in human cardiac fibroblasts (HCFs) and whether drugs affect their proliferation differentially. Using cardiac fibroblasts from humans, differences between atrial and ventricular fibroblasts in serum-induced proliferation, DNA synthesis, cell cycle progression, cyclin gene expression, and their inhibition by simvastatin were determined. The serum-induced proliferation rate of human atrial fibroblasts was more than threefold greater than ventricular fibroblasts with faster DNA synthesis and higher mRNA levels of cyclin genes. Simvastatin predominantly decreased the rate of proliferation of atrial fibroblasts, with inhibition of cell cycle progression and an increase in the G0/G1 phase in atrial fibroblasts with a higher sensitivity toward inhibition compared with ventricular fibroblasts. The DNA synthesis and mRNA levels of cyclin A, D, and E were significantly reduced by simvastatin in atrial but not in ventricular fibroblasts. The inhibitory effect of simvastatin on atrial fibroblasts was abrogated by mevalonic acid (500 μM) that bypasses 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibition. Chamber-specific differences exist in the human heart because atrial fibroblasts have a higher proliferative capacity and are more sensitive to simvastatin-mediated inhibition through HMG-CoA reductase pathway. This mechanism may be useful in selectively preventing excessive atrial fibrosis without inhibiting adaptive ventricular remodeling during cardiac injury.

  7. Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements

    SciTech Connect

    Wharton, W.

    1984-01-01

    Cultures of human fibroblasts were prepared from chest skin obtained either from newborns (less than 3 months old) or adults (more than 35 years old) and maintained in vitro until they senesced. Adult cells grew logarithmically in medium supplemented with whole blood serum but not with platelet-poor plasma. Early passage cells obtained from newborns grew equally well in either plasma- or serum-supplemented medium. The difference in growth factor requirements between adult and newborn cells persisted through the lifespan of the cells; i.e., newborn cells did not develop adult hormonal requirements when maintained in culture. Thus, in vitro cellular aging can be distinguished from some types of differentiation.

  8. Proportions of H1 histone subspecies in human fibroblasts shift during density-dependent growth arrest independent of replicative senescence.

    PubMed

    Houde, M; Shmookler Reis, R J; Goldstein, S

    1989-09-01

    H1 histone subspecies have been reported to vary during tissue differentiation, during aging of mammalian tissues, and as a function of DNA replicative activity. Since cultured human fibroblasts have a limited replicative life span which features arrest in the G1 phase of the cell cycle, we sought to distinguish whether any changes in the proportions of the principal H1 histone subspecies (H1A, H1B, and H1o) in late-passage fibroblasts were specific for senescent loss of replicative potential, or rather ensued as a result of prolonged inhibition of cell division. We observed an identical shift in the proportions of H1 histone subspecies during prolonged density-dependent inhibition of growth in both early-passage and late-passage cells. Since under these conditions there were no passage-specific changes, replicative senescence of human fibroblasts does not appear to involve a defect in the control of H1 histone proportions.

  9. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  10. Recombinant human bone morphogenetic protein-9 potently induces osteogenic differentiation of human periodontal ligament fibroblasts.

    PubMed

    Fuchigami, Sawako; Nakamura, Toshiaki; Furue, Kirara; Sena, Kotaro; Shinohara, Yukiya; Noguchi, Kazuyuki

    2016-04-01

    To accomplish effective periodontal regeneration for periodontal defects, several regenerative methods using growth and differentiation factors, including bone morphogenetic proteins (BMPs), have been developed. Bone morphogenetic protein-9 exhibits the most potent osteogenic activity of this growth factor family. However, it is unclear whether exogenous BMP-9 can induce osteogenic differentiation in human periodontal ligament (PDL) fibroblasts. Here, we examined the effects of recombinant human (rh) BMP-9 on osteoblastic differentiation in human PDL fibroblasts in vitro, compared with rhBMP-2. Recombinant human BMP-9 potently induced alkaline phosphatase (ALP) activity, mineralization, and increased expression of runt-related transcription factor-2/core binding factor alpha 1 (RUNX2/CBFA1), osterix, inhibitor of DNA binding/differentiation-1 (ID1), osteopontin, and bone sialoprotein genes, compared with rhBMP-2. The levels of rhBMP-9-induced osterix and ALP mRNA were significantly reduced in activin receptor-like kinase-1 and -2 small interfering RNA (siRNA)-transfected human PDL fibroblasts. Recombinant human BMP-9-induced ALP activity was not inhibited by noggin, in contrast to rhBMP-2 induced ALP activity, which was. Phosphorylation of SMAD1/5/8 in human PDL fibroblasts was induced by addition of rhBMP-9. Recombinant human BMP-9-induced ALP activity was suppressed by SB203580, SP600125, and U0126, which are inhibitors of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2), respectively. Our data suggest that rhBMP-9 is a potent inducer of the differentiation of human PDL fibroblasts into osteoblast-like cells and that this may be mediated by the SMAD and mitogen-activated protein kinase (p38, ERK1/2, and JNK) pathways. PMID:26879145

  11. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    SciTech Connect

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  12. Key Regulatory Role of Dermal Fibroblasts in Pigmentation as Demonstrated Using a Reconstructed Skin Model: Impact of Photo-Aging

    PubMed Central

    Duval, Christine; Cohen, Catherine; Chagnoleau, Corinne; Flouret, Virginie; Bourreau, Emilie; Bernerd, Françoise

    2014-01-01

    To study cutaneous pigmentation in a physiological context, we have previously developed a functional pigmented reconstructed skin model composed of a melanocyte-containing epidermis grown on a dermal equivalent comprising living fibroblasts. The present studies, using the same model, aimed to demonstrate that dermal fibroblasts influence skin pigmentation up to the macroscopic level. The proof of principle was performed with pigmented skins differing only in the fibroblast component. First, the in vitro system was reconstructed with or without fibroblasts in order to test the global influence of the presence of this cell type. We then assessed the impact of the origin of the fibroblast strain on the degree of pigmentation using fetal versus adult fibroblasts. In both experiments, impressive variation in skin pigmentation at the macroscopic level was observed and confirmed by quantitative parameters related to skin color, melanin content and melanocyte numbers. These data confirmed the responsiveness of the model and demonstrated that dermal fibroblasts do indeed impact the degree of skin pigmentation. We then hypothesized that a physiological state associated with pigmentary alterations such as photo-aging could be linked to dermal fibroblasts modifications that accumulate over time. Pigmentation of skin reconstructed using young unexposed fibroblasts (n = 3) was compared to that of tissues containing natural photo-aged fibroblasts (n = 3) which express a senescent phenotype. A stimulation of pigmentation in the presence of the natural photo-aged fibroblasts was revealed by a significant increase in the skin color (decrease in Luminance) and an increase in both epidermal melanin content and melanogenic gene expression, thus confirming our hypothesis. Altogether, these data demonstrate that the level of pigmentation of the skin model is influenced by dermal fibroblasts and that natural photo-aged fibroblasts can contribute to the hyperpigmentation that is

  13. Key regulatory role of dermal fibroblasts in pigmentation as demonstrated using a reconstructed skin model: impact of photo-aging.

    PubMed

    Duval, Christine; Cohen, Catherine; Chagnoleau, Corinne; Flouret, Virginie; Bourreau, Emilie; Bernerd, Françoise

    2014-01-01

    To study cutaneous pigmentation in a physiological context, we have previously developed a functional pigmented reconstructed skin model composed of a melanocyte-containing epidermis grown on a dermal equivalent comprising living fibroblasts. The present studies, using the same model, aimed to demonstrate that dermal fibroblasts influence skin pigmentation up to the macroscopic level. The proof of principle was performed with pigmented skins differing only in the fibroblast component. First, the in vitro system was reconstructed with or without fibroblasts in order to test the global influence of the presence of this cell type. We then assessed the impact of the origin of the fibroblast strain on the degree of pigmentation using fetal versus adult fibroblasts. In both experiments, impressive variation in skin pigmentation at the macroscopic level was observed and confirmed by quantitative parameters related to skin color, melanin content and melanocyte numbers. These data confirmed the responsiveness of the model and demonstrated that dermal fibroblasts do indeed impact the degree of skin pigmentation. We then hypothesized that a physiological state associated with pigmentary alterations such as photo-aging could be linked to dermal fibroblasts modifications that accumulate over time. Pigmentation of skin reconstructed using young unexposed fibroblasts (n = 3) was compared to that of tissues containing natural photo-aged fibroblasts (n = 3) which express a senescent phenotype. A stimulation of pigmentation in the presence of the natural photo-aged fibroblasts was revealed by a significant increase in the skin color (decrease in Luminance) and an increase in both epidermal melanin content and melanogenic gene expression, thus confirming our hypothesis. Altogether, these data demonstrate that the level of pigmentation of the skin model is influenced by dermal fibroblasts and that natural photo-aged fibroblasts can contribute to the hyperpigmentation that is

  14. Key regulatory role of dermal fibroblasts in pigmentation as demonstrated using a reconstructed skin model: impact of photo-aging.

    PubMed

    Duval, Christine; Cohen, Catherine; Chagnoleau, Corinne; Flouret, Virginie; Bourreau, Emilie; Bernerd, Françoise

    2014-01-01

    To study cutaneous pigmentation in a physiological context, we have previously developed a functional pigmented reconstructed skin model composed of a melanocyte-containing epidermis grown on a dermal equivalent comprising living fibroblasts. The present studies, using the same model, aimed to demonstrate that dermal fibroblasts influence skin pigmentation up to the macroscopic level. The proof of principle was performed with pigmented skins differing only in the fibroblast component. First, the in vitro system was reconstructed with or without fibroblasts in order to test the global influence of the presence of this cell type. We then assessed the impact of the origin of the fibroblast strain on the degree of pigmentation using fetal versus adult fibroblasts. In both experiments, impressive variation in skin pigmentation at the macroscopic level was observed and confirmed by quantitative parameters related to skin color, melanin content and melanocyte numbers. These data confirmed the responsiveness of the model and demonstrated that dermal fibroblasts do indeed impact the degree of skin pigmentation. We then hypothesized that a physiological state associated with pigmentary alterations such as photo-aging could be linked to dermal fibroblasts modifications that accumulate over time. Pigmentation of skin reconstructed using young unexposed fibroblasts (n = 3) was compared to that of tissues containing natural photo-aged fibroblasts (n = 3) which express a senescent phenotype. A stimulation of pigmentation in the presence of the natural photo-aged fibroblasts was revealed by a significant increase in the skin color (decrease in Luminance) and an increase in both epidermal melanin content and melanogenic gene expression, thus confirming our hypothesis. Altogether, these data demonstrate that the level of pigmentation of the skin model is influenced by dermal fibroblasts and that natural photo-aged fibroblasts can contribute to the hyperpigmentation that is

  15. In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells.

    PubMed

    Seker, Sükran; Elçin, A Eser; Yumak, Tuğrul; Sınağ, Ali; Elçin, Y Murat

    2014-12-01

    The use of metal oxide nanoparticles (NPs) in industrial applications has been expanding, as a consequence, risk of human exposure increases. In this study, the potential toxic effects of zinc oxide (ZnO) NPs on human periodontal ligament fibroblast cells (hPDLFs) and on mouse dermal fibroblast cells (mDFs) were evaluated in vitro. We synthesized ZnO NPs (particle size; 7-8 nm) by the hydrothermal method. Characterization assays were performed with atomic force microscopy, Braun-Emmet-Teller analysis, and dynamic light scattering. The hPDLFs and mDFs were incubated with the NPs with concentrations of 0.1, 1, 10, 50 and 100 μg/mL for 6, 24 and 48h. Under the control and NP-exposed conditions, we have made different types of measurements for cell viability and morphology, membrane leakage and intracellular reactive oxygen species generation. Also, we monitored cell responses to ZnO NPs using an impedance measurement system in real-time. While the morphological changes were visualized using scanning electron microscopy, the subcellular localization of NPs was investigated by transmission electron microscopy. Results indicated that ZnO NPs have significant toxic effects on both of the primary fibroblastic cells at concentrations of ∼50-100 μg/mL. The cytotoxicity of ZnO NPs on fibroblasts depended on concentration and duration of exposure.

  16. Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts.

    PubMed Central

    Hutter, Eveline; Renner, Kathrin; Pfister, Gerald; Stöckl, Petra; Jansen-Dürr, Pidder; Gnaiger, Erich

    2004-01-01

    Limitation of lifespan in replicative senescence is related to oxidative stress, which is probably both the cause and consequence of impaired mitochondrial respiratory function. The respiration of senescent human diploid fibroblasts was analysed by high-resolution respirometry. To rule out cell-cycle effects, proliferating and growth-arrested young fibroblasts were used as controls. Uncoupled respiration, as normalized to citrate synthase activity, remained unchanged, reflecting a constant capacity of the respiratory chain. Oligomycin-inhibited respiration, however, was significantly increased in mitochondria of senescent cells, indicating a lower coupling of electron transport with phosphorylation. In contrast, growth-arrested young fibroblasts exhibited a higher coupling state compared with proliferating controls. In intact cells, partial uncoupling may lead to either decreased oxidative ATP production or a compensatory increase in routine respiration. To distinguish between these alternatives, we subtracted oligomycin-inhibited respiration from routine respiration, which allowed us to determine the part of respiratory activity coupled with ATP production. Despite substantial differences in the respiratory control ratio, ranging from 4 to 11 in the different experimental groups, a fixed proportion of respiratory capacity was maintained for coupled oxidative phosphorylation in all the experimental groups. This finding indicates that the senescent cells fully compensate for increased proton leakage by enhanced electron-transport activity in the routine state. These results provide a new insight into age-associated defects in mitochondrial function and compensatory mechanisms in intact cells. PMID:15018610

  17. Uroporphyrin I Stimulation of Collagen Biosynthesis in Human Skin Fibroblasts

    PubMed Central

    Varigos, George; Schiltz, John R.; Bickers, David R.

    1982-01-01

    Porphyria cutanea tarda and erythropoietic porphyria are disorders of heme synthesis that originate in the liver and bone marrow, respectively. Each is characterized by increased accumulation of uroporphyrin, I, by cutaneous photosensitivity, and in some patients by indurated plaques and scarring that resemble scleroderma. These scleroderma-like lesions occur in light-exposed and light-protected body areas. In these studies we evaluated the role of uroporphyrin I and of light in evoking the scleroderma-like cutaneous changes. Normal human skin fibroblasts were exposed to uroporphyrin I and to 400 nm radiation and the effect of these agents on collagen accumulation by the cells was determined. Radioactive tracer studies showed that uroporphyrin I caused a specific increase in the accumulation of newly synthesized collagen by fibroblast monolayer cultures, as verified by [3H]hydroxyproline and collagenase digestion assays. Collagen accumulation was stimulated 1.5- to 2.7-fold by uroporphyrin I, whereas noncollagenous protein accumulation was unchanged. The increased collagen accumulation was time and uroporphyrin I-concentration-dependent, and occurred both in the presence or absence of ultraviolet light exposure. Further studies demonstrated that the increased accumulation was not the result of decreased rates of collagen degradation nor was it due to changes in cell population growth parameters (generation times and saturation densities). No changes in morphology of the treated cells occurred. These studies indicate that porphyrins possess previously undemonstrated biological effects that are independent of their photosensitizing properties. This novel dark effect of uroporphyrin I may account for the sclerodermatous lesions seen in the skin of patients with porphyria cutanea tarda and erythropoietic porphyria. PMID:7054234

  18. Modulation of cell-phenotype during in vitro aging. Glycosaminoglycan biosynthesis by skin fibroblasts and corneal keratocytes.

    PubMed

    Isnard, N; Fodil, I; Robert, L; Renard, G

    2002-12-01

    The aim of this study was to compare keratocyte and fibroblast phenotypes during in vitro aging by comparing their biosynthesis of glycosaminoglycans using explant and cell cultures. Human skin and corneal explant cultures were realised with Dulbecco Modified Eagle's medium containing 3H glucosamine. Sequential cell cultures were studied at different passages for GAGs biosynthesis by 3H glucosamine incorporation followed by selective degradation with specific hydrolases. Radioactivity was determined and each GAG fraction evaluated. KS and DS are the major components synthesised by corneal explant culture. During in vitro aging, keratocytes synthesised 41% less KS between passages 4-9 with a decrease by 26% of the proportion of DS observed in the same conditions. In skin explant cultures, as expected the major components are CS and hyaluronan (HA). In the first cell passage studied compared with skin organ cultures we could notice a strong decrease of the proportions of DS and KS compensated by an increase of the proportion of HA. During the successive passages of fibroblasts, the proportions of DS and HS decreased (-30 and -62%, respectively) and those of KS increased (+90%). These results indicate that there remain measurable differences between keratocyte and fibroblast phenotypes as far as GAG-synthesis is concerned all though the successive passages, starting from explant cultures and up to the limits of in vitro cell passages.

  19. Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase.

    PubMed Central

    Sampson, P M; Rochester, C L; Freundlich, B; Elias, J A

    1992-01-01

    We characterized the mechanisms by which recombinant (r) tumor necrosis factor (TNF), IFN-gamma, and IL-1, alone and in combination, regulate human lung fibroblast hyaluronic acid (HA) production. Each cytokine stimulated fibroblast HA production. The combination of rTNF and rIFN-gamma resulted in a synergistic increase in the production of high molecular weight HA. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous decrease in HA degradation. In contrast, when rTNF and rIL-1 were combined, an additive increase in low molecular weight HA was noted. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous increase in HA degradation. Human lung fibroblasts contained a hyaluronidase that, at pH 3.7, depolymerized high molecular weight HA to 10-40 kD end products of digestion. However, hyaluronidase activity did not correlate with fibroblast HA degradation. Instead, HA degradation correlated with fibroblast-HA binding, which was increased by rIL-1 plus rTNF and decreased by rIFN-gamma plus rTNF. Recombinant IL-1 and rTNF weakly stimulated and rIL-1 and rTNF in combination further augmented the levels of CD44 mRNA in lung fibroblasts. In contrast, rIFN-gamma did not significantly alter the levels of CD44 mRNA in unstimulated or rTNF stimulated cells. These studies demonstrate that rIL-1, rTNF, and rIFN-gamma have complex effects on biosynthesis and degradation which alter the quantity and molecular weight of the HA produced by lung fibroblasts. They also show that fibroblast HA degradation is mediated by a previously unrecognized lysosomal-type hyaluronidase whose function may be regulated by altering fibroblast-HA binding. Lastly, they suggest that the CD44 HA receptor may be involved in this process. Images PMID:1401082

  20. A standardized laboratory and surgical method for in vitro culture isolation and expansion of primary human Tenon's fibroblasts.

    PubMed

    De Falco, Elena; Scafetta, Gaia; Napoletano, Chiara; Puca, Rosa; Vingolo, Enzo Maria; Ragona, Giuseppe; Iorio, Olga; Frati, Giacomo

    2013-06-01

    Good manufacturing practices guidelines require safer and standardized cell substrates especially for those cell therapy products to treat ocular diseases where fibroblasts are used as feeder layers. However, if these are unavailable for stem cells culturing, murine fibroblasts are regularly used, raising critical issues as accidentally transplanting xenogenous graft and adversely affecting stem cell clinical trials. Moreover, human fibroblasts play a significant role in testing novel ophthalmologic drugs. Accordingly, we developed a standardized laboratory and surgical approach to isolate normal and undamaged Tenon's fibroblasts to implement the setting up of banks for both stem cells-based ocular cell therapy and in vitro drug testing. A 2-3 cm(2) undamaged Tenon's biopsy was surgically obtained from 28 patients without mutually correlated ocular diseases. Nineteen dermal biopsies were used as control. Fibroblasts were isolated with or without collagenase, cultured in autologous, fetal bovine or AB serum, tested for viability by trypan blue, vimentin expression and standardized until passage 6. Successful Tenon's fibroblasts isolation was age dependent (P = 0.001) but not sex, pathology or surgery related. A significant rate of successful cultures were obtained when biopsies were not digested by collagenase (P = 0.013). Moreover, cultures in autologous or fetal bovine serum had comparable proliferative properties (P = 0.77; P = 0.82). Through our surgical and laboratory standardized procedure, we elucidated for the first time key points of this human primary culture system, the role of the autologous serum, comparing Tenon's and dermal fibroblasts. Our protocol may be clinically useful to reduce the risk above mentioned and may be potentially more effective for ophthalmological clinical purposes. PMID:22820760

  1. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins

    PubMed Central

    Janmaat, C. J.; de Rooij, K. E; Locher, H; de Groot, S. C.; de Groot, J. C. M. J.; Frijns, J. H. M.; Huisman, M. A.

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  2. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins.

    PubMed

    Janmaat, C J; de Rooij, K E; Locher, H; de Groot, S C; de Groot, J C M J; Frijns, J H M; Huisman, M A

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  3. Lactic Acid Bacteria Convert Human Fibroblasts to Multipotent Cells

    PubMed Central

    Ohta, Kunimasa; Kawano, Rie; Ito, Naofumi

    2012-01-01

    The human gastrointestinal tract is colonized by a vast community of symbionts and commensals. Lactic acid bacteria (LAB) form a group of related, low-GC-content, gram-positive bacteria that are considered to offer a number of probiotic benefits to general health. While the role of LAB in gastrointestinal microecology has been the subject of extensive study, little is known about how commensal prokaryotic organisms directly influence eukaryotic cells. Here, we demonstrate the generation of multipotential cells from adult human dermal fibroblast cells by incorporating LAB. LAB-incorporated cell clusters are similar to embryoid bodies derived from embryonic stem cells and can differentiate into endodermal, mesodermal, and ectodermal cells in vivo and in vitro. LAB-incorporated cell clusters express a set of genes associated with multipotency, and microarray analysis indicates a remarkable increase of NANOG, a multipotency marker, and a notable decrease in HOX gene expression in LAB-incorporated cells. During the cell culture, the LAB-incorporated cell clusters stop cell division and start to express early senescence markers without cell death. Thus, LAB-incorporated cell clusters have potentially wide-ranging implications for cell generation, reprogramming, and cell-based therapy. PMID:23300571

  4. Genotoxic and antiapoptotic effect of nicotine on human gingival fibroblasts.

    PubMed

    Argentin, Gabriella; Cicchetti, Rosadele

    2004-05-01

    Growing evidence suggests that nicotine, the addictive component of cigarettes, can have a direct role in tumor development by enhancing cell proliferation and impairing apoptotic process in certain types of human cancer cell lines. Since the correlation between apoptosis and DNA damage is already well documented, we investigated the response of human gingival fibroblasts (HGFs) to nicotine exposure by examining its effect on DNA damage induction and apoptotic process in parallel. To assess the genotoxicity of this drug, the cytokinesis-block micronucleus (CBMN) test was performed. Treatment of HGFs with nicotine, at a concentration of 1 microM, caused a statistically significant increase of micronucleus (MN) frequency at the tested time intervals, while no change was detected in cell growth under the same conditions. Furthermore, we found that preincubation of HGFs with 1 microM nicotine strongly attenuated staurosporine (STP)-induced apoptosis. Finally, we found that cultures exposed to nicotine showed an increase of reactive oxygen species, as determined by increased levels of 2,7-dichlorofluorescein (DCF). When cells were prelabeled with N-acetyl-cysteine (NAC), a substrate for glutathione synthesis, and catalase (CAT), the oxygen free radical scavenger, a significant reduction in cytogenetic damage was observed. Thus, for the first time, we report a concomitant genotoxic and antiapoptotic effect of nicotine in HGFs. PMID:14718647

  5. Human cytomegalovirus replicates in gamma-irradiated fibroblasts

    SciTech Connect

    Shanley, J.D.

    1986-12-01

    Because of the unique interdependence of human cytomegalovirus (HCMV) and the physiological state of the host cell, we evaluated the ability of human foreskin fibroblasts (HFF), exposed to gamma radiation, to support HCMV growth. Irradiation of HFF with 2,500 rADS prevented cellular proliferation and suppressed cellular DNA, but not RNA or protein synthesis. Treatment of HFF cells with 2,500 rADS 6 or 48 hours prior to infection did not alter the time course or virus yield during HCMV replication. Virus plaquing efficiency in irradiated cells was comparable to that of nonirradiated cells. As judged by thymidine incorporation and BUdR inhibition of virus replication, HCMV infection induced both thymidine kinase activity and host cell DNA synthesis in irradiated cells. In addition, virus could be recovered from HFF exposed to radiation 0-2 days after infection with HCMV. These studies indicate that the damage to cells by gamma irradiation does not alter the capacity of host cells to support HCMV replication.

  6. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  7. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function

    PubMed Central

    Fujiwara, Toshihiro; Duscher, Dominik; Rustad, Kristine C.; Kosaraju, Revanth; Rodrigues, Melanie; Whittam, Alexander J.; Januszyk, Michael; Maan, Zeshaan N.; Gurtner, Geoffrey C.

    2016-01-01

    Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-β1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing. PMID:26663425

  8. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts

    PubMed Central

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L.

    2016-01-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients. PMID:26808499

  9. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    PubMed

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  10. Basic fibroblast growth factor support of human embryonic stem cell self-renewal.

    PubMed

    Levenstein, Mark E; Ludwig, Tenneille E; Xu, Ren-He; Llanas, Rachel A; VanDenHeuvel-Kramer, Kaitlyn; Manning, Daisy; Thomson, James A

    2006-03-01

    Human embryonic stem (ES) cells have most commonly been cultured in the presence of basic fibroblast growth factor (FGF2) either on fibroblast feeder layers or in fibroblast-conditioned medium. It has recently been reported that elevated concentrations of FGF2 permit the culture of human ES cells in the absence of fibroblasts or fibroblast-conditioned medium. Herein we compare the ability of unconditioned medium (UM) supplemented with 4, 24, 40, 80, 100, and 250 ng/ml FGF2 to sustain low-density human ES cell cultures through multiple passages. In these stringent culture conditions, 4, 24, and 40 ng/ml FGF2 failed to sustain human ES cells through three passages, but 100 ng/ml sustained human ES cells with an effectiveness comparable to conditioned medium (CM). Two human ES cell lines (H1 and H9) were maintained for up to 164 population doublings (7 and 4 months) in UM supplemented with 100 ng/ml FGF2. After prolonged culture, the cells formed teratomas when injected into severe combined immunodeficient beige mice and expressed markers characteristic of undifferentiated human ES cells. We also demonstrate that FGF2 is degraded more rapidly in UM than in CM, partly explaining the need for higher concentrations of FGF2 in UM. These results further facilitate the large-scale, routine culture of human ES cells and suggest that fibroblasts and fibro-blast-conditioned medium sustain human ES cells in part by stabilizing FGF signaling above a critical threshold.

  11. Ciliary abnormalities in senescent human fibroblasts impair proliferative capacity

    PubMed Central

    Breslin, Loretta; Prosser, Suzanna L; Cuffe, Sandra; Morrison, Ciaran G

    2014-01-01

    Somatic cells senesce in culture after a finite number of divisions indefinitely arresting their proliferation. DNA damage and senescence increase the cellular number of centrosomes, the 2 microtubule organizing centers that ensure bipolar mitotic spindles. Centrosomes also provide the basal body from which primary cilia extend to sense and transduce various extracellular signals, notably Hedgehog. Primary cilium formation is facilitated by cellular quiescence a temporary cell cycle exit, but the impact of senescence on cilia is unknown. We found that senescent human fibroblasts have increased frequency and length of primary cilia. Levels of the negative ciliary regulator CP110 were reduced in senescent cells, as were levels of key elements of the Hedgehog pathway. Hedgehog inhibition reduced proliferation in young cells with increased cilium length accompanying cell cycle arrest suggesting a regulatory function for Hedgehog in primary ciliation. Depletion of CP110 in young cell populations increased ciliation frequencies and reduced cell proliferation. These data suggest that primary cilia are potentially novel determinants of the reduced cellular proliferation that initiates senescence. PMID:25486364

  12. An evaluation of thiram toxicity on cultured human skin fibroblasts.

    PubMed

    Cereser, C; Boget, S; Parvaz, P; Revol, A

    2001-05-11

    Thiram is widely used in agriculture as a fungicide and, to a lesser extent, as a vulcanizing agent in the rubber industry. In spite of the extensive use of thiram, knowledge on its toxicity and health risk remains limited, and few investigations have been performed to assess specific damage at the cellular and subcellular level. We report here the cytotoxic effects of thiram on cultured human skin fibroblasts. Our results demonstrated that thiram exposure induced a dose- and time-dependent decrease in the viable cell recovery with 100% cell death observed with a concentration of 5.0 mg/l. As judged by morphological changes and biochemical criteria, thiram-mediated cell death was not of the apoptotic but seemed to be of the necrotic type. This cell death was not associated with a modification of gene expression of different constituents of the extracellular matrix. A late increase of lactate production was evident after thiram treatment, suggesting a mitochondrial metabolic pathway dysfunction as reported by other authors using similar compounds. However, this phenomenon appeared as a secondary response to the toxic action of thiram. The cytotoxic effect of thiram is possibly due to an oxidant effect inherent to the structure of thiram and the interaction between thiram and vital cellular molecules.

  13. Ciliary abnormalities in senescent human fibroblasts impair proliferative capacity.

    PubMed

    Breslin, Loretta; Prosser, Suzanna L; Cuffe, Sandra; Morrison, Ciaran G

    2014-01-01

    Somatic cells senesce in culture after a finite number of divisions indefinitely arresting their proliferation. DNA damage and senescence increase the cellular number of centrosomes, the 2 microtubule organizing centers that ensure bipolar mitotic spindles. Centrosomes also provide the basal body from which primary cilia extend to sense and transduce various extracellular signals, notably Hedgehog. Primary cilium formation is facilitated by cellular quiescence a temporary cell cycle exit, but the impact of senescence on cilia is unknown. We found that senescent human fibroblasts have increased frequency and length of primary cilia. Levels of the negative ciliary regulator CP110 were reduced in senescent cells, as were levels of key elements of the Hedgehog pathway. Hedgehog inhibition reduced proliferation in young cells with increased cilium length accompanying cell cycle arrest suggesting a regulatory function for Hedgehog in primary ciliation. Depletion of CP110 in young cell populations increased ciliation frequencies and reduced cell proliferation. These data suggest that primary cilia are potentially novel determinants of the reduced cellular proliferation that initiates senescence. PMID:25486364

  14. Transcriptional analysis of normal human fibroblast responses to microgravity stress.

    PubMed

    Liu, Yongqing; Wang, Eugenia

    2008-03-01

    To understand the molecular mechanism(s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the space-flown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several G1-phase cell cycle traverse genes. Other genes showing up-regulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the "hub" for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.

  15. Biased Allelic Expression in Human Primary Fibroblast Single Cells

    PubMed Central

    Borel, Christelle; Ferreira, Pedro G.; Santoni, Federico; Delaneau, Olivier; Fort, Alexandre; Popadin, Konstantin Y.; Garieri, Marco; Falconnet, Emilie; Ribaux, Pascale; Guipponi, Michel; Padioleau, Ismael; Carninci, Piero; Dermitzakis, Emmanouil T.; Antonarakis, Stylianos E.

    2015-01-01

    The study of gene expression in mammalian single cells via genomic technologies now provides the possibility to investigate the patterns of allelic gene expression. We used single-cell RNA sequencing to detect the allele-specific mRNA level in 203 single human primary fibroblasts over 133,633 unique heterozygous single-nucleotide variants (hetSNVs). We observed that at the snapshot of analyses, each cell contained mostly transcripts from one allele from the majority of genes; indeed, 76.4% of the hetSNVs displayed stochastic monoallelic expression in single cells. Remarkably, adjacent hetSNVs exhibited a haplotype-consistent allelic ratio; in contrast, distant sites located in two different genes were independent of the haplotype structure. Moreover, the allele-specific expression in single cells correlated with the abundance of the cellular transcript. We observed that genes expressing both alleles in the majority of the single cells at a given time point were rare and enriched with highly expressed genes. The relative abundance of each allele in a cell was controlled by some regulatory mechanisms given that we observed related single-cell allelic profiles according to genes. Overall, these results have direct implications in cellular phenotypic variability. PMID:25557783

  16. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    PubMed

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  17. Human pancreatic beta-like cells converted from fibroblasts

    PubMed Central

    Zhu, Saiyong; Russ, Holger A.; Wang, Xiaojing; Zhang, Mingliang; Ma, Tianhua; Xu, Tao; Tang, Shibing; Hebrok, Matthias; Ding, Sheng

    2016-01-01

    Pancreatic beta cells are of great interest for biomedical research and regenerative medicine. Here we show the conversion of human fibroblasts towards an endodermal cell fate by employing non-integrative episomal reprogramming factors in combination with specific growth factors and chemical compounds. On initial culture, converted definitive endodermal progenitor cells (cDE cells) are specified into posterior foregut-like progenitor cells (cPF cells). The cPF cells and their derivatives, pancreatic endodermal progenitor cells (cPE cells), can be greatly expanded. A screening approach identified chemical compounds that promote the differentiation and maturation of cPE cells into functional pancreatic beta-like cells (cPB cells) in vitro. Transplanted cPB cells exhibit glucose-stimulated insulin secretion in vivo and protect mice from chemically induced diabetes. In summary, our study has important implications for future strategies aimed at generating high numbers of functional beta cells, which may help restoring normoglycemia in patients suffering from diabetes. PMID:26733021

  18. Ciliary abnormalities in senescent human fibroblasts impair proliferative capacity.

    PubMed

    Breslin, Loretta; Prosser, Suzanna L; Cuffe, Sandra; Morrison, Ciaran G

    2014-01-01

    Somatic cells senesce in culture after a finite number of divisions indefinitely arresting their proliferation. DNA damage and senescence increase the cellular number of centrosomes, the 2 microtubule organizing centers that ensure bipolar mitotic spindles. Centrosomes also provide the basal body from which primary cilia extend to sense and transduce various extracellular signals, notably Hedgehog. Primary cilium formation is facilitated by cellular quiescence a temporary cell cycle exit, but the impact of senescence on cilia is unknown. We found that senescent human fibroblasts have increased frequency and length of primary cilia. Levels of the negative ciliary regulator CP110 were reduced in senescent cells, as were levels of key elements of the Hedgehog pathway. Hedgehog inhibition reduced proliferation in young cells with increased cilium length accompanying cell cycle arrest suggesting a regulatory function for Hedgehog in primary ciliation. Depletion of CP110 in young cell populations increased ciliation frequencies and reduced cell proliferation. These data suggest that primary cilia are potentially novel determinants of the reduced cellular proliferation that initiates senescence.

  19. Chromosome Conformation of Human Fibroblasts Grown in 3-Dimensional Spheroids

    PubMed Central

    Chen, Haiming; Comment, Nicholas; Chen, Jie; Ronquist, Scott; Hero, Alfred; Ried, Thomas; Rajapakse, Indika

    2015-01-01

    In the study of interphase chromosome organization, genome-wide chromosome conformation capture (Hi-C) maps are often generated using 2-dimensional (2D) monolayer cultures. These 2D cells have morphological deviations from cells that exist in 3-dimensional (3D) tissues in vivo, and may not maintain the same chromosome conformation. We used Hi-C maps to test the extent of differences in chromosome conformation between human fibroblasts grown in 2D cultures and those grown in 3D spheroids. Significant differences in chromosome conformation were found between 2D cells and those grown in spheroids. Intra-chromosomal interactions were generally increased in spheroid cells, with a few exceptions, while inter-chromosomal interactions were generally decreased. Overall, chromosomes located closer to the nuclear periphery had increased intra-chromosomal contacts in spheroid cells, while those located more centrally had decreased interactions. This study highlights the necessity to conduct studies on the topography of the interphase nucleus under conditions that mimic an in vivo environment. PMID:25738643

  20. L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis.

    PubMed

    Zelenka, Jaroslav; Dvořák, Aleš; Alán, Lukáš

    2015-01-01

    A moderate elevation of reactive oxygen species (ROS) production and a mild inhibition of mitochondrial respiratory chain have been associated with a health promotion and a lifespan extension in several animal models of aging. Here, we tested whether this phenomenon called mitohormesis could be mediated by L-lactate. The treatment with 5 mM L-lactate significantly increased H2O2 production and slightly inhibited the respiration in cultured skin fibroblasts and in isolated mitochondria. The L-lactate exposure was associated with oxidation of intracellular glutathione, phosphorylation of 5'AMP-activated protein kinase (AMPK), and induction of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) transcription. A replicative aging of fibroblasts (L0) with a constant (LC), or intermittent 5 mM L-lactate (LI) in media showed that the high-passage LI fibroblasts have higher respiration, lower H2O2 release, and lower secretion of L-lactate compared to L0 and LC. This protection against mitochondrial dysfunction in LI cells was associated with lower activity of mechanistic target of rapamycin complex 1 (mTORC1), less signs of cellular senescence, and increased autophagy compared to L0 and LC. In conclusion, we demonstrated that intermittent but not constant exposure to L-lactate triggers mitohormesis, prevents aging-associated mitochondrial dysfunction, and improves other markers of aging. PMID:26171114

  1. L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis

    PubMed Central

    Zelenka, Jaroslav; Dvořák, Aleš; Alán, Lukáš

    2015-01-01

    A moderate elevation of reactive oxygen species (ROS) production and a mild inhibition of mitochondrial respiratory chain have been associated with a health promotion and a lifespan extension in several animal models of aging. Here, we tested whether this phenomenon called mitohormesis could be mediated by L-lactate. The treatment with 5 mM L-lactate significantly increased H2O2 production and slightly inhibited the respiration in cultured skin fibroblasts and in isolated mitochondria. The L-lactate exposure was associated with oxidation of intracellular glutathione, phosphorylation of 5′AMP-activated protein kinase (AMPK), and induction of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) transcription. A replicative aging of fibroblasts (L0) with a constant (LC), or intermittent 5 mM L-lactate (LI) in media showed that the high-passage LI fibroblasts have higher respiration, lower H2O2 release, and lower secretion of L-lactate compared to L0 and LC. This protection against mitochondrial dysfunction in LI cells was associated with lower activity of mechanistic target of rapamycin complex 1 (mTORC1), less signs of cellular senescence, and increased autophagy compared to L0 and LC. In conclusion, we demonstrated that intermittent but not constant exposure to L-lactate triggers mitohormesis, prevents aging-associated mitochondrial dysfunction, and improves other markers of aging. PMID:26171114

  2. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    PubMed Central

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  3. METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS

    EPA Science Inventory

    METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...

  4. Modulation of Human Valve Interstitial Cell Phenotype and Function Using a Fibroblast Growth Factor 2 Formulation

    PubMed Central

    Latif, Najma; Quillon, Alfred; Sarathchandra, Padmini; McCormack, Ann; Lozanoski, Alec; Yacoub, Magdi H.; Chester, Adrian H.

    2015-01-01

    Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10ng/ml), insulin (50ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the

  5. Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts.

    PubMed

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio

    2012-01-01

    A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.

  6. Binding, uptake, and release of nicotine by human gingival fibroblasts

    SciTech Connect

    Hanes, P.J.; Schuster, G.S.; Lubas, S. )

    1991-02-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4{degree}C using a mixture of {sup 3}H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between {sup 3}H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37{degree}C after treating cells with {sup 3}H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours.

  7. Dermal Aged and Fetal Fibroblasts Realign in Response to Mechanical Strain

    NASA Technical Reports Server (NTRS)

    Sawyer, Christine; Grymes, Rose; Alvarez, Teresa (Technical Monitor)

    1994-01-01

    Integrins specifically recognize and bind extracellular matrix components, providing physical anchor points and functional setpoints. Focal adhesion complexes, containing integrin and cytoskeletal proteins, are potential mechanoreceptors, poised to distribute applied forces through the cytoskeleton. Pursuing the hypothesis that cells both perceive and respond to external force, we applied a stretch/relaxation regimen to normal human fetal and aged dermal fibroblast monolayers cultured on flexible membranes. The frequency and magnitude of the applied force is precisely controlled by the Flexercell Unit(Trademark). A protocol of stretch (20% elongation of the monolayer) at a frequency of 6 cycles/min caused a progressive change from a randomly distributed pattern of cells to a symmetric, radial distribution with cells aligned parallel to the applied force. We have coined the term 'orienteering' as the process of active alignment of cells in response to applied force. Cytochalasin D was added in graded doses to investigate the role of the actin cytoskeleton in force perception and transmission. A clear dose response was found; at high concentrations orienteering was abolished; and the drug's impact was reversible. The two cell strains used were similar in their alignment behavior and in their responses to cytochalasin D. Orienteering was influenced by cell density, and the cell strains studied differed in this respect. Fetal cells, unlike their aged counterparts, failed to orient at high cell density. In both cell strains, mid-density cultures aligned rapidly and sparse cultures lagged. These results indicate that both cell-cell adhesion and cytoskeleton integrity are critical in mediating the orienteering response. Differences between these two cell strains may relate to their expression of extracellular matrix molecules (fibronectin, collagen type 1) integrins and their relative binding affinities.

  8. Optimal Viscosity and Particle Shape of Hyaluronic Acid Filler as a Scaffold for Human Fibroblasts.

    PubMed

    Kim, Deok-Yeol; Namgoong, Sik; Han, Seung-Kyu; Won, Chang-Hoon; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2015-07-01

    The authors previously reported that cultured human fibroblasts suspended in a hyaluronic acid filler can produce human dermal matrices with extended in vivo stability in animal and clinical studies. The present study was undertaken to determine the optimal viscosity and particle shape of hyaluronic acid filler as a scaffold for cultured human dermal fibroblasts to enhance the maximal viability of injected cells. The fibroblasts were suspended in either 1 of 3 hyaluronic acid viscosities at 2 different particle shapes. The viscosities used in this study were low (600,000-800,000 centipoises), moderate (2,000,000-4,000,000 centipoises), and high (8,000,000-12,000,000 centipoises). The particle shape was evaluated by testing round and irregular shapes. The fibroblast mixed bioimplants were injected into the back of individual athymic nude mice. The levels of type I collagen were measured using fluorescent-activated cell sorting (FACS) and immunohistochemical staining at 16 weeks after the injections. Results of FACS demonstrated that the mean cell ratio with human collagens in the moderate viscosity group was greater than those of control, low, and high viscosity groups. An immunohistochemical study showed similar results. The moderate viscosity group demonstrated the highest positive staining of human collagens. However, there were no significant differences between groups of irregular and round shape particles. A hyaluronic acid bioimplant with moderate viscosity is superior to that with low or high viscosity in the viability for human fibroblasts. However, the particle shape does not influence the viability of the fibroblasts.

  9. The cytotoxicity and genotoxicity of hexavalent chromium in Steller sea lion lung fibroblasts compared to human lung fibroblasts.

    PubMed

    Wise, John Pierce; Wise, Sandra S; Holmes, Amie L; LaCerte, Carolyne; Shaffiey, Fariba; Aboueissa, AbouEl-Makarim

    2010-06-01

    In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on an administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes. PMID:20211760

  10. The Cytotoxicity and Genotoxicity of Hexavalent Chromium in Steller Sea Lion Lung Fibroblasts Compared to Human Lung Fibroblasts

    PubMed Central

    Wise, John Pierce; Wise, Sandra S.; Holmes, Amie L.; LaCerte, Carolyne; Shaffiey, Fariba; Aboueissa, AbouEl-Makarim

    2010-01-01

    In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes. PMID:20211760

  11. Circadian clocks in rat skin and dermal fibroblasts: differential effects of aging, temperature and melatonin.

    PubMed

    Sandu, Cristina; Liu, Taole; Malan, André; Challet, Etienne; Pévet, Paul; Felder-Schmittbuhl, Marie-Paule

    2015-06-01

    As a peripheral tissue localized at the interface between internal and external environments, skin performs functions which are critical for the preservation of body homeostasis, in coordination with environmental changes. Some of these functions undergo daily variations, such as temperature or water loss, suggesting the presence of time-keeping mechanisms. Rhythmic functions are controlled by a network of circadian oscillators present virtually in every cell and coordinated by the central clock located in the suprachiasmatic nuclei. At the molecular level, circadian rhythms are generated by conserved transcriptional-translational feedback loops involving several clock genes, among which Per1 and Per2 play a central role. Here we characterize clock activity in skin of the transgenic Per1-luciferase rat during postnatal development and adulthood, by real-time recording of bioluminescence in explants and primary dermal fibroblasts, and report marked transformation in circadian properties, from early life to aging. Using primary dermal fibroblast cultures we provide evidence that melatonin treatment phase dependently increases the amplitude of circadian oscillations and that ambient temperature impacts on their period, with slight overcompensation. Together, these findings demonstrate that skin contains a self-sustained circadian clock undergoing age-dependent changes. Dermal fibroblasts, one of the major skin cell types, also exhibit robust, yet specific, circadian rhythmicity which can be fine-tuned by both internal (melatonin) and external (temperature) factors.

  12. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts.

    PubMed

    Fan, Rong-Hui; Zhu, Xiu-Mei; Sun, Yao-Wen; Peng, Hui-Zi; Wu, Hang-Li; Gao, Wen-Jie

    2016-07-01

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. PMID:27155158

  13. Characterization of membrane antigens on human cytomegalovirus-infected fibroblasts recognized by human antibodies

    SciTech Connect

    van der Voort, L.H.M.; de Leij, L.F.M.H.; The T.H.

    1989-03-01

    The antigens on the surface of human cytomegalovirus (HCMV)-infected fibroblasts which are recognized by human HCMV antibody-positive sera were characterized. Three HCMV-induced polypeptides, with apparent molecular masses of 53 to 63, 94, and 94 to 120 kilodaltons, were precipitated from /sup 125/I-surface-labeled cell extracts with different sera obtained from healthy individuals. Renal transplant recipients who were suffering from active HCMV infections recognized the same set of antigens. By the use of monoclonal antibodies, these antigens were identified as polypeptides belonging to the gcI and gcIII families of HCMV glycoproteins.

  14. Activation of the Innate Immune Response against DENV in Normal Non-Transformed Human Fibroblasts

    PubMed Central

    Bustos-Arriaga, José; García-Machorro, Jazmín; León-Juárez, Moisés; García-Cordero, Julio; Santos-Argumedo, Leopoldo; Flores-Romo, Leopoldo; Méndez-Cruz, A. René; Juárez-Delgado, Francisco J.; Cedillo-Barrón, Leticia

    2011-01-01

    Background When mosquitoes infected with DENV are feeding, the proboscis must traverse the epidermis several times (“probing”) before reaching a blood vessel in the dermis. During this process, the salivary glands release the virus, which is likely to interact first with cells of the various epidermal and dermal layers, cells which could be physiologically relevant to DENV infection and replication in humans. However, important questions are whether more abundant non-hematopoietic cells such as fibroblasts become infected, and whether they play any role in antiviral innate immunity in the very early stages of infection, or even if they might be used by DENV as primary replication cells. Methodology/Principal Findings Fibroblasts freshly released from healthy skin and infected 12 hours after their isolation show a positive signal for DENV. In addition, when primary skin fibroblast cultures were established and subsequently infected, we showed DENV-2 antigen-positive intracellular signal at 24 hours and 48 hours post-infection. Moreover, the fibroblasts showed productive infection in a conventional plaque assay. The skin fibroblasts infected with DENV-2 underwent potent signaling through both TLR3 and RIG- 1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5) and β defensin 2 (HβD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 (IRF7), when compared with mock-infected fibroblasts. Conclusions/Significance In this work, we demonstrated the high susceptibility to DENV infection by primary fibroblasts from normal human skin, both in situ and in vitro. Our results suggest that these cells may contribute to the pro-inflammatory and anti-viral microenvironment in the early stages of interaction with DENV-2. Furthermore, the data suggest that fibroblast may also be used as a primary site of DENV replication and provide viral

  15. Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis

    PubMed Central

    1995-01-01

    Human fibroblasts generate at least eight tropomyosin (TM) isoforms (hTM1, hTM2, hTM3, hTM4, hTM5, hTM5a, hTM5b, and hTMsm alpha) from four distinct genes, and we have previously demonstrated that bacterially produced chimera hTM5/3 exhibits an unusually high affinity for actin filaments and a loss of the salt dependence typical for TM-actin binding (Novy, R.E., J. R. Sellers, L.-F. Liu, and J.J.-C. Lin, 1993. Cell Motil. & Cytoskeleton. 26: 248-261). To examine the functional consequences of expressing this mutant TM isoform in vivo, we have transfected CHO cells with the full-length cDNA for hTM5/3 and compared them to cells transfected with hTM3 and hTM5. Immunofluorescence microscopy reveals that stably transfected CHO cells incorporate force- expressed hTM3 and hTM5 into stress fibers with no significant effect on general cell morphology, microfilament organization or cytokinesis. In stable lines expressing hTM5/3, however, cell division is slow and sometimes incomplete. The doubling time and the incidence of multinucleate cells in the stable hTM5/3 lines roughly parallel expression levels. A closely related chimeric isoform hTM5/2, which differs only in the internal, alternatively spliced exon also produces defects in cytokinesis, suggesting that normal TM function may involve coordination between the amino and carboxy terminal regions. This coordination may be prevented in the chimeric mutants. As bacterially produced hTM5/3 and hTM5/2 can displace hTM3 and hTM5 from actin filaments in vitro, it is likely that CHO-expressed hTM5/3 and hTM5/2 can displace endogenous TMs to act dominantly in vivo. These results support a role for nonmuscle TM isoforms in the fine tuning of microfilament organization during cytokinesis. Additionally, we find that overexpression of TM does not stabilize endogenous microfilaments, rather, the hTM-expressing cells are actually more sensitive to cytochalasin B. This suggests that regulation of microfilament integrity in vivo

  16. Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons.

    PubMed

    Liu, Meng-Lu; Zang, Tong; Zou, Yuhua; Chang, Joshua C; Gibson, Jay R; Huber, Kimberly M; Zhang, Chun-Li

    2013-01-01

    Cell fate can be reprogrammed by modifying intrinsic and extrinsic cues. Here we show that two small molecules (forskolin and dorsomorphin) enable the transcription factor Neurogenin 2 (NGN2) to convert human fetal lung fibroblasts into cholinergic neurons with high purity (>90%) and efficiency (up to 99% of NGN2-expressing cells). The conversion is direct without passing through a proliferative progenitor state. These human induced cholinergic neurons (hiCN) show mature electrophysiological properties and exhibit motor neuron-like features, including morphology, gene expression and the formation of functional neuromuscular junctions. Inclusion of an additional transcription factor, SOX11, also efficiently converts postnatal and adult skin fibroblasts from healthy and diseased human patients to cholinergic neurons. Taken together, this study identifies a simple and highly efficient strategy for reprogramming human fibroblasts to subtype-specific neurons. These findings offer a unique venue for investigating the molecular mechanisms underlying cellular plasticity and human neurodegenerative diseases.

  17. Maintenance of Multipotency in Human Dermal Fibroblasts Treated with Xenopus laevis Egg Extract Requires Exogenous Fibroblast Growth Factor-2

    PubMed Central

    Kole, Denis; Ambady, Sakthikumar; Page, Raymond L.

    2014-01-01

    Abstract Direct reprogramming of a differentiated somatic cell into a developmentally more plastic cell would offer an alternative to applications in regenerative medicine that currently depend on either embryonic stem cells (ESCs), adult stem cells, or induced pluripotent stem cells (iPSCs). Here we report the potential of select Xenopus laevis egg extract fractions, in combination with exogenous fibroblast growth factor-2 (FGF2), to affect life span, morphology, gene expression, protein translation, and cellular localization of OCT4 and NANOG transcription factors, and the developmental potential of human dermal fibroblasts in vitro. A gradual change in morphology is accompanied by translation of embryonic transcription factors and their nuclear localization and a life span exceeding 60 population doublings. Cells acquire the ability to follow adipogenic, neuronal, and osteogenic differentiation under appropriate induction conditions in vitro. Analysis of active extract fractions reveals that Xenopus egg protein and RNAs as well as exogenously supplemented FGF2 are required and sufficient for induction and maintenance of this phenotypic change. Factors so far identified in the active fractions include FGF2 itself, transforming growth factor-β, maskin, and nucleoplasmin. Identification of critical factors needed for reprogramming may allow for nonviral, chemically defined derivation of human-induced multipotent cells that can be maintained by exogenous FGF2. PMID:24405062

  18. Adipose-derived stem cells promote human dermal fibroblast function and increase senescence-associated β‑galactosidase mRNA expression through paracrine effects.

    PubMed

    Shen, Xiao; Du, Yunpeng; Shen, Weimin; Xue, Bin; Zhao, Yu

    2014-12-01

    Adipose‑derived stem cells (ADSCs) are known to secrete various cytokines, which affect fibroblast function through paracrine effects. In the present study, the paracrine effects of ADSCs on the function and senescence of young and aged human dermal fibroblasts (HDFs) were investigated in vitro. ADSCs and HDFs were isolated from healthy donors and flow cytometry was used for immunophenotype identification. ADSCs were co‑cultured with young or aged human dermal fibroblasts in Transwell plates, and control groups were established accordingly. Cellular proliferation was measured by an MTT assay. Type I collagen, matrix metalloproteinase‑1 (MMP‑1) and senescence-associated β‑galactosidase (SA‑β‑GAL) mRNA expression were measured by quantitative polymerase chain reaction. It was identified that ADSCs promoted proliferation of co‑cultured HDFs and induced increased expression of type I collagen and decreased expression of MMP‑1. The co‑cultured HDFs exhibited increased expression of SA‑β‑GAL. These results demonstrated that ADSCs improve fibroblast function through paracrine effects. The increased expression of SA‑β‑GAL indicated an accelerated aging process. It is proposed that ADSCs may improve fibroblast function, but not reverse the age status in vitro.

  19. Accelerated aging syndromes, are they relevant to normal human aging?

    PubMed

    Dreesen, Oliver; Stewart, Colin L

    2011-09-01

    Hutchinson-Gilford Progeria (HGPS) and Werner syndromes are diseases that clinically resemble some aspects of accelerated aging. HGPS is caused by mutations in theLMNA gene resulting in post-translational processing defects that trigger Progeria in children. Werner syndrome, arising from mutations in the WRN helicase gene, causes premature aging in young adults. What are the molecular mechanism(s) underlying these disorders and what aspects of the diseases resemble physiological human aging? Much of what we know stems from the study of patient derived fibroblasts with both mutations resulting in increased DNA damage, primarily at telomeres. However, in vivo patients with Werner's develop arteriosclerosis, among other pathologies. In HGPS patients, including iPS derived cells from HGPS patients, as well as some mouse models for Progeria, vascular smooth muscle (VSM) appears to be among the most severely affected tissues. Defective Lamin processing, associated with DNA damage, is present in VSM from old individuals, indicating processing defects may be a factor in normal aging. Whether persistent DNA damage, particularly at telomeres, is the root cause for these pathologies remains to be established, since not all progeroid Lmna mutations result in DNA damage and genome instability.

  20. Suitability of human Tenon's fibroblasts as feeder cells for culturing human limbal epithelial stem cells.

    PubMed

    Scafetta, Gaia; Tricoli, Eleonora; Siciliano, Camilla; Napoletano, Chiara; Puca, Rosa; Vingolo, Enzo Maria; Cavallaro, Giuseppe; Polistena, Andrea; Frati, Giacomo; De Falco, Elena

    2013-12-01

    Corneal epithelial regeneration through ex vivo expansion of limbal stem cells (LSCs) on 3T3-J2 fibroblasts has revealed some limitations mainly due to the corneal microenvironment not being properly replicated, thus affecting long term results. Insights into the feeder cells that are used to expand LSCs and the mechanisms underlying the effects of human feeder cells have yet to be fully elucidated. We recently developed a standardized methodology to expand human Tenon's fibroblasts (TFs). Here we aimed to investigate whether TFs can be employed as feeder cells for LSCs, characterizing the phenotype of the co-cultures and assessing what human soluble factors are secreted. The hypothesis that TFs could be employed as alternative human feeder layer has not been explored yet. LSCs were isolated from superior limbus biopsies, co-cultured on TFs, 3T3-J2 or dermal fibroblasts (DFs), then analyzed by immunofluorescence (p63α), colony-forming efficiency (CFE) assay and qPCR for a panel of putative stem cell and epithelial corneal differentiation markers (KRT3). Co-cultures supernatants were screened for a set of soluble factors. Results showed that the percentage of p63α(+)LSCs co-cultured onto TFs was significantly higher than those on DFs (p = 0.032) and 3T3-J2 (p = 0.047). Interestingly, LSCs co-cultures on TFs exhibited both significantly higher CFE and mRNA expression levels of ΔNp63α than on 3T3-J2 and DFs (p < 0.0001), showing also significantly greater levels of soluble factors (IL-6, HGF, b-FGF, G-CSF, TGF-β3) than LSCs on DFs. Therefore, TFs could represent an alternative feeder layer to both 3T3-J2 and DFs, potentially providing a suitable microenvironment for LSCs culture. PMID:23832306

  1. Use of diploid human fibroblasts as a model system to culture, grow, and study human cytomegalovirus infection.

    PubMed

    Fortunato, Elizabeth A

    2014-01-01

    Primary human diploid fibroblasts are used routinely to study host/pathogen interactions of human cytomegalovirus (HCMV). Fibroblasts' ease of culture and tremendous permissiveness for infection allow the study of all facets of infection, an abbreviated list of which includes ligand/receptor interactions, activation of cell signaling responses, and dysregulation of the cell cycle and DNA repair processes. Another advantage to fibroblasts' permissiveness for HCMV is the capability to grow high titer stocks of virus in them. This chapter will discuss the production of viral stocks of HCMV in primary human fibroblasts, commencing with culturing and infection of cells and continuing through harvest, titration (determining the infectious capacity of a particular virus preparation), and storage of viral stocks for use in downstream experiments.

  2. Skin mirrors human aging.

    PubMed

    Nikolakis, Georgios; Makrantonaki, Evgenia; Zouboulis, Christos C

    2013-12-01

    Abstract Aged skin exhibits disturbed lipid barrier, angiogenesis, production of sweat, immune functions, and calcitriol synthesis as well as the tendency towards development of certain benign or malignant diseases. These complex biological processes comprise endogenous and exogenous factors. Ethnicity also markedly influences the phenotype of skin aging. The theories of cellular senescence, telomere shortening and decreased proliferative capacity, mitochondrial DNA single mutations, the inflammation theory, and the free radical theory try to explain the biological background of the global aging process, which is mirrored in the skin. The development of advanced glycation end-products and the declining hormonal levels are major factors influencing intrinsic aging. Chronic photodamage of the skin is the prime factor leading to extrinsic skin aging. The deterioration of important skin functions, due to intrinsic and extrinsic aging, leads to clinical manifestations, which mirror several internal age-associated diseases such as diabetes, arterial hypertension and malignancies.

  3. Characterisation of human fibroblasts as keratinocyte feeder layer using p63 isoforms status.

    PubMed

    Auxenfans, Céline; Thépot, Amélie; Justin, Virginie; Hautefeuille, Agnès; Shahabeddin, Lili; Damour, Odile; Hainaut, Pierre

    2009-01-01

    Large-scale culture of primary keratinocytes allows the production of large epidermal sheet surfaces for the treatment of extensive skin burns. This method is dependent upon the capacity to establish cultures of proliferating keratinocytes in conditions compatible with their clonal expansion while maintaining their capacity to differentiate into the typical squamous pattern of human epidermis. Feeder layers are critical in this process because the fibroblasts that compose this layer serve as a source of adhesion, growth and differentiation factors. In this report, we have characterise the expression patterns of p63 isoforms in primary keratinocytes cultured on two different feeder layer systems, murine 3T3 and human fibroblasts. We show that with the latter, keratinocytes express a higher ratio of Delta N to TAp63 isoform, in relation with higher clonogenic potential. These results indicate that human fibroblasts represent an adequate feeder layer system to support the culture of primary human keratinocytes. PMID:20042803

  4. Skin punch biopsy explant culture for derivation of primary human fibroblasts.

    PubMed

    Vangipuram, Malini; Ting, Dennis; Kim, Sam; Diaz, Robert; Schüle, Birgitt

    2013-01-01

    Tissues and cell lines derived from an individual with disease are ideal sources to study disease-related cellular phenotypes. Patient-derived fibroblasts in this protocol have been successfully used in the derivation of induced pluripotent stem cells to model disease(1). Early passages of these fibroblasts can also be used for cell-based functional assays to study specific disease pathways, mechanisms(2) and subsequent drug screening approaches. The advantage of the presented protocol over enzymatic procedures are 1) the reproducibility of the technique from small amounts of tissue derived from older patients, e.g. patients affected with Parkinson's disease, 2) the technically simple approach over more challenging methodologies using enzymatic treatments, and 3) the time consideration: this protocol takes 15-20 min and can be performed immediately after biopsy arrival. Enzymatic treatments can take up to 4 hr and have the problems of overdigestion, reduction of cell viability and subsequent attachment of cells when not handled properly. This protocol describes the dissection and preparation of a 4-mm human skin biopsy for derivation of a fibroblast culture and has a very high success rate which is important when dealing with patient-derived tissue samples. In this culture, keratinocytes migrate out of the biopsy tissue within the first week after preparation. Fibroblasts appear 7-10 days after the first outgrowth of keratinocytes. DMEM high glucose media supplemented with 20% FBS favors the growth of fibroblasts over keratinocytes and fibroblasts will overgrow the keratinocytes. After 2 passages keratinocytes have been diluted out resulting in relatively homogenous fibroblast cultures which expresses the fibroblast marker SERPINH1 (HSP-47). Using this approach, 15-20 million fibroblasts can be derived in 4-8 weeks for cell banking. The skin dissection takes about 15-20 min, cells are then monitored once a day under the microscope, and media is changed every 2

  5. Centrifugal force induces human ligamentum flavum fibroblasts inflammation through activation of JNK and p38 pathways.

    PubMed

    Chao, Yuan-Hung; Tsuang, Yang-Hwei; Sun, Jui-Sheng; Sun, Man-Ger; Chen, Ming-Hong

    2012-01-01

    Inflammation has been proposed to be an important causative factor in ligamentum flavum hypertrophy. However, the mechanisms of mechanical load on inflammation of ligamentum flavum remain unclear. In this study, we used an in vitro model of human ligamentum flavum fibroblasts subjected to centrifugal force to elucidate the effects of mechanical load on cultured human ligamentum flavum fibroblasts; we further studied its molecular and biochemical mechanisms. Human ligamentum flavum fibroblasts were obtained from six patients undergoing lumbar spine surgery. Monolayer cultures of human ligamentum flavum fibroblasts were subjected to different magnitudes of centrifugal forces. Cell viability, cell death, biochemical response, and molecular response to centrifugal forces were analyzed. It was found that centrifugal stress significantly suppressed cell viability without inducing cell death. Centrifugal force at 67.1 g/cm(2) for 60 min significantly increases the production of prostaglandin E2 and nitric oxide as well as gene expression of proinflammatory cytokines, including interleukin (IL)-1α, IL-1β and IL-6, showed that centrifugal force-dependent induction of cyclooxygense-2 and inducible NO synthase required JNK and p38 mitogen-activated protein kinase, but not ERK 1/2 activities. This study suggested that centrifugal force does induce inflammatory responses in human ligamentum flavum fibroblasts. The activation of both JNK and p38 mitogen-activated protein kinase mechanotransduction cascades is a crucial intracellular mechanism that mediates cyclooxygense-2/prostaglandin E2 and inducible NO synthase/nitric oxide production.

  6. Papillary fibroblasts differentiate into reticular fibroblasts after prolonged in vitro culture.

    PubMed

    Janson, David; Saintigny, Gaëlle; Mahé, Christian; El Ghalbzouri, Abdoelwaheb

    2013-01-01

    The dermis can be divided into two morphologically different layers: the papillary and reticular dermis. Fibroblasts isolated from these layers behave differently when cultured in vitro. During skin ageing, the papillary dermis decreases in volume. Based on the functional differences in vitro, it is hypothesized that the loss of papillary fibroblasts contributes to skin ageing. In this study, we aimed to mimic certain aspects of skin ageing by using high-passage cultures of reticular and papillary fibroblasts and investigated the effect of these cells on skin morphogenesis in reconstructed human skin equivalents. Skin equivalents generated with reticular fibroblasts showed a reduced terminal differentiation and fewer proliferating basal keratinocytes. Aged in vitro papillary fibroblasts had increased expression of biomarkers specific to reticular fibroblasts. The phenotype and morphology of skin equivalents generated with high-passage papillary fibroblasts resembled that of reticular fibroblasts. This demonstrates that papillary fibroblasts can differentiate into reticular fibroblasts in vitro. Therefore, we hypothesize that papillary fibroblasts represent an undifferentiated phenotype, while reticular fibroblasts represent a more differentiated population. The differentiation process could be a new target for anti-skin-ageing strategies.

  7. Anethole prevents hydrogen peroxide-induced apoptosis and collagen metabolism alterations in human skin fibroblasts.

    PubMed

    Galicka, Anna; Krętowski, Rafał; Nazaruk, Jolanta; Cechowska-Pasko, Marzanna

    2014-09-01

    The collagen metabolism alterations triggered by reactive oxygen species are involved in the development of various connective tissue diseases and skin aging. This study was designed to examine whether (E)-anethole possesses a protective effect on H2O2-induced alterations in collagen metabolism as well as whether it can prevent apoptosis in human skin fibroblasts. In cells treated with 300 µM H₂O₂, a decrease in collagen biosynthesis of 54% was observed. Pretreatment of cells with 0.5 µM anethole for 1 h completely prevented this alteration. Changes at the protein level positively correlated with alterations of type I collagen mRNA expression. We have shown that H2O2 caused increase in the activity of MMP-2 and MMP-9 as well as that an increase in MMP-2 activity can contribute to the 8% decrease in the amount of collagen secreted into the medium. The most efficient suppression of these changes was observed in the presence of 0.5 µM of anethole. At 10 µM, in addition to suppression, an inhibitory effect of anethole on MMP-9 activity was documented. Additionally, the 60% H₂O₂-induced decrease in cell viability was suppressed by 1 µM of anethole and a 4-fold increase in cell apoptosis was suppressed by 0.5 µM of anethole. Our results suggest that anethole, which is a small lipophilic and non-toxic molecule with the ability to prevent H₂O₂-induced collagen metabolism alterations and apoptosis in human skin fibroblasts, would prove useful in the development of effective agents in pharmacotherapy of oxidative stress-related skin diseases.

  8. Uncoupling between Phenotypic Senescence and Cell Cycle Arrest in Aging p21-Deficient Fibroblasts

    PubMed Central

    Dulić, Vjekoslav; Beney, Georges-Edouard; Frebourg, Guillaume; Drullinger, Linda F.; Stein, Gretchen H.

    2000-01-01

    Irreversible G1 arrest in senescent human fibroblasts is mediated by two inhibitors of cyclin-dependent kinases (Cdks), p21Cip1/SDI1/WAF1 and p16Ink4A. To determine the physiological and molecular events that specifically require p21, we studied senescence in human diploid fibroblasts expressing the human papillomavirus type 16 E6 oncogene, which confers low p21 levels via enhanced p53 degradation. We show that in late-passage E6 cells, high Cdk activity drives the cell cycle, but population expansion is slowed down by crisis-like events, probably owing to defective cell cycle checkpoints. At the end of lifespan, terminal-passage E6 cells exhibited several aspects of the senescent phenotype and accumulated unphosphorylated pRb and p16. However, both replication and cyclin-Cdk2 kinase activity were still not blocked, demonstrating that phenotypic and replicative senescence are uncoupled in the absence of normal p21 levels. At this stage, E6 cells also failed to upregulate p27 and inactivate cyclin-Cdk complexes in response to serum deprivation. Eventually, irreversible G1 arrest occurred coincident with inactivation of cyclin E-Cdk2 owing to association with p21. Similarly, when p21−/− mouse embryo fibroblasts reached the end of their lifespan, they had the appearance of senescent cells yet, in contrast to their wild-type counterparts, they were deficient in downregulating bromodeoxyuridine incorporation, cyclin E- and cyclin A-Cdk2 activity, and inhibiting pRb hyperphosphorylation. These data support the model that the critical event ensuring G1 arrest in senescence is p21-dependent Cdk inactivation, while other aspects of senescent phenotype appear to occur independently of p21. PMID:10958672

  9. EGFR-mediated expression of aquaporin-3 is involved in human skin fibroblast migration

    PubMed Central

    Cao, Cong; Sun, Yun; Healey, Sarah; Bi, Zhigang; Hu, Gang; Wan, Shu; Kouttab, Nicola; Chu, Wenming; Wan, Yinsheng

    2006-01-01

    AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing. PMID:16848764

  10. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    PubMed Central

    Maucksch, C; Firmin, E; Butler-Munro, C; Montgomery, JM; Dottori, M; Connor, B

    2012-01-01

    Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP) colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP)-expressing astrocytes. This study represents a novel virusfree approach for direct reprogramming of human fibroblasts to a neural precursor fate. PMID:24693194

  11. Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation.

    PubMed

    Yoshida, Ayaka; Yoshino, Fumihiko; Makita, Tetsuya; Maehata, Yojiro; Higashi, Kazuyoshi; Miyamoto, Chihiro; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Takahashi, Osamu; Lee, Masaichi Chang-il

    2013-12-01

    In recent years, it has become well known that the production of reactive oxygen species (ROS) induced by blue-light irradiation causes adverse effects of photo-aging, such as age-related macular degeneration of the retina. Thus, orange-tinted glasses are used to protect the retina during dental treatment involving blue-light irradiation (e.g., dental resin restorations or tooth bleaching treatments). However, there are few studies examining the effects of blue-light irradiation on oral tissue. For the first time, we report that blue-light irradiation by quartz tungsten halogen lamp (QTH) or light-emitting diode (LED) decreased cell proliferation activity of human gingival fibroblasts (HGFs) in a time-dependent manner (<5 min). Additionally, in a morphological study, the cytotoxic effect was observed in the cell organelles, especially the mitochondria. Furthermore, ROS generation induced by the blue-light irradiation was detected in mitochondria of HGFs using fluorimetry. In all analyses, the cytotoxicity was significantly higher after LED irradiation compared with cytotoxicity after QTH irradiation. These results suggest that blue light irradiation, especially by LED light sources used in dental aesthetic treatment, might have adverse effects on human gingival tissue. Hence, this necessitates the development of new dental aesthetic treatment methods and/or techniques to protect HGFs from blue light irradiation during dental therapy.

  12. Brief Azacytidine Step Allows The Conversion of Suspension Human Fibroblasts into Neural Progenitor-Like Cells

    PubMed Central

    Mirakhori, Fahimeh; Zeynali, Bahman; Kiani, Sahar; Baharvand, Hossein

    2015-01-01

    In recent years transdifferentiation technology has enabled direct conversion of human fibroblasts to become a valuable, abundant and accessible cell source for patient-specific induced cell generation in biomedical research. The majority of transdifferentiation approaches rely upon viral gene delivery which due to random integration with the host genome can cause genome instability and tumorigenesis upon transplantation. Here, we provide a simple way to induce neural progenitor-like cells from human fibroblasts without genetic manipulation by changing physicochemical culture properties from monolayer culture into a suspension in the presence of a chemical DNA methyltransferase inhibitor agent, Azacytidine. We have demonstrated the expression of neural progenitor-like markers, morphology and the ability to spontaneously differentiate into neural-like cells. This approach is simple, inexpensive, lacks genetic manipulation and could be a foundation for future chemical neural transdifferentiation and a safe induction of neural progenitor cells from human fibroblasts for clinical applications. PMID:25870845

  13. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts.

    PubMed

    Ryu, Jina; Park, Su-Jin; Kim, In-Hye; Choi, Youn Hee; Nam, Taek-Jeong

    2014-09-01

    The significant increase in life expectancy is closely related to the growing interest in the impact of aging on the function and appearance of the skin. Skin aging is influenced by several factors, and solar ultraviolet (UV) irradiation is considered one of the most important causes of skin photoaging. The aim of this study was to examine the anti-photoaging role of porphyra-334 from Porphyra (P.) yezoensis, a mycosporine-like amino acid (MAA), using high-performance liquid chromatography (HPLC), and electrospray ionization‑mass spectrometry (ESI-MS). In the present study, extracted UV‑absorbing compounds from P. yezoensis included palythine, asterina-330 and porphyra-334. Porphyra-334 was the most abundant MAA in P. yezoensis, and it was therefore used for conducting antiphotoaging experiments. The effect of porphyra-334 on the prevention of photoaging was investigated by measuring reactive oxygen species (ROS) production and matrix metalloproteinase (MMP) levels, as well as extracellular matrix (ECM) components and protein expression in UVA‑irradiated human skin fibroblasts. Porphyra-334 suppressed ROS production and the expression of MMPs following UVA irradiation, while increasing levels of ECM components, such as procollagen, type I collagen, elastin. These results suggest that porphyra-334 has various applications in cosmetics and toiletries because of its anti‑photoaging activities and may serve as a novel anti-aging agent.

  14. Malvidin Protects WI-38 Human Fibroblast Cells Against Stress-induced Premature Senescence

    PubMed Central

    Seo, Hye Rin; Choi, Mi Jin; Choi, Ji Myung; Ko, Jong Cheol; Ko, Jee Yeon; Cho, Eun Ju

    2016-01-01

    Background: Malvidin is one of the most abundant components in red wines and black rice. The effects of malvidin on aging and lifespan under oxidative stress have not been fully understood. This study focused on the anti-aging effect of malvidin on stress-induced premature senescence (SIPS) in WI-38 human lung-derived diploid fibroblasts. Methods: In order to determine the viability of WI-38 cells, MTT assay was conducted, and malondialdehyde level was determined using thiobarbituric acid-reactive substance assay. Protein expression of inflammation-related factors was also evaluated by Western blot analysis. Results: Acute and chronic oxidative stress via hydrogen peroxide (H2O2) treatment led to SIPS in WI-38 cells, which showed decreased cell viability, increased lipid peroxidation, and a shortened lifespan in comparison with non-H2O2-treated WI-38 cells. However, malvidin treatment significantly attenuated H2O2-induced oxidative stress by inhibiting lipid peroxidation and increasing cell viability. Furthermore, the lifespan of WI-38 cells was prolonged by malvidin treatment. In addition, malvidin downregulated the expression of oxidative stress-related proteins, including NF-κB, COX-2, and inducible nitric oxide synthase. Furthermore, protein expression levels of p53, p21, and Bax were also regulated by malvidin treatment in WI-38 cells undergoing SIPS. Conclusions: Malvidin may potentially inhibit the aging process by controlling oxidative stress. PMID:27051647

  15. Cellular localization of neuraminidases in cultured human fibroblasts.

    PubMed

    Zeigler, M; Bach, G

    1981-09-15

    The cellular localization of glycoprotein and ganglioside sialidases in normal and I-cell-disease cultured fibroblasts has been investigated. Cellular organelles have been separated on a colloidal silica gradient. The subcellular distribution of these enzymes indicated that the glycoprotein sialidase is mainly a lysosomal hydrolase, whereas the ganglioside sialidase is primarily located in the plasma membranes. The latter isoenzymes is tightly bound to these membranes and thus could not be extracted by homogenization in the presence of Triton X-100. The interpretation of this finding and its relation to the pathochemistry of sialidase-deficient disorders is discussed.

  16. Ameliorative effects of Eriobotrya japonica seed extract on cellular aging in cultured rat fibroblasts.

    PubMed

    Muramoto, Kazuyo; Quan, Rong-Dan; Namba, Toshiharu; Kyotani, Shojiro; Miyamura, Mitsuhiko; Nishioka, Yutaka; Tonosaki, Keiichi; Doi, Yoshinori L; Kaba, Hideto

    2011-04-01

    To investigate the effects of Eriobotrya japonica seed extract (ESE) on cellular aging, intracellular calcium homeostasis in young and senescent cells was analyzed using a rat fibroblast culture as an in vitro model system and a calcium imaging technique. The application of bradykinin (BK) transiently elicited intracellular calcium ion (Ca(2+)) increased in most of the young fibroblasts, whereas these responses were scarcely observed or were significantly attenuated in senescent cells. However, the long-term treatment of senescent cells with ESE (for 7 days) dose-dependently increased the amplitude of BK-induced responses and the percentage of BK-responding cells. In particular, most senescent cells could respond to BK with long-term treatment with ESE (1.0% or 2.0%), an effect that reinstated the percentage of BK-responding cells to the same level as that in young cells. The effects of ESE on amplitude or percentage of responding cells were not observed in young cells. Moreover, the time to half decay, which was significantly longer in senescent cells than that in young cells, was shortened in senescent cells with long-term treatment with ESE. These results suggest that treatment with an adequate concentration of ESE renders BK-induced Ca(2+) dynamics in senescent cells similar to those in young cells. Therefore, ESE can retard and/or protect against cellular aging and may be useful for elucidating the antiaging processes.

  17. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro.

    PubMed

    Wyganowska-Swiatkowska, Marzena; Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology. PMID:27536196

  18. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro.

    PubMed

    Wyganowska-Swiatkowska, Marzena; Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology.

  19. 5Z-7-Oxozeanol Inhibits the Effects of TGFβ1 on Human Gingival Fibroblasts.

    PubMed

    Kuk, Hanna; Hutchenreuther, James; Murphy-Marshman, Hannah; Carter, David; Leask, Andrew

    2015-01-01

    Transforming growth factor (TGF)β acts on fibroblasts to promote the production and remodeling of extracellular matrix (ECM). In adult humans, excessive action of TGFβ is associated with fibrotic disease and fibroproliferative conditions, including gingival hyperplasia. Understanding how the TGFβ1 signals in fibroblasts is therefore likely to result in valuable insights into the fundamental mechanisms underlying fibroproliferative disorders. Previously, we used the TAK1 inhibitor (5Z)-7-Oxozeaenol to show that, in dermal fibroblasts, the non-canonical TAK1 pathway mediates the ability of TGFβ1 to induce genes promoting tissue remodeling and repair. However, the extent to which TAK1 mediates fibroproliferative responses in fibroblasts in response to TGFβ1 remains unclear. Herein, we show that, in gingival fibroblasts, (5Z)-7-Oxozeaenol blocks the ability of TGFβ1 to induce expression of the pro-fibrotic mediator CCN2 (connective tissue growth factor, CTGF) and type I collagen protein. Moreover, genome-wide expression profiling revealed that, in gingival fibroblasts, (5Z)-7-Oxozeaenol reduces the ability of TGFβ1 to induce mRNA expression of essentially all TGFβ1-responsive genes (139/147), including those involved with a hyperproliferative response. Results from microarray analysis were confirmed using real time polymerase chain reaction analysis and a functional cell proliferation assay. Our results are consistent with the hypothesis that TAK1 inhibitors might be useful in treating fibroproliferative disorders, including that in the oral cavity.

  20. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro

    PubMed Central

    Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology. PMID:27536196

  1. Stromal Fibroblast in Age-Related Cancer: Role in Tumorigenesis and Potential as Novel Therapeutic Target

    PubMed Central

    Elkhattouti, Abdelouahid; Hassan, Mohamed; Gomez, Christian R.

    2015-01-01

    Incidence of most common cancers increases with age due to accumulation of damage to cells and tissues. Stroma, the structure close to the basement membrane, is gaining increased attention from clinicians and researchers due to its increasingly, yet incompletely understood role in the development of age-related cancer. With advanced age, stroma generates a pro-tumorigenic microenvironment, exemplified by the senescence-associated secretory phenotype (SASP). Components of the SASP, such as cytokines, chemokines, and high energy metabolites are main drivers of age-related cancer initiation and sustain its progression. Our purpose is to provide insight into the mechanistic role of the stroma, with particular emphasis on stromal fibroblasts, on the development of age-related tumors. We also present evidence of the potential of the stroma as target for tumor therapy. Likewise, a rationale for age-related antitumor therapy targeting the stroma is presented. We expect to foster debate on the underlining basis of age-related cancer pathobiology. We also would like to promote discussion on novel stroma-based anticancer therapeutic strategies tailored to treat the elderly. PMID:26284191

  2. Stromal Fibroblast in Age-Related Cancer: Role in Tumorigenesis and Potential as Novel Therapeutic Target.

    PubMed

    Elkhattouti, Abdelouahid; Hassan, Mohamed; Gomez, Christian R

    2015-01-01

    Incidence of most common cancers increases with age due to accumulation of damage to cells and tissues. Stroma, the structure close to the basement membrane, is gaining increased attention from clinicians and researchers due to its increasingly, yet incompletely understood role in the development of age-related cancer. With advanced age, stroma generates a pro-tumorigenic microenvironment, exemplified by the senescence-associated secretory phenotype (SASP). Components of the SASP, such as cytokines, chemokines, and high energy metabolites are main drivers of age-related cancer initiation and sustain its progression. Our purpose is to provide insight into the mechanistic role of the stroma, with particular emphasis on stromal fibroblasts, on the development of age-related tumors. We also present evidence of the potential of the stroma as target for tumor therapy. Likewise, a rationale for age-related antitumor therapy targeting the stroma is presented. We expect to foster debate on the underlining basis of age-related cancer pathobiology. We also would like to promote discussion on novel stroma-based anticancer therapeutic strategies tailored to treat the elderly. PMID:26284191

  3. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    SciTech Connect

    Ohshimo, Shinichiro; Yokoyama, Akihito . E-mail: yokoyan@hiroshima-u.ac.jp; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-12-30

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-{beta}. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases.

  4. Modulation of androgen receptor protein by culture conditions of human skin fibroblasts.

    PubMed

    Palma, Marcela M; Fernandez, Mireya; Vivanco, Ximena; Pino, Ana M

    2002-10-01

    Cultures of skin fibroblasts show variation of androgen binding with culture conditions; binding variations are usually avoided by using confluent cultures. In this work, we analysed the effect of cell density and mitogenic agents on the level of androgen receptor (AR) of cultured human skin fibroblasts. Results demonstrated that in cultures of human skin fibroblasts, cellular binding of dihydrotestosterone was higher in cells grown at low than at high cell density. The reduction in binding resulted from a decrease in the number of high affinity receptors and not from a change in receptor affinity. Immunocytochemistry for AR showed greater staining intensity in cells grown at low than at high cell density. Additionally, immunoblot analysis demonstrated more AR protein in low cell density cultures. On the other hand, it was observed that cells grown at low cell density showed diminished androgen binding capacity after 24 h of treatment with insulin-like growth factor (IGF-l), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), or granulocyte-colony stimulating factor (G-CSF); this effect of growth factors was not observed in cells grown at high cell density. In conclusion, we found that cell density of cultures and mitogenic agents can regulate AR binding activity in human fibroblasts. While we do not yet know how changes in cell density affect the amount of AR, we conclude that the mechanism could be mediated by activation of the tyrosine kinase pathway, as the effect was reproduced by mitogens.

  5. Redox-dependent induction of antioxidant defenses by phenolic diterpenes confers stress tolerance in normal human skin fibroblasts: Insights on replicative senescence.

    PubMed

    Carvalho, Ana C; Gomes, Andreia C; Pereira-Wilson, Cristina; Lima, Cristovao F

    2015-06-01

    Mild stress-induced hormesis represents a promising strategy for targeting the age-related accumulation of molecular damage and, therefore, for preventing diseases and achieving healthy aging. Fruits, vegetables, and spices contain a wide variety of hormetic phytochemicals, which may explain the beneficial health effects associated with the consumption of these dietary components. In the present study, the induction of cellular antioxidant defenses by the phenolic diterpenes carnosic acid (CA) and carnosol (CS) were studied in normal human skin fibroblasts, and insights into the aging process at the cellular level investigated. We observed that CA and CS induced several cytoprotective enzymes and antioxidant defenses in human fibroblasts, whose induction was dependent on the cellular redox state for CS and associated with Nrf2 signaling for both compounds. The stress response elicited by preincubation with CS conferred a cytoprotective action against a following oxidant challenge with tert-butyl hydroperoxide, confirming its hormetic effect. Preincubation of normal fibroblasts with CS also protected against hydrogen peroxide-induced premature senescence. Furthermore, cultivation of middle passage normal human skin fibroblasts in the presence of CS ameliorated the physiological state of cells during replicative senescence. Our results support the view that mild stress-induced antioxidant defenses by CS can confer stress tolerance in normal cells and may have important implications in the promotion of healthy aging.

  6. Melatonin and human skin aging

    PubMed Central

    Kleszczynski, Konrad; Fischer, Tobias W.

    2012-01-01

    Like the whole organism, skin follows the process of aging during life-time. Additional to internal factors, several environmental factors, such as solar radiation, considerably contribute to this process. While fundamental mechanisms regarding skin aging are known, new aspects of anti-aging agents such as melatonin are introduced. Melatonin is a hormone produced in the glandula pinealis that follows a circadian light-dependent rhythm of secretion. It has been experimentally implicated in skin functions such as hair cycling and fur pigmentation, and melatonin receptors are expressed in many skin cell types including normal and malignant keratinocytes, melanocytes and fibroblasts. It possesses a wide range of endocrine properties as well as strong antioxidative activity. Regarding UV-induced solar damage, melatonin distinctly counteracts massive generation of reactive oxygen species, mitochondrial and DNA damage. Thus, there is considerable evidence for melatonin to be an effective anti-skin aging compound, and its various properties in this context are described in this review. PMID:23467217

  7. In vitro activation of human fibroblasts by retrieved titanium alloy wear debris.

    PubMed

    Manlapaz, M; Maloney, W J; Smith, R L

    1996-05-01

    Titanium-aluminum-vanadium wear particles isolated from the soft-issue membrane of a failed total hip arthroplasty were added to human fibroblasts in cell culture. The cellular response to particle challenge was determined by assaying for levels of interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, prostaglandin E2, basic fibroblast growth factor, platelet-derived growth factor-AB, and transforming growth factor-beta. Collagenase and gelatinase activities were analyzed by zymography and [3H]collagen degradation. Cell viability was assessed by measuring the uptake of [3H]thymidine. Over the range of particle concentrations tested, cell viability, as demonstrated by [3H]thymidine uptake, remained unaffected. Fibroblasts exhibited a dose-dependent release of interleukin-6 in response to exposure to titanium-aluminum-vanadium particles. At 6 and 48 hours, the highest concentration of titanium alloy particles (0.189% [vol/vol]) resulted in 7-fold and 16-fold increases in interleukin-6 release, respectively, when compared with negative controls. Neither interleukin-1 beta nor tumor necrosis factor-alpha was detected in the culture medium at any particle concentration tested for both dermal and foreskin fibroblasts. The pattern of prostaglandin E2 release by fibroblasts mirrored the pattern of interleukin-6 release. Fibroblasts exposed to the highest concentration of titanium alloy particles showed an increase in collagenase activity, starting at 12 hours. When medium samples were treated with amino phenylmercuric acetate to activate latent enzymes, a statistically significant increase in collagenase activity was observed as early as 6 hours (p < 0.001). Substrate gel analysis of medium from fibroblasts stimulated by high particle concentrations also showed an increase in gelatinolytic activity when compared with unstimulated controls. Analysis of medium samples for growth factors showed an increase in basic fibroblast growth factor at low particle

  8. An in vitro evaluation of the cytotoxicity of various endodontic irrigants on human gingival fibroblasts.

    PubMed

    Barnhart, Brian D; Chuang, Augustine; Lucca, Jurandir J Dalle; Roberts, Steven; Liewehr, Frederick; Joyce, Anthony P

    2005-08-01

    The purpose of this study was to measure the cytotoxicity of six endodontic irrigants on cultured gingival fibroblasts using the CyQuant assay. Human gingival fibroblasts were grown in Dulbecco's Modified Eagle Medium (DMEM) containing 10% fetal bovine serum at 37 degrees C and 5% CO(2). At confluence, cells were split, plated in 96-well plates and incubated for 24-h to allow attachment. The following irrigants were tested at various concentrations: Sodium hypochlorite (NaOCl); iodine potassium-iodide (IKI); Betadine scrub (BS); calcium hydroxide [Ca(OH)2]; chlorine dioxide (SCD) and DMEM (positive control). Experimental groups were compared by the logarithmic difference between the clinical and LD50 concentrations of a particular irrigant. The results showed that IKI and Ca(OH)2 were significantly less cytotoxic than SCD, NaOCl, and BS. In conclusion, IKI and Ca(OH)2 are well tolerated by human gingival fibroblasts.

  9. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts

    SciTech Connect

    Zeng, Xiao R.; Sun Yubo; Wenger, Leonor; Cheung, Herman S. . E-mail: hcheung@med.miami.edu

    2005-05-13

    Previously, we have reported that basic calcium phosphate (BCP) crystals stimulate mitogenesis and synthesis of matrix metalloproteinases in cultured human foreskin and synovial fibroblasts. However, the detailed mechanisms involved are still unclear. In the present study, using RT-PCR and Egr-1 promoter analysis we showed that BCP crystals could stimulate early growth response gene Egr-1 transcription through a PKC{alpha}-dependent p44/p42 MAPK pathway. Using a retrovirus gene expression system (Clontech) to overexpress Egr-1 in human fibroblast BJ-1 cells resulted in promotion of mitogenesis measured either by MTT cell proliferation analysis or by direct cell counting. The results demonstrate that Egr-1 may play a key role in mediating BCP crystal-induced synovial fibroblast mitogenesis.

  10. The human fibroblast receptor for gp86 of human cytomegalovirus is a phosphorylated glycoprotein.

    PubMed Central

    Keay, S; Baldwin, B

    1992-01-01

    A human embryonic lung (HEL) cell receptor for gp86 of human cytomegalovirus that functions in virus-cell fusion was further characterized. Anti-idiotype antibodies that mimic gp86 were used to immunoprecipitate the 92.5-kDa fibroblast membrane receptor for gp86, which was preincubated with various endoglycosidases. The receptor, which has a pI ranging from 5.3 to 5.6, appears to be a glycoprotein with primarily N-linked sugar residues, some of which have high concentrations of mannose and some of which are complex oligosaccharides. Western blots (immunoblots) of electrophoretically transferred receptor incubated with various biotinylated lectins confirmed the presence of sugar moieties, including N-acetylglucosamine, glucose or mannose, and galactose, but not fucose or N-acetylgalactosamine. This gp86 receptor from uninfected HEL cells also incorporated radiolabeled phosphate from orthophosphoric acid, indicating that it is a constitutively phosphorylated receptor. Images PMID:1321272

  11. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    SciTech Connect

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio . E-mail: harzate@servidor.unam.mx

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  12. The polypeptide in Chlamys farreri can protect human dermal fibroblasts from ultraviolet B damage

    NASA Astrophysics Data System (ADS)

    Zhang, Yujiang; Zhan, Songmei; Cao, Pengli; Liu, Ning; Chen, Xuehong; Wang, Yuejun; Wang, Chunbo

    2005-09-01

    To investigate the effect of polypeptide from Chlamys farreri (PCF) on NHDF in vitro, we modeled oxidative damage on normal human dermal fibroblasts (NHDF) exposed to ultraviolet B (UVB). In this study, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) were tested to measure cell viability. Enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and xanthine oxidase (XOD) were determined biochemically. Total antioxidative capacity (T-AOC) and anti-superoxide anion capacity (A-SAC) were also determined. Ultrastructure of fibroblasts was observed under transmission electron microscope. The results showed that: UVB (1.176×10-4 J/cm2) suppressed the growth of fibroblasts and the introduction of PCF (0.25% 1%) before UVB reduced the suppression in a concentration-dependent manner. PCF could enhance the activities of SOD, GSH-PX and T-AOC as well as A-SAC. Also PCF could inhibit XOD activity, while it did not affect CAT activity. Ultrastructure of fibroblasts were damaged after UVB irradiation, concentration-dependent PCF reduced the destructive effect of UVB on cells. These results indicated that PCF can protect human dermal fibroblasts from being harmed by UVB irradiation via its antioxidant proerty.

  13. Copper stimulates human oral fibroblasts in vitro: a role in the pathogenesis of oral submucous fibrosis.

    PubMed

    Trivedy, C; Meghji, S; Warnakulasuriya, K A; Johnson, N W; Harris, M

    2001-09-01

    Copper is implicated in the pathogenesis of several fibrotic disorders. Areca nut has been shown to have a high copper content and areca chewing is associated with oral submucous fibrosis (OSF). The effects of copper on human oral fibroblasts were investigated in vitro. Human oral fibroblasts were incubated with copper chloride (CuCl2) at concentrations ranging from 0.01 microM to 500 microM for 24 h, and in vitro cell proliferation was assayed by incorporation of tritiated-thymidine; soluble and non-soluble collagen synthesis was assayed using tritiated-proline. Addition of copper chloride at concentrations ranging from 0.1 microM to 50 microM increased the collagen synthesis by the oral fibroblasts compared with growth without copper (P<0.05). The addition of copper chloride neither increased the synthesis of non-collagenous proteins by the fibroblasts nor influenced their proliferation rate. We conclude that copper upregulates collagen production in oral fibroblasts. This appears to be concentration dependent, with peak collagen synthesis at 50 microM CuCl2. These in vitro results taken together with the recent findings of copper in oral biopsies from OSF subjects support the hypothesis that copper in areca nut acts as a mediator of OSF.

  14. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    SciTech Connect

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  15. Pathomechanisms in Coenzyme Q10-Deficient Human Fibroblasts

    PubMed Central

    López, Luis C.; Luna-Sánchez, Marta; García-Corzo, Laura; Quinzii, Catarina M.; Hirano, Michio

    2014-01-01

    Primary coenzyme Q10 (CoQ10) deficiency is a rare mitochondrial disorder associated with 5 major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) cerebellar ataxia, (4) isolated myopathy, and (5) steroid-resistant nephrotic syndrome. Growth retardation, deafness and hearing loss have also been described in CoQ10-deficient patients. This heterogeneity in the clinical presentations suggests that multiple pathomechanisms may exist. To investigate the biochemical and molecular consequences of CoQ10 deficiency, different laboratories have studied cultures of skin fibroblasts from patients with CoQ10 deficiency. In this review, we summarize the results obtained in these studies over the last decade. PMID:25126049

  16. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts.

    PubMed

    Yona, Legrain; Zahia, Touat-Hamici; Laurent, Chavatte

    2014-10-01

    Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence. PMID:26461317

  17. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts.

    PubMed

    Legrain, Yona; Touat-Hamici, Zahia; Chavatte, Laurent

    2014-02-28

    Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence.

  18. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts.

    PubMed

    Yona, Legrain; Zahia, Touat-Hamici; Laurent, Chavatte

    2014-10-01

    Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence.

  19. Generation of Footprint-Free Induced Pluripotent Stem Cells from Human Fibroblasts Using Episomal Plasmid Vectors.

    PubMed

    Ovchinnikov, Dmitry A; Sun, Jane; Wolvetang, Ernst J

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) have provided novel insights into the etiology of disease and are set to transform regenerative medicine and drug screening over the next decade. The generation of human iPSCs free of a genetic footprint of the reprogramming process is crucial for the realization of these potential uses. Here we describe in detail the generation of human iPSC from control and disease-carrying individuals' fibroblasts using episomal plasmids.

  20. Concentration- and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants

    PubMed Central

    Ma, Qianli; Wang, Wei; Chu, Paul K; Mei, Shenglin; Ji, Kun; Jin, Lei; Zhang, Yumei

    2012-01-01

    Background Titanium (Ti) implants are widely used clinically, but peri-implantitis remains one of the most common and serious complications. Healthy integration between gingival tissue and the implant surface is critical to long-term success in dental implant therapy. The objective of this study was to investigate how different concentrations of immobilized fibroblast growth factor 2 (FGF2) on the titania nanotubular surface influence the response of human gingival fibroblasts (HGFs). Methods Pure Ti metal was anodized at 20 V to form a vertically organized titanium dioxide nanotube array on which three concentrations of FGF2 (250 ng/mL, 500 ng/mL, or 1000 ng/mL) were immobilized by repeated lyophilization. Surface topography was observed and FGF2 elution was detected using enzyme-linked immunosorbent assay. The bioactivity changes of dissolvable immobilized FGF2 were measured by methyl-thiazolyl-tetrazolium assay. Behavior of HGFs was evaluated using adhesion and methyl-thiazolyl-tetrazolium bromide assays. Results The FGF2 remained for several days on the modified surface on which HGFs were cultured. Over 90% of the dissolvable immobilized FGF2 had been eluted by Day 9, whereas the FGF2 activity was found to diminish gradually from Day 1 to Day 9. The titania nanotubular surface with an optimal preparing concentration (500 ng/mL) of FGF2 immobilization exhibited improved HGF functions such as cellular attachment, proliferation, and extracellular matrix-related gene expression. Moreover, significant bidirectional as well as concentration- and time-dependent bioactivity was observed. Conclusion Synergism of the FGF2-impregnated titanium dioxide nanotubular surface revealed good gingival-implant integration, indicating that these materials might have promising applications in dentistry and other biomedical devices. PMID:22619534

  1. Derivation and characterization of goat fetal fibroblast cells induced with human telomerase reverse transcriptase.

    PubMed

    Xie, Ying; Zhao, Xiaoe; Jia, Hongxiang; Ma, Baohua

    2013-01-01

    Fetal fibroblast cells (FFCs) are often used as donor cells for somatic cell nuclear transfer (SCNT) because they are easy to culture and suitable for genetic manipulation. However, through genetic modification process, which required FFCs to be cultured in vitro for several passages, cells tended to age very rapidly and became inappropriate for SCNT. Human telomerase reverse transcriptase (hTERT) possessed the activity of human telomerase and maintains telomere in dividing cells; therefore, hTERT can be transfected into somatic cells to extend their lifespan. In this study, we transfected a Xinong Saanen Dairy Goat FFC line with hTERT. Then, we tested several characteristics of transfected cells, including growth curve, expression and activity of hTERT, tumorigenicity, and expression of oct4 and nanog. The result showed that hTERT could significantly extend the lifespan of transfected cells in vitro. hTERT mRNA was expressed in hTERT-transfected cells. Moreover, hTERT-transfected cells presented enhanced telomerase activity and longer telomere than untransfected cells at the same passage. On the other hand, hTERT-transfected cells can maintain normal karyotype even after several times of subculture in vitro. After inoculation of hTERT-transfected cells in nude mouse, none of them developed tumors on the vaccination site. Interestingly, transfection of hTERT can improve expression of nanog and oct4 in Xinong Saanen Dairy Goat FFCs, especially in low generation after transfection, but with increasing subculture, this effect gradually weakened.

  2. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links.

    PubMed

    Clingen, Peter H; Arlett, Colin F; Hartley, John A; Parris, Christopher N

    2007-02-15

    Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity. PMID:17188678

  3. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links

    SciTech Connect

    Clingen, Peter H. . E-mail: p.clingen@ucl.ac.uk; Arlett, Colin F.; Hartley, John A.; Parris, Christopher N.

    2007-02-15

    Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity.

  4. Monoclonal antibody specific for human colon fibroblast-derived T-PA

    SciTech Connect

    Schaumann, J.P.; Olander, J.V.; Harakas, N.K.; Feder, J

    1989-05-23

    This patent describes a murine-derived hybridoma cell line capable of producing monoclonal antibody against human colon fibroblast-derived tissue plasminogen activator and the cell line selected from the group consisting of cell lines 63-4 (ATCC HB 9155), 54-2 (ATCC HB 9157) or 79-7 (ATCC HB 9156).

  5. Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan

    PubMed Central

    Bisson, Francis; Rochefort, Éloise; Lavoie, Amélie; Larouche, Danielle; Zaniolo, Karine; Simard-Bisson, Carolyne; Damour, Odile; Auger, François A.; Guérin, Sylvain L.; Germain, Lucie

    2013-01-01

    A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3) can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes. PMID:23443166

  6. Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats

    PubMed Central

    Uteza, Yves; Rouillot, Jean-Sébastien; Kobetz, Alexandra; Marchant, Dominique; Pecqueur, Sèverine; Arnaud, Emmanuelle; Prats, Hervé; Honiger, Jiri; Dufier, Jean-Louis; Abitbol, Marc; Neuner-Jehle, Martin

    1999-01-01

    We developed an experimental approach with genetically engineered and encapsulated mouse NIH 3T3 fibroblasts to delay the progressive degeneration of photoreceptor cells in dark-eyed Royal College of Surgeons rats. These xenogeneic fibroblasts can survive in 1.5-mm-long microcapsules made of the biocompatible polymer AN69 for at least 90 days under in vitro and in vivo conditions because of their stable transfection with the gene for the 18-kDa form of the human basic fibroblast growth factor (hFGF-2). Furthermore, when transferred surgically into the vitreous cavity of 21-day-old Royal College of Surgeons rats, the microencapsulated hFGF-2-secreting fibroblasts provoked a local delay of photoreceptor cell degeneration, as seen at 45 days and 90 days after transplantation. This effect was limited to 2.08 mm2 (45 days) and 0.95 mm2 (90 days) of the retinal surface. In both untreated eyes and control globes with encapsulated hFGF-2-deficient fibroblasts, the rescued area (of at most 0.08 mm2) was significantly smaller at both time points. Although, in a few ocular globes, surgical trauma induced a reorganization of the retinal cytoarchitecture, neither microcapsule rejection nor hFGF-2-mediated tumor formation were detected in any treated eyes. These findings indicate that encapsulated fibroblasts secreting hFGF-2 or perhaps other agents can be applied as potential therapeutic tools to treat retinal dystrophies. PMID:10077648

  7. Human skin fibroblast stromelysin: structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells

    SciTech Connect

    Wilhelm, S.M.; Collier, I.E.; Kronberger, A.; Eisen, A.Z.; Marmer, B.L.; Grant, G.A.; Bauer, E.A.; Goldberg, G.I.

    1987-10-01

    The authors have purified and determined the complete primary structure of human stromelysin, a secreted metalloprotease with a wide range of substrate specificities. Human stromelysin is synthesized in a preproenzyme form with a calculated size of 53,977 Da and a 17-amino acid long signal peptide. Prostromelysin is secreted in two forms, with apparent molecular masses on NaDodSO/sub 4//PAGE of 60 and 57 kDa. Human stromelysin is capable of degrading proteoglycan, fibronectin, laminin, and type IV collagen but not interstitial type I collagen. The enzyme is not capable of activating purified human fibroblast procollagenase. Analysis of its primary structure shows that stromelysin is in all likelihood the human analog of rat transin, which is an oncogene transformation-induced protease. The pattern of enzyme expression in normal and tumorigenic cells revealed that human skin fibroblasts in vitro secrete stromelysin constitutively. Human fetal lung fibroblasts transformed with simian virus 40, human bronchial epithelial cells transformed with the ras oncogene, fibrosarcoma cells (HT-1080), and a melanoma cell strain (A 2058), do not express this protease nor can the enzyme be induced in these cells by treatment with phorbol 12-myristate 13-acetate. The data indicate that the expression and the possible involvement of secreted metalloproteases in tumorigenesis result from a specific interaction between the transforming factor and the target cell, which may vary in different species.

  8. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    SciTech Connect

    Tao, Jun; Xiang, Jun-Jian; Li, Dan; Deng, Ning; Wang, Hong; Gong, Yi-Ping

    2010-04-09

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10{sup -9} M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  9. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of human diploid fibroblasts. Results We observed a parallel activation of the p53/p21WAF1 and p16INK4a/pRb pathways. Using genome-wide transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101. Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However, the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of miR-101. Conclusion We performed a comprehensive screen for UVB-regulated microRNAs in human diploid

  10. Implanted neonatal human dermal fibroblasts influence the recruitment of endothelial cells in mice

    PubMed Central

    Guerreiro, Susana G.; Brochhausen, Christoph; Negrão, Rita; Barbosa, Mário A.; Unger, Ronald E.; Kirkpatrick, C. James; Soares, Raquel; Granja, Pedro L.

    2012-01-01

    The vascularization of new tissue within a reasonable time is a crucial prerequisite for the success of different cell- and material-based strategies. Considering that angiogenesis is a multi-step process involving humoral and cellular regulatory components, only in vivo assays provide the adequate information about vessel formation and the recruitment of endothelial cells. The present study aimed to investigate if neonatal human dermal fibroblasts could influence in vivo neovascularization. Results obtained showed that fibroblasts were able to recruit endothelial cells to vascularize the implanted matrix, which was further colonized by murine functional blood vessels after one week. The vessels exhibited higher levels of hemoglobin, compared with the control matrix, implanted without fibroblasts, in which no vessel formation could be observed. No significant differences were detected in systemic inflammation. The presence of vessels originated from the host vasculature suggested that host vascular response was involved, which constitutes a fundamental aspect in the process of neovascularization. Fibroblasts implanted within matrigel increased the presence of endothelial cells with positive staining for CD31 and for CD34 and the production of collagen influencing the angiogenic process and promoting the formation of microvessels. New strategies in tissue engineering could be delineated with improved angiogenesis using neonatal fibroblasts. PMID:23507785

  11. Mitochondrial trifunctional protein deficiency in human cultured fibroblasts: effects of bezafibrate.

    PubMed

    Djouadi, Fatima; Habarou, Florence; Le Bachelier, Carole; Ferdinandusse, Sacha; Schlemmer, Dimitri; Benoist, Jean François; Boutron, Audrey; Andresen, Brage S; Visser, Gepke; de Lonlay, Pascale; Olpin, Simon; Fukao, Toshiyuki; Yamaguchi, Seiji; Strauss, Arnold W; Wanders, Ronald J A; Bastin, Jean

    2016-01-01

    Mitochondrial trifunctional protein (MTP) deficiency caused by HADHA or HADHB gene mutations exhibits substantial molecular, biochemical, and clinical heterogeneity and ranks among the more severe fatty acid oxidation (FAO) disorders, without pharmacological treatment. Since bezafibrate has been shown to potentially correct other FAO disorders in patient cells, we analyzed its effects in 26 MTP-deficient patient fibroblasts representing 16 genotypes. Overall, the patient cell lines exhibited variable, complex, biochemical profiles and pharmacological responses. HADHA-deficient fibroblasts showed markedly reduced alpha subunit protein levels together with decreased beta-subunit abundance, exhibited a -86 to -96% defect in LCHAD activity, and produced large amounts of C14 and C16 hydroxyacylcarnitines. In control fibroblasts, exposure to bezafibrate (400 μM for 48 h) increased the abundance of HADHA and HADHB mRNAs, immune-detectable alpha and beta subunit proteins, activities of LCHAD and LCKAT, and stimulated FAO capacities, clearly indicating that MTP is pharmacologically up-regulated by bezafibrate in human fibroblasts. In MTP-deficient patient fibroblasts, which were found markedly FAO-deficient, bezafibrate improved FAO capacities in six of 26 (23%) cases, including three cell lines heterozygous for the common c1528G > C mutation. Altogether, our results strongly suggest that, due to variable effects of HADHA and HADHB mutations on MTP abundance and residual activity, improvement of MTP deficiency in response to bezafibrate was achieved in a subset of responsive genotypes. PMID:26109258

  12. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    NASA Astrophysics Data System (ADS)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  13. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-01-01

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment. PMID:26576741

  14. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  15. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  16. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    SciTech Connect

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  17. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  18. Imatinib mesylate inhibits proliferation and exerts an antifibrotic effect in human breast stroma fibroblasts.

    PubMed

    Gioni, Vassiliki; Karampinas, Theodoros; Voutsinas, Gerassimos; Roussidis, Andreas E; Papadopoulos, Savvas; Karamanos, Nikos K; Kletsas, Dimitris

    2008-05-01

    Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inhibitor of several protein tyrosine kinases, including the receptor of platelet-derived growth factor, an important mediator of desmoplasia. Recently, we have shown that imatinib inhibits the growth and invasiveness of human epithelial breast cancer cells. Here, we studied the effect of imatinib on the proliferation and collagen accumulation in breast stromal fibroblasts. We have shown that it blocks the activation of the extracellular signal-regulated kinase and Akt signaling pathways and up-regulates cyclin-dependent kinase inhibitor p21(WAF1), leading to the inhibition of fibroblast proliferation, by arresting them at the G(0)/G(1) phase of the cell cycle. Imatinib inhibits more potently the platelet-derived growth factor-mediated stimulation of breast fibroblast proliferation. By using specific inhibitors, we have found that this is due to the inhibition of the Akt pathway. In addition, imatinib inhibits fibroblast-mediated collagen accumulation. Conventional and quantitative PCR analysis, as well as gelatin zymography, indicates that this is due to the down-regulation of mRNA synthesis of collagen I and collagen III-the main collagen types in breast stroma-and not to the up-regulation or activation of collagenases matrix metalloproteinase 2 and matrix metalloproteinase 9. These data indicate that imatinib has an antifibrotic effect on human breast stromal fibroblasts that may inhibit desmoplastic reaction and thus tumor progression.

  19. Human lung fibroblasts express interleukin-6 in response to signaling after mast cell contact.

    PubMed

    Fitzgerald, S Matthew; Lee, Steven A; Hall, H Kenton; Chi, David S; Krishnaswamy, Guha

    2004-04-01

    Asthma is a chronic inflammatory disease of the airways. Mast cell-derived cytokines may mediate both airway inflammation and remodeling. It has also been shown that fibroblasts can be the source of proinflammatory cytokines. In the human airways, mast cell-fibroblast interactions may have pivotal effects on modulating inflammation. To study this further, we cocultured normal human lung fibroblasts (NHLF) with a human mast cell line (HMC-1) and assayed for production of interleukin (IL)-6, an important proinflammatory cytokine. When cultured together, NHLF/HMC-1 contact induced IL-6 secretion. Separation of HMC-1 and NHLF cells by a porous membrane inhibited this induction. HMC-1-derived cellular membranes caused an increase in IL-6 production in NHLF. Activation of p38 MAPK was also seen in cocultures by Western blot, whereas IL-6 production in cocultures was significantly inhibited by the p38 inhibitor SB203580. IL-6 production in cocultures was minimally inhibited by a chemical inhibitor of nuclear factor-kappaB (Bay11), indicating that nuclear factor-kappaB may have a minimal role in signaling IL-6 production in mast cell/fibroblasts cocultures. Blockade of inter-cellular adhesion molecule-1, tumor necrosis factor-RI, and surface IL-1beta with neutralizing antibodies failed to significantly decrease IL-6 production in our coculture, indicating that other receptor-ligand associations may be responsible for this activation. These novel studies reveal the importance of cell-cell interactions in the complex milieu of airway inflammation.

  20. Cytotoxic evaluation of biomechanically improved crosslinked ovine collagen on human dermal fibroblasts.

    PubMed

    Awang, M A; Firdaus, M A B; Busra, M B; Chowdhury, S R; Fadilah, N R; Wan Hamirul, W K; Reusmaazran, M Y; Aminuddin, M Y; Ruszymah, B H I

    2014-01-01

    Earlier studies in our laboratory demonstrated that collagen extracted from ovine tendon is biocompatible towards human dermal fibroblast. To be able to use this collagen as a scaffold in skin tissue engineering, a mechanically stronger scaffold is required that can withstand manipulation before transplantation. This study was conducted to improve the mechanical strength of this collagen sponge using chemical crosslinkers, and evaluate their effect on physical, chemical and biocompatible properties. Collagen sponge was crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA). Tensile test, FTIR study and mercury porosimetry were used to evaluate mechanical properties, chemical property and porosity, respectively. MTT assay was performed to evaluate the cytotoxic effect of crosslinked collagen sponge on human dermal fibroblasts. The FTIR study confirmed the successful crosslinking of collagen sponge. Crosslinking with EDC and GA significantly increased the mechanical strength of collagen sponge, with GA being more superior. Crosslinking of collagen sponge significantly reduced the porosity and the effect was predominant in GA-crosslinked collagen sponge. The GA-crosslinked collagen showed significantly lower, 60% cell viability towards human dermal fibroblasts compared to that of EDC-crosslinked collagen, 80% and non-crosslinked collagen, 100%. Although the mechanical strength was better when using GA but the more toxic effect on dermal fibroblast makes EDC a more suitable crosslinker for future skin tissue engineering.

  1. Human fibroblast collagenase: glycosylation and tissue-specific levels of enzyme synthesis.

    PubMed Central

    Wilhelm, S M; Eisen, A Z; Teter, M; Clark, S D; Kronberger, A; Goldberg, G

    1986-01-01

    Human skin fibroblasts secrete collagenase as two proenzyme forms (57 and 52 kDa). The minor (57-kDa) proenzyme form is the result of a partial posttranslational modification of the major (52-kDa) proenzyme through the addition of N-linked complex oligosaccharides. Human endothelial cells as well as fibroblasts from human colon, cornea, gingiva, and lung also secrete collagenase in two forms indistinguishable from those of the skin fibroblast enzyme. In vitro tissue culture studies have shown that the level of constitutive synthesis of this fibroblast-type interstitial collagenase is tissue specific, varies widely, and correlates with the steady-state level of a single collagenase-specific mRNA of 2.5 kilobases. The tumor promoter, phorbol 12-myristate 13-acetate, apparently blocks the control of collagenase synthesis resulting in a similarly high level of collagenase expression (approximately equal to 3-7 micrograms of collagenase per 10(6) cells per 24 hr) in all examined cells. The constitutive level of synthesis of a 28-kDa collagenase inhibitor does not correlate with that of the enzyme. Phorbol 12-myristate 13-acetate stimulates the production of this inhibitor that in turn modulates the activity of collagenase in the conditioned media. As a result, the apparent activity of the enzyme present in the medium does not accurately reflect the rate of its synthesis and secretion. Images PMID:3012533

  2. The Physiological Period Length of the Human Circadian Clock In Vivo Is Directly Proportional to Period in Human Fibroblasts

    PubMed Central

    Moriggi, Ermanno; Revell, Victoria L.; Hack, Lisa M.; Lockley, Steven W.; Arendt, Josephine; Skene, Debra J.; Meier, Fides; Izakovic, Jan; Wirz-Justice, Anna; Cajochen, Christian; Sergeeva, Oksana J.; Cheresiz, Sergei V.; Danilenko, Konstantin V.; Eckert, Anne; Brown, Steven A.

    2010-01-01

    Background Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype (“larks” and “owls”), clock properties measured in human fibroblasts correlated with extreme diurnal behavior. Methodology/Principal Findings In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. Conclusions/Significance We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness. PMID:21042402

  3. Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts.

    PubMed

    Zhang, YouEn; Wang, JiaNing; Li, Hua; Yuan, LiangJun; Wang, Lei; Wu, Bing; Ge, JunBo

    2015-11-01

    In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment. NaHS, an exogenous H2S donor, potently inhibited the proliferation and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NaHS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S suppresses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.

  4. Human lung parenchyma but not proximal bronchi produces fibroblasts with enhanced TGF-beta signaling and alpha-SMA expression.

    PubMed

    Pechkovsky, Dmitri V; Hackett, Tillie L; An, Steven S; Shaheen, Furquan; Murray, Lynne A; Knight, Darryl A

    2010-12-01

    Given the contribution various fibroblast subsets make to wound healing and tissue remodeling, the concept of lung fibroblast heterogeneity is of great interest. However, the mechanisms contributing to this heterogeneity are unknown. To this aim, we compared molecular and biophysical characteristics of fibroblasts concurrently isolated from normal human proximal bronchi (B-FBR) and distal lung parenchyma (P-FBR). Using quantitative RT-PCR, spontaneous expression of more than 30 genes related to repair and remodeling was analyzed. All P-FBR lines demonstrated significantly increased basal α-smooth muscle actin (α-SMA) mRNA and protein expression levels when compared with donor-matched B-FBR. These differences were not associated with sex, age, or disease history of lung tissue donors. In contrast to B-FBR, P-FBR displayed enhanced transforming growth factor (TGF)-β/Smad signaling at baseline, and inhibition of either ALK-5 or neutralization of endogenously produced and activated TGF-β substantially decreased basal α-SMA protein in P-FBR. Both B-FBR and P-FBR up-regulated α-SMA after stimulation with TGF-β1, and basal expression levels of TGF-β1, TGF-βRI, and TGF-βRII were not significantly different between fibroblast pairs. Blockade of metalloproteinase-dependent activation of endogenous TGF-β did not significantly modify α-SMA expression in P-FBR. However, resistance to mechanical tension of these cells was significantly higher in comparison with B-FBR, and added TGF-β1 significantly increased stiffness of both cell monolayers. Our data suggest that in contrast with human normal bronchial tissue explants, lung parenchyma produces mesenchymal cells with a myofibroblastic phenotype by intrinsic mechanisms of TGF-β activation in feed-forward manner. These results also offer a new insight into mechanisms of human fibroblast heterogeneity and their function in the airway and lung tissue repair and remodeling. PMID:20061511

  5. Lack of protection of prior heat shock against UV-induced oxidative stress in human skin fibroblasts.

    PubMed

    Jones, Sandra A; McArdle, Anne; McArdle, Francis; Jack, Catherine I A; Jackson, Malcolm J

    2003-01-01

    The effect of prior hyperthermia on UV-induced oxidative stress was studied in human skin fibroblasts. UV radiation alone induced an increased release of superoxide anions and increased lipid peroxidation in skin fibroblasts accompanied by a rise in catalase and superoxide dismutase activities. Hyperthermia was found to induce a significant rise in the cell content of heat-shock proteins, HSP60 and HSP70, but this treatment prior to UV radiation did not influence any indicators of oxidative stress in the fibroblasts. In contrast, the combination of heat shock prior to UV-exposure reduced fibroblast cell viability compared with UV radiation-exposure alone.

  6. Distinct Cell Stress Responses Induced by ATP Restriction in Quiescent Human Fibroblasts

    PubMed Central

    Yalamanchili, Nirupama; Kriete, Andres; Alfego, David; Danowski, Kelli M.; Kari, Csaba; Rodeck, Ulrich

    2016-01-01

    Quiescence is the prevailing state of many cell types under homeostatic conditions. Yet, surprisingly little is known about how quiescent cells respond to energetic and metabolic challenges. To better understand compensatory responses of quiescent cells to metabolic stress, we established, in human primary dermal fibroblasts, an experimental ‘energy restriction’ model. Quiescence was achieved by short-term culture in serum-deprived media and ATP supply restricted using a combination of glucose transport inhibitors and mitochondrial uncouplers. In aggregate, these measures led to markedly reduced intracellular ATP levels while not compromising cell viability over the observation period of 48 h. Analysis of the transcription factor (TF) landscape induced by this treatment revealed alterations in several signal transduction nodes beyond the expected biosynthetic adaptations. These included increased abundance of NF-κB regulated TFs and altered TF subsets regulated by Akt and p53. The observed changes in gene regulation and corresponding alterations in key signaling nodes are likely to contribute to cell survival at intracellular ATP concentrations substantially below those achieved by growth factor deprivation alone. This experimental model provides a benchmark for the investigation of cell survival pathways and related molecular targets that are associated with restricted energy supply associated with biological aging and metabolic diseases. PMID:27757122

  7. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro.

    PubMed

    de Cabo, Rafael; Liu, Lijuan; Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M

    2015-03-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes.

  8. Effects of cholera toxin and isobutylmethylxanthine on growth of human fibroblasts

    SciTech Connect

    Espinoza, B.; Wharton, W.

    1986-08-01

    Cholera toxin produced a dose-dependent decrease in the restimulation of G0/G1 traverse in density-arrested human fibroblasts but did not inhibit the stimulation of cells arrested in G0 after serum starvation at low density. In addition, cholera toxin did not inhibit the proliferation of sparse logarithmically growing human fibroblasts, even when low concentrations of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) were also present. However, the final density to which sparse cells grew was limited by cholera toxin, when added either alone or together with low concentrations of IBMX. In contrast, high concentrations of the phosphodiesterase inhibitor alone produced a profound inhibition in the growth of sparse human fibrobasts. IBMX produced an inhibition both in the G1 and in the G2 phases of the cell cycle by a mechanism(s) that was not related to the magnitude of the increases in adenosine 3,5-cyclic monophosphate concentrations.

  9. Cu,Zn Superoxide Dismutase is a Peroxisomal Enzyme in Human Fibroblast and Hepatoma Cells

    NASA Astrophysics Data System (ADS)

    Keller, Gilbert-Andre; Warner, Thomas G.; Steimer, Kathelyn S.; Hallewell, Robert A.

    1991-08-01

    The intracellular localization of Cu,Zn superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) has been examined by immunofluorescence using four monoclonal anti-Cu,Zn superoxide dismutase antibodies raised against a recombinant human Cu,Zn superoxide dismutase derivative produced and purified from Escherichia coli. Colocalization with catalase, a peroxisomal matrix enzyme, was used to demonstrate the peroxisomal localization of Cu,Zn superoxide dismutase in human fibroblasts and hepatoma cells. In the fibroblasts of Zellweger syndrome patients, the enzyme is not transported to the peroxisomal ghosts but, like catalase, remains in the cytoplasm. In addition, immunocryoelectron microscopy of yeast cells expressing human Cu,Zn superoxide dismutase showed that the enzyme is translocated to the peroxisomes.

  10. Anti-wrinkle effects of a tuna heart H2O fraction on Hs27 human fibroblasts.

    PubMed

    Kim, Young-Min; Jung, Hee-Jin; Choi, Jae-Sue; Nam, Taek-Jeong

    2016-01-01

    With the increase in life expectancy, there is also growing interest in anti-aging treatments and technologies. The development of anti-aging functional drugs for the skin, and foods from natural sources, may offer solutions to this global matter. Aging involves structural, functional and biochemical changes that occur throughout cells and bodily tissues; the amount of hormones secreted from of all human organs, including the skin, decreases over time. Matrix metalloproteinase (MMP) genes (MMP-1 and -8) play an important role in the aging of skin fibroblasts. For example, an increased MMP expression causes accelerated aging and the degradation of skin elasticity-related genes. In the present study, we examined the anti-wrinkle effects of tuna heart extract which are mediated through the inhibition of MMPs in skin cells. Generally, tuna contains high concentrations of selenium and antioxidants, which serve to remove free radicals, and is known to delay skin and body aging. In addition, unsaturated fatty acids in tuna help to maintain the natural glossy look of skin, and increase skin elasticity, providing moisture for dry skin. A recent study confirmed the various bio-effects of boiled tuna extract and muscle. However, bioactivity studies using tuna heart are limited. Thus, in the present study, we obtained extracts and fractions of tuna heart, and examined their effects on Hs27 human fibroblast proliferation using an MTS assay. In addition, we measured procollagen type 1 levels and elastase activity, and performed β-galactosidase staining. We then measured the expression levels of phosphatidylinositol 3-kinase/Akt and MMP-related genes by western blot analysis and RT-PCR. Our results revealed that tuna heart extract decreased MMP expression by upregulating tissue inhibitors of metalloproteinase-1 (TIMP-1) and decreasing elastase activity, thus exerting anti-aging and anti-wrinkle effects by increasing collagen synthesis and promoting skin fibroblast

  11. Anti-wrinkle effects of a tuna heart H2O fraction on Hs27 human fibroblasts

    PubMed Central

    KIM, YOUNG-MIN; JUNG, HEE-JIN; CHOI, JAE-SUE; NAM, TAEK-JEONG

    2016-01-01

    With the increase in life expectancy, there is also growing interest in anti-aging treatments and technologies. The development of anti-aging functional drugs for the skin, and foods from natural sources, may offer solutions to this global matter. Aging involves structural, functional and biochemical changes that occur throughout cells and bodily tissues; the amount of hormones secreted from of all human organs, including the skin, decreases over time. Matrix metalloproteinase (MMP) genes (MMP-1 and -8) play an important role in the aging of skin fibroblasts. For example, an increased MMP expression causes accelerated aging and the degradation of skin elasticity-related genes. In the present study, we examined the anti-wrinkle effects of tuna heart extract which are mediated through the inhibition of MMPs in skin cells. Generally, tuna contains high concentrations of selenium and antioxidants, which serve to remove free radicals, and is known to delay skin and body aging. In addition, unsaturated fatty acids in tuna help to maintain the natural glossy look of skin, and increase skin elasticity, providing moisture for dry skin. A recent study confirmed the various bio-effects of boiled tuna extract and muscle. However, bioactivity studies using tuna heart are limited. Thus, in the present study, we obtained extracts and fractions of tuna heart, and examined their effects on Hs27 human fibroblast proliferation using an MTS assay. In addition, we measured procollagen type 1 levels and elastase activity, and performed β-galactosidase staining. We then measured the expression levels of phosphatidylinositol 3-kinase/Akt and MMP-related genes by western blot analysis and RT-PCR. Our results revealed that tuna heart extract decreased MMP expression by upregulating tissue inhibitors of metallopro-teinase-1 (TIMP-1) and decreasing elastase activity, thus exerting anti-aging and anti-wrinkle effects by increasing collagen synthesis and promoting skin fibroblast proliferation

  12. Anti-wrinkle effects of a tuna heart H2O fraction on Hs27 human fibroblasts.

    PubMed

    Kim, Young-Min; Jung, Hee-Jin; Choi, Jae-Sue; Nam, Taek-Jeong

    2016-01-01

    With the increase in life expectancy, there is also growing interest in anti-aging treatments and technologies. The development of anti-aging functional drugs for the skin, and foods from natural sources, may offer solutions to this global matter. Aging involves structural, functional and biochemical changes that occur throughout cells and bodily tissues; the amount of hormones secreted from of all human organs, including the skin, decreases over time. Matrix metalloproteinase (MMP) genes (MMP-1 and -8) play an important role in the aging of skin fibroblasts. For example, an increased MMP expression causes accelerated aging and the degradation of skin elasticity-related genes. In the present study, we examined the anti-wrinkle effects of tuna heart extract which are mediated through the inhibition of MMPs in skin cells. Generally, tuna contains high concentrations of selenium and antioxidants, which serve to remove free radicals, and is known to delay skin and body aging. In addition, unsaturated fatty acids in tuna help to maintain the natural glossy look of skin, and increase skin elasticity, providing moisture for dry skin. A recent study confirmed the various bio-effects of boiled tuna extract and muscle. However, bioactivity studies using tuna heart are limited. Thus, in the present study, we obtained extracts and fractions of tuna heart, and examined their effects on Hs27 human fibroblast proliferation using an MTS assay. In addition, we measured procollagen type 1 levels and elastase activity, and performed β-galactosidase staining. We then measured the expression levels of phosphatidylinositol 3-kinase/Akt and MMP-related genes by western blot analysis and RT-PCR. Our results revealed that tuna heart extract decreased MMP expression by upregulating tissue inhibitors of metalloproteinase-1 (TIMP-1) and decreasing elastase activity, thus exerting anti-aging and anti-wrinkle effects by increasing collagen synthesis and promoting skin fibroblast

  13. The origins of human ageing.

    PubMed Central

    Kirkwood, T B

    1997-01-01

    The origins of human ageing are to be found in the origins and evolution of senescence as a general feature in the life histories of higher animals. Ageing is an intriguing problem in evolutionary biology because a trait that limits the duration of life, including the fertile period, has a negative impact on Darwinian fitness. Current theory suggests that senescence occurs because the force of natural selection declines with age and because longevity is only acquired at some metabolic cost. In effect, organisms may trade late survival for enhanced reproductive investments in earlier life. The comparative study of ageing supports the general evolutionary theory and reveals that human senescence, while broadly similar to senescence in other mammalian species, has distinct features, such as menopause, that may derive from the interplay of biological and social evolution. PMID:9460059

  14. Complementary antioxidant function of caffeine and green tea polyphenols in normal human skin fibroblasts.

    PubMed

    Jagdeo, Jared; Brody, Neil

    2011-07-01

    The study of free radicals is particularly relevant in the context of human skin carcinogenesis and photoaging because of these oxidants' ability to induce DNA mutations and produce lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (HNE). Therefore, it is important to identify and evaluate agents with the ability to modulate intracellular free radicals and HNE. The purpose of this research is to investigate the ability of antioxidants green tea polyphenols (GTPs) and caffeine, alone and in combination, to modulate the hydrogen peroxide (H2O2)-induced upregulation of reactive oxygen species (ROS) free radicals and HNE in normal human skin fibroblast WS-1 cells in vitro. GTPs and caffeine were selected for evaluation because these compounds have demonstrated antioxidative properties in various skin models. Furthermore, GTPs and caffeine share a close natural botanical association as caffeine is present in green tea, as well. Hydrogen peroxide is a well-known generator of free radicals that is produced during endogenous and UV-induced oxidation processes in human skin and was used to upregulate ROS and HNE in normal human fibroblast WS-1 cells. Using a flow cytometry-based assay, the results demonstrate that at 0.001% concentration, green tea polyphenols alone, and in combination with 0.1 mM caffeine, inhibited the upregulation of H2O2-generated free radicals and HNE in human skin fibroblasts in vitro. Caffeine alone demonstrated limited anti-oxidant properties.

  15. Vegetable peptones increase production of type I collagen in human fibroblasts by inducing the RSK-CCAAT/enhancer binding protein-β phosphorylation pathway.

    PubMed

    Jung, Eunsun; Cho, Jae Youl; Park, Deokhoon; Kim, Min Hee; Park, Beomseok; Lee, Sang Yeol; Lee, Jongsung

    2015-02-01

    Skin aging appears to be principally attributed to a decrease in type I collagen level and the regeneration ability of dermal fibroblasts. We hypothesized that vegetable peptones promote cell proliferation and production of type I collagen in human dermal fibroblasts. Therefore, we investigated the effects of vegetable peptones on cell proliferation and type I collagen production and their possible mechanisms in human dermal fibroblasts. Vegetable peptones significantly promoted cell proliferation in a concentration-dependent manner. In addition, the human luciferase type I collagen α2 promoter and type I procollagen synthesis assays showed that the vegetable peptones induced type I procollagen production by activating the type I collagen α2 promoter. Moreover, the vegetable peptones activated p90 ribosomal s6 kinase, which was mediated by activating the Raf-p44/42 mitogen-activated protein kinase signaling pathway. Furthermore, the vegetable peptone-induced increase in cell proliferation and type I collagen production decreased upon treatment with the ERK inhibitor PD98059. Taken together, these findings suggest that increased proliferation of human dermal fibroblasts and enhanced production of type I collagen by vegetable peptones occur primarily by inducing the p90 ribosomal s6 kinase-CCAAT/enhancer binding protein β phosphorylation pathway, which is mediated by activating Raf-ERK signaling.

  16. Regulation of human lung fibroblast glycosaminoglycan production by recombinant interferons, tumor necrosis factor, and lymphotoxin.

    PubMed Central

    Elias, J A; Krol, R C; Freundlich, B; Sampson, P M

    1988-01-01

    Mononuclear cells may be important regulators of fibroblast glycosaminoglycan (GAG) biosynthesis. However, the soluble factors mediating these effects, the importance of intercytokine interactions in this regulation and the mechanisms of these alterations remain poorly understood. We analyzed the effect of recombinant (r) tumor necrosis factor (TNF), lymphotoxin (LT), and gamma, alpha, and beta 1 interferons (INF-gamma, -alpha and -beta 1), alone and in combination, on GAG production by normal human lung fibroblasts. rTNF, rLT, and rINF-gamma each stimulated fibroblast GAG production. In addition, rIFN-gamma synergized with rTNF and rLT to further augment GAG biosynthesis. In contrast, IFN-alpha A, -alpha D, and -beta 1 neither stimulated fibroblast GAG production nor interacted with rTNF or rLT to regulate GAG biosynthesis. The effects of the stimulatory cytokines and cytokine combinations were dose dependent and were abrogated by the respective monoclonal antibodies. In addition, these cytokines did not cause an alteration in the distribution of GAG between the fibroblast cell layer and supernatant. However, the stimulation was at least partially specific for particular GAG moieties with hyaluronic acid biosynthesis being markedly augmented without a comparable increase in the production of sulfated GAGs. Fibroblast prostaglandin production did not mediate these alterations since indomethacin did not decrease the stimulatory effects of the cytokines. In contrast, protein and mRNA synthesis appeared to play a role since the stimulatory effects of the cytokines were abrogated by cyclohexamide and actinomycin D, respectively. In addition, the cytokines and cytokine combinations increased cellular hyaluronate synthetase activity in proportion to their effects on hyaluronic acid suggesting that induction of this enzyme(s) is important in this stimulatory process. These studies demonstrate that IFN-gamma, TNF, and LT are important stimulators of fibroblast GAG

  17. Influence of E-smoking liquids on human periodontal ligament fibroblasts

    PubMed Central

    2014-01-01

    Introduction Over the last years, electronic cigarettes (ECs) have become more popular, particularly in individuals who want to give up smoking tobacco. The aim of the present study was to assess the influence of the different e-smoking liquids on the viability and proliferation of human periodontal ligament fibroblasts. Method and materials For this study six test solutions with components from ECs were selected: lime-, hazelnut- and menthol-flavored liquids, nicotine, propylene glycol, and PBS as control group. The fibroblasts were incubated up to 96 h with the different liquids, and cell viability was measured by using the PrestoBlue® reagent, the ATP detection and the migration assay. Fluorescence staining was carried out to visualize cell growth and morphology. Data were statistically analyzed by two-tailed one-way ANOVA. Results The cell viability assay showed that the proliferation rates of the cells incubated with nicotine or the various flavored liquids of the e-cigarettes were reduced in comparison to the controls, though not all reductions were statistically significant. After an incubation of 96 h with the menthol-flavored liquid the fibroblasts were statistically significant reduced (p < 0.001). Similar results were found for the detection of ATP in fibroblasts; the incubation with menthol-flavored liquids (p < 0.001) led to a statistically significant reduction. The cell visualization tests confirmed these findings. Conclusion Within its limits, the present in vitro study demonstrated that menthol additives of e-smoking have a harmful effect on human periodontal ligament fibroblasts. This might indicate that menthol additives should be avoided for e-cigarettes. PMID:25224853

  18. Reprogramming of Fibroblasts From Older Women With Pelvic Floor Disorders Alters Cellular Behavior Associated With Donor Age

    PubMed Central

    Wani, Prachi; Zhou, Lu; Baer, Tom; Phadnis, Smruti Madan; Reijo Pera, Renee A.; Chen, Bertha

    2013-01-01

    We aimed to derive induced pluripotent stem cell (iPSC) lines from vaginal fibroblasts from older women with pelvic organ prolapse. We examined the effect of donor age on iPSCs and on the cells redifferentiated from these iPSCs. Vaginal fibroblasts were isolated from younger and older subjects for reprogramming. iPSCs were generated simultaneously using an excisable polycistronic lentiviral vector expressing Oct4, Klf4, Sox2, and cMyc. The pluripotent markers of iPSCs were confirmed by immunocytochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Spectral karyotyping was performed. The ability of the iPSCs to differentiate into three germ layers was confirmed by embryoid body and teratoma formation. Senescence marker (p21, p53, and Bax) expressions were determined by qRT-PCR and Western blot. The iPSCs were redifferentiated to fibroblasts and were evaluated with senescence-associated β-galactosidase (SA) activity and mitotic index using time-lapse dark-field microscopy. iPSCs derived from both the younger and older subjects expressed pluripotency markers and showed normal karyotype and positive teratoma assays. There was no significant difference in expression of senescence and apoptosis markers (p21, p53, and Bax) in iPSCs derived from the younger subject compared with the older subject. Furthermore, fibroblasts redifferentiated from these iPSCs did not differ in SA activity or mitotic index. We report successful derivation of iPSCs from women with pelvic organ prolapse. Older age did not interfere with successful reprogramming. Donor age differences were not observed in these iPSCs using standard senescence markers, and donor age did not appear to affect cell mitotic activity in fibroblasts redifferentiated from iPSCs. PMID:23341439

  19. Proteomic Identification of Cathepsin B and Nucleophosmin as Novel UVA-Targets in Human Skin Fibroblasts

    PubMed Central

    Lamore, Sarah D.; Qiao, Shuxi; Horn, David; Wondrak, Georg T.

    2010-01-01

    Solar UVA exposure plays a causative role in skin photoaging and photocarcinogenesis. Here we describe the proteomic identification of novel UVA-targets in human dermal fibroblasts following a 2D-DIGE (two-dimensional-difference-gel-electrophoresis) approach. Fibroblasts were exposed to non-cytotoxic doses of UVA or left untreated, and total protein extracts underwent CyDye-labeling followed by 2D-DIGE/mass spectrometric identification of differentially expressed proteins, confirmed independently by immunodetection. The protein displaying the most pronounced UVA-induced upregulation was identified as the nucleolar protein nucleophosmin. The protein undergoing the most pronounced UVA-induced downregulation was identified as cathepsin B, a lysosomal cysteine-protease displaying loss of enzymatic activity and altered maturation after cellular UVA exposure. Extensive lysosomal accumulation of lipofuscin-like autofluorescence and osmiophilic material occurred in UVA-exposed fibroblasts as detected by confocal fluorescence microscopy and transmission electron microscopy, respectively. Array analysis indicated UVA-induced upregulation of oxidative stress response gene expression, and UVA-induced loss of cathepsin B enzymatic activity in fibroblasts was suppressed by antioxidant intervention. Pharmacological cathepsin B-inhibition using CA074Me mimicked UVA-induced accumulation of lysosomal autofluorescence and deficient cathepsin B-maturation. Taken together, these data support the hypothesis that cathepsin B is a crucial target of UVA-induced photooxidative stress causatively involved in dermal photodamage through impairment of lysosomal removal of lipofuscin. PMID:20946361

  20. Enhanced Biological Behavior of In Vitro Human Gingival Fibroblasts on Cold Plasma-Treated Zirconia

    PubMed Central

    Zheng, Miao; Yang, Yang; Liu, Xiao-Qiang; Liu, Ming-Yue; Zhang, Xiao-Fei; Wang, Xin; Li, He-Ping; Tan, Jian-Guo

    2015-01-01

    Objective To evaluate whether atmospheric-pressure dielectric-barrier-discharge plasma treatment of zirconia enhances its biocompatibility with human gingival fibroblasts. Materials and Methods The zirconia disks were divided into four groups and treated using helium atmospheric-pressure dielectric-barrier-discharge plasmas for 30, 60 or 90 s or left untreated. The surface morphology, wettability and chemical elements were analyzed. Fibroblasts density, morphology, morphometry and attachment-related genes expression were measured at different time points from 3 to 72 h. Results After plasma treatment, the surface morphology and roughness remained the same, while the contact angle decreased from 78.31° to 43.71°, and the surface C/O ratio decreased from 3.17 to 0.89. The surficial areas and perimeters of HGFs were increased two-fold in the treated groups at 3 h. Fibroblasts density increased on treated disks at all time points, especially the ones treated for 60 s. Attachment-related genes in the groups treated for 30 and 60 s were significantly higher at 3 and 24 h. Conclusion The helium atmospheric-pressure dielectric-barrier-discharge plasma treatment enhances the biological behavior of fibroblasts on zirconia by increasing the expression of attachment-related genes within 24 h and promoting the cell density during longer culture times. Wettability of zirconia, an important physicochemical property, has a vital influence on the cell behaviors. PMID:26461253

  1. The roles of tumor- and metastasis-promoting carcinoma-associated fibroblasts in human carcinomas.

    PubMed

    Mezawa, Yoshihiro; Orimo, Akira

    2016-09-01

    Carcinoma-associated fibroblasts (CAFs) constitute a substantial proportion of the non-neoplastic mesenchymal cell compartment in various human tumors. These fibroblasts are phenotypically converted from their progenitors via interactions with nearby cancer cells during the course of tumor progression. The resulting CAFs, in turn, support the growth and progression of carcinoma cells. These fibroblasts have a major influence on the hallmarks of carcinoma and promote tumor malignancy through the secretion of tumor-promoting growth factors, cytokines and exosomes, as well as through the remodeling of the extracellular matrix. Coevolution of CAFs and carcinoma cells during tumorigenesis is therefore essential for progression into fully malignant tumors. Recent studies have revealed the molecular mechanisms underlying CAF functions, especially in tumor invasion, metastasis and drug resistance and have highlighted the significant heterogeneity among these cells. In this review, we summarize the impacts of recently identified roles of tumor-promoting CAFs and discuss the therapeutic implications of targeting the heterotypic interactions of these fibroblasts with carcinoma cells. Graphical Abstract ᅟ. PMID:27506216

  2. The effect of bee propolis on oral pathogens and human gingival fibroblasts.

    PubMed

    Sonmez, Sule; Kirilmaz, Levent; Yucesoy, Mine; Yücel, Banu; Yilmaz, Berna

    2005-12-01

    Propolis is one of the few natural remedies that have maintained its popularity over a long period of time. The aim of this study is to investigate the antimicrobial properties of six propolis solutions and evaluate their cytotoxicity on gingival fibroblasts at different dilutions. Two different solutions of powder propolis (Sigma) and Turkish propolis were prepared and propylene glycol (PG) and alcohol were used as solvents for each propolis sample. In addition to the four propolis solutions, two other propolis samples of far geographic regions (USA and Australia) were included in the study. The antibacterial effects of six solutions on oral pathogen microorganisms were tested and their cytotoxic effects on human gingival fibroblasts were evaluated by MTT assay. The effective dilutions of the six propolis samples on periodontopathogen microorganisms were found to be cytotoxic to gingival fibroblasts. All solutions had strong antifungal activity and the effective dilutions were safe for gingival fibroblasts. Propolis could have a promising role in the future medicine, if appropriate solutions can be prepared being strongly antibacterial and non-cytotoxic as well.

  3. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    SciTech Connect

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  4. Biosynthetic support based on dendritic poly(L-lysine) improves human skin fibroblasts attachment.

    PubMed

    Lorion, Chloé; Faye, Clément; Maret, Barbara; Trimaille, Thomas; Régnier, Thomas; Sommer, Pascal; Debret, Romain

    2014-01-01

    Poly(L-lysine) (PLL) dendrigrafts (DGLs) are arborescent biosynthetic polymers of regular and controlled structures. They have specific properties such as biocompatibility and non-immunogenicity, and their surface density of NH2 functions can be easily modified and therefore appears as a powerful tool for the functionalization of hydrophobic polymers used in the context of tissue engineering. In this study, we evaluated several criteria of human skin fibroblasts when cultured with DGL of generations 2, 3 and 4, with linear PLL polymer as reference. In aqueous phase, DGLs and PLL displayed a similar cytotoxicity towards fibroblasts. Plastic culture plates grafted with DGLs were further characterized as homogeneous surfaces by atomic force microscopy and surface characterization by amino density estimation by colorimetric assay. Proliferation of fibroblasts was increased when cultured onto PLL and DGLs monolayers when compared with crude plates. Cellular adhesion was increased by 20% on DGLs in comparison to PLL. Integrin α5 subunit protein expression level was increased after 48 h of culture on DGLs, in comparison to control or PLL-coated surfaces. The presence of DGLs did not lead to overexpression or activation of matrix metalloproteinases 2 and 9. Finally, fibroblasts adhesion was increased by 40% on poly-(lactic-co-glycolic acid) matrices functionalized with DGLs when compared to PLL. Overall, these features make DGL promising candidates for the surface engineering of biomaterials in tissue engineering.

  5. Derivation and characterization of goat fetal fibroblast cells induced with human telomerase reverse transcriptase.

    PubMed

    Xie, Ying; Zhao, Xiaoe; Jia, Hongxiang; Ma, Baohua

    2013-01-01

    Fetal fibroblast cells (FFCs) are often used as donor cells for somatic cell nuclear transfer (SCNT) because they are easy to culture and suitable for genetic manipulation. However, through genetic modification process, which required FFCs to be cultured in vitro for several passages, cells tended to age very rapidly and became inappropriate for SCNT. Human telomerase reverse transcriptase (hTERT) possessed the activity of human telomerase and maintains telomere in dividing cells; therefore, hTERT can be transfected into somatic cells to extend their lifespan. In this study, we transfected a Xinong Saanen Dairy Goat FFC line with hTERT. Then, we tested several characteristics of transfected cells, including growth curve, expression and activity of hTERT, tumorigenicity, and expression of oct4 and nanog. The result showed that hTERT could significantly extend the lifespan of transfected cells in vitro. hTERT mRNA was expressed in hTERT-transfected cells. Moreover, hTERT-transfected cells presented enhanced telomerase activity and longer telomere than untransfected cells at the same passage. On the other hand, hTERT-transfected cells can maintain normal karyotype even after several times of subculture in vitro. After inoculation of hTERT-transfected cells in nude mouse, none of them developed tumors on the vaccination site. Interestingly, transfection of hTERT can improve expression of nanog and oct4 in Xinong Saanen Dairy Goat FFCs, especially in low generation after transfection, but with increasing subculture, this effect gradually weakened. PMID:23271363

  6. Effect of meso-dihydroguaiaretic acid from Machilus thunbergii Sieb et Zucc on MMP-1 expression in heat shock-induced cultured primary human fibroblasts.

    PubMed

    Moon, Hyung-In; Moon, Hyungin; Jung, Jae-Chul

    2006-08-01

    Ethanol and aqueous extracts of Machilus thunbergii Sieb et Zucc (Lauraceae) used traditionally for the treatment of a variety of diseases were screened in vitro for MMP-1 inhibitory actions. Meso-dihydroguaiaretic acid (MDGA) from the stem bark of M. thunbergii showed a significant inhibition of matrix metalloproteinase (MMP)-1 in primary human fibroblasts by heat shock-induced. This study investigated the effect of MDGA isolated from M. thunbergii on heat shock-induced premature skin aging. MDGA reduced the expression of MMP-1 at the protein level in a dose-dependent manner in heat shock-induced cultured primary human fibroblasts. Taken together, these results show that MDGA can prevent the harmful effects of heat (and/or IR) that lead to skin aging. PMID:16775809

  7. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    PubMed

    Polioudakis, Damon; Abell, Nathan S; Iyer, Vishwanath R

    2015-01-01

    miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  8. The human cytomegalovirus UL133-138 gene locus attenuates the lytic viral cycle in fibroblasts.

    PubMed

    Dutta, Nirmal; Lashmit, Philip; Yuan, Jinxiang; Meier, Jeffery; Stinski, Mark F

    2015-01-01

    The genomes of HCMV clinical strains (e.g. FIX, TR, PH, etc) contain a 15 kb region that encodes 20 putative ORFs. The region, termed ULb', is lost after serial passage of virus in human foreskin fibroblast (HFF) cell culture. Compared to clinical strains, laboratory strains replicate faster and to higher titers of infectious virus. We made recombinant viruses with 22, 14, or 7 ORFs deleted from the ULb' region using FIX and TR as model clinical strains. We also introduced a stop codon into single ORFs between UL133 and UL138 to prevent protein expression. All deletions within ULb' and all stop codon mutants within the UL133 to UL138 region increased to varying degrees, viral major immediate early RNA and protein, DNA, and cell-free infectious virus compared to the wild type viruses. The wild type viral proteins slowed down the viral replication process along with cell-free infectious virus release from human fibroblast cells.

  9. Human cytomegalovirus transcriptome activity differs during replication in human fibroblast, epithelial and astrocyte cell lines

    PubMed Central

    Towler, James C.; Ebrahimi, Bahram; Lane, Brian; Davison, Andrew J.

    2012-01-01

    Broad cell tropism contributes to the pathogenesis of human cytomegalovirus (HCMV), but the extent to which cell type influences HCMV gene expression is unclear. A bespoke HCMV DNA microarray was used to monitor the transcriptome activity of the low passage Merlin strain of HCMV at 12, 24, 48 and 72 h post-infection, during a single round of replication in human fetal foreskin fibroblast cells (HFFF-2s), human retinal pigmented epithelial cells (RPE-1s) and human astrocytoma cells (U373MGs). In order to correlate transcriptome activity with concurrent biological responses, viral cytopathic effect, growth kinetics and genomic loads were examined in the three cell types. The temporal expression pattern of viral genes was broadly similar in HFFF-2s and RPE-1s, but dramatically different in U373MGs. Of the 165 known HCMV protein-coding genes, 41 and 48 were differentially regulated in RPE-1s and U373MGs, respectively, compared with HFFF-2s, and 22 of these were differentially regulated in both RPE-1s and U373MGs. In RPE-1s, all differentially regulated genes were downregulated, but, in U373MGs, some were down- and others upregulated. Differentially regulated genes were identified among the immediate-early, early, early late and true-late viral gene classes. Grouping of downregulated genes according to function at landmark stages of the replication cycle led to the identification of potential bottleneck stages (genome replication, virion assembly, and virion maturation and release) that may account for cell type-dependent viral growth kinetics. The possibility that cell type-specific differences in expressed cellular factors are responsible for modulation of viral gene expression is discussed. PMID:22258857

  10. Hyaluronic acid abrogates ethanol-dependent inhibition of collagen biosynthesis in cultured human fibroblasts

    PubMed Central

    Donejko, Magdalena; Przylipiak, Andrzej; Rysiak, Edyta; Miltyk, Wojciech; Galicka, Elżbieta; Przylipiak, Jerzy; Zaręba, Ilona; Surazynski, Arkadiusz

    2015-01-01

    Introduction The aim of the study was to evaluate the effect of ethanol on collagen biosynthesis in cultured human skin fibroblasts, and the role of hyaluronic acid (HA) in this process. Regarding the mechanism of ethanol action on human skin fibroblasts we investigated: expression of β1 integrin and insulin-like growth factor 1 receptor (IGF-IR), signaling pathway protein expression: mitogen-activated protein kinases (MAPKs), protein kinase B (Akt), nuclear factor kappa B (NF-κB) transcription factor, cytotoxicity assay and apoptosis, metalloproteinase activity, as well as the influence of HA on these processes. Materials and methods Collagen biosynthesis, activity of prolidase, DNA biosynthesis, and cytotoxicity were measured in confluent human skin fibroblast cultures that have been treated with 25, 50, and 100 mM ethanol and with ethanol and 500 µg/mL HA. Western blot analysis and zymography were performed to evaluate expression of collagen type I, β1 integrin receptor, IGF-IR, NF-κB protein, phospho-Akt protein, kinase MAPK, caspase 9 activity, and matrix metalloproteinases (MMP-9 and MMP-2). Results Ethanol in a dose-dependent manner lead to the impairment of collagen biosynthesis in fibroblast cultures through decreasing prolidase activity and expression of β1 integrin and IGF-IR. This was accompanied by an increased cytotoxicity, apoptosis and lowered expression of the signaling pathway proteins induced by β1 integrin and IGF-IR, that is, MAPK (ERK1/2) kinases. The lowered amount of synthesized collagen and prolidase activity disturbance may also be due to the activation of NF-κB transcription factor, which inhibits collagen gene expression. It suggests that the decrease in fibroblast collagen production may be caused by the disturbance in its biosynthesis but not degradation. The application of HA has a protective effect on disturbances caused by the examined substances. It seems that regulatory mechanism of ethanol-induced collagen aberration take

  11. A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts.

    PubMed

    Syed, Junetha; Chandran, Anandhakumar; Pandian, Ganesh N; Taniguchi, Junichi; Sato, Shinsuke; Hashiya, Kaori; Kashiwazaki, Gengo; Bando, Toshikazu; Sugiyama, Hiroshi

    2015-07-01

    Small molecules capable of modulating epigenetic signatures can activate the transcription of tissue-restricted genes in a totally unrelated cell type and have potential use in epigenetic therapy. To provide an example for an initial approach, we report here on one synthetic small-molecule compound-termed "SAHA-PIP X"-from our library of conjugates. This compound triggered histone acetylation accompanied by the transcription of retinal-tissue-related genes in human dermal fibroblasts (HDFs).

  12. DNA damage in human skin fibroblasts exposed to UVA light used in clinical PUVA treatment

    SciTech Connect

    Bredberg, A.

    1981-06-01

    Human skin fibroblasts were irradiated with a clinically used UVA light source. The doses (1.1 and 3 J/cm2) were similar to those reaching the dermis during clinical PUVA treatment of psoriasis. DNA strand breaks, as determined by alkaline elution, were formed in a dose-dependent way and disappeared within 1 hr of postincubation at 37 degrees C. These findings have clinical implications since UVA-induced DNA damage may be accompanied by mutagenic and tumor promoting effects.

  13. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    SciTech Connect

    Huang Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.

  14. Resinous perforation-repair materials inhibit the growth, attachment, and proliferation of human gingival fibroblasts.

    PubMed

    Huang, Fu-Mei; Tai, Kuo-Wei; Chou, Ming-Yung; Chang, Yu-Chao

    2002-04-01

    The choice of repair material is one of the important factors in the prognosis of the endodontically treated tooth with a perforation defect. The cytotoxicity of perforation-repair materials must be investigated to ensure a safe biological response. The aim of this in vitro study was to evaluate the effect of resin-modified, glass-ionomer cement, compomer, and resin on human-gingival fibroblasts. Human gingival fibroblasts from crown lengthening surgery were cultured by using an explant technique with the consent of the patient. Cytotoxicity was judged by using an assay of tetrazolium bromide reduction. The results showed that resin-modified, glass-ionomer cement Fuji II LC, compomer Compoglass, and resin SpectrumTPH (TPH) were cytotoxic to primary human gingival fibroblast cultures by inhibiting cell growth and proliferation. TPH alone had an effect on cell attachment. It was found that TPH was the most cytotoxic repair material among those tested in all cultures. The toxicity decreased in the order of TPH>FLC>CG.

  15. Antiparasitic and antiproliferative effects of indoleamine 2,3-dioxygenase enzyme expression in human fibroblasts.

    PubMed Central

    Gupta, S L; Carlin, J M; Pyati, P; Dai, W; Pfefferkorn, E R; Murphy, M J

    1994-01-01

    Studies were carried out to evaluate the proposed role of indoleamine 2,3-dioxygenase (INDO) induction in the antimicrobial and antiproliferative effects of gamma interferon (IFN-gamma) in human fibroblasts. The INDO cDNA coding region was cloned in the pMEP4 expression vector, containing the metallothionein (MTII) promoter in the sense (+ve) or the antisense (-ve) orientation. Human fibroblasts (GM637) stably transfected with the sense construct expressed INDO activity after treatment with CdCl2 or ZnSO4, but cells transfected with the antisense construct did not. The growth of Chlamydia psittaci was strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+ or Zn2+. The inhibition correlated with the level of INDO activity induced and could be reversed by the addition of excess tryptophan to the medium. The growth of Toxoplasma gondii was also strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+. Expression of Cd(2+)-induced INDO activity also inhibited thymidine incorporation and led to cytotoxicity in INDO +ve cells but not in INDO -ve cells. Thus, the induction of INDO activity by IFN-gamma may be an important factor in the antimicrobial and antiproliferative effects of IFN-gamma in human fibroblasts. Images PMID:8188349

  16. Treatment of postoperative lower extremity wounds using human fibroblast-derived dermis: a retrospective analysis.

    PubMed

    Carlson, Russell M; Smith, Nicholas C; Dux, Katherine; Stuck, Rodney M

    2014-04-01

    Human fibroblast-derived dermis skin substitute is a well-studied treatment for diabetic foot ulcers; however, no case series currently exist for its use in healing postoperative wounds of the lower extremity. A retrospective analysis was conducted on 32 lower extremity postoperative wounds treated weekly with human fibroblast-derived dermis skin substitute. Postoperative wounds were defined as a wound resulting from an open partial foot amputation, surgical wound dehiscence, or nonhealing surgical wound of the lower extremity. Wound surface area was calculated at 4 and 12 weeks or until wound closure if prior to 12 weeks. Postoperative wounds treated with weekly applications showed mean improvement in surface area reduction of 63.6% at 4 weeks and 96.1% at 12 weeks. More than 56% of all wounds healed prior to the 12-week endpoint. Additionally, only one adverse event was noted in this group. This retrospective review supports the use of human fibroblast-derived dermis skin substitute in the treatment of postoperative lower extremity wounds. This advanced wound care therapy aids in decreased total healing time and increased rate of healing for not only diabetic foot wounds but also postoperative wounds of the lower extremity, as demonstrated by this retrospective review.

  17. The thermal sensitivity of normal and ataxia telangiectasia human fibroblasts

    SciTech Connect

    Raaphorst, G.P.; Azzam, E.I.

    1982-01-01

    Human normal and ataxia telangiectasia (AT) heterozygote and homozygote cell strains were heated at 42.0 and 45.0/sup 0/C to determine their thermal responses. All cell strains had approximately the same thermal sensitivity and were less thermally sensitive than Chinese hamster cells or many other rodent cell lines reported in the literature. No shoulders were observed on the survival curves for heating at 42.0 or 45.0/sup 0/C. Thermal tolerance developed in both the normal and AT cell strains with heating for prolonged intervals at 42.0/sup 0/C.

  18. The thermal sensitivity of normal and ataxia telangiectasia human fibroblasts

    SciTech Connect

    Raaphorst, G.P.; Azzam, E.I.

    1982-11-01

    Human normal and ataxia telangiectasia (AT) heterozygote and homozygote cell strains were heated at 42.0 and 45.0/sup 0/C to determine their thermal responses. All cell strains had approximately the same thermal sensitivity and were less thermally sensitive than Chinese hamster cells or many other rodent cell lines reported in the literature. No shoulders were observed on the survival curves for heating at 42.0 or 45.0/sup 0/C. Thermal tolerance developed in both the normal and AT cells strains with heating for prolonged intervals at 42.0GAMMA.

  19. Characterization of 58-kilodalton human neutrophil collagenase: Comparison with human fibroblast collagenase

    SciTech Connect

    Mallya, S.K.; Mookhtiar, K.A.; Gao, Y.; Dioszegi, M.; Wart, H.E.V. ); Brew, K. ); Birkedal-Hansen, H. )

    1990-11-01

    A series of experiments has been carried out to characterize 58-kDa human neutrophil collagenase (HNC) and compare it with human fibroblast collagenase (HFC). N-Terminal sequencing of latent and spontaneously activated HNC shows that it is a distinct collagenase that is homologous to HFC and other members of the matrix metalloproteinase gene family. Activation occurs autolytically by hydrolysis of an M-L bond at a locus homologous to the Q{sub 80}-F{sub 81}-V{sub 82}-L{sub 83} autolytic activation site of HFC. This releases a 16-residue propeptide believed to contain the cysteine switch residue required for latency. Polyclonal antibody raised against HNC cross-reacts with HFC but with none of the other major human matrix metalloproteinases examined. Treatment of HNC with endoglycosidase F or N-glycosidase F indicates that it is glycosylated at multiple sites. The deglycosylated latent and spontaneously activated enzymes have molecular weights of approximately 44K and 42K, respectively. Differences in the carbohydrate processing of HFC and HNC may determine why HFC is a secreted protein while HNC is stored in intracellular granules. The kinetic parameters K{sub cat} and K{sub M} for the hydrolysis of the interstitial collagen types I, II, and III in solution by both collagenases have been determined. The rates of hydrolysis of these peptides vary very little, indicating that it is the collagen conformation at the cleavage site and not the sequence specificity of the collagenases that determines their collagen specificities.

  20. HEMA but not TEGDMA induces autophagy in human gingival fibroblasts

    PubMed Central

    Teti, Gabriella; Orsini, Giovanna; Salvatore, Viviana; Focaroli, Stefano; Mazzotti, Maria C.; Ruggeri, Alessandra; Mattioli-Belmonte, Monica; Falconi, Mirella

    2015-01-01

    Polymerized resin-based materials are successfully used in restorative dentistry. Despite their growing popularity, one drawback is the release of monomers from the polymerized matrix due to an incomplete polymerization or degradation processes. Released monomers are responsible for several adverse effects in the surrounding biological tissues, inducing high levels of oxidative stress. Reactive oxygen species are important signaling molecules that regulate many signal-trasduction pathways and play critical roles in cell survival, death, and immune defenses. Reactive oxygen species were recently shown to activate autophagy as a mechanism of cell survival and cell death. Although the toxicity induced by dental resin monomers is widely studied, the cellular mechanisms underlying these phenomena are still unknown. The aim of the study was to investigate the behavior of human gingival cells exposed to 2-hydroxy-ethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) to better elucidate the mechanisms of cell survival and cell death induced by resin monomers. Primary culture of human gingival cells were exposed to 3 mmol/L of HEMA or 3 mmol/L of TEGDMA for 24, 48, and 72 h. Morphological investigations were performed by transmission electron microscopy to analyze the ultrastructure of cells exposed to the monomers. The expression of protein markers for apoptosis (caspase – 3 and PARP) and autophagy (beclin – 1 and LC3B I/II) were analyzed by western blot to investigate the influence of dental resin monomers on mechanisms underlying cell death. Results showed that HEMA treatment clearly induced autophagy followed by apoptosis while the lack of any sign of autophagy activation is observed in HGFs exposed to TEGDMA. These data indicate that cells respond to monomer-induced stress by the differential induction of adaptive mechanisms to maintain cellular homeostasis. PMID:26483703

  1. Preventive effects of tamarind seed coat extract on UVA-induced alterations in human skin fibroblasts.

    PubMed

    Phetdee, Khemjira; Rakchai, Racharat; Rattanamanee, Kwanchai; Teaktong, Thanasak; Viyoch, Jarupa

    2014-01-01

    One of the most damaging actions on skin is from solar radiation, particularly from its ultraviolet (UV) component, through the formation of oxidative species. Thus, an antioxidant strategy that prevents the formation of these oxidants could form the basis of an efficacious cutaneous protectant. Many herbal materials contain antioxidant polyphenols, and this study assessed the possibility that tamarind seed coat extract could fulfill this role. An alcoholic extract of the tamarind (Tamarindus indica L.) seed coat showed stronger antioxidant activity (2,2-diphenyl-1-picrylhydrazyl inhibition, EC(50) = 12.9 μg/ml) than L-ascorbic acid (EC(50) = 22.9 μg/ml) and α-tocopherol (EC(50) = 29.3 μg/ml). In cultured fibroblasts taken from human skin, hydrogen peroxide (100-1000 μM) damaged 62-92% of the cells compared to only 35-47% when the cells were preincubated in extract (200 μg/ml) for 24 h. UVA (40 J/cm2) irradiation of human fibroblasts damaged 25% of the cells but the death rate was reduced to 10% with extract. UV irradiation increased the proportion of cells arrest in G(0)/G(1) phase (from 59% to 78%) but this was largely prevented by the extract (64%), according to flow cytometry. Intracellular total glutathione of UVA-irradiated cells pretreated with the extract increased to 10-25% compared to the non-pretreated group at 24-72 h after irradiation. Fibroblasts typically increased matrix metalloproteinase-1 secretion after photodamage, and this is prevented by the extract. This is the first report showing that tamarind seed coat extract is an antioxidant and can protect human skin fibroblasts from cellular damage produced by UVA and thus may form the foundation for an antiaging cosmetic.

  2. Preventive effects of tamarind seed coat extract on UVA-induced alterations in human skin fibroblasts.

    PubMed

    Phetdee, Khemjira; Rakchai, Racharat; Rattanamanee, Kwanchai; Teaktong, Thanasak; Viyoch, Jarupa

    2014-01-01

    One of the most damaging actions on skin is from solar radiation, particularly from its ultraviolet (UV) component, through the formation of oxidative species. Thus, an antioxidant strategy that prevents the formation of these oxidants could form the basis of an efficacious cutaneous protectant. Many herbal materials contain antioxidant polyphenols, and this study assessed the possibility that tamarind seed coat extract could fulfill this role. An alcoholic extract of the tamarind (Tamarindus indica L.) seed coat showed stronger antioxidant activity (2,2-diphenyl-1-picrylhydrazyl inhibition, EC(50) = 12.9 μg/ml) than L-ascorbic acid (EC(50) = 22.9 μg/ml) and α-tocopherol (EC(50) = 29.3 μg/ml). In cultured fibroblasts taken from human skin, hydrogen peroxide (100-1000 μM) damaged 62-92% of the cells compared to only 35-47% when the cells were preincubated in extract (200 μg/ml) for 24 h. UVA (40 J/cm2) irradiation of human fibroblasts damaged 25% of the cells but the death rate was reduced to 10% with extract. UV irradiation increased the proportion of cells arrest in G(0)/G(1) phase (from 59% to 78%) but this was largely prevented by the extract (64%), according to flow cytometry. Intracellular total glutathione of UVA-irradiated cells pretreated with the extract increased to 10-25% compared to the non-pretreated group at 24-72 h after irradiation. Fibroblasts typically increased matrix metalloproteinase-1 secretion after photodamage, and this is prevented by the extract. This is the first report showing that tamarind seed coat extract is an antioxidant and can protect human skin fibroblasts from cellular damage produced by UVA and thus may form the foundation for an antiaging cosmetic. PMID:24602819

  3. The catalytic and the RNA subunits of human telomerase are required to immortalize equid primary fibroblasts.

    PubMed

    Vidale, Pamela; Magnani, Elisa; Nergadze, Solomon G; Santagostino, Marco; Cristofari, Gael; Smirnova, Alexandra; Mondello, Chiara; Giulotto, Elena

    2012-10-01

    Many human primary somatic cells can be immortalized by inducing telomerase activity through the exogenous expression of the human telomerase catalytic subunit (hTERT). This approach has been extended to the immortalization of cell lines from several mammals. Here, we show that hTERT expression is not sufficient to immortalize primary fibroblasts from three equid species, namely donkey, Burchelli's zebra and Grevy's zebra. In vitro analysis of a reconstituted telomerase composed by hTERT and an equid RNA component of telomerase (TERC) revealed a low activity of this enzyme compared to human telomerase, suggesting a low compatibility of equid and human telomerase subunits. This conclusion was also strengthened by comparison of human and equid TERC sequences, which revealed nucleotide differences in key regions for TERC and TERT interaction. We then succeeded in immortalizing equid fibroblasts by expressing hTERT and hTERC concomitantly. Expression of both human telomerase subunits led to telomerase activity and telomere elongation, indicating that human telomerase is compatible with the other equid telomerase subunits and proteins involved in telomere metabolism. The immortalization procedure described herein could be extended to primary cells from other mammals. The availability of immortal cells from endangered species could be particularly useful for obtaining new information on the organization and function of their genomes, which is relevant for their preservation.

  4. Lipoteichoic acid and interleukin 1 stimulate synergistically production of hepatocyte growth factor (scatter factor) in human gingival fibroblasts in culture.

    PubMed Central

    Sugiyama, A; Arakaki, R; Ohnishi, T; Arakaki, N; Daikuhara, Y; Takada, H

    1996-01-01

    Lipoteichoic acids (LTA) from various gram-positive bacteria, including oral streptococci such as Streptococcus sanguis, enhanced the production of hepatocyte growth factor (HGF) (scatter factor) by human gingival fibroblasts in culture, whereas lipopolysaccharides (LPS) from various gram-negative bacteria did not. In contrast, LPS induced interleukin 1 activity in human gingival epithelial cells in culture, while LTA had little effect. LTA and recombinant human interleukin 1 alpha enhanced synergistically the production of HGF/SF in human gingival fibroblast cultures. Recombinant human HGF, in turn, enhanced the proliferation of human gingival epithelial cells in culture. PMID:8606111

  5. Testing the oxidative stress hypothesis of aging in primate fibroblasts: is there a correlation between species longevity and cellular ROS production?

    PubMed

    Csiszar, Anna; Podlutsky, Andrej; Podlutskaya, Natalia; Sonntag, William E; Merlin, Steven Z; Philipp, Eva E R; Doyle, Kristian; Davila, Antonio; Recchia, Fabio A; Ballabh, Praveen; Pinto, John T; Ungvari, Zoltan

    2012-08-01

    The present study was conducted to test predictions of the oxidative stress theory of aging assessing reactive oxygen species production and oxidative stress resistance in cultured fibroblasts from 13 primate species ranging in body size from 0.25 to 120 kg and in longevity from 20 to 90 years. We assessed both basal and stress-induced reactive oxygen species production in fibroblasts from five great apes (human, chimpanzee, bonobo, gorilla, and orangutan), four Old World monkeys (baboon, rhesus and crested black macaques, and patas monkey), three New World monkeys (common marmoset, red-bellied tamarin, and woolly monkey), and one lemur (ring-tailed lemur). Measurements of cellular MitoSox fluorescence, an indicator of mitochondrial superoxide (O2(·-)) generation, showed an inverse correlation between longevity and steady state or metabolic stress-induced mitochondrial O2(·-) production, but this correlation was lost when the effects of body mass were removed, and the data were analyzed using phylogenetically independent contrasts. Fibroblasts from longer-lived primate species also exhibited superior resistance to H(2)O(2)-induced apoptotic cell death than cells from shorter-living primates. After correction for body mass and lack of phylogenetic independence, this correlation, although still discernible, fell short of significance by regression analysis. Thus, increased longevity in this sample of primates is not causally associated with low cellular reactive oxygen species generation, but further studies are warranted to test the association between increased cellular resistance to oxidative stressor and primate longevity. PMID:22219516

  6. Activation of the NLRP3/caspase-1 inflammasome in human dental pulp tissue and human dental pulp fibroblasts.

    PubMed

    Jiang, Wenkai; Lv, Haipeng; Wang, Haijing; Wang, Diya; Sun, Shukai; Jia, Qian; Wang, Peina; Song, Bing; Ni, Longxing

    2015-08-01

    The NLRP3/caspase-1 inflammasome pathway plays an important role in cellular immune defence against bacterial infection; however, its function in human dental pulp tissue and human dental pulp fibroblasts remains poorly understood. We demonstrate that NLRP3 protein expression occurs to a greater extent in pulp tissue with irreversible pulpitis than in normal pulp tissue and in tissue with reversible pulpitis. Caspase-1 is present in its active (cleaved) form only in pulp tissue with irreversible pulpitis. NLRP3 and caspase-1 are expressed in the odontoblast layers in normal human dental pulp tissue, whereas in inflamed pulp tissue, the odontoblast layers are disrupted and dental pulp cells are positive for NLRP3 and caspase-1. Additionally, we investigate the role of the NLRP3/caspase-1 inflammasome pathway in human dental pulp fibroblasts and show that ATP activates the P2X7 receptor on the cell membrane triggering K(+) efflux and inducing the gradual recruitment of the membrane pore pannexin-1. Extracellular lipopolysaccharide is able to penetrate the cytosol and activate NLRP3. Furthermore, the low intracellular K(+) concentration in the cytosol triggers reactive oxygen species generation, which also induces the NLRP3 inflammasome. Thus, the NLRP3/caspase-1 pathway has a biological role in the innate immune response mounted by human dental pulp fibroblasts.

  7. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension.

    PubMed

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E; Qvortrup, Klaus; Baar, Keith; Svensson, René B; Magnusson, S Peter; Krogsgaard, Michael; Koch, Manuel; Kjaer, Michael

    2010-06-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned along the axis of tension. The fibrils had a homogeneous narrow diameter that was similar to collagen fibrils occurring in embryonic tendon. Immunostaining showed colocalization of collagen type I with collagen III, XII and XIV. A fibronectin network was formed in parallel with the collagen, and fibroblasts stained positive for integrin alpha(5). Finally, the presence of cell extensions into the extracellular space with membrane-enclosed fibrils in fibripositors indicated characteristics of embryonic tendon. We conclude that mature human tendon fibroblasts retain an intrinsic capability to perform collagen fibrillogenesis similar to that of developing tendon, which implies that the hormonal/mechanical milieu, rather than intrinsic cellular function, inhibits regenerative potential in mature tendon.

  8. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    PubMed Central

    Gothai, Sivapragasam; Arulselvan, Palanisamy; Tan, Woan Sean; Fakurazi, Sharida

    2016-01-01

    Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for the treatment of cuts, wounds and burns. Moringa oleifera (MO) is an herb used as a traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of MO leaves extract are completely unknown. Materials and Methods: In the current study, ethyl acetate fraction of MO leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate) in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml) of ethyl acetate fraction of MO leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: This study suggested that ethyl acetate fraction of MO leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. PMID:27069722

  9. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    PubMed

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  10. Regulation of Collagen Turnover in Human Skin Fibroblasts Exposed to a Gadolinium-Based Contrast Agent

    PubMed Central

    Bhagavathula, Narasimharao; DaSilva, Marissa; Aslam, Muhammad N.; Dame, Michael K.; Warner, Roscoe L.; Xu, Yiru; Fisher, Gary J.; Johnson, Kent J.; Swartz, Richard; Varani, James

    2010-01-01

    Objective Nephrogenic systemic fibrosis (NSF) is a clinical syndrome linked with exposure in renal failure patients to gadolinium-based contrast agents (GBCAs) during magnetic resonance imaging. Recently, we demonstrated that GBCA exposure led to increased matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) levels in human skin fibroblasts. The goals of the present work were to assess the relationship between altered MMP-1 / TIMP-1 expression and collagen production / deposition, and the intracellular signaling events that lead from GBCA stimulation to altered MMP-1 and TIMP-1 production. Materials and Methods Human dermal fibroblasts were treated with one of the currently used GBCAs (Omniscan). Proliferation was quantified as were levels of MMP-1, TIMP-1, procollagen type I and collagen type I. Signaling events were concomitantly assessed, and signaling inhibitors were used. Results Fibroblasts exposed to Omniscan had increases in both MMP-1 and TIMP-1 levels. Omniscan treatment interfered with collagen turnover, leading to increased type I collagen deposition without an increase in type I procollagen production. U0126, an inhibitor of mitogen-activated protein kinase signaling, and LY294002, a phosphatidylinositol-3 kinase inhibitor, reduced MMP-1 levels. U0126 also reduced TIMP-1 levels, but LY294002 increased TIMP-1. Conclusion These data provide evidence for complex regulation of collagen deposition in Omniscan-treated skin. They suggest that the major effect of Omniscan exposure is on an enzyme / inhibitor system that regulates collagen breakdown rather than on collagen production, per se. PMID:19561517

  11. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis.

    PubMed

    Lee, Geum-Young; Park, Kang-Gyun; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-03-01

    Current studies of Panax ginseng (or Korean ginseng) have demonstrated that it has various biological effects, including angiogenesis, immunostimulation, antimicrobial and anti-inflammatory effects. Therefore, we hypothesised that P. ginseng may also play an important role in wound healing. However, few studies have been conducted on the wound-healing effects of P. ginseng. Thus, the purpose of this in vitro pilot study was to determine the effects of P. ginseng on the activities of fibroblasts, which are key wound-healing cells. Cultured human dermal fibroblasts were treated with one of six concentrations of P. ginseng: 0, 1, 10 and 100 ng/ml and 1 and 10 µg/ml. Cell proliferation was determined 3 days post-treatment using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, and collagen synthesis was evaluated by the collagen type I carboxy-terminal propeptide method. Cell proliferation levels and collagen synthesis were compared among the groups. The 10 ng/ml to 1 µg/ml P. ginseng treatments significantly increased cell proliferation, and the 1 ng/ml to 1 µg/ml concentrations significantly increased collagen synthesis. The maximum effects for both parameters were observed at 10 ng/ml. P. ginseng stimulated human dermal fibroblast proliferation and collagen synthesis at an optimal concentration of 10 ng/ml.

  12. Fibroblasts induce heparin synthesis in chondroitin sulfate E containing human bone marrow-derived mast cells

    SciTech Connect

    Gilead, L.; Bibi, O.; Razin, E. )

    1990-09-15

    Human bone marrow-derived mast cells (hBMMCs), differentiated in vitro in suspension culture and under the influence of human peripheral blood mononuclear cells conditioned medium (hCM), were tested for their response to recombinant human interleukin-3 (rhIL-3) and for their behavior in different microenvironments. The hBMMCs were incubated in the presence of rhIL-3 and the changes in their proliferation rate were determined. Recombinant hIL-3 induced a more than sixfold increase in 3H-thymidine uptake into the hBMMC DNA in a dose-dependent manner. Human CM used as a control for proliferation response induced a more than eightfold maximal proliferation rate increase. Rabbit anti-rhIL-3 completely inhibited hBMMC 3H-thymidine uptake induced by rhIL-3 and decreased the hCM-induced proliferation by approximately 50%. These hBMMCs were cocultured with four different mytomicin C-treated cell monolayers and assayed for phenotypic changes. After only 2 days in coculture with either embryonic mouse skin-derived fibroblasts (MESFs) or human skin-derived fibroblasts (HSFs), a marked increase in granule number and density was noted on staining with toluidine blue. Mast cells that initially stained alcian blue+/safranin- at day 0 of coculture became alcian blue+/safranin+ during the coculture period. Human BMMC proteoglycan synthesis shifted from approximately 85% chondroitin sulfate E to approximately 60% heparin within 14 to 19 days of coculture with the MESF monolayer and to approximately 50% heparin within 19 days of coculture with the HSF monolayer. None of the above-mentioned changes were noted in cocultures of hBMMCs with 3T3 cell line fibroblast monolayers or in cocultures with bovine vascular endothelium (BVE) cell monolayers.

  13. A comparative study of stearic and lignoceric acid oxidation by human skin fibroblasts.

    PubMed

    Singh, H; Poulos, A

    1986-10-01

    Sensitive assays were developed for long chain and very long chain fatty acid oxidation in human skin fibroblast homogenates. Stearic and lignoceric acids were degraded by the fibroblasts by the beta-oxidation pathway. The cofactor requirements for stearic and lignoceric acid beta-oxidation were very similar but not identical. For example, appreciable lignoceric acid oxidation could be demonstrated only in the presence of alpha-cyclodextrin and was inhibited by Triton X-100. In Zellweger's syndrome, stearic acid beta-oxidation was partially reduced whereas lignoceric acid beta-oxidation was reduced dramatically (less than 12% activity compared to the controls). The results presented suggest that stearic acid beta-oxidation occurs in mitochondria as well as in peroxisomes, but lignoceric acid oxidation occurs entirely in the peroxisomes. We suggest that the beta-oxidation systems for stearic acid and lignoceric acid may be different.

  14. Evaluation of light-emitting diode (LED-835 NM) application over human gingival fibroblast: an in vitro study.

    PubMed

    Roncati, M; Lauritano, D; Cura, F; Carinci, F

    2016-01-01

    Since the laser and photomodulation were discovered over 50 years, they have been used for many applications in medicine and in dentistry also. In particular, light-emitting diodes therapy (LT) achieved a great success in medical treatment and photo-therapy. In the decades, LT has been used for several therapeutic purposes. Many beneficial effects have been demonstrated in vitro and in vivo, including antibacterial, antiviral, antitumor, cell differentiation, immune potentiating and tissue repair activities. Beneficial effects of LT have also been observed in clinical settings. Although there are lots of cell culture studies in low-level laser therapy, there are only a few cell culture studies in LT that have similar characteristics. The aim of this study was to investigate the effects of LT on primary human gingival fibroblast cells (HGF) on elastin (ELN) gene activation using Real Time PCR. ELN gene activation is directly connected with elastin protein production and HGF functionality. Human gingival tissue biopsies were obtained from three healthy patients during tooth extraction. The gingival specimens were fragmented with a scalpel and transferred in culture dishes containing Dulbecco’s modified Eagle medium supplemented with 20% fetal calf serum (FBS) and antibiotics, i.e. penicillin 100U/ml and streptomycin 100μg/ml. Cells were incubated in a humidified atmosphere of 5% CO2 at 37C. The medium was changed the next day and twice a week. After 15 days, the samples of gingival tissue were removed from the culture dishes. Cells were harvested after an additional 24 h incubation. Human gingival fibroblasts at the second passage were seeded on multiple 6-well plates. The cells stimulation was performed with a light-emitting diodes (LEDs) medical device type E-Light. The LED irradiation seems to be directly correlated with the elastin (ELN) gene activation. Interestingly, ELN gene expression in the cultured human gingival fibroblasts seems to be inversely related

  15. Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts.

    PubMed

    Easley, Charles A; Miki, Toshio; Castro, Carlos A; Ozolek, John A; Minervini, Crescenzio F; Ben-Yehudah, Ahmi; Schatten, Gerald P

    2012-06-01

    Cellular reprogramming from adult somatic cells into an embryonic cell-like state, termed induced pluripotency, has been achieved in several cell types. However, the ability to reprogram human amniotic epithelial cells (hAECs), an abundant cell source derived from discarded placental tissue, has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs), but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore, AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation, including NEUROD1 and SOX17, markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs, we analyzed global DNA methylation, global histone acetylation, and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts, hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise, quantitative gene expression analyses show that hAECs endogenously express OCT4, SOX2, KLF4, and c-MYC, all four factors used in cellular reprogramming. Thus, hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents. PMID:22686477

  16. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  17. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts

    PubMed Central

    Buskermolen, Jeroen K.; Reijnders, Christianne M.A.; Spiekstra, Sander W.; Steinberg, Thorsten; Kleverlaan, Cornelis J.; Feilzer, Albert J.; Bakker, Astrid D.

    2016-01-01

    Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and

  18. CYCLOSPORIN A AFFECTS THE PROLIFERATION PROCESS IN NORMAL HUMAN DERMAL FIBROBLASTS.

    PubMed

    Janikowska, Grazyna; Janikowsk, Tomasz; Pyka, Alina; Wilczok, Adam; Mazurek, Urszula

    2016-01-01

    Cyclosporin A is an immunosuppressant drug that is used not only in solid transplant rejection, but also in moderate and severe forms of psoriasis, pyoderma, lupus or arthritis. Serious side effects of the drug such as skin cancer or gingival hyperplasia probably start with the latent proliferation process. Little is known about the influence of cyclosporin A on molecular signaling in epidermal tissue. Thus, the aim of this study was to estimate the influence of cyclosporin A on the process of proliferation in normal human dermal fibroblasts. Fibroblasts were cultured in a liquid growth medium in standard conditions. Cyclosporin A was added to the culture after the confluence state. Survival and proliferation tests on human dermal fibroblast cells were performed. Total RNA was extracted from fibroblasts, based on which cDNA and cRNA were synthesized. The obtained cRNA was hybridized with the expression microarray HGU-133A_2.0. Statistical analysis of 2734 mRNAs was performed by the use of GeneSpring 13.0 software and only results with p < 0.05 were accepted. Analysis of variance with Tukey post hoc test with Benjamini-Hochberg correction for all three (8, 24, 48 h) culture stages (with and without cyclosporin A) was performed to lower the number of statistically significant results from 679 to 66, and less. Between statistically and biologically significant mRNAs down-regulated were EGRJ, BUBIB, MKI67, CDK1, TTK, E2F8, TPX2, however, the INSIG1, FOSL1, HMOX1 were up-regulated. The experiment data revealed that cyclosporin A up-regulated FOSL1 in the first 24 h, afterwards down-regulating its expression. The HMOX1 gene was up-regulated in the first stage of the experiment (CsA 8 h), however, after the next 16 h of culture time its expression was down-regulated (CsA 24 h), to finally increased in the later time period. The results indicate that cyclosporin A had a significant effect on proliferation in normal human dermal fibroblasts through the changes in the

  19. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts.

    PubMed

    Buskermolen, Jeroen K; Reijnders, Christianne M A; Spiekstra, Sander W; Steinberg, Thorsten; Kleverlaan, Cornelis J; Feilzer, Albert J; Bakker, Astrid D; Gibbs, Susan

    2016-08-01

    Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and

  20. Master regulators in primary skin fibroblast fate reprogramming in a human ex vivo model of chronic wounds.

    PubMed

    Noizet, Maïté; Lagoutte, Emilie; Gratigny, Marlène; Bouschbacher, Marielle; Lazareth, Isabelle; Roest Crollius, Hugues; Darzacq, Xavier; Dugast-Darzacq, Claire

    2016-03-01

    Fibroblasts are important players in regulating tissue homeostasis. In the dermis, they are involved in wound healing where they differentiate into contractile myofibroblasts leading to wound closure. In nonhealing chronic wounds, fibroblasts fail to undertake differentiation. We established and used a human ex vivo model of chronic wounds where fibroblasts can undergo normal myofibroblast differentiation, or take on a nondifferentiable pathological state. At the whole genome scale, we identified the genes that are differentially regulated in these two cell fates. By coupling the search of evolutionary conserved regulatory elements with global gene network expression changes, we identified transcription factors (TF) potentially involved in myofibroblast differentiation, and constructed a network of relationship between these key factors. Among these, we found that TCF4, SOX9, EGR2, and FOXS1 are major regulators of fibroblast to myofibroblast differentiation. Conversely, down-regulation of MEOX2, SIX2, and MAF causes reprogramming of fibroblasts to myofibroblasts even in absence of TGF-β, the natural inducer of myofibroblast differentiation. These results provide insight into the fibroblast differentiation program and reveal a TF network essential for cellular reprogramming. They could lead to the development of new therapeutics to treat fibroblast-related human pathologies. PMID:26663515

  1. Aging decreases collagen IV expression in vivo in the dermo-epidermal junction and in vitro in dermal fibroblasts: possible involvement of TGF-β1.

    PubMed

    Feru, Jezabel; Delobbe, Etienne; Ramont, Laurent; Brassart, Bertrand; Terryn, Christine; Dupont-Deshorgue, Aurelie; Garbar, Christian; Monboisse, Jean-Claude; Maquart, Francois-Xavier; Brassart-Pasco, Sylvie

    2016-08-01

    Collagen IV is a major component of the dermo-epidermal junction (DEJ). To study expression of collagen IV upon aging in the DEJ and dermal fibroblasts isolated from the same patients. A model of senescent fibroblasts was developed in order to identify biological compounds that might restore the level of collagen IV. Skin fragments of women (30 to 70 years old) were collected. Localisation of collagen IV expression in the DEJ was studied by immunofluorescence. Fibroblast collagen IV expression was studied by real-time PCR, ELISA, and western blotting. Premature senescence was simulated by exposing fibroblasts to subcytotoxic H2O2 concentrations. Collagen IV decreased in the DEJ and fibroblasts relative to age. TGF-β1 treatment significantly increased collagen IV gene and protein expression in fibroblasts and restored expression in the model of senescence. Addition of TGF-β1-neutralizing antibody to fibroblast cultures decreased collagen IV expression. Taken together, the results suggest that the decrease in collagen IV in the DEJ, relative to age, could be due to a decrease in collagen IV expression by senescent dermal fibroblasts and may involve TGF-β1 signalling. PMID:27124123

  2. Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts.

    PubMed

    Semov, Alexandre; Semova, Nathalia; Lacelle, Chantale; Marcotte, Richard; Petroulakis, Emmanuel; Proestou, Gregory; Wang, Eugenia

    2002-06-01

    Spaceflight, just like aging, causes profound changes in musculoskeletal parameters, which result in decreased bone density and muscular weakness. As these conditions decrease our ability to conduct long-term manned space missions, and increase bone frailty in the elderly, the identification of genes responsible for the apparition of these physiological changes will be of great benefit. Thus, we developed and implemented a new microarray approach to investigate the changes in normal WI38 human fibroblast gene expression that arise as a consequence of space flight. Using our microarray, we identified changes in the level of expression of 10 genes, belonging to either the tumor necrosis factor- (TNF) or interleukin- (IL) related gene families in fibroblasts when WI38 cells exposed to microgravity during the STS-93 Space Shuttle mission were compared with ground controls. The genes included two ligands from the TNF superfamily, TWEAK and TNFSF15; two TNF receptor-associated proteins, NSMAF and PTPN13; three TNF-inducible genes, ABC50, PTX3, and SCYA13; TNF-alpha converting enzyme, IL-1 receptor antagonist, and IL-15 receptor alpha chain. Most of these are involved in either the regulation of bone density, and as such the development of spaceflight osteopenia, or in the development of proinflammatory status. PMID:12039873

  3. Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts

    NASA Technical Reports Server (NTRS)

    Semov, Alexandre; Semova, Nathalia; Lacelle, Chantale; Marcotte, Richard; Petroulakis, Emmanuel; Proestou, Gregory; Wang, Eugenia

    2002-01-01

    Spaceflight, just like aging, causes profound changes in musculoskeletal parameters, which result in decreased bone density and muscular weakness. As these conditions decrease our ability to conduct long-term manned space missions, and increase bone frailty in the elderly, the identification of genes responsible for the apparition of these physiological changes will be of great benefit. Thus, we developed and implemented a new microarray approach to investigate the changes in normal WI38 human fibroblast gene expression that arise as a consequence of space flight. Using our microarray, we identified changes in the level of expression of 10 genes, belonging to either the tumor necrosis factor- (TNF) or interleukin- (IL) related gene families in fibroblasts when WI38 cells exposed to microgravity during the STS-93 Space Shuttle mission were compared with ground controls. The genes included two ligands from the TNF superfamily, TWEAK and TNFSF15; two TNF receptor-associated proteins, NSMAF and PTPN13; three TNF-inducible genes, ABC50, PTX3, and SCYA13; TNF-alpha converting enzyme, IL-1 receptor antagonist, and IL-15 receptor alpha chain. Most of these are involved in either the regulation of bone density, and as such the development of spaceflight osteopenia, or in the development of proinflammatory status.

  4. Telocytes and putative stem cells in ageing human heart.

    PubMed

    Popescu, Laurentiu M; Curici, Antoanela; Wang, Enshi; Zhang, Hao; Hu, Shengshou; Gherghiceanu, Mihaela

    2015-01-01

    Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days-1 year), children (6-17 years) and adults (34-60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm(2) ) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52-62%; vascular smooth muscle cells and pericytes 22-28%, Schwann cells with nerve endings 6-7%, fibroblasts 3-10%, macrophages 1-8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults).

  5. Retinoic acid stimulation of human dermal fibroblast proliferation is dependent on suboptimal extracellular Ca2+ concentration

    SciTech Connect

    Varani, J.; Shayevitz, J.; Perry, D.; Mitra, R.S.; Nickoloff, B.J.; Voorhees, J.J. )

    1990-06-01

    Human dermal fibroblasts failed to proliferate when cultured in medium containing 0.15 mmol/l (millimolar) Ca2+ (keratinocyte growth medium (KGM)) but did when the external Ca2+ concentration was raised to 1.4 mmol/l. All-trans retinoic acid (retinoic acid) stimulated proliferation in KGM but did not further stimulate growth in Ca2(+)-supplemented KGM. The ability of retinoic acid to stimulate proliferation was inhibited in KGM prepared without Ca2+ or prepared with 0.03 mmol/l Ca2+ and in KGM treated with 1 mmol/l ethylene-glycol-bis-(beta-aminoethyl ether)N,N'-tetra acetic acid. Using 45Ca2+ to measure Ca2+ influx and efflux, it was found that retinoic acid minimally increased Ca2+ uptake into fibroblasts. In contrast, retinoic acid treatment of fibroblasts that had been pre-equilibrated for 1 day with 45Ca2+ inhibited release of intracellular Ca2+ into the extracellular fluid. Retinoic acid also stimulated 35S-methionine incorporation into trichloroacetic acid-precipitable material but in contrast to its effect on proliferation, stimulation of 35S-methionine incorporation occurred in both high-Ca2+ and low-Ca2+ medium. These data indicate that retinoic acid stimulation of proliferation, but not protein synthesis, is dependent on the concentration of Ca2+ in the extracellular environment.

  6. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication.

    PubMed

    Lee, Wonhye; Debasitis, Jason Cushing; Lee, Vivian Kim; Lee, Jong-Hwan; Fischer, Krisztina; Edminster, Karl; Park, Je-Kyun; Yoo, Seung-Schik

    2009-03-01

    We present a method to create multi-layered engineered tissue composites consisting of human skin fibroblasts and keratinocytes which mimic skin layers. Three-dimensional (3D) freeform fabrication (FF) technique, based on direct cell dispensing, was implemented using a robotic platform that prints collagen hydrogel precursor, fibroblasts and keratinocytes. A printed layer of cell-containing collagen was crosslinked by coating the layer with nebulized aqueous sodium bicarbonate. The process was repeated in layer-by-layer fashion on a planar tissue culture dish, resulting in two distinct cell layers of inner fibroblasts and outer keratinocytes. In order to demonstrate the ability to print and culture multi-layered cell-hydrogel composites on a non-planar surface for potential applications including skin wound repair, the technique was tested on a poly(dimethylsiloxane) (PDMS) mold with 3D surface contours as a target substrate. Highly viable proliferation of each cell layer was observed on both planar and non-planar surfaces. Our results suggest that organotypic skin tissue culture is feasible using on-demand cell printing technique with future potential application in creating skin grafts tailored for wound shape or artificial tissue assay for disease modeling and drug testing.

  7. [Morphological changes in human embryonic lung fibroblasts caused by cytotoxins of various Clostridium species].

    PubMed

    Schallehn, G; Wolff, M H

    1988-01-01

    A total of 243 strains of 35 Clostridium species were tested for cytotoxin production in cooked meat medium or liver broth within 48-72 h at 37 degrees C, using human embryonal lung fibroblasts in tissue-culture as indicator cells. Cytotoxin could be detected in the culture-filtrates of all toxigenic strains of C. chauvoei, C. difficile, C. histolyticum, C. novyi types A and B, C. septicum and C. tetani, but not in the atoxigenic ones. The cytotoxin of C. novyi correlated with alpha-toxin in the culture filtrate. All strains of C. perfringens and C. novyi D tested were not cytotoxic for lung fibroblasts despite their pathogenicity for guinea-pigs. Further cytotoxigenic strains were found among C. hastiforme, C. limosum, C. oceanicum, C. putrificum, C. ramosum, C. sordellii, C. sporogenes, and C. subterminale. The morphological changes in lung fibroblasts caused by the culture filtrates were characteristic and species-specific and corresponded with pathogenicity for guinea-pigs and/or mice. No cytotoxin was produced by C. absonum, C. barati, C. bifermentans, C. botulinum (atoxic), C. butyricum, C. cadaveris, C. carnis, C. clostridioforme, C. cochlearium, C. glycolicum, C. innocuum, C. malenominatum, C. mangenotii, C. paraputrificum, C. putrefaciens, C. rectum, C. tertium, and C. tyrobutyricum.

  8. Immunomodulatory Effects of Bee Venom in Human Synovial Fibroblast Cell Line

    PubMed Central

    Mohammadi, Ebrahim; Vatanpour, Hossein; H Shirazi, Farshad

    2015-01-01

    As in Iranian traditional medicine, bee venom (BV) is a promising treatment for the rheumatoid arthritis (RA) which is considered as a problematic human chronic inflammatory disease in the present time. Smoking is considered to be a major risk factor in RA onset and severity. The main aim of this study is to investigate the effects of BV on cigarette smoke-induced inflammatory response in fibroblast-like synoviocytes (FLS). Cytotoxicity of cigarette smoke condensate (CSC) and bee venom were determined by the tetrazolium (MTT) method in cultured synovial fibroblastes. The expression of interleukin-1β and sirtuin1 mRNA were analyzed by SYBR green real-time quantitative PCR. Differences between the mean values of treated and untreated groups were assessed by student t-test. Based on MTT assay, CSC and BV did not exert any significant cytotoxic effects up to 40 µg/mL and 10 µg/mL, respectively. Our results showed that interleukin-1β mRNA level was significantly up-regulated by CSC treatments in LPS-stimulated synoviocytes in a dose-dependent manner. Conversely, the expressions of IL-1β and Sirt1 were up-regulated even in lower concentrations of BV and attenuated at higher concentrations. Also, BV attenuated the CSC-induced and LPS-induced inflammatory responses in synovial fibroblasts. Our results support the epidemiological studies indicating pro-inflammatory effects of CSC and anti-inflammatory effects of BV on FLS cell line. PMID:25561937

  9. Transferrin receptors of human fibroblasts. Analysis of receptor properties and regulation.

    PubMed Central

    Ward, J H; Kushner, J P; Kaplan, J

    1982-01-01

    Normal human skin fibroblasts cultured in vitro exhibit specific binding sites for 125I-labelled transferrin. Kinetic studies revealed a rate constant for association (Kon) at 37 degrees C of 1.03 X 10(7) M-1 X min-1. The rate constant for dissociation (Koff) at 37 degrees C was 7.9 X 10(-2) X min-1. The dissociation constant (KD) was 5.1 X 10(-9) M as determined by Scatchard analysis of binding and analysis of rate constants. Fibroblasts were capable of binding 3.9 X 10(5) molecules of transferrin per cell. Binding of 125I-labelled diferric transferrin to cells was inhibited equally by either apo-transferrin or diferric transferrin, but no inhibition was evident with apo-lactoferrin, iron-saturated lactoferrin, or albumin. Preincubation of cells with saturating levels of diferric transferrin or apo-transferrin produced no significant change in receptor number or affinity. Preincubation of cells with ferric ammonium citrate caused a time- and dose-dependent decrease in transferrin binding. After preincubation with ferric ammonium citrate for 72 h, diferric transferrin binding was 37.7% of control, but no change in receptor affinity was apparent by Scatchard analysis. These results suggest that fibroblast transferrin receptor number is modulated by intracellular iron content and not by ligand-receptor binding. PMID:6297460

  10. Neutral endopeptidase-24.11 (enkephalinase). Biosynthesis and localization in human fibroblasts.

    PubMed Central

    Lorkowski, G; Zijderhand-Bleekemolen, J E; Erdös, E G; von Figura, K; Hasilik, A

    1987-01-01

    The biosynthesis, glycosylation and subcellular localization of the neutral endopeptidase-24.11 were studied in cultured human fibroblasts. The enzyme was synthesized as a precursor (Mr 88,000) containing four or five N-linked oligosaccharides. Within 1 h the synthesis-mature (Mr 94,000) endopeptidase-24.11 was formed and contained sialylated oligosaccharides. The half-life of endopeptidase-24.11 was 3.7 days and in the presence of 10 mM-NH4Cl it increased to 6 days. Mature endopeptidase-24.11 was solubilized with 0.2% saponin and partitioned into Triton X-114. In intact fibroblasts, endopeptidase-24.11 was accessible to antibodies and to neuraminidase even when the treatment was performed at 4 degrees C. The localization of endopeptidase-24.11 to the plasma membrane in cultured fibroblasts was further demonstrated by immunocytochemistry. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. Fig. 6. PMID:3481263

  11. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.

    PubMed

    Felici, Roberta; Lapucci, Andrea; Cavone, Leonardo; Pratesi, Sara; Berlinguer-Palmini, Rolando; Chiarugi, Alberto

    2015-06-01

    Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic

  12. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    PubMed Central

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID

  13. Effect of TERT and ATM on gene expression profiles in human fibroblasts.

    PubMed

    Baross, Agnes; Schertzer, Mike; Zuyderduyn, Scott D; Jones, Steven J M; Marra, Marco A; Lansdorp, Peter M

    2004-04-01

    Telomeres protect chromosomes from degradation, end-to-end fusion, and illegitimate recombination. Loss of telomeres may lead to cell death or senescence or may cause genomic instability, leading to tumor formation. Expression of human telomerase reverse transcriptase (TERT) in human fibroblast cells elongates their telomeres and extends their lifespan. Ataxia telangiectasia mutated (ATM) deficiency in A-T human fibroblasts results in accelerated telomere shortening, abnormal cell-cycle response to DNA damage, and early senescence. Gene expression profiling was performed by serial analysis of gene expression (SAGE) on BJ normal human skin fibroblasts, A-T cells, and BJ and A-T cells transduced with TERT cDNA and expressing telomerase activity. In the four SAGE libraries, 36,921 unique SAGE tags were detected. Pairwise comparisons between the libraries showed differential expression levels of 1%-8% of the tags. Transcripts affected by both TERT and ATM were identified according to expression patterns, making them good candidates for further studies of pathways affected by both TERT and ATM. These include MT2A, P4HB, LGALS1, CFL1, LDHA, S100A10, EIF3S8, RANBP9, and SEC63. These genes are involved in apoptosis or processes related to cell growth, and most have been found to be deregulated in cancer. Our results have provided further insight into the roles of TERT and ATM by identifying genes likely to be involved in their function. Supplementary material for this article can be found on the Genes, Chromosomes and Cancer website at http://www.interscience.wiley.com/jpages/1045-2257/suppmat/index.html. PMID:14978791

  14. Design of vectors for efficient expression of human purine nucleoside phosphorylase in skin fibroblasts from enzyme-deficient humans

    SciTech Connect

    Osborne, W.R.A.; Miller, A.D.

    1988-09-01

    Purine nucleoside phosphorylase deficiency is an inherited disorder associated with a severe immune defect that is fatal. Enzyme replacement therapy is an attractive approach to treatment of this disease. To this aim the authors constructed retroviral vectors containing a human PNP cDNA and a selectable gene encoding neomycin phosphotransferase. PNP expression was controlled by either the early promoter from simian virus 40, the immediate early promoter from human cytomegalovirus, or the retroviral promoter. Cultured skin fibroblasts from two unrelated PNP-deficient patients that were infected with these vectors expressed mean PNP activities of 0.03, 0.74, and 5.9 /mu/mol/hr per mg of protein, respectively. The latter infectants had PNP activities eight times the level of 0.74 /mu/mol/hr per mg of protein observed in normal skin fibroblasts, enabling rapid metabolism of exogenous deoxyguanosine, the cytotoxic metabolite that accumulates in the plasma of PNP-deficient patients. These experiments indicate that viral long terminal repeat was the strongest promoter for expression of PNP and suggest the potential of human skin fibroblasts as vehicles for therapeutic gene expression.

  15. Hydrogen sulfide suppresses migration, proliferation and myofibroblast transdifferentiation of human lung fibroblasts.

    PubMed

    Fang, Li-Ping; Lin, Qing; Tang, Chao-Shu; Liu, Xin-Min

    2009-12-01

    We previously reported that hydrogen sulfide (H(2)S) was implicated in the pathogenesis of bleomycin-induced pulmonary fibrosis in rat, but the cellular mechanisms underlying the role it played were not well characterized. The present study was undertaken to investigate the role of the exogenous H(2)S in human lung fibroblast (MRC5) migration, proliferation and myofibroblast transdifferentiation induced by fetal bovine serum (FBS) and growth factors in vitro, to elucidate the mechanisms by which H(2)S inhibits pathogenesis of pulmonary fibrosis. We found that H(2)S incubation significantly decreased the MRC5 cell migration distance stimulated by FBS and basic fibroblast growth factor (bFGF), inhibited MRC5 cell proliferation induced by FBS and platelet-derived growth factor-BB (PDGF-BB), and also inhibited transforming growth factor-beta1 (TGF-beta1) induced MRC5 cell transdifferentiation into myofibroblasts. Moreover, preincubation with H(2)S decreased extracellular signal-regulated kinase (ERK1/2) phosphorylation in MRC5 cells induced by FBS, PDGF-BB, TGF-beta1, and bFGF. However, the inhibition effects of H(2)S on MRC5 cell migration, proliferation and myofibroblast transdifferentiation were not attenuated by glibenclamide, an ATP-sensitive K(+) channel (K(ATP)) blocker. Thus, H(2)S directly suppressed fibroblast migration, proliferation and phenotype transform stimulated by FBS and growth factors in vitro, which suggests that it could be an important mechanism of H(2)S-suppressed pulmonary fibrosis. These effects of H(2)S on pulmonary fibroblasts were, at least in part, mediated by decreased ERK phosphorylation and were not dependent on K(ATP) channel opening.

  16. Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts

    PubMed Central

    Scaffidi, Amelia K; Mutsaers, Steven E; Moodley, Yuben P; McAnulty, Robin J; Laurent, Geoffrey J; Thompson, Philip J; Knight, Darryl A

    2002-01-01

    Oncostatin M (OSM), a member of the interleukin-6 (IL-6) cytokine family, acts on a variety of cells and elicits diversified biological responses, suggesting potential roles in the regulation of cell survival, differentiation and proliferation.We have examined the effect of OSM on the regulation of human lung fibroblast proliferation, collagen production and spontaneous apoptosis. The proliferative effects of OSM (0.5 – 100 ng ml−1) were assessed using a MTS assay as well as [3H]-thymidine incorporation and cell counts at 24 and 48 h. Hydroxyproline was measured as an index of procollagen production by high pressure liquid chromotography (HPLC). Apoptosis was determined by annexin staining.OSM enhanced the mitotic activity of lung fibroblasts in a time and dose dependent manner. Maximum proliferation of 57% above control was observed after incubation for 48 h with 2 ng ml−1 OSM (P<0.05).Incubation with the mitogen activated protein kinase (MAPK) kinase inhibitor, PD98059 or the tyrosine kinase inhibitor, genestein both significantly reduced the mitogenic effect of OSM (P<0.05).In contrast, proliferation in response to OSM was not regulated by induction of cyclo-oxygenase and subsequent prostaglandin E2 (PGE2) release or by IL-6.OSM also stimulated fibroblasts to synthesize pro-collagen by a maximum of 35% above control levels after 48 h (P<0.05).OSM significantly inhibited the spontaneous apoptosis of fibroblasts at 24 and 48 h.These results provide evidence that OSM has pro-fibrotic properties and suggest that it may play a role in normal lung wound repair and fibrosis. PMID:12086989

  17. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice.

    PubMed

    Sakai, Yusuke; Yamanouchi, Kosho; Ohashi, Kazuo; Koike, Makiko; Utoh, Rie; Hasegawa, Hideko; Muraoka, Izumi; Suematsu, Takashi; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Eguchi, Susumu

    2015-10-01

    Subcutaneous liver tissue engineering is an attractive and minimally invasive approach used to curative treat hepatic failure and inherited liver diseases. However, graft failure occurs frequently due to insufficient infiltration of blood vessels (neoangiogenesis), while the maintenance of hepatocyte phenotype and function requires in vivo development of the complex cellular organization of the hepatic lobule. Here we describe a subcutaneous human liver construction allowing for rapidly vascularized grafts by transplanting engineered cellular sheets consisting of human primary hepatocytes adhered onto a fibroblast layer. The engineered hepatocyte/fibroblast sheets (EHFSs) showed superior expression levels of vascularization-associated growth factors (vascular endothelial growth factor, transforming growth factor beta 1, and hepatocyte growth factor) in vitro. EHFSs developed into vascularized subcutaneous human liver tissues contained glycogen stores, synthesized coagulation factor IX, and showed significantly higher synthesis rates of liver-specific proteins (albumin and alpha 1 anti-trypsin) in vivo than tissues from hepatocyte-only sheets. The present study describes a new approach for vascularized human liver organogenesis under mouse skin. This approach could prove valuable for establishing novel cell therapies for liver diseases.

  18. Electron spin resonance detection of oxygen radicals released by UVA-irradiated human fibroblasts

    NASA Astrophysics Data System (ADS)

    Souchard, J. P.; Pierlot, G.; Barbacanne, M. A.; Charveron, M.; Bonafé, J.-L.; Nepveu, F.

    1999-01-01

    This work reports the electron spin resonance (ESR) detection of oxygenated radicals (OR) released by cultured human fibroblasts after UVA (365 nm) exposure. 5,5-dimethyl-pyrroline-N-oxide (DMPO) was used as spin trap. After a UVA irradiation of one hour, followed by a latent period of at least 45 min., and an incubation time of 30 min. in a trapping medium containing DMPO, glucose, Na^+, K+ and Ca2+ an ESR signal was recorded. By contrast, an ESR signal was produced after only 15 min. incubation when calcium ionophore A23187 was used. Although the ESR signal was characteristic of the hydroxyl adduct DMPO-OH, the use of catalase and superoxide dismutase (SOD) revealed that UVA stimulated fibroblasts released the superoxide anion O2- in the medium. SOD, vitamin C and (+)-catechin inhibited the release of superoxide generated by human fibroblasts stimulated with A23187 calcium ionophore at 5 units/ml, 10-5 M and 2× 10-4 M, respectively. Dans ce travail nous présentons la détection par résonance de spin électronique (RSE) de radicaux oxygénés (RO) libérés par des fibroblastes humains en culture après irradiation aux UVA (365 nm). Le 5,5-diméthyl-1-pyrroline-N-oxyde (DMPO) a été utilisé comme piégeur de spin. Après une irradiation aux UVA d'une heure, suivie d'une période de latence d'au moins 45 min. et d'une incubation de 30 min. dans un milieu de piégeage composé de DMPO, glucose, Na^+, K+ et Ca2+, un signal RPE est enregistré. L'ionophore calcique A23187 entraîne l'apparition d'un signal RPE après seulement 15 min. d'incubation. Bien que le signal RPE obtenu corresponde à l'adduit DMPO-OH du radical hydroxyle, l'utilisation de catalase et de superoxyde dismutase (SOD) a révélé que les fibroblastes libéraient l'anion superoxyde dans le milieu de culture. Sur ce modèle cellulaire la SOD, la vitamine C et la (+) catéchine inhibent la production du radical superoxyde aux concentrations respectivement de 5 unités/ml, 10-5 M et 2× 10-4M.

  19. Abietic acid inhibits UVB-induced MMP-1 expression in human dermal fibroblast cells through PPARα/γ dual activation.

    PubMed

    Jeon, Youngsic; Jung, Yujung; Youm, Jong-Kyung; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2015-02-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and consist of three isotypes: PPARα, PPARβ/δ and PPARγ. PPARs are expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, these receptors are highly studied in dermato-endocrine research, and their ligands are targets for the treatment of various skin disorders, such as photoageing and chronological ageing of skin. Intensive studies have revealed that PPARα/γ functions in photoageing and age-related inflammation by regulating matrix metalloproteinases (MMPs) via nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). However, the detailed mechanism of PPARα/γ's role in photoageing has not yet been elucidated. In this study, we confirmed that abietic acid (AA) is a PPARα/γ dual ligand and significantly decreased UVB-induced MMP-1 expression by downregulating UVB-induced MAPK signalling and downstream transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in Hs68 human dermal fibroblast cells. Treatment of cells with AA and GW6471 or bisphenol A diglycidyl ether (BADGE), PPARα or PPARγ antagonists, respectively, reversed the effect on UVB-induced MMP-1 expression and inflammatory signalling pathway activation. Taken together, our data suggest that AA acts as a PPARα/γ dual activator to inhibit UVB-induced MMP-1 expression and age-related inflammation by suppressing NF-κB and the MAPK/AP-1 pathway and can be a useful agent for improving skin photoageing. PMID:25496486

  20. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    SciTech Connect

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.

  1. Induction of Stem Cell Gene Expression in Adult Human Fibroblasts without Transgenes

    PubMed Central

    Ambady, Sakthikumar; Holmes, William F.; Vilner, Lucy; Kole, Denis; Kashpur, Olga; Huntress, Victoria; Vojtic, Ina; Whitton, Holly; Dominko, Tanja

    2009-01-01

    Abstract Reprogramming of differentiated somatic cells into induced pluripotent stem (iPS) cells has potential for derivation of patient-specific cells for therapy as well as for development of models with which to study disease progression. Derivation of iPS cells from human somatic cells has been achieved by viral transduction of human fibroblasts with early developmental genes. Because forced expression of these genes by viral transduction results in transgene integration with unknown and unpredictable potential mutagenic effects, identification of cell culture conditions that can induce endogenous expression of these genes is desirable. Here we show that primary adult human fibroblasts have basal expression of mRNA for OCT4, SOX2, and NANOG. However, translation of these messages into detectable proteins and their subcellular localization depends on cell culture conditions. Manipulation of oxygen concentration and FGF2 supplementation can modulate expression of some pluripotency related genes at the transcriptional, translational, and cellular localization level. Changing cell culture condition parameters led to expression of REX1, potentiation of expression of LIN28, translation of OCT4, SOX2, and NANOG, and translocation of these transcription factors to the cell nucleus. We also show that culture conditions affect the in vitro lifespan of dermal fibroblasts, nearly doubling the number of population doublings before the cells reach replicative senescence. Our results suggest that it is possible to induce and manipulate endogenous expression of stem cell genes in somatic cells without genetic manipulation, but this short-term induction may not be sufficient for acquisition of true pluripotency. Further investigation of the factors involved in inducing this response could lead to discovery of defined culture conditions capable of altering cell fate in vitro. This would alleviate the need for forced expression by transgenesis, thus eliminating the risk of

  2. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    NASA Technical Reports Server (NTRS)

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  3. Rejoining of isochromatid breaks induced by heavy ions in G2-phase normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Durante, M.; Furusawa, Y.; George, K.; Ito, H.; Wu, H.; Cucinotta, F. A.

    2001-01-01

    We reported previously that exposure of normal human fibroblasts in G2 phase of the cell cycle to high-LET radiation produces a much higher frequency of isochromatid breaks than exposure to gamma rays. We concluded that an increase in the production of isochromatid breaks is a signature of initial high-LET radiation-induced G2-phase damage. In this paper, we report the repair kinetics of isochromatid breaks induced by high-LET radiation in normal G2-phase human fibroblasts. Exponentially growing human fibroblasts (AG1522) were irradiated with gamma rays or energetic carbon (290 MeV/nucleon), silicon (490 MeV/nucleon), or iron (200 MeV/nucleon) ions. Prematurely condensed chromosomes were induced by calyculin A after different postirradiation incubation times ranging from 0 to 600 min. Chromosomes were stained with Giemsa, and aberrations were scored in cells at G2 phase. G2-phase fragments, the result of the induction of isochromatid breaks, decreased quickly with incubation time. The curve for the kinetics of the rejoining of chromatid-type breaks showed a slight upward curvature with time after exposure to 440 keV/microm iron particles, probably due to isochromatid-isochromatid break rejoining. The formation of chromatid exchanges after exposure to high-LET radiation therefore appears to be underestimated, because isochromatid-isochromatid exchanges cannot be detected. Increased induction of isochromatid breaks and rejoining of isochromatid breaks affect the overall kinetics of chromatid-type break rejoining after exposure to high-LET radiation.

  4. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  5. Recombinant human basic-fibroblastic growth factor: different medical dressings for clinical application in wound healing.

    PubMed

    Finetti, G; Farina, M

    1992-06-01

    Recombinant human basic-Fibroblastic Growth Factor (rhb-FGF) is a basic single-chain protein showing high activity as mitogenetic and angiogenetic agent. The application of rhb-FGF in wound healing as stimulator of the tissue repair process is strictly connected with the covering of the wound by means of a proper dressing. A wide number of synthetic occlusive or non-occlusive wound dressings has been developed. Owing to the delicate proteic structure of rhb-FGF, and generally of all the Growth Factors, compatibility with the dressings has to be every time tested, to avoid its inactivation and consequent loss of tissue repair properties.

  6. The use of human skin fibroblasts to obtain potency estimates of drug binding to androgen receptors.

    PubMed

    Eil, C; Edelson, S K

    1984-07-01

    Although several drugs with antiandrogenic properties have been used to treat such conditions as prostatic carcinoma, precocious puberty, acne, and hirsutism, their relative strengths in human tissues are not known. Most of the compounds that are effective clinically in opposing androgen action interact with the androgen receptor in various assay systems. To determine in human cells the relative potencies of these agents as well as others with androgenic properties, we measured the abilities of various compounds to compete with [3H]dihydrotestosterone [( 3H]DHT) for androgen-binding sites in dispersed human genital skin fibroblasts at 22 degrees C. The concentrations of unlabeled DHT, methyltrienolone (a synthetic non- metabolizeable androgen), and testosterone required for 50% inhibition of [3H]DHT binding were similar, approximately 1 nM [0.87 +/- 0.12 (+/- SE), 1.18 +/- 0.18, and 1.01 +/- 0.20 nM, respectively]. The relative binding activities, defined by the ratio of the concentration of methyltrienolone to the concentration of competitor required for 50% displacement of [3H]DHT, were as follows: spironolactone greater than R2956 (a synthetic antiandrogen) greater than megestrol acetate greater than cyproterone acetate greater than estradiol greater than flutamide much greater than testolactone greater than cimetidine. Danazol, an androgen agonist that causes hirsutism, was nearly as effective as spironolactone in its ability to compete for the fibroblast androgen receptor, 50% inhibition of fibroblast [3H]DHT binding was achieved by 1.76 +/- 0.31 nM spironolactone and 2.85 +/- 0.50 nM danazol. Two other compounds that induce hirsutism, diphenylhydantoin and diazoxide, did not displace [3H]DHT. We conclude that 1) of the compounds tested, spironolactone, which is rapidly metabolized in vivo to a much less potent competitor, is the most potent antiandrogen in its ability to interact in vitro with human skin fibroblast androgen receptors; 2) estradiol is a

  7. Short and prolonged exposure to hyperglycaemia in human fibroblasts and endothelial cells: metabolic and osmotic effects.

    PubMed

    Moruzzi, Noah; Del Sole, Marianna; Fato, Romana; Gerdes, Jantje M; Berggren, Per-Olof; Bergamini, Christian; Brismar, Kerstin

    2014-08-01

    High blood glucose levels are the main feature of diabetes. However, the underlying mechanism linking high glucose concentration to diabetic complications is still not fully elucidated, particularly with regard to human physiology. Excess of glucose is likely to trigger a metabolic response depending on the cell features, activating deleterious pathways involved in the complications of diabetes. In this study, we aim to elucidate how acute and prolonged hyperglycaemia alters the biology and metabolism in human fibroblasts and endothelial cells. We found that hyperglycaemia triggers a metabolic switch from oxidative phosphorylation to glycolysis that is maintained over prolonged time. Moreover, osmotic pressure is a major factor in the early metabolic response, decreasing both mitochondrial transmembrane potential and cellular proliferation. After prolonged exposure to hyperglycaemia we observed decreased mitochondrial steady-state and uncoupled respiration, together with a reduced ATP/ADP ratio. At the same time, we could not detect major changes in mitochondrial transmembrane potential and reactive oxygen species. We suggest that the physiological and metabolic alterations observed in healthy human primary fibroblasts and endothelial cells are an adaptive response to hyperglycaemia. The severity of metabolic and bioenergetics impairment associated with diabetic complications may occur after longer glucose exposure or due to interactions with cell types more sensitive to hyperglycaemia.

  8. Lactobacillus sakei lipoteichoic acid inhibits MMP-1 induced by UVA in normal dermal fibroblasts of human.

    PubMed

    You, Ga-Eun; Jung, Bong-Jun; Kim, Hye-Rim; Kim, Han-Geun; Kim, Tae-Rahk; Chung, Dae-Kyun

    2013-10-28

    Human skin is continuously exposed to ultraviolet (UV)-induced photoaging. UVA increases the activity of MMP-1 in dermal fibroblasts through mitogen-activated protein kinase (MAPK), p38, signaling. The irradiation of keratinocytes by UVA results in the secretion of the inflammatory cytokine, tumor necrosis factor-α (TNF-α), and the stimulation of MMP-1 in normal human dermal fibroblasts (NHDFs). Lipoteichoic acid (LTA) is a component of the cell wall of gram-positive Lactobacillus spp. of bacteria. LTA is well known as an anti-inflammation molecule. LTA of the bacterium Lactobacillus plantarum has an anti-photoaging effect, but the potential anti-photoaging effect of the other bacteria has not been examined to date. The current study showed that L. sakei LTA (sLTA) has an immune modulating effect in human monocyte cells. Our object was whether inhibitory effects of sLTA on MMP-1 are caused from reducing the MAPK signal in NHDFs. It inhibits MMP-1 and MAPK signaling induced by UVA in NHDFs. We also confirmed effects of sLTA suppressing TNF-α inducing MMP-1 in NHDFs. PMID:23851272

  9. Artificial sunlight irradiation induces ultraweak photon emission in human skin fibroblasts.

    PubMed

    Niggli, H J

    1993-05-01

    Photons participate in many atomic and molecular interactions and changes in the physical universe. In recent years sophisticated detection procedures for the measurement of ultraweak photons in a variety of different cells have been performed leading to the conclusion that plant, animal and human cells emit ultraweak photons. Using an extremely low-noise, high-sensitive photon-counting system, which allows maximal exploitation of the potential capabilities of a photomultiplier tube, ultraweak photons were quantitated in human skin fibroblasts. It was found that light from an artificial sunlight source induces ultraweak photon emission in these cells. However, the results demonstrate that this induction is significantly lower in normal fibroblasts compared with those obtained from a donor suffering from xeroderma pigmentosum disease group A, a disease characterized by deficient repair of DNA. The largest increase in ultraweak photon emission after UV exposure was measured in mitomycin-C-induced post-mitotic xeroderma pigmentosum cells which showed 10-20 times higher ultraweak photon intensities than mitotic UV-irradiated normal cells. These data suggest that xeroderma pigmentosum cells tend to lose the capacity of efficient storage of ultraweak photons, indicating the existence of an efficient intracellular photon trapping system within human cells. PMID:8350193

  10. Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells

    NASA Astrophysics Data System (ADS)

    Kishwar, S.; Siddique, M.; Israr-Qadir, M.; Nur, O.; Willander, M.; Öllinger, K.

    2014-11-01

    Photocytotoxic effects of as-grown and zinc oxide (ZnO) nanorods coated with 5-aminolevulinic acid (ALA) have been studied on human cells, i.e. melanoma and foreskin fibroblast, under dark and ultraviolet light exposures. Zinc oxide nanorods have been grown on the very sharp tip (diameter = 700 nm) of borosilicate glass pipettes and then were coated by the photosensitizer for targeted investigations inside human cells. The coated glass pipette’s tip with photosensitizer has been inserted inside the cells with the help of a micro-manipulator and irradiated through ultraviolet light (UVA), which reduces the membrane potential of the mitochondria leading to cell death. Cell viability loss has been detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay when exposed to the dissolved ZnO nanorods and the production of the reactive oxygen species (ROS) has been detected along with the enhanced cytotoxic effect under UVA irradiation. Additionally, the influence of the lipid soluble antioxidant vitamin E and water-soluble N-acetyl-cysteine toward the enhancement or reduction of the toxicity has been investigated. A comparative analysis of the toxic nature of ZnO nanorods has been drawn between normal human fibroblast and melanoma cells, which can be favorable for understanding the clinical setting for killing tumor cells.

  11. The effects of panduratin A isolated from Kaempferia pandurata on the expression of matrix metalloproteinase-1 and type-1 procollagen in human skin fibroblasts.

    PubMed

    Shim, Jae-Seok; Kwon, Yi-Young; Hwang, Jae-Kwan

    2008-02-01

    Exposure of ultraviolet (UV) light on the skin induces photoaging associated with up-regulated matrix metalloproteinase (MMP) activities and decreased collagen synthesis. We investigated the effects of panduratin A isolated from Kaempferia pandurata Roxb. on the expression of matrix metalloproteinase-1 (MMP-1) and type-1 procollagen in UV-irradiated human skin fibroblasts. Cultured human fibroblasts were irradiated with UV (20 mJ/cm (2)) and panduratin A was added into the medium of the fibroblast culture. The expressions of MMP-1 and type-1 procollagen levels were measured using Western blot analysis and RT-RCR. Panduratin A in the range of 0.001 - 0.1 microM significantly reduced the expression of MMP-1 and induced the expression of type-1 procollagen at the protein and mRNA gene levels. Panduratin A showed stronger activity than epigallocatechin 3- O-gallate (EGCG) known as a natural anti-aging agent. The results suggest that panduratin A can be a potential candidate for the prevention and treatment of skin aging brought about by UV.

  12. Detection and characterization of a nucleoside transport system in human fibroblast lysosomes.

    PubMed

    Pisoni, R L; Thoene, J G

    1989-03-25

    Lysosomes contain enzymatic activities capable of degrading nucleic acids to their constituent nucleosides, but the manner by which these degradation products are released from the lysosome is unknown. To investigate this process, human fibroblast lysosomes, purified on Percoll density gradients, were incubated with [3H]adenosine at pH 7.0, and the amount of adenosine taken up by the lysosomes was measured. Adenosine uptake by fibroblast lysosomes attained a steady state by 12 min at 37 degrees C and was unaffected by the presence of 2 mM MgATP or changes in pH from 5.0 to 8.0. An Arrhenius plot was linear with an activation energy of 12.9 kcal/mol and a Q10 of 2.0. Lysosomal adenosine uptake is saturable, displaying a Km of 9 mM at pH 7.0 and 37 degrees C. Various nucleosides and the nucleobase, 6-dimethylaminopurine, strongly inhibit lysosomal adenosine uptake, whereas neither D-ribose or nucleotide monophosphates have any significant effect upon lysosomal adenosine uptake. On a molar basis, purines are recognized more strongly than pyrimidines. Changing the nature of the nucleoside sugar from ribose to arabinose or deoxyribose has little effect on reactivity with this transport system. The known plasma membrane nucleoside transport inhibitors, dipyridamole and nitrobenzylthioinosine, inhibit lysosomal nucleoside transport at relatively low concentrations (25 microM) relative to the Km of 9 mM for lysosomal adenosine uptake. The half-times of [3H]inosine and [3H]uridine efflux from fibroblast lysosomes ranged from 6 to 8 min at 37 degrees C. Trans effects were not observed to be associated with either inosine or uridine exodus. In contrast to adenosine uptake, adenine primarily enters fibroblast lysosomes by a route not saturable by high concentrations of various nucleosides. In conclusion, the saturability of lysosomal adenosine uptake and its specific, competitive inhibition by other nucleosides indicate the existence of a carrier-mediated transport system for

  13. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    PubMed

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated.

  14. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    PubMed

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated. PMID:26895068

  15. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts

    SciTech Connect

    Dubaybo, B.A.; Thet, L.A. )

    1990-09-01

    The processes of lung growth, injury, and repair are characterized by alterations in fibroblast synthesis and interstitial distribution of extracellular matrix components. Transforming growth factor beta (TGF-beta), which is postulated to play a role in modulating lung repair, alters the distribution of several matrix components such as collagen and fibronectin. We studied the effect of TGF-beta on the synthesis and distribution of the various glycosaminoglycans (GAGs) and whether these effects may explain its role in lung repair. Human diploid lung fibroblasts (IMR-90) were exposed to various concentrations of TGF-beta (0-5 nM) for variable periods of time (0-18 h). Newly synthesized GAGs were labeled with either (3H)glucosamine or (35S)sulfate. Individual GAGs were separated by size exclusion chromatography after serial enzymatic and chemical digestions and quantitated using scintillation counting. There was a dose-dependent increase in total GAG synthesis with maximal levels detected after 6 h of exposure. This increase was noted in all individual GAG types measured and was observed in both the cell associated GAGs (cell-matrix fraction) as well as the GAGs released into the medium (medium fraction). In the cell-matrix fraction, TGF-beta increased the proportion of heparan sulfate that was membrane bound as well as the proportion of dermatan sulfate in the intracellular compartment. In the medium fraction, TGF-beta increased the proportion of hyaluronic acid, chondroitin sulfate and dermatan sulfate released. We conclude that the role of TGF-beta in lung growth and repair may be related to increased synthesis of GAGs by human lung fibroblasts as well as alterations in the distribution of individual GAGs.

  16. Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors.

    PubMed

    Yang, Ruifeng; Zheng, Ying; Li, Ling; Liu, Shujing; Burrows, Michelle; Wei, Zhi; Nace, Arben; Herlyn, Meenhard; Cui, Rutao; Guo, Wei; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Direct reprogramming provides a fundamentally new approach for the generation of patient-specific cells. Here, by screening a pool of candidate transcription factors, we identify that a combination of the three factors, MITF, SOX10 and PAX3, directly converts mouse and human fibroblasts to functional melanocytes. Induced melanocytes (iMels) activate melanocyte-specific networks, express components of pigment production and delivery system and produce melanosomes. Human iMels properly integrate into the dermal-epidermal junction and produce and deliver melanin pigment to surrounding keratinocytes in a 3D organotypic skin reconstruct. Human iMels generate pigmented epidermis and hair follicles in skin reconstitution assays in vivo. The generation of iMels has important implications for studies of melanocyte lineage commitment, pigmentation disorders and cell replacement therapies. PMID:25510211

  17. Effects of Simulated Microgravity on Sensitivity of Human Fibroblasts to Radiation

    NASA Technical Reports Server (NTRS)

    Whitehead, Nickolas

    2016-01-01

    Living organisms are exposed to radiation in space that consists of high energy protons and heavy charged particles. For humans, exposure to this environment is expected to cause cancer and other harmful effects. Current assessment of space radiation risk to astronauts is based on the information gained from human data and animal experiments under 1g gravity. If spaceflight factors, such as microgravity, affect the repair of space radiation-induced damage, then one would expect an additional impact on the mutation rate in living cells and consequently on the accuracy of current ground-based risk assessment methods. The project I worked on consisted of using clonogenic assays to analyze the survival of human fibroblast AG01522 cells exposed to radiation with and without simulated microgravity. A random positioning machine (RPM) was used to simulate microgravity because of the principle of gravity-vector-averaging. The effects of simulated microgravity were studied after exposing the cells to different doses of gamma radiation.

  18. Electrical Stimulation Modulates the Expression of Multiple Wound Healing Genes in Primary Human Dermal Fibroblasts.

    PubMed

    Park, Hyun Jin; Rouabhia, Mahmoud; Lavertu, Denis; Zhang, Ze

    2015-07-01

    This study profiled multiple human dermal fibroblast wound-healing genes in response to electrical stimulation (ES) by using an RT(2) profiler PCR-Array system. Primary human skin fibroblasts were seeded on heparin (HE)-bioactivated polypyrrole (PPy)/poly(l-lactic acid) (PLLA) conductive membranes, cultured, and subsequently exposed to ES of 50 or 200 mV/mm for 6 h. Following ES, the cells were used to extract RNA for gene profiling, and culture supernatants were used to measure the level of the different wound healing mediators. A total of 57 genes were affected (activated/repressed) by ES; among these, 49 were upregulated and 8 were downregulated. ES intensities at 50 and 200 mV/mm activated/repressed different genes. The ES-modulated genes are involved in cell adhesion, remodeling and spreading, cytoskeletal activity, extracellular matrix metabolism, production of inflammatory cytokines/chemokines and growth factors, as well as signal transduction. The expression of several genes was supported by protein production. Protein analyses showed that ES increased CCL7, KGF, and TIMP2, but reduced MMP2. This study demonstrated that ES modulates the expression of a variety of genes involved in the wound healing process, confirming that ES is a useful tool in regenerative medicine. PMID:25873313

  19. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells. PMID:22696268

  20. Binding, internalization, and degradation of basic fibroblast growth factor in human microvascular endothelial cells

    SciTech Connect

    Bikfalvi, A.; Dupuy, E.; Inyang, A.L.; Tobelem, G. ); Fayein, N.; Courtois, Y. ); Leseche, G. )

    1989-03-01

    The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells. The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely {sup 125}I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound {sup 125}I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At this temperature, degradation of the internalized ligand was followed after 1 hour by the appearance of three major bands of 15,000 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.

  1. Human fibroblast-derived extracellular matrix constructs for bone tissue engineering applications.

    PubMed

    Tour, Gregory; Wendel, Mikael; Tcacencu, Ion

    2013-10-01

    We exploited the biomimetic approach to generate constructs composed of synthetic biphasic calcium phosphate ceramic and extracellular matrix (SBC-ECM) derived from adult human dermal fibroblasts in complete xeno-free culture conditions. The construct morphology and composition were assessed by scanning electron microscopy, histology, immunohistochemistry, Western blot, glycosaminoglycan, and hydroxyproline assays. Residual DNA quantification, endotoxin testing, and local inflammatory response after implantation in a rat critical-sized calvarial defect were used to access the construct biocompatibility. Moreover, in vitro interaction of human mesenchymal stem cells (hMSCs) with the constructs was studied. The bone marrow- and adipose tissue-derived mesenchymal stem cells were characterized by flow cytometry and tested for osteogenic differentiation capacity prior seeding onto SBC-ECM, followed by alkaline phosphatase, 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and real-time quantitative polymerase chain reaction to assess the osteogenic differentiation of hMSCs after seeding onto the constructs at different time intervals. The SBC-ECM constructs enhanced osteogenic differentiation of hMSCs in vitro and exhibited excellent handling properties and high biocompatibility in vivo. Our results highlight the ability to generate in vitro fibroblast-derived ECM constructs in complete xeno-free conditions as a step toward clinical translation, and the potential use of SBC-ECM in craniofacial bone tissue engineering applications.

  2. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.

    PubMed

    Wirohadidjojo, Yohanes Widodo; Budiyanto, Arief; Soebono, Hardyanto

    2016-09-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined. PMID:27401663

  3. Soy milk as a storage medium to preserve human fibroblast cell viability: an in vitro study.

    PubMed

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Reis, Manuella Verdinelli de Paula; Fernandes Neto, Alfredo Júlio; Soares, Carlos José

    2012-01-01

    Soy milk (SM) is widely consumed worldwide as a substitute for cow milk. It is a source of vitamins, carbohydrates and sugars, but its capacity to preserve cell viability has not been evaluated. The purpose of the present study was to investigate the efficacy of SM to maintain the viability of human fibroblasts at short periods compared with different cow milks. Human mouth fibroblasts were cultured and stored in the following media at room temperature: 10% Dulbecco's Modified Eagle Medium (DMEM) (positive control group); long shelf-life ultra-high temperature whole cow milk (WM); long shelf-life ultra-high temperature skim cow milk (SKM); powdered cow milk (PM); and soy milk (SM). After 5, 15, 30 and 45 min, cell viability was analyzed using the MTT assay. Data were analyzed statistically by the Kruskal-Wallis test with post-analysis using the Dunn's method (α=0.05). SKM showed the lowest capacity to maintain cell viability in all analyzed times (p<0.05). At 30 and 45 min, the absorbance levels in control group (DMEM) and SM were significantly higher than in SKM (p<0.05). Cell viability decreased along the time (5-45 min). The results indicate that SM can be used as a more adequate storage medium for avulsed teeth. SKM was not as effective in preserving cell viability as the cell culture medium and SM.

  4. Delayed Numerical Chromosome Aberrations in Human Fibroblasts by Low Dose of Radiation.

    PubMed

    Cho, Yoon Hee; Kim, Su Young; Woo, Hae Dong; Kim, Yang Jee; Ha, Sung Whan; Chung, Hai Won

    2015-12-01

    Radiation-induced genomic instability refers to a type of damage transmitted over many generations following irradiation. This delayed impact of radiation exposure may pose a high risk to human health and increases concern over the dose limit of radiation exposure for both the public and radiation workers. Therefore, the development of additional biomarkers is still needed for the detection of delayed responses following low doses of radiation exposure. In this study, we examined the effect of X-irradiation on delayed induction of numerical chromosomal aberrations in normal human fibroblasts irradiated with 20, 50 and 100 cGy of X-rays using the micronucleus-centromere assay. Frequencies of centromere negative- and positive-micronuclei, and aneuploidy of chromosome 1 and 4 were analyzed in the surviving cells at 28, 88 and 240 h after X-irradiation. X-irradiation increased the frequency of micronuclei (MN) in a dose-dependent manner in the cells at all measured time-points, but no significant differences in MN frequency among cell passages were observed. Aneuploid frequency of chromosomes 1 and 4 increased with radiation doses, and a significantly higher frequency of aneuploidy was observed in the surviving cells analyzed at 240 h compared to 28 h. These results indicate that low-dose of X-irradiation can induce delayed aneuploidy of chromosomes 1 and 4 in normal fibroblasts.

  5. Micronuclei induction in human fibroblasts exposed in vitro to Los Alamos high-energy neutrons

    NASA Astrophysics Data System (ADS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth's atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/h and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study the effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a γ source at a similar low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with the 9.9 cm water shielding, respectively.

  6. Delayed Numerical Chromosome Aberrations in Human Fibroblasts by Low Dose of Radiation

    PubMed Central

    Cho, Yoon Hee; Kim, Su Young; Woo, Hae Dong; Kim, Yang Jee; Ha, Sung Whan; Chung, Hai Won

    2015-01-01

    Radiation-induced genomic instability refers to a type of damage transmitted over many generations following irradiation. This delayed impact of radiation exposure may pose a high risk to human health and increases concern over the dose limit of radiation exposure for both the public and radiation workers. Therefore, the development of additional biomarkers is still needed for the detection of delayed responses following low doses of radiation exposure. In this study, we examined the effect of X-irradiation on delayed induction of numerical chromosomal aberrations in normal human fibroblasts irradiated with 20, 50 and 100 cGy of X-rays using the micronucleus-centromere assay. Frequencies of centromere negative- and positive-micronuclei, and aneuploidy of chromosome 1 and 4 were analyzed in the surviving cells at 28, 88 and 240 h after X-irradiation. X-irradiation increased the frequency of micronuclei (MN) in a dose-dependent manner in the cells at all measured time-points, but no significant differences in MN frequency among cell passages were observed. Aneuploid frequency of chromosomes 1 and 4 increased with radiation doses, and a significantly higher frequency of aneuploidy was observed in the surviving cells analyzed at 240 h compared to 28 h. These results indicate that low-dose of X-irradiation can induce delayed aneuploidy of chromosomes 1 and 4 in normal fibroblasts. PMID:26633443

  7. Intein mediated hyper-production of authentic human basic fibroblast growth factor in Escherichia coli

    PubMed Central

    Kwong, Keith W. Y.; Sivakumar, T.; Wong, W. K. R.

    2016-01-01

    Human basic fibroblast growth factor is a functionally versatile but very expensive polypeptide. In this communication, employing a novel amplification method for the target gene and genetic optimization of a previously engineered expression construct, pWK3R, together with a refined fed-batch fermentation protocol, we report an achievement of a phenomenal yield of 610 mg/L of the 146 aa authentic human basic fibroblast growth factor (bFGF) in Escherichia coli. Construct pWK3R was first modified to form plasmid pWK311ROmpAd, which was devoid of the ompA leader sequence and possessed two copies of a DNA segment encoding a fusion product comprising an intein, Saccharomyces cerevisiae vascular membrane ATPase (VMA), and bFGF. When E. coli transformant JM101 [pWK311ROmpAd] was cultivated using the refined fed-batch fermentation protocol, superb expression resulting in a total yield of 610 mg/L of bFGF was detected. Despite existing in high levels, the bFGF remained to be soluble and highly bioactive. PMID:27653667

  8. Effects of differently polarized microwave radiation on the microscopic structure of the nuclei in human fibroblasts.

    PubMed

    Shckorbatov, Yuriy G; Pasiuga, Vladimir N; Goncharuk, Elena I; Petrenko, Tatiana Ph; Grabina, Valentin A; Kolchigin, Nicolay N; Ivanchenko, Dmitry D; Bykov, Victor N; Dumin, Oleksandr M

    2010-10-01

    To investigate the influence of microwave radiation on the human fibroblast nuclei, the effects of three variants of electromagnetic wave polarization, linear and left-handed and right-handed elliptically polarized, were examined. Experimental conditions were: frequency (f) 36.65 GHz, power density (P) at the surface of exposed object 1, 10, 30, and 100 µW/cm(2), exposure time 10 s. Human fibroblasts growing in a monolayer on a cover slide were exposed to microwave electromagnetic radiation. The layer of medium that covered cells during microwave exposure was about 1 mm thick. Cells were stained immediately after irradiation by 2% (w/v) orcein solution in 45% (w/v) acetic acid. Experiments were made at room temperature (25 °C), and control cell samples were processed in the same conditions. We assessed heterochromatin granule quantity (HGQ) at 600× magnification. Microwave irradiation at the intensity of 1 µW/cm(2) produced no effect, and irradiation at the intensities of 10 and 100 µW/cm(2) induced an increase in HGQ. More intense irradiation induced more chromatin condensation. The right-handed elliptically polarized radiation revealed more biological activity than the left-handed polarized one.

  9. The Human Cytomegalovirus UL133-138 Gene Locus Attenuates the Lytic Viral Cycle in Fibroblasts

    PubMed Central

    Dutta, Nirmal; Lashmit, Philip; Yuan, Jinxiang; Meier, Jeffery; Stinski, Mark F.

    2015-01-01

    The genomes of HCMV clinical strains (e.g. FIX, TR, PH, etc) contain a 15 kb region that encodes 20 putative ORFs. The region, termed ULb’, is lost after serial passage of virus in human foreskin fibroblast (HFF) cell culture. Compared to clinical strains, laboratory strains replicate faster and to higher titers of infectious virus. We made recombinant viruses with 22, 14, or 7 ORFs deleted from the ULb’ region using FIX and TR as model clinical strains. We also introduced a stop codon into single ORFs between UL133 and UL138 to prevent protein expression. All deletions within ULb’ and all stop codon mutants within the UL133 to UL138 region increased to varying degrees, viral major immediate early RNA and protein, DNA, and cell-free infectious virus compared to the wild type viruses. The wild type viral proteins slowed down the viral replication process along with cell-free infectious virus release from human fibroblast cells. PMID:25799165

  10. Growth inhibitory effects of endotoxins from Bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro

    SciTech Connect

    Layman, D.L.; Diedrich, D.L.

    1987-06-01

    Purified endotoxin or lipopolysaccharide from Bacteroides gingivalis and Bacteroides intermedius caused a similar dose-dependent inhibition of growth of cultured human gingival fibroblasts as determined by /sup 3/H-thymidine incorporation and direct cell count. Approximately 200 micrograms/ml endotoxin caused a 50% reduction in /sup 3/H-thymidine uptake of logarithmically growing cells. Inhibition of growth was similar in cultures of fibroblasts derived from either healthy or diseased human gingiva. When examining the change in cell number with time of exposure in culture, the rate of proliferation was significantly suppressed during the logarithmic phase of growth. However, the cells recovered so that the rate of proliferation, although reduced, was sufficient to produce a cell density similar to the control cells with prolonged culture. The endotoxins were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles of the Bacteroides endotoxins were different. B. gingivalis endotoxin showed a wide range of distinct bands indicating a heterogeneous distribution of molecular species. Endotoxin from B. intermedius exhibited a few discrete low molecular weight bands, but the majority of the lipopolysaccharides electrophoresed as a diffuse band of high molecular weight material. The apparent heterogeneity of the two Bacteroides endotoxins and the similarity in growth inhibitory capacity suggest that growth inhibitory effects of these substances cannot be attributed to any polysaccharide species of endotoxin.

  11. Delayed Numerical Chromosome Aberrations in Human Fibroblasts by Low Dose of Radiation.

    PubMed

    Cho, Yoon Hee; Kim, Su Young; Woo, Hae Dong; Kim, Yang Jee; Ha, Sung Whan; Chung, Hai Won

    2015-12-01

    Radiation-induced genomic instability refers to a type of damage transmitted over many generations following irradiation. This delayed impact of radiation exposure may pose a high risk to human health and increases concern over the dose limit of radiation exposure for both the public and radiation workers. Therefore, the development of additional biomarkers is still needed for the detection of delayed responses following low doses of radiation exposure. In this study, we examined the effect of X-irradiation on delayed induction of numerical chromosomal aberrations in normal human fibroblasts irradiated with 20, 50 and 100 cGy of X-rays using the micronucleus-centromere assay. Frequencies of centromere negative- and positive-micronuclei, and aneuploidy of chromosome 1 and 4 were analyzed in the surviving cells at 28, 88 and 240 h after X-irradiation. X-irradiation increased the frequency of micronuclei (MN) in a dose-dependent manner in the cells at all measured time-points, but no significant differences in MN frequency among cell passages were observed. Aneuploid frequency of chromosomes 1 and 4 increased with radiation doses, and a significantly higher frequency of aneuploidy was observed in the surviving cells analyzed at 240 h compared to 28 h. These results indicate that low-dose of X-irradiation can induce delayed aneuploidy of chromosomes 1 and 4 in normal fibroblasts. PMID:26633443

  12. Micronuclei Induction in Human Fibroblasts Exposed In Vitro to Los Alamos High-Energy Neutrons

    NASA Technical Reports Server (NTRS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    2006-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility#s ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth#s atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/hr and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a gamma source at a low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with 9.9 cm water shielding, respectively.

  13. Functional differences between neonatal and adult fibroblasts and keratinocytes: Donor age affects epithelial-mesenchymal crosstalk in vitro

    PubMed Central

    Mateu, Rosana; Živicová, Veronika; Krejčí, Eliška Drobná; Grim, Miloš; Strnad, Hynek; Vlček, Čestmír; Kolář, Michal; Lacina, Lukáš; Gál, Peter; Borský, Jiří; Smetana, Karel; Dvořánková, Barbora

    2016-01-01

    Clinical evidence suggests that healing is faster and almost scarless at an early neonatal age in comparison with that in adults. In this study, the phenotypes of neonatal and adult dermal fibroblasts and keratinocytes (nestin, smooth muscle actin, keratin types 8, 14 and 19, and fibronectin) were compared. Furthermore, functional assays (proliferation, migration, scratch wound closure) including mutual epithelial-mesenchymal interactions were also performed to complete the series of experiments. Positivity for nestin and α smooth muscle actin was higher in neonatal fibroblasts (NFs) when compared with their adult counterparts (adult fibroblasts; AFs). Although the proliferation of NFs and AFs was similar, they significantly differed in their migration potential. The keratinocyte experiments revealed small, poorly differentiated cells (positive for keratins 8, 14 and 19) in primary cultures isolated from neonatal tissues. Moreover, the neonatal keratinocytes exhibited significantly faster rates of healing the experimentally induced in vitro defects in comparison with adult cells. Notably, the epithelial/mesenchymal interaction studies showed that NFs in co-culture with adult keratinocytes significantly stimulated the adult epithelial cells to acquire the phenotype of small, non-confluent cells expressing markers of poor differentiation. These results indicate the important differences between neonatal and adult cells that may be associated with improved wound healing during the early neonatal period. PMID:27513730

  14. Calmodulin and calmodulin-binding proteins in cystic fibrosis and normal human fibroblasts

    SciTech Connect

    Tallant, E.A.; Wallace, R.W.

    1986-05-01

    The authors have investigated the possibility that a lesion in a calmodulin (CaM)-dependent regulatory mechanism may be involved in cystic fibrosis (CF). The level of CaM, CaM-binding proteins (CaM-BP) and a CaM-dependent phosphatase (CaM-Ptase) have been compared in cultured fibroblasts from CF patients versus age- and sex-matched control subjects. The CaM concentration, measured by radioimmunoassay, ranged from 0.20 to 0.76 ..mu..g/mg protein (n=8); there was no significant difference in the average CaM concentration from CF patients vs controls. Using Western blotting techniques with /sup 125/I-CaM, they detected at least ten distinct CaM-BPs in fibroblasts with molecular weights ranging from 230K to 37K; the only consistent difference between control and CF cell lines was in a 46.5K CaM-BP, which was depressed in all three CF samples. The 46.5 K CaM-BP was found only in the particulate fraction. A 59K CaM-BP was identified as a CaM-Ptase by its crossreactivity with an antibody against a brain CaM-Ptase. There was no significant difference in CaM-Ptase activity or in the amount of the phosphatase as determined by radioimmunoassay in CF vs. normal samples (n=8). Thus, the level of CaM as well as its various enzymes and proteins do not appear to be altered in CF fibroblasts except for a CaM-BP of 46.5K, the identity of which is currently being investigated.

  15. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization.

    PubMed

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS(®) (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts. PMID:26966384

  16. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization.

    PubMed

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS(®) (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts.

  17. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    PubMed Central

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS® (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts. PMID:26966384

  18. Acellular porcine corneal matrix as a carrier scaffold for cultivating human corneal epithelial cells and fibroblasts in vitro

    PubMed Central

    Zhang, Ju; Zhang, Can-Wei; Du, Li-Qun; Wu, Xin-Yi

    2016-01-01

    AIM To investigate the feasibility of corneal anterior lamellar reconstruction with human corneal epithelial cells and fibroblasts, and an acellular porcine cornea matrix (APCM) in vitro. METHODS The scaffold was prepared from fresh porcine corneas which were treated with 0.5% sodium dodecyl sulfate (SDS) solution and the complete removal of corneal cells was confirmed by hematoxylin-eosin (HE) staining and 4′, 6-diamidino-2-phenylindole (DAPI) staining. Human corneal fibroblasts and epithelial cells were cultured with leaching liquid extracted from APCM, and then cell proliferative ability was evaluated by MTT assay. To construct a human corneal anterior lamellar replacement, corneal fibroblasts were injected into the APCM and cultured for 3d, followed by culturing corneal epithelial cells on the stroma construction surface for another 10d. The corneal replacement was analyzed by HE staining, and immunofluorescence staining. RESULTS Histological examination indicated that there were no cells in the APCM by HE staining, and DAPI staining did not detect any residual DNA. The leaching liquid from APCM had little influence on the proliferation ability of human corneal fibroblasts and epithelial cells. At 10d, a continuous 3 to 5 layers of human corneal epithelial cells covering the surface of the APCM was observed, and the injected corneal fibroblasts distributed within the scaffold. The phenotype of the construction was similar to normal human corneas, with high expression of cytokeratin 12 in the epithelial cell layer and high expression of vimentin in the stroma. CONCLUSION Corneal anterior lamellar replacement can be reconstructed in vitro by cultivating human corneal epithelial cells and fibroblasts with an acellular porcine cornea matrix. This laid the foundation for the further transplantation in vivo. PMID:26949602

  19. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    PubMed Central

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-01-01

    Objective To estimate electroporation (EP) influence on malignant and normal cells. Methods Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). Results In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. Conclusions We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells. PMID:23569735

  20. WISP1 mediates IL-6-dependent proliferation in primary human lung fibroblasts

    PubMed Central

    Klee, S.; Lehmann, M.; Wagner, D. E.; Baarsma, H. A.; Königshoff, M.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. IPF is characterized by epithelial cell injury and reprogramming, increases in (myo)fibroblasts, and altered deposition of extracellular matrix. The Wnt1-inducible signaling protein 1 (WISP1) is involved in impaired epithelial-mesenchymal crosstalk in pulmonary fibrosis. Here, we aimed to further investigate WISP1 regulation and function in primary human lung fibroblasts (phLFs). We demonstrate that WISP1 is directly upregulated by Transforming growth factor β1 (TGFβ1) and Tumor necrosis factor α (TNFα) in phLFs, using a luciferase-based reporter system. WISP1 mRNA and protein secretion increased in a time- and concentration-dependent manner by TGFβ1 and TNFα in phLFs, as analysed by qPCR and ELISA, respectively. Notably, WISP1 is required for TGFβ1- and TNFα-dependent induction of interleukin 6 (IL-6), a mechanism that is conserved in IPF phLFs. The siRNA-mediated WISP1 knockdown led to a significant IL-6 reduction after TGFβ1 or TNFα stimulation. Furthermore, siRNA-mediated downregulation or antibody-mediated neutralization of WISP1 reduced phLFs proliferation, a process that was in part rescued by IL-6. Taken together, these results strongly indicate that WISP1-induced IL-6 expression contributes to the pro-proliferative effect on fibroblasts, which is likely orchestrated by a variety of profibrotic mediators, including Wnts, TGFβ1 and TNFα. PMID:26867691

  1. Sulfate transport in human lung fibroblasts (IMR-90): effect of pH and anions

    SciTech Connect

    Elgavish, A.; Meezan, E.

    1989-03-01

    We previously reported the presence of a carrier-mediated sulfate transport system in human lung fibroblasts (IMR-90). Kinetic studies carried out in the lung fibroblasts show that Cl- inhibits SO4(2-) uptake in a competitive manner. Taken together with the fact that high extracellular Cl- stimulates SO4(2-) efflux, these results suggest that SO4(2-) uptake into lung fibroblasts occurs via a SO4(2-)-Cl- exchange mechanism. Extracellular HCO3- inhibits sulfate influx in a competitive manner (pH 7.5) but has no marked effect on sulfate efflux. SO4(2-) and HCO3- may therefore have the ability to bind to a common extracellular anion binding site, but they do not appear to exchange for one another. Lowering extracellular pH has a stimulatory effect on the initial rate of sulfate uptake. The pK of the extracellular pH effect is around pH 7.0, indicating that small changes in the extracellular pH around the ambient levels encountered under physiological conditions will markedly affect sulfate influx into the cell. Kinetic studies suggest that lowering extracellular pH increases the initial rate of sulfate influx by increasing the affinity of the carrier for sulfate twofold. Lowering intracellular pH inhibits the initial rate of sulfate influx into the cell. The pK of this intracellular pH effect is also around pH 7.0, indicating that physiological levels of intracellular protons are necessary for the normal activity of the anion exchanger.

  2. Characterization of specific high affinity receptors for human tumor necrosis factor on mouse fibroblasts

    SciTech Connect

    Hass, P.E.; Hotchkiss, A.; Mohler, M.; Aggarwal, B.B.

    1985-10-05

    Mouse L-929 fibroblasts, an established line of cells, are very sensitive to lysis by human lymphotoxin (hTNF-beta). Specific binding of a highly purified preparation of hTNF-beta to these cells was examined. Recombinant DNA-derived hTNF-beta was radiolabeled with (TH)propionyl succinimidate at the lysine residues of the molecule to a specific activity of 200 microCi/nmol of protein. (TH)hTNF-beta was purified by high performance gel permeation chromatography and the major fraction was found to be monomeric by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The labeled hTNF-beta was fully active in causing lysis of L-929 fibroblasts and bound specifically to high affinity binding sites on these cells. Scatchard analysis of the binding data revealed the presence of a single class of high affinity receptors with an apparent Kd of 6.7 X 10(-11) M and a capacity of 3200 binding sites/cell. Unlabeled recombinant DNA-derived hTNF-beta was found to be approximately 5-fold more effective competitive inhibitor of binding than the natural hTNF-beta. The binding of hTNF-beta to these mouse fibroblasts was also correlated with the ultimate cell lysis. Neutralizing polyclonal antibodies to hTNF-beta efficiently inhibited the binding of (TH)hTNF-beta to the cells. The authors conclude that the specific high affinity binding site is the receptor for hTNF-beta and may be involved in lysis of cells.

  3. Anti-photoaging effect of aaptamine in UVB-irradiated human dermal fibroblasts and epidermal keratinocytes.

    PubMed

    Kim, Min-Ji; Woo, Seon Wook; Kim, Myung-Suk; Park, Ji-Eun; Hwang, Jae-Kwan

    2014-12-01

    Chronic exposure to ultraviolet (UV) irradiation causes sunburn, inflammatory responses, skin cancer, and photoaging. Photoaging, in particular, generates reactive oxygen species (ROS) that stimulate mitogen-activated protein kinase (MAPK) signaling and transcription factors. UV irradiation also activates matrix metalloproteinases (MMPs) expression and inactivates collagen synthesis. Aaptamine, a marine alkaloid isolated from the marine sponge, has been reported to have antitumor, antimicrobial, antiviral, and antioxidant activities. However, the photo-protective effects of aaptamine have not been elucidated. In this study, our data demonstrated that aaptamine deactivated UVB-induced MAPK and activator protein-1 signaling by suppressing ROS, resulting in attenuating the expression of MMPs in UVB-irradiated human dermal fibroblasts. Aaptamine also decreased proinflammatory cytokines such as cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β, and nuclear factor-kappa B subunits in UVB-irradiated human keratinocytes. In conclusion, we suggest that aaptamine represents a novel and effective strategy for treatment and prevention of photoaging.

  4. Culture of human limbal epithelial stem cells on tenon's fibroblast feeder-layers: a translational approach.

    PubMed

    Scafetta, Gaia; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena

    2015-01-01

    The coculture technique is the standard method to expand ex vivo limbal stem cells (LSCs) by using inactivated embryonic murine feeder layers (3T3). Although alternative techniques such as amniotic membranes or scaffolds have been proposed, feeder layers are still considered to be the best method, due to their ability to preserve some critical properties of LSCs such as cell growth and viability, stemness phenotype, and clonogenic potential. Furthermore, clinical applications of LSCs cultured on 3T3 have taken place. Nevertheless, for an improved Good Manufacturing Practice (GMP) compliance, the use of human feeder-layers as well as a fine standardization of the process is strictly encouraged. Here, we describe a translational approach in accordance with GMP regulations to culture LSCs onto human Tenon's fibroblasts (TFs). In this chapter, based on our experience we identify and analyze issues that often are encountered by researchers and discuss solutions to common problems. PMID:25063497

  5. Culture of human limbal epithelial stem cells on tenon's fibroblast feeder-layers: a translational approach.

    PubMed

    Scafetta, Gaia; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena

    2015-01-01

    The coculture technique is the standard method to expand ex vivo limbal stem cells (LSCs) by using inactivated embryonic murine feeder layers (3T3). Although alternative techniques such as amniotic membranes or scaffolds have been proposed, feeder layers are still considered to be the best method, due to their ability to preserve some critical properties of LSCs such as cell growth and viability, stemness phenotype, and clonogenic potential. Furthermore, clinical applications of LSCs cultured on 3T3 have taken place. Nevertheless, for an improved Good Manufacturing Practice (GMP) compliance, the use of human feeder-layers as well as a fine standardization of the process is strictly encouraged. Here, we describe a translational approach in accordance with GMP regulations to culture LSCs onto human Tenon's fibroblasts (TFs). In this chapter, based on our experience we identify and analyze issues that often are encountered by researchers and discuss solutions to common problems.

  6. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    SciTech Connect

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.; Miller, A.D.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vector containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.

  7. Antioxidative properties of ginsenoside Ro against UV-B-induced oxidative stress in human dermal fibroblasts.

    PubMed

    Kang, Hyun Ji; Oh, Yuri; Lee, Sihyeong; Ryu, In Wang; Kim, Kyunghoon; Lim, Chang-Jin

    2015-01-01

    Ginsenoside Ro (Ro), an oleanolic acid-type ginsenoside, exhibited suppressive activities on reactive oxygen species (ROS) and matrix metalloproteinase-2 (MMP-2) elevation in UV-B-irradiated fibroblasts. Ro could overcome the reduction of the total glutathione (GSH) contents in UV-B-irradiated fibroblasts. Ro could not interfere with cell viabilities in UV-B-irradiated fibroblasts. Collectively, Ro possesses a potential skin anti-photoaging property against UV-B radiation in fibroblasts. PMID:26214051

  8. Cd2+-Induced Alteration of the Global Proteome of Human Skin Fibroblast Cells

    PubMed Central

    2015-01-01

    Cadmium (Cd2+) is a toxic heavy metal and a well-known human carcinogen. The toxic effects of Cd2+ on biological systems are diverse and thought to be exerted through a complex array of mechanisms. Despite the large number of studies aimed to elucidate the toxic mechanisms of action of Cd2+, few have been targeted toward investigating the ability of Cd2+ to disrupt multiple cellular pathways simultaneously and the overall cellular responses toward Cd2+ exposure. In this study, we employed a quantitative proteomic method, relying on stable isotope labeling by amino acids in cell culture (SILAC) and LC–MS/MS, to assess the Cd2+-induced simultaneous alterations of multiple cellular pathways in cultured human skin fibroblast cells. By using this approach, we were able to quantify 2931 proteins, and 400 of them displayed significantly changed expression following Cd2+ exposure. Our results unveiled that Cd2+ treatment led to the marked upregulation of several antioxidant enzymes (e.g., metallothionein-1G, superoxide dismutase, pyridoxal kinase, etc.), enzymes associated with glutathione biosynthesis and homeostasis (e.g., glutathione S-transferases, glutathione synthetase, glutathione peroxidase, etc.), and proteins involved in cellular energy metabolism (e.g., glycolysis, pentose phosphate pathway, and the citric acid cycle). Additionally, we found that Cd2+ treatment resulted in the elevated expression of two isoforms of dimethylarginine dimethylaminohydrolase (DDAH I and II), enzymes known to play a key role in regulating nitric oxide biosynthesis. Consistent with these findings, we observed elevated formation of nitric oxide in human skin (GM00637) and lung (IMR-90) fibroblast cells following Cd2+ exposure. The upregulation of DDAH I and II suggests a role of nitric oxide synthesis in Cd2+-induced toxicity in human cells. PMID:24527689

  9. The small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc

    SciTech Connect

    Nikolova, Ekaterina; Mitev, Vanio; Zhelev, Nikolai; Deroanne, Christophe F. . E-mail: yves.poumay@fundp.ac.be

    2007-08-03

    Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and examined the consequences on human skin fibroblasts. Rac1 knock-down resulted in inhibition of DNA synthesis. This effect was not mediated by inhibition of the central transducer of proliferative stimuli, ERK1/2 or by activation of the pro-apoptotic p38. Rather, as a consequence of the suppressed Rac1 expression we observed a significant decrease in phosphorylation of c-myc, revealing for the first time that in human fibroblasts Rac1 exerts control on proliferation through c-myc phosphorylation. Thus Rac1 activates proliferation of normal fibroblasts through stimulation of c-myc phosphorylation without affecting ERK1/2 activity.

  10. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts.

    PubMed

    Questa, María; Romorini, Leonardo; Blüguermann, Carolina; Solari, Claudia María; Neiman, Gabriel; Luzzani, Carlos; Scassa, María Élida; Sevlever, Gustavo Emilio; Guberman, Alejandra Sonia; Miriuka, Santiago Gabriel

    2016-03-01

    Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC) line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls. PMID:27345989

  11. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts.

    PubMed

    Questa, María; Romorini, Leonardo; Blüguermann, Carolina; Solari, Claudia María; Neiman, Gabriel; Luzzani, Carlos; Scassa, María Élida; Sevlever, Gustavo Emilio; Guberman, Alejandra Sonia; Miriuka, Santiago Gabriel

    2016-03-01

    Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC) line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls.

  12. Testing the Oxidative Stress Hypothesis of Aging in Primate Fibroblasts: Is There a Correlation Between Species Longevity and Cellular ROS Production?

    PubMed Central

    Csiszar, Anna; Podlutsky, Andrej; Podlutskaya, Natalia; Sonntag, William E.; Merlin, Steven Z.; Philipp, Eva E. R.; Doyle, Kristian; Davila, Antonio; Recchia, Fabio A.; Ballabh, Praveen; Pinto, John T.

    2012-01-01

    The present study was conducted to test predictions of the oxidative stress theory of aging assessing reactive oxygen species production and oxidative stress resistance in cultured fibroblasts from 13 primate species ranging in body size from 0.25 to 120 kg and in longevity from 20 to 90 years. We assessed both basal and stress-induced reactive oxygen species production in fibroblasts from five great apes (human, chimpanzee, bonobo, gorilla, and orangutan), four Old World monkeys (baboon, rhesus and crested black macaques, and patas monkey), three New World monkeys (common marmoset, red-bellied tamarin, and woolly monkey), and one lemur (ring-tailed lemur). Measurements of cellular MitoSox fluorescence, an indicator of mitochondrial superoxide (O2·−) generation, showed an inverse correlation between longevity and steady state or metabolic stress–induced mitochondrial O2·− production, but this correlation was lost when the effects of body mass were removed, and the data were analyzed using phylogenetically independent contrasts. Fibroblasts from longer-lived primate species also exhibited superior resistance to H2O2-induced apoptotic cell death than cells from shorter-living primates. After correction for body mass and lack of phylogenetic independence, this correlation, although still discernible, fell short of significance by regression analysis. Thus, increased longevity in this sample of primates is not causally associated with low cellular reactive oxygen species generation, but further studies are warranted to test the association between increased cellular resistance to oxidative stressor and primate longevity. PMID:22219516

  13. Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide.

    PubMed

    Wamer, Wayne G; Yin, Jun-Jie

    2011-01-01

    Titanium dioxide (TiO2) is a pigment widely used in decorative tattoo and permanent makeup inks. However, little is known about the risks associated with its presence in these products. We have developed an in vitro assay to identify inks containing TiO2 that are cytotoxic and/or photocytotoxic. The presence of TiO2 in ten permanent makeup inks was established by X-ray fluorescence. Using X-ray diffraction, we found that seven inks contained predominately TiO2 (anatase), the more photocatalytically active crystalline form of TiO2. The remaining inks contained predominately TiO2 (rutile). To identify cytotoxic and/or photocytotoxic inks, human dermal fibroblasts were incubated for 18 h in media containing inks or pigments isolated from inks. Fibroblasts were then irradiated with 10 J/cm2 UVA radiation combined with 45 J/cm2 visible light for determining photocytotoxicity, or kept in the dark for determining cytotoxicity. Toxicity was assessed as inhibition of colony formation. No inks were cytotoxic. However eight inks, and the pigments isolated from these inks, were photocytotoxic. Using ESR, we found that most pigments from photocytotoxic inks generated hydroxyl radicals when photoexcited with UV radiation. Therefore, the possibility of photocytotoxicity should be considered when evaluating the safety of permanent makeup inks containing TiO2.

  14. Action of ornithine alpha ketoglutarate on DNA synthesis by human fibroblasts

    SciTech Connect

    Vaubourdolle, M.; Salvucci, M.; Coudray-Lucas, C.; Agneray, J.; Cynober, L.; Ekindjian, O.G. )

    1990-02-01

    Ornithine alpha ketoglutarate (OKG) is largely used in clinical nutrition for its anabolic effects. However, the mechanism of its action remains questionable. We investigated the effect of OKG on the rate of DNA synthesis in human fibroblasts. The in vitro experimental procedure required to demonstrate in cell culture the anabolic effects of OKG observed in vivo was found to be glutamine-free and serum-poor medium with sparse cells. In these conditions, OKG induced a significant increase in ({sup 3}H)thymidine incorporation compared to untreated control cells. This effect was dose-dependent and was observed in all the cultures tested. Taken individually, the two constituents of OKG, i.e. alpha KG and Orn, also showed a stimulatory effect, but did not demonstrate a dose-dependent response. Concomitant analysis of extracellular amino acids showed in alpha KG-treated cultures an increase in glutamate and a decrease in aspartate, suggesting a cellular transamination of alpha KG. Glutamine, which is the preferential energetic substrate of fibroblasts, can be produced from glutamate and might play a role in the action of OKG. Moreover, OKG induced a rise in the cellular polyamine content. This, in association with the inhibitory effect on OKG action of difluoromethylornithine, a specific inhibitor of ornithine decarboxylase, suggests a link between the polyamine biosynthesis pathway and the anabolic effect of OKG.

  15. Effects of extremely low frequency electromagnetic fields on human fetal scleral fibroblasts.

    PubMed

    Zhu, Huang; Wang, Jie; Cui, Jiefeng; Fan, Xianqun

    2016-06-01

    This study investigated the effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human fetal scleral fibroblasts (HFSFs). HFSFs were subjected to 50 Hz artificial ELF-EMFs generated by Helmholtz coils with 0.1, 0.2, 0.5, and 1.0 mT field intensities for 6 to 48 h. The viability and factors involved in scleral structuring of HFSFs were determined. The growth rate of HFSFs significantly decreased after only 24 h of exposure to ELF-EMFs (0.2 mT). The messenger RNA (mRNA) expression of collagen type I (COL1A1) decreased and expression of matrix metalloproteinase-2 (MMP-2) increased significantly. There was a decrease in tissue inhibitor of MMP-2 mRNA levels between treated and control cells only at the 1.0 mT intensity level. Transforming growth factor beta-2 mRNA increased in exposed cells, and, simultaneously, fibroblast growth factor-2 mRNA levels decreased. The protein expressions of COL1A1 and MMP-2 were also significantly altered subsequent to exposure (p < 0.05). This study shows that ELF-EMFs had biological effects on HFSFs and could cause abnormality in scleral collagen.

  16. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin.

    PubMed

    Deng, Yi-Ting; Chen, Hsin-Ming; Cheng, Shih-Jung; Chiang, Chun-Pin; Kuo, Mark Yen-Ping

    2009-09-01

    Connective tissue growth factor (CTGF) is associated with the onset and progression of fibrosis in many human tissues. Areca nut (AN) chewing is the most important etiological factor in the pathogenesis of oral submucous fibrosis (OSF). We immunohistochemically examined the expression of CTGF protein in 20 cases of OSF and found positive CTGF staining in fibroblasts and endothelial cells in all cases. Western blot analysis showed that arecoline, a main alkaloid found in AN, stimulated CTGF synthesis in a dose- and time-dependent manner in buccal mucosal fibroblasts. Constitutive overexpression of CTGF during AN chewing may enhance the fibrotic activity in OSF and play a role in the pathogenesis of OSF. Pretreatment with NF-kappaB inhibitor Bay 11-7082, JNK inhibitor SP600125, p38 MAPK inhibitor SB203580 and antioxidant N-acetyl-l-cysteine, but not ERK inhibitor PD98059, significantly reduced arecoline-induced CTGF synthesis. Furthermore, curcumin completely inhibited arecoline-induced CTGF synthesis and the inhibition is dose-dependent. These results indicated that arecoline-induced CTGF synthesis was mediated by ROS, NF-kappaB, JNK, P38 MAPK pathways and curcumin could be a useful agent in controlling OSF.

  17. Oncogene transcription in normal human IMR-90 fibroblasts: induction by serum and tetradecanoyl phorbol acetate

    SciTech Connect

    Bower, E.A.; Kaji, H.

    1988-01-01

    The authors report studies of oncogene transcription induced by the addition of serum to quiescent cultures of human IMR-90 fibroblasts. Oncogene messenger RNAs for c-myc, c-erbB and c-ras were increased in a specific temporal sequence after the addition of serum. Compounds that are proposed to exert their actions by the stimulation of cell growth were tested for their effect on oncogene transcription in IMR-90 fibroblasts. The tumor promoter tetradecanoyl phorbol acetate (TPA) was found to selectively induce the transcription of c-myc without observable effect on the transcription of the other oncogenes studied, and without inducing cell division. The inactive analog, phorbol didecanoate (PDD), and two complete carcinogens dimethylbenzanthracene (DMBA) and 4-nitro quinoline-1-oxide (4NQO) were without effect on the transcription of the genes studied. These results suggest that the complete ordered sequence of gene transcription is necessary to achieve the physiologic response of cell division, and that classical promoters and complete carcinogens achieve their effects through different pathways.

  18. Functional diversity of gro gene expression in human fibroblasts and mammary epithelial cells.

    PubMed Central

    Anisowicz, A; Zajchowski, D; Stenman, G; Sager, R

    1988-01-01

    Previous studies of gro and related genes that are overexpressed in transformed fibroblasts suggest that gro may encode a specific growth regulator. However, DNA and protein sequence comparisons reveal relatedness to platelet factor 4 and other proteins involved in the inflammatory response. In this paper, both growth-related and cytokine-induced responses in gro gene expression are described. Human foreskin fibroblasts are shown to express approximately 10-fold elevated gro, myc, and fos mRNAs in response to serum and to phorbol 12-myristate 13-acetate stimulation, with early response kinetics indicative of growth regulation. In response to interleukin 1, however, in growing cells gro mRNA is elevated at least 100-fold but myc remains constant and fos is not expressed, suggesting a second regulatory pathway. In normal cultured mammary epithelial cells, gro is constitutively expressed, and elevated mRNA levels are induced by phorbol 12-myristate 13-acetate, but not by interleukin 1. However, most carcinoma cell lines examined do not express gro mRNA, suggesting a third function of gro as a negative growth regulator in epithelial cells. Images PMID:3264403

  19. Impacts of antibiotics on in vitro UVA-susceptibility of human skin fibroblasts.

    PubMed

    Le Gall, Rozenn; Marchand, Cécile; Rees, Jean-François

    2005-01-01

    Many studies of UVA-induced cell damage use skin cells obtained during plastic surgery. As the skin is contaminated by micro-organisms, antibiotics need to be added to primary skin cell culture media. This study analysed the impact of the most widely used agents, penicillin, streptomycin, and amphotericin B deoxycholate (amB), on UVA-irradiated human skin fibroblasts. The results show that the presence of amB in cell culture media increases the susceptibility of fibroblasts to UVA and the intracellular level of reactive oxygen species, even when cells are irradiated in amB-free saline. This photosensitising effect of amB can be prevented if the antifungal agent is removed from the culture medium at least 24 hours before irradiation. Moreover, the use of streptomycin during cell culture partly protects cells against the UVA-induced mortality linked to amB. Acellular tests on lipid micelles suggest that this protective effect could result from an inhibition of lipid peroxidation by the antibacterial agent. In conclusion, antibiotics should be used with care in cell culture media if the cells are to be used in physiological studies of fine mechanisms in UVA-susceptibility of skin cells. In other cases, cells should be maintained in antibiotic-free media for 24 hours before irradiation.

  20. Indirect longitudinal cytotoxicity of root canal sealers on L929 cells and human periodontal ligament fibroblasts.

    PubMed

    Araki, K; Suda, H; Spångberg, L S

    1994-02-01

    The cytotoxicity of two root canal sealers was evaluated in vitro. The powder components of both sealers, mainly zinc, were the same. The liquid for one sealer, Canals, was clove oil (included eugenol in more than 80%) and other materials. For the other, Canals-N, the liquid was composed of higher fatty acids and glycol. The experiments included two cell lines, heteroploid L929 mouse fibroblasts and diploid human periodontal ligament fibroblasts. Cytotoxicity was assessed using the radiochromium release method with 4-h exposure time. The assay involved using insert chambers in multiwell arrays to produce indirect contact of materials with the cell monolayer at a controlled distance of approximately 1 mm. This model also allowed for the longitudinal study of the same material sample to assess time-dependent changes in toxicity. Freshly mixed Canals was highly toxic (p < 0.01) to both cell lines. On and after 24 h of setting no toxicity was detected. At no time could cytotoxicity be observed when experimenting with Canals-N. These results indicate that both materials have a low content of water diffusible toxic components. Substituting eugenol can further decrease the toxicity of the sealer. PMID:8006567

  1. Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons.

    PubMed

    Jiang, Houbo; Xu, Zhimin; Zhong, Ping; Ren, Yong; Liang, Gaoyang; Schilling, Haley A; Hu, Zihua; Zhang, Yi; Wang, Xiaomin; Chen, Shengdi; Yan, Zhen; Feng, Jian

    2015-01-01

    The direct conversion of fibroblasts to induced dopaminergic (iDA) neurons and other cell types demonstrates the plasticity of cell fate. The low efficiency of these relatively fast conversions suggests that kinetic barriers exist to safeguard cell-type identity. Here we show that suppression of p53, in conjunction with cell cycle arrest at G1 and appropriate extracellular environment, markedly increase the efficiency in the transdifferentiation of human fibroblasts to iDA neurons by Ascl1, Nurr1, Lmx1a and miR124. The conversion is dependent on Tet1, as G1 arrest, p53 knockdown or expression of the reprogramming factors induces Tet1 synergistically. Tet1 knockdown abolishes the transdifferentiation while its overexpression enhances the conversion. The iDA neurons express markers for midbrain DA neurons and have active dopaminergic transmission. Our results suggest that overcoming these kinetic barriers may enable highly efficient epigenetic reprogramming in general and will generate patient-specific midbrain DA neurons for Parkinson's disease research and therapy. PMID:26639555

  2. Fibroblast-dependent induction of a murine skin lesion with similarity to human common blue nevus.

    PubMed Central

    Prouty, S. M.; Lawrence, L.; Stenn, K. S.

    1996-01-01

    In an attempt to define epithelial-mesenchymal interactions in skin appendage formation, we have been studying a nude mouse grafting model that permits the combination of heterotypic and heterochronic epithelial and mesenchymal cells. In this study using neonatal hair bud cells combined with various mesenchymal cell preparations, we show that one can regenerate near-complete skin with intact epidermal and dermal layers plus mature hair follicles. It was determined that the character of the resulting regenerated skin could be manipulated as a function of the specific mesenchymal component. Lack of dermal cells resulted in a scar, whereas inclusion of a suspension of dissociated total dermal cells resulted in near-complete skin regeneration, and in the presence of follicular papilla fibroblasts (both hair-inductive and non-hair-inductive) or NIH3T3 fibroblasts, the reconstitution had similarity to the common blue nevus. The results indicate that 1) a stimulant of human common blue nevus can be produced in an animal model, 2) the underlying disorder of the lesion in mice appears to be entirely dermal in origin, arising independent of the epidermal component, and 3) complex dermal cell interactions involving lesion-initiative and lesion-suppressive activities underlie the pathogenesis. This experimental system will serve as a valuable tool in elucidating cutaneous dermal-epidermal signals in normal skin as well as the alteration of these signals in malformations such as the hamartoma described here. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8669473

  3. Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries.

    PubMed

    Sandu, Cristina; Dumas, Marc; Malan, André; Sambakhe, Diariétou; Marteau, Clarisse; Nizard, Carine; Schnebert, Sylvianne; Perrier, Eric; Challet, Etienne; Pévet, Paul; Felder-Schmittbuhl, Marie-Paule

    2012-10-01

    Skin acts as a barrier between the environment and internal organs and performs functions that are critical for the preservation of body homeostasis. In mammals, a complex network of circadian clocks and oscillators adapts physiology and behavior to environmental changes by generating circadian rhythms. These rhythms are induced in the central pacemaker and peripheral tissues by similar transcriptional-translational feedback loops involving clock genes. In this work, we investigated the presence of functional oscillators in the human skin by studying kinetics of clock gene expression in epidermal and dermal cells originating from the same donor and compared their characteristics. Primary cultures of fibroblasts, keratinocytes, and melanocytes were established from an abdominal biopsy and expression of clock genes following dexamethasone synchronization was assessed by qPCR. An original mathematical method was developed to analyze simultaneously up to nine clock genes. By fitting the oscillations to a common period, the phase relationships of the genes could be determined accurately. We thereby show the presence of functional circadian machinery in each cell type. These clockworks display specific periods and phase relationships between clock genes, suggesting regulatory mechanisms that are particular to each cell type. Taken together, our data demonstrate that skin has a complex circadian organization. Oscillators are present not only in fibroblasts but also in epidermal keratinocytes and melanocytes and are likely to act in coordination to drive rhythmic functions within the skin.

  4. Receptor-mediated endocytosis of proteoglycans by human fibroblasts involves recognition of the protein core.

    PubMed Central

    Glössl, J; Schubert-Prinz, R; Gregory, J D; Damle, S P; von Figura, K; Kresse, H

    1983-01-01

    Endocytosis by cultured human skin fibroblasts of 35SO4(2-)-labelled or [3H]leucine-labelled proteoglycans from fibroblast secretions and of 125I-proteodermatan sulphate from pig skin was quantitatively investigated. The following results were obtained. (1) Core proteins prepared by digestion with chondroitin ABC lyase were at least as efficiently endocytosed as native proteoglycans. Pig skin proteodermatan sulphate was a competitive inhibitor of endocytosis of 35SO4(2-)-labelled proteoglycans. (2) Proteoglycans produced in the presence of tunicamycin and native proteoglycans degraded with endoglycosaminidase H were internalized at a normal rate. Several monosaccharides that can be bound by mammalian lectins were unable to influence the internalization of proteoglycans. Treatment of proteoglycans with neuraminidase, however, resulted in an increased clearance rate. (3) Reductive methylation or acetoacetylation of lysine residues was accompanied by a parallel decrease in the rate of proteoglycan endocytosis. Reversal of acetoacetylation normalized the uptake properties. Endocytosis of native proteoglycans was also reduced in the presence of poly-L-lysine, and this reduction in endocytosis was observed as well with proteoglycans synthesized in the presence of the lysine analogue S-2-aminoethylcysteine. These results suggest that the recognition marker required for receptor-mediated endocytosis of proteodermatan sulphate resides in its protein moiety and involves lysine residues. Images Fig. 2. PMID:6316923

  5. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.

    PubMed

    Nakagawa, Masato; Koyanagi, Michiyo; Tanabe, Koji; Takahashi, Kazutoshi; Ichisaka, Tomoko; Aoi, Takashi; Okita, Keisuke; Mochiduki, Yuji; Takizawa, Nanako; Yamanaka, Shinya

    2008-01-01

    Direct reprogramming of somatic cells provides an opportunity to generate patient- or disease-specific pluripotent stem cells. Such induced pluripotent stem (iPS) cells were generated from mouse fibroblasts by retroviral transduction of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. Mouse iPS cells are indistinguishable from embryonic stem (ES) cells in many respects and produce germline-competent chimeras. Reactivation of the c-Myc retrovirus, however, increases tumorigenicity in the chimeras and progeny mice, hindering clinical applications. Here we describe a modified protocol for the generation of iPS cells that does not require the Myc retrovirus. With this protocol, we obtained significantly fewer non-iPS background cells, and the iPS cells generated were consistently of high quality. Mice derived from Myc(-) iPS cells did not develop tumors during the study period. The protocol also enabled efficient isolation of iPS cells without drug selection. Furthermore, we generated human iPS cells from adult dermal fibroblasts without MYC.

  6. Cytotoxicity testing of topical antimicrobial agents on human keratinocytes and fibroblasts for cultured skin grafts.

    PubMed

    Boyce, S T; Warden, G D; Holder, I A

    1995-01-01

    Cultured epidermal skin has become an adjunctive therapy for treatment of major burn injuries, but its effectiveness is greatly limited because of destruction by microbial contamination. To evaluate candidate antimicrobial agents for use with cultured skin, a combined cytotoxicity-antimicrobial assay system was developed for determination of toxicity to cultured human keratinocytes and fibroblasts and for determination of susceptibility or resistance of common burn wound organisms. Candidate agents including chlorhexidine gluconate, polymyxin B, mupirocin, sparfloxacin, or nitrofurazone were tested separately for inhibition of growth of human cells and for inhibitory activity to microorganisms with the wet disk assay. The data showed that (1) chlorhexidine gluconate (0.05%) was uniformly toxic to both cultured human cells and microorganisms; (2) nitrofurazone (0.02%) had dose-dependent toxicity to human cells and limited effectiveness against gram-negative microorganisms; (3) sparfloxacin (30 micrograms/ml) had low toxicity to human cells and retained antimicrobial activity against both gram-positive and gram-negative bacteria; (4) polymyxin B (400 U/ml) was not toxic to human cells and had intermediate effectiveness on gram-negative bacteria; and (5) mupirocin (48 micrograms/ml) had no toxicity to skin cells and had uniform effectiveness against Staphylococcus aureus including methicillin-resistant Staphylococcus aureus. Selection of topical antimicrobial drugs by these assays may improve effectiveness of cultured skin for burns and may be used to control other surgical wound infections.

  7. The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function.

    PubMed

    Parenteau, N L; Bilbo, P; Nolte, C J; Mason, V S; Rosenberg, M

    1992-01-01

    We describe an organotypic model of human skin comprised of a stratified layer of human epidermal keratinocytes and dermal fibroblasts within a contracted collagen lattice. Feasible and reproducible production of the skin construct has required the use of traditional as well as specialized culture techniques. The configuration of the construct has been engineered to maintain polarity and permit extended culture at the air-liquid interface. Morphological, biochemical and kinetic parameters were assessed and functional assays were performed to determine the degree of similarity to human skin. Light and ultrastructural morphology of the epidermis closely resembled human skin. The immunocytochemical localization of a number of differentiation markers and extracellular matrix proteins was also similar to human skin. Kinetic data showed a transition of the epidermal layer to a more in vivo-like growth rate during the development of the construct at the air-liquid interface. The barrier properties of the construct also increased with time reaching a permeability to water of less than 2%-h after approximately 2 weeks at the air-liquid interface which is still on average 30-fold more water-permeable than normal human skin. The construct is currently used for in vitro research and testing and is also being tested in clinical applications.

  8. Cytotoxicity testing of topical antimicrobial agents on human keratinocytes and fibroblasts for cultured skin grafts.

    PubMed

    Boyce, S T; Warden, G D; Holder, I A

    1995-01-01

    Cultured epidermal skin has become an adjunctive therapy for treatment of major burn injuries, but its effectiveness is greatly limited because of destruction by microbial contamination. To evaluate candidate antimicrobial agents for use with cultured skin, a combined cytotoxicity-antimicrobial assay system was developed for determination of toxicity to cultured human keratinocytes and fibroblasts and for determination of susceptibility or resistance of common burn wound organisms. Candidate agents including chlorhexidine gluconate, polymyxin B, mupirocin, sparfloxacin, or nitrofurazone were tested separately for inhibition of growth of human cells and for inhibitory activity to microorganisms with the wet disk assay. The data showed that (1) chlorhexidine gluconate (0.05%) was uniformly toxic to both cultured human cells and microorganisms; (2) nitrofurazone (0.02%) had dose-dependent toxicity to human cells and limited effectiveness against gram-negative microorganisms; (3) sparfloxacin (30 micrograms/ml) had low toxicity to human cells and retained antimicrobial activity against both gram-positive and gram-negative bacteria; (4) polymyxin B (400 U/ml) was not toxic to human cells and had intermediate effectiveness on gram-negative bacteria; and (5) mupirocin (48 micrograms/ml) had no toxicity to skin cells and had uniform effectiveness against Staphylococcus aureus including methicillin-resistant Staphylococcus aureus. Selection of topical antimicrobial drugs by these assays may improve effectiveness of cultured skin for burns and may be used to control other surgical wound infections. PMID:7775517

  9. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration

    PubMed Central

    Mamalis, Andrew; Koo, Eugene; Isseroff, R. Rivkah; Murphy, William; Jagdeo, Jared

    2015-01-01

    Background Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease. Objective The goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed. Methods High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2. Results High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158

  10. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.

    PubMed

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-06-01

    Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of

  11. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.

    PubMed

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-06-01

    Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of

  12. 5-Lipoxygenase Inhibitors Attenuate TNF-α-Induced Inflammation in Human Synovial Fibroblasts

    PubMed Central

    Lin, Han-Ching; Lin, Tzu-Hung; Wu, Ming-Yueh; Chiu, Yung-Cheng; Tang, Chih-Hsin; Hour, Mann-Jen; Liou, Houng-Chi; Tu, Huang-Ju; Yang, Rong-Sen; Fu, Wen-Mei

    2014-01-01

    The lipoxygenase isoform of 5-lipoxygenase (5-LOX) is reported to be overexpressed in human rheumatoid arthritis synovial tissue and involved in the progress of inflammatory arthritis. However, the detailed mechanism of how 5-lipoxygenase regulates the inflammatory response in arthritis synovial tissue is still unclear. The aim of this study was to investigate the involvement of lipoxygenase pathways in TNF-α-induced production of cytokines and chemokines. Human synovial fibroblasts from rheumatoid patients were used in this study. 5-LOX inhibitors and shRNA were used to examine the involvement of 5-LOX in TNF-α-induced cytokines and chemokines expression. The signaling pathways were examined by Western Blotting or immunofluorescence staining. The effect of 5-LOX inhibitor on TNF-α-induced chemokine expression and paw edema was also explored in vivo in C57BL/6 mice. Treatment with 5-LOX inhibitors significantly decreased TNF-α-induced pro-inflammatory mediators including interleukin-6 (IL-6) and monocyte chemo-attractant protein-1 (MCP-1) in human synovial fibroblasts. Knockdown of 5-LOX using shRNA exerted similar inhibitory effects. The abrogation of NF-κB activation was involved in the antagonizing effects of these inhibitors. Furthermore, 5-LOX inhibitor decreased TNF-α-induced up-regulation of serum MCP-1 level and paw edema in mouse model. Our results provide the evidence that the administration of 5-LOX inhibitors is able to ameliorate TNF-α-induced cytokine/chemokine release and paw edema, indicating that 5-LOX inhibitors may be developed for therapeutic treatment of inflammatory arthritis. PMID:25229347

  13. Enhancing the efficiency of direct reprogramming of human primary fibroblasts into dopaminergic neuron-like cells through p53 suppression.

    PubMed

    Liu, XinJian; Huang, Qian; Li, Fang; Li, Chuan-Yuan

    2014-09-01

    Dopaminergic (DA) neuron-like cells obtained through direct reprogramming of primary human fibroblasts offer exciting opportunities for treatment of Parkinson's disease. A significant obstacle is the low efficiency of conversion during the reprogramming process. Here, we demonstrate that the suppression of p53 significantly enhances the efficiency of transcription factor-mediated conversion of human fibroblasts into functional dopaminergic neurons. In particular, blocking p53 activity using a dominant-negative p53 (p53-DN) in IMR90 cells increases the conversion efficiency by 5-20 fold. The induced DA neuron-like cells exhibit dopamine neuron-specific gene expression, significant dopamine uptake and production capacities, and enables symptomatic relief in a rat Parkinson's disease model. Taken together, our findings suggest that p53 is a critical barrier in direct reprogramming of fibroblast into dopaminergic neurons. PMID:25129808

  14. Hedgehog signaling is synergistically enhanced by nutritional deprivation and ligand stimulation in human fibroblasts of Gorlin syndrome.

    PubMed

    Mizuochi, Hiromi; Fujii, Katsunori; Shiohama, Tadashi; Uchikawa, Hideki; Shimojo, Naoki

    2015-02-13

    Hedgehog signaling is a pivotal developmental pathway that comprises hedgehog, PTCH1, SMO, and GLI proteins. Mutations in PTCH1 are responsible for Gorlin syndrome, which is characterized by developmental defects and tumorigenicity. Although the hedgehog pathway has been investigated extensively in Drosophila and mice, its functional roles have not yet been determined in human cells. In order to elucidate the mechanism by which transduction of the hedgehog signal is regulated in human tissues, we employed human fibroblasts derived from three Gorlin syndrome patients and normal controls. We investigated GLI1 transcription, downstream of hedgehog signaling, to assess native signal transduction, and then treated fibroblasts with a recombinant human hedgehog protein with or without serum deprivation. We also examined the transcriptional levels of hedgehog-related genes under these conditions. The expression of GLI1 mRNA was significantly higher in Gorlin syndrome-derived fibroblasts than in control cells. Hedgehog stimulation and nutritional deprivation synergistically enhanced GLI1 transcription levels, and this was blocked more efficiently by vismodegib, a SMO inhibitor, than by the natural compound, cyclopamine. Messenger RNA profiling revealed the increased expression of Wnt signaling and morphogenetic molecules in these fibroblasts. These results indicated that the hedgehog stimulation and nutritional deprivation synergistically activated the hedgehog signaling pathway in Gorlin syndrome fibroblasts, and this was associated with increments in the transcription levels of hedgehog-related genes such as those involved in Wnt signaling. These fibroblasts may become a significant tool for predicting the efficacies of hedgehog molecular-targeted therapies such as vismodegib. PMID:25576868

  15. Protective effect of dl-alpha-tocopherol on the cytotoxicity of ultraviolet B against human skin fibroblasts in vitro.

    PubMed

    Kondo, S; Mamada, A; Yamaguchi, J; Fukuro, S

    1990-08-01

    The effect of dl-alpha-tocopherol on ultraviolet light, 280-320 nm (UVB)-induced damage of human skin fibroblasts was studied by measuring the colony-forming ability, unscheduled DNA synthesis (UDS) and malondialdehyde (MDA) production. Regarding the cell toxicity, the values of the mean lethal dose (D0) of UV in fibroblast strains from 5 normal subjects were examined. D0 increased dose-dependently when the cells were cultured in the presence of dl-alpha-tocopherol at the concentration of 10-1000 micrograms/ml. UDS induced by 500 J/m2 UVB irradiation was not altered by treatment of 100 micrograms/ml dl-alpha-tocopherol. MDA did not increase after 500 J/m2 UVB irradiation in the fibroblasts cultured with 100 micrograms/ml dl-alpha-tocopherol, while MDA in the fibroblasts cultured without dl-alpha-tocopherol increased after irradiation. These results suggest that dl-alpha-tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB, and its mechanism seems to be related to inhibition of UV-induced lipid peroxidation or to the antioxidation effect of dl-alpha-tocopherol.

  16. The effect of poly (ethylene-co-vinyl alcohol) on senescence-associated alterations of human dermal fibroblasts.

    PubMed

    Lou, Pei-Jen; Chiu, Ming-Yi; Chou, Chi-Chun; Liao, Bor-Wu; Young, Tai-Horng

    2010-03-01

    It is well known that biomaterials play an important role in the regulation of adhesion and growth of a variety of cultured cell types. However, whether biomaterials are associated with the senescence of cultured cells is not known. The present work shows that the decrease of the hydrophobic property of poly (ethylene-co-vinyl alcohol) (EVAL) from 44 mole% to 27 mole% ethylene could induce characteristic senescence-associated phenotypic changes such as larger cell shape, re-organized actin cytoskeleton, lower proliferation capacity, higher levels of senescence-associated beta-galactosidase (SA beta-gal) activity, and upregulation of the cell-cycle inhibitor p53 and its transcriptional target p21 in the cultured human diploid fibroblasts (HDFs). Furthermore, it was found that the cultured cells recovered their ability to grow when the substrate was reused every passage. It seemed that the extracellular matrix (ECM) proteins adsorbed onto the EVAL surface might have a protective role in the cellular aging process. Therefore, whether a biomaterial strongly influences cellular aging process must be considered in the selection of a biomaterial for the biomedical application.

  17. Replicative Senescence in Human Fibroblasts Is Delayed by Hydrogen Sulfide in a NAMPT/SIRT1 Dependent Manner

    PubMed Central

    Sanokawa-Akakura, Reiko; Akakura, Shin; Tabibzadeh, Siamak

    2016-01-01

    Recent evidence suggests that hydrogen sulfide (H2S) has cytoprotective and anti-aging effects. However, the mechanisms for such properties are not fully understood. Here, we show that the expression of the main H2S producing enzyme, CBS, and production of H2S are coordinately diminished in replicative senescent adult human dermal fibroblasts. The reduced production of H2S falls within the same time-frame that the hallmarks of replicative senescence appear including accumulation of SA–β-Gal, enhanced expression of p16, p21, and RRM2B while the expression of RRM2, hTERT, SIRT1, NAMPT, and NAD/NADH ratio all fall. Exogenous H2S increases the expression of hTERT, NAMPT, SIRT1 and NAD/NADH ratio in treated cells. Moreover, H2S safeguards the expression of hTERT in a NAMPT and SIRT1 dependent manner and delays the onset of replicative senescence as evidenced by reduced accumulation of age associated SA–β-Gal and cessation of proliferation. Postponement of loss of cell proliferative capacity without risk of mutagenesis shows implications for use of H2S in delaying the adverse effects of senescence in organisms. PMID:27732642

  18. Regulation of various proteolytic pathways by insulin and amino acids in human fibroblasts.

    PubMed

    Esteban, Inmaculada; Aguado, Carmen; Sánchez, Maribel; Knecht, Erwin

    2007-07-24

    Intracellular protein degradation is a regulated process with several proteolytic pathways. Although regulation of macroautophagy has been investigated in some detail in hepatocytes and in few other cells, less is known on this regulation in other cells and proteolytic pathways. We show that in human fibroblasts insulin and amino acids reduce protein degradation by different signalling pathways and that this inhibition proceeds in part via the mammalian target of rapamycin, especially with amino acids, which probably increase lysosomal pH. Moreover, the regulatory amino acids (Phe, Arg, Met, Tyr, Trp and Cys) are partially different from other cells. Finally, and in addition to macroautophagy, insulin and amino acids modify, to different extents and sometimes in opposite directions, the activities of other proteolytic pathways.

  19. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts.

    PubMed

    Ershova, E S; Sergeeva, V A; Chausheva, A I; Zheglo, D G; Nikitina, V A; Smirnova, T D; Kameneva, L V; Porokhovnik, L N; Kutsev, S I; Troshin, P A; Voronov, I I; Khakina, E A; Veiko, N N; Kostyuk, S V

    2016-07-01

    Water-soluble fullerenes have been studied as potential nanovectors and therapeutic agents, but their possible toxicity is of concern. We have studied the effects of F-828, a soluble fullerene [C60] derivative, on diploid human embryonic lung fibroblasts (HELFs) in vitro. F-828 causes complex time-dependent changes in ROS levels. Inhibition of Nox4 activity by plumbagin blocks F-828-dependent ROS elevation. F-828 induces DNA breaks, as measured by the comet assay and γH2AX expression, and the activities of the transcription factors NF-kB and p53 increase. F-828 concentrations>25μM are cytotoxic; cell death occurs by necrosis. Expression levels of TGF-β, RHOA, RHOC, ROCK1, and SMAD2 increase following exposure to F-828. Our results raise the possibility that fullerene F-828 may induce pulmonary fibrosis in vivo. PMID:27402482

  20. Mutagenesis at the ouabain-resistance locus in human diploid fibroblasts.

    PubMed

    Buchwald, M

    1977-09-01

    The variables affecting the frequency of ouabain-resistant mutant clones have been studied in a strain of foetal lung fibroblasts. Optimum mutant recovery was obtained when cells were selected in 10(-6) M ouabain at a cell density of 2 X 10(4) cells/cm 2 (10(6) cell per 100-mm dish). The spontaneous mutation rate was estimated to be 4 X 10(-8) per cell generation. Treatment with the mutagens ethyl methanesulfonate (EMS), N-methyl-N' -nitro-N-nitrosoguanidine, and UV light increased the frequency of mutant colonies by an order of magnitude. The maximum number of mutants after mutagenesis with EMS occurred after two population doublings of growth in non-selective medium prior to selection and depended on the dose of EMS. Ouabain-resistance is a useful marker for studies of quantitative mutagenesis in human cells. PMID:904650

  1. DNA DSB induced by iron ions in human fibroblasts: LET dependence and shielding efficiency.

    PubMed

    Esposito, G; Antonelli, F; Belli, M; Campa, A; Dini, V; Furusawa, Y; Simone, G; Sorrentino, E; Tabocchini, M A

    2005-01-01

    This paper reports on DNA DSB induction in human fibroblasts by iron ions of different energies, namely 5, 1 GeV/u, 414 and 115 MeV/u, in absence or presence of different shields (PMMA, Al and Pb). Measure of DNA DSB was performed by calibrated Pulsed Field Gel Electrophoresis using the fragment counting method. The RBE-LET relationships for unshielded and shielded beams were obtained both in terms of dose average LET and of track average LET. Weak dependence on these parameters was observed for DSB induction. The shielding efficiency, evaluated by the ratio between the cross sections for unshielded and shielded beams, depends not only on the shield type and thickness, but also on the beam energy. Protection is only observed at high iron ions energy, especially at 5 GeV/u, where PMMA shield gives higher protection compared to Al or Pb shields of the same thickness expressed in g/cm2. PMID:15934201

  2. Second generation codon optimized minicircle (CoMiC) for nonviral reprogramming of human adult fibroblasts.

    PubMed

    Diecke, Sebastian; Lisowski, Leszek; Kooreman, Nigel G; Wu, Joseph C

    2014-01-01

    The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells.

  3. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells.

    PubMed

    Liu, Xinjian; Li, Fang; Stubblefield, Elizabeth A; Blanchard, Barbara; Richards, Toni L; Larson, Gaynor A; He, Yujun; Huang, Qian; Tan, Aik-Choon; Zhang, Dabing; Benke, Timothy A; Sladek, John R; Zahniser, Nancy R; Li, Chuan-Yuan

    2012-02-01

    Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD). However, a major stumbling block has been the lack of a reliable source of donor DA neurons. Here we show that a combination of five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells. The reprogrammed cells stained positive for various markers for DA neurons. They also showed characteristic DA uptake and production properties. Moreover, they exhibited DA neuron-specific electrophysiological profiles. Finally, they provided symptomatic relief in a rat PD model. Therefore, our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD. PMID:22105488

  4. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    SciTech Connect

    Kakudo, Natsuko . E-mail: kakudon@takii.kmu.ac.jp; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.

  5. Aqueous synthesis of gold nanoparticles and their cytotoxicity in human dermal fibroblasts-fetal.

    PubMed

    Qu, Yinghua; Lü, Xiaoying

    2009-04-01

    The unique physicochemical properties of nanoparticles make them promising substrates for application in the medical area. As there are no safety regulations yet, concerns about future health problems are rising. This study was conducted to prepare approximately 20 nm gold nanoparticles (GNPs) by a chemical reduction method and evaluate their cytotoxicity by MTT assay using human dermal fibroblasts-fetal (HDF-f). 10-50 nm GNPs could be obtained in redistilled water by varying the amount of sodium citrate. MTT results showed that approximately 20 nm GNPs did not cause cell death at a maximum concentration of 300 microM but affected the morphology of HDF-f when their concentration increased. PMID:19258699

  6. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  7. Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts.

    PubMed Central

    Soldatov, N M

    1992-01-01

    The nucleotide sequence of cDNA encoding the human fibroblast Ca2+ channel of L type (HFCC) has been determined. It is highly homologous to L-type channels previously cloned from rabbit lung and heart as well as from rat brain. At least four sites of molecular diversity were identified in the nucleotide sequence of HFCC. Three of these include regions encoding the transmembrane segments IIS6, IIIS2, and IVS3, which are known to be important for channel gating properties. The positions of these sites correlate with RNA splice sites, indicating that the molecular diversity of the transcripts is a result of alternative splicing. The fourth diversity region is located at the C-terminal region and comprises insertions and deletions. It is suggested that these variations may give rise to multiple subforms of HFCC with altered electrophysiological properties. Images PMID:1316612

  8. Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts.

    PubMed

    Soldatov, N M

    1992-05-15

    The nucleotide sequence of cDNA encoding the human fibroblast Ca2+ channel of L type (HFCC) has been determined. It is highly homologous to L-type channels previously cloned from rabbit lung and heart as well as from rat brain. At least four sites of molecular diversity were identified in the nucleotide sequence of HFCC. Three of these include regions encoding the transmembrane segments IIS6, IIIS2, and IVS3, which are known to be important for channel gating properties. The positions of these sites correlate with RNA splice sites, indicating that the molecular diversity of the transcripts is a result of alternative splicing. The fourth diversity region is located at the C-terminal region and comprises insertions and deletions. It is suggested that these variations may give rise to multiple subforms of HFCC with altered electrophysiological properties.

  9. A human embryonic lung fibroblast with a high density of muscarinic acetylcholine receptors.

    PubMed

    André, C; Marullo, S; Convents, A; Lü, B Z; Guillet, J G; Hoebeke, J; Strosberg, D A

    1988-01-15

    Binding studies with the radiolabeled muscarinic antagonists dexetimide, quinuclidinyl benzilate and N-methylscopolamine showed that the human embryonic lung fibroblast CCL137 possesses approximately 2 X 10(5) muscarinic receptors/cell, i.e. 2.1 pmol/mg membrane protein. These receptors showed a marked stereoselectivity towards dexetimide and levetimide and only low affinity for another antagonist, pirenzepine. The muscarinic agonist carbamylcholine inhibited forskolin-stimulated adenylate cyclase and induced phosphatidylinositide turnover in the intact cells. Both effects were inhibited by the muscarinic antagonist atropine. Affinity labeling with tritiated propylbenzylcholine mustard revealed a protein of 72 kDa. Finally, down-regulation of the membrane receptors following prolonged treatment with the agonist carbamylcholine was assessed by means of the hydrophilic antagonist N-methylscopolamine. PMID:2828056

  10. Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts.

    PubMed

    Pandian, Ganesh N; Taniguchi, Junichi; Junetha, Syed; Sato, Shinsuke; Han, Le; Saha, Abhijit; AnandhaKumar, Chandran; Bando, Toshikazu; Nagase, Hiroki; Vaijayanthi, Thangavel; Taylor, Rhys D; Sugiyama, Hiroshi

    2014-01-24

    The influential role of the epigenome in orchestrating genome-wide transcriptional activation instigates the demand for the artificial genetic switches with distinct DNA sequence recognition. Recently, we developed a novel class of epigenetically active small molecules called SAHA-PIPs by conjugating selective DNA binding pyrrole-imidazole polyamides (PIPs) with the histone deacetylase inhibitor SAHA. Screening studies revealed that certain SAHA-PIPs trigger targeted transcriptional activation of pluripotency and germ cell genes in mouse and human fibroblasts, respectively. Through microarray studies and functional analysis, here we demonstrate for the first time the remarkable ability of thirty-two different SAHA-PIPs to trigger the transcriptional activation of exclusive clusters of genes and noncoding RNAs. QRT-PCR validated the microarray data, and some SAHA-PIPs activated therapeutically significant genes like KSR2. Based on the aforementioned results, we propose the potential use of SAHA-PIPs as reagents capable of targeted transcriptional activation.

  11. Unscheduled synthesis of DNA and poly(ADP-ribose) in human fibroblasts following DNA damage

    SciTech Connect

    McCurry, L.S.; Jacobson, M.K.

    1981-01-01

    Unscheduled DNA synthesis has been measured in human fibroblasts under conditions of reduced rates of conversion of NAD to poly)ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of uv induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with uv or N-methyl-N'-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis.

  12. Apoptotic and necrotic influence of dental resin polymerization initiators in human gingival fibroblast cultures.

    PubMed

    Masuki, Kouhei; Nomura, Yuji; Bhawal, Ujjal Kumar; Sawajiri, Masahiko; Hirata, Isao; Nahara, Yukinori; Okazaki, Masayuki

    2007-11-01

    The aim of this study was to examine the apoptotic and necrotic influence of four dental resin polymerization initiators--namely benzoyl peroxide (BPO), camphorquinone (CQ), dimethylaminoethyl methacrylate (DMAEMA), and dimethyl-para-toluidine (DMPT)--on human gingival fibroblast (HGF) cells. To this end, the growth inhibition of HGF cells with 1 mM BPO, CQ, and DMAEMA, and 500 microM DMPT was evaluated using Cell Counting Kit-8. Then, cell cycle analysis by flow cytometry was used to assess propidium iodide-stained cells (distribution of cells in G0/G1, S, G2/M phases). All four dental resin polymerization initiators induced G0/G1 cell cycle arrest. As for the patterns of cell death (necrosis and/or apoptosis), they were analyzed using Annexin V-FITC/PI staining with flow cytometry. All four dental resin polymerization initiators most likely induced necrosis.

  13. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in

  14. Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture.

    PubMed

    Mytych, Jennifer; Wnuk, Maciej; Rattan, Suresh I S

    2016-04-01

    Nanodiamonds (ND) and silica nanoparticles (SiO2-NP) have been much investigated for their toxicity at high doses, little is known about their biological activity at low concentrations. Here we report the biphasic dose response of ND and SiO2-NP in modulating normal human facial skin fibroblasts (FSF1) in culture. ND and SiO2-NP at low concentration (up to 0.5 μg/ml) had beneficial effects on FSF1 in terms of increasing their proliferation and metabolic activity. Exposure of FSF1 cells to low levels of NP enhanced their wound healing ability in vitro and slowed down aging during serial passaging as measured by maintenance of youthful morphology, reduction in the rate of loss of telomeres, and the over all proliferative characteristics. Furthermore, NP treatment induced the activation of Nrf2- and FOXO3A-mediated cellular stress responses, including an increased expression of heme oxygenease (HO-1), sirtuin (SIRT1), and DNA methyltransferase II (DNMT2). These results imply that ND and SiO2-NP at low doses are potential hormetins, which exert mild stress-induced beneficial hormetic effects through improved survival, longevity, maintenance, repair and function of human cells.

  15. [Aging of the human testis].

    PubMed

    Sibert, Louis; Lacarrière, Emeric; Safsaf, Athmane; Rives, Nathalie

    2014-02-01

    The morphological and histological changes related to testicular aging are: volume decrease, arteriolar sclerosis, degeneration of Leydig cells and Sertoli, depletion of germ cells and thickening of the tunica albuginea testis. The participation in testicular androgen decline in aging is related to the decrease in the number of Leydig cells associated with alterations in the functioning of the hypothalamic-pituitary axis Sperm volume, concentration and total number, motility and morphology of sperm decrease with aging male. The interindividual variability of sperm parameters, the variability of methodologies for data collection and selection of patients must be careful in interpreting the published results. Overall, the quality of sperm decreases progressively with age, without any age limit that can be individualized. Alterations of spermatogenesis do not seem significantly compromising fertility in the elderly. The clinical impact of testicular aging implies androgen production decrease and diseases associated with aging.

  16. The efficacy of Salvadora persica extracts in preserving the viability of human foreskin fibroblasts

    PubMed Central

    Balto, Hanan Abdul Ghafour; Halawany, Hassan Suliman; Jacob, Vimal; Abraham, Nimmi Biju

    2015-01-01

    Objective To evaluate the efficacy of Salvadora persica hexane and ethanol extracts in preserving the viability of human foreskin fibroblasts. Materials and methods Normal human foreskin cells were cultivated in Dulbecco modified Minimum Essential Medium (D-MEM) supplemented with 10% fetal bovine serum and 2 mM of l-glutamine. Cell pellets were suspended in the following test solutions: (1) Hank’s Balanced Salt Solution (HBSS); (2) homogenized milk; (3) hexane extract of S. persica; or (4) ethanol extract of S. persica. D-MEM with no serum was used as a positive control. For each condition, cell count was adjusted to 8 × 105 cells/ml, and the cells were incubated in the solutions for either 30, 60, or 120 min. Subsequently, the nonviable cells were separated from the viable cells using the trypan blue dye stain. The ratio of viable to nonviable cells was recorded using a cell counter. Statistical analysis of the data was accomplished by one-way analysis of variance using SPSS Version 16. The level of significance was 5% (p < .05). Results We did not detect a significant difference when comparing the percentage of viable cells in test solutions at the three incubation periods (30 min, p = 0.478; 60 min, p = 0.606; 120 min, p = 0.091). Homogenized milk preserved the viability of foreskin fibroblasts better than all other tested solutions. Incubation of cells in S. persica hexane and ethanol extracts resulted in a similar percentage of viable cells to incubation of cells in HBSS for each incubation period. Conclusions S. persica hexane and ethanol extracts should be considered an alternative storage medium to HBSS. PMID:26236127

  17. In Vitro Cytotoxicity Evaluation of Three Root-End Filling Materials in Human Periodontal Ligament Fibroblasts.

    PubMed

    Coaguila-Llerena, Hernán; Vaisberg, Abraham; Velásquez-Huamán, Zulema

    2016-01-01

    The aim of this study was to evaluate in vitro the cytotoxicity on human periodontal ligament fibroblasts of three root-end filling materials: MTA Angelus®, EndoSequence Root Repair Material Putty® and Super EBA®. A primary culture of human periodontal ligament fibroblasts was previously obtained in order to evaluate the cytotoxicity of the three extracts from the root-end filling materials after 2 and 7 days of setting. Serial dilutions of these extracts (1:1, 1:2, 1:4 and 1:8) were evaluated at 1, 3 and 7 days using the methyl-thiazol-tetrazolium (MTT) colorimetric assay. Cell viability was evaluated as percentage of the negative control group, which represented 100% cell viability. Statistical analyses were done with t-test, ANOVA and Kruskal-Wallis test at a significance level of 5%. It was found that the main difference among root-end filling materials was in the higher dilutions (p<0.05), but there was a similar behavior in lower dilutions (p>0.05). Cell viability of MTA Angelus® was superior for 2-day setting (p<0.05), compared with the other two root-end fillings. There were no statistically significant differences between 7-day set MTA Angelus® and EndoSequence Root Repair Material Putty®. Super EBA® showed the lowest percentage of cell viability at higher dilutions (p<0.05). Therefore, MTA Angelus® and EndoSequence Root Repair Material Putty® were less cytotoxic in the highest dilution (1:1) compared with Super EBA®. PMID:27058382

  18. In Vitro Cytotoxicity Evaluation of Three Root-End Filling Materials in Human Periodontal Ligament Fibroblasts.

    PubMed

    Coaguila-Llerena, Hernán; Vaisberg, Abraham; Velásquez-Huamán, Zulema

    2016-01-01

    The aim of this study was to evaluate in vitro the cytotoxicity on human periodontal ligament fibroblasts of three root-end filling materials: MTA Angelus®, EndoSequence Root Repair Material Putty® and Super EBA®. A primary culture of human periodontal ligament fibroblasts was previously obtained in order to evaluate the cytotoxicity of the three extracts from the root-end filling materials after 2 and 7 days of setting. Serial dilutions of these extracts (1:1, 1:2, 1:4 and 1:8) were evaluated at 1, 3 and 7 days using the methyl-thiazol-tetrazolium (MTT) colorimetric assay. Cell viability was evaluated as percentage of the negative control group, which represented 100% cell viability. Statistical analyses were done with t-test, ANOVA and Kruskal-Wallis test at a significance level of 5%. It was found that the main difference among root-end filling materials was in the higher dilutions (p<0.05), but there was a similar behavior in lower dilutions (p>0.05). Cell viability of MTA Angelus® was superior for 2-day setting (p<0.05), compared with the other two root-end fillings. There were no statistically significant differences between 7-day set MTA Angelus® and EndoSequence Root Repair Material Putty®. Super EBA® showed the lowest percentage of cell viability at higher dilutions (p<0.05). Therefore, MTA Angelus® and EndoSequence Root Repair Material Putty® were less cytotoxic in the highest dilution (1:1) compared with Super EBA®.

  19. Differentiated fibroblastic progenies of human embryonic stem cells for toxicology screening.

    PubMed

    Cao, Tong; Lu, Kai; Fu, Xin; Heng, Boon Chin

    2008-03-01

    Immortalized cell lines and live animal models are commonly used for cytotoxicity screening of biomedical devices and materials. However, these assays poorly reflect human physiology and have numerous other disadvantages. An alternative may be to utilize differentiated fibroblastic progenies of human embryonic stem cells (hESC) for in vitro toxicology screening. These were generated through random spontaneous differentiation within standard culture media, over several passages. The cytotoxic response of the differentiated hESC fibroblastic progenies (pH9) to mitomycin C was observed to be not only very similar to the L929 cell line, but was, in fact, more sensitive. At an initial seeding density of 1000 cells/well (0.33 cm(2)), the proliferation index was observed to decrease 19.0% from 1.638 to 1.326 for the L929 cell line, as the dosage of mitomycin C was gradually increased from 0 to 1.54 microg/mL. By contrast, pH9 displayed a corresponding 40.5% drop in proliferation index from 3.713 to 2.209. At a higher seeding density of 2000 cells/well (0.33 cm(2)), the proliferation index was observed to decrease 27.0% from 1.213 to 0.885 for the L929 cell line, whereas pH9 displayed a corresponding 43.7% drop in proliferation index from 3.711 to 2.091. Hence, it is apparent that pH9 exhibited a more sensitive dose-response to mitomycin C compared to L929, which could be advantageous for cytotoxicity screening assays. Additionally, this study also demonstrated that a highly purified and well-defined phenotypic population of differentiated hESC progenies is not necessary for high reproducibility and accuracy in cytotoxic response. PMID:18241121

  20. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in space

    NASA Astrophysics Data System (ADS)

    Wu, Honglu; Story, Michael; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao

    2016-07-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NFkB and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for αa-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  1. Detection of nucleotide excision repair incisions in human fibroblasts by immunostaining for PCNA.

    PubMed

    Aboussekhra, A; Wood, R D

    1995-12-01

    During nucleotide excision repair, damaged DNA is incised on both sides of a lesion and an oligomer containing the damage is excised and replaced by repair DNA synthesis. The latter step is accomplished in vitro by proteins that include the DNA polymerase accessory factor PCNA, which binds to DNA ends to initiate repair synthesis. An increased association of PCNA with nuclei occurs after UV irradiation of nonreplicating DNA in normal human fibroblasts, probably following incision of damaged DNA. This property was used to detect the catalysis of nucleotide excision repair incisions in damaged DNA in vivo, by immunostaining of quiescent human fibroblasts with the widely available PC10 antibody. We summarize here a comprehensive survey of PCNA immunostaining in repair-defective xeroderma pigmentosum (XP) cells in comparison to normal cells. XP-A and XP-G cells were completely defective in staining for PCNA 30 min after UV irradiation. This strongly suggests that XPA and XPG proteins are absolutely required in cells before any incisions can be formed in damaged DNA. XP-B, XP-C, XP-D, and XP-F cells showed an intermediate level of staining for PCNA after UV irradiation, indicative of partial incision capacity in those cells. UV-irradiated XP-E and XP-V cells showed normal PCNA immunostaining levels, consistent with evidence that the corresponding factors are not essential for the incision step of repair. The results provide further evidence for the involvement of PCNA in the repair process in vivo and give an alternative to traditional approaches for measurement of nucleotide excision repair capability. PMID:7493631

  2. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts

    PubMed Central

    Guzmán-Silva, Alejandro; Vázquez de Lara, Luis G.; Torres-Jácome, Julián; Vargaz-Guadarrama, Ajelet; Flores-Flores, Marycruz; Pezzat Said, Elias; Lagunas-Martínez, Alfredo; Mendoza-Milla, Criselda; Tanzi, Franco; Moccia, Francesco; Berra-Romani, Roberto

    2015-01-01

    Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF. PMID:26230503

  3. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  4. Cocarcinogenicity of saccharin and N-alkylnitrosoureas in cultured human diploid fibroblasts

    SciTech Connect

    Milo, G.E.; Oldham, J.W.; Noyes, I.; Lehman, T.A.; Kumari, L.; West, R.W.; Kadlubar, F.F.

    1988-01-01

    Previous attempts to transform human foreskin fibroblasts in vitro with N-methylnitrosourea (MNU) or N-ethylnitrosourea (ENU) have been unsuccessful, and concurrent treatment with cocarcinogens or tumor promotors and either MNU or ENU have also failed to produce a neoplastic response. The present study was undertaken to test the effect of sodium saccharin on MNU- or ENU-induced cell transformation. Saccharin alone was not effective in inducing the growth of colonies in soft agar (anchorage-independent growth). However, concurrent treatment with saccharin (50 ..mu..g/ml, nontoxic dose) and MNU or ENU (29 ..mu..g/ml or 44 ..mu..g/ml, respectively) was effective in inducing transformation (greater than 300 colonies/10/sup 5/ cells), but only when the cells were treated with saccharin after being released from a G/sub 1/ block (amino acid deprivation) and followed by MNU or ENU treatment in early S phase. In contrast to results obtained with other chemical carcinogens, transformation frequencies induced by saccharin and MNU or ENU were only slightly decreased in the absence of insulin, which is normally required for growth in this system. Saccharin-MNU- or saccharin-ENU-treated cells that exhibited growth in soft agar also exhibited cellular invasiveness in 9-d-old embryonic chick skin in vitro. In addition, these cells reacted with a monoclonal antibody prepared against a molecular weight 115,000 sarcoma-cell surface-associated glycoprotein and also developed tumors in nude mice. These data demonstrate the cell-cycle-dependent cocarcinogenic potential of saccharin and MNU or ENU in cultured human skin fibroblasts.

  5. Receptors for bradykinin in intact cultured human fibroblasts. Identification and characterization by direct binding study.

    PubMed Central

    Roscher, A A; Manganiello, V C; Jelsema, C L; Moss, J

    1983-01-01

    Bradykinin receptors on cultured human fibroblasts were characterized using [2,3-prolyl-3,4-3H(N)]bradykinin as radioligand. During incubation with intact fibroblasts, intact [3H]bradykinin was lost much more rapidly at 37 degrees than at 4 degrees C as determined by bioassay, high-performance liquid chromatography, and ion-exchange chromatography, and is likely to be degraded. At 4 degrees, but not at 37 degrees C, bradykinin remained intact in the presence of 2 mM bacitracin, but not in the presence of soybean trypsin inhibitor or SQ-20881, an inhibitor of kininase II. Specific binding at 4 degrees C was saturable with a maximum number of binding sites of 230 +/- 18 fmol/mg protein (mean +/- SE, n = 4) and a dissociation constant of 4.6 +/- 0.5 nM (mean +/- SE, n = 4). Linear Scatchard plots, Hill coefficients close to unity (0.95-1.06), and the failure of excess bradykinin to influence dissociation kinetics are consistent with a single component binding system with no significant cooperativity. Na+ at physiological concentrations and Ca++ or Mg++ at 3-10 mM reduced binding by 25%. The relative potencies of bradykinin analogues and unrelated peptides in competing for [3H]bradykinin binding indicated a specificity of the binding sites consistent with that of a B2 type receptor. Potencies of the peptides in displacing [3H]bradykinin correlated with their abilities to release prostacyclin, determined as its metabolite 6-keto-PGF1 alpha. This system, the first in which bradykinin receptors on human cells have been characterized, should prove useful for investigation of the regulation of bradykinin-influenced biological processes. PMID:6135711

  6. Transient Gene and MicroRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-01-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NF(kappa)B and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for alpha-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  7. SORBS2 and TLR3 induce premature senescence in primary human fibroblasts and keratinocytes

    PubMed Central

    2013-01-01

    Background Genetic aberrations are required for the progression of HPV-induced cervical precancers. A prerequisite for clonal expansion of cancer cells is unlimited proliferative capacity. In a cell culture model for cervical carcinogenesis loss of genes located on chromosome 4q35→qter and chromosome 10p14-p15 were found to be associated with escape from senescence. Moreover, by LOH and I-FISH analyses a higher frequency of allele loss of these regions was also observed in cervical carcinomas as compared to CIN3. The aim of this study was to identify candidate senescence-related genes located on chromosome 4q35→qter and chromosome 10p14-p15 which may contribute to clonal expansion at the transition of CIN3 to cancer. Methods Microarray expression analyses were used to identify candidate genes down-regulated in cervical carcinomas as compared to CIN3. In order to relate these genes with the process of senescence their respective cDNAs were overexpressed in HPV16-immortalized keratinocytes as well as in primary human fibroblasts and keratinocytes using lentivirus mediated gene transduction. Results Overall fifteen genes located on chromosome 4q35→qter and chromosome 10p14-p15 were identified. Ten of these genes could be validated in biopsies by RT-PCR. Of interest is the novel finding that SORBS2 and TLR3 can induce senescence in primary human fibroblasts and keratinocytes but not in HPV-immortalized cell lines. Intriguingly, the endogenous expression of both genes increases during finite passaging of primary keratinocytes in vitro. Conclusions The relevance of the genes SORBS2 and TLR3 in the process of cellular senescence warrants further investigation. In ongoing experiments we are investigating whether this increase in gene expression is also characteristic of replicative senescence. PMID:24165198

  8. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts.

    PubMed

    Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V

    2016-01-01

    It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma. PMID:27468688

  9. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts

    PubMed Central

    Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V

    2016-01-01

    It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma. PMID:27468688

  10. Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts.

    PubMed

    Mukherjee, Subhendu; Kolb, Martin R J; Duan, Fuqin; Janssen, Luke J

    2012-06-01

    Fibroblasts maintain the structural framework of animal tissue by synthesizing extracellular matrix molecules. Chronic lung diseases are characterized in part by changes in fibroblast numbers, properties, and more. Fibroblasts respond to a variety of growth factors, cytokines, and proinflammatory mediators. However, the signaling mechanisms behind these responses have not been fully explored. We sought to determine the role of Ca(2+) waves in transforming growth factor-β (TGF-β)-mediated gene expression in human pulmonary fibroblasts. Primary human pulmonary fibroblasts were cultured and treated with TGF-β and different blockers under various conditions. Cells were then loaded with the Ca(2+) indicator dye Oregon green, and Ca(2+) waves were monitored by confocal [Ca(2+)](i) fluorimetry. Real-time PCR was used to probe gene expression. TGF-β (1 nM) evoked recurring Ca(2+) waves. A 30-minute pretreatment of SD 208, a TGF-β receptor-1 kinase inhibitor, prevented Ca(2+) waves from being evoked by TGF-β. The removal of external Ca(2+) completely occluded TGF-β-evoked Ca(2+) waves. Cyclopiazonic acid, an inhibitor of the internal Ca(2+) pump, evoked a relatively slowly developing rise in Ca(2+) waves compared with the rapid changes evoked by TGF-β, but the baseline fluorescence was increased. Ryanodine (10(-5) M) also blocked TGF-β-mediated Ca(2+) wave activity. Real-time PCR showed that TGF-β rapidly and dramatically increased the gene expression of collagen A1 and fibronectin. This increase was blocked by ryanodine treatment and cyclopiazonic acid. We conclude that, in human pulmonary fibroblasts, TGF-β acts on ryanodine-sensitive channels, leading to Ca(2+) wave activity, which in turn amplifies extracellular matrix gene expression.

  11. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells.

    PubMed

    Smith, Leah J; Holmes, Amie L; Kandpal, Sanjeev Kumar; Mason, Michael D; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity.

  12. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells.

    PubMed

    Smith, Leah J; Holmes, Amie L; Kandpal, Sanjeev Kumar; Mason, Michael D; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. PMID:24823294

  13. Effects of water-filtered infrared A irradiation on human fibroblasts.

    PubMed

    Jung, Tobias; Höhn, Annika; Piazena, Helmut; Grune, Tilman

    2010-01-01

    Infrared radiation is a substantial part of the solar energy output reaching the earth surface. Therefore, exposure of humans to infrared radiation is common. However, whether and how infrared (IR) or infrared A acts on human skin cells is still under debate. Recently the generation of reactive oxygen species by water-filtered infrared A (wIRA) irradiation was postulated. wIRA shows a spectral distribution similar to that of solar irradiation at the earth's surface. Thus, the need for protection of human skin from both solar- and artificially generated infrared A irradiation was concluded. Here we demonstrate that in human dermal fibroblasts this reactive oxygen species generation is dependent on heat formation by infrared A and can be reproduced by thermal exposure. On the other hand wIRA irradiation had no detectable effect if the temperature in the cells was kept constant, even if irradiance exceeded the extraterrestrial solar irradiance in the IR range by a factor of about 4 and the maximum at noontime in the tropics by a factor up to about 6. This could be demonstrated by the measurement of oxidant formation using H(2)DCFDA and the determination of protein carbonyls. In additional experiments we could show that during thermal exposure the mitochondria contribute significantly to oxidant production. Further experiments revealed that the major absorbance of infrared is due to absorption of the energy by cellular water.

  14. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation

    PubMed Central

    Saucedo, Lucía; Buffa, Gabriela N.; Rosso, Marina; Guillardoy, Tomás; Góngora, Adrian; Munuce, María J.

    2015-01-01

    Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility. PMID:25970615

  15. [Experimental models of human skin aging].

    PubMed

    Nikolakis, G; Zoschke, C; Makrantonaki, E; Hausmann, C; Schäfer-Korting, M; Zouboulis, C C

    2016-02-01

    The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research.

  16. [Experimental models of human skin aging].

    PubMed

    Nikolakis, G; Zoschke, C; Makrantonaki, E; Hausmann, C; Schäfer-Korting, M; Zouboulis, C C

    2016-02-01

    The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research. PMID:26743051

  17. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin

    PubMed Central

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-01-01

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts. PMID:27428951

  18. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin.

    PubMed

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-01-01

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts. PMID:27428951

  19. Characterization of human IMR-90 fibroblasts as a model system for the study of chemical carcinogenesis in vitro

    SciTech Connect

    Bower, E.A.; Kaji, H.

    1986-01-01

    The effects of chemical carcinogens on various aspects of cellular metabolism were measured in human IMR-90 fibroblasts. These studies were undertaken to assess the ability of IMR-90 cells to be used for the study of chemical carcinogenesis in vitro. It was found that (1) chemical carcinogens inhibited DNA synthesis in synchronous cultures of IMR-90 fibroblasts; (2) the effective concentrations of carcinogens showing effects in this system were lower than for other published in vitro cell assay systems, (3) compounds that require metabolic activation to a carcinogenic form demonstrated the ability to inhibit DNA synthesis in IMR-90 fibroblasts; (4) a fluorometric determination of aryl hydrocarbon hydroxylase (AHH) activity in IMR-90 cells revealed a low level of inducible AHH; (5) IMR-90 cells can metabolize 7,12-dimethyl-benzanthracene (DMBA) to compounds that are identified as metabolites of DMBA in vivo.

  20. Ca2+- and PKC-dependent stimulation of PGE2 synthesis by deoxycholic acid in human colonic fibroblasts.

    PubMed

    Zhu, Yingting; Hua, Ping; Rafiq, Shazia; Waffner, Eric J; Duffey, Michael E; Lance, Peter

    2002-09-01

    We investigated prostanoid biogenesis by human colonic fibroblasts (CCD-18Co cells and nine primary fibroblast cultures) exposed to a primary (cholic, CA) or a secondary (deoxycholic, DCA) bile acid. Basal PGE2 levels in CCD-18Co cultures and fibroblast strains initiated from normal and adenocarcinomatous colon, respectively, were 1.7 +/- 0.3, 4.0 +/- 2.0, and 15.0 +/- 4.8 ng/mg protein. Peak levels 24 h after exposure to DCA (300 microM) rose, respectively, seven-, six- and sevenfold, but CA elicited no such responses. Increases in PGE2 synthesis were preceded by sequential increases in PGH synthase-2 mRNA and protein expression and were fully prevented by a nonselective (indomethacin) or a selective (celecoxib) nonsteroidal anti-inflammatory drug. DCA, but not CA, caused abrupt, transient increases in fibroblast intracellular Ca2+ concentration ([Ca2+]i) approximately 1 min after exposure. Increased [Ca2+]i was required for DCA-mediated induction of PGE2 synthesis, and protein kinase C was a further essential component of this signaling pathway. Colonic fibroblasts may be a major target for prostanoid biogenesis induced by fecal bile acids and, potentially, other noxious actions of these agents. PMID:12181161

  1. Effect of antioxidant supplementation on the adaptive response of human skin fibroblasts to UV-induced oxidative stress.

    PubMed

    Jones, S A; McArdle, F; Jack, C I; Jackson, M J

    1999-01-01

    The effect of supplementation with substances having antioxidant properties on the adaptive responses of human skin fibroblasts to UV-induced oxidative stress was studied in vitro. UVR was found to induce a substantial oxidative stress in fibroblasts, resulting in an increased release of superoxide anions and an increase in lipid peroxidation (shown by an elevated malonaldehyde content). Sub-lethal doses of UVR were also found to induce adaptive responses in the fibroblast antioxidant defences, with a transient rise in catalase and superoxide dismutase activities followed by a slower, large increase in cellular glutathione content. Supplementation of the fibroblasts with the antioxidants, Trolox (a water soluble analogue of alpha-tocopherol), ascorbic acid or beta-carotene, had differential effects on these responses. Trolox supplementation reduced the UVR-induced cellular oxidative stress and adaptive response in a predictable concentration-dependent manner. This was in contrast to ascorbic acid which increased superoxide release from fibroblasts. At low doses, ascorbate supplements also reduced the magnitude of the adaptive increases in catalase and superoxide dismutase activities and increase in glutathione content. Beta-carotene had a similar effect to ascorbic acid, reducing the extent of the adaptations to UVR at lower doses while simultaneously increasing superoxide release and malonaldehyde content. These in vitro data indicate that only the vitamin E analogue suppressed UVR-induced oxidative stress in a predictable manner and suggest that common dietary antioxidants may not be equally effective in reducing the potential deleterious effects of UVR-induced oxidative stress in skin.

  2. Inhibition of human fibroblast growth in vitro by a snake oil.

    PubMed

    Datubo-Brown, D D; Blight, A

    1990-03-01

    The inhibitory effects of boa constrictor fat (BCF) oil on the growth kinetics of keloid and normal dermal fibroblasts were tested in fibroblasts cultures. BCF significantly (p less than 0.0001) inhibited the in vitro growth of both keloid and normal dermal fibroblasts. Although the active ingredient(s) in this snake oil is not yet determined, it is postulated that fatty acids which are the main constituents of the oil may in part account for this observed in vitro effect.

  3. Telocytes and putative stem cells in ageing human heart

    PubMed Central

    Popescu, Laurentiu M; Curici, Antoanela; Wang, Enshi; Zhang, Hao; Hu, Shengshou; Gherghiceanu, Mihaela

    2015-01-01

    Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit http://www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days–1 year), children (6–17 years) and adults (34–60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm2) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52–62%; vascular smooth muscle cells and pericytes 22–28%, Schwann cells with nerve endings 6–7%, fibroblasts 3–10%, macrophages 1–8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults). PMID:25545142

  4. Conversion of epoxyeicosatrienoic acids (EETs) to chain-shortened epoxy fatty acids by human skin fibroblasts.

    PubMed

    Fang, X; Kaduce, T L; VanRollins, M; Weintraub, N L; Spector, A A

    2000-01-01

    Epoxyeicosatrienoic acids (EETs), the eicosanoid biomediators synthesized from arachidonic acid by cytochrome P450 epoxygenases, are inactivated in many tissues by conversion to dihydroxyeicosatrienoic acids (DHETs). However, we find that human skin fibroblasts convert EETs mostly to chain-shortened epoxy-fatty acids and produce only small amounts of DHETs. Comparative studies with [5,6,8,9,11,12,14,15-(3)H]11,12-EET ([(3)H]11,12-EET) and [1-(14)C]11,12-EET demonstrated that chain-shortened metabolites are formed by removal of carbons from the carboxyl end of the EET. These metabolites accumulated primarily in the medium, but small amounts also were incorporated into the cell lipids. The most abundant 11, 12-EET product was 7,8-epoxyhexadecadienoic acid (7,8-epoxy-16:2), and two of the others that were identified are 9, 10-epoxyoctadecadienoic acid (9,10-epoxy-18:2) and 5, 6-epoxytetradecaenoic acid (5,6-epoxy-14:1). The main epoxy-fatty acid produced from 14,15-EET was 10,11-epoxyhexadecadienoic acid (10, 11-epoxy-16:2). [(3)H]8,9-EET was converted to a single metabolite with the chromatographic properties of a 16-carbon epoxy-fatty acid, but we were not able to identify this compound. Large amounts of the chain-shortened 11,12-EET metabolites were produced by long-chain acyl CoA dehydrogenase-deficient fibroblasts but not by Zellweger syndrome and acyl CoA oxidase-deficient fibroblasts. We conclude that the chain-shortened epoxy-fatty acids are produced primarily by peroxisomal beta-oxidation. This may serve as an alternate mechanism for EET inactivation and removal from the tissues. However, it is possible that the epoxy-fatty acid products may have metabolic or functional effects and that the purpose of the beta-oxidation pathway is to generate these products.

  5. Histamine Induces ATP Release from Human Subcutaneous Fibroblasts, via Pannexin-1 Hemichannels, Leading to Ca2+ Mobilization and Cell Proliferation*

    PubMed Central

    Pinheiro, Ana Rita; Paramos-de-Carvalho, Diogo; Certal, Mariana; Costa, Maria Adelina; Costa, Cristina; Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Sévigny, Jean; Correia-de-Sá, Paulo

    2013-01-01

    Changes in the regulation of connective tissue ATP-mediated mechano-transduction and remodeling may be an important link to the pathogenesis of chronic pain. It has been demonstrated that mast cell-derived histamine plays an important role in painful fibrotic diseases. Here we analyzed the involvement of ATP in the response of human subcutaneous fibroblasts to histamine. Acute histamine application caused a rise in intracellular Ca2+ ([Ca2+]i) and ATP release from human subcutaneous fibroblasts via H1 receptor activation. Histamine-induced [Ca2+]i rise was partially attenuated by apyrase, an enzyme that inactivates extracellular ATP, and by blocking P2 purinoceptors with pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt and reactive blue 2. [Ca2+]i accumulation caused by histamine was also reduced upon blocking pannexin-1 hemichannels with 10Panx, probenecid, or carbenoxolone but not when connexin hemichannels were inhibited with mefloquine or 2-octanol. Brefeldin A, an inhibitor of vesicular exocytosis, also did not block histamine-induced [Ca2+]i mobilization. Prolonged exposure of human subcutaneous fibroblast cultures to histamine favored cell growth and type I collagen synthesis via the activation of H1 receptor. This effect was mimicked by ATP and its metabolite, ADP, whereas the selective P2Y1 receptor antagonist, MRS2179, partially attenuated histamine-induced cell growth and type I collagen production. Expression of pannexin-1 and ADP-sensitive P2Y1 receptor on human subcutaneous fibroblasts was confirmed by immunofluorescence confocal microscopy and Western blot analysis. In conclusion, histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to [Ca2+]i mobilization and cell growth through the cooperation of H1 and P2 (probably P2Y1) receptors. PMID:23918924

  6. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors

    PubMed Central

    Wong, Wing Tak; Cooke, John P

    2016-01-01

    Transdifferentiation is the direct conversion from one somatic cell type into another desired somatic cell type. This reprogramming method offers an attractive approach for regenerative medicine. Here, we demonstrate that neonatal fibroblasts can be transdifferentiated into endothelial cells using only four endothelial transcription factors, namely, ETV2, FLI1, GATA2, and KLF4. We observed a significant up-regulation of endothelial genes including KDR, CD31, CD144, and vWF in human neonatal foreskin (BJ) fibroblasts infected with the lentiviral construct encoding the open reading frame of the four transcription factors. We observed morphological changes in BJ fibroblasts from the fibroblastic spindle shape into a more endothelial-like cobblestone structures. Fluorescence-activated cell sorting analysis revealed that ~16% of the infected cells with the lentiviral constructs encoding 4F expressed CD31. The sorted cells were allowed to expand for 2 weeks and these cells were immunostained and found to express endothelial markers CD31. The induced endothelial cells also incorporated fluorescence-labeled acetylated low-density lipoprotein and efficiently formed capillary-like networks when seeded on Matrigel. These results suggested that the induced endothelial cells were functional in vitro. Taken together, we successfully demonstrated the direct conversion of human neonatal fibroblasts into endothelial cells by transduction of lentiviral constructs encoding endothelial lineage-specific transcription factors ETV2, FLI1, GATA2, and KLF4. The directed differentiation of fibroblasts into endothelial cells may have significant utility in diseases characterized by fibrosis and loss of microvasculature. PMID:27081470

  7. Serum amyloid A triggers the mosodium urate -mediated mature interleukin-1β production from human synovial fibroblasts

    PubMed Central

    2012-01-01

    Background Monosodium urate (MSU) has been shown to promote inflammasome activation and interleukin-1β (IL-1β) secretion in monocyte/macrophages, but the cellular pathway and nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in synovial tissues, remain elusive. In this study, we investigated the effects of MSU on synovial fibroblasts to elucidate the process of MSU-mediated synovial inflammation. Methods Human synovial fibroblasts were stimulated with MSU in the presence or absence of serum amyloid A (SAA). The cellular supernatants were analyzed by immunoblotting using anti-IL-1β or anti-caspase-1 antibodies. IL-1β or NLRP3 mRNA expressions were analyzed by real-time PCR or reverse transcription-PCR (RT-PCR) method. Results Neither SAA nor MSU stimulation resulted in IL-1β or interleukin-1α (IL-1α) secretions and pro-IL-1β processing in synovial fibroblasts. However, in SAA-primed synovial fibroblasts, MSU stimulation resulted in the activation of caspase-1 and production of active IL-1β and IL-1α. The effect of SAA on IL-1β induction was impaired in cells by silencing NLRP3 using siRNA or treating with caspase-1 inhibitor. In addition, SAA induced the secretion of cathepsin B and NLRP3 mRNA expression in synovial fibroblasts. Conclusions Our data demonstrate that exposure of human synovial fibroblasts to SAA promotes MSU-mediated caspase-1 activation and IL-1β secretion in the absence of microbial stimulation. These findings provide insight into the molecular processes underlying the synovial inflammatory condition of gout. PMID:22608202

  8. High content analysis of human fibroblast cell cultures after exposure to space radiation.

    PubMed

    Dieriks, Birger; De Vos, Winnok; Meesen, Geert; Van Oostveldt, Kaat; De Meyer, Tim; Ghardi, Myriam; Baatout, Sarah; Van Oostveldt, Patrick

    2009-10-01

    Space travel imposes risks to human health, in large part by the increased radiation levels compared to those on Earth. To understand the effects of space radiation on humans, it is important to determine the underlying cellular mechanisms. While general dosimetry describes average radiation levels accurately, it says little about the actual physiological impact and does not provide biological information about individual cellular events. In addition, there is no information about the nature and magnitude of a systemic response through extra- and intercellular communication. To assess the stress response in human fibroblasts that were sent into space with the Foton-M3 mission, we have developed a pluralistic setup to measure DNA damage and inflammation response by combining global and local dosimetry, image cytometry and multiplex array technology, thereby maximizing the scientific output. We were able to demonstrate a significant increase in DNA double-strand breaks, determined by a twofold increase of the gamma-H2AX signal at the level of the single cell and a threefold up-regulation of the soluble signal proteins CCL5, IL-6, IL-8, beta-2 microglobulin and EN-RAGE, which are key players in the process of inflammation, in the growth medium.

  9. High content analysis of human fibroblast cell cultures after exposure to space radiation.

    PubMed

    Dieriks, Birger; De Vos, Winnok; Meesen, Geert; Van Oostveldt, Kaat; De Meyer, Tim; Ghardi, Myriam; Baatout, Sarah; Van Oostveldt, Patrick

    2009-10-01

    Space travel imposes risks to human health, in large part by the increased radiation levels compared to those on Earth. To understand the effects of space radiation on humans, it is important to determine the underlying cellular mechanisms. While general dosimetry describes average radiation levels accurately, it says little about the actual physiological impact and does not provide biological information about individual cellular events. In addition, there is no information about the nature and magnitude of a systemic response through extra- and intercellular communication. To assess the stress response in human fibroblasts that were sent into space with the Foton-M3 mission, we have developed a pluralistic setup to measure DNA damage and inflammation response by combining global and local dosimetry, image cytometry and multiplex array technology, thereby maximizing the scientific output. We were able to demonstrate a significant increase in DNA double-strand breaks, determined by a twofold increase of the gamma-H2AX signal at the level of the single cell and a threefold up-regulation of the soluble signal proteins CCL5, IL-6, IL-8, beta-2 microglobulin and EN-RAGE, which are key players in the process of inflammation, in the growth medium. PMID:19772463

  10. Electrically Activated Primary Human Fibroblasts Improve In Vitro and In Vivo Skin Regeneration.

    PubMed

    Rouabhia, Mahmoud; Park, Hyun Jin; Zhang, Ze

    2016-08-01

    Electrical stimulation (ES) changes cellular behaviors and thus constitutes a potential strategy to promote wound healing. However, well-controlled in vitro findings have yet to be translated to in vivo trials. This study was to demonstrate the feasibility and advantages of transplanting electrically activated cells (E-Cells) to help wound healing. Primary human skin fibroblasts were activated through well defined ES and cultured with keratinocytes to generate engineered human skin (EHS), which were transplanted to nu/nu mice. The electrically activated EHS grafts were analyzed at 20 and 30 days post-grafting, showing faster wound closure, thick epidermis, vasculature, and functional basement membrane containing laminin and type IV collagen that were totally produced by the implanted human cells. Because a variety of cells can be electrically activated, E-Cells may become a new cell source and the transplantation of E-Cells may represent a new strategy in wound healing and tissue engineering. J. Cell. Physiol. 231: 1814-1821, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661681

  11. Electrically Activated Primary Human Fibroblasts Improve In Vitro and In Vivo Skin Regeneration.

    PubMed

    Rouabhia, Mahmoud; Park, Hyun Jin; Zhang, Ze

    2016-08-01

    Electrical stimulation (ES) changes cellular behaviors and thus constitutes a potential strategy to promote wound healing. However, well-controlled in vitro findings have yet to be translated to in vivo trials. This study was to demonstrate the feasibility and advantages of transplanting electrically activated cells (E-Cells) to help wound healing. Primary human skin fibroblasts were activated through well defined ES and cultured with keratinocytes to generate engineered human skin (EHS), which were transplanted to nu/nu mice. The electrically activated EHS grafts were analyzed at 20 and 30 days post-grafting, showing faster wound closure, thick epidermis, vasculature, and functional basement membrane containing laminin and type IV collagen that were totally produced by the implanted human cells. Because a variety of cells can be electrically activated, E-Cells may become a new cell source and the transplantation of E-Cells may represent a new strategy in wound healing and tissue engineering. J. Cell. Physiol. 231: 1814-1821, 2016. © 2015 Wiley Periodicals, Inc.

  12. Induction of Neural Progenitor-Like Cells from Human Fibroblasts via a Genetic Material-Free Approach

    PubMed Central

    Mirakhori, Fahimeh; Zeynali, Bahman; Rassouli, Hassan; Shahbazi, Ebrahim; Hashemizadeh, Shiva; Kiani, Sahar; Salekdeh, Ghasem Hosseini; Baharvand, Hossein

    2015-01-01

    Background A number of studies generated induced neural progenitor cells (iNPCs) from human fibroblasts by viral delivering defined transcription factors. However, the potential risks associated with gene delivery systems have limited their clinical use. We propose it would be safer to induce neural progenitor-like cells from human adult fibroblasts via a direct non-genetic alternative approach. Methodology/Principal Findings Here, we have reported that seven rounds of TAT-SOX2 protein transduction in a defined chemical cocktail under a 3D sphere culture gradually morphed fibroblasts into neuroepithelial-like colonies. We were able to expand these cells for up to 20 passages. These cells could give rise to cells that expressed neurons and glia cell markers both in vitro and in vivo. Conclusions/Significance These results show that our approach is beneficial for the genetic material-free generation of iNPCs from human fibroblasts where small chemical molecules can provide a valuable, viable strategy to boost and improve induction in a 3D sphere culture. PMID:26266943

  13. Induction of chromosome aberrations by Fusarium T-2 toxin in cultured human peripheral blood lymphocytes and Chinese hamster fibroblasts

    SciTech Connect

    Hsia, C.C.; Gao, Y.; Wu, J.L.; Tzian, B.

    1986-01-01

    T-2 toxin is an important representative of trichothecenes produced by various species of imperfect fungi, mainly Fusarium genus. No definite data demonstrating the carcinogenic potential of T-2 toxin had been reported up to now. The authors demonstrated that T-2 toxin reproducibly induced chromosomal structural aberrations both in cultured human peripheral blood lymphocytes as well as in V/sub 79/ Chinese hamster fibroblasts. The mean percentage of cells with aberration of human lymphocytes from normal individuals induced by T-2 toxin is 49-fold (9.8%) of the mean percentage of corresponding control cultures without T-2 toxin (0.2%). T-2 toxin induced chromosome type (76%) as well as chromatid type (24%) of aberrations; among them, acentric fragment (46%) was the most common type, and chromatid gap, deletion, and chromosome gap were the next most common. T-2 toxin can induce aberrations in cells at different phases of the cell cycle. There are definite dose-effect relationships within a certain range of dosage of T-2 toxin in experiments with both human peripheral blood lymphocytes and V/sub 79/ cells. T-2 toxin exhibited three types of effects on cells, namely, mitogenic at lowest concentration, clastogenic (chromosome aberration) at median concentration, and cytotoxic at higher concentration. The dose-effect curves of these three effects are partly overlapping. Sex or age effect was not observed. The results suggest that T-2 toxin has carcinogenic potentials. The dosage of aflatoxin that can induce chromosomal aberration of human peripheral blood lymphocytes is thousands-fold of the dosage of T-2 toxin as shown in this report.

  14. Locomotory invasion of human cervical epithelium and avian fibroblasts by HeLa cells in vitro.

    PubMed

    Stephenson, E M

    1982-10-01

    The locomotory invasive ability of HeLa cells was tested against: (a) embryonic chick heart fibroblasts (CHF); and (b) normal epithelial cells from human cervix (HCE) in explant confrontations. Data for analyses were obtained from replicate cultures fixed 24 h after junction and from 24-h time-lapse films. The mean invasion index for HeLa versus CHF did not indicate significant obstruction but analyses of hourly radial advance and orientation frequencies showed that obstruction eventually developed as postjunctional incubation time increased. Early contacts between HeLa and CHF demonstrated non-reciprocity of type I contact inhibition of locomotion by the tumour cells, which continued moving in their original direction to underlap contact-inhibited fibroblasts and eventually to occupy spaces vacated by them. When CHF population density increased and free space diminished, HeLa cells displayed directional and probably substrate-dependent contact inhibition. The high invasion index of HeLa versus HCE was largely due to occupation of previous HCE territory by tumour cells and only occasionally to actual infiltration of the epithelial sheet. After contact with HeLa, ruffling substrate-adherent marginal epithelial cells displayed contractile, type I contact inhibition of locomotion. After orientation changes, they gradually retreated. Against HCE, HeLa cells exhibited non-reciprocity of type I contact inhibition and continued radially forward, following the retreating epithelial margin. They did not move onto exposed upper surfaces of epithelial cells and did not underlap marginal cells firmly adherent to the substratum. Invasion of the epithelial sheet was seen only when initial access beneath a cell with a non-adherent margin was available. The contact relationships of isolated invading HeLa cells with their epithelial neighbours suggested successive non-reciprocal contact inhibition reactions.

  15. Radiation response of chemically derived mitochondrial DNA-deficient AG01522 human primary fibroblasts.

    PubMed

    Nieri, D; Fioramonti, M; Berardinelli, F; Leone, S; Cherubini, R; De Nadal, V; Gerardi, S; Moreno, S; Nardacci, R; Tanzarella, C; Antoccia, A

    2013-08-30

    Mitochondria are the main cellular source of Reactive Oxygen Species (ROS). Alterations of mitochondrial metabolism and consequent loss of mitochondrial membrane potential may lead to redox imbalance and in turn to DNA damage, chromosomal instability and apoptosis. On the other hand, impaired mitochondrial functions may either exacerbate the detrimental effects of geno- and cytotoxic agents or may bring beneficial cellular responses. To study the role of mitochondria within this framework, AG01522 human primary fibroblasts were incubated with the mitochondrial polymerase γ inhibitor 2',3'-dideoxycytidine (ddC), leading to mitochondrial DNA (mtDNA) depletion and to mitochondrial dysfunctions. The successful treatment toward mtDNA depletion was confirmed by Complex-IV subunit I (COX-I) immunofluorescence and western blot assays. mtDNA-depleted cells and their counterparts were ultrastructurally characterized by transmission electron microscopy. mtDNA-depleted cells showed dramatic mitochondrial alterations such as fragmentation and cristae disruption along with a reduction of the mitochondrial membrane potential and elevated levels of ROS. Despite increased ROS levels, we did not find any difference in telomere length between ddC-treated and untreated cells. The spontaneous rate of DNA double-strand breaks (DSBs) and chromosome aberrations was significantly enhanced in mtDNA-depleted cells whereas the induction of DSBs by low-Linear Energy Transfer (LET) (X-rays; 7.7keV/μm protons) and high-LET radiations (28.5keV/μm protons) did not differ when compared with normal cells. However, in irradiated cells impaired mitochondrial functions seemed to bring beneficial cellular responses to the detrimental effect of radiations. In fact, after X-irradiation mtDNA-depleted cells show less remaining unrejoined DSBs than normal cells and furthermore a lower induction of cytogenetic damage. Overall, these data show that active mitochondrial functions are required for the proper

  16. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts

    SciTech Connect

    Dai, Jiawen; Itahana, Koji; Baskar, Rajamanickam

    2015-02-27

    Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G{sub 1}/S or G{sub 2}/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G{sub 0}, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its

  17. SCN5A variant that blocks fibroblast growth factor homologous factor regulation causes human arrhythmia

    PubMed Central

    Musa, Hassan; Kline, Crystal F.; Sturm, Amy C.; Murphy, Nathaniel; Adelman, Sara; Wang, Chaojian; Yan, Haidun; Johnson, Benjamin L.; Csepe, Thomas A.; Kilic, Ahmet; Higgins, Robert S. D.; Janssen, Paul M. L.; Fedorov, Vadim V.; Weiss, Raul; Salazar, Christina; Hund, Thomas J.; Pitt, Geoffrey S.; Mohler, Peter J.

    2015-01-01

    Nav channels are essential for metazoan membrane depolarization, and Nav channel dysfunction is directly linked with epilepsy, ataxia, pain, arrhythmia, myotonia, and irritable bowel syndrome. Human Nav channelopathies are primarily caused by variants that directly affect Nav channel permeability or gating. However, a new class of human Nav channelopathies has emerged based on channel variants that alter regulation by intracellular signaling or cytoskeletal proteins. Fibroblast growth factor homologous factors (FHFs) are a family of intracellular signaling proteins linked with Nav channel regulation in neurons and myocytes. However, to date, there is surprisingly little evidence linking Nav channel gene variants with FHFs and human disease. Here, we provide, to our knowledge, the first evidence that mutations in SCN5A (encodes primary cardiac Nav channel Nav1.5) that alter FHF binding result in human cardiovascular disease. We describe a five*generation kindred with a history of atrial and ventricular arrhythmias, cardiac arrest, and sudden cardiac death. Affected family members harbor a novel SCN5A variant resulting in p.H1849R. p.H1849R is localized in the central binding core on Nav1.5 for FHFs. Consistent with these data, Nav1.5 p.H1849R affected interaction with FHFs. Further, electrophysiological analysis identified Nav1.5 p.H1849R as a gain-of-function for INa by altering steady-state inactivation and slowing the rate of Nav1.5 inactivation. In line with these data and consistent with human cardiac phenotypes, myocytes expressing Nav1.5 p.H1849R displayed prolonged action potential duration and arrhythmogenic afterdepolarizations. Together, these findings identify a previously unexplored mechanism for human Nav channelopathy based on altered Nav1.5 association with FHF proteins. PMID:26392562

  18. Secreted proteoglycans directly mediate human embryonic stem cell-basic fibroblast growth factor 2 interactions critical for proliferation.

    PubMed

    Levenstein, Mark E; Berggren, W Travis; Lee, Ji Eun; Conard, Kevin R; Llanas, Rachel A; Wagner, Ryan J; Smith, Lloyd M; Thomson, James A

    2008-12-01

    Human embryonic stem (ES) cells can be maintained in an undifferentiated state if the culture medium is first conditioned on a layer of mouse embryonic fibroblast (MEF) feeder cells. Here we show that human ES cell proliferation is coordinated by MEF-secreted heparan sulfate proteoglycans (HSPG) in conditioned medium (CM). These HSPG and other heparinoids can stabilize basic fibroblast growth factor (FGF2) in unconditioned medium at levels comparable to those observed in CM. They also directly mediate binding of FGF2 to the human ES cell surface, and their removal from CM impairs proliferation. Finally, we have developed a purification scheme for MEF-secreted HSPG in CM. Using column chromatography, immunoblotting, and mass spectrometry-based proteomic analysis, we have identified multiple HSPG species in CM. The results demonstrate that HSPG are key signaling cofactors in CM-based human ES cell culture.

  19. Uranyl Acetate Induces Oxidative Stress and Mitochondrial Membrane Potential Collapse in the Human Dermal Fibroblast Primary Cells

    PubMed Central

    Daraie, Bahram; Pourahmad, Jalal; Hamidi-Pour, Neda; Hosseini, Mir-Jamal; Shaki, Fatemeh; Soleimani, Masoud

    2012-01-01

    Cytotoxicity of depleted uranium, as a byproduct of military has been came to spotlight in recent decades. DU is known as a chemical rather than radioactive hazard and efforts to illustrating its mechanism is undergo, but the precise complete molecular mechanisms are still unclear. Recent studies showed that uranium induces biological changes in many different target tissues, such as the kidney, brain and skin. The aim of this study was to assess the impact of depleted uranium exposure at the cellular level in the human dermal fibroblast primary cells. The human dermal fibroblast primary cells incubated with different concentration (250-750 μM) of depleted uranium. Cytotoxicity and mitochondrial function in this cell lines were determined with the LDH leakage assay and the MTT test respectively. MDA levels were measured for determination of Lipid peroxidation in DU treated cells. Besides glutathione depletion and apoptosis phenotype detection were also assessed to complete the mechanistic screening. Results showed that the cell viability ameliorates in concentration and time dependent manners following in 24, 48 and 72 h incubation with DU. Moreover the significant increase in lipid peroxidation and significant decrease in cellular GSH recorded in DU treated human dermal fibroblast primary cells suggesting the preoxidant effect of uranyl ions. Cytoprotective effects of N-acetylcysteine (NAC) and dramatic decrease of cell viability in buthionin sulfoxamid (BSO) pretreated cells indicated the possibility of a critical role for glutathione system in DU detoxification. Death pattern, in fibroblast cells following DU treatment was varied from apoptosis to necrosis while the time and concentration increased. Since ROS formation is the initiation step for cell apoptosis, the present studies suggest Uranyl-induced toxicity in the human dermal fibroblast primary cells originated from oxidative stress and lead to occurrence of programmed cell death. PMID:24250472

  20. Salamander-Derived, Human-Optimized nAG Protein Suppresses Collagen Synthesis and Increases Collagen Degradation in Primary Human Fibroblasts

    PubMed Central

    Al-Qattan, Mohammad M.; Shier, Medhat K.; Abd-AlWahed, Mervat M.; Mawlana, Ola H.; El-Wetidy, Mohammed S.; Bagayawa, Reginald S.; Ali, Hebatallah H.; Al-Nbaheen, May S.; Aldahmash, Abdullah M.

    2013-01-01

    Unlike humans, salamanders regrow their amputated limbs. Regeneration depends on the presence of regenerating axons which upregulate the expression of newt anterior gradient (nAG) protein. We had the hypothesis that nAG might have an inhibitory effect on collagen production since excessive collagen production results in scarring, which is a major enemy to regeneration. nAG gene was designed, synthesized, and cloned. The cloned vector was then transfected into primary human fibroblasts. The results showed that the expression of nAG protein in primary human fibroblast cells suppresses the expression of collagen I and III, with or without TGF-β1 stimulation. This suppression is due to a dual effect of nAG both by decreasing collagen synthesis and by increasing collagen degradation. Furthermore, nAG had an inhibitory effect on proliferation of transfected fibroblasts. It was concluded that nAG suppresses collagen through multiple effects. PMID:24288677

  1. Growth properties and growth factor responsiveness in skin fibroblasts from centenarians.

    PubMed

    Tesco, G; Vergelli, M; Grassilli, E; Salomoni, P; Bellesia, E; Sikora, E; Radziszewska, E; Barbieri, D; Latorraca, S; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Franceschi, C; Sorbi, S

    1998-03-27

    Human fibroblast cultures, which have a finite replicative lifespan in vitro, are the most widely used model for the study of senescence at the cellular level. An inverse relationship between replicative capability and donor age has been reported in human fibroblast strains. We studied the growth capacity of fibroblast primary cultures derived from people whose lifespan was as closer as possible to the expected maximum human lifespan, i.e. people over one hundred. Our data suggest that outgrowth of fibroblasts from biopsies, growth kinetics at different population doubling levels, capability to respond to a classical mitogenic stimulus (such as 20% serum) and a variety of growth factors, were remarkably similar in fibroblasts from centenarians and young controls. On the whole, our data challenge the tenet of a simple and strict relationship between in vivo aging and in vitro proliferative capability of human fibroblasts, at least at the individual level. PMID:9535767

  2. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    SciTech Connect

    Smith, Leah J.; Holmes, Amie L.; Kandpal, Sanjeev Kumar; Mason, Michael D.; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  3. RT-qPCR-based microneutralization assay for human cytomegalovirus using fibroblasts and epithelial cells.

    PubMed

    Wang, Xiao; Peden, Keith; Murata, Haruhiko

    2015-12-16

    Human cytomegalovirus (HCMV) is a leading cause of congenital infection that can result in serious disabilities in affected children. To facilitate HCMV vaccine development, a microscale neutralization assay based on reverse transcription quantitative PCR (RT-qPCR) was developed to quantify HCMV-neutralizing antibodies. Our approach relies on the generation of crude lysates from virus-infected cells that are amenable to direct analysis by RT-qPCR, thereby circumventing rate-limiting procedures associated with sample RNA extraction and purification. By serial passaging of the laboratory HCMV strain AD169 in epithelial cells (ARPE-19), a revertant virus with restored epithelial cell tropism, designated AD169(wt131), was obtained. AD169 and AD169(wt131) were evaluated in both epithelial cells (ARPE-19) and fibroblasts (MRC-5) by one-step RT-qPCR targeting the immediate-early gene IE1 transcript of HCMV. Expression kinetics indicated that RT-qPCR assessment could be conducted as early as 6h post-infection. Human serum samples (n=30) from healthy donors were tested for HCMV-specific IgG using a commercially available ELISA and for HCMV-neutralizing activity using our RT-qPCR-based neutralization assay. In agreement with the ELISA results, higher neutralizing activity was observed in the HCMV IgG seropositive group when compared with the HCMV IgG seronegative group. In addition, HCMV IgG seropositive human sera exhibited higher neutralizing titers using epithelial cells compared with using fibroblasts (geometric mean titers of 344 and 8 in ARPE-19 cells and MRC-5 cells, respectively). Our assay was robust to variation in input virus dose. In addition, a simple lysis buffer containing a non-ionic detergent was successfully demonstrated to be a less costly alternative to commercial reagents for cell-lysate preparation. Thus, our rapid HCMV neutralization assay may be a straightforward and flexible high-throughput tool for measuring antibody responses induced by vaccination

  4. METHOTREXATE AND MYOTREXATE INDUCE APOPTOSIS IN HUMAN MYOMA FIBROBLASTS (T hES CELL LINE) VIA MITOCHONDRIAL PATHWAY.

    PubMed

    Kastratović, Tatjana; Arsenijević, Slobodan; Matović, Zoran; Mitrović, Marina; Nikolić, Ivana; Milosavljević, Zoran; Protrka, Zoran; Šorak, Marija; Đurić, Janko

    2015-01-01

    Uterine leiomyomas (fibroids) are the most common benign tumors in women of reproductive age. Although the local application of low doses of methotrexate (MTX) is used as an effective treatment of the myomas, myotrexate could be a promising new drug. This study investigated the cytotoxic and apoptotic effects of both MTX and myotrexate in human fibroblasts derived from the uterine fibroids (T hES cell line). The myotrexate adduct is an aqueous solution of MTX and L-arginine. Cells were treated with a graded concentrations of both MTX and myothrexate (0.1-16 µM) for 24 h. The cytotoxicity was assayed by MTT test, apoptosis was evaluated by Annexin V-FITC assay and their possible role in apoptosis was determined by immnu- flourescence. Both MTX and myotrexate induced apoptosis in T hES cells in a dose dependent manner (p < 0.001). Myotrexate significantly increased the percentage of AnnexinV positive cells, BAX/Bcl-2 ratio and subsequent caspase-3 activation compared to the MTX treated cells (p < 0.05). Both MTX or myotrexate treatment showed a diffuse staining of cytochrome c indicating its release from mitochondria to the cytosol, suggesting that their mechanisms of action most likely involves the mitochondrial apoptotic pathway. PMID:26642654

  5. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process.

    PubMed

    Razzaque, Mohammed S; Sitara, Despina; Taguchi, Takashi; St-Arnaud, René; Lanske, Beate

    2006-04-01

    Fibroblast growth factor 23 null mice (Fgf-23-/-) have a short lifespan and show numerous biochemical and morphological features consistent with premature aging-like phenotypes, including kyphosis, severe muscle wasting, hypogonadism, osteopenia, emphysema, uncoordinated movement, T cell dysregulation, and atrophy of the intestinal villi, skin, thymus, and spleen. Furthermore, increased vitamin D activities in homozygous mutants are associated with severe atherosclerosis and widespread soft tissue calcifications; ablation of vitamin D activity from Fgf-23-/- mice, by genetically deleting the 1alpha(OH)ase gene, eliminates atherosclerosis and ectopic calcifications and significantly rescues premature aging-like features of Fgf-23-/- mice, resulting in prolonged survival of Fgf-23-/-/1alpha(OH)ase-/- double mutants. Our results indicate a novel role of Fgf-23 in developing premature aging-like features through regulating vitamin D homeostasis. Finally, our data support a new model of interactions among Fgf-23, vitamin D, and klotho, a gene described as being associated with premature aging process.

  6. Genotype × age interaction in human transcriptional ageing

    PubMed Central

    Kent, Jack W.; Göring, Harald H. H.; Charlesworth, Jac C.; Drigalenko, Eugene; Diego, Vincent P.; Curran, Joanne E.; Johnson, Matthew P.; Dyer, Thomas D.; Cole, Shelley A.; Jowett, Jeremy B. M.; Mahaney, Michael C.; Comuzzie, Anthony G.; Almasy, Laura; Moses, Eric K.; Blangero, John; Williams-Blangero, Sarah

    2012-01-01

    Individual differences in biological ageing (i.e., the rate of physiological response to the passage of time) may be due in part to genotype-specific variation in gene action. However, the sources of heritable variation in human age-related gene expression profiles are largely unknown. We have profiled genome-wide expression in peripheral blood mononuclear cells from 1,240 individuals in large families and found 4,472 human autosomal transcripts, representing ~4,349 genes, significantly correlated with age. We identified 623 transcripts that show genotype by age interaction in addition to a main effect of age, defining a large set of novel candidates for characterization of the mechanisms of differential biological ageing. We applied a novel SNP genotype×age interaction test to one of these candidates, the ubiquilin-like gene UBQLNL, and found evidence of joint cis-association and genotype by age interaction as well as trans-genotype by age interaction for UBQLNL expression. Both UBQLNL expression levels at recruitment and cis genotype are associated with longitudinal cancer risk in our study cohort. PMID:22871458

  7. Induction of PGF2α Synthesis by Cortisol Through GR Dependent Induction of CBR1 in Human Amnion Fibroblasts

    PubMed Central

    Guo, Chunming; Wang, Wangsheng; Liu, Chao

    2014-01-01

    Abundant evidence indicates a pivotal role of prostaglandin F2α (PGF2α) in human parturition. Both the fetal and maternal sides of the fetal membranes synthesize PGF2α. In addition to the synthesis of PGF2α from PGH2 by PGF synthase (PGFS), PGF2α can also be converted from PGE2 by carbonyl reductase 1 (CBR1). Here, we showed that there was concurrent increased production of cortisol and PGF2α in association with the elevation of CBR1 in human amnion obtained at term with labor versus term without labor. In cultured primary human amnion fibroblasts, cortisol (0.01–1μM) increased PGF2α production in a concentration-dependent manner, in parallel with elevation of CBR1 levels. Either siRNA-mediated knockdown of glucocorticoid receptor (GR) expression or GR antagonist RU486 attenuated the induction of CBR1 by cortisol. Chromatin immunoprecipitation (ChIP) showed an increased enrichment of both GR and RNA polymerase II to CBR1 promoter. Knockdown of CBR1 expression with siRNA or inhibition of CBR1 activity with rutin decreased both basal and cortisol-stimulated PGF2α production in human amnion fibroblasts. In conclusion, CBR1 may play a critical role in PGF2α synthesis in human amnion fibroblasts, and cortisol promotes the conversion of PGE2 into PGF2α via GR-mediated induction of CBR1 in human amnion fibroblasts. This stimulatory effect of cortisol on CBR1 expression may partly explain the concurrent increases of cortisol and PGF2α in human amnion tissue with labor, and these findings may account for the increased production of PGF2α in the fetal membranes prior to the onset of labor. PMID:24654784

  8. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    PubMed

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.

  9. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    PubMed

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics. PMID:25866970

  10. Identification of a small molecule that turns ON the pluripotency gene circuitry in human fibroblasts.

    PubMed

    Pandian, Ganesh N; Sato, Shinsuke; Anandhakumar, Chandran; Taniguchi, Junichi; Takashima, Kazuhiro; Syed, Junetha; Han, Le; Saha, Abhijit; Bando, Toshikazu; Nagase, Hiroki; Sugiyama, Hiroshi

    2014-12-19

    A nontransgenic approach to reprogram mouse somatic cells into induced pluripotent stem cells using on